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Abstract
Participants in most binary-choice tasks with multiple trials
tend to probability-match (Vulkan, 2000) — i.e., provide re-
sponses that match the probability distribution of the presented
population. Given a single trial, however, participants usually
choose the majority option (James & Koehler, 2011). By us-
ing a method that visually presents the probabilities of the two
competing options, we examine responses when participants
are given only a single trial, and initial responses when partic-
ipants are given multiple trials. While we still observe aggre-
gate probability-matching in the multiple-trial condition, we
find robust sequence effects in participants’ initial responses,
including robust maximizing behavior on the first response.
This suggests that both maximizing in single-trial experiments
and aggregate probability-matching in multiple-trial ones can
be explained by a single, underlying mechanism; one that
seeks to provide a representative sample at each point during
sequence generation.
Keywords: Decision making; statistics; psychology; human
experimentation; probability-matching; maximizing.

Participants Adopt Sub-Optimal Strategy in
Simple Binary-Choice Tasks

Economics, as well as daily dealings and discourse, rest upon
a fundamental assumption of human rationality: that individ-
uals will make choices that maximize their expected bene-
fit. However, in one of the simplest experimental setups—the
binary-choice task—adult participants fail to conform to this
assumption. In this task, participants are repeatedly asked to
choose between two options, each exclusively offering a re-
ward with a certain probability (for example, an orange but-
ton is rewarding on 70% of trials and a green button on the
remaining 30%). These probabilities are fixed, and the distri-
bution of rewards across trials is independent of reward his-
tory or participants’ performance. The optimal strategy—the
one that maximizes total payout—is to select the option with
the highest probability (the majority or dominant response)
on every trial (e.g. given 10 trials, press the orange button ex-
clusively). Yet participants tend to probability-match, match-
ing the distribution of their responses to the reward distribu-
tion of the options (e.g. pressing the orange button 7 times
and the green button 3 times). This result is well established
(Vulkan, 2000 for a comprehensive review; Grant, Hake &
Hornseth, 1951; Hake & Hyman, 1953; Gardner, 1957; Ru-
binstein, 1959; West & Stanovich, 2003). Previous research
has demonstrated that adults may be coaxed more towards
maximizing by using higher payoffs (Toda, 2009), risk of los-
ing gains (Siegel & Goldstein, 1959; Siegel, 1961), detailed
feedback (Friedman & Massaro, 1998; Birnbaum & Wakcher,
2002), an extensive number of trials (Edwards, 1965), em-
phasizing the random nature of the task (Goodnow, 1955),

or some combination of these (Shanks, Tunney & McCarthy,
2002). Even then, however, not all adults maximize.

Shanks, Tunney and McCarthy (2002) argue that the typ-
ical experimental setup, with a large number of rapid, suc-
cessive binary choices—typically 100 to 400 (Vulkan, 2000)
and as many as 1,000 (Edwards, 1961)—might be ecologi-
cally questionable. Humans are not typically faced with the
same choice hundreds of times on a single day, especially
with static reward probabilities. They predict that participants
might maximize if given fewer, infrequent choices. To test
this, James and Koehler (2011) presented participants with
a sequence of ten statistically identical choices in the guise
of ten different game setups—emphasizing the unique nature
of each gamble. They predicted that participants would be
more likely to maximize in the single-shot games. True to
this intuition, participants were more likely to maximize in
the unique-gambles condition and probability-match in the
repeated-gambles condition.

James and Koehler (2011) suggest that the mechanism
underlying adults’ guessing behavior depends on their ex-
pectations about how many guessing opportunities they
will have. In essence, adults could employ two dis-
tinct strategies depending on how many guesses they will
have to make—maximizing when they have only one, and
probability-matching when they have many. We propose
an alternative hypothesis: the incremental-representativeness
hypothesis, inspired by Kahneman and Tversky’s represen-
tativeness bias (1972). This hypothesis proposes a trial-by-
trial mechanism where participants provide a sample that is
incrementally representative of the population—i.e. at each
point of the experiment. We believe this hypothesis is capa-
ble of explaining maximizing behavior given a single trial,
probability-matching behavior over several trials, and order
effects observed in the latter setting, particularly over partici-
pants’ first few responses.

