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Abstract

Selection and scaling of ground motions for nonlinear response history analysis of buildings
in performance-based earthquake engineering

by

Neal Simon Kwong

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Anil K. Chopra, Chair

This dissertation investigates the issue of selecting and scaling ground motions as input
excitations for response history analyses of buildings in performance-based earthquake en-
gineering. Many ground motion selection and modification (GMSM) procedures have been
developed to select ground motions for a wide variety of objectives. In this research, we focus
on the selection and scaling of single, horizontal components of ground motion for estimating
seismic demand hazard curves (SDHCs) of multistory frames at a given site.

In Chapter 2, a framework is developed for evaluating GMSM procedures in their ability
to provide accurate estimates of the SDHC. The notion of a benchmark SDHC is introduced,
enabling biases caused by GMSM procedures to be isolated from other sources of bias. More
importantly, the ability to quantify bias facilitates the identification of intensity measures
(IMs) that are sufficient 1. However, this approach is limited by the availability of recorded
ground motions and of prediction models for engineering demand parameters (EDPs) of
structures.

The framework developed in Chapter 2 is applied to synthetic ground motions in Chap-
ter 3, where biases in estimates of SDHCs caused by GMSM procedures can be estimated for
any structural system and any EDP. However, the use of synthetic ground motions gives rise
to the issue of developing benchmark-consistent ground motion prediction models. Based
on the results from Chapters 2-3, it is hypothesised that the potential bias in any SDHC
estimate is caused directly by two important properties of the particular selection of ground
motions: (i) hazard consistency, and (ii) IM sufficiency.

A novel ground motion selection procedure, rooted in the theory of Importance Sampling,
is developed in Chapter 4 that allows: (i) hazard consistency of the selected motions to be
directly enforced for a user-specified collection of IMs, and (ii) SDHCs of a structure to
be estimated from a single ensemble of ground motions, with the option of avoiding record
scaling altogether. This procedure, together with two other contemporary GMSM procedures
– (i) “exact” Conditional Spectrum and (ii) Generalized Conditional Intensity Measure – are

1Strictly speaking, only IMs that are insufficient may be identified.
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evaluated in Chapters 5-6 for a variety of structural systems and EDPs at a specified site. In
these chapters, the amount of effort involved in implementing these procedures for estimating
SDHCs is summarized in a step-by-step form, and the magnitude of biases caused by these
procedures are documented.
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(c-d) um and üto of degrading system, respectively. . . . . . . . . . . . . . . . . . 52

3.14 Comparison of GMSM-based SDHCs from different definitions of the conditioning
IM for EDP ≡ um of the degrading system, using ground motions simulated by
Rezaeian’s stochastic model: (a) IDA; (b) GCIM-SA. . . . . . . . . . . . . . . . 53

4.1 Output from PSHA: (a) example hazard curve; (b) target PDF, fIM(x), that
corresponds to the example hazard curve (an example of an Importance Function,
gIM(x), is also shown). The modes of the two PDFs are denoted by IM∗

f and IM∗
g . 60

4.2 Schematic illustration of PDFs related to scattergrams of results from RHAs. . . 61
4.3 Block diagram of proposed ground motion selection procedure. . . . . . . . . . . 65
4.4 Illustration of Importance Functions derived from a database of prospective ground

motions that are all: (a) unscaled, gu(x); or (b) scaled by SFmax, gs(x). . . . . . 66
4.5 Illustration of the recommended two-component Importance Function, g(x) =

[1− γ] · gu(x) + γ · gs(x): (a) comparison of g(x), with γ = 0.5, against its two
individual components and the target PDF; (b) the effect of γ on g(x). . . . . . 67

4.6 The concept of hazard consistency. An example of ground motions that are: (a)
hazard-consistent with respect to A(1s) at exceedance rates greater than 10−6;
(b) hazard-inconsistent with respect to PGA at exceedance rates less than 10−5. 69

4.7 Hazard consistency of 1000 unscaled ground motions selected from g(x) = gu(x);
Confidence intervals (CIs) from 100 bootstrap samples of the selected motions. . 72

4.8 SDHC estimates from proposed procedure with n = 1000 unscaled ground mo-
tions selected using IM = {A(0.1s), A(1s), A(2s), D5−75}: (a) MIDR; (b) MFA.
CIs from 100 bootstrap samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 MIDR hazard curves from proposed procedure with four different choices for IM:
(a) “bestIM”≡ {A(0.1s), A(1s), A(2s), D5−75}; (b) “SAonly”≡ {A(0.1s), A(1s), A(2s)};
(c) “T1plus2T1” ≡ {A(1s), A(2s)}; and (d) “T1only” ≡ A(1s). CIs from 100 in-
dependent executions of the proposed procedure with 1000 unscaled motions per
execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 MFA hazard curves from proposed procedure with four different choices for IM:
(a) “bestIM”≡ {A(0.1s), A(1s), A(2s), D5−75}; (b) “SAonly”≡ {A(0.1s), A(1s), A(2s)};
(c) “T1plus2T1” ≡ {A(1s), A(2s)}; and (d) “T1only” ≡ A(1s). CIs from 100 in-
dependent executions of the proposed procedure with 1000 unscaled motions per
execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Hazard consistency of ground motions, scaled to various degrees, with respect to
IMs employed for ground motion selection: (a) A(0.1s); (b) A(1s); (c) A(2s); and
(d) D5−75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



viii

4.12 MIDR hazard curves from proposed procedure with four different combinations
of SFmax and γ: (a) 5 and 0.5; (b) 5 and 0.9; (c) 10 and 0.5; and (d) 10 and
0.9. CIs from 100 bootstrap samples with “bestIM” and n = 1000 per bootstrap
sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 MFA hazard curves from proposed procedure with four different combinations of
SFmax and γ: (a) 5 and 0.5; (b) 5 and 0.9; (c) 10 and 0.5; and (d) 10 and 0.9. CIs
from 100 bootstrap samples with “bestIM” and n = 1000 per bootstrap sample. 79

4.14 Hazard consistency of ground motions, scaled to various degrees, with respect to
four miscellaneous IMs: (a) PGA; (b) PGV ; (c) PGD; and (d) CAV . . . . . . . 80

4.15 MIDR hazard curves from proposed procedure with four different choices for n:
(a) 100; (b) 250; (c) 500; and (d) 1000. CIs from 100 independent executions of
the procedure with unscaled motions selected using “bestIM” per execution. . . 82

5.1 Examples of benchmark hazard curves for an: (a) IM; (b) EDP. . . . . . . . . . 88
5.2 Hazard consistency of ground motions, selected by CSexact for the SDF system

with T1 = 1 sec and Ry = 1, with respect to spectral accelerations at four
vibration periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Comparison of SDHC estimates for all SDF systems from CSexact (dashed black)
against benchmark (solid green). . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Hazard consistency of ground motions, selected by CSexact for three SDF systems
with Ry = 1, with respect to PGA, PGV, PGD, and D5−75. . . . . . . . . . . . . 94

5.5 Hazard consistency of ground motions, selected by CSexact for the 4-story frame,
with respect to spectral accelerations at four vibration periods (Yamamoto’s model). 95

5.6 Comparison of SDHC estimates for several EDPs of the 4-story frame from CSex-
act against benchmark (Yamamoto’s model). . . . . . . . . . . . . . . . . . . . . 96

5.7 Hazard consistency of ground motions, selected by CSexact for the 4-story frame,
with respect to spectral accelerations at four vibration periods (Rezaeian’s model). 97

5.8 Comparison of SDHC estimates for several EDPs of the 4-story frame from CSex-
act against benchmark (Rezaeian’s model). . . . . . . . . . . . . . . . . . . . . . 98

5.9 Hazard consistency of ground motions, selected by CSexact for the 4-story frame,
with respect to four IMs unrelated to spectral accelerations (Yamamoto’s model). 99

5.10 Hazard consistency of ground motions, selected by CSexact for the 4-story frame,
with respect to four IMs unrelated to spectral accelerations (Rezaeian’s model). 100

5.11 Comparison of SDHC estimates for several EDPs of the 20-story frame from
CSexact against benchmark (Yamamoto’s model). . . . . . . . . . . . . . . . . . 101

5.12 Comparison of SDHC estimates for several EDPs of the 20-story frame from
CSexact against benchmark (Rezaeian’s model). . . . . . . . . . . . . . . . . . . 102

5.13 Hazard consistency of ground motions, selected by GCIM for three SDF systems
with Ry = 1, with respect to PGA, PGV, PGD, and D5−75. . . . . . . . . . . . . 104

5.14 Comparison of SDHC estimates for all SDF systems from GCIM (dashed black)
against benchmark (solid green). . . . . . . . . . . . . . . . . . . . . . . . . . . 105



ix

5.15 Hazard consistency of ground motions, selected by GCIM for the 4-story frame,
with respect to four IMs unrelated to spectral accelerations (Yamamoto’s model). 106

5.16 Comparison of SDHC estimates for several EDPs of the 4-story frame from GCIM
against benchmark (Yamamoto’s model). . . . . . . . . . . . . . . . . . . . . . . 107

5.17 Hazard consistency of ground motions, selected by GCIM for the 4-story frame,
with respect to four IMs unrelated to spectral accelerations (Rezaeian’s model). 108

5.18 Comparison of SDHC estimates for several EDPs of the 4-story frame from GCIM
against benchmark (Rezaeian’s model). . . . . . . . . . . . . . . . . . . . . . . . 109

5.19 Results from applying KS tests (GCIM target in solid green, 10% KS bounds in
chained green, and empirical CDF in dashed black) to ground motions selected
for A(T ∗) at 0.02% probability of exceedance in 50 years: (a) IM ≡ A(0.1); and
(b) IM ≡ A(3) (Rezaeian’s model). . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.20 Output from applying t-tests (regression line in solid red and 68% CI of ln(EDP ) |
ln(IM) in dashed red) to results from RHAs of the frame due to ground motions
selected for A(T ∗) at 0.02% probability of exceedance in 50 years: (a) collapses
excluded; and (b) collapses included (Rezaeian’s model). . . . . . . . . . . . . . 111

5.21 (a) Summary of results from KS tests for all 24 IMs employed in GCIM (magenta
indicates inconsistency with respect to GCIM distribution), at all intensity levels
of A(T ∗); (b) cases where IM is both inconsistent and influential to PFA4, as
measured by t-tests (magenta indicates slope from linear regression is statistically
significant and IM is inconsistent). Results for Rezaeian’s model. . . . . . . . . 112

5.22 Estimates of bias in PFA4 due to IM ≡ A(0.1) from GCIM (empirical CDF in
solid grey, lognormal estimate in dashed black, “corrected from IM ≡ A(0.1)” in
chained red, and 10% KS “bounds” in dotted black) for A(T ∗) at 0.02% probabil-
ity of exceedance in 50 years: (a) collapses excluded; and (b) collapses included
(Rezaeian’s model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.23 Results from applying KS tests (GCIM target in solid green, 10% KS bounds in
chained green, and empirical CDF in dashed black) to ground motions reselected
with a new weight vector for A(T ∗) at 0.02% probability of exceedance in 50
years: (a) IM ≡ A(0.1); and (b) IM ≡ A(3) (Rezaeian’s model). . . . . . . . . 114

5.24 Output from applying t-tests (regression line in solid red and 68% CI of ln(EDP ) |
ln(IM) in dashed red) to results from RHAs of the frame due to ground motions
reselected with a new weight vector for A(T ∗) at 0.02% probability of exceedance
in 50 years: (a) IM ≡ A(3); and (b) IM ≡ CAV (Rezaeian’s model). . . . . . . 114

5.25 Comparison of SDHC estimates for several EDPs of the 4-story frame from ground
motions reselected by GCIM with a new weight vector against benchmark (Reza-
eian’s model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.26 Comparison of SDHC estimates for several EDPs of the 20-story frame from
GCIM against benchmark (Yamamoto’s model). . . . . . . . . . . . . . . . . . . 117

5.27 Comparison of SDHC estimates for several EDPs of the 20-story frame from
GCIM against benchmark (Rezaeian’s model). . . . . . . . . . . . . . . . . . . . 118



x

6.1 Examples of database-driven IFs with reference to target PDFs from PSHA, f(·)
(dotted black): (i) g1(·) (chained blue), (ii) g2(·) (dashed red), (i) g3(·) (solid
green). Marginal distribution for (a) A(T4); (b) A(T1); (c) A(2T1); (d) D5−75. . . 125

6.2 Proposed approach for choosing IF among several possibilities; NEpi = 103. Haz-
ard curves for (a) A(T4); (b) A(T1); (c) A(2T1); (d) D5−75. . . . . . . . . . . . . 127

6.3 Hazard consistency of the motions selected with gu(·) for the 4-story frame, with
respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA; (f) PGV; (g)
PGD; (h) CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in
dashed black, and 95% CI of estimate from IS in chained black. . . . . . . . . . 128

6.4 Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with gu(·) as the IF, against benchmark. . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Comparison of SDHC estimates for several EDPs of the 20-story frame from IS,
with gu(·) as the IF, against benchmark. . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Hazard consistency of the motions selected with g3(·) for the 4-story frame, with
respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA; (f) PGV; (g)
PGD; (h) CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in
dashed black, and 95% CI of estimate from IS in chained black. . . . . . . . . . 131

6.7 Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with g3(·) as the IF, against benchmark. . . . . . . . . . . . . . . . . . . . . . . 132

6.8 Comparison of SDHC estimates for several EDPs of the 20-story frame from IS,
with g3(·) as the IF, against benchmark. . . . . . . . . . . . . . . . . . . . . . . 133

6.9 Hazard consistency of the motions selected with SFmax = 5 and γ = 0.5 for the
4-story frame, with respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e)
PGA; (f) PGV; (g) PGD; (h) CAV; and (i) D5−75. Benchmark in solid green,
estimate from IS in dashed black, and 95% CI of estimate from IS in chained black.134

6.10 Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with SFmax = 5 and γ = 0.5, against benchmark. . . . . . . . . . . . . . . . . . 135

6.11 Comparison of SDHC estimates for several EDPs of the 20-story frame from IS,
with SFmax = 5 and γ = 0.5, against benchmark. . . . . . . . . . . . . . . . . . 136

6.12 Hazard consistency of the motions selected from a non-structure specific IM, with
respect to: (a) A(0.1s); (b) A(1s); (c) A(5s); (d) A(10s); (e) PGA; (f) PGV; (g)
PGD; (h) CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in
dashed black, and 95% CI of estimate from IS in chained black. . . . . . . . . . 137

6.13 Comparison of SDHC estimates for several EDPs of the 4-story frame from a
single non-structure specific set of ground motions, against benchmark. . . . . . 138

6.14 Comparison of SDHC estimates for several EDPs of the 20-story frame from the
same set of ground motions utilized in Figs 6.12-6.13, against benchmark. . . . . 139

B.1 Functional form for D5−75 under stochastic model from: (a) Rezaeian; (b) Ya-
mamoto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.2 Benchmark-consistency of GMPM for PGA under Rezaeian’s stochastic model. . 161
B.3 Benchmark-consistency of GMPM for PGV under Rezaeian’s stochastic model. . 162



xi

B.4 Benchmark-consistency of GMPM for PGD under Rezaeian’s stochastic model. . 163
B.5 Benchmark-consistency of GMPM for ASI under Rezaeian’s stochastic model. . 164
B.6 Benchmark-consistency of GMPM for SI under Rezaeian’s stochastic model. . . 165
B.7 Benchmark-consistency of GMPM for DSI under Rezaeian’s stochastic model. . 166
B.8 Benchmark-consistency of GMPM for CAV under Rezaeian’s stochastic model. . 167
B.9 Benchmark-consistency of GMPM for D5−95 under Rezaeian’s stochastic model. 168
B.10 Benchmark-consistency of GMPM for D5−75 under Rezaeian’s stochastic model. 169
B.11 Benchmark-consistency of GMPM for PGA under Yamamoto’s stochastic model. 170
B.12 Benchmark-consistency of GMPM for PGV under Yamamoto’s stochastic model. 171
B.13 Benchmark-consistency of GMPM for PGD under Yamamoto’s stochastic model. 172
B.14 Benchmark-consistency of GMPM for ASI under Yamamoto’s stochastic model. 173
B.15 Benchmark-consistency of GMPM for SI under Yamamoto’s stochastic model. . 174
B.16 Benchmark-consistency of GMPM for DSI under Yamamoto’s stochastic model. 175
B.17 Benchmark-consistency of GMPM for CAV under Yamamoto’s stochastic model. 176
B.18 Benchmark-consistency of GMPM for D5−95 under Yamamoto’s stochastic model. 177
B.19 Benchmark-consistency of GMPM for D5−75 under Yamamoto’s stochastic model. 178



xii

List of Tables

5.1 Summary of effort involved in using CSexact and GCIM in this study to compute
SDHCs of a given structure at the specified site. . . . . . . . . . . . . . . . . . 119

6.1 Summary of effort involved in using GCIM and IS (without scaling ground mo-
tions) in this study to compute SDHCs of a given structure at the specified site.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



xiii

Acknowledgments

The research in this dissertation is supported primarily by the National Science Foun-
dation Graduate Research Fellowship Program under Grant No. DGE 1106400. Additional
support is provided by the Popert fellowships from the SEMM program at UC Berkeley and
by funding from the US Geological Survey (USGS). These sources of support are gratefully
acknowledged. In addition, any opinions, findings, and conclusions or recommendations ex-
pressed in this work are those of the author and do not necessarily reflect the views of these
sponsors.

I wish to thank Prof. Cosmas Tzavelis for encouraging me to pursue graduate studies
in structural engineering and Dr. Erol Kalkan for helping me get started on research in
earthquake engineering. I also wish to thank the faculty of the SEMM program (in particular,
Professors Anil Chopra, Filip Filippou, Stephen Mahin, Jack Moehle, Khalid Mosalam) and
of the statistics department (in particular, Professors Haiyan Huang, Jon McAuliffe, Nathan
Ross, Bin Yu) at UC Berkeley for their incredible dedication towards teaching and their
influence on my professional development.

I am grateful to Dr. Robin McGuire, Prof. Jack Baker, and Prof. Brendon Bradley
for their valuable feedback on many parts of this research; to Dr. Yoshi Yamamoto, Prof.
Norman Abrahamson, Prof. Yousef Bozorgnia, and Prof. Ting Lin for fruitful discussions
related to various pieces of this research; to Dr. Yoshi Yamamoto and Prof. Curt Haselton
for providing the computer models of the multistory buildings used in this dissertation; and
to Dr. Frank McKenna for helping me improve the efficiency of performing dynamic analyses
with the structural models.

Thanks to all of the staff and students at UC Berkeley who have made this doctoral
program an enjoyable experience. In particular, I wish to acknowledge: Grigorios Antonellis,
Ahmed Bakhaty, Gerd Brandstetter, Marco Broccardo, Mayssa Dabaghi, Panos Galanis,
James Goulet, Christie Hale, Pardeep Kumar, Jiang Jun Lee, Yuan Lu, Mohamed Moustafa,
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Chapter 1

Introduction

Nonlinear response history analyses (RHAs) play a major role in performance-based earth-
quake engineering (PBEE) of buildings. By performing RHAs of a computer model of the
building subjected to an input ground motion 1, seismic demands can be computed to deter-
mine seismic demand hazard curves (SDHCs). In PBEE of buildings, the computed seismic
demands are used as inputs to fragility functions for predicting (both structural and non-
structural) damage [2]; e.g., SDHCs can be integrated with fragility functions to provide
annual rates of damage exceedance. By predicting damage as a function of the seismic
demand instead of the ground motion intensity (e.g., peak ground acceleration, etc.), the
resulting estimate of damage is more informative because the variability in the estimate is
reduced. Similarly, losses due to earthquakes (e.g., repair costs, business downtime, casual-
ties, etc.) may be better predicted (through consequence functions) with knowledge about
the damage in buildings (see e.g., Section 3.9 in [3]). Thus, nonlinear RHAs of building
models are an important step in the estimation of losses due to earthquakes.

However, one of the key challenges in this approach is the selection and scaling of ground
motions to serve as input excitations for nonlinear RHAs. Researchers have proposed many
different ways to select ground motions. Some have proposed to select on the basis of
matching seismological parameters for a given earthquake scenario ([4, 5, 6]) whereas others
have suggested to select on the basis of spectral shape ([7, 8, 9]). In fact, many different
intensity measures (IMs) have been investigated and/or developed for selection purposes
([10, 11, 12, 13, 14]). With such a wide variety of parameters to choose from, how does one
identify those that are most desirable?

Regardless of the selection approach, ground motions are often scaled by factors of varying
degrees before RHAs are performed. Although scaling offers the advantage of reducing the
variability in the resulting demands ([15]), such modification of data raises many questions.
For example, some researchers have argued that there is no need to limit the scale factors
([16, 17]) and that scaling does not cause bias in the demands ([18]). On the other hand,
some have found that scaling may induce bias, depending on how ground motions were

1In this dissertation, the phrase “ground motion” refers to ground acceleration as a function of time, or
ground motion time series.
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selected ([19, 20]). Moreover, other researchers have suggested that the usefulness of results
from scaling is questionable, providing limited if any information ([21]).

The objectives of this dissertation are as follows:

1. To develop a rigorous approach for evaluating SDHCs of a structure from any ground
motion selection and modification (GMSM) procedure.

2. To understand the underlying reasons why bias in the demands is observed in some
cases but not in others, leading to conflicting conclusions in the literature.

3. To develop a rigorous procedure for selecting ground motions with the option of avoid-
ing record scaling altogether.

4. To comprehensively evaluate contemporary GMSM procedures in their ability to pro-
vide accurate estimates of the SDHCs of a structure at a given site.

In Chapter 2, various objectives for performing RHAs are organized, leading to the
objective of estimating SDHCs as the appropriate choice for rigorously evaluating GMSM
procedures. The notion of a benchmark is introduced and its importance in the context
of evaluating GMSM procedures is discussed. It is found that the potential bias in any
SDHC estimate is directly caused by hazard inconsistencies in the specific selection of ground
motions with respect to IMs that are influential to the response. As long as ground motions
are selected to be hazard-consistent with respect to a vector-valued IM that is sufficient,
then the resulting SDHC estimates are unbiased, irrespective of the level of record scaling.

The framework developed in Chapter 2 is applied to synthetic ground motions in Chap-
ter 3, in order to evaluate GMSM procedures for any structure and any response quantity
of interest. Equipped with a rigorous benchmark, the relationship between SDHC bias, haz-
ard consistency, and IM sufficiency is confirmed. Most importantly, the benchmark SDHC
enables us to distinguish IMs (e.g., spectral shape, etc.) that are insufficient from those
that are approximately sufficient for the response quantity of interest. Additionally, the is-
sue of benchmark consistency arises for the first time as a consequence of evaluating GMSM
procedures with synthetic ground motions; this issue is thoroughly addressed in this chapter.

In Chapter 4, an Importance Sampling based ground motion selection procedure is de-
veloped to take advantage of unscaled yet intense ground motions for estimating SDHCs.
This procedure permits hazard consistency of the selected motions to be directly enforced
for a wide range of IMs and exceedance rates, through different choices of the Importance
Function. Furthermore, the procedure enables SDHCs of a structure to be estimated from a
single ensemble of ground motions. The chapter concludes with recommendations for inputs
to this procedure: (i) vector of IMs for ground motion selection IM, (ii) sample size n, (iii)
maximum acceptable scale factor SFmax, and (iv) target fraction of scaled ground motions
γ.

Using the concept of a benchmark, developed in Chapters 2-3, two state-of-the-art GMSM
procedures – (i) “exact” Conditional Spectrum, and (ii) Generalized Conditional Intensity
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Measure (GCIM) – are comprehensively evaluated in Chapter 5. First, the implementation of
each procedure for estimating SDHCs is summarized in a step-by-step form. It is shown that
the implementation can be quite involved, requiring several ensembles of ground motions to
be iteratively selected until they are consistent with the target over a wide range of IMs.
Second, the procedures are evaluated in their ability to accurately estimate SDHCs for a
variety of structural systems and response quantities at a given site. It is found that spectral
shape can be insufficient for estimating the annual rate of collapse and or for estimating
floor accelerations. Furthermore, it is found that even a vector of IMs that includes spectral
accelerations, peak ground measures, spectrum intensities, and cumulative effects, can be
insufficient for estimating floor accelerations. Finally, the limitations of the bias-checking
procedure in GCIM are identified, where it is shown that misleading conclusions may be
obtained from the bias-checking procedure.

The evaluation of the Importance Sampling based procedure from Chapter 4 is the subject
of Chapter 6. For the cases considered, the SDHCs from the Importance Sampling procedure
are demonstrated to be unbiased for all systems and all response quantities, when ground
motions are not scaled. When the procedure is implemented with scaled ground motions, the
resulting SDHCs are unbiased for most, but not all, of the cases considered. The epistemic
uncertainty in the SDHC estimates from the Importance Sampling procedure is controlled
primarily by the Importance Function and secondarily by the number of ground motions.
Given a judiciously chosen Importance Function, the procedure greatly simplifies the problem
of selecting ground motions for estimating SDHCs; the selection of the Importance Function
is discussed in this chapter.

Each of the chapters is written in a self-contained fashion. However, it is advisable to
read Chapters2-3 first because the subsequent chapters borrow heavily on the material in
these two chapters.
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Chapter 2

A framework for the evaluation of
ground motion selection and
modification procedures

2.1 Abstract

This study develops a framework to evaluate ground motion selection and modification
(GMSM) procedures. The context is probabilistic seismic demand analysis (PSDA), where
response history analyses (RHAs) of a given structure, using ground motions determined by
a GMSM procedure, are performed in order to estimate the seismic demand hazard curve
(SDHC) for the structure at a given site. Currently, a GMSM procedure is evaluated in
this context by comparing several resulting estimates of the SDHC, each derived from a
different definition of the conditioning intensity measure (IM). Using a simple case study,
we demonstrate that conclusions from such an approach are not always definitive; therefore,
an alternative approach is desirable. In the alternative proposed herein, all estimates of the
SDHC from GMSM procedures are compared against a benchmark SDHC, under a common
set of ground motion information. This benchmark SDHC is determined by incorporating
a prediction model for the seismic demand into the probabilistic seismic hazard analysis
(PSHA) calculations. To develop an understanding of why one GMSM procedure may pro-
vide more accurate estimates of the SDHC than another procedure, we identify the role of
“IM sufficiency” in the relationship between (1) bias in the SDHC estimate and (2) “hazard
consistency” of the corresponding ground motions obtained from a GMSM procedure. Fi-
nally, we provide examples of how misleading conclusions may potentially be obtained from
erroneous implementations of the proposed framework.
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2.2 Introduction

Ground motion selection and modification (GMSM) procedures determine the necessary in-
put ground motions for response history analyses (RHAs) of structures. RHAs of a structure
are often performed in order to estimate the seismic demands, for one or more engineering
demand parameters 1 (EDPs), resulting from a given ensemble of ground motions. The
modification of ground motions can be classified into two approaches: (1) amplitude scaling,
and (2) spectrum matching in the time or frequency domains. The framework developed in
this document applies primarily to the former and secondarily to the latter.

Many different GMSM procedures are available in the literature. Some select and scale
on the basis of scalar intensity measures (IMs). For instance, the spectral acceleration 2

at the fundamental period of the structure, A(T1), is a popular choice as an IM for record
scaling (e.g., [17, 15]). Alternative choices for such scalar IMs include the peak deformation
of inelastic Single-Degree-of-Freedom (SDF) systems (e.g., [24, 12, 14]). Several procedures
select and scale ground motions on the basis of vector-valued IMs. For example, selecting
records whose response spectra most closely matches a target spectrum is a common approach
(e.g., [8, 25]). A review of various GMSM procedures is provided in Appendix A of [26] and
in [27].

There has been much interest in evaluating GMSM procedures. For example, the Pacific
Earthquake Engineering Research (PEER) GMSM working group [26], Heo et al [28], and
Hancock et al [29] all compared estimates of the median demand of a structure, from RHAs
for ground motions determined by GMSM methods, against a ‘benchmark’ that is defined
differently in each of these studies. In the first study, the benchmark is derived from a
regression model of the EDP as a function of IMs and the regression is applied to both scaled
and unscaled ground motions; this benchmark is referred to as the Point-Of-Comparison
[30, 26]. In the study by Heo et al, the benchmark is also derived from a regression model
of the EDP as a function of IMs; however, the regression is applied to only unscaled ground
motions. Hancock et al derive the benchmark from a regression model of the EDP as a
function of seismological parameters (i.e., earthquake magnitude, distance, etc.), and the
regression is applied to only unscaled ground motions.

In order to meaningfully evaluate GMSM procedures, the objective of the associated
RHAs of the structure must be clearly stated. For example, researchers have been interested
in probability distributions of the demand for a given:

1. Earthquake scenario;

2. Ground motion scenario;

3. Intensity level; and

1‘Engineering demand parameter’ is a synonym for ‘response quantity’.
2In this document, “spectral acceleration” refers to the pseudo-acceleration [22] for 5% damping corre-

sponding to the arbitrary horizontal component of ground motion [23].
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4. Time frame.

The PEER GMSM working group considers the estimation of the median and the complete
distribution of 1 and 2 as four separate objectives of GMSM methods [26]. They define
an earthquake scenario as an earthquake with a specific magnitude, M , distance, R, and
rupture information (e.g., style of faulting, dip angle, shear wave velocity of the site, etc.)
and a ground motion scenario as an earthquake scenario with a specified value of A(T1). We
will use rupture scenario as a synonym for earthquake scenario.

The estimation of distributions 1 and 3 above are referred to as a scenario-based assess-
ment and an intensity-based assessment, respectively [3, 31]. In an intensity-based assess-
ment, the IM may be defined as a scalar or a vector; for example, it may be defined as the
spectral acceleration at one vibration period or at several periods (i.e., a response spectrum).
The estimation of distribution 4 is known as a time-based assessment, where the specified
time frame depends on the needs of decision makers (e.g., one year, 50 years, etc.) [3], and
the probabilities are converted from annual rates of exceedance, based on an assumption of
earthquake occurrence in time 3 [32]. The process of determining these exceedance rates,
or seismic demand hazard curves (SDHCs), is known as a risk-based assessment [31], or a
probabilistic seismic demand analysis (PSDA) [33].

In this study, we develop a framework for evaluating GMSM procedures in the context
of PSDA. This choice is motivated by the fact that for a given structure at a given site,
distributions 1-3 above are not “unique”; for example, different versions of distribution 3
exist for different definitions of the IM and for different intensity levels under consideration
[34]. In contrast, the SDHC from PSDA is unique for a given structure at a given site [35].

In the proposed framework, all estimates of the SDHC from GMSM procedures are com-
pared against a benchmark SDHC, under a common set of ground motion information. The
benchmark SDHC is determined by incorporating an EDP prediction model that is devel-
oped from unmodified ground motions into the probabilistic seismic hazard analysis (PSHA)
calculations. Currently, a GMSM procedure is evaluated in the context of PSDA by compar-
ing several resulting estimates of the SDHC, each derived from a different definition of the
conditioning IM. To illustrate an important but subtle limitation of this approach, PSDA
is critically examined next and a simple structural model at a realistic site is chosen as the
case study.

2.3 Probabilistic Seismic Demand Analysis

The objective of performing RHAs in PSDA is to develop a SDHC for a given structure
at a given site. Denoted by the symbol λEDP (z), a SDHC is a plot of the annual rate
of exceedance, λ, against the seismic demand; it is similar to a traditional hazard curve
in PSHA, except that the IM on the horizontal axis has been replaced by the EDP. Once
developed, SDHCs are used to: (1) determine the annual rate of seismic demand exceeding

3In this study, all conversions are made with the Poisson assumption.
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a particular structural capacity, or (2) determine the seismic demand associated with a
specified annual rate of exceedance.

The SDHC is governed by (see e.g., [15, 36, 35]):

λEDP (z) =

∫
Pr(EDP > z | IM = x) · |dλIM(x)| (2.1)

where Pr(EDP > z | IM = x) is the probability of EDP exceeding demand level z given
intensity level x and λIM(x) is the intensity measure hazard curve (IMHC). In Eq 2.1, the IM
is often defined as the spectral acceleration at a conditioning period of vibration, T ∗, while
the EDP is commonly defined as the maximum story drift ratio over all stories of a multistory
building [37]. However, the IM may be defined in many different ways. For example, it may
be defined as peak ground acceleration (PGA), peak ground velocity (PGV), or significant
duration [35]. Alternatively, it may be defined as a vector of IMs (e.g., {A(T1),M}, or
{A(T1), ε(T1)}, where ε(T1) is the number of standard deviations between the observed and
the predicted value of A(T1)); if it is defined as a vector, then Eq 2.1 needs to be modified
appropriately [36]. Note that Eq 2.1 has been extended to consider a vector of EDPs (e.g.,
drift ratios for individual stories, etc.) [35] and to account for the possibility of structural
collapses (see e.g., [33, 36, 37]); however, these extensions are beyond the scope of this study.

The SDHC is typically computed from the following equation:

λ̂EDP (z) =

NIM∑
i=1

P̂r(EDP > z | IM = xi) · |∆λ̃IM(xi)| (2.2)

where NIM is the number of intensity levels considered and xi is the ith intensity level;
∆λ̃IM(xi) is the discrete form of |dλIM(x)|, which is obtained from PSHA, while P̂r(EDP >
z | IM = xi) is the discrete form of Pr(EDP > z | IM = x), which is computed from RHAs
of the structure. The hat symbols in Eq 2.2 serve to emphasize the fact that the quanti-
ties computed are estimates (of the corresponding exact quantities in Eq 2.1) that depend
primarily on the particular choice of ground motions selected for RHAs of the structure.
This implies that different GMSM procedures lead to different estimates of the SDHC. The
meaning of the tilde symbol in λ̃IM(xi) will become evident in Section 2.4.

The steps to compute a SDHC in PSDA, when IM ≡ A(T ∗), are schematically illustrated
in Fig 2.1. The IMHC for A(T ∗) is shown in Fig 2.1a. The number of intensity levels, NIM ,
is chosen to satisfactorily approximate the integral and |dλIM(x)| in Eq 2.1. For illustration
only, Fig 2.1a shows three intensity levels and the discrete form of |dλIM(x)| at intensity
level xo.

For each ith intensity level, an intensity-based assessment of seismic demand is conducted
to determine P̂r(EDP > z | IM = xi). First, an ensemble of scaled ground motions is
selected as excitations for RHAs of the system. Recorded ground motions are often scaled
because the record-to-record variability of interest is conditioned so that the IM is exactly
equal to xi. Consequently, all candidate ground motions are first scaled, so that IM = xi,
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Figure 2.1: The elements of PSDA when IM ≡ A(T ∗): (a) discretization of the IMHC,
λIM(x); (b) ground motions selected and scaled such that IM = xo; (c) estimation of
Pr(EDP > z | IM = x) from RHAs of the structure; (d) resulting SDHC, λEDP (z).

before a subset of them are selected as excitations for RHAs of the structure. For example, the
response spectra of one such ensemble, with each ground motion scaled to satisfy A(T ∗) = xo,
are shown in Fig 2.1b.

Next, RHAs of the structure are performed for the selected ensemble and the computed
values of EDPs are processed by statistical inference methods. The list of EDPs correspond-
ing to the ensemble in Fig 2.1b is depicted as circles above A(T ∗) = xo in Fig 2.1c. A
lognormal distribution is used to model Pr(EDP > z | IM = xi) and the two parameters
of this distribution are estimated by the mean, µ̂lnEDP , and standard deviation, σ̂lnEDP , of
the list of logarithmic EDPs [38, 39]:

P̂r(EDP > z | IM = xi) = 1− Φ

(
ln z − µ̂lnEDP

σ̂lnEDP

)
(2.3)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution.
For illustration, the probability of EDP exceeding zo given intensity xo is shown as the
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shaded area in Fig 2.1c. Although a lognormal distribution is commonly employed, an
alternative is to apply nonparametric inference to the results from RHAs [40, 38]:

P̂r(EDP > z | IM = xi) =
1

n

n∑
l=1

I(zl > z) (2.4)

where n is the number of records selected for intensity level xi, zl is the value of EDP for
the lth record, and I(·) denotes the indicator function (i.e., I(zl > z) = 1 only if zl > z;
otherwise, it is equal to zero); we will revisit Eq 2.4 in Section 2.7.

To illustrate how a GMSM procedure is utilized to estimate a SDHC in PSDA, let us
first consider how to estimate the annual rate of the EDP exceeding some demand level, say
zo. Substituting P̂r(EDP > zo | IM = xi), computed from either Eqs 2.3 or 2.4, in Eq 2.2

leads to λ̂EDP (zo), which is identified by the circle in Fig 2.1d. Repeating such calculations
for all demand levels leads to the SDHC shown in Fig 2.1d.

How can we evaluate a GMSM procedure in its ability to provide ‘unbiased’ estimates of
the SDHC? We define a SDHC estimate to be unbiased or accurate if it is practically equal to
the SDHC from Eq 2.1 (i.e., λ̂EDP (z) ≈ λEDP (z)); otherwise, it is biased or inaccurate (i.e.,

λ̂EDP (z) 6= λEDP (z)). Two approaches have been proposed to assess whether the resulting
SDHC estimates from a given GMSM procedure are biased or not:

1. Compare the SDHC estimate from Eq 2.2, which is based on a scalar IM, against
another estimate from a version of Eq 2.2 where the IM is vector-valued. If the two
estimates are appreciably different, then they are biased; if they are practically equal
to each other, then they are unbiased [9].

2. Compare the SDHC estimate from Eq 2.2, based on one definition of the scalar IM,
against another estimate from Eq 2.2, based on a different definition of the scalar IM.
If the two estimates are practically equal to each other, then they are unbiased [35, 37].

