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Abstract

Essays in Urban Economics

by Santiago Truffa

Doctor of Philosophy in Business Administration

University of California, Berkeley

Prof. Ernesto Dal Bo (co-Chair) and Prof. John Morgan (co-Chair)

In Chapter I, titled ”On the Geography of Inequality: Labor Sorting and Place-Based
Policies in General Equilibrium”, I study how city fundamentals, like amenities and hous-
ing restrictions, contribute to aggregate wage inequality through the sorting of heteroge-
neously skilled workers. I develop a “system of cities” model that features workers who
differ along a continuum of skills and who compete for limited housing. This model is
quantitatively tractable, and can replicate patterns in the dispersion of wages and housing
prices both between and within cities. I calibrate this model to match different moments
of the distributions of talent and wages for a cross-section of US cities, and I use it to
understand the importance of sorting when accounting for patterns of regional inequality.

In Chapter II, titled ”Urban Connectivity”, I study how technological changes that affect
the efficiency with which workers use their productive time in a city, can explain the
increased spatial segregation in workers’ skills and firms’ productivity. I focus in an
economy that produces knowledge and requires the matching of heterogeneous firms and
workers. I provide a spatial equilibrium model that has the unique feature that allows for
the sorting of a continuum of firms and workers where productive complementarities are
city specific. I show that small changes in the connectivity of a city, can generate non-
linear changes in city sizes and the level of skill segregation between cities. This suggest
that small shocks to the productive environment of a city could account for the important
changes we have observed in workers’ skills and firms’ productivity distributions.

Finally, in Chapter III, title Clustering to Coordinate: Who Benefits From Knowledge
Spillovers?(joint work with William Grieser and Gonzalo Maturana), we study location
and investment decisions by firms. We develop a model of knowledge sharing and derive
the prediction that riskier and more complex industries experience the greatest gains
from knowledge spillovers. Using tests that account for the non-randomness of location
decisions, we find a strong positive relationship between industry risk or complexity and
the clustering of: 1) firms’ headquarters, 2) patent inventors, and 3) R&D expenses.
Customer–supplier proximity is also significantly and positively related to industry risk
and complexity.
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Chapter 1

On the Geography of Inequality:
Labor Sorting and Place-Based
Policies in General Equilibrium

1.1 Introduction

Rising wage inequality has been a defining feature of the US economy over the last few
decades. This increase in inequality has been accompanied by changes in the organization
of economic activity in space. This reorganization has generated a serious urban differ-
entiation: cities that concentrate a higher fraction of high-skilled workers also feature
higher wages and housing prices 1.

Prior research has shown that an important part of the spatial variation we observe in
wages and housing prices is associated with the physical characteristics of cities. For
instance, Gyourko et at [1] show that metropolitan statistical areas (MSAs) with low
land availability tend to be more productive, and they attribute this effect to the sorting
of high-skilled workers into these places. These same cities have been among the least
likely to add new housing in the last couple of decades, and this could be exacerbating the
regional divergence. This phenomenon has started a discussion (e.g., Hsieh and Moretti
[2]) about the implications of local land use policies on overall growth and inequality.

In this paper, I study how city fundamentals contribute to wage inequality through the
spatial distribution of the population. I develop a spatial equilibrium model that links
city characteristics (e.g., amenities and housing supply) to the sorting of workers with
a continuum of skills. This model is quantitatively tractable, and it is rich enough to
replicate patterns in the dispersion of wages both between and within cities. The model
features the existence of a unique equilibrium, which allows me to numerically quantify
the general equilibrium effects of different types of place-based policies. I calibrate the
model to match city-level moments for the distributions of talent and wages for a cross-
section of US cities, and study how the spatial sorting of skills and the structure of wages

1Changes between cities have gone hand-in-hand with changes within cities, as more productive places
have also become more unequal.
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and housing prices are co-determined in equilibrium. In this context, I can turn off spatial
sorting and evaluate what would happen to the economy in the absence of sorting effects.
In the model, spatial sorting accounts for 7.5% of the aggregate wage dispersion, and
makes the economy 1.9% more productive. Places that in equilibrium feature a tighter
housing market (i.e., superstar cities) are on average 30% more productive and 40% more
unequal due to sorting. Finally, I evaluate what would happen to the economy if houses
were built in different cities, and I find that the economy would become 0.2–0.4% more
productive from expanding the housing supply in superstar cities. However, I also find
that relaxing housing constraints in superstar cities also tends to increase aggregate wage
inequality by the same magnitude.

Regional inequality is a complex topic, and one that for several reasons requires general
equilibrium reasoning. First, in a spatial equilibrium workers must not prefer other lo-
cations to their current one. This implies that population, wages, and housing prices
in all cities should be considered simultaneously, making them interdependent. Second,
wages and housing prices are inseparable from local agglomeration externalities and the
distribution of skills available in the city (Combes et al.[3], Gennaioli et al. [4], Acemoglu
and Dell [5], Van Nieuwerburgh and Weill [6]). Investigating this association requires a
model in which labor productivity of each worker is endogenous to the location decisions
of all workers. Third, to understand how city characteristics relate to regional inequality,
we must disentangle how they affect agglomeration externalities and skill sorting sepa-
rately. The reason is that a change in city characteristics (e.g., increasing the housing
supply) could affect local labor productivity by increasing density and by changing the
skill composition of the city.

I develop a general equilibrium model that allows for the sorting of heterogeneous workers
with a continuum of skills in the presence of endogenous agglomeration externalities. In
this model, workers care about their disposable income, which is their wages net of housing
costs, and they care about the level of local amenities. Workers can freely choose where
to live, but to access a city’s amenities, they must consume one unit of housing. Since
the number of houses per city is limited, workers compete for houses in bidding wars
as discussed in Albrecht, Gautier, and Vroman [7]. By competing for limited housing,
workers impose on each other a pecuniary congestion cost that depends on their skills
through the bids they are willing to make. This differential externality can work as an
endogenous gentrification force. The strength of this effect ultimately depends on the
tightness of the housing market (i.e., how many buyers show up to compete for a house),
and this effect directly links the features of a city’s housing market to the characteristics
of its talent pool. Since workers can freely move between cities, skill distributions are
determined by a spatial equilibrium condition. Given that we have a continuum of skills,
we can solve this functional problem using differential equations that make the model
empirically tractable.

Workers in cities perform non-tradable tasks that combine in a single final good. Each
task requires only labor and workers are differentiated in their labor productivity, which
depends on workers’ skills. Finally, workers can impose positive productive externalities
on each another, and these externalities are ultimately a function of the endogenous
number of workers producing in the city. The equilibrium of this economy yields, for

2



each city, an endogenous wage distribution in which wages depend both on the local
productivity and on the relative supply of skills.

In the calibration exercise, I use accepted parameter values from related literature, and
the parameters that are unique to my specification, I recover from data. To do so, I
constrain the model to generate city-level moments as close as possible to the equivalent
empirical moments using the Current Population Survey (CPS) for 54 MSAs in the US in
the year 2011. The calibrated model is consistent with several stylized facts. For instance,
the model features a sorting of high-skilled workers into land-constrained cities. Given
the higher supply of skilled workers, these cities specialize in high-productivity sectors,
generating an endogenous correlation between low land availability and city productivity.
Concurrently, land constrained cities have the property of having higher wage inequality
driven by the interaction of endogenous relative prices and local agglomeration external-
ities. Furthermore, the calibrated model does a reasonable job of predicting moments
that had not been targeted in the estimation, such as relative average house prices and
city size. The model also predicts a positive correlation between average wages and wage
dispersion that is consistent with the data.

Literature Review

This paper connects two important subjects in the urban economics literature. Extant re-
search has shown that the physical geography of cities relates to their economic outcomes
(Saiz [8], Ganong and Shoag [9], Hornbeck and Moretti [10]). A separate strand of the
literature has focused on studying what determines the sorting of heterogeneous agent 2

3. Eeckhout et al. [20][21], Behrens and Robert-Nicoud [22] and Puga et al. [23] have
developed discrete agent models that help theoretically explore how locations’ fundamen-
tals connect to productivity and inequality in cities 4. My paper closely relates to Davis
and Dingel [26] in using a continuum of skill types. I depart from their framework by
providing a micro-founded housing market in which a restricted housing supply implies
that, in equilibrium, a city may feature excess demand for housing (as in the superstar
cities framework)5. As I am able to fully characterize and compute the unique equilibrium
of the model using differential equations, I provide a tractable framework that is useful
for quantitative policy evaluation.

2 (Glasear [11], Shapiro [12], Couture [13], Albouy [14], Albouy and Seegert [15]) have empirically
shown the importance of amenities in accounting for sorting patterns. I build on this literature, and I
quantify the tradeoff between amenities versus restrictions on the housing supply.

3 A related literature has explored the sorting of heterogeneous firms (Gaubert [16], Desmet and
Rossi- Hansberg [17] and Behrens et al.[18], Serrato and Zidar [19]) to study the welfare implications of
taxes and firm incentives. I complement this literature by focusing on the worker side. Further work is
required to join these two threads in the literature.

4Frameworks that divide the workforce into discrete categories are empirically sensitive, since results
depend on dichotomous definitions of what type of worker qualifies for each type of category. Indeed,
Baum, Snow, Freedman, and Pavan [24] show that if we change the definition of high-skilled worker to
a worker with some college education, some of the results shown by Diamond [25] no longer hold.

