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THREE-DIMENSIONAL DENSITY RECONSTRUCTION FROM 
A SERIES OF TWO-DIMENSIONAL PROJECTIONS"" 

Michael Goitein . 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720, USA 

December 1971 

ABSTRACT 

An iterative relaxation technique is presented for unfolding three
I 

dimensional distributions from a series of two-dimensional projections 

taken at several different orientations relative to the object being in-

vestigated. The achievable resolution is discussed. Analyses of both 

computer simultations and actual measurements are presented. This 

type of analysis has applications in radiography, electron transmission 

microscopy, radiotherapy, and nuclear medicine. Features of the 

technique which may make it especially suitable for particular applica-

tions are described. 

-'-',- This work was done under the auspices of the U. S. Atomic Energy 
Commission. 
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1. INTRODUCTION 

.A series of x-'ray pictures taken at a number of different view angles 

may contain en-ough info~mation to enable one to ,reconstruct the full 

three-dimensional distribution of absorption coefficients in the viewed 

object. _ Similarly, a seri~s of scans involving translations and rotations 

of a pair of gamma detectors may be used to map out the dis~ribution of 

a positron-emitting isotope through a transverse section of a patient. , , 

, . 

On a quite different scale, transmission electron micrographs taken at 

a series of tilt angles may be used to reconstruct the three-dimensional 

underlying structure. Finally, measurement of the average energy loss 

of a high-energy heavy-particle beam passing through a patient leads to 

knowledge of the projected stopping power along the beam line. A series 

of such measurements at different transvers'e positions and patient 

orientations can be used to reconstruct the distribution of stopping power 

throughout a transverse section, and this information can b~ directly 

used to guide Bragg-peak radiotherapy. 

These diverse situations present the same cornputationalproblem. 

We offer here a new method of analyzing the problem, using an iterative 

relaxation technique. A.discussion of the relative merits of this and the 

other available mathematical models 1-3) is deferred until after the de-

scription of the ,method. 

It is self-evident that the three-dimensional problem can be broken 
- . 

,up into a series. of two-dimensional problems by considering separately' 
. ". . . . . 

. a series of "slices" through the scanned object. Wemake this -simplifi-

cation in all the computational examples presented here and in our treat-
·1 

ment of resolution ... However, nothing in the mathematics of the analysis 

oj' 
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im.plies such a lim.itation. 

The basic series of m.easurem.ents is illustrated schem.atically 

in fig. 1. It consists of a series of scans taken at a num.ber of different 

angles relative to the object to be exam.ined. Each scan com.prises a 

series of m.easurem.ents of the projected density along a num.ber of 

discrete transversely separated lines. Of course, in som.e applications, 

the scan is alm.ost continuous. In such a case we assum.e the inform.ation 

is "binned" into a num.ber of discrete m.easurem.ents. 

In the technique to be described there is nothing which requires the 

scan to be taken at regular intervals of either angle or position. Indeed, 

there is no requirem.ent that the scan-lines be parallel with one another, 

or even that the m.easured projections be along straight lines. However, 

for descriptive convenience, we will discuss the problem. as though these 

conditions hold. 

First, we m.ust establish som.e notation. We divide the space upon 

which m.easurem.ents are to be m.ade into a region within which areN 

cells of unknown density, and outside· of that region the density is 

assum.ed to be known exactly. That being the case, the contribution 

from. the known density region can always be calculated and subtracted 

from. them.easurem.ent, a situation equivalent 

to having a density of zero outside the region of unknown density. This 

is assum.ed to be the case in all that follows. 

Within each cell the density is as sum.ed to be uniform.. This 

assum.ption could be m.odified, as is discussed later. The density of the 

ith cell is denoted p.. We consider the N cells as being partitioned in 
- 1 

a Cartesian grid with n X n divisions as depicted in fig. 2. This 
x Y 
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particular gridis chosenonly for simplicity. Other, more complicated 

cell patterns can easily be accommodated. 

