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Using Rules and Task Division to Augment Connectionist Learning

William L. Oliver and Walter Schneider

Leaming Research and Development Center
University of Pittsburgh

Abstract
Learning as a function of task complexity was exam-
ined in human learning and two connectionist
simulations. An example task involved learning to
map basic input/output digital logic functions for six
digital gates (AND OR, XOR and negated versions)
with 2- or 6- inputs. Humans given instruction
learned the task in about 300 trials and showed no ef-
fect of the number of inputs. Backpropagation learn-
ing in a network with 20 hidden units required 68,000
trials and scaled poorly, requiring 8 times as many
trials to learn the 6-input gates as to learn the 2-input
gates. A second simulation combined backpropaga-
tion with task division based upon rules humans use
to perform the task. The combined approach im-
proved the scaling of the problem, learning in 3,100
trials and requiring about 3 times as many trials to
learn the 6-input gates as to learn the 2-input gates.
Issues regarding scaling and augmenting connectionist
learning with rule-based instruction are discussed.
Introduction

In this paper we compare human learning of a
modestly complex task with connectionist learning
that used the procedure known as "backpropagation”
(Rumelhart, Hinton & Williams, 1986). We also
consider a model that uses rules to divide the task into
subtasks that can be separately learned with
backpropagation. We examine the benefits of
providing a connectionist system with a rule-based
instructor that can reconfigure the system via atten-
tion to learn components of the task.

A critical issue for artificial intelligence and human
learning involves finding learning algorithms that
scale well. Leamning time for an algorithm should
not increase so dramatically with task complexity that
it can only be applied to toy problems. Minsky and
Papert (1988, p. 262) comment on the importance of
the scale issue stating: "In the examination of
theories of lecarning and problem solving, the study of
such growths in cost is not merely one more aspect
to be taken into account; it is the only aspect worth
considering."

To the psychologist the problem of scale has criti-
cal importance because the time a biological system
has to learn is limited. A learning algorithm that
does not allow the organism to learn a task in its life
time is of limited value.

Current connectionist algorithms may scale too
pooily to account for human learning in many in-
stances. Many tasks may be learned far more quickly
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by humans than by currently available connectionist
procedures, because human learning can be guided by
rules. Below we describe such a task in which hu-
mans required around 300 trials to learn. In contrast,
currently our fastest learning simulations using only
backpropogation required 68,000 trials. (see Figure 2
below). More importantly, human learning time did
not increase with increases in the complexity of the
task, whereas the learning times for the connectionist
procedure significantly increased.

The study of connectionist learning is partially
supported by an implicit assumption that humans
provide an existence proof for simple, powerful
learning algorithms that scale well. This assumption
is likely to be false. By simple learning algorithms
we mean algorithms that can map inputs to outputs
by altering connection weights on each trial given the
input and the desired output state of the system. This
learning occurs without using explicit rules or focus-
ing the network's attention on specific parts of the
problem. Human learning in such situations is poor
and does not scale well. Subjects take many trials (o
learn simple concepts involving very few feature di-
mensions (usually about 4) in psychological studies
in which subjects are discouraged from forming verbal
rules (e.g., Mecdin and Schaffer, 1978). Humans ben-
efit greatly from focusing attention, instruction, hy-
pothesis generation, and learning by imitation, none
of which is present in traditional connectionist learn-
ing models. When learning a complex problem, such
as family hierarchies (Hinton, 1985), a connectionist
procedure must develop internal representations solely
from the inputs and outputs that are specified on each
leamning trial. There is no mechanism to directly in-
struct the network about relationships among features
(e.g., that female and daughter are correlated features
such that daughters are always female). The back-
propagation procedure can learn simple tasks of this
sort, but learning often requires thousands of trials.
We believe that both simple learning algorithms and
rule-based learning will be necessary to account for
human learning,.

The human learning of chicken sexing (identifying
young chicks as males or females) provides a contrast
between learning by input-output mapping and learn-
ing by instruction on rules. Until recently chicken
sexers had to learn their task on the basis of feedback
from experts and on-the-job practice. It was claimed
to have taken years for people to become proficient at
this task (Biederman & Shiffrar, 1987). Biederman
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and Shiffrar demonstrated that college students could
perform a variant of the chicken sexing task as well
as experts when provided with a classification rule.
Only about a minute was needed to instruct the sub-
jects on this rule, which focused subjects' attention
on particular features and told them how to respond
given the presence of those features. This example
suggests that humans can learn complex relations via
reinforced input-output mapping, but this leaming
method scales poorly and can be greatly improved by
using attentional and instructional operations that are
generally absent in connectionist learning.