5 To do so, I follow recent literature that models the housing market with bidding wars. For a review
see Han and Strange [27].
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This paper also relates to the literature that examines how city-level outcomes aggregate.
Hsieh and Moretti [2] use a Rosen-Roback [28][29]framework to analyze the role of cities
in aggregate growth. I contribute to this literature by providing a theory in which city
productivity is endogenous to the interaction between sorting and local agglomeration
externalities. A parallel literature has been studying wage inequality in cities (Baum-
Snow and Pavan [30]). I provide a quantitative framework that can analyze the role of
sorting when accounting for the dispersion of wages we observe within cities.

Finally, this paper also speaks to a growing literature that seeks to evaluate the aggregate
consequences of place-based policies. Despite many examples of local program evalua-
tions, it is hard to assess the general equilibrium effects of these types of policies 6. I
contribute to this literature by quantifying the aggregate potential consequences of local
policy changes by means of the spatial sorting of heterogeneous workers.

This paper is organized as follows: Section 3.2 presents the model and the theoretical
results. Section 1.3 discusses the data, describes the empirical estimation, and presents
the main empirical results. Section 3.5 discusses policy implications and then concludes.

1.2. Model

I consider an economy that contains N > 1 cities. Cities have a heterogeneous endowment
of housing supply Si and amenities ai. Non-tradable services are produced within each
city.

1.2.1. Production within a City

The economy is populated by a continuum of workers with skill sε[s, s] and these workers
can move freely between cities. Denote vi(s) ≥ 0 as the endogenous supply of workers
with skill s in city iε {1, ..N}.

Cities produce one final good, and producing that final good requires the aggregation of
intermediate tasks which will be indexed by their skill intensity σεΣ = [σ, σ].

Production tasks are performed only through human capital, and workers vary in their
productivity in these tasks. In particular, let A(s, σ) > 0 be the productivity of a worker
of skill s in task σ 7. Y i(σ) ≥ 0 is the endogenous output of task σ in city i and is given
by,

Y i(σ) =

∫
sεS

A(s, σ)Li(s, σ)ds (1.1)

6A notable exception is Kline and Moretti [31], who develop a methodology to estimate their aggregate
effects.

7To capture the idea that high skill workers have a comparative advantage in more complex tasks, I
assume as in Costinot and Vogel (2010), that productivity is log supermodular.
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where Li(s, σ) ≥ 0 is the endogenous number of workers with skill s who work on task σ
in city i.

The output of the final good is given by a Dixit-Stiglitz production function:

Y i =

{∫
σεΣ

Ei[Y i(σ)]
ε−1
ε dσ

} ε
ε−1

(1.2)

where, ε > 1 is the constant elasticity of substitution between tasks and Ei is a city-level
productivity shifter that captures the effect of agglomeration externalities.

Total profit for the final good is given by,

Πi =

{∫
σεΣ

Ei[Y i(σ)]
ε−1
ε dσ

}
−
∫
σεΣ

pi(σ)Y i(σ)dσ (1.3)

where pi(σ) is the endogenous price of task σ in city i.

Finally, total profits for intermediate tasks are given by,

Πi(σ) =

∫
sεS

[pi(σ)A(s, σ)− wi(s)]Li(s, σ)ds (1.4)

where wi(s) is the endogenous salary for a worker with skill s in city i.

1.2.2. Housing market

I follow a directed-search model as in Albrecht, Gautier and Vroman [7][AGV] to portray
the housing market. Let θi = Bi/Si , be the tightness of the housing market in city i.
Where Bi is the total number of workers that bid for houses in city i, and Si is the total
amount of houses for sale.

The game has several stages:

1. Buyers randomly arrive to compete for a house.

2. Each buyer has a private valuation x, which will be the buyer’s wage in city i.
Buyers do not observe the number of other visitors to the house.

3. As buyers arrive at a house they compete for it following a first-price auction (with
an un-known number of competitors).

With a random number of buyers, an individual buyer’s optimal bid is the weighted
average of the buyer’s optimal bids conditional on competing with n = 0, 1, 2... as shown
by AGV.

5



b(x) =

∑
pnF

n(x)b(x;n)∑
pnF n(x)

where pn is the probability of a buyer competing with n other buyers, and b(x;n) is the
optimal bid and F () is the distribution of types in the market. I assume Bi and Si are
large enough so that, in the limit, the arrival rate of buyers visiting a particular seller
follows a continuous Poisson process with parameter θi. This characterization yields the
endogenous housing prices shown in Appendix 1.

The tightness of the housing market also determines the probability of obtaining a house
in the city. Since buyers’ valuations for a house are sampled from a common distribution,
we have a “Poisson race” among different players who arrive following the same arrival
rate θi. Thus, e−θ

i(1−F i(wi(s))) is the probability that a buyer of skill s makes the highest
bid, and thus wins the auction. Notice that θi depends on the total number of workers
who arrive in equilibrium to produce in city i. I assume that workers have rational
expectations, thus they correctly anticipate the value of θi in equilibrium before moving
into a city.

1.2.3. Workers’ Preferences

Workers’ have homothetic preferences over their disposable income and the quality of
local amenities. Homothetic preferences can be represented as U = Tailog(xi). For
convenience, I will use the monotonic transformation U = exp(U) = xie

Tai , as all the
properties of this utility representation hold for monotonic transformations. In this case,
xi is the disposable income and eTai is a utility shifter that depends on the amenities in
that city ai and on a deep preference parameter T , which captures the tradeoff between
disposable income and the quality of local amenities. Workers enjoy amenities only in the
case in which they can obtain a house in the city. When they cannot obtain a house, they
will receive a reservation utility u(s) from living in the suburbs. Workers are risk-neutral
in whether they get to live in the suburbs or not.

Disposable income, is given by wages net of housing costs. Let bi(wi(s)) be the optimal
bid of a worker of skill s for a house in city i. Then, xi = wi(s)− bi(wi(s)).

Hence, the expected value that a buyer of skill s would receive from producing in city i is

U(wi(s)) = (wi(s)− bi(wi(s)))eTaie−θi(1−F i(wi(s))) + u(s)(1− e−θi(1−F i(wi(s)))) (1.5)

other workers in the city. In this context, using auctions to characterize the competition
for limited housing can enormously simplify the problem. In particular as the optimal
bid for a house follows from a first price auction, then

bi(wi(s)) = wi(s)− F i(wi(s))

f i(wi(s))

6



This means that the disposable income of a worker is given by,

xi = wi(s)− bi(wi(s)) =
F i(wi(s))

f i(wi(s))

Since an important fraction of labor rents accrue to land prices, the disposable income
of a worker in city i is going to be equal to her virtual surplus (i.e., informational rents).
This means that the level of wages disappears, and utility depends only on her relative
wage in city i:

U i(wi(s)) =
F i(wi(s))

f i(wi(s))
e−θ

i(1−Fii(wi(s)))eT∗ai + u(s)(1− e−θi(1−F i(wi(s)))) (1.6)

This characterization will allow us to further simplify the problem. Since wages are a
monotone function of talent, we can perform a change of variables so we can work in the
space of types. That is, there has exist a function V i, such that V i(s) = F i(w(s)).

This means that

U i(s) =
V i(s)

vi(s)
e−θ

i(1−V i(s))eT∗ai + u(s)(1− e−θi(1−V i(s))), (1.7)

where V i(s) is the endogenous cumulative distribution function (CDF) for talent in city
i, and vi(s) the endogenous probability distribution function (PDF).

Notice the relevance of this change of variables and how it simplifies the overall prob-
lem. The utility of a worker of living in city i is only a function of fundamental city
characteristics, and the endogenous distribution of skills in that city. This allows me to
solve for the equilibrium in two separate parts: I solve for the spatial sorting first, then I
solve the equilibrium for each city separately. This simplification allows the model to be
computationally tractable.

1.2.4. Equilibrium

The equilibrium of this economy is driven by two requirements: a spatial equilibrium
condition for each type of worker and a competitive equilibrium condition for each city.
I first study how workers sort across space only as a function of city attributes. After
solving for the spatial distribution of talent, I solve for wages and housing prices in each
city.

Spatial Equilibrium: Sorting

Since there is free mobility, the utility of a worker of ability s must be equal across space.

7



I restrict attention to skills distributions on a close interval [s, s] in which all cities share
the same support of skills.

This is an important assumption that allows me to solve and characterize the spatial
equilibrium of the economy. This condition tells us that, in equilibrium, all workers must
be indifferent between all cities. This is consistent with empirical distributions of talent.
Although we see differences between cities in the fraction of high-skilled to low-skilled
workers, we still observe a positive mass of workers at every level of talent. Moreover, if
we restrict attention to two cities, it is easy to show that, for any pair of non-overlapping
skill distributions, this configuration would never be in equilibrium, since the lowest-skill
worker in the high-skilled city will always have an incentive to move to the low-skilled
city, where she would be the most skilled worker.