As will be demonstrated later, the two approaches above are not always adequate for
definitively evaluating a GMSM procedure in its ability to provide unbiased estimates of the
SDHC. Since Eq 2.1 is valid for any definition of the IM, λEDP (z) determined from Eq 2.1 for
one definition must be identical to λEDP (z) determined from Eq 2.1 for another definition.

Therefore, if SDHC estimates from a GMSM procedure are unbiased, then λ̂EDP (z) computed
from Eq 2.2 for one definition of the IM must be practically equal to another estimate
from Eq 2.2 for a different definition of the IM. However, the converse of this statement is
not true: the fact that the two SDHC estimates (corresponding to two different IMs) are
practically equal to each other does not necessarily imply that SDHC estimates from the
GMSM procedure are unbiased. This subtle but important limitation is illustrated next with
a simple case study.
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2.4 Case study

Site, Structural Model, and Engineering Demand Parameter

UC Berkeley is selected as the example site. Its latitude and longitude coordinates are
37.876 ◦N and 122.251 ◦W respectively. The shear wave velocity, Vs30, is specified as 600 m/s,
and the basin depths, Z1.0 and Z2.5, are specified as 0.1 and 1 km respectively. OpenSHA
[41] is used to perform PSHA; the “USGS/CGS 2002 Adj. Cal. ERF” model is chosen for
the earthquake rupture forecast, 5 km is specified for the rupture offset, and background
seismicity is excluded.

The selected system is a 5% damped bilinear SDF model with 5% post-yield hardening.
Its natural period of small-amplitude vibration, T1, is 1s and its yield displacement, uy, is
0.2g × (T1/2π)2. The EDP of interest is its peak deformation, um, and we wish to estimate
the SDHC for this particular response quantity using RHAs of the system due to ground
motions determined by a GMSM procedure.

Intensity Measure Hazard Curve

The IMHC shown schematically in Fig 2.1a is obtained from PSHA for a given site. It is
governed by the standard equation (see e.g., [32]):

λIM(x) =
Nsrc∑
i=1

νi ·
{∫ ∫

Pr(IM > x |M = m,R = r)fR|M(r | m)fM(m) dr dm

}
i

(2.5)

where Nsrc is the number of earthquake sources, νi is the activity rate for the ith earthquake
source, Pr(IM > x | M = m,R = r) is the probability of IM exceeding level x for a given
earthquake scenario, fR|M(r | m) is the probability density function (PDF) of distance for a
given magnitude, and fM(m) is the PDF of magnitude. The activity rate, magnitude PDF,
and distance PDF for each of the Nsrc earthquake sources are supplied by an earthquake
rupture forecast whereas the probability distribution of IM for a given earthquake scenario
is obtained from a ground motion prediction model (GMPM) 4.

In practice, λIM(x) in Eq 2.5 is computed from the following equation:

λ̃IM(x) =
Nsrc∑
i=1

νi ·

{∑
m

∑
r

P̃r(IM > x |M = m,R = r) Pr(M = m,R = r)

}
i

(2.6)

Comparing Eq 2.5 against Eq 2.6, we see that the integrals have been replaced with sum-
mations, the PDFs have been replaced with a joint probability mass function, and two

4GMPMs are also known as “ground motion prediction equations” (GMPEs) and were formerly referred
to as “attenuation relationships”. In the context of GMPMs, the phrase “ground motion” refers to an IM
whereas in the rest of this study, the phrase refers to ground acceleration as a function of time; the two
different uses of “ground motion” should be clear from the context.
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expressions have been annotated with tilde symbols. Similar to Eq 2.2, the tilde symbols
in Eq 2.6 serve to emphasize the fact that the quantities computed are estimates (of the
corresponding exact quantities in Eq 2.5) that depend primarily on the particular set of
ground motions selected in developing the GMPM. Consequently, different GMPMs lead to
different estimates of the IMHC, λ̃IM(x).

Four estimates of an IMHC at the selected site, for two definitions of the conditioning
IM, are presented in Fig 2.2. They correspond to four GMPMs: (1) Campbell & Bozorgnia
2008 (CB08) [42], (2) Boore & Atkinson 2008 (BA08) [43], (3) Abrahamson & Silva 2008
(AS08) [44], and (4) Chiou & Youngs 2008 (CY08) [45]; the differences among the four
IMHC estimates are apparent. Which IMHC should one choose to proceed? We will answer
this question in Section 2.6 but for now, the CB08 model is chosen and the resulting IMHC
is discretized to compute ∆λ̃IM(xi) in Eq 2.2. For each conditioning IM, the IMHC is
discretized with NIM = 11 intensity levels corresponding to 11 hazard levels: 99%, 80%,
50%, 20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%, and 0.1% probability of exceedance in 50 years,
which are identical to those in [35]. For each intensity level, P̂r(EDP > z | A(T ∗) = xi) is
obtained from an intensity-based assessment (Fig 2.1c).
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Figure 2.2: Four estimates of the IMHC for the conditioning IM in Eq 2.2: (a) IM ≡ A(1s);
(b) IM ≡ A(0.75s).

Intensity-Based Assessment

As shown in Fig 2.1, a single intensity-based assessment involves (1) ground motion selection
(Fig 2.1b), (2) RHAs of the structural system due to the selected ensemble (Fig 2.1c), and (3)
statistical inference (Fig 2.1c), at a specified intensity level. In this case study, each intensity-
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based assessment computes P̂r(EDP > z | A(T ∗) = xi) from Eq 2.3 using the results from
RHAs of the structure for n = 44 ground motions. To illustrate the limitation of the two
approaches for evaluating GMSM procedures (mentioned at the end of Section 2.3), we select
two GMSM procedures: (1) Incremental Dynamic Analysis (IDA) [46], and (2) a special case
of the Generalized Conditional Intensity Measure approach (GCIM) [47, 48, 35]. In IDA, a
single ‘seed’ ensemble of ground motions is scaled to multiple intensity levels; here, the Far-
Field record set from FEMA P695 [49], which contains n = 44 records from the PEER Next-
Generation Attenuation database [50], is selected as the seed ensemble. Since some readers
may not be familiar with GCIM, which is a generalization of the Conditional Spectrum
approach (CS) [1], we will first briefly review CS and then identify the generalizations that
led to GCIM.

Fig 2.3 schematically illustrates the steps involved in CS-based ground motion selection at
some particular intensity level, say xo from Fig 2.1. First, the seismic hazard at A(T ∗) ≈ xo is
deaggregated [51] to obtain the percent contribution to the hazard from an earthquake with
magnitude M at distance R; it is summarized by a mean M and a mean R (Fig 2.3a). The
US Geological Survey online hazard tool provides deaggregation for A(T ∗) > xo [52], thus
requiring an additional step to convert the results to obtain deaggregation for A(T ∗) ≈ xo
[36].

Next, the probability distribution of response spectrum, for a given earthquake scenario
with mean M at mean R, is determined (Fig 2.3b). For a given vibration period, T , the
probability distribution is modeled with a lognormal distribution and its two parameters are
obtained from a selected GMPM. The mean values of M and R from deaggregation (Fig 2.3a)
are used as inputs to this GMPM; other inputs (e.g., style of faulting, dip, etc.) are inferred
[25]. For example, a GMPM provides the median and one-sigma response spectra, which
are shown in Fig 2.3b as solid and chain lines, respectively. In practice, the distribution of
response spectrum is determined for a specific range of vibration periods, which are denoted
as TIM in Fig 2.3b; typically, T ∗ is equal to T1, and TIM consists of 50 logarithmically
spaced periods between 0.2T1 to 2T1 [25].

For a given rupture scenario, the collection of spectral acceleration values at vibration
periods TIM is viewed as a random vector. Due to lognormality, the logarithm of the response
spectrum follows a multivariate normal distribution [53]. In order to specify the covariance
matrix for this distribution, the correlations between spectral ordinates at different vibration
periods are needed and are available in the literature [54, 55]. An example of this multivariate
normal distribution is schematically shown in Fig 2.3b. When A(T ∗) is conditioned to
be equal to xo, the logarithm of the response spectrum still follows a multivariate normal
distribution but with different parameters [1]; this is illustrated in Fig 2.3c.

Suppose n records are desired to estimate Pr(EDP > z | A(T ∗) = xo). To select these
records, all candidate motions are first scaled so that A(T ∗) = xo. Then, n response spectra
are randomly generated (Fig 2.3d) from the multivariate normal distribution in Fig 2.3c.
For each simulated spectrum, a record whose scaled response spectrum most closely matches
the simulated one is selected (Fig 2.3d). Such matching is quantified by the sum-of-squared-
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Figure 2.3: Schematic illustration of the Conditional Spectra approach [1] to ground motion
selection at some particular intensity level, say xo, of IM ≡ A(T ∗): (a) deaggregation
to determine mean M and mean R; (b) definition of TIM and marginal distributions of
A(T ) from a single GMPM for a given earthquake scenario with mean M at mean R; (c)
Conditional Spectrum; (d) ground motion selection based on comparing recorded against
simulated response spectra.

errors metric in CS [1]. Because ground motions are matched to randomly generated response
spectra, the ensemble obtained from a single implementation of CS is not unique.

GCIM generalizes CS in four main aspects. First, GCIM considers IMs in addition to
spectral accelerations for record selection. Consistent with the notation employed in [47],
the complete vector of IMs for selection is denoted as IM, the conditioning scalar IM used
for record scaling is denoted as IMj, and all IMs that are not used for record scaling but
are used for selection are denoted as IMi; that is, IM = {IMj, IMi}. Thus, PGA, PGV, or
significant duration, are all valid options for specifying IMj or any element of IMi. Second,
GCIM offers the option of weighting IMs. Third, a more sophisticated version of the target
spectrum than that shown in Fig 2.3c is derived in GCIM. Instead of the mean M -R, the
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conditional distribution in Fig 2.3c is computed for each and every scenario in Fig 2.3a,
and the percent contributions are used to combine all such distributions [47]; this feature
avoids the need to inflate standard deviations in CS [37]. Fourth, the variability of IMi, for
a given value of IMj, is incorporated into the sum-of-squared-errors metric for the selection
of records.

In the special case of GCIM chosen herein, denoted by GCIM-SA, IM comprises spectral
accelerations with all periods equally weighted (i.e., IM ≡ {A(T ∗), A(TIMi

)}). As a result,
GCIM-SA differs from CS only in (1) the construction of the target spectrum, and (2) the
metric utilized for record selection. For each intensity level, the GCIM-SA target spectrum
and the n corresponding simulated response spectra (Fig 2.3d) are obtained from Bradley’s
GCIM application in OpenSHA [48]; the model by Baker & Jayaram 2008 (BJ08) [55] is used
to determine the correlations between spectral ordinates at different vibration periods. For
each of the n simulated spectra, the record whose response spectrum most closely matches
the simulated one, which is quantified by the generalized metric in GCIM (Eq 10 in [48]), is
selected from the PEER Next-Generation Attenuation database (Fig 2.3d) 5. As in CS, the
selected ensemble obtained from a single implementation of GCIM-SA is not unique.

As an example of the GCIM-SA target spectrum, the one for IMj ≡ A(1s) at 2% prob-
ability of exceedance in 50 years, computed with the CB08 model, is shown in Fig 2.4
as dark solid lines. As illustrated in the figure, it is computed at 11 vibration periods:
TIM = {0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1, 2, 3, 5, 10}. Unlike the target spectrum from CS, the
one from GCIM-SA does not follow a multivariate normal distribution. Hence, the median
(Fig 2.4a) and the interquartile range (Fig 2.4b) are employed to summarize the probability
distribution of response spectrum; the median A(T ) corresponds to a probability of 0.50,
whereas the interquartile range of A(T ) refers to the difference between the values of A(T )
at two probabilities: (1) 0.75 and (2) 0.25.

Fig 2.4 also depicts the GCIM-SA target spectrum computed from three other GMPMs:
(1) BA08, (2) AS08, and (3) CY08. Although each of the four targets corresponds to
the same probability of exceedance, the conditioning value of A(1s) is different, as seen in
Fig 2.4a and in Fig 2.2a. Furthermore, the differences among the four interquartile ranges
are apparent, which is especially noticeable at short vibration periods in Fig 2.4b. Since
the CB08 model was already chosen for determining |∆λ̃IM(xi)| in Eq 2.2 (Fig 2.2a) and
conducting deaggregation (Fig 2.3a), it is also chosen for the construction of the target
spectrum in this case study; hence, GCIM-SA also differs from the “exact CS”, where the
target spectra is determined from multiple GMPMs [57, 58].

Seismic Demand Hazard Curve

Fig 2.5 presents estimates of the SDHC from IDA and from GCIM-SA, for three different
definitions of the conditioning IM. For each scalar IM and each GMSM procedure, the SDHC

5Instead of selecting scaled ground motions, note that ground motions from the PEER database may be
spectrum matched to each of these simulated spectra [56].
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Figure 2.4: Target conditional response spectra from GCIM-SA for IMj ≡ A(1s) at 2%
probability of exceedance in 50 years: (a) median A(T ); (b) interquartile range of A(T ).

estimate was computed from Eq 2.2 (Fig 2.1); in total, NIMj
× 2 = 22 deaggegrations were

conducted and NIMj
× n × 2 × 2 = 1936 RHAs were performed. For the vector-valued IM,

the SDHC estimates are obtained by the approach outlined in [36]. Note that the results
correspond to highly inelastic behavior and are meaningful only at exceedance rates above
around 2×10−5, because the lowest probability of exceedance considered in the discretization
is 0.1% in 50 years. To facilitate interpretation of these curves, the guidelines corresponding
to the design basis earthquake (DBE) and maximum considered earthquake (MCE) levels
are also provided 6.

According to approach 2 at the end of Section 2.3, Fig 2.5 suggests that the IDA estimates
are more accurate 7 than the GCIM-SA estimates. For both GMSM procedures, the SDHC
estimate from A(1s) is noticeably different than that from A(0.75s) at exceedance rates
below the MCE level. However, the difference between these two SDHC estimates, which
correspond to two different definitions of T ∗, is smaller for IDA than for GCIM-SA. Based
on this observation alone, the IDA estimates appear to be more accurate than those from
GCIM-SA.

Approach 1 at the end of Section 2.3 leads to a different conclusion. For each GMSM
procedure, the SDHC estimate from A(1s) is practically equal to that from {A(1s),M}.
Based on this observation alone, both GMSM procedures seem to produce unbiased estimates
of the SDHC. However, the IDA estimate for A(1s) is significantly different than the GCIM-

6The DBE level corresponds to a rate of 2 × 10−3 and a return period of 475 years; the MCE level
corresponds to a rate of 4× 10−4 and a return period of 2475 years.

7Recall that the concepts of ‘accuracy’ and ‘bias’ were defined at the end of Section 2.3.
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Figure 2.5: Estimates of the SDHC from PSDA, for three different conditioning IMs: (a)
IDA; (b) GCIM-SA.

SA estimate for A(1s), contradicting the claim that both SDHC estimates are unbiased.
Since the ground motions from GCIM-SA are scaled much more severely than those

from IDA in Fig 2.5, it is not immediately obvious as to which of the two GMSM procedures
provides more accurate estimates of the SDHC. For example, let us focus on the scale factors
that were employed to compute the SDHCs in Fig 2.5 corresponding to IMj ≡ A(1s). These
scale factors are shown in Fig 2.6, where we observe that at each intensity level, the median
scale factor from GCIM-SA is larger than that from IDA. If one started with the preconceived
notion that small scale factors are desirable, then one would conclude that IDA is the more
preferable procedure. As will be demonstrated later in Section 2.7 however, the results from
GCIM-SA are more accurate than those from IDA despite the fact that larger scale factors
were employed.

In the preceding discussion, only two definitions of the conditioning IM were considered
when implementing each of the two approaches at the end of Section 2.3. This was done
solely to emphasize a subtle point: the practical equality between two SDHCs from different
conditioning IMs does not necessarily indicate that an unbiased SDHC has been obtained. In
practical implementation of these two approaches, many more definitions of the conditioning
IM than those shown in Fig 2.5 are considered before conclusions are drawn. For example,
several significantly different scalar IMs were considered when implementing approach 2
in [35] and in [37]. It is important to note however, that as more definitions of IMj are
considered, more RHAs are necessary in the evaluation because for one definition of IMj

and one GMSM procedure, a total of NIMj
×n RHAs are required to compute the SDHC. To

supplement the two approaches at the end of Section 2.3 when evaluating GMSM procedures
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Figure 2.6: Scale factors employed in PSDA when IMj ≡ A(1s); in each panel, n = 44 scale
factors are shown for each of the NIMj

= 11 intensity levels: (a) IDA; (b) GCIM-SA.

and to quantify bias in any estimate of the SDHC, we propose an alternative approach that
involves the notion of a benchmark SDHC.

2.5 The benchmark seismic demand hazard curve

Instead of choosing definitions for the conditioning IM in order to evaluate the accuracy of
SDHC estimates from GMSM procedures (Fig 2.5), we propose to compare such estimates
against a benchmark SDHC that is developed from unmodified ground motions. The bench-
mark SDHC is determined by accounting for all plausible rupture scenarios near the site, as
is done in PSHA. Comparing the SDHCs in Fig 2.5 against the IMHCs in Fig 2.2, we see that
EDP in PSDA plays the same role as IM in PSHA. Thus, if we replace the IM in Eq 2.6
by the EDP, then the benchmark SDHC may be computed from the following equation:

λ̃EDP (z) =
Nsrc∑
i=1

νi ·

{∑
m

∑
r

P̃r(EDP > z |M = m,R = r) Pr(M = m,R = r)

}
i

(2.7)

where P̃r(EDP > z | M = m,R = r) is determined from unmodified ground motions by a
process similar to the development of a GMPM in PSHA.
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The elements of computing a benchmark SDHC, for a given structure at a given site, are
schematically illustrated in Fig 2.7. The specification of an activity rate, a PDF for magni-
tude (Fig 2.7b), and a PDF for distance (Fig 2.7c) for each of the Nsrc earthquake sources
(Fig 2.7a), is identical to that in the PSHA for the site. For the case study described earlier,
the benchmark SDHC is computed with the same earthquake rupture forecast introduced in
Section 2.4.
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Figure 2.7: The elements of computing a benchmark SDHC: (a) specification of Nsrc earth-
quake sources and corresponding activity rates, νi; for the ith source, a (b) PDF for mag-
nitude, fM(m); (c) PDF for distance given magnitude, fR|M(r | mo); and (d) probability
distribution of demand for a given earthquake scenario, Pr(EDP > z | M = mo, R = ro),
are shown; (e) benchmark SDHCs from various prediction models.

Like PSHA, a prediction model is needed to estimate the probability of EDP exceeding
level z for a given rupture scenario (Fig 2.7d). For example, Heo et al developed such a
prediction model for the maximum inter-story drift of a 4- and 12-story building by (1)
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performing 200 nonlinear RHAs of each building, (2) exploring many different models to
predict each EDP as a function of IMs, and (3) choosing the optimal model on the basis of
regression diagnostics; to predict an EDP for a given rupture scenario, the optimal model
is combined with a GMPM [28]. As another example, Hancock et al developed a prediction
model for several EDPs of an 8-story building by (1) performing 1656 nonlinear RHAs of
the building, (2) exploring many different functional forms to predict each EDP directly as
a function of the rupture scenario, and (3) again choosing the final model on the basis of
regression diagnostics [29]. Such an onerous undertaking is generally difficult to justify since
the resulting prediction model is limited to the one structure considered. However, we note
that a prediction model is readily available for two special cases: (1) EDP is the normalized
base shear, A(T )/g of 5% damped linear elastic SDF systems [23], and (2) EDP is the peak
deformation, um, of 5% damped bilinear SDF systems with 5% post-yield hardening [59].

The distribution of um for a given rupture scenario is obtained herein from the Tothong
& Cornell 2006 (TC06) model [59]. However, the TC06 model requires the peak deformation
of the corresponding linear system, uo, as an input. Because uo is not known a priori for a
given rupture scenario [59], the TC06 model must be combined with a GMPM to determine
the desired distribution of um. Consequently, different GMPMs lead to different benchmark
SDHCs, which is schematically shown in Fig 2.7e. Which benchmark SDHC should one
choose? This question is answered in the next section.

2.6 Proposed framework to evaluate GMSM

procedures in PSDA

The proposed framework is schematically presented in Fig 3.1. We propose to compare
estimates of the SDHC from GMSM procedures, λ̂EDP (z) from Eq 2.2, against a benchmark

SDHC, λ̃EDP (z) from Eq 2.7, under a single set of ground motion information for the site.
This single set includes an earthquake rupture forecast, a database of many plausible records,
and prediction models derived from these records (i.e., a single GMPM for one IM, a single
GMPM for another IM, a single model for the correlation among two IMs, etc.). It is

important that the same ground motion information be chosen when computing λ̃IM(x) and

λ̃EDP (z), because the purpose of the comparison between λ̂EDP (z) from Eq 2.2 and λ̃EDP (z)
from Eq 2.7 is to isolate the effects of a particular GMSM procedure on the resulting SDHC
estimate, which is emphasized by the hat symbols in Eq 2.2.

As shown in Fig 3.1, the proposed framework does not compare λ̂EDP (z) against the
SDHC from Eq 2.1, λEDP (z), because the latter cannot be calculated for realistic problems,
which is why the PEER GMSM working group refers to their benchmark as a “Point-Of-
Comparison”, or a “High-End-Prediction” [26]. However, we note that this inability to
calculate λEDP (z) is just an example of epistemic uncertainty, because it arises from the
fact that our data and knowledge are always incomplete. For example, Pr(IM > x | M =
m,R = r) in Eq 2.5 is not known with absolute certainty since it is estimated with a
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A single set of ground
motion information:

1. An earthquake rupture forecast

2. A database of many plausible
    ground motions

3. A prediction model for:
 a.
 b. Correlation between IMs
 c.

Pr(IM > x | M = m,R = r)

Pr(EDP > z | M =m,R = r)

Benchmark SDHC
(Eq 7),                 λ̃EDP (z)

SDHC from first GMSM
procedure (Eq 2),               λ̂EDP (z)

SDHC from last GMSM
procedure (Eq 2),               λ̂EDP (z)

VS

VS

VS

Figure 2.8: Schematic illustration of the proposed framework for evaluating GMSM proce-
dures in their ability to accurately estimate the SDHC.

limited collection of ground motions and an assumed functional form. Consequently, several
GMPMs have been developed to estimate this term, leading to multiple IMHCs in Fig 2.2 and
multiple target spectra in Fig 2.4. Another example of epistemic uncertainty is portrayed
in Fig 2.7e, where different EDP prediction models lead to different SDHCs. With these
variety of models, it might seem difficult to claim a single model as the benchmark.

We overcome this apparent difficulty by recognizing that the purpose of comparing
λ̂EDP (z) against a benchmark is to establish the causal relationship between a particular
GMSM procedure and the potential bias in its resulting estimate of the SDHC. Therefore,
we propose that any EDP prediction model may be chosen, as long as all variables other than
the GMSM procedure are controlled as much as possible. For example, any GMPM may
be chosen to obtain the final EDP prediction model (see e.g., [59, 28]) when computing the

benchmark SDHC (Eq 2.7), as long as λ̃IM(x) in Eq 2.2 is given by the IMHC resulting from
the same GMPM. As another example, if a particular functional form was chosen to develop
the prediction model for an EDP, then the same functional form should be employed to pre-
dict the IM as a function of a rupture scenario (e.g., [29]). Unlike the Point-Of-Comparison
in [26], we recommend that the EDP prediction model be developed from unmodified ground
motions because otherwise, it is impossible to establish the causal relationship between the
modification of ground motions and the potential bias in its resulting SDHC; for some struc-
tures however, this recommendation will result in a small number of inelastic responses (see
end of Section 2.8).



CHAPTER 2. A FRAMEWORK FOR THE EVALUATION OF GROUND MOTION
SELECTION AND MODIFICATION PROCEDURES 21

2.7 Bias, hazard consistency, and IM sufficiency

The results from implementing the proposed framework (Fig 3.1), using the CB08 model,

are presented in Fig 2.9. The benchmark SDHC is obtained from Eq 2.7 with P̃r(EDP > z |
M = m,R = r) given by the TC06-CB08 model and the PSDA-based estimates of the SDHC
are repeated from Fig 2.5. Comparing the PSDA-based estimates against the benchmark,
we see that both GMSM procedures, IDA and GCIM-SA, lead to essentially unbiased results
at exceedance rates above the DBE level and biased results at rates below the MCE level.
Furthermore, the curves from GCIM-SA are more accurate than those from IDA, and those
corresponding to T ∗ ≡ 1s are more accurate than those corresponding to T ∗ ≡ 0.75s. The
latter observation suggests that the choice of the conditioning period is important in PSDA,
which confirms the conclusion by Lin et al [37]. We also observe that the bias increases
with decreasing exceedance rates; using the GCIM-SA curve corresponding to T ∗ ≡ 1s as
an example, the estimated demand differs from the benchmark by 1% at the DBE level,
and by 12% at the MCE level. Without a benchmark, it would be impossible to make such
statements with regard to the accuracy of any SDHC estimate from a GMSM procedure.
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Figure 2.9: Comparison of various estimates of the SDHC from PSDA against the benchmark
SDHC: (a) IDA; (b) GCIM-SA.

The IDA and GCIM-SA estimates of the SDHC, corresponding to A(1s) in Fig 2.9, are
compared directly against each other and against the benchmark SDHC in Fig 2.10a. This
direct comparison confirms that the results from both procedures are unbiased above the
DBE level; at rates below this level, the GCIM-SA estimate is more accurate than that
from IDA. Such a comparison between the two GMSM procedures does not require that
the CB08 model be chosen as the GMPM for spectral acceleration at various vibration
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periods. As previously mentioned in Section 2.6, any single GMPM may be chosen as long
as it is utilized in all estimates of the SDHC. The comparison in Fig 2.10a is repeated for
three other GMPMs in Fig 2.10b-d, implying that a total of NIMj

× n × 2 × 4 = 3872
RHAs were performed. As expected from earlier discussion, the benchmark SDHC changes
for each GMPM and the SDHC estimate from each GMSM procedure also changes with
GMPMs. However, the SDHC estimate from GCIM-SA remains consistently more accurate
than that from IDA below the DBE level. Fig 2.10 also shows that the GCIM-SA estimate is
essentially unbiased for AS08 and CY08 but is somewhat biased for the other two GMPMs.
The discrepancy between the benchmark SDHC and the GCIM-SA estimate varies for each
GMPM because the GCIM-SA estimate, for each of the four separate implementations, is
not unique (Section 2.4). For example, when another estimate of the SDHC from GCIM-SA
is computed using the AS08 model, a different selection of ground motions (Fig 2.3d) and
hence a different SDHC estimate would be obtained; this new SDHC would not be equal to
the benchmark SDHC determined by the AS08 model, unlike the GCIM-SA curve shown in
Fig 2.10c.

Why are the estimates from GCIM-SA more accurate than those from IDA even though
larger scale factors were employed in GCIM-SA (Fig 2.6)? We can answer this question by
introducing the concept of “hazard consistency”. Originally defined by Lin et al [37], an
ensemble 8 of ground motions is hazard consistent for some IM, if the estimated IMHC from
the ensemble, λ̂IM(y), is practically equal to the IMHC determined by PSHA, λ̃IM(x) from
Eq 2.6. Once NIMj

× n records have been selected to determine a SDHC, estimating an
IMHC from such an ensemble is just a matter of (1) replacing EDP with IM in Eqs 2.2
and 2.4, and (2) applying these equations to the selected ground motions. Specifically, the
estimated IMHC from the ensemble is computed from:

λ̂IM(y) =

NIMj∑
k=1

P̂r(IM > y | IMj = xk) · |∆λ̃IMj
(xk)| (2.8)

where IMj was previously defined near the end of Section 2.4 and P̂r(IM > y | IMj = xk)
is determined from:

P̂r(IM > y | IMj = xk) =
1

n

n∑
l=1

I(yl > y) (2.9)

where yl is the value of IM for record l that has been scaled to intensity xk.
For the choice of GMPM ≡ CB08 and IMj ≡ A(1s), Fig 2.11 examines the hazard

consistency of the ground motions selected from IDA and GCIM-SA for IM defined as
spectral acceleration at various vibration periods. The PSHA curves are obtained from
Eq 2.6 with P̃r(IM > x | M = m,R = r) given by the CB08 model. For each GMSM
procedure, the estimated IMHCs are obtained by applying Eqs 3.16 and 2.9 to the 484
motions that were used to construct the corresponding SDHC estimate in Fig 2.10a.

8In the context of hazard consistency, the word ‘ensemble’ refers to all NIMj
×n ground motions utilized

for a single estimate of the SDHC.
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Figure 2.10: Comparison of SDHC estimates from IDA and from GCIM-SA, when IMj ≡
A(1s), against the benchmark SDHC, for four different GMPMs: (a) CB08; (b) BA08; (c)
AS08; and (d) CY08.

In Fig 2.10a, the SDHC estimate from GCIM-SA is more accurate than that from IDA
because the ground motions selected from GCIM-SA are hazard consistent for more IMs
than those selected from IDA. Fig 2.11 demonstrates that the ground motions from GCIM-
SA are hazard consistent for spectral acceleration at nearly all the vibration periods shown
(except for 0.1s and 10s). This is so because records were selected to deliberately match the
distribution of A(T ), for a given value of A(T ∗), at these periods (see Fig 2.4 and Fig 2.3d
in Section 2.4). In contrast, one does not have control over the hazard consistency of the
ground motions from IDA for such IMs. Although (1) the ground motions from GCIM-
SA are hazard consistent for A(T ) between T1 to 3T1 (Fig 2.11c-e), and (2) the GCIM-SA
estimate is more accurate than that from IDA (Fig 2.10a), it is nevertheless biased at rates
below the MCE level.

This bias below the MCE level is due to the fact that the vector-valued IM, defined as
A(T ) at T1, 2T1, and 3T1, is not a ‘sufficient’ IM for EDP ≡ um. An IM, which may be
scalar or vector-valued, is defined to be sufficient for an EDP when, given a fixed value of this
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Figure 2.11: Hazard consistency of the ground motions selected from IMj ≡ A(1s) for
spectral acceleration at: (a) 0.1s; (b) 0.5s; (c) 1s; (d) 2s; (e) 3s; (f) 10s.

IM, the record-to-record variability of the EDP does not depend on any other aspects of the
record [15, 12]. If a vector-valued IM (e.g., A(T ) at T between T1 and 3T1) is indeed sufficient
for um, then the fact that ground motions are hazard consistent for this IM must imply that
the corresponding SDHC estimate is unbiased; as a corollary, if the ground motions are
hazard consistent for a vector-valued IM, then the fact that the corresponding estimate of
the SDHC is biased must imply that the vector-valued IM is insufficient for the EDP of
interest. To motivate this assertion, we next consider two definitions of a scalar IM.

First, let us define IM as EDP [12]. This implies that IM is sufficient for EDP , because
once a fixed value of EDP is given, the variability of EDP does not depend on any other
aspects of the ground motion. If ground motions were selected to be hazard consistent for
this particular definition of the IM, then by definition of hazard consistency, λ̂IM(y) from

Eq 3.16 will be practically equal to λ̃IM(x) from Eq 2.6. This is equivalent to stating that
the SDHC estimate is unbiased, since IM ≡ EDP .

Second, let us define IM as IMj. Since ground motions are scaled to IMj in PSDA
(Fig 2.1b), they are always hazard consistent for this particular definition of the IM. For
example, Fig 2.11c shows that the selected motions from both GMSM procedures are hazard
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consistent for IMj ≡ A(1s); in fact, the estimated IMHCs from both procedures are identical,

because the term P̂r(IM > y | IMj = xk) in Eq 3.16 becomes a step function when
IM ≡ IMj. The fact that the ground motions from both procedures are hazard consistent
for A(1s) implies that the corresponding SDHC estimates are unbiased at exceedance rates
above the DBE level (Fig 2.10a), because (1) A(1s) is a sufficient IM for the peak deformation
of the corresponding linear system, uo, and (2) EDP ≡ um is approximately equal to uo
at rates above the DBE level. On the other hand, the SDHC estimates are biased at rates
below the MCE level, even though the selected motions from both procedures are hazard
consistent for A(1s), because A(1s) alone is not a sufficient IM for EDP ≡ um.

Since A(1s) is not a sufficient IM for um, then um must depend on other aspects of the
ground motion. Fig 2.12 examines the hazard consistency of the same records from Fig 2.11,
for six miscellaneous IMs. Specifically, these IMs include PGA, PGV, acceleration spectrum
intensity (ASI), cumulative absolute velocity (CAV), and two measures of significant dura-
tion: (1) D5−75, and (2) D5−95. The CB08 model was used to develop the PSHA curves
for PGA and PGV, the Bradley 2010 model [60] for ASI, the Campbell & Bozorgnia 2010
model [61] for CAV, and the Bommer et al 2009 model [62] for duration. As in Fig 2.11, the
estimated IMHCs were obtained from Eqs 3.16 and 2.9.

Fig 2.12a-c and Fig 2.12e-f demonstrate that the ground motions from GCIM-SA are
hazard consistent for PGA, PGV, ASI, D5−75, and D5−95. Since the corresponding SDHC
estimate is biased at exceedance rates below the MCE level (Fig 2.10a), we conclude that
the vector-valued IM, defined as a collection of PGA, PGV, ASI, D5−75, and D5−95, must
not be sufficient for um. In other words, the bias in the SDHC estimate is influenced by the
hazard consistency of the ground motions for other IMs. However, such a vector-valued IM
appears to be less insufficient than A(1s) alone, since the GCIM-SA estimate of the SDHC
is more accurate than that from IDA (Fig 2.10a). In summary, we conclude that severely
scaled ground motions (Fig 2.6) may still lead to an accurate estimate of the SDHC, as long
as they are hazard consistent for an IM that is sufficient.

In general, an IM – scalar or vector-valued – will almost never be truly sufficient for an
EDP that is related to the inelastic response of realistic models of structures. As a result,
even if ground motions are deliberately forced to be hazard consistent for a vector-valued
IM (as in procedures like CS or GCIM), the modification of ground motions in PSDA (e.g.,
Fig 2.1b) will likely lead to some degree of bias in the subsequent SDHC estimates. Without
a benchmark to compare against, such bias cannot be quantified. Fortunately, the framework
and benchmark proposed in this study enable a direct determination of the bias.

2.8 Avoid a potential pitfall

If we want to establish the causal relationship between a particular GMSM procedure and
the potential bias in its resulting estimate of the SDHC, then we must specify the same
GMPM in both the benchmark SDHC and the estimate from the GMSM procedure, which
is illustrated in Fig 3.1. This was done for the results shown in Fig 2.10 since for each of
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Figure 2.12: Hazard consistency of the ground motions selected from IMj ≡ A(1s) for several
miscellaneous IMs: (a) PGA; (b) PGV; (c) ASI; (d) CAV; (e) D5−75; (f) D5−95.

the four cases, the same GMPM was chosen for both the benchmark SDHC and the GMSM-
based estimates. By controlling the GMPM in this manner, the discrepancies between a
PSDA-based estimate of the SDHC and the benchmark SDHC are due primarily to the
GMSM procedure.

If we do not specify a common GMPM for both the benchmark and the GMSM-based esti-
mate, then the resulting observations are misleading. For example, consider Fig 2.13a, where
the GCIM-SA curve in Fig 2.11c is compared against two different PSHA-based IMHCs: (1)
that from Fig 2.11c, and (2) that from a weighted average of the four IMHCs in Fig 2.2a. The
weighted IMHC might be of interest because one might consider it to be a ‘best estimate’
of the target IMHC for comparison (see e.g., the US Geological Survey online hazard tool);
however, it is erroneous to use this curve for examining hazard consistency of the ground
motions from the GCIM-SA procedure that employs the CB08 model (Fig 2.4). Another
example is illustrated in Fig 2.13b, where the GCIM-SA curve in Fig 2.10a is compared
against two benchmark SDHCs: (1) that in Fig 2.10a, and (2) that from a weighted average
of the four benchmark SDHCs in Fig 2.10. It is erroneous to use the weighted benchmark
SDHC for evaluating the accuracy of the SDHC that is determined from the CB08 model. If
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one insists on specifying the weighted SDHC as the benchmark, then (1) the same weights

should be employed in determining λ̃IM(xi) in Eq 2.2, and (2) ground motions should be
selected via the “exact CS” [57] for a fair comparison.
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Figure 2.13: Two examples for illustrating the importance of specifying a common GMPM
when implementing the proposed framework: (a) ‘hazard consistency’ of the ground mo-
tions from GCIM-SA when IM ≡ A(1s); (b) GCIM-SA estimate of the SDHC versus ‘the
benchmark’.

There are two limitations of the proposed framework in this study (Fig 3.1). First, the
framework can only be applied when an EDP prediction model is readily available for the
structure (e.g., bilinear SDF systems in [59], the 4-story building in [28], the 8-story building
in [29], etc.). In general, it is a major computational task to develop an EDP prediction
model for a realistic structure because the number of necessary RHAs is typically large (e.g.,
200 RHAs of a 12-story building were performed in [28]) and the selection of an optimal
functional form requires an iterative approach. Second, the range of applicability of the
proposed framework is limited by the availability of recorded ground motions. As shown
in Fig 3.1, the prediction model for EDP is to be developed from a database of unmodified
ground motions, because the purpose of the comparison between the resulting benchmark
SDHC and an estimate from a GMSM procedure is to reveal potential biases from the
modification of ground motions. However, such a recommendation will result in a small
number of inelastic responses when the number of intense (relative to the strength of the
structure) ground motions in the database is small.
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2.9 Conclusions

This investigation of developing a framework for the evaluation of GMSM procedures has
led to the following conclusions:

1. Meaningful evaluation of GMSM procedures requires clearly stating the objective of the
RHAs of the structure. In this study, four objectives are identified and the evaluation
of GMSM procedures is investigated when the objective of the RHAs is to estimate a
SDHC for a given structure at a given site.

