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Using genotype abundance to improve phylogenetic
inference

William S. DeWitt III1,2, Luka Mesin3, Gabriel D. Victora3, Vladimir N. Minin4 & Frederick A.

Matsen IV1

1Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

2Department of Genome Sciences, University of Washington, Seattle, United States

3Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA

4Department of Statistics, University of California, Irvine, CA, USA

Modern biological techniques enable very dense genetic sampling of unfolding evolutionary

histories, and thus frequently sample some genotypes multiple times. This motivates strate-

gies to incorporate genotype abundance information in phylogenetic inference. In this paper,

we synthesize a stochastic process model with standard sequence-based phylogenetic opti-

mality, and show that tree estimation is substantially improved by doing so. Our method is

validated with extensive simulations and an experimental single-cell lineage tracing study of

germinal center B cell receptor affinity maturation.

INTRODUCTION

Although phylogenetic inference methods were originally designed to elucidate the relationships

between groups of organisms separated by eons of diversification, the last several decades have

seen new phylogenetic methods for populations that are evolving on the timescale of scientific

inquiry1. This development is being spurred by new experimental techniques that enable deep

sequencing at single-cell resolution, some of which enable quantification of original abundance.

For bulk sequencing, random barcodes can be used to quantify PCR template abundance2–4. More

recently, cell isolation5 or combinatorial techniques6–8 have provided sequence data at single-cell

resolution. With such data, a given unique genotype—among many in the data—is represented in

a measured number of cells. The abundance of a genotype can be read out as the number of cells
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bearing that genotype. Here we demonstrate that incorporating genotype abundance improves phy-

logenetic inference for densely sampled evolutionary processes in which it is common to sample

genotypes more than once.

We are motivated by the setting of B cell development in germinal centers. B cells are the

cells that make antibodies, or more generally immunoglobulins. Immunoglobulins are encoded by

genes that undergo a stage of rapid Darwinian mutation and selection called affinity maturation9.

During affinity maturation, immunoglobulin is in its membrane-bound form, known as the B cell

receptor (BCR). The biological function of this process is to develop BCRs with high-affinity for a

pathogen-associated antigen molecule, and later excrete large quantities of the associated antibody.

This affinity maturation process occurs in specialized sites called germinal centers in lymph

nodes, which have specific cellular organization to enable B cells to compete among each other

to bind a specific antigen (proliferating more readily if they do) while mutating their BCRs via a

mechanism called somatic hypermutation (SHM). Using micro-dissection, researchers can extract

germinal centers from model animals and sequence the genes encoding their BCR directly10, 11.

Lymph node samples are also available through autopsy12 or fine needle aspirates from living

subjects13. Such samples provide a remarkable perspective on an ongoing evolutionary process.

Indeed, these samples contain a population of cells with BCRs that differentiated via SHM

at various times and have various cellular abundances. Because the natural selection process in

germinal centers appears permissive to a variety of BCR-antigen affinities10, 11, earlier-appearing

BCRs are present at the same time as later-appearing BCRs. The collection of descendants from a

single founder cell in this process naturally form a phylogenetic tree. However, it is a tree in which

each genotype is associated with a given abundance, and such that older ancestral genotypes are

present along with more recent appearances. Reconstruction of phylogenetic trees from BCR data

may benefit from methods designed to account for these distinctive features.

Standard sequence-based methods for inferring phylogenies fall into several classes accord-

ing to their optimality criteria. Maximum likelihood methods posit a probabilistic substitution



model on a phylogeny and find the tree that maximizes the probability of the observed data under

this model14–16. Bayesian methods augment likelihood with a prior distribution over trees, branch

lengths, and substitution model parameters, and approximate the posterior distribution of all the

above variables by Markov chain Monte Carlo (MCMC)17, 18. Maximum parsimony methods use

combinatorial optimization to find the tree that minimizes the number of evolutionary events19–21.

Parsimony methods often result in degenerate inference, in which multiple trees achieve the same

minimal number of events (i.e. maximum parsimony)22. Additional approaches include distance

matrix methods, which summarize the data by the distances between sequence pairs, and phyloge-

netic invariants, which select topologies based on the value of polynomials calculated on character

state pattern frequencies. None of the above methods incorporate genotype abundance informa-

tion, and it is standard for data with duplicated genotypes to be reduced to a list of deduplicated

unique genotypes before a phylogeny is inferred.

In this paper we show that genotype abundance is a rich source of information that can be

productively integrated into phylogenetic inference, and we provide an open-source implementa-

tion to do so. We incorporate abundance via a stochastic branching process with infinitely many

types for which likelihoods are tractable, and show that it can be used to resolve degeneracy in

parsimony-based optimality. We first validate the procedure against simulations of germinal center

BCR diversification. We also empirically validate our method using an experimental lineage trac-

ing approach combining multiphoton microscopy and single cell BCR sequencing, allowing us to

study individual germinal center B cell lineages from brainbow mice. Beyond the setting of BCR

development, we foresee direct application to tumor phylogenetics in single-cell studies of cancer

evolution (reviewed by Schwartz et al.23), and single-cell implementations of lineage tracing based

on genome editing technology24.
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Figure 1 | Genotype-collapsed trees. (a.) A diversifying B cell lineage is illustrated with distinct BCR

genotypes colored. The final observed cells (enclosed by a dashed path) consist of genotypes at various

abundances; note the yellow genotype is not observed. (b.) The corresponding genotype-collapsed tree

(GCtree) describes the descent of distinct genotypes, and is our inferential goal. (c.) Genotype abundance

informs topology inference. Two hypothetical GCtrees, equally optimal with respect to the sequence data,

propose two possible parents of the green genotype—the gray and yellow genotypes (the yellow genotype

was not sampled and thus has a small circle with no number inside). Intuitively, the abundance information

indicates that the tree on the left is preferable because the more abundant parent is more likely to have

generated mutant descendants.

RESULTS

Genotype-collapsed trees

Given sequence data obtained from a diversifying cellular lineage tree (Fig. 1a), our goal is to

infer the genotype-collapsed tree (GCtree) defining the lineage of distinct genotypes and their

observed abundances (Fig. 1b). The GCtree is constructed from the lineage tree by collapsing

subtrees composed of cells with identical genotype to a single node annotated with its final cellular

abundance. Our data consists of the genotypes sampled at least once in the GCtree, along with their

associated abundances. Under the infinite types assumption that every mutant daughter generates

a novel genotype, each genotype can be identified with one subtree in the original lineage tree. We



are not claiming any originality in the GCtree definition, but it is useful to have a word for this

object.

We note that, unlike standard phylogenetic trees where only leaf nodes represent observed

genotypes, GCtree internal nodes represent observed genotypes if they are annotated with non-

zero abundance. Although not leaves per se in the GCtree, a nonzero abundance represents a

clonal sub-lineage that resulted in a nonzero number of leaves of that genotype in the lineage tree.