By a "measurement" we mean the result of measuring the line 

integral (projection) of density along a single path. A total of M such 

measurements compris~s a complete scan. In most examples considered 

here there are m transversely displaced measurements at each of rn x . a 
-

orientations, and then M = m Xm. The value of each measurement is 
a x 

x· (j = 1, M) and the associated measurement error (standard deviation) 
) 

IS (J.. We denote the theoretical value that the rneasurement should 
) 

, 
have (on the basis of some assumed density distribution) as X. (x. is the 

, . )) 

re suIt of measurement with attendant errors). It is as sumed to be related 

to the dens itie s through the linear relationship 
I 

N 
X. = L f)"k Pk 

J k=1 
(j = 1,M). (1 ) 

This linear relationship may not, of course, hold for the primary 

measurements made. In that case the Xj are to be interpreted as 

secondary quantities derived from the measurements. For exam'ple, in 

a counting detector use¢!. in gamma-ray transrnissionmeasurements t~e 

X. would represent the logarithm of the count rate (normalized to the 
), . 

rate without absorber). 

A typical measurement swathe is depicted schematically in fig. 2. 
I 

The interpretation of-the coefficients'· fjk of eq. (1) is that they are the 

average path length within ,the kth cell of the J.!:h measurement. The, 

average is taken, properly weighted, over the beam profile so as to 

take into account the effect of beam widtl:l. Many, indeed most, of the 

£.k will be zero for reasonably narrow beams. 
) . 

• 
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2. EXACT SOLUTION 

We thus have a linear problem in N unknowns (the N Pi)' The 

number of degrees of freedom would appear at first sight to be M - N, 

but there is a correction due to the correlation between sets of mea-

surements at different angles. The sum of all measurements at a given 

angle is a constant independent of that angle. Thus there are m -1 con
a 

s trairit equations and, hence, D = M - (m - 1) - N degrees of freedom. 
a 

Provided D 2: 0 there can be a solution. The least-squares solution is 

that fo r which 

M 

111 2 = ~ 
i=1 

2 
(X. -x.) 

1 1 

2 
(1. 

1 

(2 ) 

is a minimum. It is trivial to show that this condition is met by the 
" 

solution of the N simultaneous linear equations in N unknowns: 

N 

~ a ki Pk = b i 
(i = 1, N), 

k=1 

M 1 
a
ki = L '2 f.kf.· 

(J. J J1 
j =1 J 

where 

and . M 1 
b. = ~ '2 X.f.. 

1 J Jl (J. 
j =1 J 

These equations can be solved by standard matrix inversion 

techniques. We term the resulting solution the" exact solution," 

meaning that it is the result of a unique specification with a well-defined 

unique solution. The trouble is, of course, that the solution of these 

equations involves the inversion of an NXN matrix. For most inter-

esting subdivisions this imposes impossible demands on both 'core and 
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tiITle availability in even the largest computers. For example , dividing 

the object into a modest 15 X 15 grid would entail inversion of a 225 X 225 

matrix. This array alone would require more than 50 000 words of core 

. for storage. Moreover, even though techniques are available for handling 

matrices which overflow core, it must be remembered that execution 

time goes up with roughly the third power of the matrix, hence, with the 
, I 

sixth power of the number of cells along the edge of the object. 

3. ITERATIVE RELAXATION TECHNIQUE 

The solution we have developed to meet the computational inaccessa-

bility of an " exact solution" involves an iterative procedure. At the 

start of any given iteration one has a density value assigned to each cell. 

Consider the ith cell and all those projections which 'involve a contri-

bution from it" that is, the small fraction of all the measurements for 

which f .. =f a (j = 1, M). The heart of the technique is to,adj,ust the 
JI 

density of-the ith cell in such' ~ way as best to fit all measurements 

which involve that cell. All other cells are assumed to have the fixed 

values as signed at the start of the iteration. The" best fit" is judged 

on the basis of a least-squares minimization. Specifically, we may re-

write eq .. (1): 

f .. p.=X. 
JI' 1 J 

(j - 1,M). 

This gives M equations in' one unknown (p.), although, since many f .. 
1 J1 

will be zero (many measurements have nothing to say about a specific 

'cell), there will be far less than M inte~'esting equations. 

We find the solution in the least-squa'res sense by requiring that 

,-
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M 

L 
1=1 

This will occur for 
2 

d'rn /dp. = O. 
1 

trivial algebra is 

Llp. 
1 

n+1 = p. 
1 

then: 

t(fli) 
1=1 0'1 

M 

L 
1=1 

/ . ' . 'J 
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be a minimum. 

The solution, which involves only 

(3 ) 

where p~+1 is the adjusted cell density and p~ IS the density assumed 
1 1 

at the start of the nth iteration. 