We are examining connectionist architectures that
include attentional focusing and instruction-based
learning (Schneider & Detweiler,1987; Schneider &
Mumme,1988; Schneider & Oliver, 1988). These
architectures combine features from connectionist and
production-system models. Rule-based processing
allows an attentional mechanism to dynamically re-
configure connectionist networks so that critical fea-
tures become salient and a task can be decomposed
into subtasks of smaller scale. Using rules allows
rapid initial learning of the components of the task
and the serial execution of each component, as occurs
in Anderson's (1983) ACT* or Laird, Rosenbloom
and Newell's (1986) SOAR. Connectionist learning
within the architecture can convert serial processing
of the component rules to parallel processing as a
consequence of practice. In addition, the mutual con-
straint nature of connectionist processing provides a
best-match mapping of inputs to outputs that is less
brittle than rule-based matching processes.

In this paper we examine the benefits of task de-
composition by comparing the human learner to a
connectionist learning system with and without task
decomposition. We examine the effect of learning as
a function of the complexity of the task. The task
involved learning digital input-output mappings for
six digital logic gates (AND, OR, XOR and the
negated forms of the rules) for either 2, 4 or 6 inputs
per gate. We have studied this task extensively in the
acquisition of human troubleshooting skill (Carlson,
Sullivan & Schneider, 1988a, 1988b). When learn-
ing this task, human subjects describe their proces-
sing as having three stages. The first stage is
encoding the inputs as all 1's, all 0's, or mixed. The
second stage is mapping the coded input and the gate
type to the expected output of a 0 or 1. The third
stage involves applying the negation operator when it
is required to reverse the output. Subjects were in-
structed on rules for each stage and then required to
learn 2-, 4-or 6- input gate problems. Connectionist
learning without decomposition was examined in a
network that mapped the inputs to the outputs
through a single layer of hidden units. Input-output
pairs were presented to the network, and
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backpropagation learning (Rumelhart et al., 1986)
was used to modify the connection weights.
Connectionist lcarning with decomposition was ex-
amined in a network composed of three modules, one
for each stage. Each module had an input layer and an
output layer. During training, each module received
input and output information for each stage and prop-
agated error only within its own stage.
Human Learning of Digital Logic

The computational properties of connectionist
models have been studied by examining how they
learn boolean functions (e.g., Minsky & Papert,
1988; Rumelhart et al., 1986; Volper & Hampson,
1986). Interestingly, research on digital trouble
shooting has also looked at how subjects learn
boolean logic in the laboratory (Brooke & Duncan,
1983; Carlson et al., 1988a, 1988b). In order to
compare a connectionist model's learning with human
learning, we designed an experiment that required
subjects to learn several boolean functions and later
had the model learn the same set of functions. We
were mainly interested in whether increasing the
complexity of the task by increasing the number of
inputs to the functions would make the task much
more difficult to learn,

The subjects in this experiment were University of
Pittsburgh undergraduates with no experience in digi-
tal logic. A between-subjects experimental design
was used; onc group of 8 subjects learned digital logic
gates with 2 inputs and another group of 9 subjects
learned gates with 6 inputs. The subjects' task was to
learn the rules for the gates to a high level of accuracy
while responding as quickly as possible. Subjects
typically reach an asymptotic accuracy of only about
92% in this task (Carlson, et al., 1988b). Their er-
rors are random, suggesting causes other than rule
learning (e.g., attention shifts, speed-accuracy trade-
offs) for the less-than-perfect performance.