A node in the GCtree, along with its descending edges, summarizes the lineage outcome for a

given genotype as its mutant offspring clades and the number of its clonal leaves. Because this

summary does not completely specify the genotype’s clonal lineage structure (Fig. 2c), several

branching structures may be consistent with a given node, and we have no information with which

to distinguish between the various lineage trees consistent with a GCtree. Hence, our goal is to

infer the GCtree tree topology.

Parsimony with a prior

BCR sequence data from a germinal center sample has the following characteristics from the per-

spective of phylogenetics: genotypes have abundances, there is a limited amount of mutation be-

tween genotypes, and ancestral genotypes are present along with later ones. The latter two features

suggest maximum parsimony as a useful tool because of the limited amount of mutation and be-

cause ancestral genotypes can be assigned to internal nodes of the tree (although recent Bayesian

methods can do such assignment as well27, 28). For these reasons, parsimony has been used exten-

sively in B cell sequence analysis12, 29. Because having many duplicate sequences inhibits efficient

tree space traversal, these studies have inferred trees using the unique genotypes (BCR sequences).

This ignores the varying cellular abundances of the observed genotypes.

Here we wish to use a branching process model to rank trees that are equally optimal accord-

ing to sequence-level optimality criteria. Indeed, maximum parsimony often results in degenerate

inference: there are many trees that are maximally optimal22. We refer to these trees as a parsimony

forest. In later sections we show, using in silico and empirical data, that parsimony degeneracy is



common and often severe for BCR sequencing data, and that parsimony forests exhibit substan-

tial variation in phylogenetic accuracy. It is common practice to arbitrarily select one tree in the

parsimony forest at random, without regard for this variability in inference accuracy. Instead, we

will rank trees in the parsimony forest with an auxiliary likelihood that incorporates abundance

information, thereby resolving this degeneracy.

Genotype abundance is an additional source of information for phylogenetics, using the sim-

ple intuition that more abundant genotypes are more likely to have more mutant descendant geno-

types. This intuition makes sense because sample abundance is a reasonable estimator of total

historical abundance, and total historical abundance is closely related to the number of mutant off-

spring. This in turn is related to the number of surviving mutant offspring. Thus, given two equally

parsimonious trees, this intuition would prefer the tree that has more mutant descendants of a fre-

quently observed node (Fig. 1c). We formalize this intuition using a stochastic process model for

the phylogenetic development of germinal centers, and integrate this model with sequence-based

tree optimality via empirical Bayes.

In this stochastic process model, a GCtree node i has a random number Ti ∈ N of mutant

children (i.e. descending edges) and a random abundance Ai ∈ N. We will index nodes in a “level

order” as follows, which is well defined given an embedding of the tree into the plane. Index 1

refers to the root node, and 2 through 1 + T1 refer to the children of the root node. The level-order

continues in order through all tree nodes of the same level before nodes at the next level. Adopting

this level-ordering convention, a GCtree containing N nodes is specified by integer-valued random

vectors giving the (planar) topology T = (T1, . . . , TN), and abundances A = (A1, . . . , AN). We

also have the observed genotype sequences associated with each node G = (G1, . . . , GN).

A complete diversification model would give a joint distribution on T, G, and A. As an

approximation to such a model, facilitating use of existing sequence-based optimality methods, we

propose a process containing conditional independences as follows (Fig. 2a). First, a stochastic

process generates abundances A and tree T, conditioned on parameters θ (characterizing birth,
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Figure 2 | Modeling sequences equipped with abundances. (a.) Both genotype sequence data G and

genotype abundance data A inform tree topology T. As illustrated in this probabilistic graphical model, we

assume independence between G and A conditioned on T rather than a fully joint model of G, A, and T.

This facilitates using standard sequence-based phylogenetic optimality for G, augmented with a branching

process (with parameters θ) for A. (b.) For the binary infinite-type Galton-Watson process, θ = (p, q).

Four possible branching events characterize the offspring distribution common to all nodes. A node may

bifurcate (with probability p) or terminate, and upon bifurcating its descendants each may be a mutant (with

probability q). (c.) A GCtree node specifies a genotype’s clonal leaf count and number of descendant

genotypes, but not lineage details. The likelihood of a GCtree node marginalizes over consistent lineage

branching outcomes. (d.) GCtree likelihood factorizes into the product of likelihoods for each genotype.



death, and mutation rates in the underlying lineage tree): P (A,T | θ). This stochastic process will

embody the intuition described above. Next, sequence data G is generated according to a mutation

model on T independent of A. This sequence-based optimality is captured by a distribution over

G dependent only on T: P (G | T).

In an empirical Bayes treatment (see Methods for details), a maximum likelihood estimate θ̂

can be obtained by marginalizing T, and this in turn can be used to approximate a posterior over T

conditioned on the data G and A (as well as θ̂). Using parsimony as our sequence-based optimal-

ity, one can rank trees in the parsimony forest (denoted TG) according to the GCtree likelihood.

We encode the parsimony criteria in P (G | T) by assigning uniform weight to the trees in TG, and

zero to the other trees. This gives the following approximate maximum a posteriori tree:

T̂ = arg max
T∈TG

P
(
A,T | θ̂

)
, (1)

where the point estimate θ̂ is given by

θ̂ = arg max
θ

∑

T∈TG

P (A,T | θ) . (2)

Next we turn to explicitly defining the GCtree likelihood P (A,T | θ).

A stochastic process model of abundance

To compute likelihoods P (A,T | θ) for GCtrees (Fig. 1b), we model the lineage tree (Fig. 1a) as

a subcritical infinite-type binary Galton-Watson (branching) process30 in which extinct leaf nodes

correspond to observed cells. All mutations in an infinite-type process result in a novel genotype,

embodying the assumption that each genotype can be identified with one subtree. Subcriticality

ensures that the branching process terminates in finite time, so an explicit sampling time is not

needed. The process is initiated with a single cell (a naive germinal center B cell before affinity

maturation ensues), and runs to eventual extinction. This model is highly idealized and unable to

capture many biological realisms of B cell affinity maturation and the sampling process. However,



as we show in our validations, it is useful as a minimal model for leveraging genotype abundance

information in a tractable likelihood.

The offspring distribution for our process, governing reproduction and mutation for all lin-

eage tree nodes at all time steps, is specified by two parameters: the binary branching probability

p, and the mutation probability q. Because the offspring distribution is independent of type, sub-

criticality simply requires that the expected number of offspring of any node is less than 1, in this

case equivalent to p < 0.5. In this case a “mutation” is an event that causes the evolving lineage

to change to a novel genotype (under the infinite-types assumption). Thus the corresponding off-

spring distribution supports four distinct branching events (Fig. 2b). Letting C and M denote the

(random) number of clonal and mutant offspring of any given node in the lineage tree, respectively,

the offspring distribution is

P (C = c,M = m) =





1− p c = m = 0,

p(1− q)2 c = 2,m = 0,

2pq(1− q) c = m = 1,

pq2 c = 0,m = 2,

0 otherwise.