3.1 Damping 

One might as sume that one could calculate the N adjustments 

(Llp.; i = 1, N) and apply them to all cells without further manipulation. 
1 

This procedure, however, is seriously deficient in that it leads to a 

rapidly diverging solution which blows up after only a few iterations. 

The reason for this behavior is easy to see. Consider the situation in 

which, on average, the cells have too Iowa density at the start of an 

iteration. As each cell is examined there will be a tendency to increase 

its density, over and above the particular adjustment required to im-

prove the local density variations. This increase is made assuming all 

other cells have the value assigned at the start of the iteration and does 

not take into account the fact that they too will be increased to account 

for the ove rall low density. Thus when all cells are adjusted there will 

be a tendency to overcompensate for the overall density deficit. This 
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problem will clearly lead to increasingly large overs.hoots with suc-

cessive iterations. 

The solution which we have adopted to meet this problem is to in- . 

troduce an overall multiplicative damping factor, a. We then compute 

the densities used as input to·the (n+1 )th iteration (p~+l) according to 
1 

the formula 

n+1 n 
p. = p. + a IS p. , 
1 1 1 

where .6. p. is the quantity expressed in eq. (3). 
1 

One might envision many ways of achieving this damping effect. 

(4) 

We have chosen a by the requirement that the overall solution (involving 

all cells) be such that the measurements are best matched by the new 

densities in the least-squares sense. This is the requirement that 

which occurs for 

M 

L: 
j=1 

2 
(X: - x.) 

J ] 
2 

(1. 
J 

is a minimum 

dm
2 Ida = o. The X. are, of course, functions of 

J 

a through eqs. (1), (3), and (4). They may be expressed as 
M 

Xj = [=i fjk (p~' + a .6. Pk)· 

The solution involves a little algebra and may be conveniently expressed: 
M c· 

L -L (x. - X.) 2 
(1. J ] 

a = 
j=1 ] 

M 2 

L: 
c. 
-1. 
'2 

j=1 
(1. 

J 

where 
N N 

= L fjk .6. Pk X. = L: f n (5 ) c. jkPk· J J 
k=1 k=1 
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This then completes the solution for one iteration. To summarize, 

one compute s b.. p. (i := 1, N) using eq. (3), where the pnk are the values 
. I 

as sumed at the start of the iteration. One then determines a damping 

factor, 6, from eq. (5), where the P~ are again the densities at the 

start of the iteration and the b..Pk are the just-calculated adjustments. 

Finally, one adjusts all densities according to eq. (4). 

We postpone discussion of the convergence of the iterations and 

briefly address the question of starting values. 

3.2 Starting Values 

One needs a starting value for the 'initlal iteration. We hqve tried 
, 

two approaches. The first was to obtain the" exact solution," described 

above, for a grid sufficiently coar se that the problem was tractable In 

the computer. The resulting densities were then projected onto the 

finer grid used for iterations and these values were used as starting 

values. The second approach was to assume a uniform density through-

out of some" reasonable" value. 

Both methods were acceptable, leading to solutions which converge 

quite rapidly. There seemed no reason to prefer the former, more 

elaborate method and we do not recommend it. It is slightly advantageous 

to select the uniform density value to give the correct value for the 

average sum of a set of measurements at one angle of view (i. e. , to 

have the right" weight" ). 

4. RESULTS 

The relaxation technique has been explored in two ways. First, on 

computer-simulated measurements performed under a variety of con-

ditions. Second, on a number of actual measurements made on phantom 

objects. 
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4.1 Computer Simulation 

We have examined a number of different" objects" upon which mea-

surements have been silllulated by computer and then analyzed without 

further reference to the originating density distribution. Random errors 

are introduced into the measurements and effects of beam width are , 

taken into account.' In every instance so far considered the computation 

has converged onto the" correct ll solution. That is not to say that there 

are no't minor artifacts ,I but in no cas~ has any substantial feature been 

observed in the analysis which was not present in the generating object, 

nor have significant features been missed in reconstruction. 

the 

By }Vay of illustration we show in fig. 3 one example suggested by 

2 
paper of Cormack). E:'ig. 3(a) shows a cross section of the phantom 

used in ref. 2), and in fig. 3(b) w~ show the computer simulation of the 

phantom~ "Measurements" were then made with a scan of 51 transversely 

separated lines of view at 40 uniforlllly spaced angles. A random error 

(standard deyiation) of slightly les s than 1% was introduced into all 

measurements. They were then analyzed on a 30X30 grid and the re-

suUs (after the fifteenth iteration) are displayed in 3 (c). In these plots 

the density is proportional to the density of displayed dots. 