2. Using a simple case study, we highlight an important but subtle limitation of the
existing approaches for evaluating GMSM procedures in PSDA: the practical equality
between two SDHCs from different conditioning IMs does not necessarily indicate that
an unbiased SDHC has been obtained. Consequently, an alternative approach for
evaluating GMSM procedures in PSDA is desirable.

3. To quantify bias in any estimate of the SDHC, we introduce the notion of a benchmark;
the benchmark SDHC is determined by incorporating an EDP prediction model that is
developed from unmodified ground motions into the PSHA calculations. Consequently,
this study is limited by the availability of EDP prediction models and the availability
of recorded ground motions.

4. With the variety of benchmarks in past studies, it might seem difficult to claim a
single choice as the benchmark. We overcome this apparent difficulty by recognizing
that (1) different choices correspond to different instances of epistemic uncertainty,
(2) the purpose of a benchmark is to isolate the effects of GMSM procedures on the
resulting SDHC estimates, and (3) the same ground motion information should be
utilized in obtaining the benchmark SDHC and all estimates of the SDHC from GMSM
procedures.

5. To develop an understanding of why one GMSM procedure may provide more accu-
rate estimates of the SDHC than another, we identify the role of IM sufficiency in the
relationship between (1) bias in the SDHC, and (2) hazard consistency of the corre-
sponding selected ground motions. If the IM, scalar or vector-valued, used for record
selection is sufficient, then ensuring hazard consistency of the selected ground motions
for this IM must imply that the corresponding estimate of the SDHC is unbiased,
even when the ground motions are scaled by large scale factors; as a corollary, if the
ground motions are hazard consistent for a vector-valued IM, then the fact that the
corresponding estimate of the SDHC is observed to be biased must imply that the IM
is not sufficient for the EDP of interest. Therefore, accurate estimates of the SDHC
may be obtained from severely scaled ground motions, as long as the selected motions
are hazard consistent for an IM that is sufficient.
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6. We do not know, a priori, which IM is sufficient for an arbitrary EDP associated with
the inelastic response of a realistic structure; in fact, rarely will an IM that is sufficient
exist. Consequently, the modification of ground motions in PSDA will likely cause
some amount of bias in the SDHC estimate, despite the fact that ground motions may
be hazard consistent for some vector-valued IM. Without a benchmark to compare
against, such bias cannot be quantified.

7. When implementing the proposed framework for the evaluation of GMSM procedures,
one may draw misleading conclusions if the benchmark SDHC and a PSDA-based
estimate are not derived from a common set of ground motion information.
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Chapter 3

Evaluation of GMSM procedures
using synthetic ground motions

3.1 Abstract

This study presents a novel approach for evaluating ground motion selection and modification
(GMSM) procedures in the context of probabilistic seismic demand analysis (PSDA). In
essence, synthetic ground motions are employed to derive the benchmark seismic demand
hazard curve (SDHC), for any structure and response quantity of interest, and to establish
the causal relationship between a GMSM procedure and the bias in its resulting estimate of
the SDHC. An example is presented to illustrate how GMSM procedures may be evaluated
using synthetic motions. To demonstrate the robustness of the proposed approach, two
significantly different stochastic models for simulating ground motions are considered. By
quantifying the bias in any estimate of the SDHC, the proposed approach enables the analyst
to rank GMSM procedures in their ability to accurately estimate the SDHC, examine the
sufficiency of intensity measures (IMs) employed in ground motion selection, and assess the
significance of the conditioning IM in PSDA.

3.2 Introduction

Ground motions 1 required to conduct nonlinear response history analysis (RHA) of struc-
tures may either be recorded or synthetic; recorded ground motions are obtained from
strong motion instruments whereas synthetic ground motions are simulated from models
[63]. Such models may be purely physics-based, purely stochastic, or a combination of the
two. Recorded ground motions are usually modified because intense records, typically of
interest in earthquake engineering, are scarce.

1In this paper, “ground motion” refers to ground acceleration as a function of time (i.e., an accelerogram).
Although the same term also refers occasionally to an intensity measure (as in “ground motion prediction
models”), its meaning should be clear from the context.
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Many ground motion selection and modification (GMSM) procedures have been devel-
oped. For example, several records may be selected on the basis of magnitude and distance
[15, 5], or spectral shape [9, 25]. Selected records are sometimes amplitude scaled [15, 36] and
other times adjusted with wavelets such that the response spectrum of the modified record
is compatible with a target spectrum (see e.g., [29]). A review of many GMSM procedures
may be found in Appendix A of [26] and in [27]. How should one choose among the variety
of GMSM procedures available? This question will be answered in this paper.

Among the variety of contexts where RHAs are conducted [64], we choose probabilistic
seismic demand analysis (PSDA) [15], which is also known as a risk-based assessment [31].
For a given structure at a given site, a PSDA couples probabilistic seismic hazard analysis
(PSHA) of the site with RHA of the structure in order to determine the seismic demand haz-
ard curve (SDHC) of an engineering demand parameter (EDP). The exact SDHC, λEDP (z),
is governed by

λEDP (z) =

∫
Pr(EDP > z | IM∗ = x) · |dλIM∗(x)| (3.1)

where IM∗ denotes the conditioning intensity measure (IM), λIM∗(x) denotes its correspond-
ing exact hazard curve, and Pr(EDP > z | IM∗ = x) denotes the exact complementary
cumulative distribution function (CCDF) of EDP when the intensity level is equal to x 2.
In practical application, λEDP (z) is estimated from

λ̂EDP (z) =

NIM∗∑
i=1

P̂r(EDP > z | IM∗ = xi) · |∆λ̃IM∗(xi)| (3.2)

where λ̃IM∗(xi) denotes the intensity measure hazard curve (IMHC) that is computed from a
particular ground motion prediction model (GMPM) in PSHA, NIM∗ denotes the number of

intensity levels chosen to approximate the integral in Eq 3.1, and P̂r(EDP > z | IM∗ = xi)
denotes the CCDF of EDP that is determined by performing RHAs of the structure for an
ensemble of ground motions from a GMSM procedure. To include the possibility of structural
collapse, P̂r(EDP > z | IM∗ = xi) in Eq 3.2 may be expanded to obtain

P̂r(EDP > z | IM∗ = xi) = P̂r(EDP > z | NC, IM∗ = xi) [1− p̂C(xi)] + p̂C(xi) (3.3)

where NC denotes the event corresponding to “No Collapse” and p̂C(·) refers to the fragility
function that is determined from multiple ensembles of ground motions that have been
scaled to different intensity levels [65]. At each intensity level xi, an ensemble of ground
motions is obtained from a GMSM procedure (e.g., Incremental Dynamic Analysis (IDA)
[40], Conditional Spectrum [1], etc.). A SDHC estimate from Eq 3.2, corresponding to
a particular GMSM procedure, is defined to be unbiased when it is essentially equal to
λEDP (z); it is defined to be biased when it differs significantly from λEDP (z).

It is currently difficult to definitively evaluate the accuracy of any estimate of the SDHC
because the exact SDHC, λEDP (z), is unknown. To circumvent this limitation, the accuracy

2In this study, an asterisk is included to the symbol IM when denoting a conditioning intensity measure.
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of a SDHC estimate is often judged by comparing it against several other estimates of the
SDHC, each determined from the same GMSM procedure but selecting different definitions
of the conditioning IM in Eq 3.2 [35, 37]. With enough definitions of the conditioning IM,
close agreement between the corresponding SDHCs suggests that the associated GMSM
procedure provides unbiased estimates of the SDHC. However, the SDHCs from different
definitions of the conditioning IM are almost always different from each other and without
a “benchmark” for comparison, it is difficult to judge the accuracy of any SDHC estimate.
Alternatively, the potential bias may be approximated using the Generalized Conditional
Intensity Measure approach [47]; however, the quality of such approximations is also difficult
to ascertain for lack of a benchmark. To supplement the conclusions from the previous
approaches, SDHC estimates were compared against a benchmark SDHC that is computed
from a prediction model for the EDP [64]. With this approach, the bias of any SDHC
estimate may be quantified; however, it is limited by the availability of prediction models
for the EDP and structure of interest and such prediction models are in turn limited by the
availability of recorded ground motions.

In this paper, we establish the causal relationship between a GMSM procedure and the
bias in its resulting SDHC estimate by using a large database of synthetic ground motions to
determine the “benchmark” SDHC and to control as many variables as possible. By compar-
ing Eq 3.2 against Eq 3.1, three major sources of bias may be identified: (1) approximation
of the integral in Eq 3.1 with a summation in Eq 3.2, (2) approximation of λIM∗(x) with

λ̃IM∗(x), and (3) approximation of Pr(EDP > z | IM∗ = x) with P̂r(EDP > z | IM∗ = x),
which is obtained from RHAs of the structure for an ensemble of ground motions determined
by a GMSM procedure. The first source can be essentially eliminated if NIM∗ is adequately
large. The second source can be essentially eliminated with the aid of synthetic ground
motions (Section 3.6). With these two contributions eliminated, potential biases from a
particular GMSM procedure can be identified (third source). This approach with synthetic
ground motions is developed in the next section.

3.3 Proposed approach to evaluate GMSM

procedures

The proposed approach is schematically illustrated in Fig 3.1 3. The SDHC estimate from
each GMSM procedure, λ̂EDP (z), is compared against the benchmark SDHC, λEDP (z), under
a controlled setting; the benchmark SDHC is computed from a large database of synthetic
ground motions and each GMSM-based SDHC is computed from a subset of this database.
It is important to derive all SDHCs from a common set of ground motion information (i.e.,
earthquake rupture forecast, GMPMs, etc.) because the purpose of each comparison in
Fig 3.1 is to isolate the effect of the GMSM procedure on its resulting SDHC estimate.

3Unlike the approach in [64], the approach herein employs synthetic ground motions and as a result, the
benchmark SDHC and prediction models significantly differ from those described in [64].
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A single set of ground
motion information:

1. An earthquake rupture forecast
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3. A prediction model for:
 a.
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(Eqs 11, 9, 12),                 λEDP(z)
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SDHC from last GMSM
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Figure 3.1: Schematic illustration of the framework for evaluating GMSM procedures using
synthetic ground motions.

To develop this common set of ground motion information for a given site, an earthquake
rupture forecast and a database of ground motions are needed. Each of the Nsrc earthquake
sources is characterized by an activity rate, ν, and a probability density function (PDF)
for earthquake magnitude and distance, fM,R(m, r). Next, a model for simulating synthetic
ground motions is chosen for the given site; although only two stochastic models are illus-
trated herein – Rezaeian-Der Kiureghian [66] and Yamamoto-Baker [67] – other well-vetted
models (e.g., physics-based, hybrid, etc.) may be considered. A large number of intense syn-
thetic ground motions is then simulated from the chosen model, for the specified earthquake
rupture forecast (Section 3.4).

This large database of intense ground motions enables computation of the exact hazard
curves, λIM∗(x) and λEDP (z) in Eq 3.1, which are unique for a given ground motion simula-
tion model (Section 3.5); however, the number of synthetic ground motions in such databases
is nevertheless finite. Furthermore, different ground motion simulation models lead to differ-
ent λIM∗(x) and λEDP (z). For this reason, the hazard curves that correspond to a particular
database of synthetic ground motions are referred to as the benchmark (as opposed to “ex-
act”) hazard curves. Note that such a benchmark could not have been determined from
recorded ground motions for lack of an adequate number of intense records.

Several contemporary GMSM procedures (e.g., [9], [1], [47], etc.) require GMPMs to
select ground motions. Therefore, we will develop new GMPMs from the previously simulated
database of ground motions, as shown in the left part of Fig 3.1. These GMPMs may then
be used to construct IMHCs, λ̃IM(x), or perform deaggregation [32]. Since our objective is
to isolate the effect of a GMSM procedure on the resulting SDHC estimate, it is mandatory
that the GMPM-based IMHC, λ̃IM∗(x) in Eq 3.2, be essentially equal to the benchmark
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IMHC, λIM∗(x) in Eq 3.1. For this reason, the GMPMs developed in this paper are referred
to as benchmark-consistent GMPMs (Section 3.6).

For each GMSM procedure of interest, a corresponding SDHC estimate is determined
from the ground motion information depicted in the left part of Fig 3.1 (Section 3.7). Specif-
ically, all GMSM procedures select and modify a subset of the previously simulated database
of ground motions. If prediction models are needed as input to the GMSM procedure, then
the benchmark-consistent prediction models that are developed in Section 3.6 are employed.
For each GMSM procedure, the corresponding estimate of the SDHC is obtained from Eq 3.2
and compared against the benchmark SDHC, λEDP (z). Since (1) λEDP (z) may now be de-

termined from synthetic ground motions (Section 3.5), and (2) λ̃IM∗(x) is essentially equal to

λIM∗(x) (Section 3.6), a comparison of λ̂EDP (z) against λEDP (z) indicates the bias caused by
the corresponding GMSM procedure (Section 3.7). To illustrate this approach for evaluating
GMSM procedures, an example is presented; the details of this example are described next.

3.4 Case study

Site, stochastic models, and databases of synthetic ground
motions

We select the simple site illustrated in Fig 3.2a, which is appropriate for this study 4. The
site is situated on soil with a shear-wave velocity, Vs30, of 400 m/s and a basin depth, Z2.5,
of 1 km. A single strike-slip fault with an activity rate of ν = 0.02 earthquakes per year is
located 10 km away from the site. All earthquakes are assumed to occur at a fixed distance,
R = 10 km; in contrast, the magnitude of each earthquake, M , is random and follows the
PDF that is given by the Youngs & Coppersmith model [68] (Fig 3.2b). This completes the
specification of an earthquake rupture forecast in Fig 3.1.

There are several advantages to selecting a simple site. For the selected site, the general
equation governing any IMHC in PSHA (see e.g., [32]) is greatly simplified:

λIM(x) =
Nsrc∑
i=1

νi ·
{∫ ∫

Pr(IM > x |M = m,R = r)fR|M(r | m)fM(m) dr dm

}
i

= ν ·
{∫

Pr(IM > x |M = m)fM(m) dm

}
(3.4)

where Pr(IM > x |M = m) refers to the CCDF of the IM for a given earthquake magnitude.
This simplification facilitates the computation of benchmark hazard curves (Section 3.5) and
the development of benchmark-consistent GMPMs (Section 3.6). Furthermore, such a simple
site is sufficient to illustrate the approach described in Section 3.3.

4Except for the activity rate, this site is identical to that considered in Section 5.4 of Yamamoto’s Ph.D.
dissertation [67].
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Figure 3.2: Source characterization for case study site: (a) specification of earthquake source;
(b) PDF of magnitude for the strike-slip fault.

Two stochastic models, referred to as Rezaeian [69, 66] and Yamamoto [67, 70], are
employed to simulate synthetic ground motions. Two models are chosen in order to test the
robustness of the proposed approach for evaluating GMSM procedures. Given magnitude,
distance, style-of-faulting, and Vs30 as inputs, Rezaeian’s model simulates a ground motion
by time-modulating a filtered white-noise stochastic process. The resulting ground motion
is fully nonstationary because the parameters of both (1) the time-modulating function and
(2) the filter vary with time. In contrast, Yamamoto’s model simulates a fully nonstationary
ground motion via the Wavelet Packet Transform. Example waveforms from Rezaeian’s
model can be seen in Figs 7-8 of [66]; example waveforms from Yamamoto’s model can be
seen in Figs 4-5 of [70].

For each stochastic model, a database of 104 synthetic ground motions is randomly sim-
ulated. The Youngs & Coppersmith PDF of magnitude in Fig 3.2b, fM(m), indicates that
a wide range of magnitudes is possible for the given site. Therefore, a natural approach
to simulate a database that adequately covers the range of possible magnitudes is to first
generate 104 random values of magnitude from fM(m), and then simulate a ground motion
for each of the 104 magnitudes. However, the number of intense ground motions in such a
database would be small, as suggested by fM(m) in Fig 3.2b. To overcome this limitation,
Yamamoto and Baker proposed to employ the concept of Importance Sampling [67], a stan-
dard procedure in statistics (see e.g., Section 24.3 of [39]). Using the uniform distribution in
Fig 3.2b as the Importance Function, gM(m), 104 values of magnitude are randomly gener-
ated and the corresponding value of Importance Sampling weights, w(m) = fM(m)÷gM(m),
are saved. Corresponding to each of the 104 values of magnitude, a synthetic ground motion
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is randomly simulated from the two stochastic models.

Structural models and engineering demand parameters

To highlight the generality of the proposed approach, two nonlinear SDF systems and two
EDPs are considered. Although SDF systems are chosen to facilitate reproducibility of the
results in this study, any structural model and EDP may be chosen (see end of Section 3.8).
The first SDF structure is a 5% damped bilinear system with a linear vibration period, T1,
of 1 s, a yield displacement of 0.2g× (T1/2π)2, and a post-yield hardening ratio of 5%. The
second SDF structure is a 3.4% damped degrading system with a linear vibration period, T1,
of 1.1 s, a yield displacement of 0.18g× (T1/2π)2, and a post-yield softening ratio of 2%; it is
the first-mode inelastic SDF system of the 4-story building considered in [71]. For each SDF
structure, the SDHCs corresponding to two EDPs are of interest: (1) peak deformation, um,
and (2) peak total acceleration, üto.

The force-deformation relationships for the two selected SDF structures are presented in
Fig 3.3. The relationship for the degrading system is represented by the Modified Ibarra-
Medina-Krawinkler (IMK) model [72] with peak-oriented hysteretic response; the specific
parameters for this model may be found in Tables 4.2 and 4.3 of [71]. The post-yield
hardening portrayed in Fig 3.3a indicates that collapse is impossible for the bilinear system.
In contrast, collapse is possible for the degrading system because the Modified IMK model
captures both stiffness and strength deterioration (Fig 3.3b). Strictly speaking, collapse
occurs when the deformation of the system increases without bounds. Practically however,
collapse is defined herein as the event where the peak deformation exceeds 29 inches (see e.g.,
Section 3.2.2 of [26]), which corresponds to the ultimate rotation capacity that is specified
in the Modified IMK model.

GMSM procedures

To emphasize the flexibility of the proposed approach, two significantly different GMSM pro-
cedures are considered in this study: (1) IDA [40], and (2) a special case of the Generalized
Conditional Intensity Measure approach (GCIM) [47, 48, 35], where only spectral accelera-
tions, A(T ), are considered as IMs for ground motion selection; this special case is denoted
by GCIM-SA. IDA represents a simple and well known technique for estimating SDHCs in
PSDA (see e.g., [49]), whereas GCIM-SA is a more sophisticated GMSM procedure. The
latter permits examination of the premise that spectral shape is a sufficient IM [12] for EDPs
of nonlinear SDF systems.

3.5 Benchmark hazard curves

For a specified ground motion simulation model, a unique set of hazard curves, λIM(x) and
λEDP (z) in Eq 3.1, exist. We will see that these hazard curves may be approximated from a
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Figure 3.3: Force-deformation relationships from cyclic pushover analysis: (a) bilinear; (b)
Modified IMK model with peak-oriented response.

database of synthetic ground motions. The theory for such calculations is presented in this
section.

Intensity measure hazard curve

The exact hazard curve for any IM at the site described in Section 3.4 is governed by Eq 3.4.
In this equation, fM(m) is given by the PDF shown in Fig 3.2b and Pr(IM > x | M = m)
is given by the stochastic model for randomly simulating ground motions. If magnitudes
were randomly generated from fM(m) and used as input to the selected stochastic model,
then λIM(x) may be computed from the usual Monte Carlo estimator (see e.g., Section 4.5
of [73]):

λ
(MC)
IM (x) =

ν

N

N∑
i=1

I(xi > x) (3.5)

where the superscript MC refers to “Monte Carlo”, N is the total number of synthetic ground
motions in a database, xi is the value of IM for the ith ground motion, and I(·) denotes the
indicator function, which is equal to unity when the event inside the parenthesis occurs and
zero otherwise. When N is very large, λ

(MC)
IM (x) is essentially equal to λIM(x).

As mentioned earlier in Section 3.4, each database of synthetic ground motions was
obtained using magnitudes that are randomly generated from the uniform distribution in
Fig 3.2b, gM(m), instead of fM(m). Replacing fM(m) in Eq 3.4 with fM(m)×gM(m)÷gM(m)
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leads to

λIM(x) = ν ·
{∫ [

Pr(IM > x |M = m)
fM(m)

gM(m)

]
gM(m) dm

}
(3.6)

Defining the ratio of fM(m) over gM(m) as the Importance Sampling weight, w(m), the
benchmark IMHC may therefore be computed from

λIM(x) ' ν

N

N∑
i=1

[I(xi > x) · w(mi)] (3.7)

where mi is randomly generated from gM(m) instead of fM(m), and xi now refers to the
value of IM for the corresponding ith ground motion. For example, application of Eq 3.7
to the database of N = 104 synthetic ground motions from Rezaeian’s model leads to the
results shown by thick solid curves in Fig 3.4. As demonstrated in this figure, Eq 3.7 may
be used to compute benchmark IMHCs for a wide variety of IMs.
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Figure 3.4: Benchmark IMHCs determined from 104 ground motions simulated by Rezaeian’s
stochastic model, for several IMs: (a) A(0.2s); (b) A(1s); (c) A(5s); (d) peak ground velocity
(PGV); (e) spectrum intensity (SI); (f) 5-95% significant duration, D5−95.

There is epistemic uncertainty in the benchmark IMHCs because they are developed from
a finite number of ground motions. For example, the value of the benchmark hazard curve
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in Fig 3.4b is zero at intensity levels greater than 4.77g because the largest value of A(1s)
observed in the database is 4.77g. For another database of 104 ground motions simulated
by Rezaeian’s model, the largest observed value of A(1s) will be different and hence the
corresponding value of the benchmark IMHC will be different. To assess the quality of results
achieved by using N = 104, a 90% confidence interval was determined for each IMHC by the
bootstrap procedure [74] with 100 bootstrap samples. With these confidence intervals, we
see in Fig 3.4 that at high exceedance rates (i.e., rates above 10−3 or return periods less than
1000 years), the approximation expressed in Eq 3.7 is nearly perfect. As the exceedance rate
decreases, the quality of the approximation deteriorates, which should be recognized when
interpreting subsequent results.

Seismic demand hazard curve when collapse is impossible

For structural models where collapse is impossible, the steps to develop a benchmark SDHC
for any EDP are nearly identical to that just presented for the benchmark IMHC. By re-
placing IM in Eq 3.4 with EDP , the equation that governs the exact SDHC at this site
becomes

λEDP (z) = ν ·
{∫

Pr(EDP > z |M = m)fM(m) dm

}
(3.8)

By replacing fM(m) in Eq 3.8 with fM(m) × gM(m) ÷ gM(m) and applying the concept
of Importance Sampling as before, the benchmark SDHC for structures where collapse is
impossible may be computed from

λEDP (z | NC) ' ν

N ′

N ′∑
i=1

[I(zi > z) · w(mi)] (3.9)

where NC stands for “No Collapse”, N ′ is the total number of ground motions where collapse
did not occur, and zi is the value of the EDP corresponding to the ith ground motion. Observe
that we can compute the benchmark SDHC from Eq 3.9, without a prediction model for the
EDP [64]. However, depending on the exceedance rates of interest, a large number of RHAs
may be necessary to implement the calculations in Eq 3.9.

With ground motions simulated by Rezaian’s stochastic model, the benchmark SDHCs
for the bilinear system are presented in the top row of Fig 3.5. For each EDP, the thick solid
curve is computed by Eq 3.9 from the N ′ = N = 104 values of the EDP corresponding to
the database of synthetic motions. As in Section 3.5, the 90% confidence intervals for these
benchmark SDHCs are again obtained from the bootstrap procedure with 100 bootstrap
samples.

To facilitate interpretation of these curves, exceedance rates of 2 × 10−3 (return period
of 500 years) and 4 × 10−4 (return period of 2500 years), that correspond roughly to the
design basis earthquake (DBE) and maximum considered earthquake (MCE) levels specified
in [6], are noted in Fig 3.5. At exceedance rates above the MCE level, the 90% confidence
intervals indicate that the approximation in Eq 3.9 is nearly perfect. Although the quality
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Figure 3.5: Benchmark SDHCs determined from 104 ground motions simulated by Rezaeian’s
stochastic model: (a-b) um and üto of bilinear system, respectively; (c-d) um and üto of
degrading system, respectively.

of this approximation deteriorates for decreasing exceedance rates, the thick solid curves are
still referred to as “benchmark” for purposes of revealing potential biases in SDHC estimates
from a GMSM procedure. In passing, we observe that the system responds nonlinearly at
exceedance rates below around 6× 10−3, as indicated by the yield displacement identified in
Fig 3.5a and the sudden change in slope in Fig 3.5b.

Seismic demand hazard curve when collapse is possible

Using the total probability theorem and assuming that the probability of EDP exceeding z
is equal to unity when the structure collapses [36] 5, the term Pr(EDP > z | M = m) in

5If a different assumption is desired (e.g., assuming Pr(PFA > z | C,M = m) = Pr(PGA > z |
C,M = m) instead of Pr(PFA > z | C,M = m) = 1, where PFA and PGA denote, respectively, peak
floor acceleration of a multistory building and peak ground acceleration [37]), then Eqs 3.10-3.11 should be
modified appropriately.
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Eq 3.8 is expanded:

Pr(EDP > z |M = m) = Pr(EDP > z,NC |M = m) + Pr(C |M = m) (3.10)

where NC and C denote events corresponding to “No Collapse” and “Collapse”, respectively.
Substituting Eq 3.10 into Eq 3.8 and rearranging terms leads to

λEDP (z) = λEDP (z | NC)

[
1− λC

ν

]
+ λC (3.11)

where λEDP (z | NC) is the benchmark SDHC given that collapse is impossible, and λC is
the annual rate of collapse.

Computation of the benchmark SDHC for any structural model, with the possibility of
collapse, can be organized in five steps. First, RHA of the structure is performed for all N
ground motions in the database. Second, the N results from RHA are subdivided into EDP
values for the N ′ non-collapsed cases and N − N ′ collapsed cases. Third, λEDP (z | NC) is
determined by applying Eq 3.9 to only the N ′ values of EDP. Fourth, all N RHA results are
employed to compute the annual rate of collapse, λC , from

λC '
ν

N

N∑
i=1

[I(Ci) · w(mi)] (3.12)

where I(Ci) is equal to 1 if collapse is observed for the ith ground motion and equal to
zero otherwise. Fifth, λEDP (z | NC) and λC from the latter two steps are substituted in
Eq 3.11 to obtain the final benchmark SDHC, λEDP (z). With ground motions simulated by
Rezaeian’s stochastic model, the benchmark SDHCs of the degrading system are presented
in the bottom row of Fig 3.5. As the value of the EDP increases, the benchmark SDHC
approaches the annual rate of collapse (Fig 3.5c-d), and the quality of the approximations
in Eqs 3.9 and 3.12 decreases, as indicated by wider confidence intervals.

3.6 Benchmark-consistent prediction models

Prediction models, which provide the probability distribution of an IM for a given rupture
scenario, are needed to select ground motions in contemporary GMSM procedures (e.g.,
[1, 47]). In order to isolate the effect of a GMSM procedure on its resulting SDHC estimate,
prediction models must be consistent with the particular database of synthetic ground mo-
tions (Fig 3.1); otherwise, an additional source of bias would be introduced. For example,

if the GMPM-based IMHC in Eq 3.2, λ̃IM∗(x), is significantly different than the benchmark

IMHC in Eq 3.1, λIM∗(x), then any difference between λ̂EDP (z) in Eq 3.2 and λEDP (z)
in Eq 3.1 cannot be solely attributed to the GMSM procedure under consideration. This
section describes how such benchmark-consistent prediction models are developed.
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Ground motion prediction model

Fig 3.6 illustrates how the median value of IM ≡ A(1s) is estimated for a given magnitude.
For each database of 104 ground motions (Section 3.4), the logarithmic values of A(1s) are
plotted against magnitude. Ordinary least squares (OLS) regression is then performed to
determine the predicted median as a polynomial function of magnitude, which is shown in
solid black. The degree of the polynomial function is chosen such that its corresponding
regression results do not differ appreciably from those corresponding to the next higher de-
gree. Based on this criterion, the functional forms for Rezaeian’s and Yamamoto’s stochastic
models were determined as:

ln IM = b0 + b1M + ε ln IM = c0 + c1M + c2M
2 + ε (3.13)

respectively, where for a given value of magnitude, ε is a zero mean normally distributed
random variable with standard deviation σ; the b’s and c’s are coefficients to be estimated
from regression analysis.
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Figure 3.6: Example of GMPM development using synthetic ground motions: (a) Rezaeian’s
stochastic model; (b) Yamamoto’s stochastic model.

Synthetic ground motions for the simple site (Fig 3.2) makes the development of GMPMs
herein more manageable than that performed in practice with recorded ground motions. For
example, there is no need to apply the random effects model or the two-stage regression
technique, since each synthetic ground motion corresponds to an earthquake with a unique
magnitude. Therefore, the terms associated with seismological parameters other than mag-
nitude (e.g., distance, style-of-faulting, etc.) that appear in practical GMPMs [75] are not
relevant for this particular site (see Section 3.4). Consequently, the development of GMPMs
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reduces to estimating the CCDF of IM for a given magnitude, Pr(IM > x | M = m) in
Eq 3.4, assumed to be lognormal.

Fig 3.6 permits three additional observations about the development of GMPMs from
synthetic ground motions. First, the estimate of the median IM at large magnitudes is
robust because the magnitudes in the ground motion database were randomly generated
from the uniform PDF instead of the Youngs & Coppersmith PDF (Fig 3.2b). Second, the
relationship between IM and M is unaffected by Importance Sampling since it is specified by
the ground motion simulation model. Third, the standard deviation of the IM, σ, depends
on magnitude for Yamamoto’s model because the ±2σconstant band in Fig 3.6b covers fewer
ground motions at large M than at small M ; in contrast, σ is essentially independent of
magnitude in Rezaeian’s model because the ±2σconstant band in Fig 3.6a covers a similar
amount of data at all M . For generality, σ is modeled as a function of magnitude in both
stochastic models.

A natural way to model σ as a function of magnitude is to divide the magnitude domain
into discrete bins and determine a value of σ at each bin. We chose the 12 bins shown in
Fig 3.6. For each magnitude interval, the value of σ may be obtained by applying OLS to
the binned ground motions; such values are denoted by σbinned. At magnitudes beyond the
domain of fM(m) in Fig 3.2b, σ is given by that from the closest magnitude bin.

Once a GMPM is finalized, P̃r(IM > x |M = m) is known and the corresponding IMHC
may be computed from a discrete form of Eq 3.4:

λ̃IM(x) = ν ·

{∑
m

P̃r(IM > x |M = m) Pr(M = m)

}
(3.14)

For example, suppose P̃r(IM > x |M = m) is a lognormal CCDF with the median obtained
from the solid black curve in Fig 3.6b and the standard deviation obtained from σbinned.
Applying Eq 3.14 to this model leads to the dashed curve in Fig 3.7a.

GMPMs based on σbinned may not be benchmark-consistent. For example, the model
for A(1s) mentioned in the preceding paragraph is not benchmark-consistent because its
corresponding IMHC differs from the associated benchmark IMHC at intensity levels greater
than 1g (Fig 3.7a). By comparing Eq 3.14 against Eq 3.4, we see that the discrepancy between

λ̃IM(x) and λIM(x) is due primarily to the discrepancy between P̃r(IM > x | M = m) and
Pr(IM > x |M = m) at small exceedance probabilities (Fig 3.7b). For other IMs and other
ground motion simulation models, this issue will introduce an additional source of bias to
the GMSM-based estimate of the SDHC.

Since we wish to isolate the effects of a GMSM procedure on its resulting SDHC estimate,
λ̃IM∗(x) in Eq 3.2 must agree as closely as possible with λIM∗(x) in Eq 3.1. To achieve this
goal, σ is determined for each magnitude bin such that its resulting lognormal CCDF agrees
most closely with the empirical CCDF at the ‘tails’; this standard deviation is denoted as
σoptimal. An example of the tail region is presented as the shaded area in Fig 3.7b. The
right boundary of this region corresponds to the largest value of the observed IM within
the magnitude bin whereas the left boundary corresponds to the intensity level at which the
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Figure 3.7: Example of enforcing benchmark-consistency on GMPMs developed from ground
motions simulated by Yamamoto’s stochastic model; comparison of: (a) IMHCs; (b) CCDFs
at small probabilities.

IMHC from σbinned begins to differ from the benchmark IMHC (Fig 3.7a) 6; if the latter is
larger than the former (or if there is only one ground motion within this tail region), then
the tail region is undefined and σoptimal is specified as σbinned. To quantify the discrepancy

between P̃r(IM > x |M = m) and Pr(IM > x |M = m) at small exceedance probabilities,
we introduce the following metric:

∆ =
∑
x∈Ω

[
G̃(x, σ)−G(x)

G(x)

]2

(3.15)

where Ω denotes the tail region, G(x) is a shorthand notation for the empirical CCDF, and

G̃(x, σ) is a shorthand notation for the lognormal CCDF corresponding to a trial value of
σ. The value of σ that minimizes ∆ is the desired σoptimal. Determined using σoptimal, the
IMHC for A(1s) agrees closely with the benchmark IMHC, confirming that the correspond-
ing GMPM is benchmark-consistent (Fig 3.7a). Such benchmark-consistent GMPMs were
developed for 21 periods of vibration that are logarithmically spaced between 0.05s and 10s;
for other vibration periods, linear interpolation on the logarithmic scale was employed. This
process of determining σoptimal may also be employed when developing benchmark-consistent
GMPMs for other IMs.

6In this study, the left boundaries of the tail regions for all IMs were determined from visual comparison
of the IMHCs. Alternatively, the left boundary of the tail region for an IM may be determined from its
benchmark IMHC as the intensity level that corresponds to a single user-defined exceedance rate (e.g.,
4× 10−4).
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Correlation between intensity measures

Correlations between IMs are needed to specify the joint distribution of a vector IM (see e.g.,
[47, 1]). Derived subsequently are new correlations that are consistent with the database of
synthetic ground motions.

For a given stochastic model, the correlation between two IMs is determined from the
correlation between the residuals of each IM, defined as the differences between the observed
and predicted values of each synthetic ground motion; e.g., the residuals for A(1s), under
Rezaeian’s model, are the vertical deviations between each circle and the black solid curve
in Fig 3.6a. For both stochastic models, the correlations between spectral accelerations at
vibration periods from 0.05s to 10s are presented in Fig 3.8. The significant differences
between the correlations from the two stochastic models indicate the need for benchmark-
consistent correlations.
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Figure 3.8: Correlations between spectral accelerations at periods from 0.05 to 10 s observed
in 104 ground motions simulated by: (a) Rezaeian’s stochastic model; and (b) Yamamoto’s
stochastic model.

For both stochastic models, the correlation between two IMs appears to be magnitude-
dependent. To examine this magnitude dependence, we used the approach outlined in Ap-
pendix B of [76]. For each IM, the associated 104 residuals are partitioned into the 12
magnitude bins shown in Fig 3.6. A correlation is then computed for each magnitude bin
and compared against the correlation from all bins. From such comparisons, we observed
magnitude dependence for many pairs of IMs. For generality, the correlation between two
IMs is modeled herein as a function of magnitude by providing a correlation value for each
of the 12 magnitude bins.



CHAPTER 3. EVALUATION OF GMSM PROCEDURES USING SYNTHETIC
GROUND MOTIONS 46

3.7 Illustrative evaluation of GMSM procedures

With a large database of synthetic ground motions obtained for the given site (Section 3.4),
benchmark SDHCs determined for the given structures (Section 3.5), and benchmark-consistent
prediction models developed (Section 3.6), we are now ready to illustrate the evaluation of
GMSM procedures in their ability to accurately estimate the SDHC (Fig 3.1). For each of
the two GMSM procedures mentioned in Section 3.4, an estimate of the SDHC is computed
from Eq 3.2. The conditioning IM is defined as spectral acceleration at 1 s and NIM∗ = 12
intensity levels are chosen, which correspond to: 50%, 20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%,
0.1%, 0.05%, 0.02%, and 0.01% probability of exceedance in 50 years. At each intensity
level, a subset of n = 44 synthetic ground motions are selected by the GMSM procedure, as
excitations for RHAs of the structure, and the lognormal distribution is employed to deter-
mine P̂r(EDP > z | IM∗ = xi); in total, NIM∗ × n = 528 RHAs are performed to compute
a single estimate of the SDHC.

In this study, the seed ensemble for IDA is selected in a manner that is inspired by the
approach taken to develop the Far-Field record set in [49]. As described in Appendix A.7
of [49], the Far-Field record set for use in IDA was determined by preferentially selecting
intense ground motions that were likely to induce structural collapse. To mimic this practical
approach, we first filtered the database of 104 synthetic ground motions according to the
following criteria: (1) 6.5 < M < 7.5, (2) peak ground acceleration greater than 0.2g, and
(3) peak ground velocity greater than 15 cm/s. Among the remaining ground motions, the
44 motions with the largest values of peak ground velocity are chosen as the seed ensemble.
Unlike Appendix A.7 of [49], an upper limit for magnitude is provided in the first selection
criterion because records from earthquakes withM > 7.5 are rare whereas over 2000 synthetic
ground motions satisfied the three criteria above.

The selection of ground motions in GCIM-SA is significantly more sophisticated than that
in IDA. In this case, 44 ground motions are re-selected at each of the 12 intensity levels. For
a particular intensity level, deaggregation is performed and the target GCIM-SA spectrum
is constructed using the prediction models developed in Section 3.6. For example, the target
spectrum for the MCE level is presented in Fig 3.9a, which is defined at 11 vibration periods:
TIM = {0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1, 2, 3, 5, 10}. From such a target spectrum, n response
spectra may be simulated by methods presented in [47, 48]; for example, two simulated
spectra are illustrated by markers in Fig 3.9b. For each of the n simulated spectra, the
synthetic ground motion whose response spectrum agrees most closely with the simulated
one is selected (see solid and dashed curves in Fig 3.9b).