(3)

We can compute the likelihood of a hypothetical binary lineage tree simply by evaluating

(3) at each node in the tree and multiplying the results. The likelihood for a GCtree is then given

by summing over all possible binary lineage trees that are consistent with that GCtree (i.e. that

give the same GCtree when collapsing by genotype), thus marginalizing out the details of intra-

genotype branching events that give rise to the same abundance. Here we show how to calculate

the GCtree likelihood directly for the simple offspring distribution (3). Other work31 has described

how to calculate statistics of the infinite-type branching process with a general subcritical offspring

distribution.

First consider the likelihood for an individual node in the GCtree, say the root node, in the

context of the branching process described above. A GCtree node i is specified by its abundanceAi

and the number of edges descending from it Ti (both random variables). There are, in general, mul-



tiple distinct branching process realizations for genotype i that result in Ai = a clonal leaves and

Ti = τ mutations off the genotype i lineage subtree (Fig. 2c). Determining the likelihood of node i

in the GCtree under this process, which we denote by faτ (p, q) = P (Ai = a, Ti = τ | θ = (p, q)),

requires marginalizing over all such genotype lineage subtrees. In the Methods we derive a re-

currence for faτ (p, q) by marginalizing over the outcome of the branching event at the root of the

lineage subtree for genotype i, and show that the GCtree node likelihood faτ (p, q) can be computed

by dynamic programming.

A complete GCtree containing N nodes is specified by level-ordering the nodes as described

above T = (T1, . . . , TN), A = (A1, . . . , AN). Because the same offspring distribution generates

the lineage branching of each genotype subtree, the same recurrence can be applied to all GCtree

nodes. Specifically, we show in the Methods that the joint distribution over all nodes in a GCtree

factorizes by genotype (Fig. 2d).

P (T = (τ1, . . . , τN),A = (a1, . . . , aN) | θ = (p, q)) =
N∏

i=1

faiτi (p, q) , (4)

A computational implementation of the inference method above is available at github.

com/matsengrp/gctree. The GCtree inference subprogram accepts sequence data in FASTA

format, determines a parsimony forest from the unique sequences using the dnapars program

from the PHYLIP package32, determines the genotype-collapsed form of these trees and outputs

tree visualizations using the ETE package33, and ranks them according to their GCtree likelihood

using the sequence abundances. Bootstrap analysis is also implemented, providing confidence

values of each split in the maximum likelihood GCtree. The GCtree maximizing the branching

process likelihood (with optional bootstrap support) is the inference result. Next we show that re-

solving parsimony degeneracy using GCtree substantially increases both accuracy and precision

of phylogenetic inference.

github.com/matsengrp/gctree
github.com/matsengrp/gctree


In silico validation

To explore the accuracy and robustness of GCtree inference, we developed a simulation subpro-

gram to generate random lineages starting with a naive BCR sequence. For simulated lineages,

true trees can be compared against those inferred with the GCtree inference subprogram. The

stochastic process model used in GCtree inference is intended as a minimal model (in terms of

biological realism) that captures the intuition that genotype abundance is relevant to phylogenetic

reconstruction. Experimental data need not obey our simplifying assumptions, thus we set out to

test GCtree’s robustness to deviations of the data generating process from the inferential model.

A complicated simulation process was implemented that includes biological realisms of B

cells undergoing SHM (and violates inferential assumptions). These realisms of simulation—

detailed in the Methods—include: branching process multifurcations (controlled by a parameter

λ, the expected number of children of a node in the cell lineage tree), sequence context sensitive

mutations25, 26 (with a baseline-line mutation rate λ0, and a context-specific mutational model with

5mer mutabilities taken from34), explicit sampling time (t, or N representing the number of cells

desired in the sampled generation), incomplete sampling (the number of cells to sample n ≤ N ),

and repeated genotypes allowed (deviation from the infinite-type assumption). This constitutes

a more challenging validation than simply simulating under the same assumptions that had been

invoked for tractability of the inferential framework.

Our in silico validation workflow is demonstrated in Fig. 3a for a small simulation that re-

sulted in a parsimony forest with just three equally parsimonious trees. The output of the simulation

software consists of FASTA data (sequences and their abundances), visualizations of the lineage

tree and its GCtree equivalent, and a file containing the true GCtree structure. The GCtree infer-

ence subprogram can then be run on the FASTA data, and the resulting inferred GCtree compared

to the true GCtree (in this case they were identical). To calibrate simulation parameters, we defined

summary statistics on sequence data with abundance information, and tuned parameters to produce

data similar to experimental BCR sequencing data under these statistics (see Methods).
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Figure 3 | In silico validation of GCtree inference. (a.) Demonstrating the simulation–inference–validation

workflow, a small simulation resulted in three equally maximally parsimonious trees, and the one inferred

using GCtree was correct. The initial sequence was a naive BCR V gene from the experimental data

described in the Methods. (b.) 100 simulations were performed with parameters calibrated using the BCR

sequencing data and summary statistics described in the Methods. Of 100 simulations, 66 resulted in

parsimony degeneracy, with an average degeneracy of 12 and a maximum degeneracy of 124. For each

of these 66, we show the distribution of Robinson–Foulds (RF) distance of trees in the parsimony forest to

the true tree. “RF” denotes a modified Robinson-Foulds distance: since nonzero abundance internal nodes

in GCtrees represent observed taxa, RF distance was computed as if all such nodes had an additional

descendant leaf representing that taxon. GCtree MLEs (red) tend to be better reconstructions of the true

tree than other parsimony trees (gray boxes). Aggregated data across all simulations are depicted on the

right, clearly indicating superior reconstructions from GCtree.



Our validation shows that using abundance information via a branching process likelihood

can substantially improve inference results (Fig. 3b). For each simulation we ranked otherwise

degenerately optimal parsimony trees using GCtree. For each parsimony forest, we compared

the GCtrees in the forest to the true GCtree for that simulation using the Robinson–Foulds (RF)

distance35 as a measure of tree reconstruction accuracy. The maximum likelihood GCtree tends

to be closer to the true tree than other equally parsimonious trees, which vary widely in accuracy,

showing that GCtree is able to leverage abundance data to resolve parsimony degeneracy and

improve the accuracy of tree reconstruction in this simulation regime.

Empirical validation

We next performed a biological validation by investigating if GCtree improves inference accord-

ing to biological criteria using real germinal center BCR sequence data. The BCR is a heterodimer

encoded by the immunoglobulin heavy chain (IgH) and immunoglobulin light chain (IgL) loci.

Both loci undergo V(D)J recombination, and then evolve in tandem during affinity maturation. By

obtaining matched sequences from both loci using single-cell isolation, we have two independent

data sets to inform the same phylogeny of distinct cells (each of which is associated with a single

IgH sequence and single IgL sequence). Performing separate and independent IgH and IgL tree in-

ference, we can then validate GCtree by comparing the inferred IgH tree to the inferred IgL tree.