In fig. 3(d) we take advantage of our knowledge of the initiating 

density distribution to display the difference between the analysis and the 

true answer. In this display a horizontal slash represents a density 

deficit and a vertical slash a density surfeit. The density of slashes is 

plotted to the same absolute scale as the dot density in 3(b) and 3(c). 

From this representation one feature of the unfolding process is very 

clear, namely, that there is a strong tendency to be in error equally 
I 
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above and below the true values and this type of "oscillation" about the 

true value occurs rrlainly where sharp density variations occur. Very 

sharp edges are not resolvable and introduce these oscillatio'ns which, 

nevertheless, tend to give a null contribution to any calculation of a 

line integral through part or all of the object. 

One further feature rrlerits attention. The density in the corners 

(as elsewhere) is the result of cOrrlputation. Since one has a circular 

object and a square outline to the grid these regions rrlight reasonably 

be forced to their known (near-zero) density. We do not do this, however, 

because we feel it is quite useful to explore regions, such as corners, of 

known density as a check on the success of the analysis and to offer 
I 

some errlpirical rrleasure of the scale of artifacts. Having said this we 

rrlust add a qualifying rerrlark concerning our treatrrlent of negative 

densities. In principle these need cause no alarrrl. They have always 

been srrlall in our experience. However, we do give therrl special treat-

rrlent since they are unphysical and this knowledge rrlay reasonably be 

incorporated. Where a cell is assigned a negative density at the end of 

any iteration we reset it to zero and reassign the negative density to all 

neighboring positive density cells in proportion to their density values. 
; 

This treatrrlent tends to "clean-up" the corners (and other areas of 

near -zero density) at the expense of insight into artifacts. 

4.2 Measurerrlerits 

No original rrleasurerrlents have been rrlade by this author. However, 

the generosity of others in rrlaking their rrleasurerrlents available for 

analysis has been considerable. Three such sets of data have been 

scanned and, since they all exhibit rather different features, they will 
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be briefly described. One feature common to all the measurements 

analyzed is the comparat~ve coarseness of the scans. This evolves 

naturally from the ·extreme tedium of making the large number of precise 

measurements necessary for good resolution. It is quite evident that 

autOlnated data accumulation is required to realize good resolution. 

'4 . 
The first set of data ) were taken on the phantom schematically 

represented in fig. 4(a). This object was placed in an.840 MeV alpha 

beam at the 184 inch Lawrence Berkeley Laboratory cyclo~ron, and 

measurements of the transmitted beam 'energy were made as the phantom 

was both translated and rotated in the beam line. The projected stopping 

power along the beam line was computed from the average energy degra

dation. The data were then analyzed to retrieve the local stopping power 

through a cross section of the phantom. : Fig.' 4(b) sho\.ys the result of , . 

that analysis.. The scan involved 41 translations and 19 different view 

angles. The oblong analysis grid was divided into 12 X 24 cells. The 

coarse'ness of the scan leads to limitations on the spatial resolution 

which should be of the order of one -half the' size of the central" .spine. " 

Such details as a slight asymmetr.y of the outer phantom, wall and the 

,fact that one" lung" was closer to the s~de of the phantom than was the 

other are faithfully reproduced in this reconstruction. 

The second set of data
5

) were x-ray transmission data taken on a 

sphe.rically symmetric annulus depicted in fig. 5(a). Since the phantom 

had this symmetry, only one view angle was' adopted and 15 measure-

ments were made in equal steps from the center to just beyond the out.,. 

side edge. To simulate a full scan the same data were repeated as 

though taken at 30 different angles and these were analyzed on an 18><18' 

. ~ 
" -

.. ~. 



.,. 

~.l -'.oil; >"J' -". ,; .< , ... ~, ~ __ U h', 0 (] 

-13-

grid. The results are presented in fig. 5(b). This way of analyzing the 

data was adopted for convenience and is clearly not the opti:mu:m approach. 