The subjects learned six digital logic rules--AND,
NAND, OR, NOR, XOR, XNOR. The subjects pre-
dicted the correct outputs when given different
combinations of 0's and 1's as inputs for the various
logic gates. The inputs to the gates were randomly
determined with certain constraints on each trial (see
below). The gates and their inputs appeared one at a
time on a CRT screen, and the subjects indicated the
correct output (0 or 1) by pressing labelled keys. A
computer controlled the scquencing and presentation
of the stimuli and gathered data on the accuracy and
speed of the subjects’ responses. Feedback on the
correctness of response was provided after each trial.
The subjects were given verbal rules during the early
part of the experiment for each gate, such as the fol-
lowing rule for the AND gate: "if the the inputs are
all 1's respond 1; if the inputs are mixed (0's and 1's)
respond 0; and if the inputs are all 0's respond 0."
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When a help key was pressed, the appropriate rules
for a gate appeared in the upper-left-hand corner of the
screen. An introduction to the three gate types
(AND, OR, and XOR) involving 24 trials per gate
was followed by 36 practice trials responding to gates
and inputs selected at random. The subjects were then
given instructions on how to carry out negation for
the different gates (NAND, NOR, and XNOR) and
given 24 trials of practice on each of these gate types.
An additional 36 practice trials followed in which the
negated gates were selected at random and presented to
the subjects. In the final part of the experiment, the
subjects responded to 300 gates selected at random
from the entire set, including negated gates. The
subjects could rest briefly after blocks of 50 trials,
and use of the help key was not permitted.

In order to vary the complexity of the task, the
number of inputs to the gates differed between groups
of subjects. One group of subjects saw gates with 2
inputs and another group saw gates with 6 inputs.
Because increasing the number of inputs dramatically
changes the proportion of 1 and 0 responses for a
given gate, a constraint was placed on the sampling
of input combinations for the 6-input condition. For
the 6-input gates, the probability of sampling certain
input combinations (e.g., the all 1's case for the AND
gate) was increased to maintain the same proportions
of 0 and 1 responses as occurred in the 2-input condi-
tion. Without this constraint on the generation of
input combinations, the subjects would be biased to-
wards always giving the same response for a particu-
lar gate--for example, they would be biased towards
responding 0 to every AND gate because the
probability of that answer being correct would be .98.
Human Learning Results

The subjects responded correctly on a high propor-
tion of trials (92%) during the final 300 trials of
practice. The mean percentages of correct responses
over 50-trial blocks were 89, 90, 94, 95, 94, and 93%
for blocks 1 through 6 respectively. Hence, the sub-
jects started this final part of the experiment with
high accuracy and became somewhat more accurate
with the additional practice. An analysis of variance
that included the variables for input condition and 50-
trial blocks indicated that there were significant
differences in accuracy among the blocks,
F(5,75)=4.60, p<.001. The main effect for input
condition was not significant, F(1,15)<1, nor did in-
put condition interact with blocks, F(5,75)<1. The
mean accuracies were 92% for the 2-input condition
and 93% for the 6-input condition.

An analysis of the subjects’ response times also
failed 1o show differences between the 2- and 6-input
conditions. The subjects responded faster, on average,
to the 6-input gates (2.18 seconds) than to the 2-input
gates (2.31 seconds), but this difference was not sig-
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Figure 1. The configuration of the network

that learned the 6-input gates without task

division.

nificant, F(1,15)<1. As one might expect, there was
a significant speed-up over blocks, F(5,75)=14.52,
p<.001; the means for the eight 50-trial blocks, be-
ginning with block 1, were 2.77, 2.34, 2.19, 2.10,
2.02, and 1.90 seconds. The variables input condi-
tion and 50-trial block did not significantly interact,
F(5,75)=1.15, p>.34.

In summary, the initial 216 trials of training
brought the subjects to a high level of accuracy. The
final test blocks showed that the subjects could
maintain, and even improve, this accuracy when they
were tested on the different gates at random. There
was no indication that the six input gates were more
difficult to learn than the 2-input gates.

Connectionist Learning Without Task
Division

We also examined connectionist learning of the
digital logic task using the backpropagation learning
procedure. A software package developed by McClel-
land and Rumelhart (1988) was used to model the
task. To find out how changing the number of inputs
would affect learning, we modelled learning of 2-, 4-
and 6-input gates.