If the GCtree likelihood (4) meaningfully ranks equally parsimonious trees, then the two MLE

trees (IgH and IgL) would be expected to be more correct reconstructions than the other parsimony

trees. Thus, we are to expect that the two MLE trees are more similar to each other (in terms of

the lineage of distinct cells) than other pairs of IgH and IgL parsimony trees (which, if they are

more distorted phylogenies, should show less concordance in the partitioning of the distinct cells).

Conversely, if the GCtree likelihood is not meaningfully ranking trees, we expect that the MLE

IgH and IgL trees will not be significantly closer to each other than other pairs of IgH and IgL

parsimony trees.

We used data from a previously reported experiment in which multiphoton microscopy



and BCR sequencing were combined to resolve individual germinal center B cell lineages from

mouse lymph nodes 20 days after subcutaneous immunization with alum-adsorbed chicken gamma

globulin10 (see Methods). Brainbow mice were used for multicolor cell fate mapping, enabling B

cells and their progeny to be permanently tagged with different fluorescent proteins. In-situ photo-

activation followed by fluorescence-activated cell sorting yielded B cells from a color-dominant

germinal center (Fig. 4a, left). BCR sequences were obtained for 48 cells in this lineage by single

cell mRNA sequencing of the IgH and IgL loci, resulting in 32 distinct IgH and 26 distinct IgL

genotypes due to SHM mutations acquired through affinity maturation. The unmutated naive IgH

and IgL V(D)J rearranged sequences (not observed) were inferred with partis using each set

of 48 sequences (IgH and IgL) as a clonal family using germline genetic information36, 37. These

naive sequences were used as outgroups for rooting parsimony trees.

GCtree results are depicted in Fig. 4b. Parsimony analysis resulted in degeneracy for both

loci, with 13 equally parsimonious trees for IgH, and 9 for IgL. Empirical Bayes point estima-

tion according to (2) yielded p̂ = 0.495, q̂ = 0.388 (IgH) and p̂ = 0.495, q̂ = 0.304 (IgL).

GCtree likelihoods (4) were computed to rank the equally parsimonious trees, and the MLE trees

are shown with support values among 100 bootstrap samples (see Methods). Because the binary

Galton-Watson process assigns probability zero to a GCtree node with frequency zero and one

mutant descendant, the unobserved naive root node (which had one descendant after rerooting and

collapsing identical genotypes in all parsimony trees) was given a unit pseudocount.

We then compared the concordance between pairs of heavy and light trees. Since both IgH

and IgL loci have been recorded from the same set of 48 cells, the units of cell abundance in an IgH

GCtree map to the units of cell abundance from an IgL GCtree (i.e. each cell identity among the

48 is associated with an IgH genotype and an IgL genotype). We can then consider the consistency

of a given IgH tree and a given IgL tree in terms of the lineage of the 48 cell identities. For

each possible pairing of an IgH parsimony tree with a IgL parsimony tree, we computed the RF

distance35 between the two trees using the cell identities (rather than the genotype sequences) to



NP hapten and do not undergo affinity matura-
tion due to lack of a functional Aicda allele).
4-Hydroxy-3-nitrophenylacetyl-ovalbumin (NP-OVA)–
induced GCs in recipient mice approached high
color dominance only rarely and with much de-
layed kinetics (Fig. 3, E and F, and fig. S6D).
Therefore, differences in affinity between competing
B cells likely contribute toward the rapid rise in
dominance observed in a fraction of GCs. To
quantify the effect of neutral competition—
defined as the change in lineage abundances over
time due to stochastic factors, in the absence of
differences in affinity—in AID-Confetti-B1-8 GCs,
we calculated a divergence index,which computes
the difference between the expected and observed
proportions of all 10 colors in each GC (fig. S5E)
and is thus more sensitive to small changes in
color abundance than theNDS. Thismetric showed
marked divergence from baseline distribution in
this population (Fig. 3G and fig. S6D), highlight-
ing the effect onGC selection of factors unrelated
to affinity. Moreover, the least divergent GCs in
polyclonal and SHM-proficient AID-Confetti mice
remained relatively close to baseline color distri-

bution (at day 15 after tamoxifen, 25.7% of AID-
Confetti GCs scored below themedian of the AID-
Confetti-B1-8 distribution) (Fig. 3G). We conclude
that individual GCs are highly heterogeneous
with respect to selection: Although a fraction of
these structures become heavily dominated by
cells of one color in a matter of days—suggesting
strong expansion of the descendants of a single
SHM variant arising at or after the onset of GC
selection—others deviate from baseline color dis-
tributionat levels that donot exceed those attained
by neutral competition.
We extended our findings to a different anti-

genic system bymeasuring clonal dominance in
GCs elicited by infection with Friend retrovirus
(FV) (26). We treated infected AID-Confetti mice
with tamoxifen at 20 days after infection (an
early time point in the delayed GC response to
FV) and imaged spleen slices 10 days later (fig.
S7, A and B). A wide range of NDS and diver-
gence scores were also observed in FV-induced
GCs (Fig. 3H and fig. S7C). Therefore, heteroge-
neity in the outcome of selection is a common
property of GCs induced by model antigens and

by viral infection, and thus likely represents an
intrinsic property of GC evolution.

Homogeneous GCs are the product of
“clonal bursts”

To investigate the underlying clonal structure of
the variation in homogenizing selection rates
amongGCs,wedetermined the Ighgene sequences
of fluorescent B cells isolated from GCs with dif-
ferent degrees of color dominance. To achieve this,
we dissected pLNs from immunized AID-Confetti
mice into fragments containing single GCs using
vibratome sectioning guided by multiphoton mi-
croscopy (Fig. 4A and fig. S8). From each LN, we
sorted cells fromone high-dominanceGC and from
aneighboring low-dominanceGC for Ig sequencing.
We obtained Igh sequences from 52 to 74 single