The Incremental-Representativeness
Hypothesis

More specifically, the incremental-representativeness hypoth-
esis suggests that participants observe the distribution of the
population and, at each guess, aim to make their previous
responses representative of that population. This hypothe-
sis makes particularly strong predictions for responses in the
first few trials of an experiment. At the first guess in a se-
ries, participants are expected to maximize—i.e. choose the
more probable option—regardless of how many guesses are
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to come afterwards. This is because, given only one trial,
the majority choice is more representative of a skewed dis-
tribution than the minority one. Over several participants,
order effects would be most strongly observed during initial
trials—more specifically, the minimum number of samples
necessary to fully describe the distribution (e.g. 3 in a 2:1
distribution, 5 in a 2:3 distribution, 100 in a 99:1 distribution,
etc).

In contrast, trial-by-trial probability-matching predicts that
the likelihood of a particular response remains constant
throughout the experiment, and matches the probability of
that response in the population. For example, in a popula-
tion of 70% orange and 30% green gumballs, the trial-by-trial
probability-matching hypothesis predicts that participants are
70% likely to guess orange and 30% likely to guess green at
each trial during the experiment, regardless of the order of
that trial in the overall sequence of responses. The underly-
ing mechanism behind this hypothesis is best visualized by
picturing the participant flipping a weighted-coin: the coin is
always (say) 70% likely to turn up heads and 30% likely to
turn up tails, regardless of how many times it is flipped, or
which flip in the sequence we are at.

Note that both the incremental-representativeness hypoth-
esis and the trial-by-trial probability-matching hypothesis
would give rise to the same aggregate sample statistics, where
the proportions of the two available alternatives match their
proportions in the given population. These hypotheses differ,
however, in the predictions they make at the level of a single-
trial. While the incremental-representativeness hypothesis
can explain both aggregate probability-matching (given sev-
eral trials) and maximizing (given only one trial), probability-
matching at the single-trial level fails to explain maximizing
given only one trial, and predicts no significant order effects.

We tested our hypothesis with a simple binary-choice task
(Experiment 1). We randomly assigned adult participants to
either a single-trial or a multiple-trial condition. We pre-
dict that adults will maximize on the first trial, regardless of
whether the first guess was their only guess. We also pre-
dict that participants will probability-match over the entire
sequence of given trials, although not on each individual trial,
in the 10-trial condition. Alternatively, participants could
probability-match on each individual trial of the experiment
(including the first), supporting the trial-by-trial probability-
matching hypothesis, and suggesting that participants utilize
different guessing strategies depending on the number of tri-
als they expect to be given.

Participants in our single-trial condition, as a group, maxi-
mized—replicating James and Koehler’s (2011) findings and
providing an experimental estimate of maximizing behav-
ior. In line with our predictions, participants in the multiple-
trial condition also maximized on the first trial, rather than
probability-matched. This result suggests that maximizing
behavior is not elicited by unique gambles, but by the first
gamble in general. Responses in the first three trials of the
experiment suggest that, rather than probability-matching on

individual trials, participants seemed to provide incremental
samples that were representative of the population not only
after all trials were completed, but after each successive trial.

We further tested this hypothesis by asking an indepen-
dent pool of participants to evaluate the likelihood of differ-
ent sequences being drawn at random from the same popula-
tion (Experiment 2). We find that the sequences participants
tended to provide in Experiment 1 were rated highly by par-
ticipants in Experiment 2. These results further support the
incremental-representativeness hypothesis.

Experiments
We chose to present our binary-choice population using a
static image of a gumball machine, filled with 70% orange
gumballs and 30% green gumballs. We chose this partic-
ular task design for three main reasons. First, unlike the
lights task (Anderson, 1960; Derks & Paclisanu, 1967)—in
which the probability distribution is only apparent after some
number of trials,—the gumball machine provides an imme-
diate, non-sequence-dependent display of the distribution of
the outcomes. This offers three distinct benefits: 1) it places
fewer demands on working memory, 2) it avoids the risk of
introducing unintentional and entirely random sequential pat-
terns in the initial presentation of the population’s distribu-
tion, and 3) unlike most previous experimental setups, it re-
quires no training to learn the distribution of the population,
allowing us to look at participants’ responses from the very
first trial onwards, where we are most likely to see the order
effects predicted by our hypothesis1.

Second, the gumball machine makes the primary assump-
tions of the task intuitive and reasonable: that outcomes are
random and independent, and not subject to human control.
Similar experimental setups have been used in recent studies
with children, in which probabilities were represented using
ping pong balls in clear containers (Xu & Garcia, 2008; Xu
& Denison, 2009), and more recently using a gumball ma-
chine (Denison & Xu, 2014). Finally, we chose to provide
no feedback until the end of the experiment to eliminate both
pattern-seeking and ‘win-stay, lose-shift’ behaviors.