The networks trained with backpropagation were
feed-forward networks having either 6, 8 or 10 units
in the input layer. Each network had 20 hidden units,
and a single output unit. The input layer consisted of
3 units to encode gate type, 1 unit to encode nega-
tion, and 2, 4 or 6 units to encode the inputs (0's or
1's) to the gates. Figure 1 illustrates the network's
configuration for learning the gates with 6 inputs.
Different codes were used for the AND (100), OR
(010), and XOR (001) gates, and the negation unit
was set to 1 to represent the negated gates (NAND,
NOR, and XNOR) and otherwise set to 0. The initial
weights for the network were set to random values
that varied uniformly between -0.5 and 0.5. The
momentum parameter was set to 0.9. We tried a
number of different learning rate parameters, and the
simulations we report below used the parameters that
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Figure 2. Trials to criterion for humans,
backpropagation alone, and backpropaga-
tion with stages.

yielded the fastest learning. These learning rate pa-
rameters were .1, .07, and .02 for the 2-, 4-, and 6-
input networks respectively.

Following the usual procedure for backpropagation,
the networks were repeatedly presented with the com-
plete set of patterns to be learned in cycles or
"epochs.” The networks were presented with patterns
corresponding to all possible feature combinations for
the gates and their inputs. Particular patterns in the
4- and 6-input simulations were repeatedly presented
to the network within epochs to achieve the same
proportion of 1 and O responses that subjects had en-
countered in the experiment described above. The
weights were adjusted after each pattern so that the
network learned over epochs to respond to the patterns
with the appropriate 0's and 1's.

Each network’s accuracy was tested at 10-epoch in-
tervals during learning by presenting the set of train-
ing patterns to the network while leamning was turned
off. A network's response was assumed to be a 1 if
the activation of the output exceeded .5, and 0 if its
activation was less than .5 (possible activation values
varied between 0 and 1). Ten simulations were run
for the different network configurations, each starting
with different random weights.

Figure 2 shows the number of trials (number of
epochs times number of patterns per epoch) needed for
each network to learn to the criterion of 100 percent
accuracy. This criterion was used because the net-
work's behavior was deterministic; if the network was
less than perfect it would always err on the same pat-
terns. These systematic errors, which are
uncharacteristic of our subjects who performed above

58

galetype  neg
Figure 3. The configuration for the net-
work that used task division to learn the 6-
input gates.

inputs

90% accuracy, were taken to mean that the network
had not yet learned the task.

As the complexity of the task increased, there was a
substantial growth in the number of trials necessary
to train the networks. Note that this growth contrasts
dramatically with the lack of any complexity effect in
the human data. This growth apparently resulted
from the exponential increase in the number of pat-
terns to be learned by the network; the number of
patterns to be learned doubled with each additional in-
put. There were 24, 96, and 384 patterns to be
learned in the 2-, 4-, and 6-input conditions respec-
tively. Generalization of learning among the patterns
was insufficient to hold down the learning time.
Connectionist Learning with Task Division

Human learning may scale well in our task because
of the subjects' abilities to divide the task into com-
ponent tasks. These component tasks can be sepa-
rately focused on during both instructions and perfor-
mance of the task. The subjects' prior knowledge al-
lows them to be instructed on the rules that apply to
the component task and would, even in the absence of
explicit instructions, allow them to form hypotheses
about which feature combinations might be impor-
tant. Such task division and use of prior knowledge
are, of course, standard features in many simulations
of cognitive processes, e.g., Anderson's ACT*
(1983). Furthermore, the notion of information pro-
cessing stages has played a fundamental role in
cognitive psychology. Much reseach has been de-
signed to identify stages of processing and discover
how they interact (e.g., Sternberg, 1969).

To examine how task division might speed up
learning in our task, we used backpropogation to
learn the individual component tasks in a modular
network. Figure 3 illustrates how the units that
coded the gate inputs, gate type, and negation were
used as inputs to the modules. The [igure also shows
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how the outputs from one module became the inputs
to another module. The model had three modules,
each containing a layer of input units, a layer of 10
hidden units, and a layer of output units. The first
module (input map) was trained to recode 2, 4, or 6
inputs of 0's and 1's into codes representing either "all
0's", "all 1's", or "mixed." The second module (gate
map) was trained to produce the correct responses (1
or 0) when given the recoded inputs and the codes for
the gate types (AND, OR, XOR). The third module
(negation) was trained to ncgate the output of the
second module when negation was called for.