In order to use this model empirically, we must have a strategy to recover u(s). One
possibility is that, given the costs of commuting to the center of the city, individuals
capture only a fraction φ of living in city i. Thus, we could write utility in the following
way:

U i(s) =
V i(s)

vi(s)
eT∗ai [e−θ

i(1−V i(s))(1− φ) + φ] (1.8)

Notice that φ captures workers’ sensitivity to not finding space in the city. If workers
could commute at no cost, then φ would equal 1 and therefore housing restrictions would
not matter. Given this preference representation, changes in T and φ are observationally
equivalent for empirical purposes, since both speak to the tradeoff between disposable
income and amenities. I make the identifying assumption φ = 0. Theoretical results
would not change for any 0 < φ < 1.

For each worker of skill s, it must be the case that

EU1(s) = EU2(s) = .. = EUN(s) ∀sε[s, s] (1.9)

Notice that, if this condition holds, the condition must hold for any monotonic trans-
formation of the expected utility, and it must hold for any linear combination of such
transformations. In particular, the above condition could be translated into a system of
equivalent conditions as follows:

ln[EU i(s)] =
1

N − 1

∑
j 6=i

ln[EU j(s)] ∀sε[s, s] ∀iε[1, .., N ] (1.10)

ln[
V i(s)

vi(s)
e−θ

i(1−V i(s))eTai ] =
1

N − 1

∑
j 6=i

ln[
V j(s)

vj(s)
e−θ

j(1−V j(s))eTaj ]; (1.11)

Using the properties of the log function, we can rearrange the above system into
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ln[vi] = ln[
∏
j 6=i

v
1/N−1
j ]

Vi∏
j 6=i V

1/N−1
j

e−
1

N−1

∑
j 6=i θ

j(1−V j(s))+θi(1−V i(s))eT [ai− 1
N−1

∑
j 6=i aj ]];

(1.12)

The system above cannot be easily solved numerically or characterized by a closed-form
solution. Nevertheless, if we make a linear approximation to one term of the above
expression, the system is easy to characterize and solve. We must rearrange this system
of differential equations in such a way that we can write all derivatives on the left side of
the equation and write all primitives on the right side, as follows:

vi = F (~V , γ) (1.13)

In order to do this, we will approximate the geometrical average of probability density
functions (PDFs), where 0 < vj << 1, with its arithmetic average.

That is,

∏
j 6=i

v
1/N−1
j ≡ Gi

represents the geometric average of the probability density functions that are different
from i. By taking a second-order Taylor expansion of Gi, I approximate the geometric
average by an arithmetic average8. In particular, it is the case that

Gi ≈ Ai − σ2/2

where Ai = 1
N−1

∑
j 6=i vj and σ2/2 is the sample variance.

I can now take advantage of the fact that this is a closed system, hence the sum of
densities must be equal to the overall number of workers in this economy:

∑
j 6=i

vj(s) + vi(s) = v(s);∀s (1.14)

where v(s) is the exogenous aggregate PDF.

Thus I can rewrite

Gi =
1

N − 1
(v − vi)− σ2/2

8Note that we are dismissing the third-order terms, which are very close to zero in the case of
probability densities.
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This means that I can rewrite the above expression in such a way that the density function
is a function of all the probability distributions. By exponentiating both sides of the
equation, we arrive at

vi = [
1

N − 1
(v − vi)−

σ2

2
][

Vi∏
j 6=i V

1/N−1
j

e−
1

N−1

∑
j 6=i θ

j(1−V j(s))+θi(1−V i(s))eT [ai− 1
N−1

∑
j 6=i aj ]];

(1.15)

Finally, we can separate this expression, such that probability density functions are on
the LHS,

vi =
1

(1 + 1
N−1

Vi∏
j 6=i V

1/N−1
j

e−
1

N−1

∑
j 6=i θ

j(1−V j(s))+θi(1−V i(s)eT [ai− 1
N−1

∑
j 6=i aj ])

[
1

N − 1
v − σ2

2
][

Vi∏
j 6=i V

1/N−1
j

e−
1

N−1

∑
j 6=i θ

j(1−V j(s))+θi(1−V i(s)eT [ai− 1
N−1

∑
j 6=i aj ]].

Two things must be noted here. First, from the above expression, I consider the problem
of solving for the endogenous PDF as equivalent to the problem of solving for a mix-
ing probability, since βi(s) ≡ vi(s)/v(s) 9. Thus, if I am to determine the endogenous
PDF in equilibrium, I could determine the mixing strategy that players should follow in
equilibrium. Second, as stated above, the above expression can be represented as

vi = F (~V , γ) (1.16)

which means that each probability density is a function of the vector of all probability
distributions and a set of parameters γ.

Now, it is crucial to note that since this must hold for every point, and since there is
a continuum of skills and types, I can consider the properties of a continuous function.

On the other hand, given that, by definition, vi = ∂V
∂s

i
, there is a system of ordinary

differential equations. This simplifies everything, since by establishing certain properties
about the function F (~V , γ), I can actually say something about the existence and unique-
ness of an equilibrium. This characterization will allow me to numerically compute the
equilibrium for different sets of parameters.

9 Workers must be indifferent between all cities, thus, in equilibrium, each worker must choose a
mixing probability b(s) by which each worker of skill s randomizes between cities. If all workers follow
the same mixing strategies, then, in equilibrium, we should expect to see the distributions predicted by
such mixing probabilities.
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The above characterization will allow me to numerically compute the equilibrium for
different sets of parameters.

Proposition 1.1. There exists a unique spatial equilibrium to the system of cities model

Proof. see the Appendix.

Given that this is an ODE, and the right side of the equation is continuously differentiable,
there exists a function that can solve for the spatial equilibrium. Let us refer to this unique
function as ~v.

Competitive Equilibrium

Once I have solved the spatial equilibrium above, I can compute the competitive equilib-
rium for each independent city.

Lemma 1.2. (Competitive Equilibrium)

In a competitive equilibrium, all firms maximize their profits and markets clear. This
equilibrium can be characterized by a continuous and strictly increasing matching function
M i : S → Σ such that (i) Li(s, σ) > 0 if and only if M i(s) = σ and (ii) M i(s) = σ and
M i(s) = σ.

We can characterize the matching function and wage schedule by a pair of differential
equations for each city:

dM i

ds
=

A[s,M i(s)]V i(s)[∫
sεS

wi(s)vi(s)ds
]

[pi(M i(s))/Ei(M i(s))]−ε
(1.17)

dLnwi(s)

ds
=
∂LnA[s,M i(s)]

∂s
(1.18)

where vi(s) is the endogenous probability density function and V i(s) the cumulative density
function for city i that was solved from the spatial equilibrium.

Proof. See Costinot and Vogel [32] lemma 3.

Two-Cities model

Given that for the general system of cities I can only characterize an approximation, I
will study the case with two cities, in which the approximation coincides with the exact
solution of the model. As I am able to provide analytic results for this specific case,
these will be informative of the general properties of the model. In particular, we want
to understand the role of housing restrictions in the model, and how these translate into
different allocations of talent and consequent wage differentials between cities.
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Proposition 1.3. (Monotone likelihood ratio property) For two cities that have the same
level of amenities, whenever θ1 > θ2, the monotone likelihood property for the distribution
of talents in City 1 versus City 2 holds:

v1(s′)v2(s) ≥ v2(s′)v1(s) ∀s′ > s

Proof. See Appendix 2.

This property captures the idea that City 1 (i.e., the city with a more inelastic housing
supply) will have relatively more high-skill workers than City 2.

Proposition 1.4. (Skill upgrading)

For two cities that have the same level of amenities, whenever θ1 > θ2,

then M1(s) ≤M2(s) ∀s

Proof. See Appendix 2.

From a worker standpoint, moving from City 2 to City 1 implies a task downgrading.
From a task standpoint, each task will be performed by workers of higher ability in City
1 versus City 2. The intuition for this result is very simple, as the relative supply of
high-talent workers is higher in City 1; and, since markets clear, more tasks must be
performed by high-skilled workers. This shifts the M schedule downward.

Proposition 1.5. (Existence and uniqueness of competitive equilibrium)

There exist a unique equilibrium for each competitive equilibrium in a city

Proof. Given existence and uniqueness of the sorting equilibrium, we must prove the
existence and uniqueness of the competitive equilibrium. Again, given that we have a
system of ODE, it is clear that for any pair of functions A() and B() that are continuous
and of bounded variation, then we can write dM = FM(M,w, γ) and dw = Fw(M,w, γ).
Given that FM and Fw are continuous and of bounded variation, there exists a unique
equilibrium for the system of ordinary differential equations.

1.3. Calibration

To calibrate the model I will follow a simple strategy. I will have two types of parameters.
General parameters that have already been estimated in related literature’s, and new
parameters that are specific to my theoretical specification. For the general parameters, I
use accepted parameter values from related literature, and the parameters that are unique
to my model I recover from data.
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There are two parameters specific to my model. The first parameter is one that quantifies
the relative taste for amenities T . The second is one that captures the complementarity
between workers’ skills and job complexity A. Then there are two general parameters we
can retrieve from the literature, an elasticity of substitution between services or skills ε,
and a parameter that captures local agglomeration externalities η.

First I will describe each parameter and the functional assumptions used in the exercise.
Next, I will describe the data used in the calibration. I will then discuss the estimation
techniques employed and finally, I show my results.

Parameters and Functional Assumptions

We first need an aggregate distribution of skills for the economy, which we will then “sort”
between cities. We will set the domain of this aggregate skill distribution to be [0, 1] and
assume that the distribution of skills in the economy v(s), will follow a truncated normal,
centered in 0.5 with dispersion 1.