The third set of ciata were those reported in ref. 2) on the phanto:m 

which is depicted in fig. 3 (a). The probe was a ::cilli:mated ga:m:ma- ray 

bea:m. Trans:mission was :measured at 25 view angles and along 19 

transversely spaced lines. The transverse lines were not unifor:mly 

spaced, however. They were :more closely spaced towards the edge of 

the phanto:m. This feature is related to the reconstruction technique 

presented in ref, 2), but we :mention it here to illustrate the flexibility 

of our approach, which in no way depends on the way in which :measure-

:ments are :made (although, of course, one :must know the paths along 

which :measure:ments are :made and the reconstruction accuracy will 

depend on the sa:mpling used). We show, in fig. 6, the result of the re-

construction. It was :made on a rectangular grid of unifor:m spacing -

not the :most appropriate in view of the non-unifor:m :measure:ment grid. 

This explains why the resolution towards the edge is inferior to that 

achieved in ref. 2). 

5. CONVERGENCE 

There are three questions which one :might ask concerning the 

iterations. Do the iterations converge? Do they converge to a unique 

(and correct) solution? And, finally, do they give a reconstruction 

which predicts reasonable values for the observations? 

In fig. 7 we plot the su:m of squares (as defined in eq. (2)) against 

the iteration nu:mber for the' analysis of Car:mack' s datal), the results 

of which were presented in fig. 6. No exa:mple has been encountered 

in which such conve rgence did not obtain. We have no 
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proof, however, that such convergence will necessarily occur and can 

only state that, in our experience, it always has. 

Similarly, in regard to the uniqueness of the situation, we have been 

unable to prove a uniqueness theorem. One might worry, as some 

have 1.,3), that ambiguous :solutions may exist. In some cases, notably 

wllen a very limited number of measurements are made, there are 

certainly very real ambiguities inherent in the measur~rnents. This 
,..J 

is the case with the example presented in ref. 3). One must realize that 

in such cases the ambiguity is real and any method of analysis must be 

re sponsive to that problem whlch is a consequence of the inadequacy of 

the measurements. The ability to converge" on the correct solution is 

directly related to the high degree of redundancy in the measurements. 

One must make sllbstantia;lly more measurements than the number of 

pieces of information one hopes to extract (see below). If that is done, 

it is our experience that the iterativere~axation technique does converg~ 

to the correct solution even when substantially different (and unreason-

able) starting values are used. 

Finally, one must note that the convergence may be to rather poqr 

values of the least-squares parameter. Fig. 7, for example, shows a 

convergence of the sum of squares to a value of about 200 per degree of 

freedom, which is quite enormous compared to the value of unity ex

pected if the problem w~s dominate~ by random statistical' errors 6). One 

Illay understand this in terms of two effects. The first and more serious 

problem has to do with the computational premise that the' object may be 

represented by an array of cells with density uniform within each cell . .. 
Clearly, if the scanned object has features whose density varies rapidly' 
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over the dimension of a cell side the representation cannot be adequate. 

In this connection alternative assumptions might be made. One might 

assign densi'ties on a grid and interpolate between points using any 

variety of schemes. These methods are equivalent to forcing various 

degrees of smoothness on the reconstruction. They may well be called 

for in some instances; certainly the relaxation technique can trivially 

accommodate such a procedure. 

The second effect leading to poor values of the sum of squares has 

to do with the nature of the probe. Beam scatter and uncertainties in 

the beam profile will introduce errors in the reconstruction which will 

lead to poor least-squares values. 

6. RESOLUTION 

6.1 Choice of Number of Measurements 

C~nsider a specific grid of, say, nXn squares. What is the maximum 

number of measurements which can give useful information? Clearly, 

two measurements which are so closely spaced that they pass through 

almost the same cells with almost the same average path length in each 

cell will not yield substantially different information from each other. 

Very crudely one might say that a translation of one -half of a cell side 

is needed to produce substantially different information. This would 

lead to .. 2n measurements at each angle of view. 

The maximum number of useful view angles may be estimated as 

suggested in fig. 8. The smallest useful included angle between mea

surements common to a cell at one edge of the grid is that which leads 

to a separation of one cell width on the other side of the object. This 

is an angle of 1/n radians and leads to a maximum number of view 

angles of 2'ITn. 
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Thus. these simple considerations suggest that 47Tn~ measurements 

, 2 
are needed to r,esolve n cells. In practice we have found this to be an 

overe stimate. 
, , 2 

We have found 3n to be adequate. We presynt this 

intuitive estimate less as a hard and fast guide to estimating the number 

of measurements required for a given resolution than for the insight it 

offers in understanding the planning of measurements. , For example. 

it is clear than one cannot get the same information out of a fixed num-

ber of measurements by Increasing the number of transversely separated 

projections at the expense of the number of angles of view (or vice versa). 