cells perGC from three pairs of pLNGCsharvested
10 days after tamoxifen treatment (15 days after
immunization with CGG-alum) (Fig. 4B and fig.
S9A). Comparisonof SHMlevels betweenhigh- and
low-dominance GCs from the same LN (fig. S9B)
and between Aicda-sufficient and haploinsufficient
GCs (fig. S9C) indicated that heterogeneity was
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Fig. 4. Clonal relationships
among cells obtained from
GCs with high or low color
dominance. (A) Method used
to obtain Ig sequences. (B) Igh
sequence relationship among
B cells from two pairs of
individual GCs from two pLNs
of different mice, obtained
10 days after tamoxifen
administration (15 days after
immunization), as described
in Fig. 3. Each panel
contains: (Top left) Multi-
photon image (scale bar,
100 mm; cell colors as in fig.
S1B; second-harmonic gener-
ation from collagen fibers is
shown in blue; number in
parentheses is the normalized
dominance score (NDS).
(Bottom left) Clonal
distribution pie chart (with
clones represented in gray-
scale in the inner ring and
Confetti colors in the outer
ring; number of cells
sequenced is indicated in the
center). (Right) Trees repre-
senting the phylogeny of Ig
heavy-chain V-segment
sequences within each clone
(symbols according to the
legend in the top right corner).
Dashed lines within phyloge-
nies indicate multiple variants
distanced the same number
of mutations from the origi-
nating node. IDs of variants for which affinity wasmeasured in Fig. 5 are indicated by black lines. For each LN,GC1 andGC2were considered as displaying high and
low color dominance, respectively.
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NP hapten and donot undergoaffinitymatura-
tion due to lack of a functional Aicda allele).
4-Hydroxy-3-nitrophenylacetyl-ovalbumin(NP-OVA)–
induced GCs in recipient miceapproached high
color dominanceonly rarelyandwithmuch de-
layed kinetics (Fig. 3, E and F, and fig. S6D).
Therefore,differencesinaffinitybetweencompeting
Bcellslikelycontributetowardtherapidrisein
dominance observed in a fraction of GCs. To
quantify the effect of neutral competition—
definedasthechangein lineageabundancesover
timedueto stochastic factors, in theabsenceof
differencesinaffinity—inAID-Confetti-B1-8GCs,
wecalculatedadivergenceindex,whichcomputes
thedifferencebetweentheexpectedandobserved
proportions of all 10 colors in each GC (fig. S5E)
and is thusmoresensitive to small changes in
colorabundancethantheNDS.Thismetricshowed
markeddivergencefrombaselinedistribution in
thispopulation (Fig.3Gand fig.S6D),highlight-
ingtheeffectonGCselectionof factorsunrelated
to affinity. Moreover, the least divergent GCs in
polyclonal andSHM-proficientAID-Confetti mice
remained relativelyclosetobaselinecolor distri-

bution (at day15after tamoxifen, 25.7%of AID-
Confetti GCsscoredbelowthemedianof theAID-
Confetti-B1-8distribution) (Fig.3G).Weconclude
that individual GCs are highly heterogeneous
with respect to selection: Although afraction of
thesestructures becomeheavily dominated by
cellsof onecolor inamatter of days—suggesting
strongexpansion of thedescendants of a single
SHM variant arisingat or after theonset of GC
selection—othersdeviatefrombaselinecolor dis-
tributionatlevelsthatdonotexceedthoseattained
byneutral competition.
Weextendedour findingstoadifferent anti-

genicsystembymeasuringclonal dominancein
GCs elicited by infection with Friend retrovirus
(FV) (26).Wetreated infectedAID-Confetti mice
with tamoxifen at 20 days after infection (an
early timepoint in the delayed GC response to
FV) and imaged spleen slices 10 days later (fig.
S7, A and B). A wide rangeof NDS and diver-
gencescoreswerealsoobserved in FV-induced
GCs (Fig. 3H and fig. S7C). Therefore, heteroge-
neity in the outcome of selection is a common
propertyof GCs induced bymodel antigensand

by viral infection, and thus likely represents an
intrinsicpropertyof GCevolution.

Homogeneous GCs are the product of
“clonal bursts”

To investigatetheunderlyingclonal structureof
thevariation inhomogenizingselection rates
amongGCs,wedeterminedtheIghgenesequences
of fluorescent Bcells isolated fromGCswith dif-
ferentdegreesofcolordominance.Toachievethis,
wedissectedpLNsfromimmunizedAID-Confetti
miceintofragmentscontainingsingleGCsusing
vibratomesectioningguidedbymultiphotonmi-
croscopy(Fig.4A and fig.S8).FromeachLN,we
sortedcellsfromonehigh-dominanceGCandfrom
aneighboringlow-dominanceGCfor Igsequencing.
WeobtainedIghsequencesfrom52to74single

cellsperGCfromthreepairsofpLNGCsharvested
10daysafter tamoxifen treatment (15daysafter
immunizationwithCGG-alum) (Fig.4Band fig.
S9A).ComparisonofSHM levelsbetweenhigh-and
low-dominanceGCs from the sameLN (fig. S9B)
andbetweenAicda-sufficient andhaploinsufficient
GCs (fig. S9C) indicated that heterogeneity was
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NP hapten and donot undergoaffinitymatura-
tion due to lack of a functional Aicda allele).
4-Hydroxy-3-nitrophenylacetyl-ovalbumin(NP-OVA)–
induced GCs in recipient miceapproached high
color dominanceonly rarelyandwithmuch de-
layed kinetics (Fig. 3, E and F, and fig. S6D).
Therefore,differencesinaffinitybetweencompeting
Bcellslikelycontributetowardtherapidrisein
dominance observed in a fraction of GCs. To
quantify the effect of neutral competition—
definedasthechangein lineageabundancesover
timedueto stochastic factors, in theabsenceof
differencesinaffinity—inAID-Confetti-B1-8GCs,
wecalculatedadivergenceindex,whichcomputes
thedifferencebetweentheexpectedandobserved
proportions of all 10 colors in each GC (fig. S5E)
and is thusmoresensitive to small changes in
colorabundancethantheNDS.Thismetricshowed
markeddivergencefrombaselinedistribution in
thispopulation (Fig.3Gand fig.S6D),highlight-
ingtheeffectonGCselectionof factorsunrelated
to affinity. Moreover, the least divergent GCs in
polyclonal andSHM-proficientAID-Confetti mice
remained relativelyclosetobaselinecolor distri-

bution (at day15after tamoxifen, 25.7%of AID-
Confetti GCsscoredbelowthemedianof theAID-
Confetti-B1-8distribution) (Fig.3G).Weconclude
that individual GCs are highly heterogeneous
with respect to selection: Although afraction of
thesestructures becomeheavily dominated by
cellsof onecolor inamatter of days—suggesting
strongexpansion of thedescendants of a single
SHM variant arisingat or after theonset of GC
selection—othersdeviatefrombaselinecolor dis-
tributionatlevelsthatdonotexceedthoseattained
byneutral competition.
Weextendedour findingstoadifferent anti-

genicsystembymeasuringclonal dominancein
GCs elicited by infection with Friend retrovirus
(FV) (26).Wetreated infectedAID-Confetti mice
with tamoxifen at 20 days after infection (an
early timepoint in the delayed GC response to
FV) and imaged spleen slices 10 days later (fig.
S7, A and B). A wide rangeof NDS and diver-
gencescoreswerealsoobserved in FV-induced
GCs (Fig. 3H and fig. S7C). Therefore, heteroge-
neity in the outcome of selection is a common
propertyof GCs induced bymodel antigensand

by viral infection, and thus likely represents an
intrinsicpropertyof GCevolution.