To assess total times for the model to learn the
task, learning simulations were run for each module.
Our results on learning times are based on 10 runs for
each simulation. Each run was initialized to use a
different set of random weights uniformly distributed
between .5 and +.5. For all modules, the momen-
tum parameter was .9. The learning rate parameters
for the input-map module were .5, .1, and .05 for the
2-. 4-, and 6-input conditions respectively. The
learning rate parameter was .1 for the gate-map mod-
ule and .5 for the negation module. These learning
rate parameters were selected to enable rapid learning,
but no major effort was taken to find the best
parameters,

Figure 4 shows the mean number of trials needed to
learn the component tasks for the different numbers of
gate inputs. Figure 4 shows that recoding the input
as 1's, 0's, and mixed requires substantially more
trials as the number of inputs is increased. Assuming
that learning can occur for all three modules during
each trial, learning time would depend principally on
the module that took the maximum number of trials
to learn. This maximum value is plotted in Figure 2.
It is clear from the figure that learning in this case
scales considerably better than learning with back-
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propagation alone. It should be pointed out, how-
ever, that Figure 4 suggests that further increases in
the number of inputs would require many more trials
to learn if just three component tasks are assumed. If
presented with even more inputs, the subjects would
probably adopt additional coding processes to cope
with increasing complexity, as is thought to occur
when subjects chunk visual stimuli into familiar
configurations (Bartram, 1978).
Discussion

We have examined human and connectionist learn-
ing of a modestly complex problem. The human
subjects learned the task very quickly, reaching 90%
accuracy by the second block of distributed practice.
There was no evidence of any problem of scaling in
the human learning data, with both the 2- and 6- in-
put conditions reaching an asymptote of 93% in 358
trials. Reaction times declined substantially over
trials, with the 2- and 6- input functions showing
equivalent learning rates. In an extended study of
human learning of digital gates (Carlson et al.
1988a) subjects took about 500 trials per gate or
3000 total trials to bring their response times below
.8 seconds. When responding in .8 seconds, subjects
have apparently shifted to a strategy of direct associa-
tive retrieval of the output of each stage given its in-
put (see Carlson et al., 1988). To acquire this skill
of automatic retrieval in the digital-logic task, sub-
jects require about 5 hours of practice distributed over
several sessions.

In sharp contrast to human learning, connectionist
learning without task decomposition required about
68,000 trials to learn the 6-input case. Assuming
that humans take about 6 seconds per trial, about 110
hours would be needed to perform 68,000 trials. This
is far more than the 5 hours humans actually required.
Even of greater concern than this long learning time,
is the poor scaling shown in learning. The network
required about 6 times as many trials to learn the 6-
input rather than the 2-input case. The dramatic
growth in the number of training trials suggests such
a network could not learn an 8-input problem in the
lifetime of a human.

Connectionist learning with task decomposition
learned the 6-input case in about 3,200 trials and
scaled fairly well, requiring 3 times as many trials
than the 2-input case. The total number of trials
compares reasonably well with the human perfor-
mance, at least if we assume that the human connec-
tionist processing is not well developed until humans
can respond below 1 second. Connectionist learning
with decomposition learned the 6-input case 21 times
faster than without decomposition.

The above results suggest that combining rule-
based and connectionist learning may provide the best
of both types of computation. Initial rule-based
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learning (as in ACT* and SOAR) can search a prob-
lem space and decompose a task into subtasks in
reasonable amounts of time. Processing in this rule-
based mode is slow, serial, and effortful as is a human
novice during the controlled processing stage of skill
acquisition (Shiffrin & Schneider 1977, Schneider &
Detweiler 1987). Practice executing the rules allows
connectionist learning to map the inputs to the out-
puts of each of the component tasks. The early rule-
based processing decomposes a task so that smaller-
scale tasks can be learned with connectionist proce-
dures. This decomposition must identify the basic
stages and the number of output states for each stage.
Once tasks have been divided, connectionist learning
need no longer perform gradient descent search in the
power set of all possible connections, but rather has a
more limited problem of mapping a small number of
input states of each component task to a small num-
ber of output states for each component task. This
use of task decomposition to make connectionist
learning scale reasonably is an approach also advo-
cated by Minsky (1988) to deal with the combinatoric
explosion problem that occurs as task complexity in-
creases.