Taste for amenities: T

The first parameter we must recover is the taste for amenities parameter,T , which shifts
the utility of workers by eTa

i
, determining worker’s preferences for places. This parameter

quantifies the tradeoff between housing tightness and the quality of services provided by
a city (as well as other intangibles such as weatheror natural beauty). A higher taste for
amenities means that workers tend to prefer living in that region, thus they are willing
to risk going into a city, even when facing a tough housing market that could leave them
living in the periphery. Although we assume that the taste for amenities is the same for
all workers, the trade off this entails is distinct for different type of workers. In particular,
high-skilled workers who know they can get a house in the city center and still have higher
disposable income will tend to value the amenities of a city more.

Given that this parameter fundamentally speaks to how workers of different skills sort
between cities, we will recover it from empirical distributions of skills.

Technology shifter: A

One important theoretical assumption is that high-skilled workers have a comparative
advantage in performing more complex tasks, and that complementarity must be log-
supermodular.

I will use a simple parametric characterization for empirical purposes: A(s, σ) = eAsσ ,
where A is a technology shifter which is recovered from the data.

The parameter A captures the advantage that higher-skilled workers might have over
lower-skilled workers. This parameter does not affect how workers sort between cities,

13



but it directly affects the level and dispersion of wages. We will recover this parameter
from the observed distributions of wages by city.

Agglomeration externalities: η

The model assumes that density can make workers more productive. For each city, we
impose an endogenous productivity shifter, which is a function of city size. I denote Ei

to be a city-level productivity shifter, where Ei = g(Bi), and g() is a function of the
endogenous number of workers that come to produce in city i, Bi.

Moretti and Klein [31] show that the elasticity of agglomeration externalities with respect
to density is constant. So we will model agglomeration externalities following a power
function such that gi(B

i) = (Bi)η, where η is the agglomeration parameter, which is set
to 0.08, as estimated by Moretti and Klein (2014).

Notice that agglomeration externalities affect workers differently. High-skilled workers
see higher productivity gains from these local shifters.

Elasticity of substitution between services: ε

In the equilibrium of this economy, the final parameter that we must numerically compute
is an elasticity of substitution between services or tasks for the Dixit–Stiglitz function. In
the literature, several authors have estimated an elasticity of substitution between skilled
and unskilled workers in the range of [1,2] (see Katz and Murphy [33] and Ciccone and
Peri [34]) . On the other hand, Hsieh and Klenow [35] use an elasticity of substitution
between manufacturing goods equal to 3. For the main results, I use an elasticity of
substitution equal to 2. Nevertheless, results are consistent for this elasticity varying
between 1 and 3.

Data

I use the Current Population Survey (CPS) for March 2011. The CPS provides the wages
for each MSA as well as the number of years of completed education, which I use as a
proxy for talent. Due to the many limitations of using education as a proxy for talent (see
Bacolod et al [36]), I also use alternative talent data as a robustness check (see Appendix
4). Results are very robust to the use of this alternative talent data.

The model also requires other sources of external information. For instance, the model
requires a proxy for the relative value of amenities in each MSA ai. I use the hedonic
parameters computed by Albouy [14] 10 to proxy for the amenity value in each city. The
advantage of using this measurement is that it is divided into two parts: and endogenous

10He developed a methodology that can derive hedonic measures of local productivity and local ameni-
ties from data such as local wages, housing prices, and taxes. The quality of life measure positively
correlates to measures of natural amenities relating to climate and geography.
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productivity element (dependent on the skill composition of the workforce) and a quality
of life element. I use the second part of the amenity index, since it is exogenous to the
sorting of talent.

The model also requires an exogenous measure of the housing stock in each MSA Si. I
use the housing supply elasticities estimated by Saiz [8]11, and assume that the supply
of new houses in each MSA is proportional to their respective elasticity multiplied by
the housing stock. We use the part of the elasticity that is determined by geographical
restrictions.

Finally, to check the quality of the fit of this model, I evaluate the performance of this
calibrated economy when predicting non-targeted moments. To do this, I specify two
variables that are endogenous to my framework: the relative housing prices and the
relative population size for each MSA. To proxy for the relative value of housing in each
MSA, I use the Zillow price index for the year 2011. The population for each MSA is
taken from the 2010 Census.

Indirect Inference Estimation

Since this theory does not feature a closed-form solution, I must resort to alternative
procedures to recover the parameters for workers’ taste for amenities and the technology
shifter. I intend for the model to generate moments of the skill distribution that are as
close as possible to the observed mean and variance of skills by city. Analogously, I also
intend for the mean and variance of the wage schedule to be as close as possible to the
one observed for each city.

Given that I can solve the theoretical model in two separate parts (i.e., the spatial sorting
of workers and the competitive equilibrium in each city), I can also divide my estimation
procedure into two parts. First, I solve the spatial sorting problem, in which I must recover
only one parameter: taste for amenities. Once I achieve an endogenous distribution of
skills for each MSA, I can solve for the distribution of wages in each city afterward,
because the cities produce non-tradable services. From these wage distributions, I can
recover the second parameter: the skill–technology complementarity.

Recover T from talent data

I simulate the model for different parameter values of T such that the model’s predictions
for the cross-section are as close as possible to the data. I define a Wald-type loss function
that weights the distance between the predicted and the observed mean and variance of
the talent distribution for each MSA.

The indirect inference estimator is thus given by,

11This measure stems from satellite-generated data on terrain elevation and the presence of water
bodies to estimate the amount of developable land in each MSA.
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T̂ = argminTL(T ) = (ρ− ρ̂(T ))′W (ρ− ρ̂(T ))

where ρ are the data moments, ρ̂(T ) are the simulated moments, and W is a positive
definite weighting matrix, that captures relative city size.

I use a grid search procedure and divide the estimation process into four consecutive
steps:

Step 1: Partition the parameter space of T 12

Step 2: Run the model and compute auxiliary vector ρ̂(T ).

Step 3: Compute the criterion function L(T ).

Step 4: Repeat steps 1-3 to minimize L(T ).

Using this process, I find that the parameter that minimizes this distance is equal to 713.

Notice that the taste parameter requires two different kinds of exogenous data, amenities
ai and housing Si, to uniquely predict two features of the skill distribution: shape and
size.

Technology parameter (A )

I follow the same strategy as in the first part of the calibration.Now, however, I can
solve the model for wages for each city independently. I start by choosing a parameter
value for both the agglomeration parameter and the elasticity of substitution (as already
discussed). I also take the distributions of skills by city as given from the above problem.
I simulate the model for different parameter values of A such that the model’s predictions
for the distribution of wages in each city are as close as possible to the data. As before, I
define a Wald-type of loss function, which is a weighted distance between predicted and
observed moments for the distribution of wages in each MSA. As before, I focus attention
of the first and second moments of each distribution. The indirect inference estimator is
thus given by

Â = argminAL(A) = (ρ− ρ̂(A))′W (ρ− ρ̂(A)),

where ρ are the data moments, ρ̂(T ) are the simulated moments, and W is a positive
definite weighting matrix that captures relative city size.

Following the same procedure as in the first part, I find that the parameter that minimizes
this distance is equal to 1.36.

12I let T vary from -100 to 100. I took steps of size 0.1, to ran the program for 2000 possible values of
T .

13Which is very consistent with the 7.4 that we find using the Lumosity sample.
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Figure 1.1: Sorting and Specialization in Superstar Cities

Calibration Results

Internal structure

With the calibrated model, I explore the numerical predictions in terms of the relations
between the main endogenous outcomes; specifically, the distribution of wages, housing
prices, and talent by MSA versus fundamental city characteristics. In particular, I want
to explore how these variables change as a function of housing market tightness. To do
so, I measure housing market tightness with theta, which is the equilibrium ratio between
buyers and sellers in a given city. Note that theta speaks to both of the dimensions
considered as city characteristics, since high-theta cities are the result of a combination
of high amenities and a restrictive housing supply.

Figure (1) Panel (a) shows that, in equilibrium, more talented workers tend to concen-
trate in high-theta cities, which I will refer to as superstar cities. The average talent of
workers increases as we move to cities that feature a tighter housing markets. Although
all cities produce all goods in equilibrium, the fraction of these goods will depend on the
endogenous supply of talent available in each local economy. Cities will be able to spe-
cialize. While all cities must produce all tasks, the relative output between intermediate
tasks may vary between cities. Panel (b) plots the degree of specialization for each city.
The model predicts that superstar cities tend to specialize in tasks that require more
talent and tasks for which technology is used more intensively.
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Figure 1.2: Talent Distributions

Panel (a) plots the distribution of skills for superstar cities. Panel (b) plots the distribution of

skills for non-superstar cities

Figure (2) shows the skill distributions predicted by the model for a subset of high-theta
cities and the skill distributions predicted by the model for low-theta cities. Superstar
cities feature talent polarization. The skill distributions have “fat tails” both for high-
and low-skilled workers.On the contrary, low-theta cities have the property of having bell-
shaped talent distributions. This translates into important economic differences between
these places.
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Figure 1.3: Wage and Housing Prices in Superstar Cities

Panel (a)average wage in each MSA . Panel (b) housing price in each MSA .