RHAs of each system, subjected to the same selection of ground motions from a GMSM
procedure, are performed to compute the corresponding SDHCs. For example, the results
from RHAs of the degrading system due to ground motions selected by both GMSM pro-
cedures are presented in Fig 3.10. At each intensity level, the 44 results are classified
either as non-collapsed or collapsed. The non-collapsed results, which are shown in the
top row of Fig 3.10, are used in conjunction with the lognormal distribution to estimate
P̂r(EDP > z | NC, IM∗ = xi) in Eq 3.3. On the other hand, the fragility function, p̂C(xi)
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Figure 3.9: Illustration of ground motion selection via GCIM-SA for A(1s) at the MCE level
using Rezaeian’s stochastic model: (a) target spectrum; and (b) simulated spectra from the
target spectrum versus selected spectra from the database of synthetic ground motions.

in Eq 3.3, is determined from all 44 results, using the maximum likelihood fitting procedure
described by Baker in [65]. For each GMSM procedure, P̂r(EDP > z | NC, IM∗ = xi) and
p̂C(xi) are combined via Eq 3.3 and the resulting estimate of the SDHC is computed from
Eq 3.2.

The GMSM-based SDHCs for the two EDPs – peak deformation, um, and peak total
acceleration, üto – are presented in Fig 3.11. For a particular EDP, the SDHCs from both
GMSM procedures are essentially identical at exceedance rates above the DBE level but
become increasingly different below the MCE level. Since NIM∗ and λ̃IM∗(xi) in Eq 3.2 are
identical in both GMSM procedures, the two resulting SDHCs differ because the ground
motions selected in the two cases are not the same. Thus the natural question is: which of
the two SDHCs is more accurate and by how much?

To answer this question, we compare both GMSM-based SDHCs against the benchmark
SDHCs from Fig 3.5; these comparisons reveal two important observations. First, the bias
in an estimate of the SDHC depends on the exceedance rate. Using the two EDPs of the
degrading system as an example (Fig 3.11c-d), the SDHCs from both GMSM procedures
are unbiased at exceedance rates above the DBE level; at exceedance rates below the MCE
level however, the SDHC from GCIM-SA remains unbiased whereas that from IDA overes-
timates the demand. Second, the accuracy of a SDHC from a GMSM procedure depends
on the structure of interest. For example, the SDHCs from GCIM-SA are unbiased for the
degrading system (Fig 3.11c-d) but they underestimate the demand for the bilinear system
at exceedance rates below 10−4 (Fig 3.11a-b). These observations may be explained using
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Figure 3.10: RHA results of the degrading system subjected to ground motions selected
from Rezaeian’s database for PSDA: (a-b) non-collapse data from IDA and GCIM-SA, re-
spectively; (c-d) collapse data from IDA and GCIM-SA, respectively.

the concepts of “hazard consistency” and “IM sufficiency” [64], which are introduced next.
We define an ensemble of ground motions to be hazard consistent for some IM if its

resulting estimate of the IMHC, denoted by λ̂IM(x), is essentially equal to the benchmark
IMHC, λIM(x) (Eq 3.7). The former hazard curve is estimated from

λ̂IM(y) =

NIM∗∑
i=1

P̂r(IM > y | IM∗ = xi) · |∆λ̃IM∗(xi)| (3.16)

where P̂r(IM > y | IM∗ = xi) is the empirical CCDF of IM corresponding to all ground
motions scaled to intensity xi; for example, applying Eq 3.16 to the ground motions from
IDA leads to the IMHC estimates shown as dashed curves in Fig 3.12. In previous research,
hazard consistency was defined relative to the IMHC computed from a GMPM in PSHA,
λ̃IM(x) in Eq 3.14, because the benchmark IMHC, λIM(x), could not be obtained from
recorded ground motions [37, 64]. Since the latter may now be determined from synthetic
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Figure 3.11: Comparison of GMSM-based SDHCs against the benchmark SDHC using Reza-
eian’s stochastic model: (a-b) um and üto of bilinear system, respectively; (c-d) um and üto of
degrading system, respectively.

motions, (1) hazard consistency is defined herein relative to the benchmark IMHC, and (2)
the issue of benchmark-consistency arises for the first time (Section 3.6).

Conceptually, hazard consistency is a property of the selected ground motions: it indi-
cates whether or not the ‘intensity’ of a particular ensemble is representative of that assumed
in PSHA (i.e., assumed via GMPMs, stochastic models of ground motions, etc.). For ex-
ample, suppose the intensity is measured by IM∗ ≡ A(1s). The ground motions from both
GMSM procedures are hazard consistent for this IM because each GMSM-based estimate
of the hazard curve agrees closely to the benchmark (Fig 3.12c). This is to be expected
since for each GMSM procedure, all ground motions were deliberately scaled such that the
estimated hazard curve for IM∗, λ̂IM∗(x), is essentially identical to that computed from a

GMPM, λ̃IM∗(x) (see Eq 3.16), and the latter is in turn practically equal to the associated
benchmark, λIM∗(x) (see Section 3.6). However, such scaling distorts other aspects of the
ground motion, potentially leading to hazard inconsistencies with respect to other IMs. For
instance, Fig 3.12e demonstrates that the ground motions from IDA are hazard inconsistent
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Figure 3.12: Hazard consistency of ground motions selected by both GMSM procedures in
PSDA, for spectral accelerations at six periods of vibration: (a) 0.1s; (b) 0.5s; (c) 1s; (d) 2s;
(e) 3s; (f) 10s.

with respect to IM ≡ A(3s) whereas those from GCIM-SA are indeed hazard consistent
for this IM. It is to be expected that ground motions from GCIM-SA are hazard consistent
for spectral accelerations at many vibration periods, because they have been selected to
deliberately match the target spectra (see Fig 3.9). However, they are potentially hazard in-
consistent with respect to IMs that are not included in the selection process (e.g., cumulative
absolute velocity, significant duration, etc.).

An IM, which may be scalar or vector-valued, is defined to be sufficient with respect
to an EDP when, given a fixed value of this IM, the EDP does not depend on any other
aspects of the ground motion [15, 12]. Put differently, a sufficient IM completely controls the
response of the system. For example, the peak response of a linear-elastic MDF structure
is essentially controlled by spectral acceleration at its modal periods of vibration; therefore,
this vector IM is expected to be sufficient with respect to such EDPs.

The concepts of sufficiency and hazard consistency may be used to explain why the bias in
an estimate of the SDHC depends on the exceedance rate. For instance, consider the SDHCs
for the degrading system in Fig 3.11c-d. At exceedance rates above the DBE level, the system
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responds linearly and hence A(1s) is sufficient. Because ground motions from both GMSM
procedures are hazard consistent for this IM (Fig 3.12c), the resulting SDHCs are unbiased
at this range of linear elastic behavior. At exceedance rates below the MCE level however,
the system deforms in the inelastic range and we know from structural dynamics that A(1s)
alone no longer controls the peak deformation. Consequently, the hazard consistency of the
selected ground motions, with respect to IMs other than A(1s), determines the accuracy
of the resulting SDHCs. Because the ground motions from IDA are hazard inconsistent
with respect to spectral accelerations at vibration periods longer than 2 s (Fig 3.12e-f), the
resulting SDHCs overestimate the demand.

The accuracy of a SDHC from a GMSM procedure depends on the structure and EDP
of interest because an IM that is insufficient for one structure or EDP may turn out to
be sufficient for another. For example, consider the ground motions from GCIM-SA that
were deliberately selected to be hazard consistent with respect to the vector IM, comprising
spectral accelerations at vibration periods from 0.05 to 10 s. This vector IM, or spectral
shape, is insufficient for the two EDPs of the bilinear system at exceedance rates below 10−4.
This conclusion may be deduced as follows: if the vector IM is indeed sufficient for the EDP
at exceedance rates below 10−4, then the fact that the ground motions are hazard consistent
with respect to this IM (Fig 3.12) should have resulted in an unbiased estimate of the SDHC
at such exceedance rates [64]; since this is not the case however (Fig 3.11a-b), the IM must
not be sufficient. At such extreme levels of nonlinearity, the EDPs of the bilinear system
are controlled by aspects of the ground motion other than spectral shape; in particular, the
duration of the ground motion seems to affect the system’s peak response because the system
is able to experience many cycles of vibration, as its strength is unlimited. In contrast, the
degrading system would have collapsed for exceedance rates below 10−4. As a result, spectral
shape appears to be sufficient for the degrading system at all exceedance rates of interest
whereas it is only sufficient for the bilinear system at exceedance rates above 10−4.

In general, estimates of the SDHC will be unbiased as long as the corresponding ground
motions are hazard consistent with respect to an IM that is sufficient [64]. However, sufficient
IMs may not exist for EDPs of a complex, realistic structure as its response is sensitive to
many details of the ground motion. Therefore, any modification of ground motions may
result in biased SDHCs for such systems. The approach proposed in Fig 3.1 makes it possible
to quantify potential biases and assess the sufficiency of IMs employed for ground motion
selection.

To further test the proposed approach for evaluating GMSM procedures, it was reim-
plemented for the database of 104 ground motions from Yamamoto’s stochastic model. Us-
ing this new database, new benchmark hazard curves were computed (Section 3.5), new
benchmark-consistent prediction models were developed (Section 3.6), and new GMSM-
based estimates of the SDHC were obtained; in total, this effort required an additional 11056
more RHAs of each structure. The results from utilizing Yamamoto’s stochastic model are
summarized in Fig 3.13.

We expect similar observations regarding bias in the SDHCs resulting from Yamamoto’s
stochastic model because the proposed approach aims to isolate the effects of a GMSM
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Figure 3.13: Comparison of GMSM-based SDHCs against the benchmark SDHC using Ya-
mamoto’s stochastic model: (a-b) um and üto of bilinear system, respectively; (c-d) um and
üto of degrading system, respectively.

procedure on its resulting estimates of the SDHC. This expectation is confirmed in Fig 3.13;
observe that although the benchmark SDHCs in this figure differ from those in Fig 3.11,
the GMSM-based SDHCs are also different between the two figures. The SDHCs from
GCIM-SA again underestimate the demand of the bilinear system at exceedance rates below
10−4; this confirms that the response of the bilinear system is controlled by aspects of the
ground motion other than spectral shape at such extreme levels of nonlinearity. For the
degrading system, the SDHCs from GCIM-SA are again unbiased and those from IDA again
overestimate the demand at exceedance rates below the MCE level. The fact that the SDHCs
from GCIM-SA are unbiased for the degrading system in both stochastic models strongly
suggests that spectral shape is indeed a sufficient IM for this system.

However, we observe a few minor differences between the results from the two stochastic
models. First, both structures yield at different rates of exceedance (e.g., the bilinear system
yields at 6 × 10−3 in Rezaeian’s model but yields at the DBE level in Yamamoto’s model);
this is expected since the benchmark SDHC differs in each stochastic model (Section 3.3).
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Second, the SDHCs from IDA are unbiased for the bilinear system at exceedance rates
between 2 × 10−4 and 5 × 10−5 in Rezaeian’s model (Fig 3.11a-b) but overestimate the
demand at this range of exceedance rates in Yamamoto’s model (Fig 3.13a-b). The latter
difference regarding IDA arises because ground motions from this procedure are hazard
consistent with respect to A(2s) in Rezaeian’s model (Fig 3.12d) but are hazard inconsistent
with respect to A(2s) in Yamamoto’s model (not shown). Aside from such differences, the
overall similarity between the relationships depicted in Figs 3.11 and 3.13 indicates that the
proposed approach for evaluating GMSM procedures is robust.

3.8 Comparison with previous research

In previous research, a GMSM-based estimate of the SDHC was considered unbiased if
different choices of the conditioning IM led to essentially the same estimate [35, 37]. This
approach is illustrated in Fig 3.14 where estimates of the SDHC for the peak deformation
of the degrading system, computed from Eq 3.2 for four choices of the conditioning period,
T ∗, are presented. The fact that the four SDHCs are closer to each other for GCIM-SA than
for IDA suggests that SDHC estimates from GCIM-SA are less biased – or more accurate –
than those from IDA.
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Figure 3.14: Comparison of GMSM-based SDHCs from different definitions of the condi-
tioning IM for EDP ≡ um of the degrading system, using ground motions simulated by
Rezaeian’s stochastic model: (a) IDA; (b) GCIM-SA.

This existing approach has two limitations. First, it is not possible to quantify the bias
in any GMSM-based SDHC for lack of a benchmark. Second, several significantly different
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definitions of the conditioning IM are typically needed to draw definitive conclusions from
the existing approach. For example, if only 1 s and 2 s were considered as definitions for T ∗,
then Fig 3.14 may erroneously suggest that the SDHCs from IDA are less biased than those
from GCIM-SA.

These two limitations are overcome by the approach presented in this work. First, the
bias in any SDHC estimate can be quantified by comparing the estimate against the bench-
mark SDHC in a controlled setting (Fig 3.1). For example, the benchmark SDHC in Fig 3.14
verifies that the SDHCs from GCIM-SA are more accurate than those from IDA. For each
GMSM procedure, the SDHC corresponding to 1 s is most accurate among the four condi-
tioning periods considered; this confirms the conclusion by Lin et al [37] that the choice of
the conditioning period is important for accurate estimation of SDHCs in PSDA. Moreover,
the ability to quantify bias enables the analyst to assess the sufficiency of IMs for an EDP
of interest (Section 3.7). Second, the need to choose several definitions of the conditioning
IM is avoided in the proposed approach since the benchmark SDHC is developed only once,
regardless of the number of GMSM procedures considered (see Sections 3.5 and 3.5). For a
more comprehensive comparison of hazard curves in Figs 3.11-3.14, a bootstrap confidence
interval may also be provided for each GMSM-based hazard curve, which is useful when the
total number of ground motions used for each hazard curve is less than that in this study
(NIM∗ × n = 528).

These two limitations were also overcome in [64], where benchmark SDHCs for the peak
deformation of a bilinear SDF system were developed from prediction models based on
recorded ground motions. However, the benchmark SDHC in the current study may be
computed for any EDP of interest and the bias in a SDHC estimated from a particular GMSM
procedure may be isolated more completely with the aid of synthetic ground motions. Note
that the models for simulating ground motions should be appropriate for the site considered.

Applying the proposed approach for other structures and other sites can be much more
complicated and computationally demanding. For example, computation of the benchmark
SDHC (Section 3.5) for complex, realistic structures would require enormous effort because
a large number of RHAs is necessary. For sites with multiple earthquake sources and earth-
quakes occurring at random locations, the methods for developing a database of ground
motions and benchmark-consistent prediction models will be slightly different than those
presented in this study. When developing the database of ground motions (Section 3.4), the
ground motion simulation models will require randomly generated rupture scenarios from all
earthquake sources as input for simulating ground motions. When developing benchmark-
consistent GMPMs (Section 3.6), the probability distribution of IMs will depend on seismo-
logical parameters (e.g., distance, style-of-faulting, etc.) in addition to magnitude, increasing
the complexity of the functional forms (Eq 3.13).
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3.9 Conclusions

This investigation of employing synthetic ground motions to evaluate GMSM procedures has
led to the following conclusions:

1. A novel approach for evaluating GMSM procedures, in the context of PSDA, is pre-
sented. In essence, synthetic ground motions are employed to: (1) derive the bench-
mark SDHC, for the structure and response quantity of interest, and (2) establish the
causal relationship between a GMSM procedure and the bias in its resulting estimate
of the SDHC. To achieve the latter goal, new benchmark-consistent prediction models
are developed.

2. A case study is presented to illustrate the proposed approach. For two simple systems
at a simple site, two GMSM procedures – IDA and GCIM-SA – are evaluated, leading
to the following observations:

a) The bias in an estimate of the SDHC depends on the exceedance rate. At ex-
ceedance rates above (or greater than) the DBE level, SDHCs from both pro-
cedures are unbiased for both systems and both EDPs; below the MCE level
however, SDHCs from GCIM-SA are generally more accurate than those from
IDA.

b) The accuracy of a SDHC from a GMSM procedure depends on the structure
and EDP of interest. At exceedance rates below the MCE level, SDHCs from
GCIM-SA are unbiased for the degrading system but not for the bilinear system.

c) Spectral shape appears to be sufficient for the degrading system at all exceedance
rates of interest; however, it is insufficient for the bilinear system at exceedance
rates below 10−4. Below this exceedance rate, the response of the bilinear system is
influenced by aspects of the ground motion other than spectral shape because the
system is able to experience many cycles of vibration, as its strength is unlimited;
in contrast, the degrading system would have already collapsed.

d) For the degrading system and for both GMSM procedures, the peak deforma-
tion hazard curve that corresponds to the system’s fundamental period is most
accurate among the four conditioning periods considered.

3. The proposed approach is demonstrated to be robust, as similar conclusions are ob-
tained from two significantly different stochastic models for simulating ground motions.

4. Unlike previous research, the current approach offers the ability to quantify bias in
SDHCs for any structure and EDP of interest, avoids the need to choose several dif-
ferent conditioning IMs, and isolates the bias in the SDHC estimate from a GMSM
procedure more completely with synthetic ground motions.
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5. In general, estimates of the SDHC will be unbiased as long as the corresponding ground
motions are hazard consistent with respect to an IM that is sufficient. However, suf-
ficient IMs may not exist for EDPs of a complex, realistic structure. Therefore, any
modification of ground motions may result in biased SDHCs for such systems. The pro-
posed approach makes it possible to quantify potential biases and assess the sufficiency
of IMs employed for ground motion selection.
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Chapter 4

Importance Sampling based
procedure for estimating seismic
demand hazard curves

4.1 Abstract

This paper develops a procedure to select unscaled ground motions for estimating seismic
demand hazard curves (SDHCs) in performance-based earthquake engineering (PBEE). Cur-
rently, SDHCs are estimated from a probabilistic seismic demand analysis (PSDA), where
several ensembles of ground motions are selected and scaled to a user-specified conditioning
intensity measure (IM). In contrast, the procedure developed herein provides a way to select
a single ensemble of unscaled ground motions for estimating the SDHC. In the context of
unscaled motions, the proposed procedure requires three inputs: (i) database of unscaled
ground motions, (ii) IM, the vector of IMs for selecting ground motions, and (iii) sample
size, n; in the context of scaled motions, two additional inputs are needed: (i) a maximum
acceptable scale factor, SFmax, and (ii) a target fraction of scaled ground motions, γ. Us-
ing a recently developed approach for evaluating ground motion selection and modification
procedures, the proposed procedure is evaluated for a variety of inputs and is demonstrated
to provide accurate estimates of the SDHC when ground motions are unscaled, or when
the vector of IMs chosen to select ground motions is sufficient for the response quantity of
interest.

4.2 Introduction

In performance-based earthquake engineering (PBEE), response history analyses (RHAs)
of structural models are typically performed for three different contexts: (i) intensity-based
assessment, (ii) scenario-based assessment, and (iii) risk-based assessment [3, 31]. This paper
focuses on a risk-based assessment, or a probabilistic seismic demand analysis (PSDA), which
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is the most comprehensive context among the three. The primary output of a PSDA is a
plot of the annual rate of exceedance, λ, as a function of the seismic demand, or engineering
demand parameter (EDP); such a plot is referred to as a seismic demand hazard curve
(SDHC), which is unique for a given structure at a given site [35]. In essence, a SDHC is
computed from a PSDA by selecting several ensembles 1 of ground motions and scaling each
ensemble to a user-specified conditioning intensity measure (IM); a detailed explanation of
this approach may be found elsewhere (e.g., Section 2 of [64], among others).

The objective of performing RHAs in this study is to estimate the SDHCs of a given
structure at a particular site. Once constructed, the SDHC may be used to determine the
seismic demand for a given annual rate of exceedance, or conversely, the exceedance rate for
a given structural capacity. Furthermore, the SDHC may be integrated with fragility and
consequence functions to estimate damage and loss, respectively (Chapter 9 of [77]).

There are three limitations to the existing approach for computing SDHCs from a PSDA.
First, the choice of the conditioning IM may not be obvious for some structures and yet it
determines the influence from other IMs on the EDP [37]. Second, ground motions selected
from a PSDA are almost always amplitude scaled to various levels of the conditioning IM,
potentially causing bias in the resulting demands. Third, several ensembles of scaled ground
motions are typically needed to determine the SDHC for a wide range of exceedance rates.

The choice of the conditioning IM and the effects of amplitude scaling are relatively
unimportant when ground motions are carefully selected to be consistent with the hazard
[35, 37]. Specifically, the SDHCs are unbiased – irrespective of the extent of record scaling –
when the corresponding ground motions are hazard-consistent with respect to IMs that are
sufficient for the EDP in question [64, 78]. An IM, which may be scalar or vector-valued, is
defined to be sufficient with respect to an EDP when the EDP is essentially controlled only
by this IM and no other features of the ground motion [15, 12]. Since sufficient IMs may not
exist for EDPs of a complex, realistic structure, a method that permits selection of unscaled
ground motions is desirable.

The procedure developed herein permits selection of a single ensemble of unscaled ground
motions, without the need to choose a conditioning IM. First, a vector of IMs is selected on
the basis of the structure and EDPs considered. Next, the theoretical probability distribution
of this vector, derived from probabilistic seismic hazard analysis (PSHA), is employed as
the target for ground motion selection. By selecting a single ensemble of unscaled ground
motions to be consistent with this target, hazard consistency at high exceedance rates (or
short return periods) is directly enforced. To enforce hazard consistency of ground motions
at low exceedance rates (or long return periods), the concept of Importance Sampling is
utilized. Finally, a case study is chosen to illustrate the proposed procedure, evaluate its
ability in providing accurate estimates of the SDHC, and develop recommendations for user-
defined inputs to the procedure.

1In this study, an “ensemble” refers to a collection of single horizontal components of ground motion.
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4.3 Theoretical background

Target for ground motion selection

The target is defined by IM, a vector of IMs, and its probability distribution from PSHA
of the particular site; although a scalar IM may also be considered, this paper focuses on a
vector of IMs for generality. Examples of such IMs include peak ground acceleration (PGA),
spectral accelerations at various vibration periods, A(T ), and significant duration, D5−75,
which are explicit measures of the ground motion [48]. The number of IMs in the vector,
denoted by NIM , is referred to as its dimension. The IMs should be specified based on
structural dynamics and on the analyst’s experience with structures that are similar to the
one in question. For example, spectral acceleration at vibration periods between the system’s
fundamental period, T1, and twice the fundamental period, 2T1, might control inter-story
drift ratios [79] whereas PGA might control floor accelerations [37].

The proposed procedure aims to select an ensemble of ground motions that is consistent
with respect to the hazard curves of the IMs specified in the preceding paragraph. An
ensemble of ground motions is said to be hazard-consistent with respect to an IM when its
resulting estimate of the intensity measure hazard curve (IMHC), λ̂IM(x), is practically the
same as 2 the target IMHC, λIM(x) (see Section 4.4). The latter IMHC is given by PSHA
of the site:

λIM(x) =

NRup∑
i=1

ν(rupi) · Pr(IM > x | rupi) (4.1)

where NRup refers to the total number of rupture scenarios considered in the PSHA 3, ν(rupi)
refers to the rate of the ith scenario, and Pr(IM > x | rupi) refers to the complementary
cumulative distribution function (CCDF) of the IM for a given rupture scenario. An estimate
of the IMHC from an ensemble of ground motions will be defined later in this section.

In addition to hazard curves, a PSHA also provides the ingredients to determine the
multivariate probability distribution of a vector of IMs. The marginal CCDF of each IM for
a given earthquake (with unknown magnitude and location) near the site, Pr(IM > x), may
be obtained by normalizing its corresponding hazard curve:

Pr(IM > x) =
λIM(x)

ν0

=

NRup∑
i=1

ν(rupi)

ν0

· Pr(IM > x | rupi) (4.2)

where ν0 =
NRup∑
i=1

ν(rupi) refers to the annual rate of earthquake occurrence; by definition of

ν0, the sum of all normalized activity rates in the first term of the summation in Eq 4.2
is unity. The marginal probability density function (PDF) of each IM, fIM(x), may be
derived from such CCDFs. For example, Fig 4.1a shows an example IMHC from PSHA;

2Due to the presence of epistemic uncertainty, the comparison of hazard curves requires judgment.
3A rupture scenario is defined by the magnitude and location of rupture at the earthquake source.
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its corresponding PDF is depicted in Fig 4.1b. Assuming the distribution of ln(IM) for
a given rupture scenario is multivariate normal [47], where marginal means and standard
deviations are given by ground motion prediction models (e.g., [42], [62]), and correlations
among the IMs are given by correlation models (e.g., [55], [80]), Eq 4.2 indicates that the
target distribution of IM is a finite mixture of multivariate lognormals :

fIM(x) =

NRup∑
i=1

ν(rupi)

ν0

· fIM|Rup(x | rupi) (4.3)
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Figure 4.1: Output from PSHA: (a) example hazard curve; (b) target PDF, fIM(x), that
corresponds to the example hazard curve (an example of an Importance Function, gIM(x),
is also shown). The modes of the two PDFs are denoted by IM∗

f and IM∗
g .

Assuming the NRup rupture scenarios are mutually exclusive and collectively exhaustive,
Eqs 4.2-4.3 may be derived from the total probability theorem [81]. First, we note that all
events associated with Eq 4.2 are conditioned on the fact that an earthquake, with unknown
magnitude and location, has occurred near the site. Second, the normalized activity rate,
ν(rupi)÷ν0, may be interpreted as the probability of the ith rupture occurring near the site,
given occurrence of an earthquake. The probabilities expressed in Eq 4.2 are unconventional
because they are not based on a specified assumption of earthquake occurrence in time (e.g.,
Poisson assumption, etc.).

The simple relationship between an IMHC and its CCDF, as stated by the equality in
the left part of Eq 4.2, permits the estimation of hazard curves using a single ensemble
of unscaled ground motions 4. Fig 4.2 illustrates one such ensemble of n ground motions,

4Eq 4.2 is also applicable to the EDPs of a given structure under the assumption of ergodicity in time,
which is implicitly assumed in many applications of PBEE [82].
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where each data point corresponds to a unique, unscaled ground motion; the values of IM
and EDP from the ensemble are quantified on the horizontal and vertical axes, respectively.
Combining the empirical CCDF of each variable – IM or EDP – with the annual rate of
earthquake occurrence leads to the following estimates of the hazard curves:

λ̂
(MC)
IM (x) =

ν0

n

n∑
i=1

I(xi > x) λ̂
(MC)
EDP (z) =

ν0

n

n∑
i=1

I(zi > z) (4.4)

where the superscript MC denotes “Monte Carlo”, and I(·) refers to the indicator function,
which is equal to unity when the event inside the parenthesis occurs and zero otherwise.
The observed values of IM and EDP from the ith ground motion are denoted respectively
by xi and zi. When an IMHC estimate from, say Eq 4.4a, is practically the same as the
theoretical one in Eq 4.1, the corresponding ground motions are said to be hazard-consistent
with respect to that particular IM; otherwise, the ground motions are hazard-inconsistent.
Similarly, an SDHC estimate from, say Eq 4.4b, is said to be unbiased, or accurate, when it
is essentially equal to the theoretical SDHC from PSHA, denoted by λEDP (z).
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Figure 4.2: Schematic illustration of PDFs related to scattergrams of results from RHAs.

In order to enforce hazard consistency and obtain unbiased SDHCs, ground motions
should be selected such that their empirical joint distribution of IM and EDP is essentially
the same as the theoretical joint distribution, which is depicted in Fig 4.2 by its corresponding
marginal distributions and conditional distribution of EDP | IM . The agreement between
the two joint distributions can be achieved by randomly sampling IM-EDP pairs directly
from the theoretical joint distribution; that is, randomly sampling first from the marginal
distribution of IM and then from the conditional distribution of EDP | IM . In practice,
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this two-step approach is equivalent to (i) randomly generating vectors of IMs from Eq 4.3,
and then (ii) selecting ground motions whose IMs agree well with those generated from
Eq 4.3. However, direct sampling from Eq 4.3 leads to ground motions that are relatively
weak, as suggested by the exceedance rate in Fig 4.1a corresponding to the modal value of
the target PDF in Fig 4.1b. Consequently, such motions will be hazard-consistent at high
exceedance rates (i.e., frequent events) and are useful for computing linear response. In
order to obtain ground motions that are hazard-consistent at small exceedance rates (i.e.,
rare events) and are useful for computing nonlinear response, the concept of Importance
Sampling is introduced next.

Importance Sampling

Importance Sampling is a standard technique from statistics that is commonly used to es-
timate probabilities of rare events, among other applications (e.g., see [73]); in this study,
we employ Importance Sampling to estimate hazard curves at small exceedance rates. First,
the theoretical PDF given by Eq 4.3 is replaced by another PDF that samples the tail region
more frequently; this new PDF is called an Importance Function (IF) and denoted by gIM(·).
An example of an IF is illustrated in Fig 4.1b, where its mode corresponds to an exceedance
rate that is smaller than that corresponding to the mode of the theoretical PDF. Then, the
IF is used to randomly generate vectors of IMs that are ultimately used to estimate hazard
curves. When computing hazard curves from such data, the data are weighted in order to
account for the bias introduced by replacing the target PDF with the IF.

After vectors of IMs have been randomly generated from the IF, there are three deter-
ministic steps in computing hazard curves. First, the vectors are used to identify ground
motions whose corresponding vector-valued IMs agree most closely to those from the IF
(Section 4.4). Second, the selected ground motions are analyzed to determine any feature of
interest, including IMs excluded from IM and EDPs of any structural model (through RHA).
Third, the features from the selected motions are employed to compute hazard curves:

λ̂IM(x) =
ν0

n

n∑
i=1

[I(xi > x) · wi] λ̂EDP (z) =
ν0

n

n∑
i=1

[I(zi > z) · wi] (4.5)

where xi and zi refer, respectively, to the observed values of IM and EDP from the ith
ground motion. The Importance Sampling weight for the ith ground motion, wi, is defined
as the ratio between the values of the two PDFs:

wi = f(xi)÷ g(xi) (4.6)

where xi refers to the computed value of IM from the ith ground motion, f(·) refers to
the PDF given by Eq 4.3, g(·) refers to the IF, and the subscript “IM” has been dropped
henceforth for brevity. Note that implementing Eq 4.6 involves the rates for all rupture
scenarios considered in the PSHA, along with the target probability distribution of IM | Rup
from ground motion prediction models (see Eq 4.3). When the ith ground motion leads to
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collapse, the resulting value of the EDP can be modified before Eq 4.5b is implemented; for
example, the displacement may be set to infinity and the acceleration may be set to PGA
after collapse has been observed [67, 37].

There is epistemic uncertainty in the estimates of hazard curves in Eq 4.5, implying that
two estimates from independent executions of the proposed procedure will not be perfectly
identical. The expected values of the estimates in Eq 4.5 are (see derivations in Sections A.1
and A.2)

E
[
λ̂IM(x)

]
= λIM(x) E

[
λ̂EDP (z)

]
= λEDP (z) (4.7)

where E [·] denotes expectation 5. These expectations imply that the estimates from the pro-
posed procedure with unscaled ground motions are, on average, hazard-consistent and unbi-
ased; however, this might not be the case when ground motions are scaled (see Section 4.7).
The epistemic uncertainty of the estimates in Eq 4.5 is quantified by their variances (see
derivations in Sections A.3 and A.4):

V
[
λ̂IM(x)

]
=

1

n

ν2
0

 ∫
s:s>x

f 2(s)

g(s)
ds

− λ2
IM(x)

 (4.8)

and

V
[
λ̂EDP (z)

]
=

1

n

{
ν2

0

[∫
s

Pr(EDP > z | IM = s) · f
2(s)

g(s)
ds

]
− λ2

EDP (z)

}
(4.9)

where V [·] denotes variance, Pr(EDP > z | IM = s) refers to the CCDF of EDP for a
given test value of IM, and the integrals in both variances are multidimensional. Eqs 4.7-4.9
suggest theoretically that as the number of unscaled ground motions increases, the hazard
curve estimates become increasingly repeatable, converging to the theoretical values.

Eq 4.9 permits several observations regarding the epistemic uncertainty of the SDHC
estimate from the proposed procedure. First, the epistemic uncertainty is influenced by two
user-specified inputs: (i) sample size, n; and (ii) the IF, g(·), which appears only in the
integrand; the rest of the expression is fixed for a given structure at a given site. Second,
both Pr(EDP > z | IM = s) and λEDP (z) are unknown; therefore, one cannot analytically
determine the IF by minimizing the variance in Eq 4.9. Third, the variance increases as the
dimension of IM increases because the integrand is always nonnegative. Fourth, the SDHC
estimate can become meaningless when g(·) = 0. Fifth, Pr(EDP > z | IM = s) is close
to zero when s is small and close to unity when s is large, under two assumptions that are
commonly satisfied in earthquake engineering: (i) large demand levels, z, are of interest, and
(ii) the EDP is positively correlated with IM.

5In the case of IM, the expectation is with respect to g(x), and in the case of EDP , the expectation is
with respect to fEDP |IM(z | x) · g(x), where fEDP |IM(z | x) refers to the theoretical conditional distribution
of EDP | IM.



CHAPTER 4. IMPORTANCE SAMPLING BASED PROCEDURE FOR ESTIMATING
SEISMIC DEMAND HAZARD CURVES 64

The observations from the preceding paragraph provide insight for choosing an Impor-
tance Function. In theory, many different IFs may be chosen but the desirable ones are those
that minimize the first summand of the variance in Eq 4.9. In particular, the dimension of
IM (Section 4.3) should not be too large and hence, IMs for ground motion selection should
be judiciously chosen. To avoid the possibility of infinite variance, the value of the IF must
not be zero within the domain of Eq 4.3. Furthermore, the ratio f 2(·)÷ g(·) should be less
than unity at the tails of the target distribution (see e.g., Fig 4.1b). The theory in this
section facilitates the preceding discussion of desirable IFs in a general, qualitative manner;
specific recommendations, which are derived from practical considerations, are provided in
Section 4.4.

4.4 Ground motion selection procedure

Overview

Fig 4.3 presents a block diagram of the proposed ground motion selection procedure. First,
the analyst specifies inputs to the procedure and then performs PSHA of the given site
to determine the target for ground motion selection (Eq 4.3). Based on the inputs, an
IF is constructed (Section 4.4) and is then employed to select an ensemble of ground mo-
tions (Section 4.4). Next, the Importance Sampling weights, computed from the selected
ground motions, are used to confirm hazard consistency; if hazard consistency is judged to
be unsatisfactory, then new ground motions may be reselected from the proposed procedure
(Section 4.4). Finally, nonlinear RHAs of the structural model, subjected to the selected
ground motions, are performed and the results are combined with the Importance Sampling
weights to compute the SDHC.

There are five inputs to the proposed procedure: (i) a database of prospective ground mo-
tions, (ii) IM, a vector of IMs, (iii) a maximum acceptable scale factor, SFmax, (iv) a target
fraction of scaled ground motions, γ, and (v) a sample size, n. The database of prospective
ground motions should contain unscaled motions that originate from tectonic environments
and soil conditions that are similar to those for the site under consideration [16]. In this pa-
per, the proposed procedure is applied to synthetic ground motions in order to preliminarily
evaluate its ability to estimate SDHCs (Sections 4.5-4.8); a more comprehensive explanation
of the procedure’s application to recorded motions is in preparation by the authors. The
vector of IMs should be chosen based on our understanding of the dynamics of the structure;
to reflect higher-mode, inelastic, and duration-sensitive response, we recommend the vector
IM = {A(Tk), A(T1), A(2T1), D5−75}, where T1 and Tk refer, respectively, to the first and kth
mode of the structure (Section 4.6). One possibility for identifying the kth mode is through
the concept of modal contribution factors [22]. The parameters SFmax and γ should be cho-
sen based on the sufficiency of IM: if IM is deemed sufficient, then large scale factors may
be employed; otherwise, the degree of scaling should be minimized (Section 4.7). Finally,
the parameter n should be chosen based on a tolerable level of epistemic uncertainty in the
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Specify user inputs

Perform PSHA
Construct 
Importance
Function  

Select ground
motions      

Compute Importance
Sampling weights  

Confirm hazard
consistency   

Figure 4.3: Block diagram of proposed ground motion selection procedure.

SDHC estimates (Section 4.8).

Database-driven Importance Function

The purpose of the IF in Fig 4.3 is to select ground motions that are intense while simul-
taneously consistent with the target defined by Eq 4.3. The proposed procedure achieves
this goal in two steps: (i) randomly generate a vector of IMs from the IF, and (ii) select the
ground motion whose corresponding vector of IMs agrees most closely to the one from the
IF. Since ground motions are selected from a user-specified database of prospective motions,
this database plays a major role in fulfilling the purpose of the IF. For example, when the
largest observed value of A(1s) in the database is, say 1g, there would be no point in speci-
fying an IF whose probability density is nonzero at intensities greater than 1g. Because the
database of prospective motions may be effectively enlarged by allowing ground motions to
be scaled, we recommend an IF that is controlled by three inputs: (i) the specified database
of unscaled ground motions, (ii) SFmax, and (iii) γ.