However, this framework is not without certain drawbacks.
Drawing gumballs from a gumball machine is a process of
sampling without replacement. We thus did not give partici-
pants any more than 10 trials, ensuring that sampling from the
gumballs would not skew the population’s distribution signif-
icantly. Also, like many modern experiments, ours relies on
a computer-simulated task, not an actual gumball machine.
This could interfere with participants’ perceptions of random-
ness. Ideally, this experiment would be replicated with an ac-
tual gumball machine in a natural setting with replacement,
to dispel any notions the participants might have about our
interfering with the outcome of trials.

It is possible that the order effects we observe in these

1While past experiments have reported participants’ responses in
the initial trials, these are essentially random as participants are in
the process of learning the underlying population distribution.
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data are somehow due to the specifics of the task—such as
the sequential nature of responding, by which participants
give their guesses one at a time and are not shown what
they guessed previously, nor are they given any feedback (to
match the 1-trial and 10-trial conditions of this experiment as
closely as possible). To eliminate this hypothesis, we ran a
follow-up experiment. In Experiment 2, we ask a different
group of participants to evaluate the likelihood of various se-
quences of gumballs, while emphasizing the order in which
they come out of the machine through a simple visual ani-
mation. This relieved participants of the need to remember
previous guesses, and allowed us to determine whether par-
ticipants rate highly the same sequences that they are likely
to respond with in the first task. This manipulation also gives
us an experimental measure of what sequences participants
actually consider to be representative.

Method

Figure 1: Gumball machine image used in both experiments

Experiment 1
173 participants2 (mean age = 32 years, range = 18-66 years
old), recruited through Amazon Mechanical Turk, were pre-
sented with the image of a gumball machine (Figure 1), in
which 70% of gumballs are orange and 30% are green3. They
were asked to look at the machine carefully and guess what
color gumball would come out of it next. They were also told
that they would be given a bonus based on their good per-
formance and feedback. Participants were assigned to condi-
tions at random; 86 participants were allowed only 1 guess,
while 87 participants were allowed 10 guesses. The number
of guesses remaining was shown throughout the experiment.
Two gumball-shaped (i.e., round) buttons—one orange and
one green—were displayed at the bottom of the screen; par-
ticipants were required to choose one, then click the “Guess”

233 additional participants were excluded from all analyses due
to failure to understand the task or inattentiveness: either by esti-
mating both options to be equally distributed, or by estimating the
percentage of green gumballs to be higher than that of orange ones.

3We never explicitly refer to the colors of the gumballs as
”orange” or ”green”, since different monitors might display these
shades differently. For all responses, we ask participants to click on
a button of the same color as the gumball.

button to make their guess and, in the 10-trial condition, pro-
ceed to the next trial. The locations of the buttons indicating
the two choices were counterbalanced; in the 10-trial group,
the locations were also switched at random between trials.
At the end of the experiment, participants were given “feed-
back” about their performance; this was, in fact, unrelated to
the guesses they made and standardized for all participants
(“You guessed correctly!” for 1-trial participants, and “You
guessed correctly on 8 trials!” for 10-trial participants) 4. Par-
ticipants were then asked to estimate the percentage of orange
and green gumballs in the machine, and to provide a brief de-
scription of the strategy they used to make their choices.

Experiment 2
In a follow-up experiment, 154 participants5 (mean age = 34
years, range = 19-68 years old), also recruited through Ama-
zon Mechanical Turk, were presented with the same gumball-
machine image shown in Figure 1. They were then shown a
sequence of 1 to 4 gumballs, asked to look at the machine
carefully, and then rate the likelihood of the shown sample on
a 7-point scale (1: least likely, 7: most likely). They were
presented with all 30 possible color permutations of 1, 2, 3 or
4 gumballs, as well as 4 catch trials with purple (distractor)
gumballs to assess attentiveness. (Since the image contained
no visible purple gumballs, attentive participants would be
expected to assign these sequences low probabilities.) After
all trials were completed, participants were asked to estimate
the percentage of each color in the machine.

Results
Experiment 1
Participants estimated the percentage of orange gumballs at
66.07% 6 (median = 65%, standard deviation: 7.58%). This
was slightly lower than the actual percentage of orange gum-
balls (70%). This could be due to differences in the brightness
of the colors presented, or indicating that participants might
be estimating the closest ratio (2:1), rather than a percent-
age. For all subsequent analyses, we will use the mean pro-
portion of orange gumballs that participants predicted (0.66).

4Feedback at this stage of the experiment could not affect partic-
ipants’ performance, since they had already completed all trials.