Figure (3) shows how these differences in talent distribution render significant differences
in local productivity. Superstar cities have higher average wages, and housing prices also
increase monotonically as a function of housing tightness. Sorting not only generates
between-city differences; they also cause important variation within cities.
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Figure 1.4: Wage and Housing Price Dispersion in Superstar Cities

Panel (a) plots the wage dispersion in each MSA. Panel (b) plots the housing price dispersion

in each MSA.

Figure (4) shows that superstar cities are also more unequal places. Although workers
must be indifferent between cities, their disposable income varies dramatically. It is
important to note that this is fundamentally a consequence of the distribution of workers
that live in these places.
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Figure (5) Panel (a) plots the disposable income of workers in the 20th percentile across
cities. Low-skilled workers must be compensated for living in superstar cities, since
they have very low chances of finding a house within the MSA, thus they do not get to
enjoy their amenities.The low supply of workers makes their relative talent very valuable,
therefore this is reflected in relative prices and wages. Figure (5) Panel (b) shows how
disposable income varies for workers in the 80th percentile of the talent distribution.
Although these workers have higher wages, they also tend to pay a higher fraction of
their wages for living in the city center. As they are very sensitive to amenities, they are
willing to sacrifice some income to enjoy urban living. Figure (5) Panel (c) plots the ratio
of disposable income between 80th-percentile workers and 20th-percentile workers. The
difference in disposable income decreases dramatically as we move into cities that feature
a tighter housing market. Although superstar cities are more unequal places because of
their bimodal talent distributions, they tend to diminish differences in disposable income
between high-and low-skilled workers.

External Validity

We must investigate capacity of the calibrated model for predicting patterns that were not
targeted in the original exercise. To evaluate this, I focus on two important predictions:
the relative size of cities and their relative housing prices.

Figure (6) plots the predicted-versus-real city size and average housing prices. The model
performs well in terms of predicting both relative city sizes and relative housing prices.

The calibrated model can also predict certain patterns in the correlation structure of the
data, which was not originally targeted. Notice that the calibration exercise involved
targeting the level of wages and wage dispersion independently (not their correlation).
Figure (7) shows the correlation that the calibrated model predicts versus the correlation
observed on the data using the CPS.

Unpacking Sorting Effects

Since the location decisions of workers are not driven by local productivity differences,
but rather by city characteristics, I can separate what fraction of the wage dispersion is
due to the sorting of heterogeneous agents between cities and what fraction of the wage
dispersion is due to local agglomeration externalities. For the first decomposition, I fix
the size of each city and impose the same skill distribution everywhere. For the model
(without sorting) I recalculate the dispersion in wages and housing prices both between
and within cities.
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Figure 1.6: Non-targeted Variables

Panel (a) observed relative city sizes (from Census 2010) versus predicted relative city sizes.

Panel (b) observed relative average housing price from the Zillow housing price index versus

the relative housing prices predicted by the model.

Figure 1.7: Internal Correlation Structure: Correlation Between Level of Wages and
Wage Dispersion

This figure shows the correlation structure between wage level and wage dispersion predicted by

the model versus the correlation observed in the data. Graphs are in logarithmic scale. Panel

(a) plots the relation between average wages and wage dispersion for the March 2011 CPS.

Panel (b) plots the relation between average wages and wage dispersion as predicted by the

model.
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When I undo the sorting, the total wage dispersion drops by 7.5% and housing price
dispersion drops by 5.7%. Despite the decline in the dispersion of housing prices and
wages, the overall economy experiences a fall in aggregate productivity. Total GDP
falls 1.9%. This is because when we allow for sorting, most productive workers tend to
cluster in larger cities. In larger cities, workers’ marginal productivity is higher because of
agglomeration externalities. By undoing the sorting, we are reallocating very productive
workers to smaller cities. Overall, this translates into lower aggregate productivity.

I can decompose the aggregate effect further to examine events at the city level. Figure
(8) shows a decomposition of how sorting changes the average wage, wage dispersion, and
average housing price as a function of city characteristics (represented by theta).
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Panel (a) shows the change in the average wage of a city, both allowing for and not
allowing for sorting. Superstar cities experience an average wage increase of around
20–40% with sorting, whereas non-superstar cities oscillate between 10% and 10%. This
result indicates how important sorting is to generate between-city variation. Panel (b)
plots the changes in wage dispersion within cities as a function of city characteristics.
Wage inequality is between 20% and 40% higher in cities with tighter housing markets
due to talent sorting. Finally, Panel (c) shows a similar pattern for average housing prices
in these metro areas. Talent sorting increases average housing prices by 20–40% in cities
that feature a more restricted housing supply.

Another important decomposition I analyze is the result of the absence of agglomeration
externalities. By setting the agglomeration externality parameter to zero, I can evaluate
what would happen to an economy that features sorting in the absence of agglomeration
externalities. I then examine the way in which sorting and agglomeration externalities
interact to generate city-level changes. To do so, I compute the change in average wages
and wage dispersion when we remove sorting in a world that features agglomeration
externalities versus a world without agglomeration externalities. I find that changes in
average wages between cities is, on average, 17% higher in the presence of agglomeration
externalities, and I find that the changes in within-city wage dispersion is, on average,
7% higher in the presence of agglomeration externalities. Overall, these two forces seem
to complement each other.

Place-Based Policies: National Housing

In this section, I explore the general equilibrium consequences of policies that take place
at the city level. In this context, the model allows me to capture population responses to
changes in local environments. Through the sorting of the population, these interventions
can have important aggregate effects for both aggregate productivity and inequality.

I want to evaluate the aggregate consequences of changes in the local housing supply. To
do this, I independently “shock” each city with an increase in housing supply equivalent
to 1% of the national housing stock. I then compute the new aggregate effects on the
economy.

Figure (9) Panel (a) shows the percentage changes in aggregate product following an
intervention in different types of cities. We want to evaluate what would happen if we
relax the supply of houses in urban environments that feature a tighter housing market.
First, I find that, when building in cities where housing constraints are not binding (e.g.,
cities where theta is below 1), the housing shock does not generate considerable effects.
In these cities, aggregate effects are very close to zero.
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Figure 1.9: Aggregate Effects of Shocking Housing Supply by City Type

Panel (a) percentage change in average wages. Panel (b) percentage change in wage dispersion.

Second, by expanding cities where housing constraints are binding but not that important
(i.e., theta is above 1 but below 1.5), aggregate productivity decreases by approximately
0.4%. Note that expanding housing does not change the number of workers in the econ-
omy, but rather the characteristics of the local housing markets. By changing these char-
acteristics, the same workers are reallocated between cities. These re-allocations could
imply higher or lower productivity as the result of the interaction between skill sorting
and endogenous local agglomeration externalities. By relaxing housing constraints in
these types of cities, we make the cities more attractive, thus motivating workers from
larger urban centers to move to these places.

Overall, this makes the economy less productive, since these cities do not feature impor-
tant agglomeration externalities. Finally, by expanding the supply of houses in superstar
cities (where theta is above 1.5) the economy grows 0.2–0.4%. By allowing constrained
cities to grow, we give more workers access to these productive environments. As these
cities grow, they also become more productive. Yet, the sorting of skilled workers moder-
ates these effects. The expansion of the housing supply mostly changes the incentives of
low-skilled workers to move into these urban environments. As low-skilled workers decide
to move in, they generate a negative congestion in the city they move to; meanwhile,
the cities they are departing from become more appealing to all other workers. In equi-
librium, this implies a transfer of high-skilled workers from big cities to smaller ones.By
doing so, their aggregate productivity decreases.

Although it is the case that expanding superstar cities generates gains in aggregate pro-
ductivity, this expansion also gives rise to higher wage inequality. Figure (9) Panel (b)
plots the change in ex post aggregate wage dispersion after a change in housing supply in
cities with different levels of housing tightness. As before, a shock to the supply of houses
in places where housing constraints are not binding has no effect on aggregate inequality.
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Yet, as we move from cities with thetas above one, we find that inequality is higher for
cities that feature tighter housing constraints. In particular, these cities will see an influx
of low-skilled workers. As the relative supply of high-skilled workers decreases in large
cities, their salaries increase. At an equal rate, low-skilled workers will see their salaries
depressed by the expansion of their relative talent supply. Overall, relaxing housing con-
straints in superstar cities generates important gains in aggregate production. But, these
policy changes also entail adjustments in the composition of the local labor force. Sorting
can attenuate the potential gains from expanding superstar cities and while also incurring
a cost, since these talent reallocations translate into higher levels of wage inequality.

1.4. Conclusion

In this paper, I examine how city characteristics such as housing supply and local ameni-
ties affect the sorting of heterogeneous agents between cities. I developed an urban macro
model in which cities have a restricted supply of houses, and workers with a continuum
of skills compete for limited space through bidding wars. In this context, the pecuniary
congestion costs that heterogeneous workers impose on each other operate as an endoge-
nous driver for gentrification. The model has a unique equilibrium that can be calibrated
to match different moments of the talent and wage distribution for a cross-section of US
cities.