If ground motions are restricted to be unscaled, the proposed IF is a multivariate log-
normal distribution whose parameters are determined from the database of unscaled ground
motions; this IF is denoted by gu(x). To determine the parameters of this multivariate dis-
tribution – µIF and ΣIF – we first consider the corresponding marginal distributions. The
marginal distribution of the jth IM within IM is lognormal; its two parameters – µj and
σj – are computed from the mean and standard deviation of the observed values of ln(IMj)
in the database. An example of this lognormal distribution is shown in Fig 4.4a, where
the fitted CCDF is compared to the empirical CCDF from the database of ground motions.
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Repeating such calculations for all IMs gives the mean vector of gu(x):

µIF = [µ1 µ2 . . . µNIM
] (4.10)

Next, the correlation between the jth and kth IM, denoted by ρj,k, is computed from the
correlation between the observed values of ln(IMj) and ln(IMk) in the database. Combining
such correlations with all σj provides the covariance matrix of gu(x):

ΣIF =


σ2

1 ρ1,2σ1σ2 . . . ρ1,NIM
σ1σNIM

ρ2,1σ2σ1 σ2
2 . . . ρ2,NIM

σ2σNIM

...
...

. . .
...

ρNIM ,1σNIM
σ1 ρNIM ,2σNIM

σ2 . . . σ2
NIM

 (4.11)
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Figure 4.4: Illustration of Importance Functions derived from a database of prospective
ground motions that are all: (a) unscaled, gu(x); or (b) scaled by SFmax, gs(x).

The approach described in the preceding paragraph may also be applied to determine an
IF when ground motions are all scaled by the same scale factor. When the given database
of ground motions is deemed to lack an adequate number of strong ground motions, judged
by comparing gu(·) against f(·) (Fig 4.1b), it is natural to consider scaling the motions
upwards. For example, suppose it is desired to scale all the motions in the database by a
factor of SFmax in order to create a new database of prospective motions. The IMs computed
from scaled ground motions may be different, depending on the type of IM (e.g., spectral
acceleration increases linearly with scale factor whereas many common measures of duration
are unaffected by scaling) [48]. Applying the approach in the preceding paragraph to the
new database of scaled ground motions leads to the IF denoted by gs(x), which is illustrated
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in Fig 4.4b. Observe that gs(x) differs from gu(x) only in its mean vector; the covariance
matrices (and σj) are the same in both cases.

In general, the recommended IF is a two-component mixture of multivariate lognormals:

g(x) = [1− γ] · gu(x) + γ · gs(x) (4.12)

where 0 ≤ γ ≤ 1 may be interpreted as the fraction of scaled ground motions in the ensemble
of n selected motions. An example of this IF is shown by the solid curve in Fig 4.5a; for
comparison, the target PDF (Eq 4.3) and its two individual components – gu(x) and gs(x)
– are also shown. This two-component mixture distribution permits the selection of ground
motions that are scaled by factors between unity and SFmax, where the fraction of scaled
motions is roughly controlled by γ (Fig 4.5b). For instance, when γ = 0, the general two-
component IF reduces to gu(·) whereas when γ = 1, it reduces to gs(·). Note that when
SFmax = 1, the general two-component IF also reduces to gu(·), irrespective of γ.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

IM (log scale)

P
D

F

(a)

f(x)

g
u
(x)

g
s
(x)

g(x),     

γ=0.5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

IM (log scale)

(b)

Reference
PDFs     

g(x),     

γ=0.3

g(x),     

γ=0.7

Figure 4.5: Illustration of the recommended two-component Importance Function, g(x) =
[1− γ] · gu(x) + γ · gs(x): (a) comparison of g(x), with γ = 0.5, against its two individual
components and the target PDF; (b) the effect of γ on g(x).

Selection and scaling of ground motions from randomly generated
intensity measures

The IF is used to randomly generate n vectors of IMs, which are in turn used to select a
corresponding ensemble of n ground motions. Consequently, the ability to randomly generate
a vector of IMs is an important consideration in choosing the IF. When the IF is specified
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as either gu(x) or gs(x), a vector of IMs can be readily generated from the multivariate
lognormal distribution. When the IF is the two-component IF given by Eq 4.12, a vector
of IMs can be obtained in two steps: (i) identify one of the two components by randomly
sampling from the Bernoulli distribution with probability γ, and (ii) randomly generate a
vector of IMs from the component identified.

After a collection of n vectors is randomly generated from the IF, denoted by IMIF ,
a corresponding ensemble of ground motions is selected. For each successive IMIF , the
database of prospective ground motions is searched for the optimal match while ensuring
that no motion is duplicated. The optimal ground motion is defined as the one whose
computed vector of (potentially scaled) IMs, denoted by IMP , agrees most closely with the
current IMIF . The misfit between IMIF and IMP is quantified by ∆ 6:

∆ =

NIM∑
j=1

[
ln(IMIF,j)− ln(IMP,j)

σj

]2

(4.13)

where NIM refers to the dimension of IM (Section 4.3) and σj refers to the standard deviation
of ln(IMj) from the IF (Section 4.4). Thus, for a given IMIF , the selected ground motion
(and corresponding scale factor) is the one whose value of ∆ is the smallest among all
prospective motions. To avoid selection of duplicate motions, the selected motion is removed
from the database before proceeding to the next IMIF .

When scaled ground motions are of interest, the optimal scale factor for each prospective
ground motion must be determined before computing ∆. To determine the optimal scale
factor for a given IMIF , we first note the relationship between the scaled and unscaled values
of the jth IM:

IMP,j = IMU,j × SFαj (4.14)

where IMP,j and IMU,j refer, respectively, to the scaled and unscaled values of the jth IM,
SF refers to a scale factor, and αj denotes how the jth IM changes with record scaling
(e.g., αj = 1 for spectral acceleration, αj = 0 for significant duration, etc.). Substituting
Eq 4.14 into Eq 4.13 shows that, for a given IMIF , ∆ is a quadratic function of the scale
factor. By minimizing ∆ with respect to SF , the optimal scale factor may be derived for
each prospective ground motion:

SFoptimal = exp


NIM∑
j=1

(
αj

σ2
j

)
ln
(
IMIF,j

IMU,j

)
NIM∑
j=1

(
αj

σj

)2

 (4.15)

where IMIF,j refers to the jth IM within the current IMIF under consideration. When
SFoptimal is greater than SFmax (or less than SF−1

max), its value is replaced by SFmax (or
SF−1

max), before ∆ is computed.

6Each IM in the vector may be weighted based on its importance relative to the other IMs; however, this
is omitted herein for the sake of simplicity.
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Estimating hazard curves

The ground motions selected from the proposed procedure should be examined for hazard
consistency with respect to IM before proceeding with RHAs. In other words, the 95%
confidence interval (CI) of an IMHC estimate (Eq 4.5a) should cover the target IMHC
(Eq 4.1). Such CIs may be readily computed by applying the bootstrap procedure [74]
to the selected ground motions, generating a different IMHC estimate from Eq 4.5a per
bootstrap sample. The concept of hazard consistency is illustrated in Fig 4.6. The ground
motions in Fig 4.6a are hazard-consistent with respect to A(1s), at exceedance rates greater
than 10−6, because the 95% bootstrap CI covers the target IMHC in this range. In contrast,
the bootstrap CIs in Fig 4.6b do not cover the target IMHC at exceedance rates less than
10−5 and therefore, the corresponding ground motions are hazard-inconsistent with respect
to PGA in this range of exceedance rates.
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Figure 4.6: The concept of hazard consistency. An example of ground motions that are: (a)
hazard-consistent with respect to A(1s) at exceedance rates greater than 10−6; (b) hazard-
inconsistent with respect to PGA at exceedance rates less than 10−5.

When hazard consistency is judged to be unsatisfactory at a particular range of ex-
ceedance rates, there are two options to explore for improving hazard consistency. First,
ground motions may be re-selected by randomly generating another collection of n vector-
valued IMs from the IF. If the re-selected motions remain hazard-inconsistent, then the next
option is to vary the sample size, n. By decreasing n, the CI of the IMHC estimate widens
and the likelihood of satisfying hazard consistency increases; however, the epistemic uncer-
tainty in the SDHC estimate also increases. By increasing n, the CI of the IMHC estimate
shrinks, converging to the target IMHC (Section 4.3); however, the maximum value of n
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may be limited by the number of prospective motions in the database or by time constraints
associated with performing RHAs.

When the preceding two options are inadequate to satisfy hazard consistency, the next
option to consider is modifying the IF. First, we recommend changing SFmax and γ to
experiment with different IFs (Fig 4.5). With each IF, new ground motions may be selected
and checked for hazard consistency with respect to IM. When changing SFmax and γ is
inadequate, then the database of prospective ground motions can be enlarged (e.g., adding
synthetic ground motions to a database of recorded motions).

There are four steps to estimate SDHCs from an ensemble of hazard-consistent ground
motions. First, RHA of the structural model is performed for all n ground motions. Second,
the results from RHAs are partitioned into collapse and noncollapse cases. Third, the EDPs
corresponding to the collapsed cases are replaced by appropriate values (e.g., drifts may be
replaced by infinity and floor accelerations by PGA). Applying Eq 4.5b to the latter values of
EDP – where the Importance Sampling weights are identical to those for the IMHC estimates
(Eq 4.5a) – leads to the desired estimate of the SDHC.

4.5 An illustrative example

A 4-story reinforced concrete frame is chosen to demonstrate the applicability of the proposed
procedure to realistic buildings. This well-vetted frame has been studied by past researchers
in various contexts (e.g., [67], [26], [83]) and consequently, details regarding its geometry and
material properties may be found in such references. In essence, the frame satisfies the strong
column-weak beam philosophy and is modeled in OpenSEES [84], where the inelasticity is
captured by plastic hinges at the ends of beam-column elements; its four modal periods of
vibration are: T1 = 0.94 sec, T2 = 0.30 sec, T3 = 0.17 sec, T4 = 0.12 sec. The frame is
classified as collapsed when its displacement increases without bounds. We consider two
EDPs: (i) maximum inter-story drift ratio (MIDR), defined as the largest peak inter-story
drift ratio among the four stories, and (ii) maximum floor acceleration (MFA), defined as
the largest peak floor acceleration among the four stories and the ground.

The selected site and earthquake rupture forecast are identical to those shown in Fig 2
of [78]. A single strike-slip fault, with an activity rate of ν0 = ν = 0.02 earthquakes per
year, is located 10 km away from the site. Each earthquake is assumed to occur at a fixed
distance of 10 km but with different magnitudes that are characterized by the Youngs &
Coppersmith PDF shown in Fig 2b of [78]; the database of prospective ground motions is
specified as 104 synthetic motions that are simulated from the stochastic model by Yamamoto
and Baker [70, 67], with input magnitudes from the uniform distribution shown in Fig 2b
of [78]. This example is chosen because benchmark SDHCs may be readily computed from
synthetic ground motions to evaluate the proposed ground motion selection procedure [78].

Assuming in this section that no IM is perfectly sufficient for the response of this complex,
realistic frame, the proposed selection procedure is applied to only unscaled ground motions;
that is, SFmax = 1 and γ = 0. Since the first and fourth mode periods of the 4-story
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frame are T1 = 0.94 sec and T4 = 0.12 sec, respectively, the vector of IMs is specified as
IM = {A(0.1s), A(1s), A(2s), D5−75}; thus, NIM = 4. In order to minimize the effects of
epistemic uncertainty on the accuracy of the SDHC estimate (Section 4.3), n is specified as
1000.

For our example site, the target probability distribution of IM from PSHA (Eq 4.3)
reduces to

fIM(x) =
∑
m

Pr(M = m) · fIM|M(x | m) (4.16)

where the summation is over the number of magnitude bins chosen to discretize the Youngs
& Coppersmith magnitude PDF, Pr(M = m) refers to the probability of an earthquake with
magnitude m occurring, and fIM|M(x | m) denotes the multivariate lognormal distribution
of IM | M whose parameters are given by the benchmark-consistent prediction models.
Since SFmax = 1 in this example, the general two-component IF in Eq 4.12 reduces to gu(x);
its parameters are derived from the 104 unscaled ground motions (Fig 4.4a). With the IF
constructed, a subset of n motions is selected from the specified database (Section 4.4).

Before proceeding with RHAs, the selected motions are checked for hazard consistency
with respect to IM. First, the Importance Sampling weights are determined by applying
Eq 4.6 to all IMs computed from the selected motions, where f(·) is given by Eq 4.16 and
g(·) is given by gu(x) as mentioned in the preceding paragraph. Then, a hazard curve is
estimate for each IM, using Eq 4.5a, and compared against the corresponding benchmark.
In this example, ground motions were re-selected a few times in order to achieve hazard
consistency for a wide range of exceedance rates. This consistency is confirmed in Fig 4.7,
where each benchmark hazard curve falls within the 95% bootstrap CIs, for a wide range of
exceedance rates.

After hazard consistency is confirmed, SDHCs are estimated for both EDPs of the 4-story
frame. Since the selected motions are unscaled in this example, each motion corresponds
to a unique value of the EDP that was already computed when determining the benchmark
SDHC. As a result, selecting ground motions becomes equivalent to selecting a subset of
EDPs from the specified database. The SDHC estimates, obtained by applying Eq 4.5b to
the selected values of EDP, are shown by dashed black curves in Fig 4.8. In order to convey
the epistemic uncertainty of the SDHCs, 95% bootstrap CIs are also shown in this figure,
which were obtained by applying the bootstrap procedure to the selected motions.

Fig 4.8 demonstrates that the SDHC estimates from the proposed procedure, using a
large number of unscaled ground motions, are accurate because the benchmark SDHCs are
approximately covered by the 95% CIs. The agreement between the proposed estimate and
the associated benchmark is excellent for both EDPs, at a wide range of exceedance rates.
Such excellent agreement is likely due to the fact that the selected motions are hazard-
consistent with respect to many different features of the ground motion, even though only
four IMs were chosen to select ground motions. The selected motions in this example are
consistent with the hazard for a wide range of IMs because (i) the motions are unscaled, and
(ii) the chosen IM is strongly correlated with many other IMs. Alternatively, the excellent
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Figure 4.7: Hazard consistency of 1000 unscaled ground motions selected from g(x) = gu(x);
Confidence intervals (CIs) from 100 bootstrap samples of the selected motions.

agreement in the SDHCs may also be due to the fact that the chosen IM is sufficient; this
possibility is investigated in the next two sections of this paper.

4.6 Minimum number of intensity measures to be

considered

The results from the preceding section demonstrate that accurate SDHC estimates may
be obtained from the proposed procedure when a large number of unscaled motions are
selected using four IMs: (i) A(T1), (ii) A(2T1), (iii) A(Tk), and (iv) D5−75. At the same time,
Eq 4.9 suggests that as the dimension of IM decreases, the epistemic uncertainty in the
SDHC estimate also decreases because the integrand within the multidimensional integral
is nonnegative. Consequently, the natural question is: can accurate SDHC estimates be
obtained with fewer than four IMs?

To answer this question, four different choices of IM are considered: (i) “bestIM”, (ii)
“SAonly”, (iii) “T1plus2T1”, and (iv) “T1only”; these denote, respectively, (i) vector com-
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Figure 4.8: SDHC estimates from proposed procedure with n = 1000 unscaled ground
motions selected using IM = {A(0.1s), A(1s), A(2s), D5−75}: (a) MIDR; (b) MFA. CIs from
100 bootstrap samples.

prising A(0.1s), A(1s), A(2s), and D5−75, (ii) vector comprising A(0.1s), A(1s), and A(2s),
(iii) vector comprising A(1s) and A(2s), and (iv) A(1s) alone. To investigate the effects
of IM on the resulting SDHC estimate, other inputs to the procedure are fixed and SDHC
estimates from different choices of IM are compared against the benchmark. The SDHC
estimate for a given choice of IM is obtained by selecting a subset of n = 1000, unscaled mo-
tions from the database of synthetic motions described in Section 4.5. This estimate varies
with each execution of the procedure because each execution produces a different selection
of ground motions from the IF (Section 4.4); thus, it’s desirable to consider the epistemic
uncertainty of the SDHC estimate when comparing results from different choices of IM.
Since ground motions are unscaled, no additional RHAs are required in each execution of
the procedure and therefore, the epistemic uncertainty for a given choice of IM may be
rigorously quantified through many executions of the procedure.

The MIDR hazard curves from different choices of IM are presented in Fig 4.9. For
each choice of IM, 100 SDHCs were obtained from 100 independent executions of the pro-
cedure; these SDHCs are summarized by the mean and 95% CI. This figure shows that the
epistemic uncertainty is similar across the four choices of IM, since the width of CIs are
similar. Comparing the CIs against the benchmark indicates that the SDHC from “bestIM”
is unbiased at all exceedance rates whereas those from the other three choices of IM are
unbiased only at exceedance rates greater than 10−4; this implies that D5−75, or duration,
should not be excluded when estimating MIDR hazard curves, especially near collapse. Note
that the differences between the results from “T1only” and “SAonly” are small because the
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corresponding ground motions are unscaled and any inconsistencies in the hazard with re-
spect to IMs beyond IM are typically less pronounced for unscaled motions than for scaled
motions.
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Figure 4.9: MIDR hazard curves from proposed procedure with four different choices for IM:
(a) “bestIM” ≡ {A(0.1s), A(1s), A(2s), D5−75}; (b) “SAonly” ≡ {A(0.1s), A(1s), A(2s)}; (c)
“T1plus2T1” ≡ {A(1s), A(2s)}; and (d) “T1only” ≡ A(1s). CIs from 100 independent
executions of the proposed procedure with 1000 unscaled motions per execution.

Fig 4.10 shows the MFA hazard curves from different choices of IM. Like the results
for MIDR, the epistemic uncertainty is again similar across the four choices of IM; this
suggests that, as long as ground motions are unscaled, more than four IMs may be specified
in the proposed procedure without significantly increasing the epistemic uncertainty in the
resulting SDHC estimates. Unlike the results for MIDR, the SDHCs from both “bestIM”
and “SAonly” are unbiased at a wide range of exceedance rates, implying that duration may
be excluded when estimating MFA hazard curves. On the other hand, spectral accelerations
at short vibration periods are important for the accurate prediction of MFA, because slight
biases at rates between 5 · 10−4 to 10−2 are observed for choices of IM that exclude A(0.1s);
this conclusion is consistent with the findings from Lin et al [37]. The results from Figs 4.9-
4.10 suggest collectively that, as long as ground motions are unscaled, the sufficiency of IM
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plays a lesser role in determining the accuracy of the SDHC estimate than when ground
motions are scaled.
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Figure 4.10: MFA hazard curves from proposed procedure with four different choices for IM:
(a) “bestIM” ≡ {A(0.1s), A(1s), A(2s), D5−75}; (b) “SAonly” ≡ {A(0.1s), A(1s), A(2s)}; (c)
“T1plus2T1” ≡ {A(1s), A(2s)}; and (d) “T1only” ≡ A(1s). CIs from 100 independent
executions of the proposed procedure with 1000 unscaled motions per execution.

4.7 Maximum scaling of ground motions

In general, scaling distorts ground motions and causes inconsistencies with respect to the
hazard. However, such hazard inconsistencies may be deliberately avoided for some IMs
through sophisticated ground motion selection procedures [37, 35]. For example, by us-
ing the probability distribution of IM from PSHA (Eq 4.3) as the target to select scaled
ground motions, the resulting motions will be, not surprisingly, consistent with the hazard
for this particular vector of IMs. Nevertheless, inconsistencies with respect to features of
the ground motion beyond IM will become increasingly pronounced as the level of record
scaling increases.
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Are hazard inconsistencies with respect to IMs excluded from IM practically significant?
The answer to this question depends strongly on the sufficiency of IM with respect to the
EDP at hand. If IM is insufficient (i.e., the EDP depends appreciably on other features of
the ground motion besides IM), then such inconsistencies are significant, leading to biased
SDHCs. On the other hand, if IM is sufficient (i.e., the EDP depends primarily on IM
only), then by definition, such inconsistencies are immaterial and do not cause bias.

Comparing the complexity of the ground motion time series against the simplicity of
IMs, it seems unlikely for an IM to be simultaneously sufficient with respect to several
EDPs of a realistic structural model [35]. As a result, ground motions selected for RHAs
should, ideally speaking, not be scaled, which can be achieved using the selection procedure
developed herein. When ground motions must be scaled, the vector of IMs for selecting
ground motions should be chosen judiciously. Based on the results presented in Sections 4.5
and 4.6, the vector IM = {A(0.1s), A(1s), A(2s), D5−75}, denoted by “bestIM”, appears to
be sufficient for both EDPs of the 4-story frame; however, how sufficient is this vector and
what degree of scaling can be combined with it?

To answer these questions, n is again fixed as 1000, and four different combinations of
SFmax and γ, which represent increasing levels of scaling (see Fig 4.5), are considered: (i) 5
and 0.5; (ii) 5 and 0.9; (iii) 10 and 0.5; and (iv) 10 and 0.9. For each combination, an esti-
mate of the SDHC is determined and compared against the benchmark. Unlike Section 4.6,
each implementation of the procedure with a different combination of scaling requires addi-
tional RHAs because EDPs corresponding to scaled ground motions have not been computed
previously; in total, 4000 RHAs of the 4-story frame were performed to obtain the results
presented in this section. Since additional RHAs are needed for each implementation of the
procedure, the epistemic uncertainty in the SDHC estimate is approximately quantified by a
bootstrap CI. To make meaningful comparisons among the four cases of scaling, each of the
four ensemble of ground motions was carefully checked for hazard consistency with respect
to IM; this is demonstrated in Fig 4.11, where the CIs of each IMHC estimate have been
omitted for clarity. With hazard consistency satisfied for all four cases of scaling, the degree
of bias in the resulting SDHCs indicates the degree to which “bestIM” is insufficient for this
4-story frame.

The SDHCs from the four combinations of scaling are presented in Figs 4.12-4.13. Taking
into account the epistemic uncertainty depicted in Fig 4.12, the MIDR hazard curve from
SFmax = 5 and γ = 0.5 is least biased and that from SFmax = 10 and γ = 0.9 is most biased,
among the four combinations considered. With the exception of Fig 4.12d at exceedance
rates less than 4 · 10−5, the biases are generally conservative in the sense that for a given
level of exceedance rate, the demand is overestimated. For fixed γ, the bias in the MIDR
hazard curve increases with increasing SFmax. Similarly, for fixed SFmax, the bias in the
MIDR hazard curve increases with increasing γ. In contrast, the MFA hazard curves from
all four combinations are practically unbiased.

Since ground motions are hazard-consistent with respect to IM (Fig 4.11), the bias
observed in Fig 4.12b suggests that “bestIM” is insufficient for MIDR. Relative to MIDR,
“bestIM” appears to be less insufficient with respect to MFA, as suggested by the excellent
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Figure 4.11: Hazard consistency of ground motions, scaled to various degrees, with respect
to IMs employed for ground motion selection: (a) A(0.1s); (b) A(1s); (c) A(2s); and (d)
D5−75.

agreement among the four cases shown in Fig 4.13. This can be explained partially by the fact
that unlike drifts or displacements, accelerations are limited by the strength of the system
and thus, MFA is less sensitive to scaling than MIDR. Considering the epistemic uncertainty
and the extent of scaling, the biases shown in Figs 4.12-4.13 suggest that “bestIM” is still a
useful, practical vector for selecting ground motions with the proposed procedure.

When IM is sufficient with respect to EDP , the conditional probability distribution of
EDP | IM is essentially independent of record scaling; that is, the conditional distribution
from scaled ground motions, f(EDP | IM, scaled), is nearly the same as that from unscaled
motions, f(EDP | IM, unscaled). In contrast, an insufficient IM implies that the two con-
ditional distributions are different, with the difference increasingly significant as the degree
of scaling increases; in this case, the expectation in Eq 4.7b no longer holds, which can be
seen in Fig 4.12. Given the relationship between scaling and bias, ground motions should
not be scaled (i.e., SFmax = 1 or γ = 0) but if scaling is necessary, then some bias in the
SDHC should be anticipated, depending on the sufficiency of the vector-valued IM chosen
to select ground motions. Based on the results shown in Figs 4.12-4.13, the optimal values
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Figure 4.12: MIDR hazard curves from proposed procedure with four different combinations
of SFmax and γ: (a) 5 and 0.5; (b) 5 and 0.9; (c) 10 and 0.5; and (d) 10 and 0.9. CIs from
100 bootstrap samples with “bestIM” and n = 1000 per bootstrap sample.

of SFmax and γ depend on the EDP of interest and on the specified IM; when IM consists
of A(T1), A(2T1), A(Tk), and D5−75, we recommend SFmax ≤ 5 and γ ≤ 0.5.

The lack of sufficiency in “bestIM” with respect to MIDR implies that hazard incon-
sistencies with respect to other features of the ground motion cause bias in MIDR hazard
curves. In Fig 4.14, the ground motions from the four combinations of scaling are examined
for hazard consistency with respect to four IMs that are excluded from “bestIM”: (i) peak
ground acceleration (PGA), (ii) peak ground velocity (PGV), (iii) peak ground displacement
(PGD), and (iv) cumulative absolute velocity (CAV). These IMs are chosen to represent the
frequency content (at short, moderate, and long periods) and duration of the ground motion.
The differences between the four ensembles are most pronounced for PGD; in fact, many
other IMs were also examined and the differences are most pronounced for spectral acceler-
ations at periods longer than 2 sec. Therefore, the MIDR of the 4-story frame appears to be
sensitive to the long period content of the ground motion.

The motions from the four combinations of scaling are similar to each other in that they
are hazard-consistent with respect to PGA, PGV, and CAV (Fig 4.14). This is the case
because such IMs are strongly correlated with “bestIM”: PGA and PGV are correlated with
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Figure 4.13: MFA hazard curves from proposed procedure with four different combinations
of SFmax and γ: (a) 5 and 0.5; (b) 5 and 0.9; (c) 10 and 0.5; and (d) 10 and 0.9. CIs from
100 bootstrap samples with “bestIM” and n = 1000 per bootstrap sample.

spectral accelerations at vibration periods between 0.1 and 2 sec while CAV is correlated
with D5−75. On the other hand, PGD is correlated with spectral accelerations at periods
longer than 2 sec, which were excluded from “bestIM”. At the same time, we know from
Fig 4.10 that the MFA is sensitive to spectral accelerations at short periods. Therefore, the
excellent agreement in Fig 4.13, despite extensive scaling, is likely due to the fact that all
four ensembles are hazard-consistent with respect to spectral accelerations at short periods
of vibration.

The degree of scaling also affects the epistemic uncertainty of the SDHC estimates because
different values of SFmax and γ lead to different IFs (Fig 4.5). For EDP ≡ MIDR, the
widths of the CIs from Figs 4.12a-c are similar to each other and differ with those from
Fig 4.12d. For EDP ≡ MFA however, the widths of the CIs from all four cases shown in
Fig 4.13 are similar to each other. These observations imply that the effect of scaling on the
epistemic uncertainty varies with the type of EDP. From Eq 4.9, we see that the epistemic
uncertainty is affected by two quantities that depend on the EDP and are unknown a-
priori: (i) Pr(EDP > z | IM = s) and (ii) λEDP (z). In order to approximately quantify
the epistemic uncertainty contained in any particular SDHC estimate from the proposed
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Figure 4.14: Hazard consistency of ground motions, scaled to various degrees, with respect
to four miscellaneous IMs: (a) PGA; (b) PGV ; (c) PGD; and (d) CAV .

procedure, we recommend supplying the estimate with a bootstrap CI (e.g., Fig 4.8). In
addition to varying the IF (through SFmax, γ, and the database of prospective motions), the
epistemic uncertainty may also be reduced by increasing the sample size, which is discussed
next.

4.8 Minimum number of selected motions

How many ground motions should be specified for the proposed procedure (Fig 4.3)? In
general, a large sample size is desirable because as the value of n increases, the epistemic
uncertainty in the SDHC decreases (Eq 4.9) and consequently, the estimate becomes more
repeatable. Furthermore, when scaling is not permitted and IM is sufficient, the SDHC
estimate converges to the theoretical value (Eq 4.7b) with increasing values of n. However,
the maximum value of n that can be specified is limited by the total number of prospective
ground motions in the specified database. Hence, small values of n are also of interest and
for a given site, EDP, and IF, the desirable value of n depends on the tolerable level of



CHAPTER 4. IMPORTANCE SAMPLING BASED PROCEDURE FOR ESTIMATING
SEISMIC DEMAND HAZARD CURVES 81

epistemic uncertainty.
We investigate the effects of different sample sizes for SFmax = 1 and “bestIM” (Sec-

tion 4.6). Unscaled ground motions are considered in this section because when ground
motions are scaled significantly and IM is insufficient, the resulting SDHC estimate is bi-
ased, regardless of the sample size (Section 4.7). Four different values of n are considered:
(i) 100, (ii) 250, (iii) 500, and (iv) 1000. For each value of n, the procedure is executed 100
times, yielding 100 independent estimates of the SDHC; these SDHCs, summarized by the
mean and 95% CI, are compared against the benchmark.

The MIDR hazard curves from different sample sizes are presented in Fig 4.15. As
indicated by the mean, the estimate from the proposed procedure is, on average, unbiased
regardless of the sample size, which is consistent with Eq 4.7b. For a given value of n, the
epistemic uncertainty in the SDHC estimate increases for decreasing exceedance rates and is
largest at collapse. As n decreases from 1000 to 100, the epistemic uncertainty increases. In
particular, the relatively wide CIs near collapse in Fig 4.15a indicate that the SDHC estimate
from a single execution with n = 100 is not very repeatable; that is, another execution with
n = 100 will likely produce a different estimate of the SDHC. The repeatability of an SDHC
estimate is measured by the standard deviation of the logarithm of the collapse rate, denoted
by σC , since exceedance rates may be considered to be approximately lognormally distributed
[85]; the values of σC for each choice of sample size are displayed in Fig 4.15.

Assuming a σC value of 0.4 is tolerable, values of n between 250 to 500 are recommended
for the proposed procedure with SFmax = 1 and “bestIM”; this recommended range appears
to be also applicable to scaled ground motions, but more research is needed to confirm this
tentative conclusion. If smaller values of σC are desired, then n should be increased. To
provide some context for such values of σC , note that the epistemic uncertainty in seismic
hazard and in seismic response is on the order of 0.5-1.5 and 0.4, respectively [35, 85]. The
recommended range of 250 ≤ n ≤ 500 is tantamount to performing 25 to 50 RHAs at
10 intensity levels in a PSDA, except that a non-parametric approach is employed in the
proposed procedure (Eq 4.5) whereas a parametric approach is typically employed in PSDA.
Consequently, the required sample size for the proposed procedure may be reduced if the
estimates from Eq 4.5 are fitted with a parametric probability distribution.

4.9 Conclusions

A novel ground motion selection procedure is developed in this paper. For a given structure at
a given site, the procedure provides a single ensemble of ground motions and a corresponding
collection of Importance Sampling weights for estimating SDHCs. The procedure requires
five inputs: (i) database of prospective ground motions, (ii) IM, a vector of IMs for selecting
ground motions, (iii) maximum acceptable scale factor, SFmax, (iv) a target fraction of scaled
ground motions, γ, and (v) sample size, n. This procedure provides the following advantages:

1. The ability to estimate SDHCs from a single ensemble of ground motions;
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Figure 4.15: MIDR hazard curves from proposed procedure with four different choices for
n: (a) 100; (b) 250; (c) 500; and (d) 1000. CIs from 100 independent executions of the
procedure with unscaled motions selected using “bestIM” per execution.

2. The option to select ground motions that are scaled to varying degrees, including the
important case of selecting only unscaled ground motions;

3. The means to achieve hazard consistency with respect to a specified vector of IMs.

Using a recently developed method for evaluating ground motion selection procedures, the
proposed procedure is evaluated in its ability to estimate SDHCs of a 4-story reinforced
concrete frame, leading to the following conclusions:

1. The proposed procedure provides accurate estimates of the SDHC when ground mo-
tions are unscaled, or when the vector of IMs chosen to select ground motions is
sufficient for the response quantity of interest.

2. If ground motions are restricted to be unscaled, then the sufficiency of the vector-valued
IM comprising A(0.1s), A(1s), A(2s), and D5−75, denoted by “bestIM”, plays a lesser
role in determining the accuracy of the SDHC estimate than when ground motions are
scaled. When ground motions are unscaled, “bestIM” is sufficient for both MIDR and
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MFA of the 4-story frame; in fact, D5−75 may be excluded for estimating MFA hazard
curves.

3. If scaling of ground motions is permitted, the sufficiency of “bestIM” plays a major role
in determining the accuracy of the SDHC estimate. When ground motions are scaled
by factors as large as 10, “bestIM” remains sufficient for MFA but not for MIDR; the
latter EDP seems to be influenced also by spectral acceleration at vibration periods
longer than 2T1. The bias in MIDR hazard curves caused by amplitude scaling is
generally conservative.

4. The epistemic uncertainty of the SDHC estimate, which increases for decreasing ex-
ceedance rates, is influenced by both the IF and the sample size n. For a given IF, the
desired sample size depends on the level of epistemic uncertainty that can be tolerated.

5. Based on the exploratory analyses in this paper, inputs for the proposed procedure are
recommended as:

• IM = {A(Tk), A(T1), A(2T1), D5−75}, where T1 and Tk refer, respectively, to the
first and kth mode of the structure;

• SFmax ≤ 5 and γ ≤ 0.5 when IM = {A(Tk), A(T1), A(2T1), D5−75};
• 250 ≤ n ≤ 500 when IM = {A(Tk), A(T1), A(2T1), D5−75}, SFmax ≤ 5, and
γ ≤ 0.5.

The application of these recommendations, which are based on analyses of a 4-story
frame, should be tested for taller buildings.
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Chapter 5

Evaluation of existing, contemporary
GMSM procedures

5.1 Abstract

Two existing, contemporary GMSM procedures – CSexact and GCIM – are evaluated in their
ability to accurately estimate seismic demand hazard curves (SDHCs) of a given structure
at a specified site. The amount of effort involved in implementing these procedures to
compute a single SDHC is summarized and a case study is chosen where rigorous benchmark
SDHCs can be determined for evaluation purposes. By comparing estimates from GMSM
procedures against the benchmark, we conclude that whether or not the estimate from
a particular GMSM procedure is biased depends on the particular problem, because the
underlying cause of SDHC bias involves two important aspects of the specific selection of
ground motions: (i) hazard consistency, and (ii) IM sufficiency. A GMSM procedure is only
a tool for achieving hazard consistency with respect to a user-specified collection of IMs;
whether or not the resulting SDHC is biased depends on how sufficient the vector of IMs
is, relative to the EDP of interest. We find that it is possible to obtain biased SDHCs from
GCIM, even after implementing the bias-checking procedure, because in many situations, it
is difficult to identify IMs that are sufficient for the response of a complex, MDF system.

5.2 Introduction

Several ground motion selection and modification (GMSM) procedures have been proposed
in the past to select ground motions for conducting intensity-based assessments. The goal
of an intensity-based assessment is to estimate the probability distribution of a response
quantity, or engineering demand parameter (EDP), given the fact that an intensity measure
(IM) is known to be of a certain intensity level [31, 3]. A common example of this type of
assessment is when the IM is defined as the spectral acceleration at the fundamental period
of the structure, A(T1), and the intensity level is determined from a specified return period
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(e.g., 475 years, 2475 years, etc.).
In the context of intensity-based assessments, Baker and Cornell [9] investigated four

different approaches to select ground motions and concluded that when matching parameters
to select ground motions, spectral shape is a more important parameter to match than causal
parameters such as earthquake magnitude, M , and source-to-site distance, R. Based on this
finding, the Conditional Mean Spectrum (CMS) was proposed as the target spectrum for
selecting ground motions [51, 9, 25]. However, the CMS, by definition, does not provide the
proper aleatory variability in the response spectrum and as a result, extensions of the CMS
have been developed by Jayaram et al. [1] and Lin et al. [57]; these new spectra are known
respectively as the Conditional Spectrum (CS), and the “exact” CS. Moreover, the CMS
(again by definition) does not account for IMs that are unrelated to spectral accelerations and
consequently, the Generalized Conditional Intensity Measure (GCIM) method was developed
by Bradley [47], which may be interpreted as a generalization of the CMS approach.

The previously mentioned methods for selecting ground motions are highly sophisticated
in the sense that explicit measures of the ground motion (e.g., spectral acceleration, signifi-
cant duration, etc.) are carefully accounted for in the selection process through knowledge
from probabilistic seismic hazard analysis (PSHA) of the site. Despite this sophistication, the
accuracy of the results from such procedures is unclear because ground motions are almost
always scaled and record scaling remains a subject of debate [86]. For example, Grigoriu [21]
argues (on the basis of analyzing stochastic processes) that scaled ground motions provide
“limited if any information on the seismic performance of structural systems”. On the other
hand, Bradley [35] argues that scaling will not cause bias in the EDP (due to an IM), as
long as either (i) the EDP is not dependent on the IM, or (ii) the probability distribution of
the IM from the selected ground motions is consistent with the theoretical distribution.

In this study, we evaluate the accuracy of the results from sophisticated, contemporary
GMSM procedures. More precisely, we evaluate the “exact” CS (henceforth denoted as
CSexact for brevity) and GCIM approaches in their ability to accurately estimate seismic
demand hazard curves (SDHCs) of a given structure at a specified site. This context is
chosen in order to draw definitive conclusions, since the SDHC of a given structure at a
given site is unique [34]. In order to evaluate these procedures, we introduce the notion of a
benchmark (Section 2.5) and apply the methodology described in Section 3.3.