557 additional participants were excluded from all analyses due
to failure to understand the task or inattentiveness. Given that this
was a longer task, we define more stringent criteria for subject inclu-
sion. 13 participants were excluded for rating combinations with a
purple (distractor) gumball at 4 or higher (where 7 = ‘very likely’), 6
more participants were excluded for providing estimates of the per-
centage of orange and green gumballs that did not add up to 100 +/-
5%, an additional 3 participants were excluded for estimating the
percentage of green gumballs to be higher than that of orange gum-
balls, and the rest (35 participants) were excluded for estimating the
percentage of green gumballs to be equal to that of orange gumballs.
While we realize this is a high percentage of participants to exclude,
all reported effects remain even when no participants are excluded.

615 participants provided estimates of orange and green gum-
balls that did not add up to 100%, but seemed to indicate a ratio
rather than a percentage. These responses were converted to per-
centages.
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We note, however, that the pattern of results remains the same
when the actual proportion (0.7) is used instead.

Figure 2: Comparing the mean of majority (orange) responses
in the 1-trial and 10-trial conditions. Dashed line indicates
participants’ estimate of the proportion of orange gumballs
( 66%). Error bars are bootstrapped 95% confidence intervals.

Results show that, overall, participants maximized in the
1-trial condition, and probability-matched in the 10-trial con-
dition. Figure 2 shows the mean proportion of majority
responses from participants in the 1-trial and 10-trial con-
ditions; these means were significantly different (Wilcoxon
rank-sum test: W=6601, p < 10−15). The mean proportion
of majority responses in the 1-trial condition was signifi-
cantly larger than 0.66 (Wilcoxon signed rank test: V=3403,
p < 10−12), while the same proportion from the 10-trial con-
dition was not significantly different from 0.66 (Wilcoxon
signed rank test: V=2176, p = 0.265). In the 10-trial con-
dition, we were also able to compare the proportion of major-
ity responses per subject against their own estimated fraction
of orange gumballs. These do not differ significantly, either
(Wilcoxon signed rank test: V=1279, p = 0.110). This indi-
cates that while, overall, participants in the 10-trial condition
are probability-matching, participants in the 1-trial condition
are maximizing. This replicates previous findings (James &
Koehler, 2011).

Figure 3 shows the proportion of participants who gave
each possible number of majority responses. This plot shows
that probability-matching is not a behavior observable only
at the population level; the majority of our participants
probability-match. It is worth noting, however, that a num-
ber of participants (13) maximized—choosing the majority
response exclusively. We re-ran all analyses while excluding
this population of maximizers, and all results remain qualita-
tively the same.

We then examined the proportion of majority responses
in each individual trial of the 10-trial condition (Figure 4).
If participants were strictly probability-matching at the trial
level, we would expect to see all of these proportions at or
around 0.66. However, the fraction of majority responses in

Figure 3: Proportion of 10-trial participants who gave ‘x’
majority-option (orange) responses over entire experiment
(n=87)

the first and second trials were significantly higher than 0.66
(Wilcoxon signed rank test, 1st trial: V=3240, p < 10−9; 2nd
trial: V=2850, p < 10−4). This fraction then decreased below
0.66 on the third trial (Wilcoxon signed rank test, V=1275,
p = 0.0052), after which sequence effects seem to fade. Note
that 3 trials are sufficient to represent a roughly 2:1 distribu-
tion.

Finally, we used our estimate of maximizing behavior from
the 1-trial condition to analyze behavior on the first trial in
the 10-trial condition. We found no significant difference
between the proportion of majority responses chosen on this
trial, and on the only trial in the 1-trial condition (Figure 5;
Wilcoxon rank-sum test: W=3868, p = 0.364). This suggests
that participants utilize the same strategy on the first trial of
an experiment, regardless of whether they have more trials
left.

Experiment 2
The survey data show a general correspondence between the
initial sequences (length 1-4) participants are most likely to
respond with in Experiment 1, and ones they tend to rate as
most likely in Experiment 2. Figure 6 shows a plot of the av-
erage normalized rating per sequence7, and the likelihood of
that sequence in the dataset previously discussed. Note par-
ticularly the high average ratings for ‘1’(‘orange’), ‘11’(‘or-
ange, orange’), and ‘110’(‘orange, orange, green’). Compare
these to the relatively low rating for ‘011’(‘green, orange, or-
ange’), which is objectively as likely as ‘110’, but rated much
lower. This suggests a strong order bias in both participants’
responses and evaluations.