The number of, scan angles must be quite large for reasonable resolutions 

(an experimentally disconcerting requirement). 

6. 2 Measurement Accuracy 

The accuracy with which measurements must be made clearly de-

pends on the density resolution required. If a region of k X k cells has 

density Po + 6.p which must be distinguished from, a background density 

po-then measurements through that region will differ by a fraction 

(kin) (6. pi Po )from other measureme~ts (the enti,re object is as sumed ' 
, ' 

to be divided into n Xncells). If the average meas~rement value is 

X with standard deviation CJ the requirement 

x 
CJ 

IS clearly a sufficient condition for observing the inter,esting region. 

(6 ) 

(Note • however • that there is a less stringent requirement. discussed 

below). 

There is another aspect to the measurement accuracy which is 
I 

harder to quantify. It emerges from the observation that one does 
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not improve the reconstruction without limit as one increases the mea-

surement accuracy. This is because the representation of the object 

as a set of discrete cells with uniform density (or any other interpola-

tive representation) is imperfect. Qualitatively one might say that the 

difference between a measurement on the true object and the measure-

ment which would result from the optimum nX n cell approximation of 

the object gives a measure of the level of accuracy which cannot use-

fully be exceeded. What that level is will depend greatly on the struc-

ture of the scanned object. 

7. RESTRICTED RANGE OF SCAN ANGLES 

Ideally one would wish to make measurements in the full range of 

possible angles, namely 180 0
, and this was done for all the preceding 

examples. However, it may not be possible to make the full scan in 

practice. Restriction of the range of scan angles does severely limit 

the resolution achievable. This matter was quantitatively discussed 

3 
in ref. ). We do not have a quantitative estim,ate of this effect in terms 

of the iterative relaxation technique. One can see intuitively that if one I 

confines oneself to ±45° about the y-axis (as in fig. 9a) one will have 

less information (hence, resolution) about structure parallel to the 

y-axis than that parallel to the x-axis. In figures 9b, c, andd we show 

the reconstruction of the object depicted in fig. 9a from measurements 

made respectively in the range ± 45° , ± 67 to, and the full ± 90°. In all 

three cases the same 20 X 20 cell grid is used and the measurements 

comprised 51 translations X 20 angles. The degradation of re solution 

in the y direction relative to the x direction is quite striking. 
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8. ARTIFACTS \AND THE LIMITS OF RESOLUTION 

T'he central problem when faced with a reconstrucUon is to be able 

to say whether some selected feature is ",real" or on artifact. One 

might ask the question, "1£ I remove the structure and replace it by 

the density of t~e local background is the modified reconstruction 

significantly less able to fit my measurements?" One should also, 

perhaps, ,require that all cells be uniformly renormalized after removal 

of the structure- so that the" weight" of the reconstruction remains 

unaltered. 

bnplicit in our previous discussions has been the fact that one has 

two separate resolutions, to deal with: spatial and density resolution. 

The abilities to resolve spatial detail and to detect density variations are 

distinct. They are, however, clearly correlated. One might expect 

that a very small object could more readily be detected if it was of a 

very d~fferent density from its surround. -We will now suggest a quanti

tati~e measu~e of this effect. 

The question posed above has a direct answer from the theory of 

least-squares fitting. The standard deviation in the value of a parameter 

(such as the density of some feature) is estimated by the change in the 

parameter necessary to increase the sum-of-squares parameter by' 

unity. In any given situation one may determine that change by direct 

computation. He re we examine the general case. Consider an object 

of nXn cells all of which have densityp except for a clump of kXk cells 

somewhere in the object which have density p + ~p., We then estimate 

the change in'rn2 when we set the kXk cells back to p (and the,n increase 

all cells by (k/n)2 ~p to maintain the same weight). We require this 

',.. 
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change to be greater than or of the order of unity for the clump to be 

obse rvable. This leads to the requirement 

x 
(] (k) 3/2 n .J];if ?i 1. (7 ) 

Here M is the total number of measurements, X is the average value 

of a measurement, and (] is the average measurement error. 