We will see later that whether or not SDHC bias exists depends on the particular problem
under consideration. Specifically, the bias in the SDHC depends on the “hazard consistency”
of the selected ground motions with respect to an IM that is “sufficient” (for that particular
EDP) [64] and not on the specific GMSM procedure. An IM, which is considered vector-
valued for generality, is formally defined to be sufficient with respect to EDP , and denoted
as IMs, when it satisfies the following equation:

Pr(EDP > z | IMs, IM1, IM2, . . . , IM∞) = Pr(EDP > z | IMs) (5.1)

where “IM1, IM2, . . . , IM∞” denotes any other features of the ground motion time series
such as duration, M , R, etc. (see Appendix A of [12]); otherwise, it is insufficient with
respect to this particular EDP.
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We will see that GMSM procedures, such as CSexact and GCIM, are tools for obtaining
ground motions that are hazard-consistent with respect to a collection of IMs specified by
the user: in CSexact, ground motions are selected to be consistent with the hazard in terms
of spectral accelerations at various vibration periods whereas in GCIM, ground motions are
selected to be consistent with the hazard in terms of any IM specified by the user. When
ground motions are hazard-consistent with respect to a vector of IMs, whether or not the
resulting estimate of the SDHC is biased depends on how sufficient the vector-valued IM is
relative to the particular EDP at hand. For complex nonlinear MDF systems, identifying
sufficient IMs is difficult but with a benchmark (Section 5.4), one can definitively identify
IMs that are insufficient for a given EDP. A case study is chosen to illustrate these ideas;
the details of this case study are described next.

5.3 Case study site, structural models, and EDPs

considered

The site chosen is identical to that depicted in Fig 3.2a and described in Section 3.4. In
essence, the seismicity of the site is controlled by a single strike-slip fault that is located 10 km
away. Earthquakes occur randomly with magnitudes following the Youngs & Coppersmith
PDF shown by the solid curve in Fig 3.2b, at an activity rate of ν = 0.02 earthquakes per
year.

Nine SDF systems are considered in order to explore a range of vibration periods and
strengths. All SDF systems are variations of the degrading SDF system discussed in Sec-
tion 3.4, whose force-deformation relationship is portrayed in Fig 3.3b; the systems share a
common damping of 5% and differ only in two aspects: (i) their natural period of vibration,
T1, and (ii) yield strength, fy. The nine SDF systems represent combinations of three vibra-
tion periods, T1, – 0.25, 1, and 4 sec – and three yield strength reduction factors, Ry(T1), –
1, 4, and 8 – where Ry(T1) = fo(T1)÷ fy(T1) and fo(T1) is defined as the minimum strength
required for the system to remain elastic for an event with a return period of 2475 years.
From PSHA of the site with Yamamoto’s stochastic model (see Section 5.4), the values of
fo, normalized by the weight of the system, are determined respectively as 0.93, 0.50, and
0.10g, for vibration periods 0.25, 1, and 4 sec.

Two reinforced concrete frames – 4-story and 20-story – are also considered. These well-
vetted frames have been studied by past researchers in various contexts (e.g., [67], [26], [83])
and consequently, details regarding geometry and material properties may be found in such
references. In essence, both frames satisfy the strong-column, weak-beam philosophy and
are modeled in OpenSEES [84], where the inelasticity is captured by plastic hinges at the
ends of beam-column elements; each frame is classified as collapsed when its displacement
increases without bounds. The four modal periods of vibration for the 4-story frame are:
T1 = 0.94 sec, T2 = 0.30 sec, T3 = 0.17 sec, T4 = 0.12 sec; for the 20-story frame, the four
modal periods are: T1 = 2.6 sec, T2 = 0.85 sec, T3 = 0.46 sec, T4 = 0.32 sec.
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Peak displacement is the only EDP considered for all SDF systems. In contrast, many
more EDPs are considered for the multistory frames. For each frame, the EDPs considered
are: (i) peak (over time) floor displacements (PFD), (ii) peak story drift ratios (PSDR),
(iii) peak floor accelerations (PFA), (iv) maximum story drift ratio over all stories (MSDR),
and (v) maximum floor acceleration over all floors (MFA). Thus, a total of 14 EDPs are
considered for the 4-story frame and a total of 62 EDPs are considered for the 20-story
frame.

5.4 Methodology for evaluating GMSM procedures

In this study, we are interested in evaluating CSexact and GCIM in their ability to accurately
estimate SDHCs. Both GMSM procedures scale ground motions but differ primarily in the
IMs considered for selecting ground motions. If the IMs considered are indeed sufficient for
all EDPs of interest and the selected ground motions are also hazard-consistent with respect
to such IMs, then scaling should not cause any bias in the final SDHCs [64]. In many cases
however, the degree of sufficiency for any IM is unknown and as a result, potential EDP
biases may occur. Therefore, it is important that when comparing SDHC estimates from
GMSM procedures against a benchmark SDHC, the benchmark should involve neither record
scaling nor IMs.

Such benchmark SDHCs can be determined from the approach described in Section 3.3
and schematically illustrated in Fig 3.1. In essence, this approach involves three main steps.
First, a universe of synthetic ground motions is generated such that they are consistent with
the earthquake rupture forecast of the site, either by matching the specified PDFs or utilizing
Importance Sampling (see Fig 3.2 and Section 3.5). Second, benchmark hazard curves are
computed using Eqs 3.6, 3.9, and 3.12; note that the Importance Sampling weights, w(mi) are
used only in these equations and nowhere else in the approach. Third, all GMSM procedures
are applied to a subset of this universe of synthetic ground motions when estimating SDHCs;
this is important for isolating the biases caused by a GMSM procedure on its resulting SDHC
estimates.

For the subsequent results, the two stochastic models described in Section 3.4, referred
to as Rezaeian and Yamamoto, are utilized to generate two universes of 104 ground motions.
With two stochastic models and two multistory frames, at least 4 × 104 response history
analyses (RHAs) of multistory frames were performed for this study. Examples of benchmark
hazard curves from the two stochastic models are shown in Fig 5.1, where the differences
between the two models highlight the purpose of a benchmark SDHC: to isolate the effects
of GMSM procedures on the resulting SDHC estimates and not to estimate the absolute
‘true’ SDHC. Observe that at an exceedance rate of 10−3, the corresponding value of the
hazard curve is greater from Rezaeian’s model than from Yamamoto’s model; this implies
that the response of a given structure is generally more nonlinear in Rezaeian’s model than
in Yamamoto’s model.

In order to apply CSexact and GCIM to a database of synthetic ground motions, ground
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Figure 5.1: Examples of benchmark hazard curves for an: (a) IM; (b) EDP.

motion prediction models (GMPMs) that are “consistent with the benchmark” (Section 3.3)
must be available. Such benchmark-consistent GMPMs were developed for 120 IMs and for
each stochastic model, following the approach outlined in Section 3.6. The selection of func-
tional forms, determination of optimal standard deviations, and consideration of correlations,
are documented in Appendix B. With these benchmark-consistent prediction models devel-
oped, CSexact is evaluated first before GCIM; for each procedure, a step-by-step summary
is presented, followed by results from implementation.

5.5 Step-by-step summary of CSexact

The CSexact approach for estimating a SDHC is summarized as follows:

1. Specify the conditioning period, T ∗.

2. Determine the hazard curve for A(T ∗) from PSHA of the site and select NIM∗ intensity
levels for conducting intensity-based assessments (see Fig 2.1a).

3. For the ith intensity level of A(T ∗), denoted by xi, select n ground motions from a
master database using the “exact” CS [57] as the target:

a) Perform deaggregation to determine the percent contribution of each rupture sce-
nario to A(T ∗) = xi (see Fig 2.3a).

b) Scale all ground motions from the master database so that A(T ∗) = xi; optionally
reduce the size of this database of scaled, prospective ground motions with a user-
specified maximum scale factor, SFmax.
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c) Specify vibration periods for computing the target spectrum (see shaded region
in Fig 2.3b).

d) Compute the “exact” Conditional Spectrum, using either Method 4 in [57] (spe-
cialized for a single GMPM), or equivalently, Eqs 1-5 in [48] (specialized for the
case where all IMs are spectral accelerations).

e) Randomly simulate n response spectra from the target spectrum in Step 3d, using
the approach discussed in Section 3.2 of [48] (specialized for the case where all
IMs are spectral accelerations).

f) Select n ground motions (from the database developed in Step 3b) whose response
spectra most closely agree with those simulated from Step 3e, using the approach
discussed in Section 3.3 of [48] (specialized for the case where all IMs are equally
weighted spectral accelerations).

g) Confirm that the selected ground motions are consistent with the target spec-
trum: apply Kolmogorov-Smirnov (KS) tests on the selected motions for spectral
acceleration at each of the vibration periods specified in Step 3c. If the selected
motions pass the KS tests for all vibration periods, then proceed; otherwise, re-
peat Steps 3e-3f to reselect another set of n ground motions. If the KS tests
cannot be satisfied for all vibration periods after NIter attempts, then reselect
another set of n ground motions by applying the greedy optimization procedure
(as described on Pages 800-801 in [1]) to the latest set with the target spectrum
from Step 3d (i.e., the target means and standard deviations at each period are
given by Eqs 14-15 in [57], specialized for a single GMPM).

4. Repeat the ground motion selection process, as described in Step 3, for all NIM∗ levels.

5. Check hazard consistency of all NIM∗ × n ground motions with respect to spectral
accelerations at T1, T2, T3, and 2T1 of the structure, using Eq 3.16 and following the
approach discussed in Section 2 of [87]. If the motions are deemed hazard-inconsistent,
then repeat Steps 3-4.

6. Perform RHAs of the structure due to all NIM∗ × n ground motions.

7. Estimate the SDHC using the approach outlined in Section 3.2; when the EDP is a
measure of total acceleration (i.e., the acceleration at a specific floor or over all floors),
replace the values of the EDP corresponding to collapse by peak ground acceleration
(PGA) and apply Eq 3.2 (see also Section 5 in [37]).

Step 3 of the summary above differs from the well known CS method described by Ja-
yaram et al. [1] in two ways: (i) the target spectrum (Step 3d), and (ii) the selection
process (Steps 3e-3g). In [1], the target spectrum is a multivariate lognormal distribution
whereas in this study, the target spectrum is not multivariate lognormal (see Fig 5 in [37]).
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Consequently, ground motions are selected in [1] by matching the target mean vector and
covariance matrix with a greedy optimization technique whereas in this study, ground mo-
tions are selected so that they pass the KS tests at all vibration periods (see Fig 4a in
[47]). These choices are motivated by the desire to select ground motions that are hazard-
consistent with respect to spectral accelerations at T1, T2, T3, and 2T1 of the structure while
simultaneously avoiding the need to inflate standard deviations [37]; the investigation of the
CS method described by Jayaram et al. [1], which is less rigorous than CSexact, is left for
future research.

5.6 Evaluation of CSexact

Specific implementation of CSexact

The step-by-step summary listed in Section 5.5 represents an implementation of probabilistic
seismic demand analysis (PSDA), which is schematically illustrated in Fig 2.1 and elaborated
in Section 2.3, where ground motions at each intensity level are selected using Steps 3-5. In
this study, the conditioning period, T ∗, is defined as the fundamental period of the structure,
T1. In order to minimize the majority of the six sources of error when computing SDHCs,
identified by Bradley on page 1430 of [35], NIM∗ = 12 intensity levels were chosen to discretize
the hazard curve for A(T1), n = 25 ground motions are selected at each intensity level, and
Eq 2.4 is utilized to estimate the probability distribution of EDP at a given intensity level
(i.e., a non-parametric approach); the NIM∗ = 12 intensity levels correspond to: 50%, 20%,
10%, 5%, 2%, 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, and 0.01% probability of exceedance
in 50 years 1. Moreover, 95% confidence intervals (CIs) are provided for each PSDA-based
estimate of the SDHC using the bootstrap technique [74] with 100 bootstrap samples.

In order to be as faithful as possible to the original intentions behind the CSexact method,
the following parameters were chosen for implementation. First, the scale factors for all
ground motions are limited by SFmax = 4 (Step 3b). Second, 25 vibration periods, logarith-
mically spaced between 0.05 to 10 sec, are chosen to compute the target spectrum. Third,
each KS test is conducted at the 10% significance level, and ground motions may be rese-
lected up to NIter = 10 times per intensity level, before resorting to the greedy optimization
technique (the greedy technique is treated as a last resort here because given the “exact” CS,
the technique matches only the first two statistical moments and not the complete probabil-
ity distribution). In the author’s experience, the greedy technique was primarily needed at
the intensity levels corresponding to 0.02% and 0.01% probability of exceedance in 50 years.

1The Poisson assumption is used here.
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SDF systems

Fig 5.2 examines hazard consistency 2 of the ground motions selected for the SDF system
with T1 = 1 sec and Ry = 1, with respect to spectral accelerations at four vibration periods:
(i) 0.2T1, (ii) 0.3T1, (iii) T1, and (iv) 2T1. To facilitate comparison between the benchmark
hazard curve and that estimated from PSDA, we provide bootstrap CIs to the latter, as
discussed in Section 2 of [87]. As expected, the selected motions are hazard-consistent with
respect to these four vibration periods because the ground motions were deliberately selected
in CSexact to be consistent with the target spectra at all intensity levels of A(T ∗), over a
period range of 0.05 to 10 sec. However, some discrepancy between the benchmark hazard
curve and the PSDA-based estimate can be seen for A(0.2T1) and A(0.3T1), at exceedance
rates between 10−5 and 10−6, despite the fact that the selected motions passed the KS tests
for all intensity levels and for these two vibration periods. This discrepancy arises from the
fact that the KS test does not examine the ‘tail’ of the probability distribution of IM | A(T ∗)
(see Eq 3.16 and Section 2 in [87]). Whether or not such discrepancies are important for this
particular SDF system remains unclear.

Fig 5.3b presents the peak displacement hazard curve of the SDF system with T1 = 1 sec
and Ry = 1, subjected to the ground motions depicted in Fig 5.2. As expected, this SDHC
is unbiased at exceedance rates greater than 4×10−4 (or return periods less than 2475 years)
because the system responds linearly (see definition of fo in Section 5.3), and ground motions
are scaled to A(T1) over a wide range of exceedance rates (Fig 5.2c). However, the SDHC is
biased at exceedance rates less than 5×10−5. Since the ground motions are hazard-consistent
with respect to A(T1) and A(2T1), this bias implies that the vector-valued IM, consisting of
A(T1) and A(2T1), is insufficient for the peak displacement of this system; i.e., the response
depends also on other aspects of the ground motion (see Eq 5.1).

The selection of ground motions, via CSexact, was repeated for eight other SDF systems.
In each case, the motions are selected to be consistent with the target spectra at all intensity
levels of A(T1), over a vibration period range of 0.05 to 10 sec. The SDHCs resulting from
these motions are presented in Fig 5.3; in total, 9× (104 + 12× 25) = 92, 700 RHAs of SDF
systems were performed to generate the results for this figure.

These results demonstrate that, for most cases, the peak displacement hazard curves
from CSexact are unbiased, from linear-elastic behavior to collapse. Such good agreement
is expected because a wide range of vibration periods are chosen to compute the target
spectrum and scale factors are limited to within SFmax = 4 and 1/4. With 25 vibration
periods between 0.05 to 10 sec, the vector of IMs for selecting ground motions, IM, contains
25 elements and consequently, it is likely to satisfy Eq 5.1 (since a vector that contains an
infinite number of IMs satisfies Eq 5.1). This should be intuitive: as IM includes more
and more aspects of the time series, the description of the time series through IM becomes
increasingly complete. Even if such a vector of spectral accelerations is insufficient, the
specification of SFmax = 4 reduces potential hazard inconsistencies with respect to other
aspects of the ground motion.

2All results in this section are generated from Yamamoto’s stochastic model
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Figure 5.2: Hazard consistency of ground motions, selected by CSexact for the SDF system
with T1 = 1 sec and Ry = 1, with respect to spectral accelerations at four vibration periods.

Although most SDHCs in Fig 5.3 are unbiased, the estimated annual rates of collapse in
Figs 5.3a-b are biased. Compared to other SDF systems in this figure, the collapse rate for
these two systems is close to or less than 10−5. The bias in Fig 5.3a at an exceedance rate
of about 10−6 (not shown) is not very meaningful because even the benchmark contains a
high degree of epistemic uncertainty; to draw more definitive conclusions for this case, more
than 104 ground motions should be generated from the stochastic model. On the other hand,
the bias in Fig 5.3b is more meaningful and suggests that the vector-valued IM, consisting
of spectral accelerations at 25 vibration periods from 0.05 to 10 sec, is insufficient for this
particular case. In summary, whether or not the SDHC estimates from CSexact are biased
depends on the particular system because an IM that is insufficient for one case may turn
out to be sufficient for another.

To further understand this notion of sufficiency in relation to bias in the SDHC, let us
re-examine the selected ground motions that were utilized for Figs 5.3a-c. Fig 5.4 examines
the hazard consistency of these ground motions with respect to four IMs: (i) peak ground
acceleration (PGA), (ii) peak ground velocity (PGV), (iii) peak ground displacement (PGD),
and (iv) 5-75% significant duration, D5−75. Recall that these IMs are not utilized in the
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Figure 5.3: Comparison of SDHC estimates for all SDF systems from CSexact (dashed black)
against benchmark (solid green).

selection process in CSexact (Section 5.5). Therefore, whether or not the selected motions
are hazard-consistent with respect to these IMs is beyond the analyst’s control. For example,
the selected motions for T1 = 1 sec, Ry = 1, are hazard-inconsistent with respect to D5−75

(Fig 5.4d) but hazard-consistent with respect to PGV (Fig 5.4b). Whether or not hazard
inconsistencies, such as those shown in Fig 5.4d, are important to estimating the response,
depends on the particular system (and EDP) considered. In this work, D5−75 appears to
be important for estimating the collapse rate of the system in Fig 5.3b but unimportant for
estimating the collapse rate of the system in Fig 5.3c.

4-story frame

Fig 5.5 summarizes the ground motions selected for the 4-story frame, by applying the
procedure outlined in Section 5.5 to the universe of synthetic ground motions generated by
Yamamoto’s stochastic model. As expected, the selected motions are hazard-consistent with
respect to spectral accelerations at the first three modal periods and twice the fundamental
period of the 4-story frame, because CSexact aims to develop ground motions that are
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Figure 5.4: Hazard consistency of ground motions, selected by CSexact for three SDF systems
with Ry = 1, with respect to PGA, PGV, PGD, and D5−75.

consistent with the target spectra at a wide range of vibration periods. However, some
discrepancies between the benchmark hazard curve and estimate from CSexact for A(2T1)
at exceedance rates less than 10−5; as discussed in Section 2 of [87], these discrepancies arise
from the fact that the selection of ground motions at a particular intensity level (Step 3 in
Section 5.5) does not account for the ‘tail’ of the probability distribution of IM | A(T ∗).

Fig 5.6 presents the SDHCs of the 4-story frame, resulting from the ground motions
summarized in Fig 5.5. The EDPs considered in this figure, a subset of all EDPs examined
in this study, include: (i) roof displacement, PFD4, (ii) first-story drift ratio, PSDR1, (iii)
roof acceleration, PFA4, and (iv) maximum story drift ratio over all stories, MSDR. For
PFD4, PSDR1, and MSDR, the SDHC estimate from CS is unbiased at exceedance rates
greater than about 5× 10−5 but biased near collapse. For PFA4, the SDHC estimate from
CS is unbiased at exceedance rates greater than about 5 × 10−4 but underestimates the
benchmark otherwise. Without the benchmark SDHCs, a concept developed in [64] and in
[78], such biases may not have been detected; specifically, it would be difficult to identify such
biases by varying conditioning periods as in Figs A.17d and A.17f of [88], where a very similar
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Figure 5.5: Hazard consistency of ground motions, selected by CSexact for the 4-story frame,
with respect to spectral accelerations at four vibration periods (Yamamoto’s model).

4-story frame was studied. Since the corresponding selected motions are hazard-consistent
with respect to spectral accelerations at a wide range of vibration periods (Fig 5.5), the
biases observed in Fig 5.6 suggest spectral accelerations, at periods from 0.05 to 10 sec, are
insufficient for the response of this 4-story frame at such low exceedance rates.

The selection of NIM∗ × n = 300 ground motions via CSexact for the 4-story frame,
and computation of benchmark SDHCs (104 RHAs), were repeated for Rezaeian’s stochastic
model. Fig 5.7 confirms that the motions selected under Rezaeian’s model are again hazard-
consistent with respect to spectral accelerations over a wide range of vibration periods, just
like those under Yamamoto’s model (Fig 5.5). However, the SDHCs resulting from such
motions (Fig 5.8) differ from in Yamamoto’s model (Fig 5.6). Specifically, the annual rate
of collapse from CSexact is now unbiased. This observation does not imply that spectral
accelerations, from 0.05 to 10 sec, are sufficient. Why? Because one does not have control
over the hazard consistency of the selected motions with respect to other IMs.

Figs 5.9 and 5.10 examine hazard consistency of the motions, from Yamamoto’s and
Rezaeian’s models, with respect to four IMs: (i) PGA, (ii) PGV, (iii) PGD, and (iv) D5−75.
In both stochastic models, the selected motions are essentially hazard-consistent with respect
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Figure 5.6: Comparison of SDHC estimates for several EDPs of the 4-story frame from
CSexact against benchmark (Yamamoto’s model).

to PGA, PGV, and PGD, despite the fact that these IMs are not utilized in the selection
of ground motions (see Step 3c in Section 5.5). This is the case because in the current
implementation of CSexact, the response spectrum from 0.05 to 10 sec, is carefully accounted
for in the selection process and at the same time, the three peak ground parameters correlate
strongly with the short, moderate, and long period content of the response spectrum. It can
be seen from Figs 5.9d and 5.10d that the ground motions from the two stochastic models
differ significantly in terms of hazard consistency with respect to D5−75. This occurs because
in Rezaeian’s model, D5−75 happens to be somewhat correlated with PGV (ρ = −0.34)
whereas in Yamamoto’s model, D5−75 is weakly correlated with PGV (ρ = −0.06). Based
on these results and Fig 4.9, D5−75 appears to be important for estimating the collapse rate
of this 4-story frame. Before leaving this section, it should be noted that the bias observed
in the roof acceleration hazard curve (Figs 5.6c and 5.8c) is a surprising finding because the
selected motions are hazard-consistent with respect to PGA (Figs 5.9a and 5.10a) and one
might expect roof accelerations to be sensitive to the response spectrum at short vibration
periods (see e.g., Appendix A.1 of [88]). This finding implies that roof acceleration depends
on a feature of the ground motion time series that has not been considered in the analysis
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Figure 5.7: Hazard consistency of ground motions, selected by CSexact for the 4-story frame,
with respect to spectral accelerations at four vibration periods (Rezaeian’s model).

thus far, pointing out the importance of developing a rigorous benchmark when evaluating
results from GMSM procedures.

20-story frame

The CSexact procedure (Section 5.5) is also implemented for the 20-story frame (Section 5.3).
In each of the two stochastic models, the ground motions are again carefully selected to be
hazard-consistent with respect to spectral accelerations at vibration periods between 0.05 to
10 sec (not shown). The SDHCs of the 20-story frame for Yamamoto’s model are presented
in Fig 5.11 whereas those for Rezaeian’s model are presented in Fig 5.12. The four EDPs
– (i) roof displacement, PFD20, (ii) first-story drift ratio, PSDR1, (iii) roof acceleration,
PFA20, and (iv) maximum story drift ratio over all stories, MSDR – are again chosen to
summarize the 62 EDPs considered for this frame (Section 5.3).

Unlike the CSexact-based SDHCs for the 4-story frame (Figs 5.6 and 5.8), the CSexact-
based SDHCs for the 20-story frame are less biased for all EDPs. Specifically, (i) the roof
acceleration is now unbiased for both stochastic models, and (ii) in Yamamoto’s model,
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Figure 5.8: Comparison of SDHC estimates for several EDPs of the 4-story frame from
CSexact against benchmark (Rezaeian’s model).

the overestimation in the collapse rate is smaller than that for the 4-story frame. These
differences between the two multistory frames imply that the underlying cause of bias is not
directly related to the particular GMSM procedure. Instead, the SDHC bias appears to be
directly related to the particular set of ground motions in terms of (i) hazard consistency,
and (ii) IM sufficiency [64].

Recall that the selected motions for both frames are hazard-consistent with respect to
spectral accelerations over a wide range of vibration periods. Since less bias is observed for
the 20-story frame (Figs 5.11-5.12) than for the 4-story frame (Figs 5.6 and 5.8), we conclude
that this collection of spectral accelerations appears to be less insufficient for the 20-story
frame than for the 4-story frame. Similarly, this collection of spectral accelerations appears
to be less insufficient for displacements and drift ratios of the 4-story frame than for floor
accelerations (see Figs 5.6 and 5.8). The phrase “less insufficient” is utilized because it is
difficult to prove that an IM is sufficient; i.e., the good agreement in SDHCs does not imply
that an IM is sufficient because hazard consistencies (i.e., good agreement) with respect to
other IMs may occur by chance (Fig 5.4). In order to control IMs in addition to spectral
accelerations, the GCIM approach was developed, which is studied next.
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Figure 5.9: Hazard consistency of ground motions, selected by CSexact for the 4-story frame,
with respect to four IMs unrelated to spectral accelerations (Yamamoto’s model).

5.7 Step-by-step summary of GCIM

The GCIM approach for estimating a SDHC is summarized as follows:

1. Specify a large number of IMs to be potentially utilized for selecting ground motions
(e.g., PGD, D5−75, etc.).

2. Specify the conditioning IM, IM∗.

3. Determine the hazard curve for IM∗ from PSHA of the site and select NIM∗ intensity
levels for conducting intensity-based assessments (see Fig 2.1a).

4. For the ith intensity level of IM∗, denoted by xi, select n ground motions from a
master database using the GCIM approach:

a) Perform deaggregation to determine the percent contribution of each rupture sce-
nario to IM∗ = xi (see Fig 2.3a).
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Figure 5.10: Hazard consistency of ground motions, selected by CSexact for the 4-story
frame, with respect to four IMs unrelated to spectral accelerations (Rezaeian’s model).

b) Scale 3 all ground motions from the master database so that IM∗ = xi.

c) Specify a subset of the IMs identified in Step 1, IM, to be utilized for ground
motion selection using a weight vector as discussed in Section 5.2 of [35].

d) Compute the multivariate GCIM distribution of IM | IM∗, using the vector
version of Eqs 8-12 in [47].

e) Randomly simulate n vectors of IM from the multivariate GCIM distribution in
Step 4d, using the approach discussed in Section 3.2 of [48].

f) Select n ground motions (from the database developed in Step 4b) whose com-
puted values of IM most closely agree with those simulated from Step 4e, using
the approach discussed in Section 3.3 of [48].

g) Confirm that the selected ground motions are consistent with the target from
GCIM: apply Kolmogorov-Smirnov (KS) tests on the selected motions for each of

3This eliminates IMs that do not change with amplitude scaling as candidates for IM∗ (e.g., significant
duration).
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Figure 5.11: Comparison of SDHC estimates for several EDPs of the 20-story frame from
CSexact against benchmark (Yamamoto’s model).

the IMs specified in Step 4c. If the selected motions pass the KS tests for all IMs,
then proceed; otherwise, reselect another set of n ground motions until either the
selected motions pass all KS tests or a maximum number of reselections has been
reached. For the latter case, both the IMs that failed the KS test and the current
intensity level of IM∗ are noted before proceeding.

5. Repeat the ground motion selection process, as described in Step 4, for all NIM∗ levels.

6. Perform RHAs of the structure due to all NIM∗ × n ground motions.

7. Check for potential biases in EDPs caused by improper ground motion selection noted
from Step 4g:

a) For each of the intensity levels of IM∗ where improper ground motion selection
was observed:

i. Specify an EDP (e.g., floor displacement, story drift ratio, etc.) for checking.
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Figure 5.12: Comparison of SDHC estimates for several EDPs of the 20-story frame from
CSexact against benchmark (Rezaeian’s model).

ii. Check whether or not the troublesome IMs noted in Step 4g are important for
the current EDP considered by applying the approach shown schematically
in Fig 7a of [47].

iii. If the IM is indeed important to the current EDP considered, then estimate
the potential bias in the EDP due to the particular IM, following the approach
outlined on pages 1337-1340 of [47].

iv. Repeat Steps 7(a)ii-7(a)iii for all EDPs in order to determine whether or not
a new set of n ground motions should be reselected at this particular intensity
level and with what new weight vector for selection (see Step 4c). If ground
motions are indeed reselected at this particular intensity level, then perform
RHAs of the structure subjected to the new motions.

8. Estimate the SDHC using the approach outlined in Section 3.2; when the EDP is a
measure of total acceleration (i.e., the acceleration at a specific floor or over all floors),
replace the values of the EDP corresponding to collapse by PGA and apply Eq 3.2 (see
also Section 5 in [37]).
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The GCIM approach summarized above differs from the CSexact approach (Section 5.5)
in two major aspects: (i) any IM (not just spectral acceleration) can be considered for
selecting ground motions (Step 4c), and (ii) any potential biases in the EDP due to improper
ground motion selection can be examined relatively quickly (Step 7). Note that unlike
CSexact (Step 3b), scale factors are not limited in GCIM because GCIM aims to capture
many more IMs than in CSexact when selecting ground motions. Hence, this approach
is holistic but can be quite involved. For example, the bias-checking procedure (Step 7)
requires RHAs of the structure to be performed first, before scattergrams of EDP vs IM
can be developed (see e.g., Fig 7a of [47], Fig 3 of [87]). In addition, as the number of EDPs
of interest increases (e.g., 62 EDPs are considered herein for the 20-story frame), the number
of checks and ground motion re-selections (Step 7) can become onerous.

5.8 Evaluation of GCIM

Specific implementation of GCIM

As in CSexact, the step-by-step summary listed in Section 5.7 represents an implementation
of PSDA, which is schematically illustrated in Fig 2.1 and elaborated in Section 2.3, where
ground motions at each intensity level are selected using the GCIM approach. In this study,
the conditioning IM, IM∗, is defined as spectral acceleration at the fundamental period
of the structure, A(T1). In order to minimize error in computing SDHCs and facilitate
understanding of results relative to CSexact, the same parameters for PSDA that were
mentioned in Section 5.6 are employed here to compute SDHCs from GCIM (i.e., choices for
NIM∗ , n, etc.).

In order to be as faithful as possible to the original intentions behind the GCIM method,
the following parameters were chosen for implementation. First, 24 IMs are considered
for selecting ground motions: PGA, PGV, PGD, acceleration spectrum intensity (ASI),
spectrum intensity (SI), displacement spectrum intensity (DSI), cumulative absolute velocity
(CAV), 5-95% significant duration (D5−95), 5-75% significant duration (D5−75), and 5%-
damped spectral accelerations at 15 vibration periods: 0.05, 0.1, 0.2, 0.25, 0.3, 0.5, 0.75, 0.95,
1, 2, 2.6, 3, 4, 5, and 10 sec. Second, following the implementation by the author of GCIM
[35], weights for each IM are assigned by giving 85% to amplitude-based IMs and 15% to the
cumulative-based IMs (see Table I in [35]). Third, all KS tests (and t-tests from Step 7(a)ii)
are conducted at the 10% significance level, and ground motions may be reselected up to
NIter = 10 times per intensity level, before proceeding with RHAs and resorting to the bias-
checking procedure. In the author’s experience, the bias-checking procedure was primarily
needed at large intensity levels (i.e., those corresponding to 0.02% and 0.01% probability of
exceedance in 50 years). More details on the bias-checking procedure will come when we
present results for the 4-story frame from GCIM.
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SDF systems

The GCIM approach, as outlined in Section 5.7, was implemented for all nine SDF systems,
using Yamamoto’s stochastic model. Fig 5.13 examines hazard consistency of the ground
motions selected for the three SDF systems with Ry = 1; specifically, with respect to PGA,
PGV, PGD, and D5−75. Unlike the ground motions selected from CSexact for the same sys-
tems (Fig 5.4), those selected from GCIM are hazard-consistent for all of these IMs because
they were explicitly “matched” (i.e., between the empirical and target GCIM distributions)
in the selection process (Step 4c). However, some discrepancy between the benchmark haz-
ard curve and the PSDA-based estimate can be seen for the curve corresponding to T1 = 0.25
sec in Fig 5.13c, at exceedance rates less than 10−4, despite the fact that the selected motions
passed the KS tests for PGD at all NIM∗ = 12 intensity levels. As mentioned earlier, this
discrepancy arises from the fact that the KS test does not examine the ‘tail’ of the proba-
bility distribution of IM | A(T ∗) (see Section 2 in [87]). As a side note, such inconsistencies
can be minimized by directly focusing on this range of exceedance rates with an Importance
Function in the Importance Sampling procedure (Section 4.4).
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Figure 5.13: Hazard consistency of ground motions, selected by GCIM for three SDF systems
with Ry = 1, with respect to PGA, PGV, PGD, and D5−75.
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Fig 5.14 presents the SDHCs of all SDF systems, resulting from ground motions selected
by the GCIM method. The SDHCs from GCIM are essentially unbiased for all SDF systems,
from linear-elastic behavior to collapse. This is to be expected since the GCIM approach
considered several more IMs in addition to 5%-damped spectral accelerations, and good
agreement was already observed for many cases in CSexact (Fig 5.3), where only spectral
accelerations were employed for ground motion selection. Furthermore, the unbiased collapse
rate in Fig 5.14b suggests that D5−75 is important for estimating the collapse rate of this
particular SDF system; strictly speaking, the response spectrum from 0.05 to 10 sec is
insufficient for the response of this system at such low exceedance rates (Fig 5.3b).
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Figure 5.14: Comparison of SDHC estimates for all SDF systems from GCIM (dashed black)
against benchmark (solid green).

4-story frame

The GCIM method was implemented for the 4-story frame and for both stochastic models.
Fig 5.15 examines hazard consistency of the ground motions from Yamamoto’s model, with
respect to PGA, PGV, PGD, and D5−75. As expected, the motions are essentially hazard-
consistent with respect to these four IMs, because they were iteratively selected so that they
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satisfy the KS tests for these IMs (and others) at all intensity levels of A(T ∗) (Step 4g in
Section 5.7). Limiting the number of ground motion re-selections at each intensity level to
NIter = 10, the selected motions passed all KS tests except for the largest intensity level of
A(T ∗). As a result, the bias-checking procedure (Step 7) was implemented for this intensity
level (implying that RHAs of the 4-story frame were conducted) and ground motions are
reselected until whatever remaining KS test failures are demonstrated to be unimportant
for all EDPs of the 4-story frame (Step 7(a)ii). This process will be described more fully
in Section 5.8, but for now, it suffices to recognize that the ground motions summarized in
Fig 5.15 actually correspond to the new selection of motions after RHAs of the frame was
already performed for the largest intensity level of A(T ∗).
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Figure 5.15: Hazard consistency of ground motions, selected by GCIM for the 4-story frame,
with respect to four IMs unrelated to spectral accelerations (Yamamoto’s model).

The SDHCs of the 4-story frame resulting from the preceding ground motions are pre-
sented in Fig 5.16. This figure demonstrates that the SDHCs from GCIM are unbiased
for many of the EDPs, from linear-elastic behavior to collapse. However, the SDHCs from
GCIM are biased for some of the floor accelerations, including roof acceleration as shown
in Fig 5.16c. Since GCIM accounts for cumulative effects of the ground motion (e.g., CAV,
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D5−75, etc.) in addition to spectral accelerations over a wide range of vibration periods,
the good agreement near the annual rate of collapse suggests that such cumulative effects
are important for estimating the collapse rate of this structure (compare Fig 5.16a against
Fig 5.6a). However, even the inclusion of such cumulative effects does not improve the esti-
mate of the roof acceleration hazard curve, as demonstrated by comparing Fig 5.16c against
Fig 5.6c. This bias in floor accelerations indicates that there is no guarantee that the result-
ing SDHC estimates from GCIM are unbiased, even after enforcing hazard consistency of
the selected motions with respect to a very broad range of IMs (i.e., spectral accelerations,
spectrum intensities, significant duration, etc.).
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Figure 5.16: Comparison of SDHC estimates for several EDPs of the 4-story frame from
GCIM against benchmark (Yamamoto’s model).

The GCIM procedure was also applied to the 4-story frame using the stochastic model
from Rezaeian; i.e., 25 × 12 = 300 RHAs of the frame was conducted in addition to those
done for the results shown in Fig 5.16. As in the case for Yamamoto’s model, ground motions
were again iteratively selected until all inconsistencies from KS tests are demonstrated to
be statistically insignificant for all EDPs considered. As verified in Fig 5.17, these ground
motions are essentially hazard-consistent with respect to PGA, PGV, PGD, and D5−75.
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Figure 5.17: Hazard consistency of ground motions, selected by GCIM for the 4-story frame,
with respect to four IMs unrelated to spectral accelerations (Rezaeian’s model).

The SDHCs of the 4-story frame, subjected to the preceding ground motions from Reza-
eian’s model, are presented in Fig 5.18. As in the case of Yamamoto’s model, the SDHCs
from GCIM are again unbiased for the majority of EDPs considered (i.e., floor displace-
ments, story drift ratios, etc.) but biased for roof acceleration. The larger underestimation
in Fig 5.18c, relative to that in Fig 5.16c, arises from differences in correlation of IMs between
the two stochastic models. Because ground motions were carefully selected to be hazard-
consistent with respect to a collection of 24 IMs (see Section 5.8) in both stochastic models,
the biases in Figs 5.18c and 5.16c reveal that such a collection of IMs is insufficient with
respect to roof acceleration. In other words, this EDP depends on a feature of the ground
motion time series that has not been considered thus far in the analysis.

The bias-checking procedure in GCIM

Would the biases in roof acceleration have been detected by implementing the bias-checking
procedure in GCIM (Step 7 in Section 5.7)? In order to answer this question, let us revisit
the selection of ground motions for the 4-story frame under the stochastic model by Rezaeian.
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Figure 5.18: Comparison of SDHC estimates for several EDPs of the 4-story frame from
GCIM against benchmark (Rezaeian’s model).

Specifically, let us carefully examine how ground motions were selected (Step 4g) and how
the bias-checking procedure (Step 7) was implemented for this case.