Discussion
We presented two groups of participants with a binary-choice
task in which they had to predict which color gumball would

7Results are qualitatively similar when raw, un-centered ratings
are used.
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Figure 4: Proportion of majority responses at each successive
trial in the 10-trial condition (total: 87 participants). Dashed
line indicates participants’ estimate of the proportion of or-
ange gumballs ( 66%). Error bars are bootstrapped 95% con-
fidence intervals.

come out of a gumball machine next. Participants in the
multiple-trial group were asked to guess the colors of the
next 10 gumballs, while participants in the single-trial group
were only asked to guess once. As a population, participants
the single-trial condition collectively maximized, while par-
ticipants in the multiple-trial condition were more likely to
probability-match. Interestingly, though, participants in the
multiple-trial condition show strong sequence effects: usu-
ally favoring the majority option on the first two trials, and
the minority option on the third. This creates a representative
sample of the population after only three trials. This finding
supports our hypothesis—the incremental-representativeness
hypothesis—positing the existence of a single mechanism
that seeks to create incrementally representative samples at
each trial of the experiment; explaining the aggregate pat-
terns of maximizing and probability-matching we observe (in
the single-trial and multiple-trial conditions, respectively), as
well as the order effects we see in initial responses.

Participants in Experiment 2 also preferred sequences that
started with the majority gumball. Especially notable are se-
quences where the non-ordered probabilities should be iden-
tical, such as ‘110’and ‘011’. As highlighted in Figure 6,
though, both free-responses and ratings over sequences show
a significant preference for the order that begins in a more
representative manner. Sequences that do not begin with a
majority gumball are regarded as less likely. This suggests
that Kahneman and Tversky’s representativeness heuristic is
employed from the very first trial. Participants aim to make
every sample—even a sample of one—a faithful representa-
tion of the distribution of the population. Further experiments
with different population distributions and trial numbers are
planned in order to verify this assumption.

Much like many prior studies, our results also show that
not every participant uses the same strategy. For example,

Figure 5: Comparing the mean proportion of majority (or-
ange) responses in the only trial of the 1-trial condition and
the first trial of the 10-trial condition. Dashed line indicates
participants’ estimate of the proportion of orange gumballs
( 66%). Error bars are bootstrapped 95% confidence inter-
vals.

as in Figure 3, a few participants in the multiple-trial con-
dition chose to maximize, and often justified this strategy.
One subject explicitly stated that they thought if they chose
the majority choice in every trial, they would “get more cor-
rect guesses”. Other participants in this condition, while
probability-matching and explicitly referring to the probabil-
ity distribution in their comments, did not display any sequen-
tial effects. They chose the majority response consistently for
the first fraction of trials, then chose the minority response
exclusively for the rest. In spite of the above, we have chosen
to report aggregate analyses whenever possible. While an ag-
gregate analysis across participants may gloss over individual
idiosyncrasies, it does reveal important patterns of behavior,
and point to the causal mechanisms behind them.

Conclusion
While numerous studies have been conducted using binary-
choice tasks, with participants’ responses varying with a myr-
iad of experimental variables, the mechanisms underlying
participants’ behaviors on these tasks remain poorly under-
stood. In this study, we propose a unifying mechanism that
explains seemingly different behavior when participants are
given one vs. more trials, as well as initial order effects
we observed when subjects were asked to give multiple re-
sponses. We explored these phenomena particularly in the
absence of training or feedback. We found that participants
given a single trial tend to maximize, while participants given
multiple trials probability-match, replicating previous results
(Vulkan, 2000; James & Koehler, 2011). However, we found
no significant difference between participants’ responses in
the single-trial condition and those in the first trial of the
multiple-trial condition, indicating that maximizing behavior
is not exclusively a response to unique gambles. This sug-
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Figure 6: Average normalized rating of each possible se-
quence (obtained from Experiment 2), versus the likelihood
of participants generating this sequence initially (obtained
from Experiment 1), in log scale. These two variables are sig-
nificantly correlated (Pearson correlation coefficient = 0.536
± 0.021, p < 10−15)

gests a single, underlying mechanism responsible for gener-
ating behavior in both of these conditions. While participants
seem to probability-match over the course of the entire exper-
iment, they do not do so exclusively for each trial. We also
observe sequence effects—particularly in the initial three tri-
als—suggesting that participants attempt to provide samples
that are not only representative of the population distribution
over the course of the entire experiment, but are also incre-
mentally representative. We call this effect the incremental-
representativeness hypothesis—participants seek to provide
a sequence of responses that, truncated at any point during
the experiment, still produces a sample representative of the
population. This is in contrast to a trial-by-trial probability-
matching mechanism, which fails to explain maximizing be-
havior observed in single-trial experiments.
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