Homogeneous GCs are the product of
“clonal bursts”

To investigatetheunderlyingclonal structureof
thevariation inhomogenizingselection rates
amongGCs,wedeterminedtheIghgenesequences
of fluorescent Bcells isolated fromGCswith dif-
ferentdegreesofcolordominance.Toachievethis,
wedissectedpLNsfromimmunizedAID-Confetti
miceintofragmentscontainingsingleGCsusing
vibratomesectioningguidedbymultiphotonmi-
croscopy(Fig.4A and fig.S8).FromeachLN,we
sortedcellsfromonehigh-dominanceGCandfrom
aneighboringlow-dominanceGCfor Igsequencing.
WeobtainedIghsequencesfrom52to74single

cellsperGCfromthreepairsofpLNGCsharvested
10daysafter tamoxifen treatment (15daysafter
immunizationwithCGG-alum) (Fig.4Band fig.
S9A).ComparisonofSHM levelsbetweenhigh-and
low-dominanceGCs from the sameLN (fig. S9B)
andbetweenAicda-sufficient andhaploinsufficient
GCs (fig. S9C) indicated that heterogeneity was
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Figure 4 | Empirical validation using lineage tracing and single cell germinal center BCR sequencing. (a.)

A multiphoton image of a germinal center reveals a dominant blue lineage (scale bar 100µm). This lineage

was sorted, and 48 cells sequenced to determine IgH and IgL genotypes of each. These sequences

were analyzed with partis36,37 to infer naive (pre-affinity-maturation) ancestor sequences using germline

genetic information, and trees were inferred with GCtree. (b.) GCtree inference was performed separately

for IgH and IgL loci, resulting in parsimony degeneracies of 13 and 9, respectively. Maximum likelihood

GCtrees for each locus are indicated in red and the GCtrees with annotated abundance are shown. Small

unnumbered nodes indicate inferred unobserved ancestral genotypes. Numbered edges indicate support

in 100 bootstrap samples. (c.) All possible pairings of IgH and IgL parsimony trees were compared in terms

of the Robinson-Foulds distance between the IgH and IgL trees, labeled by cell identity. GCtree MLE trees

result in more consistent cell lineage reconstructions between IgH and IgL. (d.) For each locus, distributions

of bootstrap support values are shown for the tree inferred by GCtree and for a majority rule consensus

tree of all trees in the parsimony forest. The latter contain more partitions with very low support. (e.) Using

additional data from a second germinal center from the same lymph node that had the same naive BCR

sequence, GCtree correctly resolves the two germinal centers as distinct clades.



define splits. We observed that the GCtree MLE based on IgH sequences and GCtree MLE based

on IgL sequences form the most concordant pair among all pairs of parsimony trees (Fig. 4c).

Moreover, pairs of parsimony trees that contained at least one GCtree MLE tree ranked consistently

higher in terms of their similarity.

We assessed confidence in GCtree partitions by comparing bootstrap support values in

GCtree trees to those from the majority-rule consensus parsimony trees made using the consense

program from the PHYLIP package32. We observed the latter contained an excess of very low

confidence partitions (Fig. 4d, Supplementary Fig. 3). These results demonstrate that parsimony

reconstructions for real BCR data sets suffer from degeneracy, and that GCtree likelihood can

correctly resolve this degeneracy by incorporating abundance information ignored by previously

published methods.

Finally, using data collected from a second germinal center from the same lymph node, we

tested GCtree’s ability to correctly group cells from each germinal center into separate clades

when run on combined data from both germinal centers. The two germinal center sequence data

sets appeared to have the same naive BCR sequence (IgH and IgL), indicating they were both

seeded from the same B cell lineage. Concatenating the IgH and IgL sequences for each cell

in each germinal center, we used GCtree to infer a single tree for all cells from both germinal

centers (Fig. 4e, Supplementary Fig. 4). GCtree correctly resolved the two germinal centers as

distinct clades (however the MLE GCtree was not unique among parsimony trees in this regard).

This demonstrates the phylogenetic resolvability of germinal centers with the same naive BCR

diversifying under selection for the same antigen specificity.

DISCUSSION

We have shown that genotype abundance information can be productively incorporated in phyloge-

netic inference. By augmenting standard sequence-based phylogenetic optimality with a stochas-

tic process likelihood, we were able to implement abundance-aware inference as a processing

step downstream of results from an existing and widely used parsimony tree inference tool. We



have shown that our method—implemented in the publicly available GCtree package—is useful

for inferring B cell receptor affinity maturation lineages. We believe GCtree will find use in

other settings where sequence data from dense quantitative sampling of diversifying loci are avail-

able. Studies of cancer evolution are increasingly performed with single-cell resolved sequencing,

however most tumor phylogenetics approaches use standard phylogenetic methods (reviewed by

Schwartz et al.23) that do not model genotype abundance. Exceptions include OncoNEM38 and

SCITE39, both of which leverage single-cell data for tumor phylogenetic inference that is robust to

genotyping errors and missing data, but do not aim to capture the intuition that genotype abundance

and the number of direct mutant descendants are related. Single-cell implementations of lineage

tracing based on genome editing technology24 may also benefit from reconstruction methods that

model the abundance of observed editing target states, since cell types may vary widely in rates of

proliferation.

Using parsimony as our sequence-based optimality resulted in particularly simple results,

as the tree space necessary to explore is exactly the degenerate parsimony forest. However, our

empirical Bayes formulation is agnostic to the particular choice of sequence-based optimality, so

in the future we envision augmenting likelihood-based sequence optimality. This will require more

computationally expensive tree space search and sampling schemes.

In contrast to GCtree, a fully Bayesian approach to incorporate genotype abundance could

use the full set of sequences (without deduplication) in a Bayesian phylogenetics package—such as

BEAST18—with a birth-death process prior. This would not enforce the infinite-type assumption,

so a set of identical sequences could be placed in disjoint subtrees. However, such an approach

will not scale well with many identical sequences: trees that only differ by exchange of identical

sequences will create islands of constant posterior in tree space. Methods do not currently exist

for tree space traversal that avoids moves within such islands. Even if such methods existed, they

would need to be combined with algorithms to infer trees with sampled ancestors27, 28 as well as

multifurcations40, 41; even just this combination is not currently available.



Although our methods can be applied to other sequence-based optimality functions besides

parsimony, it is important to recognize that GCtree (and indeed any tree inference procedure

that deduplicates repeated sequences) contains an inherent weak parsimony assumption: that each

unique genotype arose from mutation just once in the lineage and therefore corresponds to a single

subtree in the lineage tree, and thus a single node in the GCtree. Thus it is important to continue

to assess the impact of this weak parsimony assumption with simulation that does not make this

assumption, as done here.

The GCtree framework can also be extended to non-neutral models. For example, one

could consider a model in which each genotype obtains a random fitness encoded by branching

process parameters θ that are fixed within a given genotype but randomly drawn by the genotype

founder cell upon mutation from its parent. This will likely necessitate modeling genotype birth

time explicitly, rather than restricting to extinct subcritical processes, since a genotype with small

abundance may be a result of low fitness or just young age. One might also consider extending the

offspring distribution to separately model synonymous and nonsynonymous mutations. Synony-

mous mutations do not change fitness, while nonsynonymous mutations change fitness as described

above. Another direction of extension is to incorporate mutation models specialized to the case of

BCR evolution, such as the S5F model34 used in our simulation study.