Fig 5.19a presents an example of applying the KS test to a selection of ground motions at
an intensity level of A(T ∗), with respect to a particular choice of IM. The empirical CDF of
the IM from the selected motions is shown in dashed black and the target GCIM probability
distribution for this IM is shown in solid green. The KS test indicates whether or not the
difference between the two CDFs – empirical and GCIM – is statistically significant. At the
10% significance level, both the KS bounds (chained green) and p-value in Fig 5.19a indicate
that the selected motions are inconsistent with respect to spectral acceleration at 0.1 sec,
because the empirical CDF falls outside of the KS bounds and the p-value is smaller than a
probability of 0.10 (i.e., the significance level). Such an inconsistency prompted several more
reselections of ground motions (via Steps 4e-4f of Section 5.7), until the selected motions
pass the KS tests for all 24 IMs; an example of passing the KS test with respect to an IM is
portrayed in Fig 5.19b.

If one is unable to pass the KS tests for all 24 IMs after NIter = 10 ground motion rese-
lections, as was the case for the intensity level of A(T ∗) corresponding to 0.02% probability
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Figure 5.19: Results from applying KS tests (GCIM target in solid green, 10% KS bounds
in chained green, and empirical CDF in dashed black) to ground motions selected for A(T ∗)
at 0.02% probability of exceedance in 50 years: (a) IM ≡ A(0.1); and (b) IM ≡ A(3)
(Rezaeian’s model).

of exceedance in 50 years, then the next step is to examine the potential significance of
such inconsistencies relative to an EDP of interest. This is done in GCIM by (i) creating
a scattergram of the EDP vs the IM in log-log space, (ii) determining the regression line,
and (iii) applying the t-test to determine whether or not the slope of the regression line is
statistically significant (Step 7(a)ii). For example, the potential significance of the incon-
sistency shown in Fig 5.19a, relative to roof acceleration of the 4-story frame, is examined
in Fig 5.20a. In this figure, only 8 out of the n = 25 RHA results are shown (blue circles)
because the rest of the ground motions led to collapse. From this subset of the RHA results,
the regression line is determined (solid red) and its slope is tested for statistical significance
via the t-test. Because the p-value from the t-test (shown in title of Fig 5.20a) is less than
the significance level, the inconsistency of the selected motions with respect to A(0.1) is
deemed to be statistically significant for PFA4 and hence the potential bias in PFA4 due
to A(0.1) should be estimated next in order to decide whether or not ground motions should
be reselected. If the slope had turned out to be statistically insignificant, which suggests
that PFA4 is not sensitive to A(0.1), then the inconsistency in Fig 5.19a would have been
deemed unimportant and hence reselection of ground motions would not be necessary.

Before proceeding with the rest of the bias-checking procedure in GCIM, we make several
important observations about the procedure as presented thus far. First, RHAs of the 4-story
frame must be performed before the scattergram in Fig 5.20a can be constructed. Second,
the treatment of collapses in the bias-checking procedure is unclear. One option to proceed
with is to exclude the collapses, as shown in Fig 5.20a; however, this can lead to questionable



CHAPTER 5. EVALUATION OF EXISTING, CONTEMPORARY GMSM
PROCEDURES 111

10
−1

10
0

10
1

10
−1

10
0

10
1

E
D

P
 ≡

 P
F

A
4
 [

g
]

(a) p−value = 1.6e−02

IM ≡ A(0.1) [g]

 

 

10
−1

10
0

10
1

10
−1

10
0

10
1

(b) p−value = 3.3e−06

IM ≡ A(0.1) [g]

 

 

Figure 5.20: Output from applying t-tests (regression line in solid red and 68% CI of
ln(EDP ) | ln(IM) in dashed red) to results from RHAs of the frame due to ground motions
selected for A(T ∗) at 0.02% probability of exceedance in 50 years: (a) collapses excluded;
and (b) collapses included (Rezaeian’s model).

results as the number of collapses approaches the total number of ground motions selected
for the particular intensity level, n (i.e., in the limit, no data would be available to construct
the scattergram). Another option is to include the collapses, as shown in Fig 5.20b; however,
this may also lead to questionable results because one is utilizing the numerical values of
EDP corresponding to collapse. Third, the application of t-tests can become cumbersome as
the number of EDPs considered increases (e.g., 14 EDPs are considered for the 4-story frame
and 62 EDPs are considered for the 20-story frame) and as the number of IM consistencies
increases (e.g., Fig 5.19a); therefore, it is advantageous to minimize the number of such
inconsistencies from KS tests.

By reselecting ground motions at each intensity level up to NIter = 10 times, the selected
motions for the 4-story frame with Rezaeian’s model passed the majority of the KS tests.
This is demonstrated in Fig 5.21a, where only three out of the NIM∗ × 24 = 288 KS tests
led to inconsistencies (shown in magenta); these three IMs, denoted by numbers 2, 4, and 6,
correspond respectively to spectral accelerations at vibration periods 0.1, 0.25, and 0.5 sec.
Among these three cases, only those corresponding to 0.02% probability of exceedance in
50 years led to statistically significant slopes from regression analyses for roof acceleration,
as illustrated in Fig 5.21b. Therefore, 0.02% probability of exceedance in 50 years is the
only intensity level in which ground motion reselection might be necessary; i.e., the selected
motions for all other intensity levels is finalized at this point.

In order to determine whether or not ground motion reselection is necessary for the inten-
sity level at 0.02% probability of exceedance in 50 years, the potential biases in PFA4 caused
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Figure 5.21: (a) Summary of results from KS tests for all 24 IMs employed in GCIM (ma-
genta indicates inconsistency with respect to GCIM distribution), at all intensity levels of
A(T ∗); (b) cases where IM is both inconsistent and influential to PFA4, as measured by
t-tests (magenta indicates slope from linear regression is statistically significant and IM is
inconsistent). Results for Rezaeian’s model.

by A(0.1) or by A(0.5) (Fig 5.21b) were estimated (Step 7(a)iii in Section 5.7). Fig 5.22a
presents the potential bias in PFA4 due to A(0.1), as indicated by the discrepancy between
the “uncorrected” (dashed black) and “corrected” (chained red) CDFs of roof acceleration,
given A(T ∗) = 2.3g. The “uncorrected” CDF was obtained by fitting a lognormal distribu-
tion (see Eq 2.3) to the values of EDP where collapse did not occur (solid grey); on the other
hand, the “corrected” CDF was obtained by implementing Eq 17 in [47].

It is up to the analyst to decide whether or not such EDP biases are acceptable. In this
study, we adopt an approach that is inspired by the KS tests shown in Fig 5.19. Specifically,
the difference between the empirical CDF (solid grey) and the “corrected” CDF (chained
red) was quantified by the KS test. Since the “corrected” CDF fell within the 10% KS
bounds (Fig 5.22a), the bias in PFA4 due to A(0.1) was deemed acceptable and hence
ground motions were not reselected. Because the treatment of collapse is unclear in the
context of the bias-checking procedure, the bias in PFA4 due to A(0.1) was re-estimated
without excluding collapses; as shown in Fig 5.22b, the estimated bias was again deemed
acceptable. Note that the potential biases due to A(0.5) were also estimated; however, these
biases are not shown because they are even smaller than those presented in Fig 5.22.

Because the estimated biases in roof acceleration were deemed acceptable, the selected
motions that were used to generate Fig 5.21 were also utilized to compute the SDHCs of the
4-story frame that are shown in Fig 5.18. Therefore, the preceding detailed illustration of
the bias-checking procedure answers the question posed at the beginning of this section: the
biases in roof acceleration would not have been detected by implementing the bias-checking
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Figure 5.22: Estimates of bias in PFA4 due to IM ≡ A(0.1) from GCIM (empirical CDF
in solid grey, lognormal estimate in dashed black, “corrected from IM ≡ A(0.1)” in chained
red, and 10% KS “bounds” in dotted black) for A(T ∗) at 0.02% probability of exceedance
in 50 years: (a) collapses excluded; and (b) collapses included (Rezaeian’s model).

procedure in GCIM. Although the procedure can estimate potential EDP biases in a practical
fashion, such bias estimates might be significantly different from the actual bias. For instance,
the “corrected” CDF in Fig 5.22a indicates that the roof acceleration hazard curve from the
current selection of ground motions will overestimate the ‘true’ roof acceleration hazard curve
by a slight amount, because it is ‘to the left’ of the “uncorrected” CDF (see also Fig 4 in
[87]). In contrast, the benchmark SDHC in Fig 5.18c demonstrates that the current SDHC
estimate from GCIM underestimates the benchmark by a significant amount.

Since it is up to the analyst to decide whether or not EDP biases estimated from GCIM
are acceptable, the discrepancy between conclusions from the two approaches – benchmark
and GCIM – may have been a result of judgement employed in GCIM. To test whether this
is the case or not, ground motions were deliberately reselected at the 0.02% probability of
exceedance in 50 years level so that inconsistencies with respect to spectral accelerations
at short vibration periods (Fig 5.19a) are eliminated altogether. To achieve this, a new
weight vector was specified in the reselection where 85% is given to PGA, ASI, and spectral
accelerations at periods from 0.05 to 0.95 sec, while 15% is given to the rest of the original
24 IMs. This weight vector led to ground motions that pass the KS tests for all spectral
accelerations at short vibration periods, including A(0.1) as shown in Fig 5.23a. In exchange
however, inconsistencies are observed for A(3) (Fig 5.23b) and for CAV (not shown).

Fortunately, the inconsistencies with respect to A(3) and CAV are unimportant to roof
acceleration, as one might expect. This is demonstrated in Fig 5.24, where the slopes are
statistically insignificant in each of the two cases. Consequently, the new selection of ground



CHAPTER 5. EVALUATION OF EXISTING, CONTEMPORARY GMSM
PROCEDURES 114

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1
C

D
F

 o
f 

IM
 g

iv
en

 A
(T

*
)=

2
.3

g

IM ≡ A(0.1) [g]

p−value = 0.22

 

 

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

IM ≡ A(3) [g]

p−value = 7.3e−03

 

 

Figure 5.23: Results from applying KS tests (GCIM target in solid green, 10% KS bounds in
chained green, and empirical CDF in dashed black) to ground motions reselected with a new
weight vector for A(T ∗) at 0.02% probability of exceedance in 50 years: (a) IM ≡ A(0.1);
and (b) IM ≡ A(3) (Rezaeian’s model).

motions at the 0.02% probability of exceedance in 50 years level were employed to revise the
SDHCs of the 4-story frame; these revised SDHCs are shown in Fig 5.25.
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Figure 5.24: Output from applying t-tests (regression line in solid red and 68% CI of
ln(EDP ) | ln(IM) in dashed red) to results from RHAs of the frame due to ground motions
reselected with a new weight vector for A(T ∗) at 0.02% probability of exceedance in 50 years:
(a) IM ≡ A(3); and (b) IM ≡ CAV (Rezaeian’s model).



CHAPTER 5. EVALUATION OF EXISTING, CONTEMPORARY GMSM
PROCEDURES 115

0 10 20 30 40

10
−4

10
−3

10
−2

10
−1

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

PFD
4
 [in]

(a)

 

 

Benchmark

GCIM

95% CI

0 5 10

10
−4

10
−3

10
−2

10
−1

PSDR
1
 [%]

(b)

0 0.5 1 1.5

10
−4

10
−3

10
−2

10
−1

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

PFA
4
 [g]

(c)

0 5 10

10
−4

10
−3

10
−2

10
−1

MSDR [%]

(d)

Figure 5.25: Comparison of SDHC estimates for several EDPs of the 4-story frame from
ground motions reselected by GCIM with a new weight vector against benchmark (Rezaeian’s
model).

Comparing the revised SDHCs in Fig 5.25 against those shown in Fig 5.18 reveals several
important observations. First, the SDHCs are nearly identical in the two cases because: (i)
ground motions were reselected for only one out of NIM∗ = 12 intensity levels (specifically,
0.02% probability of exceedance in 50 years), (ii) the SDHCs for displacements and drift
ratios at low exceedance rates are controlled by the annual rate of collapse, which is insensi-
tive to the RHA results from the new selection of ground motions, and (iii) the SDHCs for
floor accelerations are sensitive to the new RHA results only at exceedance rates less than
10−6. Second and more importantly, the revised SDHCs demonstrate that the discrepancy
between conclusions from the benchmark and from the bias-checking procedure in GCIM
is not a consequence of the judgement exercised in determining whether or not estimated
EDP biases are acceptable (Fig 5.22). Without the benchmark, which was obtained from
104 RHAs of the 4-story frame, one may draw erroneous conclusions from the bias-checking
procedure in GCIM (see also Section 3 in [87]). Third, Figs 5.25c and 5.18c demonstrate that
SDHCs from GCIM may still be biased, even after iteratively (i) selecting ground motions
to be consistent with the GCIM targets (Figs 5.19 and 5.23), (ii) checking for dependencies
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between all relevant combinations of EDPs and IMs (Figs 5.20 and 5.24), and (iii) estimat-
ing potential biases in EDPs caused by individual IMs (Fig 5.22). Such is the case because
in many situations, we really don’t know which IMs are insufficient for which EDPs of a
complex, MDF system. For the 4-story frame considered herein, the benchmark reveals that
the collection of 24 IMs employed in GCIM is insufficient with respect to roof acceleration,
implying that this EDP depends on a feature of the ground motion time series that has not
been considered thus far in the analysis.

20-story frame

The GCIM method was also implemented for the 20-story frame and for both stochastic
models. In both stochastic models, ground motions were again carefully selected to ensure
hazard consistency with respect to all 24 IMs (Step 4g in Section 5.7). Similar to the other
systems considered, it was most difficult to satisfy all KS tests at the largest two intensity
levels of A(T ∗) (i.e., 0.02% and 0.01% probability of exceedance in 50 years).

For such intensity levels, ground motions were examined for potential biases in EDPs
(see Step 7, Fig 5.20, Fig 5.22) before SDHCs were computed and compared against the
benchmark. Specifically, ground motions were iteratively selected and RHAs (of the 20-story
frame) were iteratively performed until ‘convergence’ is achieved. Convergence is achieved
when either the EDP was shown to not depend on the inconsistent IM (e.g., Fig 5.24), or the
estimated EDP bias was deemed acceptable (e.g., Fig 5.22), for all IMs that did not satisfy
the KS test. In order to avoid repeating Steps 7(a)ii-7(a)iii of the GCIM summary for all 62
EDPs of this 20-story frame, the latter steps were implemented for four salient EDPs: (i)
roof displacement, PFD20, (ii) first-story drift ratio, PSDR1, (iii) roof acceleration, PFA20,
and (iv) maximum story drift ratio over all stories, MSDR. Fortunately, ground motions
did not have to be re-selected with a different weight vector for the 20-story frame and for
both stochastic models, because convergence was achieved for the initial selection of ground
motions. For the 4-story frame however, convergence was not achieved for the initial selection
and hence, ground motions were reselected once more with a different weight vector, after
RHAs have already been conducted.

The GCIM-based SDHCs of the 20-story frame are shown in Figs 5.26 and 5.27, for
Yamamoto’s and Rezaeian’s stochastic model, respectively. These results demonstrate that
the agreement between the estimates from GCIM and the benchmark is excellent for all
EDPs considered. This is expected because (i) a comparable level of good agreement was
observed from CSexact for the same frame, and at the same time, (ii) GCIM captures even
more aspects of the ground motion than in CSexact when selecting ground motions. As noted
earlier in Section 5.6, such good agreement suggests, but does not imply, that the vector of
IMs considered for selecting ground motions is sufficient for the EDPs of this 20-story frame.
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Figure 5.26: Comparison of SDHC estimates for several EDPs of the 20-story frame from
GCIM against benchmark (Yamamoto’s model).

5.9 Comparative summary of CSexact and GCIM

Table 5.1 summarizes the effort involved when implementing CSexact and GCIM in this
study to compute SDHCs of a given structure at the specified site. The two procedures are
similar in that (i) a conditioning IM is chosen to scale ground motions, (ii) a relatively large
number of IMs is utilized to select ground motions, and (iii) KS tests are employed at each
intensity level of IM∗ to ensure hazard consistency of the selected motions. In addition, the
two procedures are similar in that NIM∗ = 12 intensity-based assessments are conducted and
hence NIM∗ = 12 deaggregations are performed, NIM∗ = 12 target multivariate distributions
are computed, and NIM∗ = 12 sets of ground motions are selected when determining a single
estimate of the SDHC.

Table 5.1 also highlights two major differences between CSexact and GCIM. First, other
features of the ground motion time series in addition to spectral accelerations (e.g., cumula-
tive effects, etc.) are incorporated in the ground motion selection process of GCIM whereas
only spectral accelerations are incorporated in that of CSexact. As a result, scaling of ground
motions in CSexact is limited by SFmax = 4 (based on personal communication with the
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Figure 5.27: Comparison of SDHC estimates for several EDPs of the 20-story frame from
GCIM against benchmark (Rezaeian’s model).

author of CSexact) whereas the scale factors in GCIM are indirectly limited through a judi-
cious choice of IM. Second, implementation of the bias-checking procedure is necessary in
GCIM, because GCIM aims to select ground motions in a holistic fashion. The bias-checking
procedure is an important step in GCIM because it offers analysts the ability to explicitly
check for potential EDP biases caused by improper ground motion selection, before proceed-
ing to compute SDHCs. As elaborated in Section 5.8 however, this step can become quite
involved, depending on the level of accuracy desired by the analyst. More importantly, it is
demonstrated in Section 5.8 that even after implementing the bias-checking procedure, for a
wide range of IMs and EDPs (see Figs 5.19-5.22), the SDHCs resulting from the finalized set
of ground motions may still be biased (see Fig 5.18c). This possibility of bias can be mini-
mized by employing unscaled ground motions, through the method of Importance Sampling,
as described in Chapter 4 and evaluated in Chapter 6.
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Table 5.1: Summary of effort involved in using CSexact and GCIM in this study to compute
SDHCs of a given structure at the specified site.

Attribute CSexact GCIM

Conditioning IM A(T ∗) = A(T1) IM∗ = A(T1)
Can all ground motions

No No
be unscaled?

Limits on scaling
SFmax = 4 No threshold

of ground motions

Type of IMs considered Spectral accelerations

Spectral accelerations,
peak ground measures,
spectrum intensities,

cumulative effects
Number of IMs used to

25 vibration periods 24 IMs
select ground motions

Total number of PSHA-based NIM∗ = 12 NIM∗ = 12
calculations for deaggregations deaggregations and

selecting ground motions and target spectra GCIM distributions
Total number of NIM∗ = 12 sets of NIM∗ = 12 sets of

ground motions used n = 25 ground motions n = 25 ground motions
How hazard consistency KS tests and

KS tests
is enforced greedy optimization

Is bias-checking
No Yes

procedure required?

5.10 Conclusions

In this study, two existing, contemporary GMSM procedures – CSexact and GCIM – are
evaluated in their ability to accurately estimate seismic demand hazard curves (SDHCs)
of a given structure at a specified site. A case study is chosen where rigorous benchmark
SDHCs can be determined. The amount of effort involved in implementing these procedures
to compute a single SDHC is summarized (Table 5.1). In essence NIM∗ intensity-based
assessments are conducted where for each assessment, ground motions are scaled but selected
to be consistent with respect to the target defined by PSHA for a user-specified collection of
IMs. The results from implementing these procedures are compared against the benchmark,
leading to the following conclusions:

1. Good agreement between the benchmark SDHC and the estimate from CSexact is
observed for most of the SDF systems considered and for the 20-story frame. In
some cases, the estimate from CSexact overestimates the annual rate of collapse and
underestimates floor accelerations.
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2. Good agreement between the benchmark SDHC and the estimate from GCIM is ob-
served for all of the SDF systems considered, for the 20-story frame, and for most of
the EDPs considered for the 4-story frame. Even with a large number of IMs employed
to select ground motions, along with implementation of the bias-checking procedure,
the estimate from GCIM underestimates some floor accelerations of the 4-story frame,
which is likely caused by record scaling.

3. Whether or not the estimate from a particular GMSM procedure is biased depends
on the particular problem, because the underlying cause of SDHC bias involves two
important aspects of the particular selection of ground motions: (i) hazard consistency,
and (ii) IM sufficiency. A GMSM procedure is only a tool for achieving hazard consis-
tency with respect to a user-specified collection of IMs; whether or not the resulting
SDHC is biased depends on how sufficient the vector of IMs is, relative to the EDP of
interest.

4. Given hazard consistency with respect to an IM, the benchmark SDHCs enable us to
identify IMs that are insufficient:

a) The vector of spectral accelerations at vibration periods from 0.05 to 10 sec, is
insufficient for estimating collapse of the 4-story frame and of the SDF system
with T1 = 1 sec, Ry = 1; for these cases, cumulative effects of the ground motion
appear to be important.

b) The vector of 24 IMs employed herein for GCIM, which captures amplitude, fre-
quency content, and duration of the ground motion, is insufficient for estimating
roof acceleration of the 4-story frame.

5. It is possible to obtain significantly biased SDHCs from GCIM, even after implement-
ing the bias-checking procedure to approximate potential EDP biases arising from
improper ground motion selection.

When interpreting the above conclusions, it should be borne in mind that a relatively simple
site is studied.
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Chapter 6

Evaluation of the Importance
Sampling approach to estimating
seismic demand hazard curves

6.1 Abstract

An Importance Sampling (IS) based ground motion selection procedure was proposed for
estimating SDHCs of structures at a specified site (Chapter 4). This procedure enables us to
take advantage of unscaled yet intense ground motions for estimating seismic demand hazard
curves (SDHCs), through database-driven Importance Functions (IF). More importantly, it
enables us to directly enforce hazard consistency of the selected motions with respect to
a given set of IMs through different choices of the IF. In this study, we evaluate the IS
procedure in its ability to accurately estimate SDHCs of structures at a specified site. We find
that SDHCs from this procedure are typically unbiased, especially when ground motions are
scaled minimally. The epistemic uncertainty in the SDHCs from the IS approach is controlled
primarily by the IF, g(·), and secondarily by the sample size, n. The amount of effort involved
in implementing the IS procedure is also summarized where we see that given a judiciously
chosen IF, the procedure greatly simplifies the problem of selecting ground motions for
estimating SDHCs. Finally, the possibility of estimating SDHCs for multiple systems from
a single ensemble of ground motions selected by the IS approach seems promising.

6.2 Introduction

Seismic demand hazard curves (SDHCs) of a given structure at a given site, which play
an important role in damage and loss estimation, are typically estimated in practice via
probabilistic seismic demand analysis (PSDA) [15]. In essence, multiple intensity-based
assessments [31, 3] of the structure are conducted and the results are combined with the
hazard curve of the chosen conditioning intensity measure (IM), determined by probabilistic
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seismic hazard analysis (PSHA) of the given site, in order to produce SDHCs of the structure.
More details about PSDA can be found in Section 2 of [64], among others.

Since ground motions are scaled in PSDA, it is natural to ask whether the resulting
SDHCs are biased and whether they provide useful information (e.g., [21]). As pointed out
in Section 6 of [64] however, SDHC bias is not caused directly by record scaling but rather, by
hazard inconsistencies of the selected ground motions with respect to IMs that are influential
to the response quantity, or engineering demand parameter (EDP). In other words, the bias
in a SDHC estimate is directly related to two important aspects of the specific selection of
ground motions: (i) IM sufficiency, and (ii) hazard consistency.

For example, suppose the conditioning IM is defined as spectral acceleration at the fun-
damental vibration period of the structure, A(T1). By scaling ground motions to the hazard
curve of A(T1), the motions are ensured to be consistent with the hazard curve for A(T1)
that is determined by PSHA; such motions are said to be hazard-consistent with respect to
A(T1). If the EDP is sensitive to only A(T1) and no other features of the ground motion (i.e.,
this IM is sufficient [12]), then (i) the resulting SDHC is unbiased at exceedance rates cor-
responding to those in which the selected ground motions are considered hazard-consistent,
and (ii) such good agreement is independent of the level of record scaling.

In many situations however, the response of a structure is sensitive to many more features
of the ground motion besides A(T1) alone and consequently, it is important to ensure that the
selected ground motions are also hazard-consistent with respect to such features. This can be
achieved with the Generalized Conditional Intensity Measure (GCIM) approach [47], where
Kolmogorov-Smirnov (KS) tests are employed to select ground motions that are consistent
with the GCIM distributions for a wide range of user-specified IMs. However, such KS tests
do not necessarily ensure hazard consistency at low exceedance rates because low exceedance
rates are occasionally controlled by the ‘tails’ of GCIM distributions (see Section 2 of [87]).
Furthermore, the use of record scaling in PSDA suggests that hazard inconsistencies may still
exist for IMs that have not been considered by the analyst in the selection of ground motions,
which can be important for certain EDPs (e.g., see Fig 5.18). One possibility for minimizing
such hazard inconsistencies is to employ a very large number of IMs to select ground motions.
Since hazard inconsistencies appear to be more pronounced when ground motions are scaled
(compare Fig 4.12 against Fig 4.9a), minimization of record scaling appears to be another
alternative to minimize hazard inconsistencies.

Suppose we are interested in avoiding record scaling altogether when computing SDHCs.
How can we best utilize a database of unscaled ground motions for this purpose? Moreover,
can we directly enforce hazard consistency at user-specified exceedance rates? The Impor-
tance Sampling (IS) procedure, developed in Chapter 4, answers these questions. In this
chapter, we evaluate this procedure using the same case study (i.e., site, stochastic models,
structural systems, and EDPs) and methodology that were described in Section 5.3 and 5.4;
in order to emphasize the main ideas regarding the IS procedure, only a subset of the results
from Yamamoto’s stochastic model are presented. Before doing so, we take a closer look at
the IS procedure.
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6.3 Step-by-step summary of the procedure

The Importance Sampling (IS) approach for estimating a SDHC is summarized as follows:

1. Specify a vector of IMs, IM, to be utilized for selecting ground motions.

2. Determine the target probability distribution of IM from PSHA of the site, using
Eq 4.3.

3. Choose an Importance Function (IF) for selecting ground motions.

4. Randomly simulate n vectors of IM from the multivariate IF in Step 3, using the
approach discussed in Section 4.4.

5. Select n ground motions whose computed values of IM most closely agree with those
simulated from Step 4, using the approach discussed in Section 4.4.

6. Compute IS weights from the selected ground motions, using Eq 4.6.

7. Check hazard consistency of the selected ground motions with respect to any IM of
interest (using Eq 4.5a); if deemed hazard-inconsistent, then reselect ground motions
(Steps 4-6), following the guidance provided in Section 4.4.

8. Perform response history analyses (RHAs) of the structure due to the n selected ground
motions.

9. Estimate the SDHC using the IS weights from Step 6, as outlined in Section 4.4.

When implementing Step 1 of the above summary, the number of IMs in IM should
be relatively small (i.e., four to six) because a large number of IMs leads to large epistemic
uncertainty in the resulting estimates of hazard curves (see Eqs 4.8-4.9), which is undesirable.
In addition, a small number of IMs reduces the computational time involved in computing
IS weights (Step 6); note that the evaluation of Eq 4.6 requires the evaluation of multiple
multivariate lognormal PDFs (Eq 4.3). Since there is often a finite number of ground motions
in the database to select from (Step 5), it is possible to obtain a selection of ground motions
that does not closely agree with the randomly simulated values of IM and hence, it is very
important to check hazard consistency of the selected motions (Step 7) before proceeding
with any RHAs; if the selected motions are hazard-inconsistent, then ground motions should
be reselected. Finally, the choice of IF (Step 3) is a critical step to the success of the IS
procedure, which is discussed next.

6.4 Choice of Importance Function

In the IS procedure, hazard curves for IMs and EDPs are estimated from Eq 4.5 (Steps 7
and 9). Each implementation of the procedure leads to hazard curves that are, on average,



CHAPTER 6. EVALUATION OF THE IMPORTANCE SAMPLING APPROACH TO
ESTIMATING SEISMIC DEMAND HAZARD CURVES 124

unbiased (Eq 4.7) 1; in other words, the 95% confidence interval (CI) of the estimate covers
the benchmark. The epistemic uncertainty of such hazard curve estimates are given by
Eqs 4.8-4.9. For a given structure at a given site, all parameters in these two equations are
fixed, except for the IF, g(·), and the sample size, n. Thus, for a given value of n, the IF
controls the epistemic uncertainty of the hazard curve estimates.

Assuming an infinite number of ground motions is available for selection, a good IF is
one that possesses two desirable attributes. First, it should be relatively easy to randomly
simulate vectors of IMs from the IF (Step 4). For example, it is relatively easy to randomly
simulate vectors of IMs from multivariate lognormal distributions (see e.g., Section 6.2 of
[73]) or from mixtures of multivariate lognormal distributions. Second, the IF should lead
to relatively small epistemic uncertainty in the SDHC estimates. This implies that the IF
should be chosen by minimizing the integral in Eq 4.9; however, this cannot be done because
the term Pr(EDP > z | IM = s) is unknown. Consequently, we resort to another approach
that will be described at the end of this section.

In practice, the range of possible IFs to choose from is restricted by the ground motions
that are available for selection. For example, when the largest observed value of A(1s) in
the database is, say 1g, there would be no point in specifying an IF whose mode is located
at intensities greater than 1g (see Step 5). Consequently, we propose to develop IFs whose
parameters are computed from the database of ground motions (Section 4.4).

The database of 104 synthetic ground motions from Yamamoto’s stochastic model (Sec-
tion 5.4) and the 4-story frame (Section 5.3) are chosen as an example to illustrate such
database-driven IFs. Fig 6.1 illustrates two IFs that are multivariate lognormal: (i) g1(·),
and (ii) g2(·). The mean vector and covariance matrix of g1(·) are determined from the values
of IMs corresponding to all 104 ground motions, using Eqs 4.10-4.11 (see Section 4.4). In this
particular example, the mode of g1(·) happens to be larger than the mode of the target PDF
from PSHA, f(·), implying that ground motions selected using g1(·) will be more intense
than those selected using f(·). However, suppose one is interested in only unscaled ground
motions where A(T1) ≥ 1g and A(2T1) ≥ 0.5g. In this case, another possible IF would
be to first filter the database of 104 ground motions according to the latter criteria before
determining the mean vector and covariance matrix for the IF; this is depicted as g2(·) in
Fig 6.1.

Fig 6.1 also illustrates a third example of a database-driven IF, g3(·). This IF is a mixture
of the previous two IFs:

g3(x) = [1− η] · g1(x) + η · g2(x) (6.1)

where 0 ≤ η ≤ 1 refers to the mixing proportion. Eq 6.1 is similar to Eq 4.12 except that
the individual multivariate lognormal distributions in Eq 6.1 are derived from subsets of the
database of unscaled ground motions. Similar to the two-component mixture IF in Eq 4.12,
values of IM are randomly generated from g3(·) via two steps: (i) identify one of the two
components by randomly sampling from the Bernoulli distribution with probability η, and
(ii) randomly generate a value of IM from the component identified.

1This may not be the case when IM is insufficient and ground motions are scaled (see Section 4.3).
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Figure 6.1: Examples of database-driven IFs with reference to target PDFs from PSHA,
f(·) (dotted black): (i) g1(·) (chained blue), (ii) g2(·) (dashed red), (i) g3(·) (solid green).
Marginal distribution for (a) A(T4); (b) A(T1); (c) A(2T1); (d) D5−75.

How can one identify a single IF to proceed with, given a range of possible choices
for the IF (Fig 6.1)? First, we note that the “optimal” IF varies with both (i) the EDP
considered and (ii) the level of seismic demand, z, because the epistemic uncertainty in
the SDHC depends on Pr(EDP > z | IM = s) in Eq 4.9. Second, we note that given an
EDP and a level of seismic demand (or exceedance rate), the IF cannot be determined from
minimizing Eq 4.9 because the term Pr(EDP > z | IM = s) is unknown. Nevertheless,
these observations suggest a practical approach for ranking a given collection of IFs.

For a given EDP and a level of seismic demand, we propose to choose the IF by minimizing
the epistemic uncertainty in the hazard curves for each IM in IM, at exceedance rates that
are deemed influential to the given level of seismic demand. The epistemic uncertainty in
the hazard curves can be quantified by standard Monte Carlo simulation methods (see e.g.,
Chapter 5 of [89]). This approach is summarized as follows:

1. For each IF, do the following:

a) Randomly generate n values of IM from the IF.
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b) Compute the hazard curve for each IM in IM, by applying Eq 4.5a to the simulated
values of IM.

c) Repeat the latter two steps until NEpi hazard curves have been computed for each
IM in IM.

d) Construct a 95% CI of the hazard curve for each IM in IM.

2. Choose the IF that leads to the narrowest CI for the IMs and exceedance rates of
interest.

This approach is illustrated in Fig 6.2 for g1(·) and g3(·) from Fig 6.1. For each of the
two IFs and for each IM, the 95% CI of the hazard curve is presented. As expected, the CI
of the hazard curves for A(T1) and A(2T1) from g3(·), at exceedance rates less than 10−5,
are narrower than those from g1(·), because g3(·) concentrates on the tail regions of A(T1)
and A(2T1) more so than g1(·) (Figs 6.1b-c). If one assumed that the response of the system
at low exceedance rates is most sensitive to A(T1) and A(2T1), at exceedance rates less than
10−5, then g3(·) would be chosen over g1(·). In summary, the IS procedure enables one to
estimate SDHCs with unscaled yet intense ground motions, through different choices of the
IF.

6.5 Estimating SDHCs without scaling ground

motions

In this section, we evaluate the IS procedure in its ability to estimate SDHCs without scaling
ground motions. In order to facilitate comparison between the results from this procedure
against those from GCIM or CSexact (Chapter 5), where 12×25 = 300 ground motions were
employed to estimate a single SDHC, n = 300 ground motions are selected for computing
SDHCs of each system (SDF systems, 4-story frame, and 20-story frame). For each multistory
frame, four IMs are chosen to select ground motions (Step 1): spectral accelerations at (i)
the fundamental vibration period of the structure, A(T1), (ii) twice the fundamental period,
A(2T1), (iii) the fourth-mode period, A(T4), and (iv) 5-75% significant duration, D5−75.
These four IMs are also chosen to select ground motions for each SDF system, except that
A(T4) is replaced by A(0.2T1). Given these IMs for selecting ground motions, IM, the only
input parameter that remains to be specified for the IS procedure is the IF.

The simplest IF is a multivariate lognormal distribution whose parameters are determined
from all 104 unscaled, ground motions in the database; this is denoted by gu(·) in Section 4.4
(i.e., SFmax = 1 or γ = 0) or equivalently, g1(·) in Section 6.4. Using this IF, n = 300 values
of IM are randomly generated (Step 4) and using Eq 4.13, n = 300 ground motions from the
database are selected (Step 5). Applying Eqs 4.5a and 4.6 to the selected ground motions
leads to estimates of hazard curves for any IM. For example, hazard consistency of the ground
motions selected for the 4-story frame is examined in Fig 6.3, with respect to nine different
IMs: (i) A(T4), (ii) A(T1), (iii) A(2T1), (iv) A(4T1), (v) peak ground acceleration (PGA),
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Figure 6.2: Proposed approach for choosing IF among several possibilities; NEpi = 103.
Hazard curves for (a) A(T4); (b) A(T1); (c) A(2T1); (d) D5−75.

(vi) peak ground velocity (PGV), (vii) peak ground displacement (PGD), (viii) cumulative
absolute velocity (CAV), and (ix) D5−75.

Fig 6.3 demonstrates that the ground motions selected from the IS procedure, with gu(·)
as the IF, are hazard-consistent with respect to a wide range of IMs and exceedance rates,
even though only four IMs are chosen to select ground motions. This is the case because
(i) ground motions are unscaled, and (ii) the chosen IM is strongly correlated with many
other features of the ground motion. Thus, the IS procedure offers a direct means (through
various choices for IM and the IF) to achieve hazard consistency over a wide range of IMs
and exceedance rates. As a result, SDHCs from the IS procedure are expected to be unbiased.

Fig 6.4 presents SDHCs of the 4-story frame, resulting from the ground motions sum-
marized in Fig 6.3, for four EDPs: (i) roof displacement, PFD4, (ii) first story drift ratio,
PSDR1, (iii) roof acceleration, PFA4, and (iv) maximum story drift ratio (MSDR). As
expected from theoretical considerations (Section 4.3) and from the hazard consistencies ob-
served in Fig 6.3, the SDHCs are unbiased because the 95% CI of each SDHC covers the
benchmark. Note that the roof acceleration hazard curve from the IS approach is unbiased
(Fig 6.4c), whereas that from GCIM underestimates the benchmark (Fig 5.16c); however,
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Figure 6.3: Hazard consistency of the motions selected with gu(·) for the 4-story frame, with
respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA; (f) PGV; (g) PGD; (h)
CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and 95%
CI of estimate from IS in chained black.

the epistemic uncertainty in the SDHCs from the IS approach, at exceedance rates less than
10−3, is larger than that from GCIM. Nonetheless, it is important to emphasize that the
SDHCs from the IS approach are obtained from a single set of n = 300 ground motions that
are selected using a total of four IMs.

Fig 6.5 presents SDHCs of the 20-story frame, resulting from ground motions selected
by the IS approach with gu(·) as the IF, for four EDPs: (i) roof displacement, PFD20,
(ii) first story drift ratio, PSDR1, (iii) roof acceleration, PFA20, and (iv) maximum story
drift ratio (MSDR). The corresponding ground motions were again carefully selected to be
hazard-consistent over a wide range of IMs and exceedance rates, by choosing the following
four IMs for selection: (i) A(T4), (ii) A(T1), (iii) A(2T1), and (iv) D5−75. As in the case of the
4-story frame, the SDHCs of the 20-story frame from the IS approach are again unbiased for
all EDPs considered. Compared to the SDHCs of the 20-story frame from GCIM (Fig 5.26),
the epistemic uncertainty in the displacement and drift ratio hazard curves from IS is larger
than that from GCIM but the epistemic uncertainty in the acceleration hazard curves from
IS is smaller than that from GCIM.
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Figure 6.4: Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with gu(·) as the IF, against benchmark.