Some readers might argue that our example pro-
vides an unfair test of connectionst learning and that
our conclusions apply to only a limited set of tasks.
We will briefly discuss four criticisms readers may
have. First, the problem chosen was a particularly
difficult one for connectionist learning, since it in-
cluded three levels of non-linearly separable problems
(inputs, gates, negation). We grant this, but it is a
real task that humans have no difficulty performing if
they are instructed. Learning combinatoric gates is
still a toy problem and one that must be solved by
any model of human leamning. Second, by instructing
humans we gave away the answers. We agree, but
standard connectionist learning provides no mecha-
nism for instruction. Since human learning can im-
prove by many orders of magnitude with instruction,
it is important to explore architectures that can bene-
fit from instruction. Third, different parameters or
new learning algorithms may greatly speed learning
in the present task, so that a connectionist procedure
could learn the 6-input condition in a reasonable
number of trials. Perhaps, but the critical issue is
whether new solutions will scale well. Task division
and use of rules can always be used to reduce the
scaling problem for any connectionist procedure, and
it would be surprising if human learmning would not
make use of this property when learning new tasks.
Fourth, the present study shows that dividing tasks
brings about faster learning, but there is no demon-
stration of how to implement the task decomposition
in a parsimonious manner. We are currently working
on developing such an architecture.
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We are developing a connectionist/control architec-
ture (Schneider & Detweiler 1987, Schneider &
Mumme 1988, Schneider & Oliver, 1988) that can
implement rule-based learning and connectionist
learning and that can benefit from instruction and task
division. The architecture involves connectionist
modules that transmit vector messages among mod-
ules. The control architecture uses an attentional
gating mechanism that can modulate the transmission
and reception of vectors among modules. Each mod-
ule outputs information to the controller, indicating
the degree of module activity and priority of its mes-
sage. Controlled processing of the rules involves al-
tering what messages are transmitted and compared in
the network. For example, in digital gate learning,
the rule would be of the form "if all the input module
vectors match the lexical vector module (which con-
tains a 1); then transmit the "ALL1s" code to the
output of the input- coding module". Through
changes in attentional gating, the network can be re-
configured to execulc a process in as many stages as
is required to perform the task. Intermediate states for
each stage are represented not as specific units, but as
random vectors.

Learning during the input coding stage illustrates
how rule-based and connectionist learning interact in
the connectionist/control architecture. The instruc-
tions to the model indicate that the input code must
be encoded in one of three critical states and all the
inputs map to these critical states. The network gen-
erates three random-state vectors and associates those
to their respective rules (e.g., Allls = A; ALL(Os=B,
MIXED=C). The random vectors are similar to the
gensym operator in LISP programs. During practice,
the rule-based performance correctly solves the prob-
lem by serially executing the rules. On each trial the
input and output of each stage are correctly set via the
rule-based processing (Schneider & Mumme, 1988).
Connectionist learning alters the connection weights
to directly map the input to the output without the
use of the rule. As opposed to doing a gradient de-
scent search through the connection space for all pos-
sible output codes, the network needs only to learn
how to map the input states to the instructed output
states.

As the connectionist/control architecture learns a
task, processing shifts from sequential, rule-based to
association-based processing. Each module asso-
ciatively maps its input to the output and this process
cascades over a number of stages. This connectionist
processing has two important advantages over rule-
based processing. First, it is faster, because informa-
tion is retrieved associatively. Second, it is not as
brittle as rule-based processing because the mutual
constraint match property of connectionist mapping
will map the input to its closest matching output.



Oliver and Schneider

This may provide better generalization when the rule
knowledge is ambiguous. The model follows the
changes in human skilled performance as practice
continues (Schneider & Detweiler 1987; Schneider &
Mumme, 1988).

Summary
We have provided an illustration of the scaling

problem exhibited by backpropagation when required

to solve a modest complexity problem. We have
shown that humans, if they are given instruction on
the digital-logic task, show no effect of scale when
the number of inputs to be learned was increased.

The humans learned the most complex task 220 times

faster (in terms of trials) than the connectionist

simulation. We also evaluated a model using a task
decomposition exhibited by the human subjects.

Connectionist learning of the decomposed tasks scaled

reasonably in this model, learning 21 times faster

than the model without task decomposition for the 6-

input case. We speculated that hybrid architectures

provide a superior processing environment than either
purely rule-based or connectionst processing envi-
ronments. The hybrid architecture appears to scale
well and learn at rates comparable to humans.
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