Overall, my numerical simulations stress that the sorting of heterogeneously skilled work-
ers can generate sizable aggregate effects both on productivity and on inequality, and
these results are mostly driven by the interaction between sorting and local agglomer-
ation externalities. I examine what fraction of the wage variation in the US can be
explained by talent sorting, and I find that the sorting of heterogeneous workers accounts
for 7.5% of the total variation and generates considerable differences between cities. Sort-
ing mostly affects cities that feature tighter housing markets, making them between 20%
and 40% more productive as they would otherwise be in the absence of this mechanism.
Although sorting is an important contributor to overall wage dispersion, it also positively
contributes to aggregate productivity. If sorting is removed, aggregate production falls
1.9% as a consequence of highly skilled workers moving away from large cities (subject
to high agglomeration externalities) to smaller cities.

Finally, I use the calibrated model to evaluate different types of place-based policies.
I find that policies designed to improve labor mobility (e.g., the expansion of housing
in constrained urban centers) can have unintended consequences, given the sorting of
heterogeneously skilled workers in the presence of local agglomeration externalities. For
instance, I estimate that the expanding housing supply in cities with tighter housing
markets increases productivity between 0.2% and 0.4%, but this increase is mitigated
by sorting, as high-skilled workers tend to relocate to cities where they are less produc-
tive. Although these policies aim to reduce inequality by facilitating the spatial mobility
of workers, I show that expanding larger cities can produce an unexpected increase in
aggregate wage inequality.
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Chapter 2

Urban Connectivity

2.1 Introduction

Many authors have suggested that globalization and technology would mean the death of
proximity, as people would no longer need to live close to each other. Yet, in an economy
where the skills and knowledge of the workforce have become fundamental drivers for
growth, cities and the connectivity they offer seem to be more important than ever.
Acting as brokers of tacit knowledge, cities have served the role of platforms facilitating
connections and allowing for the creation of new ideas. In this context, technology instead
of dispersing firms and workers in space, could be working as a pull force by changing
the efficiency with which firms and workers use their time and increasing the productive
value of proximity.

We have witnessed an important rise in spatial disparities (what Moretti [37][38][39] called
the Big Divergence). Certain cities have become very productive featuring high wages and
housing prices. These same cities have also seen a higher concentration of high skilled
workers and productive firms. This suggests that the value of proximity has not only
increased for everyone, but it is also the case that it has change differently for different
types of firms and workers.

The modern city is a very different place from what it used to be. Current mobile
technologies allow people to easily coordinate, perform multiple tasks and constantly
communicate and connect via a plethora of different digital platforms. Is it that we want
to try a new restaurant or find a new job, everyday there seems to be a new technological
solution for things to happen faster. All of these changes imply that workers can use
their time more efficiently. The value of relaxing the time constraint of a worker depends
on how productive that worker can be with his time. If so, the gains from proximity in
a more productive environment are higher for a worker with higher skills. This poses a
natural question. To what extent connectivity enhancing technologies can explain the
higher sorting and selection we observe in cities?

For several reasons this is a difficult question. First of all, as firms and workers can
freely move between places, we need to take into consideration the interplay between
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different regions using a spatial equilibrium perspective. Secondly, the urban literature
has analyzed this problem either from the perspective of firms (Gaubert [16]) or from the
perspective of workers (Diamond [25]). Incorporating the strategic behavior of firms and
workers in a competitive environment has so far proven elusive.1.

What drives the patterns of co-agglomeration? One possibility is that there are common
features in the city (such as the supply of housing or local amenities) that both firms and
workers value. This can make firms and workers coordinate in a city, although they might
be making their decision independently of each other. A second possibility is that the
decision of firms influences the decisions of workers and vice-versa. If there are productive
complementarities between firm and workers, then their decisions might influence each
other. Given the circular nature of this process, it could perfectly be the case that a small
change in the relative value of proximity can trigger important changes in equilibrium. Of
course both explanations might be feasible, and thus are hard to disentangle. To explore
the relative importance of both ideas we need a spatial equilibrium model that can capture
the strategic interaction between firms and workers, and separately account for how their
sorting decisions are driven by physical features of the city and by complementarities in
production.

In this paper I provide such a model. Think of an economy that produces knowledge.
Firms have problems that need to be solved, and for doing so they require to be match with
a workers with different levels of skills. The production function for knowledge is super
modular, as high skilled workers have a comparative advantage in solving more difficult
problems, which are available in more productive firms. This competitive advantage will
be partly driven by the efficiency with which workers can use their time within a firm.
This complementarity will be captured by a technological parameter we will refer as
urban connectivity. What is crucial here is that urban connectivity is a feature of space.
Different cities can provide different levels of urban connectivity.

There are going to be 2 cities that will originally differ in their supply of housing and
in the quality of local amenities. There is also going to be a continuum of firms and
workers that need to decide where to locate. Since knowledge is tacit, workers cannot
observe a firm type nor firms can observe a worker type unless they meet and engage in
face-to- face interactions. So before deciding where they want to live they do not know
with what firm or with what worker they will be matched. Since firms and workers have
rational expectations they can infer ex ante how the distributions of firms and workers will
look in equilibrium. Once in the city they will be matched randomly, so their expected
productivity in a city will depend on the equilibrium distributions of workers and firm
types.

In this model, competition will play a crucial role. Since there is a limited amount of
houses, workers will have to compete through bidding auctions, to be able to consume a
house and enjoy the productive and consumption amenities that a city provides. Similarly,
since there is a limited amount of workers (specially high skilled workers), firms will have
to compete for them, again through competitive auctions. What is crucial in this setting
is that by competing through auctions firms and workers generate pecuniary externalities
that are dependent on firms and workers types. Secondly, given that we have a continuum

1An important exception is Beherens et al [18]
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of worker skills and firms types, once we impose a spatial equilibrium condition, meaning
that all firms and all workers need to be indifferent in expected value between the two
cities, we will be able to characterize the equilibrium of this economy with a system of
differential equations.

This is important for two reasons. First, under certain regularity conditions I can prove
that there exists a unique equilibrium to the system of differential equations. Secondly, I
will be able to compute this system numerically, which makes this type of model useful
for empirical analysis. The main result of the model is that small changes in connectivity
can generate important changes in the equilibrium distributions of firm and worker types
between cities. This is due to the circular nature of how firms and workers decide to
locate. Since workers are sensitive to firms types and firms are sensitive to workers types,
small changes in time use efficiency can be dramatically amplified in equilibrium. The
main objective for this model is in the near future is to quantify to what extent changes
in co-agglomeration patterns can be attributed to changes in urban connectivity.

This paper relates to the literature studying what determines the sorting of heteroge-
neous agents (Glasear et al [40], Shapiro [12]], Bacolod [36], Eeckhout et al [21][20]),
and the sorting of heterogeneous firms (Desmet and Rossi- Hansberg [17]). This pa-
per contributes by exploring interaction between these forces, and how these relate to
technological changes that have taken place in the working environments of cities.

This paper is organized as follows. Section II describes the model and the main theoretical
results. Section III describes future empirical applications and identifications strategies.
Finally, section IV concludes.

2.2. The Model

The model has several parts. First we will describe the production function in this
economy, which requires firms and workers to meet so they can solve problems. We
will then present the problem firms face when deciding where to locate. Next, we will
present the housing market and workers’ preferences for places to shed some light into
how they make their location decisions. Finally, we describe the spatial equilibrium for
this economy and present the main results.

2.2.1. Production function

This is a market for skills (as in Garicano, Fuchs and Rayo [41]). Think of a firm of
type/skill z which has a problem that needs to be solved. Problems arise with a random
difficulty xεU [0, 1]. The firm will be able to solve the problem if x ≤ z. Otherwise, it will
have to look in the labor market for a worker with the right set of skills o help them out.
Workers have skill m. In case a worker has a skill level above the problem at hand, then
he will be able to solve the problem.
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Communicating ideas within an organization is costly. The cost of communicating ideas
can be though as the efficiency with which workers use their time. Workers are constraint
in the number of hours available during a working day to carry on productive activities.
In this regard, the cost of communicating ideas directly relates with the efficiency with
which workers can connect and coordinate with firms. Lets denote h how many units
of time it takes a worker to solve a problem. We will refer to this parameter as the
urban connectivity parameter. Moreover, assume that this connectivity parameter is a
characteristic of space. That is, different cities might provide firms and workers different
capabilities so that they can have an affluent use of their time.

Whenever a problem is solved, the firm gets 1and0 when the problems is not solved.

The probability that a worker can solve a problem, conditional on the fact that the firm
could not solve it is given by:

Pr(x < m|x > z) =
m− z
1− z

(2.1)

Which follows directly from the properties of the uniform distribution. Denote n(z) as
the number of firms that each worker can interact with in 1 unit of time.

Where,

n(z) =
1

h(1− z)
(2.2)

Once a firm is matched to a worker, the team will produce:

V (m, z) =
m

h(1− z)
(2.3)

What is crucial of this representation is that payoffs are super-modular. Which means
that a higher skilled workers are more productive when matched to a more productive
firms.