Recall from Section 6.4 that for a given site, structure, and sample size n, the epistemic
uncertainty in the SDHCs from IS is controlled by the IF. To verify this claim, ground
motions for both frames are reselected from IS using IFs that strive to minimize the epistemic
uncertainty of the displacement and drift ratio hazard curves at low exceedance rates. For
this purpose, we choose g3(·) (Eq 6.1) as the IF, where η and g2(·) are chosen so that the
resulting g3(·) leads to lower epistemic uncertainty, at exceedance rates less than 10−4 of the
hazard curves for A(T1) and A(2T1), compared to that from gu(·) (see Fig 6.2).

Fig 6.6 examines hazard consistency of the ground motions selected from g3(·) for the
4-story frame, with respect to the same nine IMs shown in Fig 6.3. As expected from the
construction of g3(·), we observe that the epistemic uncertainty in the hazard curves from
g3(·) for A(T1) and A(2T1), at exceedance rates less than 10−5, (Fig 6.6b-c) is smaller than
that from g1(·) (Fig 6.3b-c). In fact, the same can be said for virtually all of the nine IMs
considered. If the response of the 4-story frame at low exceedance rates is indeed sensitive
to these IMs, then the reduction in epistemic uncertainty of the hazard curves in Fig 6.6
suggests that a similar reduction will be obtained for the SDHCs.

This hypothesis is confirmed in Figs 6.7-6.8, where SDHCs resulting from g3(·) are pre-
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Figure 6.5: Comparison of SDHC estimates for several EDPs of the 20-story frame from IS,
with gu(·) as the IF, against benchmark.

sented for both frames. Compared to the SDHCs from gu(·) (Figs 6.4-6.5), the epistemic
uncertainty in the SDHCs from g3(·) (Figs 6.7-6.8) is smaller, especially at low annual rates
of exceedance. Furthermore, the SDHCs from g3(·) remain essentially unbiased. In summary,
accurate estimates of the SDHC can be obtained from the IS approach (e.g., compare Fig 6.7
against Fig 5.16) with less effort than existing procedures (i.e., 4 IMs and a single set of 300
ground motions in IS compared to 24 IMs and 12 sets of 25 ground motions in GCIM), as
long as a large number of unscaled yet intense ground motions are available for selection,
and a good IF is chosen.

6.6 Estimating SDHCs with partially scaled ground

motions

In practice, ground motion records that are intense enough may be lacking. In this case, the
mode of all database-driven IFs would be equal to or smaller than the mode of the target
PDFs given by PSHA, f(·), unlike those shown in Fig 6.1. As a result, the hazard curve
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Figure 6.6: Hazard consistency of the motions selected with g3(·) for the 4-story frame, with
respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA; (f) PGV; (g) PGD; (h)
CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and 95%
CI of estimate from IS in chained black.

estimates from the IS approach will contain a relatively large degree of epistemic uncertainty
at low exceedance rates, despite the fact that they are unbiased. This issue can be overcome
by either: (i) adding more unscaled, synthetic ground motions to the database, or (ii) scale
the motions in the existing database; we investigate the latter option in this section.

By allowing ground motions to be scaled, the effective size of the database increases and
hence, a wider range of IFs can be chosen. For instance, a two-component mixture of mul-
tivariate lognormals was introduced in Section 4.4 (Eq 4.12), where the IF is controlled by
three inputs: (i) the specified database of unscaled ground motions, (ii) the maximum ac-
ceptable scale factor, SFmax, and (iii) a target fraction of scaled ground motions, γ. Through
varying SFmax and γ, different IFs can be derived for minimizing epistemic uncertainty in
the resulting estimates of hazard curves.

However, record scaling potentially introduces bias into the hazard curve estimates, de-
pending on the sufficiency of IM relative to the EDP (and seismic demand level, z) of
interest. Section 4.7 explored the relationship between various levels of record scaling and
bias in SDHCs of the 4-story frame, leading to the recommendation that (i) SFmax should
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Figure 6.7: Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with g3(·) as the IF, against benchmark.

be less than or equal to 5, and (ii) γ should be less than or equal to 0.5 2. To evaluate the
IS procedure with scaled ground motions in this section, we specify SFmax = 5 and γ = 0.5.
In order to minimize potential bias due to record scaling, IM is expanded in this section
to include six IMs: (i) A(T4), (ii) A(T1), (iii) A(3T1), (iv) displacement spectrum intensity
(DSI) [90], (v) CAV, and (vi) D5−75. Note that A(3T1) and DSI are chosen because the
results from Section 4.7 suggest that the inelastic response of the 4-story frame is sensitive
to the long-period content of the ground motion (Fig 4.14). Thus, the IF in this section is
defined by Eq 4.12, with SFmax = 5, γ = 0.5, and IM consisting of these six IMs.

Ground motions are selected from IS with the IF defined in the preceding paragraph, for
both multistory frames. Fig 6.9 examines hazard consistency of these ground motions, with
respect to the same nine IMs used in Figs 6.3 and 6.6. As in Figs 6.3 and 6.6 where ground
motions are unscaled, the scaled motions are also hazard-consistent over a wide range of
IMs and exceedance rates, despite the fact that only six IMs are chosen to select ground
motions. Unlike the hazard curves from gu(·) in Fig 6.3 however, those for scaled motions

2When IM consists of: (i) A(T1), (ii) A(2T1), (iii) A(T4), and (iv) D5−75.
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Figure 6.8: Comparison of SDHC estimates for several EDPs of the 20-story frame from IS,
with g3(·) as the IF, against benchmark.

in Fig 6.9 contain less epistemic uncertainty at low exceedance rates, which is desirable.
This is expected because the IF with SFmax = 5 and γ = 0.5 puts more probability density
at large values of the IMs (see Fig 4.5a). Although the hazard curves for IMs contain less
epistemic uncertainty as a result of scaling, can the same be said for the hazard curves for
EDPs? Further, are the resulting SDHCs biased?

Fig 6.10 answers these questions for the 4-story frame. Specifically, the SDHCs from IS
with scaling (i) are indeed unbiased, and (ii) contain less epistemic uncertainty that those
from unscaled motions (Fig 6.4). Such is the case because the ground motions, although
scaled, were carefully selected to be hazard-consistent with respect to IM, and these six IMs
are in turn correlated with a wide range of other IMs (Fig 6.9).

Ground motions were also selected for the 20-story frame, from the IF defined by SFmax =
5, γ = 0.5, and the same six IMs that were chosen for the 4-story frame (i.e., A(T4), CAV,
etc.), such that hazard consistency is ensured for a wide range of IMs and exceedance rates
through IM. The resulting SDHCs for the 20-story frame are presented in Fig 6.11. As in
the case of the 4-story frame, the SDHCs of the 20-story frame are also unbiased. Unlike
the 4-story frame however, the epistemic uncertainty in the SDHCs from scaled motions is
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Figure 6.9: Hazard consistency of the motions selected with SFmax = 5 and γ = 0.5 for
the 4-story frame, with respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA;
(f) PGV; (g) PGD; (h) CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in
dashed black, and 95% CI of estimate from IS in chained black.

not less than that from unscaled motions (Fig 6.5). This is due to the fact that the IF for
scaled ground motions is chosen herein out of convenience (i.e., by specifying SFmax = 5 and
γ = 0.5 in Eq 4.12), instead of minimizing the epistemic uncertainty in hazard curves for
IMs, as described at the end of Section 6.4 (see Fig 6.2).

The IS approach with scaling of ground motions, as described in this section, was also
applied to nine SDF systems. For nearly all of the cases considered, the SDHCs from this
approach are unbiased; for the cases where SDHCs from this approach are biased, the biases
are relatively small and conservative. These results serve to remind us that the potential
bias in any SDHC estimate is controlled directly by the hazard consistency of the particular
set of ground motions with respect to sufficient IMs, and not by the GMSM procedure itself.
Fortunately, the proposed IS procedure enables us to directly examine hazard consistency of
the selected motions with respect to any IM of interest.



CHAPTER 6. EVALUATION OF THE IMPORTANCE SAMPLING APPROACH TO
ESTIMATING SEISMIC DEMAND HAZARD CURVES 135

0 10 20 30

10
−4

10
−3

10
−2

10
−1

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

PFD
4
 [in]

(a)

 

 

Benchmark

IS

95% CI

0 2 4 6 8

10
−4

10
−3

10
−2

10
−1

PSDR
1
 [%]

(b)

0 0.5 1

10
−4

10
−3

10
−2

10
−1

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

PFA
4
 [g]

(c)

0 5 10

10
−4

10
−3

10
−2

10
−1

MSDR [%]

(d)

Figure 6.10: Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with SFmax = 5 and γ = 0.5, against benchmark.

6.7 Estimating SDHCs of multiple systems from a

single ensemble of ground motions

In Section 6.5, we saw that ground motions selected from the IS approach can be hazard-
consistent with respect to a wide range of IMs and exceedance rates, even though only four
IMs were chosen to select ground motions. This was the case because (i) ground motions
were unscaled, and (ii) the four IMs were judiciously chosen to correlate with many other
features of the ground motion. In the limiting case where the selected motions are hazard-
consistent with respect to an infinite number of IMs, the resulting SDHCs are guaranteed
to be unbiased because a vector of an infinite number of IMs is sufficient for any EDP by
definition (see Eq 5.1 in Section 5.2 and Section 6 in [64]). Thus, with hazard consistency
enforced over a wide range of IMs and exceedance rates, it seems reasonable to expect the
resulting SDHCs to be unbiased (see e.g., Figs 6.7 and 6.8). With these ideas in mind, can
we somehow intelligently select a single ensemble of ground motions for estimating SDHCs
of multiple systems – these could be alternate designs – at the same site?
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Figure 6.11: Comparison of SDHC estimates for several EDPs of the 20-story frame from
IS, with SFmax = 5 and γ = 0.5, against benchmark.

To achieve this objective, one would perhaps need a vector of IMs that (i) covers vir-
tually all aspects of the ground motion, and (ii) is not specific to a particular structure.
In earthquake engineering, the three most important characteristics of ground motion are:
(i) amplitude, (ii) frequency content, and (iii) duration [91]. Motivated by this idea, let us
select ground motions with four non-structure specific IMs: (i) PGA, (ii) PGV, (iii) PGD,
and (iv) D5−75.

Using this vector of IMs and g1(·) as the IF (Fig 6.1) in the IS approach, a single ensemble
of n = 300 unscaled ground motions is selected. Fig 6.12 examines hazard consistency of
these selected motions, with respect to nine IMs: (i) A(0.1s), (ii) A(1s), (iii) A(5s), (iv)
A(10s), (v) PGA, (vi) PGV, (vii) PGD, (viii) CAV, and (ix) D5−75. The motions are not
only hazard-consistent with respect to the four IMs chosen for selection but also with respect
to IMs such as CAV and spectral accelerations at various vibration periods. However, the
hazard consistencies are occasionally limited to exceedance rates greater than 10−5 (e.g.,
Fig 6.12a) because g1(·) is chosen as the IF (Fig 6.1); this suggests that the epistemic
uncertainty in the resulting SDHCs may be large at low exceedance rates.

RHAs are performed for both multistory frames, subjected to the same set of n = 300
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Figure 6.12: Hazard consistency of the motions selected from a non-structure specific IM,
with respect to: (a) A(0.1s); (b) A(1s); (c) A(5s); (d) A(10s); (e) PGA; (f) PGV; (g) PGD;
(h) CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and
95% CI of estimate from IS in chained black.

ground motions that are summarized in Fig 6.12. The resulting SDHCs of the 4-story and 20-
story frames are presented in Figs 6.13 and 6.14, respectively. Based on these figures, the idea
of selecting a single ensemble of ground motions for estimating SDHCs of several structures
(and several EDPs for each structure) seems promising. Observe that the SDHCs of both
frames are essentially unbiased for all EDPs considered. However, the epistemic uncertainty
in the SDHCs at low exceedance rates is relatively large, compared to the results shown in
Figs 6.4 and 6.5. This epistemic uncertainty can be reduced by increasing the sample size n
and/or choosing a different IF (Fig 6.2).

6.8 Comparison with other GMSM procedures

Table 6.1 compares the effort involved when implementing IS in this study, without scaling
ground motions, to compute SDHCs of a given structure at the specified site, against that
from implementing GCIM (Chapter 5). The two procedures are similar in that a wide variety
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Figure 6.13: Comparison of SDHC estimates for several EDPs of the 4-story frame from a
single non-structure specific set of ground motions, against benchmark.

of IMs can be chosen to select ground motions. Other than this attribute, the two procedures
are very different.

Recall from Chapter 5 that the potential bias in a SDHC estimate is caused directly by
hazard inconsistencies of the specific set of ground motions with respect to IMs that are
influential to the response and indirectly by GMSM procedures; GMSM procedures are only
tools to achieve hazard consistency with respect to a user-specified collection of IMs. For
instance, GCIM aims to enforce hazard consistency by ensuring that the selected motions
pass the KS tests at all intensity levels of the conditioning IM. Because hazard consistencies
at low exceedance rates are occasionally controlled by the ‘tail’ of the GCIM distributions, the
ground motions selected from GCIM may still remain hazard-inconsistent at low exceedance
rates, despite passing all KS tests (see Figs 1-2 in [87]). In contrast (see Table 6.1 for
how hazard consistency is enforced), the IS approach allows users to directly enforce hazard
consistency through different choices of the IF, g(·).

In addition to hazard consistency, the other key issue that controls biases in SDHC
estimates is IM sufficiency [12]. If a vector of IMs is known to be sufficient for the EDPs
of interest, then both GCIM and IS may lead to unbiased SDHCs, as long as the resulting
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Figure 6.14: Comparison of SDHC estimates for several EDPs of the 20-story frame from
the same set of ground motions utilized in Figs 6.12-6.13, against benchmark.

ground motions are hazard-consistent with respect to the sufficient IM. Unfortunately, it is
difficult to identify IMs that are truly sufficient for complex, MDF systems and consequently,
biases in the SDHC estimate may still exist despite achieving hazard consistency for a finite
number of IMs. The GCIM approach strives to minimize such potential biases through two
means: (i) by including a large number of ‘orthogonal’ IMs in the ground motion selection
process, and (ii) by implementing the bias-checking procedure (Section 5.8). In contrast
and as shown in Table 6.1, the IS approach strives to minimize potential SDHC biases by
(i) minimizing the level of record scaling (including the possibility of no scaling at all),
(ii) judiciously choosing the vector of IMs for ground motion selection, and (iii) carefully
choosing the IF (Fig 6.2). Given that SDHCs from the IS approach are generally unbiased
(e.g., Figs 6.7, 6.8, 6.10, 6.11, etc.), a procedure for checking bias does not appear to be
necessary.

The IS approach simplifies the problem of selecting ground motions (for estimating SD-
HCs) in many ways. First, a single set of n ground motions is selected in IS to estimate
SDHCs whereas in standard PSDA (Section 2.3), NIM∗ sets of n ground motions are se-
lected. Instead of conducting NIM∗ deaggregations and computing NIM∗ different target
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Table 6.1: Summary of effort involved in using GCIM and IS (without scaling ground mo-
tions) in this study to compute SDHCs of a given structure at the specified site.

Attribute GCIM IS

Conditioning IM IM∗ = A(T1) None
Can all ground motions

No Yes
be unscaled?

Limits on scaling
No threshold SFmax = 1, γ = 0

of ground motions

Type of IMs considered

Spectral accelerations, Spectral accelerations,
peak ground measures, peak ground measures,
spectrum intensities, spectrum intensities,

cumulative effects cumulative effects
Number of IMs used to

24 IMs 4 IMs
select ground motions

Total number of PSHA-based NIM∗ = 12 1 target
calculations for deaggregations and distribution

selecting ground motions GCIM distributions for IM
Total number of NIM∗ = 12 sets of 1 set of n = 300

ground motions used n = 25 ground motions ground motions
How hazard consistency

KS tests
Direct comparison

is enforced of hazard curves
Is bias-checking

Yes
May not

procedure required? be necessary
Can SDHCs for several

No Seems promisingsystems be obtained from
a single set of GMs?

distributions of IM, the target distribution of IM in IS is computed once (Eq 4.3). Second,
good results can be obtained from the IS approach with just a small number of judiciously
chosen IMs (four to six in this study, depending on the level of record scaling), whereas
contemporary GMSM procedures often employ more than a dozen IMs (e.g., 17 IMs in [48],
20 IMs in [1], etc.). In exchange for unbiased SDHCs with low epistemic uncertainty from a
small number of IMs however, the analyst must either (i) carefully choose the IF (Fig 6.2),
or employ a very large number of unscaled ground motions. Third, a conditioning scalar IM
does not need to be chosen in IS (see Table 6.1); in fact, the vector of IMs chosen in IS to
select ground motions can be non-structure specific, suggesting the possibility of determining
SDHCs of multiple systems, which may represent alternative designs at a fixed site, from a
single ensemble of ground motions (Section 6.7).
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6.9 Conclusions

An Importance Sampling (IS) based ground motion selection procedure was proposed for
estimating SDHCs of structures at a specified site (Chapter 4). This procedure enables us
to take advantage of unscaled yet intense ground motions for estimating SDHCs, through
database-driven Importance Functions (IF). Moreover, it enables us to directly enforce haz-
ard consistency of the selected motions with respect to a given set of IMs via various choices
of the IF. In this study, we evaluate the IS procedure in its ability to accurately estimate
SDHCs of multistory frames, leading to the following conclusions:

1. SDHCs from the IS approach are typically unbiased:

a) When ground motions are unscaled, SDHCs from IS are unbiased for all EDPs,
systems, and stochastic models considered.

b) When ground motions are scaled (up to SFmax = 5), SDHCs from IS are unbiased
for nearly all EDPs, systems, and stochastic models considered.

c) The biased cases from scaling indicate that the vector of IMs chosen for ground
motion selection is insufficient for those EDPs; i.e., hazard inconsistencies with
respect to other IMs cause bias. The fact that no biases are observed when
scaling is avoided implies that hazard inconsistencies with respect to other IMs
are minimized when ground motions are unscaled.

2. The epistemic uncertainty in the SDHC estimates from the IS approach is controlled
primarily by the IF and secondarily by the sample size, n.

3. Given a judiciously chosen IF, the IS approach greatly simplifies the problem of select-
ing ground motions to estimate SDHCs, by reducing the number of: (i) IMs chosen
to select ground motions, (ii) target distributions of IM to be computed from PSHA,
and (iii) sets of ground motions for RHAs.

4. With a non-structure specific vector of IMs and an appropriate choice of IF, the IS ap-
proach offers the ability to estimate SDHCs of multiple systems from a single ensemble
of ground motions.

When interpreting the above conclusions, it should be borne in mind that a relatively simple
site is studied. For a realistic site with many earthquake sources and uncertainty in source-
to-site distance, the target probability distribution of IM (i.e., fIM(x) from Eq 4.3) and
the availability of recorded ground motions may collectively render it difficult to obtain a
database-driven IF that covers the ‘tail’ of fIM(x) (see Fig 4.1) while simultaneously avoiding
record scaling. Furthermore, a realistic site may increase the computational time involved in
computing IS weights (Eq 4.6), because Eq 4.3 must be evaluated for each of the n selected
ground motions.

There are two limitations to the IS procedure:
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1. The number of IMs chosen to select ground motions (Step 1) cannot be very large be-
cause a large number of IMs leads to two undesirable effects: (i) increase in epistemic
uncertainty of the hazard curve estimates (Eqs 4.8-4.9), and (ii) increase in computa-
tional time involved in computing IS weights (see Eqs 4.6 and 4.3).

2. The potential bias and epistemic uncertainty of the hazard curve estimates are highly
dependent on the choice of the IF (Section 6.4).
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Chapter 7

Conclusions

In this dissertation, the issue of selecting and scaling ground motions for estimating seismic
demand hazard curves (SDHCs) of structures is investigated. The key contributions are
summarized as follows:

1. An approach to rigorously quantify potential biases in SDHC estimates from ground
motion selection and modification (GMSM) procedures is developed, leading to the
important notion of a benchmark SDHC.

2. Based on the concept of Importance Sampling, a novel ground motion selection pro-
cedure is developed that allows: (i) hazard consistency to be directly enforced for a
user-specified collection of IMs, and (ii) SDHCs of a structure to be estimated from
a single ensemble of ground motions, with the option of avoiding record scaling alto-
gether.

3. Contemporary GMSM procedures are evaluated for a variety of structures and response
quantities in their ability to accurately estimate SDHCs at a given site.

This investigation has led to the following major conclusions:

1. Biases in SDHC estimates are caused directly by hazard inconsistencies of the specific
selection of ground motions with respect to intensity measures (IMs) that are influ-
ential to the response and indirectly by GMSM procedures; such procedures are only
a means for enforcing hazard consistency of a particular selection of ground motions,
with respect to a user-specified collection of IMs.

2. As long as ground motions are selected to be hazard-consistent with respect to an IM
that is sufficient, the resulting estimates of the SDHC are unbiased, irrespective of the
level of record scaling.

3. Given that a particular selection of ground motions is hazard-consistent with respect to
a vector of IMs, any bias observed in the resulting estimate of the SDHC implies that
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the vector of IMs is insufficient for that particular response quantity. The concept of a
benchmark, developed in Chapters 2-3, enables such biases to be directly determined
and hence, insufficient IMs to be identified.

4. Based on the evaluation of three contemporary GMSM procedures – (i) “exact” Con-
ditional Spectrum (CSexact), (ii) Generalized Conditional Intensity Measure (GCIM),
and (iii) Importance Sampling (IS) – the following can be concluded:

a) The SDHCs from CSexact are unbiased for many systems and response quantities
but in some cases, the annual rate of collapse is overestimated and floor acceler-
ations are underestimated. The epistemic uncertainty in the SDHCs is relatively
small.

b) The SDHCs from GCIM are unbiased for many systems and response quanti-
ties but in few cases, the floor accelerations are underestimated. The epistemic
uncertainty in the SDHCs is relatively small.

c) The SDHCs from IS are unbiased for all systems and response quantities consid-
ered when record scaling is avoided altogether; however, the epistemic uncertainty
in the SDHCs depends on the Importance Function chosen to select ground mo-
tions. When ground motions are scaled in IS, both the SDHC bias and epistemic
uncertainty depend on the IMs and the Importance Function chosen to select
ground motions.

The work in this dissertation is limited in that:

1. Only two multistory frames and nine SDF systems (with degrading hysteresis) are
considered.

2. The site considered is relatively simple.

3. Only a single horizontal component of ground motion is studied herein.

4. Near-fault effects are not considered.

Future research should consider more structural systems and sites to confirm the generality
of the conclusions presented herein.
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Appendix A

Derivations for the proposed
Importance Sampling procedure

A.1 Derivation for Eq 4.7a

Let a randomly generated vector of IMs from the Importance Function (IF), gX(x), be
denoted by X and let a random sample of n vector-valued IMs be denoted by {X1, . . . ,Xn}.
Let a single element of the vector Xi be denoted by Xi and the rest of its elements be denoted
by Xc

i ; that is, Xi = {Xi,X
c
i}. The resulting estimate of the hazard curve for an IM 1 is

given by Eq 4.5a, repeated here for convenience:

λ̂IM(x) =
ν0

n

n∑
i=1

[I(Xi > x) · w(Xi)] (A.1)

where xi is capitalized and wi is replaced by w(Xi) to emphasize that the hazard curve
estimate is random because the IMs generated from the IF are random.

1Only IMs included in IM are considered in this section.
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Taking the expectation of λ̂IM(x) in Eq A.1 with respect to gX(x) gives

EX

[
λ̂IM(x)

]
= ν0 · EX [I(X1 > x) · w(X1)]

= ν0

∫
s

[I(s > x) · w(s)] g(s) ds

= ν0

∫
s

∫
sc

[I(s > x) f(s)] dsc ds

= ν0

∫
s

I(s > x)

(∫
sc
f(s) dsc

)
ds

= ν0

∞∫
x

f(s) ds

= λIM(x) (A.2)

where each transition is obtained from:

1. Each ith vector, Xi, is independent and identically distributed, with the joint distribu-
tion as gX(x).

2. Rule of the lazy statistician.

3. Definition of Importance Sampling weight and rewriting domain of integration.

4. Indicator function does not depend on sc.

5. Definition of the indicator function and definition of the marginal distribution, fX(s),
relative to the joint distribution, fX(s).

6. Definition of the complementary cumulative distribution function (CCDF) and appli-
cation of Eq 4.2.

A.2 Derivation for Eq 4.7b

Let a randomly generated vector of IMs from the Importance Function (IF), gX(x), be de-
noted by X and let a random sample of n vector-valued IMs be denoted by {X1, . . . ,Xn}.
Each vector-valued IM corresponds to a ground motion time series and hence, a random
sample of vector-valued IMs corresponds to an ensemble of n ground motions. Let an arbi-
trary EDP of the ith ground motion be denoted by Zi. The resulting estimate of the hazard
curve for an EDP is given by Eq 4.5b, repeated here for convenience:

λ̂EDP (z) =
ν0

n

n∑
i=1

[I(Zi > z) · w(Xi)] (A.3)
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where zi is capitalized and wi is replaced by w(Xi) to emphasize that the hazard curve
estimate is random because the IMs generated from the IF are random. By introducing the
IF, gX(x), the joint probability distribution of Z and X, denoted by fZ,X(z,x) = fZ|X(z |
x) · fX(x) (see Fig 4.2), becomes gZ,X(z,x) = fZ|X(z | x) · gX(x).

Taking the expectation of λ̂Z(z) in Eq A.3 with respect to gZ,X(z,x) gives

EZ,X
[
λ̂EDP (z)

]
= ν0 · EZ,X [I(Z1 > z) · w(X1)]

= ν0

∫
t

∫
s

[I(t > z) · w(s)] gZ,X(t, s) ds dt

= ν0

∫
t

I(t > z)

∫
s

w(s)
[
fZ|X(t | s) g(s)

]
ds dt

= ν0

∞∫
z

(∫
s

f(s) fZ|X(t | s) ds

)
dt

= ν0

∞∫
z

fZ(t) dt

= λEDP (z) (A.4)

where each transition is obtained from:

1. Each ith vector (X, Z)i is independent and identically distributed, with the joint dis-
tribution as gZ,X(t, s) = fZ|X(t | s) · g(s).

2. Rule of the lazy statistician.

3. Indicator function does not depend on s and definition of joint distribution gZ,X(t, s).

4. Definitions of the indicator function and of the Importance Sampling weight.

5. Marginal distribution fZ(t) from joint distribution fZ,X(t, s) = f(s) · fZ|X(t | s) (see
Fig 4.2).

6. Definition of CCDF and use of Eq 4.2.

The expected values of the hazard curve estimates for IMs that are excluded from those
chosen to select ground motions (i.e., IM /∈ IM) may be derived in a fashion similar to that
presented in this section.
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A.3 Derivation for Eq 4.8

The variance of λ̂IM(x) in Eq A.1, with respect to the joint distribution of X, is

VX

[
λ̂IM(x)

]
=

ν2
0

n
· VX [I(X1 > x) · w(X1)]

=
ν2

0

n

{
EX

[
[I(X1 > x) · w(X1)]2

]
− (EX [I(X1 > x) · w(X1)])2}

=
1

n

{
ν2

0 · EX

[
[I(X1 > x) · w(X1)]2

]
− λ2

IM(x)
}

(A.5)

where each transition is obtained from:

1. Each Xi is independent and identically distributed with the joint distribution as g(x).

2. Computational formula for variance.

3. Recognizing that ν0 · EX [I(X1 > x) · w(X1)] = λIM(x) (see Eq A.2 in Section A.1).

The term EX

[
[I(X1 > x) · w(X1)]2

]
in Eq A.5 may be rewritten as follows:

EX

[
[I(X1 > x) · w(X1)]2

]
=

∫
s

[I(s > x) · w(s)]2 g(s) ds

=

∫
s

[
I(s > x) · w2(s)

]
g(s) ds

=

∫
s:s>x

f 2(s)

g(s)
ds (A.6)

where each transition is obtained from:

1. Rule of the lazy statistician.

2. Square of the indicator function is the indicator function.

3. Definitions of the indicator function and of the Importance Sampling weight.

Substituting Eq A.6 into Eq A.5 gives

VX

[
λ̂IM(x)

]
=

1

n

ν2
0

∫
s:s>x

f 2(s)

g(s)
ds− λ2

IM(x)

 (A.7)
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A.4 Derivation for Eq 4.9

The variance of λ̂EDP (z) in Eq A.3, with respect to the joint distribution of Z and X, is

VZ,X

[
λ̂EDP (z)

]
=

ν2
0

n
· VZ,X [I(Z1 > z) · w(X1)]

=
ν2

0

n

{
EZ,X

[
[I(Z1 > z) · w(X1)]2

]
− (EZ,X [I(Z1 > z) · w(X1)])2}

=
1

n

{
ν2

0 · EZ,X
[
[I(Z1 > z) · w(X1)]2

]
− λ2

EDP (z)
}

(A.8)

where each transition is obtained from:

1. Each ith vector (X, Z)i is independent and identically distributed, with the joint dis-
tribution as gZ,X(t, s) = fZ|X(t | s) · g(s).

2. Computational formula for variance.

3. Recognizing that ν0 · EZ,X [I(Z1 > z) · w(X1)] = λEDP (z) (see Eq A.4 in Section A.2).

The term EZ,X
[
[I(Z1 > z) · w(X1)]2

]
in Eq A.8 may be rewritten as follows:

EZ,X
[
[I(Z1 > z) · w(X1)]2

]
=

∫
s

∫
t

[I(t > z) · w(s)]2 gZ,X(t, s) dt ds

=

∫
s

∫
t

[
I(t > z) · w2(s)

] [
fZ|X(t | s) g(s)

]
dt ds

=

∫
s

∫
t

[
I(t > z) · f

2(s)

g(s)

]
fZ|X(t | s) dt ds

=

∫
s

[∫
t

I(t > z) · fZ|X(t | s) dt

]
f 2(s)

g(s)
ds

=

∫
s

Pr(Z > z | X = s) · f
2(s)

g(s)
ds (A.9)

where each transition is obtained from:

1. Rule of the lazy statistician.

2. Square of the indicator function is the indicator function and definition of joint distri-
bution gZ,X(t, s).

3. Definition of the Importance Sampling weight.

4. The ratio f2(s)
g(s)

does not depend on t.

5. Definition of conditional CCDF of Z | X.
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Substituting Eq A.9 into Eq A.8 gives

VZ,X

[
λ̂EDP (z)

]
=

1

n

{
ν2

0

∫
s

Pr(Z > z | X = s) · f
2(s)

g(s)
ds− λ2

EDP (z)

}
(A.10)

The variance of the hazard curve estimates for IMs that are excluded from those chosen to
select ground motions (i.e., IM /∈ IM) may be derived in a fashion similar to that presented
in this section.

A.5 Derivation for Eq 4.15

Given an observed value of the vector-valued IM from the Importance Function, IMIF , and
a computed value of the vector-valued IM from the scaled ground motion time series, IMP ,
the optimal scale factor can be derived by first rewriting Eq 4.13 to express ∆ as a quadratic
function of the scale factor, SF . Substituting Eq 4.14 into Eq 4.13 and rearranging terms
gives

∆ =

NIM∑
j=1

 ln
(
IMIF,j

IMU,j

)
− αj ln(SF )

σj

2

(A.11)

Setting the first derivative of ∆ with respect to SF to zero leads to the scale factor that
minimizes ∆:

∂∆

∂SF
=

NIM∑
j=1

2

 ln
(
IMIF,j

IMU,j

)
− αj ln(SF )

σj

( −αj
σj · SF

)
= 0 (A.12)

Assuming SF is never zero, Eq A.12 is equivalent to:

NIM∑
j=1

 ln
(
IMIF,j

IMU,j

)
− αj ln(SF )

σj

(αj
σj

)
= 0 (A.13)

Distributing the summation in Eq A.13 and rearranging terms gives

NIM∑
j=1

(
αj
σ2
j

)
ln

(
IMIF,j

IMU,j

)
= ln(SF )

[
NIM∑
i=j

(
αj
σj

)2
]

(A.14)

Finally, isolating SF in Eq A.14 leads to the desired optimal scale factor:

SFoptimal = exp


NIM∑
j=1

(
αj

σ2
j

)
ln
(
IMIF,j

IMU,j

)
NIM∑
j=1

(
αj

σj

)2

 (A.15)
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Appendix B

Documentation of developing
benchmark-consistent prediction
models

This appendix documents the development of benchmark-consistent prediction models that
are needed to select ground motions within a universe of synthetic ground motions gener-
ated from a stochastic model. For both stochastic models – Rezaeian’s and Yamamoto’s
– a total of 120 intensity measures (IMs) were considered. These IMs include 5%-damped
spectral accelerations at the same vibration periods utilized in the NGA West 2 project [92]
(i.e., a total of 111 periods ranging from 0.01 to 20 sec), peak ground acceleration (PGA),
peak ground velocity (PGV), peak ground displacement (PGD), cumulative absolute ve-
locity (CAV), acceleration spectrum intensity (ASI), spectrum intensity (SI), displacement
spectrum intensity (DSI), 5-95% significant duration (D5−95), and 5-75% significant duration
(D5−75).

B.1 Functional forms

To facilitate the development of functional forms, the 120 IMs were partitioned into four cat-
egories: (i) spectral accelerations, (ii) peak ground parameters (PGA, PGV, and PGD), (iii)
spectrum intensity related parameters (ASI, SI, and DSI), and (iv) cumulative based mea-
sures (CAV, D5−95, and D5−75). For each category and each stochastic model, a polynomial-
based functional form (see Eq 3.13) was determined via the approach described in Section 3.6.
In Rezaeian’s model, the following functional forms were employed:

1. Spectral accelerations: linear

2. Peak ground parameters: linear

3. Spectrum intensity related parameters: linear
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4. Cumulative based measures: cubic

In Yamamoto’s model, the following functional forms were employed:

1. Spectral accelerations: purequadratic

2. Peak ground parameters: purequadratic

3. Spectrum intensity related parameters: purequadratic

4. Cumulative based measures: cubic

Fig 3.6 illustrated the linear and purequadratic functional forms; the cubic functional
form is illustrated in Fig B.1. The determination of σoptimal is discussed next.
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Figure B.1: Functional form for D5−75 under stochastic model from: (a) Rezaeian; (b)
Yamamoto.

B.2 Benchmark consistency of ground motion

prediction models

Once the functional forms for all 120 IMs are finalized via exploratory data analysis, the
standard deviations, σ, of the ground motion prediction models (GMPMs) were further
adjusted to achieve consistency with respect to the benchmark, as elaborated in Section 3.6.
In essence, the standard deviation is modeled as a nonparametric function of magnitude and
at each magnitude interval, the value of σ was adjusted so that the GMPM-based estimate
of the hazard curve agrees closely with the benchmark hazard curve (see Fig 3.7a). Figs B.2-
B.19 document such hazard-consistent GMPMs for IMs unrelated to spectral accelerations.
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B.3 Correlations between IMs

The correlation between IMs (more precisely, between the residuals of the IMs) were discussed
in Section 3.6. As mentioned therein, the correlations were occasionally found to depend on
the earthquake magnitude. For generality, the correlation between a pair of IMs is modeled
as a function of the magnitude by computing a correlation for each magnitude interval
shown schematically by the dotted lines in Fig B.1. The correlations between spectral
accelerations at various vibration periods were shown in Fig 3.8; correlations between IMs
that are unrelated to spectral accelerations were also computed.

B.4 Figures for confirming benchmark consistency
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Figure B.2: Benchmark-consistency of GMPM for PGA under Rezaeian’s stochastic model.
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Figure B.3: Benchmark-consistency of GMPM for PGV under Rezaeian’s stochastic model.
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Figure B.4: Benchmark-consistency of GMPM for PGD under Rezaeian’s stochastic model.
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Figure B.5: Benchmark-consistency of GMPM for ASI under Rezaeian’s stochastic model.
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Figure B.6: Benchmark-consistency of GMPM for SI under Rezaeian’s stochastic model.
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Figure B.7: Benchmark-consistency of GMPM for DSI under Rezaeian’s stochastic model.
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Figure B.8: Benchmark-consistency of GMPM for CAV under Rezaeian’s stochastic model.
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Figure B.9: Benchmark-consistency of GMPM for D5−95 under Rezaeian’s stochastic model.
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Figure B.10: Benchmark-consistency of GMPM for D5−75 under Rezaeian’s stochastic model.
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Figure B.11: Benchmark-consistency of GMPM for PGA under Yamamoto’s stochastic
model.
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Figure B.12: Benchmark-consistency of GMPM for PGV under Yamamoto’s stochastic
model.
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Figure B.13: Benchmark-consistency of GMPM for PGD under Yamamoto’s stochastic
model.
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Figure B.14: Benchmark-consistency of GMPM for ASI under Yamamoto’s stochastic model.
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Figure B.15: Benchmark-consistency of GMPM for SI under Yamamoto’s stochastic model.
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Figure B.16: Benchmark-consistency of GMPM for DSI under Yamamoto’s stochastic model.
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Figure B.17: Benchmark-consistency of GMPM for CAV under Yamamoto’s stochastic
model.
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Figure B.18: Benchmark-consistency of GMPM for D5−95 under Yamamoto’s stochastic
model.



APPENDIX B. DOCUMENTATION OF DEVELOPING BENCHMARK-CONSISTENT
PREDICTION MODELS 178

0 10 20 30 40 50 60 70 80
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Yamamoto

D
5−75

 [sec]

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

 

 

Benchmark IMHC

Approx. 95% CIs

IMHC from           
benchmark−consistent
GMPM                

Figure B.19: Benchmark-consistency of GMPM for D5−75 under Yamamoto’s stochastic
model.
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