METHODS

An empirical Bayes framework for incorporating genotype abundance in phyloge-

netic optimality. Here we more fully develop the empirical Bayes perspective on our estimator

for the model depicted in Fig. 2a. This graphical model implies the factorization

P (G,A,T,θ) = P (G | T)P (A,T | θ)P (θ) . (5)

A hierarchical Bayes treatment would assign a prior P (θ) (such as uniform over the unit square for

the model θ = (p, q)) and compute the posterior over trees conditioned on the data, marginalizing



over θ:

P (T | G,A) =

∫
dθ P (T,θ | G,A)

=

∫
dθ

P (G,A,T,θ)

P (G,A)

∝ P (G | T)

∫
dθ P (A,T | θ)P (θ) .

Rather then attempting this integral over P (A,T | θ), each evaluation of which requires dynamic

programming, we first seek a maximum likelihood estimate for θ marginalizing T:

θ̂ = arg max
θ

P (G,A | θ)

= arg max
θ

∑

T

P (G,A,T | θ)

= arg max
θ

∑

T

P (G | T)P (A,T | θ) . (6)

Using this point estimate, an approximate posterior over trees is

P
(
T | G,A, θ̂

)
∝ P (G | T)P

(
A,T | θ̂

)
. (7)

This formulation embodies an optimality over trees conditioned on both genotype sequence data

G and genotype abundance data A. Evaluation of θ̂ with (6) in general requires summation over

the space of all trees consistent with the data.

A simple application of this formalism is to augment parsimony-based tree optimality with

abundance data. Let TG denote the degenerate set of maximally parsimonious trees given G (each

of which has the same total genotype sequence distance over its edges). Encode parsimony op-

timality as a P (G | T) assigning uniform weight to each tree in TG, and zero elsewhere. In this

case, (2) becomes

θ̂ = arg max
θ

∑

T∈TG

P (A,T | θ) , (8)

and (7) becomes



P
(
T | G,A, θ̂

)
∝
{
P
(
A,T | θ̂

)
, t ∈ Tg

0, t /∈ Tg
. (9)

With (9), we have a framework using abundance information to distinguish among the oth-

erwise equally optimal trees presented by a parsimony analysis. In our application, we use a

subcritical infinite-type binary Galton-Watson branching process model for the lineage tree, and

describe a recursion for computing GCtree likelihoods P
(
A,T | θ̂

)
by dynamic programming to

marginalize over compatible lineage trees.

Dynamic programming to marginalize lineage tree structure. We derive a recurrence

for faτ (p, q) by marginalizing over the outcome {C,M} of the branching event at the root of the

lineage subtree for genotype i (the first cell of type i). We will use that a and τ are the sum over

two iid processes for the left and right clonal branches. We temporarily suppress the parameters

θ = (p, q), writing faτ for notational compactness. In the case {C = 2,M = 0},

P (Ai = a, Ti = τ | C = 2,M = 0) =
a∑

a′=0

τ∑

τ ′=0

fa′τ ′fa−a′,τ−τ ′ . (10)

As this is the convolution of faτ with itself, we denote it as f ∗2aτ . Marginalizing over all outcomes

{C,M}, we have

faτ =
∑

(c,m)∈N2

P (Ai = a, Ti = τ | C = c,M = m)P (C = c,M = m)

= δa1δτ0(1− p) + f ∗2aτ p(1− q)2 + (1− δτ0)fa,τ−12pq(1− q) + δa0δτ2pq
2

=





0 a = 0, τ = 0, 1,

(1− p) a = 1, τ = 0,

pq2 a = 0, τ = 2,

f ∗2a0p(1− q)2 a > 1, τ = 0,

fa,τ−12pq(1− q) + f ∗2aτ p(1− q)2 otherwise,

(11)



where δ·· denotes the Kronecker delta function. In light of the first case, the convolutional

square may be written as

f ∗2aτ =
∑

(a′,τ ′)/∈{(0,0),(a,τ)}

fa′τ ′fa−a′,τ−τ ′ ,

showing that there are no terms containing faτ on the RHS of (11). The GCtree node likelihood

faτ is thus amenable to computation by straightforward dynamic programming.

The GCtree tree likelihood factorizes by genotype. We argue that the joint distribution

over all nodes in a GCtree factorizes by genotype (Fig. 2d):

P (A1 = a1, T1 = τ1, . . . , AN = aN , TN = τN) =
N∏

i=1

faiτi . (12)

Since τ1 is the number of children of node 1 (the root node), the children of the root node are

indexed in level order by 2, . . . , 1 + τ1. Let Λi denote the set of indices of the nodes of the subtree

rooted at node i, so Λ2, . . . ,Λ1+τ1 refer to sister subtrees rooted on each of the τ1 children of the

root. Using the definition of conditional probability, and since sister subtrees are independent, we

have

P (a1, τ1, . . . , aN , τN) = P (a2, τ2, . . . , aN ,N | a1, τ1)P (a1, τ1)

= fa1τ1

1+τ1∏

i=1

P ({(aj, τj) : j ∈ Λi}) ,

where random variable notation has been dropped for notational compactness. Now, within each

subtree factor we may reindex in level order (that is, level order in that subtree) starting from 1.

We then pull out factors fa2τ2 , . . . , fa1+τ1τ1+τ1 corresponding to the root nodes of the sister subtrees

(children of the original root). We obtain (12) by applying this logic recursively. Restoring the

offspring distribution parameters, we recognize this as the distribution needed in (1) and (2) to



rank trees in a parsimony forest:

P (T = (τ1, . . . , τN),A = (a1, . . . , aN) | θ = (p, q)) =
N∏

i=1

faiτi (p, q) , (13)

where faiτi (p, q) is computed by dynamic programming using (11).

Numerical validation of the GCtree likelihood is summarized in Supplementary Fig. 2 using

10,000 Galton-Watson process simulations at each of several parameter values. The likelihood

accurately recapitulates tree frequencies, and simulation parameters are recoverable by numerical

maximum likelihood estimation.

Simulation details. To provide for a more challenging in silico validation study, several bio-

logical realisms were built into our simulation that defied simplifying assumptions in the GCtree

inference methodology.

Arbitrary offspring distribution. The recursion (11) used to compute GCtree likelihood com-

ponents specifies a binary branching process, and such an approach would in general require an

offspring distribution with bounded support on the natural numbers. Our simulation implements

an arbitrary offspring distribution with no explicit bounding. In the results that follow, we used

a Poisson distribution with parameter λ for the expected number of offspring of each node in the

lineage tree.

Context sensitive mutation. To generate mutant offspring, all offspring sequences (drawn from a

Poisson as described above) were subjected to a sequence-dependent mutation process. The SHM

process is known to introduce mutations in a sequence context-dependent manner, with certain

hot-spot and cold-spot motifs25, 26. We used a previously published 5-mer context model S5F34 to

compute the mutabilities µ1, . . . , µ` of each position 1, . . . , ` within a sequence of length ` based

on its local 5-mer context. This model also provided substitution preferences among alternative

bases given the 5-mer context. To compute mutabilities for beginning and ending positions without



a complete 5-mer context, we averaged over missing sequence context.