This formula should be treated more as a suggestive estimate than 

a hard and fast quantitative resolution limit. For one thing the pre

scription to raise m2 
by unity from its minimum value is only appli-

cable when the minimum value is reasonable (within a few X ~ of the 

number of degrees of freedom, D). However, as we have previously 

pointed out, this may not be the case in practice. One finds oneself 

abandoned by statistical theory at that point. One tactic of desperation 

is to readjust the estimates of error, (], by the amount which will force 

2 
the minimum value of'M to be equal to the number of degrees of free-

dom. 

Eq. (7) is interesting in that it suggests that the critical dimension 

for resolution of some feature is something intermediate between its 

diameter and area. In any event, the parameter which must be used to 

characterize the spatial resolution of any reconstruction is the ratio of 

the size (diameter or area) of the feature to that of the entire object. 

To give concreteness to eq. (7) we give a numerical example. 
I 

Suppose that one makes 10000 measurements, each of 3% accuracy, 

and asks how large a feature must be to be distinguishable if its density 

is 3% different from its background. In this case kin is about 1/22, 

which means that the diameter of the feature must be at least one 
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twenty-second that of the scanned field. This is, of course, rather a 

modest spatial resolution but it is characte-ristic of this kind of re-

construction. 

9. COMPARISON WITH OTHER TECHNIQUES 

There are two gener~l classes of analysis technique. On the one 

hand there 'are those ITlethods which, as. with that presented here, 

atteITlpt to generate a fully unfold~d distribution, disentangling the con-

tributions of separate cells. On the other hand there are tOITlographic 

techniques which seek to accentuate specific regions within the viewed 

object by defocusing contributions frOITl all other regions. The tOITlO-

graphic techniques offer especially siITlple ITlethods of analysis which. 

can often be iITlpleITlented by purely ITlech~mical prograITl~ing of,the 

ITleasuring apparatus. They are subject to the serious flaw of always 

superposing a background of (iITlperfectly) defocused structu;res on the· 

region exaITlined. We do not further consider the tOITlographic analysis 

here. 

In regard to the techniques which atteITlpt a full unfolding it should 

be'noted that the presently available analyses are all comparable in the 

aITlount of iniorITlation which they extract froITl a given set of ITleasure-' 

ITlents. The choice of technique ITlust therefore lie inconsiderations of 

siITlplicity, feasibility in terITlS of available cOITlputationalcapacity, 

and applicability in relation to the particular problem on hand. 

Two alternative techniques have been published 
7

). In the first
1 

,2), 

the two -diITlensional probleITl is' separated into a set of one -'dimensional 

integral equations of a function with solely radial variation. . The ITlea-

surements are expanded in a sine series with coefficients identical to 
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those of the radial density function when expanded in a limited series of 

Zernicke polynomials. 

. 3 
The second technique ) depends on the observation that the Fourier 

transform of a projected view is just the value which the three -dimen-

sional Fourier transform takes on a plane through the origin in Fourier 

space. Projections at different angles build up the Fourier transform 

on diffe rent planes and enable one to construct the full three -dimensional 

transform, which can then be inverted to regain the three -dimensional 

reconstruction in real space. In the inversion one must interpolate be-

tween measured value s of the transform, since sampling points do not 

generally coincide with measured value s and this interpolation can in-

troduce artifacts. Alternative interpolation procedures have been 

. . d8 ) InvestIgate . The method of Cormack1 , 2) is mathematically equivalent 

to the Fourier transform technique
3

) but, clearly, differs substantially 

from it in practical application. 

We suggest now some features unique to the iterative relaxation 

technique which might make it advantageous in certain circumstances. 

9.1 Versatile Scanning 

As has been emphasized already, this method can accommodate any 

series of measurements, since the only way the geometry enters into 

th~ computation is through the fjk of eq. (1). Thus analysis of x-ray, 

projections taken with short-focal-length setups (and consequently with 

highly divergent beams) presents no problem. Similarly, omitted or 

repeated measurements and irregularly spaced measurements are easily 

handled. 
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Both the beam profile at the entrance to the scanned object and the' 

variation of the profile with depth in the object are features which enterJ 

directly into'the calculation of the fjk and can consequently 

be fully accounted for. 

9.2 Versatile Reconstruction Grid 

While the discussion of the method has referred to a Cartes~an grid 

of ~ells there is no reason at all'to make that restriction. Clearly one 

can employ polar-coordinate grids or other regular arrays, perhaps 

luatching the cell size in any given region to the expected structure 

there~ Indeed, this can be extended to the much more general situation 

in which the scanned object is formed of a large number of regions oJ 

complex geometric form corresponding to the 'known configuration of the 

object. One could then allow the density of each region to be varied to 

fit the measurements. Having suggested this, one might proceed to the 

logical conclusion and attempt not only to modify the density of,each , 

region but also its boundaries. To do this one would have to recalculate 

the fjk after each iteration, but that is not an unduly burdensome task. 