2.2.2. Matching in the city

Firms and workers ex-ante do not know which workers or firms they will encounter in
the city. This is so, because ex-ante knowledge is tacit. Every workers looks the same
from the perspective of a firm and every firm looks the same from the perspective of a
worker. Firms can only observe a worker type, once they meet. Thus we will assume that
before going to a city any firm can be randomly matched to interact with any worker.
Therefore, firms deeply care about the statistical properties of the distribution of workers
in that city. Although they cannot tell for sure who they will encounter in a city, they
know that given the pool of workers they are to face, he probability of finding the talent
they need will depend on the statistical properties of the talent distribution.
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The same is going to be true for workers. They do not know which firms they will
work with, yet ex-ante they know that the chances of finding a productive firm to work
in will depend on the pool of firms in any given city. This assumption is capturing
two fundamental features in the market for ideas. One is that knowledge is tacit, thus
firms and workers require face-to-face interactions for truly learning each other’s types.
Secondly, although there is randomness in labor outcomes, firms and workers will have an
accurate prior of the general characteristics of the labor market they want to be part of.
When a firm chooses to locate in Silicon Valley or New York, they do not for sure whom
they will end up working with, yet they have a very clear sense of the general properties
of the types of workers they might encounter in different markets.

Housing prices might play an important role in screening talent for firms. Low skilled
workers will not be willing to pay the high rental prices they would face in a city like San
Francisco or New York, unless they know they have the required talent and productivity
to make a decent living in such places. This means that conditional on observing who
leaves where, firms will be able to ”statistically discriminate” the quality of the workers
they are to find. The same logic would applied for workers. Firms that are not very
productive, will be priced out from very productive cities. Thus a worker, conditional
on observing a firm’s location, will be able to ”statistically discriminate” or form an
expectation of the type of firm they might encounter in different places..

2.2.3. Firms

In the market for ideas, firms will compete for the limited talent they will find in each
city. Given that firms cannot observe the talent of a worker before meeting them, we will
assume the following process:

1. Firms pick a (random) worker from the pool of workers in the city. Firms ex-ante can-
not observe type, they can only correctly predict the properties of the talent distribution
of workers in equilibrium. When the firm meets with a worker, they can observe their
talent m.

2. If m > z then the firm makes a bid for a worker.

3. Since many firms arrive to compete for a worker, they all make a bid and the highest
bidder gets the worker.

3. If the firm cannot acquire talent, then gets an outside option of 0. We assume that
each firm can get to bid for a worker once.

In a large labor market, the arrival rate with which firms approach a worker follows a
Poisson process given by the tightness of the labor market:

θiLM =
F i

W i
(2.4)

Where F i is the (endogenous) total number of firms competing for workers in city i and
W i is the total number of workers producing in city i
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When firms compete for workers, they do so following a first price auction, where firms
offer workers salaries and the firm which offers the highest salary gets the worker.

The willingness to pay or bid for a worker is going to be a fraction of all the rents the
firm can produce with that workers in their team. Let φL represent the fraction of total
output V (m, z) a firm is willing to pay for a worker. Then their optimal bid would be
given by:

b(φLV ) = φLV − F̃ (φLV )

f̃(φLV )
(2.5)

That is, the firm offers its willingness to pay, minus an informational rent (or virtual
surplus), where F̃ is the cumulative distribution and f̃ the probability distribution of the
relative willingness to pay of firms.

Notice that the willingness to pay of a firm of type z is a monotonic function of its type.
Thus, we can make a change of variables and re-write the above expression as:

b(φLV ) = φLV − F (z)

f(z)
(2.6)

Where F is the cumulative distribution for firm types and f is the probability distribution
for firm types.

Firms are risk neutral, and their utility is their expected income. The utility a firm would
get from being matched with a worker of type m is given by:

U(I) = I = V − b(φLV ) = (1− φL)V +
F (z)

f(z)
= (1− φL)

m

h(1− z)
+
F (z)

f(z)
(2.7)

Now the problem is that ex-ante a firm does not know with what worker is going to be
matched to, nor if once is matched with a given worker, is going to be able to win the
bid. This means that there are two forces that go on opposite directions. On the one
hand, better firms attract better workers, which makes the given city more attractive. Yet
better firms also imply tougher competition for a limited talent. This entails an interesting
trade-off that will depend on each firm’s type. In equilibrium, this counterbalancing forces
imply that for all firm types, we should find a positive mass them everywhere.

Notice that as firms offer a fraction of the revenue they can make, then the probability
of a firm winning a bid, is equal to the probability of that firm having the higher type
when arriving to compete for a given worker. The probability of that event is therefore
given by:

Pr(winning) = e−θLM (1−F (z)) (2.8)
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That represents the probability of an event where all competing firms that randomly
arrive to compete for a worker, all have a willingness to pay lower than mine.

The value that a firm would expect to get from moving to a city i would then be equal
to:

E[U i(z)] = {(1− φL)
umi

hi(1− z)
+
F i(z)

f i(z)
}e−θiLM (1−F i(z)) (2.9)

Where Ei(m) = umi is the first moment of the talent distribution of workers in city i.

2.2.4. Housing Market

Firms face a limited supply of workers in a city, and so do workers face a limited supply
of space (or housing in a city). Thus for workers to be able to live and produce in a city
they will need to compete for limited housing. In order to provide a micro-foundation
for the housing market, we follow a directed-search model as in [Albrecht, Gautier and
Vroman [7]] (AGV) to portray the housing market.

Let θiH = W i

Si
, be the tightness of the housing market in city i. Where W i is the total

number of workers that bid for houses in city i, and Si is the total amount of houses for
sale.

Houses will be homogeneous. The utility a workers gets from consuming housing comes
only from the fact that it allows them to access the productive and consumption amenities
a cities provides.

The housing game will have several several stages:

1. First workers (acting as interested buyers) randomly arrive to compete for a house.

2. Each worker has a private valuation x, which will be a fraction of the workers wage in
city i.C 3. As workers arrive at a house they compete for it following a first-price auction
(with an un-known number of competitors).

The tightness of the housing market also determines the probability of obtaining a house
in the city. Since workers’ valuations for a house are sampled from a common distribution,
we have a Poisson race among different players who arrive following the same arrival rate
θiH . Thus,

e−θ
i
H(1−G̃i(wi(m))) (2.10)

is the probability that a worker of skill m offers the highest bid, and thus wins the auction.

Where G̃i(wi(m)) is the endogenous distribution of wages in city i. Notice that θiH
depends on the total number of workers who arrive in equilibrium to produce in city i.
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We assume that workers have rational expectations, thus they correctly anticipate the
value of θiH in equilibrium before moving into a city.

The expected wage of a worker of talent m in city i will be given by:

wi(m) = b(φLV ) = φL
m

hi(1− z)
− F (z)

f(z)
(2.11)

We will assume that a worker’s willingness to pay for a house, will be a constant fraction
φH of his wage, thus his optimal bidding function will be given by:

b(φHwi(m)) = φHwi(m)− G̃(φHwi(m))

g̃(φHwi(m))
= φH [φL

m

hi(1− z)
− F (z)

f(z)
]− G̃(φHwi(m))

g̃(φHwi(m))
(2.12)

That is, the worker offers its willingness to pay, minus an informational rent (virtual
surplus), where G̃ is the cumulative distribution and g̃ the probability distribution of the
relative willingness to pay of workers for houses.

Notice that the willingness to pay of a worker of type m for a house is a monotonic
function of its skill level. Thus, we can make a change of variables and re-write the above
expression as:

b(φHwi(m)) = φH [φL
m

hi(1− z)
− F (z)

f(z)
]− G(m)

g(m)
(2.13)

Where G is the cumulative distribution for workers’ skills and g s the probability distri-
bution for workers’ skills.

2.2.5. Workers’ preferences

Workers’ have homothetic preferences over their disposable income and the quality of local
amenities. The idea is that cities do not only offer the capacity to generate income and
thus consumption, but also feature other intangible assets such as parks, good weather
or a vibrant cultural environment which can also influence workers’ location decisions.
Homothetic preferences can be represented as U = Tailog(xi) . For convenience, I will use
the monotonic transformation U = exp(U) = xie

Tai , as all the properties of this utility
representation hold for monotonic transformations. In this case, xi is the disposable
income and eTai is a utility shifter that depends on the amenities in that city, ai, and on
a deep preference parameter T , which captures the tradeoff between disposable income
and the quality of local amenities. We assume workers consume a composite good, which
is tradable and which price we normalize to 1.

Workers enjoy amenities only in the case in which they can obtain a house in the city.
When they cannot obtain a house, they will receive a reservation utility u(m) = 0 from
living in the suburbs. In case a worker does not get a house in the city, they will still be
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part of the local labor force, yet they face an important dis-utility from the fact that they
have to commute to consume and produce. The model does not require u(m) = 0, yet
this is a practical assumption for future empirical applications. Workers are risk-neutral
with respect to whether they get to live in the suburbs or not.

Disposable income, is given by wages net of housing costs, xi = wi(m)−bi(wi(m)). Hence,
the expected value that a worker of skill m would get from locating in city i is given by :

U(wi(m)) = (wi(m)− bi(φHwi(m)))eTaie−θ
i
H(1−Gi(m)) (2.14)

U(wi(m)) = [(1− φH)(φL
m

hi(1− z)
− F (z)

f(z)
) +

G(m)

g(m)
]eTaie−θ

i
H(1−Gi(m)) (2.15)

Before moving into a city, a worker does not know with which firm it will be matched.
Since workers and firms are matched randomly in the city, the expected value of producing
there is going to be given by:

E[U i(m)] = [(1− φH)(φL
m

hi
Ez(

1

1− z
)− Ez(

F (z)

f(z)
)) +

G(m)

g(m)
]eTaie−θ

i
H(1−Gi(m)) (2.16)

Where Ei(m) = umi is the first moment of the talent distribution of workers in city i.