Although existing code can simulate a mutational process parameterized by S5F on branches

of a fixed tree with a pre-specified number of mutations on each branch42, in our simulations we

wanted the number of mutations on the branches to be determined by the sequence mutability as

it changes via mutation across the tree. For example, as an initial mutation hotspot motif acquires

mutations down the tree, its mutability typically degrades as it diverges from the original motif. We

defined the mutability of the sequence as a whole by the average over its positions µ0 = 1
`

∑`
i=1 µi.

We defined a baseline mutation expectation parameter λ0 as a simulation parameter, and the num-

ber of mutations m any given offspring sequence received was drawn from a Poisson distribution.

The Poisson parameter was modulated by the sequence’s mutability m ∼ Pois(µ0λ0), so that more

mutable sequences tended to receive more mutations. Given m > 0, the positions in the sequence

to apply mutations were chosen sequentially as follows. A site j to apply the first mutation was

drawn from a categorical distribution using the site-wise mutabilities to define relative probability

of choosing each site j ∼ Cat(µ1, . . . , µ`). We mutated the site using a categorical distribution

over the three alternative bases parameterized by the substitution preferences defined by the site’s

context. We then updated mutabilities µ0 and µ1, . . . , µ` as necessary to account for contexts that

had been altered by the mutation. This process was repeated m times.

Since the mutability of each node in the lineage tree will depend on the mutation outcome of

its parent, the GCtree likelihood components will not factorize by genotype. Because the proba-

bility of mutation is sequence-dependent, the topology of the GCtree will be sequence-dependent.

Therefore, the generative assumptions of the empirical Bayes inference do not hold in this simula-

tion scheme, nor does the offspring distribution equivalence across lineage tree nodes specified by

(3).



Sampling time. Our inference model specifies a subcritical branching process run until extinc-

tion, and sampling of all terminated nodes (leaves). Our simulation more realistically assigns a

discrete time of sampling parameter t (number of time steps from root), and thus does not need

to constrain the offspring distribution to achieve subcriticality. At the specified time, extant nodes

can be sampled, so all genotypes that terminated or mutated at a prior times are not observed. Al-

ternatively, a parameter N specifying the desired number of simulated observed sequences may be

passed, in which case the simulation runs until a time such that at least N sequences exist (unless

terminated). Genotypes born at different times will be sampled under a process with different ef-

fective sampling times since birth. Thus this sampling time parameter also increases dependence

between genotypes, further distancing the simulation model from the inferential model.

Incomplete sampling. We introduce imperfect sampling efficiency with a parameter n for the

number of simulated sequences that end up in the simulated sample data (FASTA), requiring n ≤

N . This violates the inferential assumption of complete sampling, and renders the true genotype

abundances latent variables (which a more complete likelihood approach might aim to marginalize

out).

Repeated genotypes. Our simulation is seeded with an initial naive BCR sequence, from which

randomly mutated offspring are created. Because there is no built-in restriction that the same

sequence cannot arise along different branches (or mutations could be reversed), the model as-

sumption of infinite types—such that identical sequences can be associated with a single genotype

subtree—does not necessarily hold. When this assumption is violated the tree must necessarily be

incorrect.

Calibrating simulation parameters using summary statistics. We defined several sum-

mary statistics on sequences equipped with abundances which were used to calibrate simulation

parameters representative of a regime similar to experimental data. We chose these statistics to



reflect information relevant to tree inference, but not actually require tree inference, so as to avoid

circularity. Denote g0 ∈ G as the naive BCR (root genotype) and dH(·, ·) as the Hamming distance

function between two sequences. Given simulation or experimental data G and A, we characterize

the degree of mutation (from naive BCR) in the lineage by the set of Hamming distances of the

observed genotypes from the naive genotype: {dH(g, go), g ∈ G}. For a given genotype gi ∈ G,

we can compute its number of Hamming neighbors in the data ηi = |{gj ∈ G : dH(gi, gj) = 1}|.

A simulation is specified by parameters (λ, λ0, N (or t), n), a mutability model (here S5F34),

and an initial sequence. We found parameters (λ = 1.5, λ0 = 0.25, N = 100, n = 65) produced

simulations that were comparable to experimental data under these statistics. The experimental

data used for comparison, consisting of 65 total BCR V gene sequences from a single germinal

center lineage, is described in the Methods. Supplementary Fig. 1 depicts these summary statis-

tics for 100 simulations, compared to experimental BCR data.

Germinal center BCR sequencing. Germinal center B cell lineage tracing and B cell re-

ceptor sequencing was performed as previously described10. Full length IgH and IgL sequences

from lymph node 2 germinal centers 1 and 2 from this reference were used for empirical valida-

tion results, while V gene sequences only (which are not dependent on partis-inferred naive

sequences) were used for calibrating simulation parameters.

Bootstrap support. We computed bootstrap support values for edges on a GCtree extending the

standard approach43: we resampled columns from the alignment G 100 times with replacement,

generating an inferred GCtree (maximum GCtree likelihood among equally parsimonious trees)

for each. Each edge is equivalent to a bipartition of observed genotypes obtained by cutting the

edge; such a bipartition is typically referred to as a split. We compute the number of bootstrapped

trees that contain the same split, and annotate the edge with this number. Because resampling

the alignment G can produce repeated genotypes, there can exist ambiguity about how to perform



genotype collapse of a parsimony tree. We simply group genotypes in the bootstrap analysis that

collapse to identical genotypes. For example, if two observed sister genotypes with resampled

sequences are both identical in sequence to their mutual parent, both have a claim on collapsing

into the parent. When collapsing this tree, both genotypes will be associated with this collapsed

node, rather then just a single one.

Data availability. Germinal center BCR sequence data can be found in Supplementary Database

S1 of Tas et al.10, lymph node 2 and germinal center 1.

Software availability. The GCtree source code is available at github.com/matsengrp/

gctree and accepts standard FASTA sequence alignments as input. It is open-source software

under the GPL v3.
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Supplementary Materials

a b

Supplementary Figure 1 | Simulation summary statistics. simulation parameters: λ = 1.5, λ0 = .25,

N = 100, n = 65. (a.) The empirical CDF over genotypes of Hamming distance to the naive genotype

for 100 simulations (colors) and germinal center BCR data (black). (b.) The distribution over genotypes of

number of Hamming neighbors and genotype abundance for 100 simulations (colors) and germinal center

BCR data (black).
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Supplementary Figure 2 | Numerical validation of GCtree likelihood. Colors indicate simulation parame-

ters. (a.) At each parameter value (p, q), 10,000 Galton Watson processes were simulated. For each distinct

GCtree, the likelihood was computed according to (13), and the frequency of the tree (number of times this

distinct tree occurs among the 10,000) was recorded. Dashed lines indicate the expected frequencies (like-

lihood multiplied by 10,000). (b.) Each set of 10,000 trees was partitioned into 10 groups of 1000, and

maximum likelihood estimates (p̂, q̂) were computed for each set of 1000 by numerical maximization of (13).
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