If each region were represented by an octagon one would have seventeen 

parameters (a density and eight coordinate pairs) for each octogon. 

With 10000 measurements one could readily analyze situations having 

as many as 100 such variable regions. 

9.3 Extra Parameters 

We have implicitly as sumed that each cell contributes to the mea

surement through a single parameter (such 'as its density or absorption 

coefficient or stopping power). One might easily imagine associating 

with each cell additional parameters such as, for example, the effective 
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atomic number of the cell material. One would then search in a multi

dimensional parameter space for the best fit to the measurements. 

Provided the measurements wer.e sensitive to all the parameter s. one 

could hope to reconstruct them all simultaneously.' 

9.4 Sharp Edges 

We were initially led to this particular reconstruction technique by 

the desire to simulate the internal structure of the human body. It "

seemed reasonable to look for a representation which was capable of 

simulating large areas of fairly uniform density bounded by extremely 

rapid density variations such as one see s at a bone -muscle interface. 

The ~patial resolution implied by the cell size has its counterpart in 

the highest-frequency component used in. say. the Fourier transform 

technique. However. there is a slight difference in that the use of a 

high frequency to effect a rapid density variation at one boundary re

suIts in the presence of high-frequency components everywhere in the 

reconstruction. These can be largely cancelled out everywhere else. 

but there is always a residual high-frequency component which leads to 

the typical oscillatory character of such reconstructions. In the itera

tive relaxation technique any cell may differ in density by any amount 

from its neighbors without forcing the same high-frequency response 

elsewhere in the system. 

10. CONCLUSIONS 

We have developed an iterative relaxation technique for resurrecting. 

a three-dimensional distribution from a series of two-dimensional pro

jections derived from it. The technique has been applied succe s sfully 

to a number of computer simulations and actual laboratory measure

ments. 

/ 
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The ability to retrieve the full three -dimensional originating dis-
, 

tribution is now well established. The question of the most appropriate 

technique remains open and the answer will depend on details of the \ 

problem. We have presented some advantageous features of the iterative 

relaxation technique. 

We discuss the achievable resolution. A typical situation, wh~ch is 

reasonably undemanding in terms of computational capacity, would be 

the analysis of about 10 000 measurements to generate densities on a 

50 X 50 element grid. 
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Figure Captions 

Fig. 1. Basic, series of measurements comprising a series of pro·· 

jections along parallel transversely separated paths, each series 

being made at a number of different orientations. Each arrowed 

line represents the path along whic~ one measurement is made. 

Fig. 2. Reanalysis grid with one typical measurement schematically 

indicated. 

Fig. 3. Computer simulation of Cormack's experiment (ref. 2) ). 

(a) Original phantom 

(b) Computer simulation of phantom. Density is'linearly 

proportional to the dot density. . , 

(c) Computer reconstruction of phantom 

(d) Difference between reconstructed and true densities. 

Fig. 4. 

Horizontal slashes are deficits and vertical slashes 

are density excesses. 

. 4 
Lyman experiment using 840 MeV alpha particles (ref. )). 

(a) Schematic representation of phantom 

(b) Reconstruction. 

Fig. 5. 
, - 5 

Chesler experiment (ref. )). , . 

(a) Phantom 

(b) .' Reconstruction. 

Fig. 6. Reconstruction of phantom shown in fig. 3a based on analysis 

of the original Cormack data (ref. 2) ). 
/ 

Fig. 7. Convergence for the Cormackexpernnent. The. sum of squares 

per degree 'Of freedom is plotted against iteration number. 
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Fig. 8. Least significant angular interval between measurements for 

a given level of resolution (grid size). 

Fig. 9. Computer simulation of measurements made with a restricted 

set of scan angles. 
.. 

(a) Original phantom with indication of central axis 

relative to which angles were measured 

(b) Reconstruction from measurements made between _450 to +450 

(c) Reconstruction from measurements made between 

- 67 .so to +67.5° 

(d) Reconstruction from measurements made between 

- 90° to +90° (full range of angles). 

( 
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"LUNGS" 
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