2.2.6. Spatial equilibrium for 2 cities

Firs of all, for ease of exposition, we will assume that there are only 2 cities in this
economy. The model can easily be extended to an arbitrarily large number of cities.
Given that we already found the expected value for firms and workers of locating in
different cities, we will look for an spatial equilibrium for this economy. Given the fact
that firms and workers can freely move between cities, it has to be the case that in
equilibrium all workers and all firms need to be indifferent between locating in city 1 or
locating in city 2. This implies that the utility of firms and workers must be equal across
cities.

We focus on a closed economy with a fix supply of firms and workers. Let F (z) be the
Cumulative Distribution Function (CDF) for all the firms in the economy, and let f(z) be
its Probability Distribution Function (PDF). Similarly, let G(m) be the Cumulative Dis-
tribution Function (CDF) for all workers in the economy, and let g(m) be its Probability
Distribution Function (PDF).

We need to solve a ”functional” problem, that is we need to find a partition of F (z),
F 1(z) and F 2(z) such that F 1(z) + F 2(z) = F (z). Similarly, we need to find a partition
of G(m), G1(m) and G2(m) such that G1(m) +G2(m) = G(m)
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The primitives of the problem will be the original skill distributions and the characteristics
of each city. Cities will feature a fix supply of housing and an amenity level. Cities will
also differ in their productive capabilities which we call urban connectivity. The efficiency
with which workers can make use of their working time, will be a feature of space and
will be captured by the technological parameter hi which we refer as urban connectivity
in city i.

The spatial equilibrium condition for firms will be given by:

[(1− φL)
um1

h1(1− z)
+
F 1(z)

f1(z)
]e−θ

1
LM (1−F 1(z)) = [(1− φL)

um2
h2(1− z)

+
F 2(z)

f2(z)
]e−θ

2
LM (1−F 2(z)) (2.17)

[(1− φL)
um1

h1(1− z)
+
F 1(z)

f1(z)
]eθ

2
LM (1−F 2(z))−θ1LM (1−F 1(z)) = [(1− φL)

um2
h2(1− z)

+
F 2(z)

f2(z)
] (2.18)

and since F 1(z) + F 2(z) = F (z) and f 1(z) + f 2(z) = f(z),

[(1− φL)
um1

h1(1− z)
+
F 1(z)

f1(z)
]eθ

2
LM (1−F (z)+F 1(z))−θ1LM (1−F 1(z)) = [(1− φL)

um2
h2(1− z)

+
F (z)− F 1(z)

f(z)− f1(z)
]

(2.19)

Note two things. First of all, the above expression is a function of two un-knowns, a
function F 1 and its derivative f 1 . If we re-arrange all the terms of the above expression
and write:

f 1 = H(F 1, γ) (2.20)

we can characterize the functional problem as a differential equation. This differential
equation will depend on the moments of the distributions of workers and a set of param-
eters γ.

(1− φL)

1− z
[
um1
h1

eθ
2
LM−θ

1
LM+F 1(z)(θ2LM+θ1LM )−θ2LMF (z) − um2

h2

] = (2.21)

F (z)− F 1(z)

f(z)− f 1(z)
− F 1(z)

f 1(z)
eθ

2
LM−θ

1
LM+F 1(z)(θ2LM+θ1LM )−θ2LMF (z) (2.22)

From the expression above, we can get a quadratic expression for f 1.

In order to solve the above expressions lets call

A = (1−φL)
1−z [

um1
h1
eθ

2
LM−θ

1
LM+F 1(z)(θ2LM+θ1LM )−θ2LMF (z) − um2

h2
]

a = F (z)− F 1(z) + F 1(z)eθ
2
LM−θ

1
LM+F 1(z)(θ2LM+θ1LM )−θ2LMF (z)
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and

b = f(z)F 1(z)eθ
2
LM−θ

1
LM+F 1(z)(θ2LM+θ1LM )−θ2LMF (z)

Then

f 1(z) =
−Af(z) + a+

√
(Af(z)− a)2 + 4Ab

2A
(2.23)

Similarly, as all workers need to be indifferent between locating in city 1 or city 2, the
spatial equilibrium condition for workers will be given by:

[(1− φH)(φL
m

h1

Ez1(
1

1− z
)− Ez1(

F (z)

f(z)
)) +

G1(m)

g1(m)
]eTa1e−θ

1
H(1−G1(m)) = (2.24)

[(1− φH)(φL
m

h2

Ez2(
1

1− z
)− Ez2(

F (z)

f(z)
)) +

G2(m)

g2(m)
]eTa2e−θ

2
H(1−G2(m)) (2.25)

[(1− φH)(φL
m

h1
Ez1(

1

1− z
)− Ez1(

F (z)

f(z)
)) +

G1(m)

g1(m)
]e(a1−a2)T+θ2H−θ

1
H+G1(m)(θ2H+θ1H)−θ2HG(m) =

(2.26)

[(1− φH)(φL
m

h2

Ez2(
1

1− z
)− Ez2(

F (z)

f(z)
)) +

G2(m)

g2(m)
] (2.27)

Since we have a closed economy it also has to be the case that G1(m) + G2(m) = G(m)
and g1(m) + g2(m) = g(m), thus

(1− φH )[[(φ
L m

h1

Ez1(
1

1− z
)− Ez1(

F (z)

f(z)
)) +

G1(m)

g1(m)
]e

(a1−a2)T+θ2H−θ1H+G1(m)(θ2H+θ1H )−θ2HG(m) − (φ
L m

h2

Ez2(
1

1− z
)− Ez2(

F (z)

f(z)
))]

(2.28)

=
G(z)−G1(z)

g(z)− g1(z)
− G1(m)

g1(m)
e(a1−a2)T+θ2H−θ1H+G1(m)(θ2H+θ1H)−θ2HG(m) (2.29)

Once again, we need to re-arrange all terms so that we can write g1 = H̃(G1, γ̃) , so that
we can characterize the functional problem as a differential equation.

Note that again this differential equation will depend on the moments of the distributions
of firms and a set of parameters γ̃.

From the expression above, we can get a quadratic expression for g1.

Lets denote

Ã = (1−φH )[[(φL m
h1
Ez1(

1
1−z )−Ez1(

F (z)
f(z)

))+
G1(m)

g1(m)
]e

(a1−a2)T+θ2H−θ1H+G1(m)(θ2H+θ1H )−θ2HG(m)− (φL m
h2
Ez2(

1
1−z )−Ez2(

F (z)
f(z)

))]

ã = G(m)−G1(m) +G1(m)e(a1−a2)T+θ2H−θ
1
H+G1(m)(θ2H+θ1H)−θ2HG(m)
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and

b̃ = g(m)G1(m)e(a1−a2)T+θ2H−θ
1
H+G1(m)(θ2H+θ1H)−θ2HG(m)

Then

g1(m) =
−Ãg(m) + ã+

√
(Ãg(m)− ã)2 + 4Ãb̃

2Ã
(2.30)

Finally, note that the differential equations are interdependent, as the mean of the skill
distribution of workers is an argument for the equilibrium condition of firms, and the
mean of the skill distributions of firms is an argument for the equilibrium condition of
workers. This inter-dependency can generate non-linear response to changes in parameter
values as we will show.

2.2.7. Results

We will present mainly two theoretical results. First we will show that this economy fea-
tures the existence of an equilibrium which can be unique. This implies that quantitative
simulations of the model can be useful for empirical applications. The second result is to
show that small changes in urban connectivity, that is the relative efficiency with which
workers can use their working time, can generate important changes in the concentration
of high skilled workers and productive firms in those cities.

Proposition 2.1. There exits and equilibrium to this economy, which under certain con-
ditions can be unique

Proof: Note that the equilibrium of this economy is completely characterized by a system
of differential equations for < f 1(z), g1(m) >. As long as f 1 = H(F 1, γ) and g1 = H̃(G1, γ̃
are continuous and have bounded derivatives, then there exits a unique equilibrium the
system. This will be the case, whenever F (z) and G(m) are continuous functions, with
positive density in their entire support.QED

Proposition 2.2. Small changes in urban connectivity in one city, can generate impor-
tant effects on the system overall.

Proof: Lets first write the system of differential equations.

g1(m) = H̃(G1, f 1, γ̃)
f 1(z) = H(F 1, g1, γ)

(2.31)

Now evaluate how a change the the urban connectivity of city 1 would affect the system
of equations

∂g1

∂h1
= ∂H̃(G1,f1,γ̃)

∂G1
∂G1

∂h1
+ ∂H̃(G1,f1,γ̃)

∂f1
∂f1

∂h1
∂f1

∂h1
= ∂H(F 1,g1,γ)

∂F 1
∂F 1

∂h1
+ ∂H(F 1,g1,γ)

∂g1
∂g1

∂h1

(2.32)
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re-arranging terms we get,

∂g1

∂h1
= 1

(1− ∂H
∂g1

∂H̃
∂f1

)
[ ∂H̃
∂G1

∂G1

∂h1
+ ∂H̃

∂f1
∂H
∂F 1

∂F 1

∂h1
]QED

What is critical here to note, is that small changes in the urban connectivity of a city,
can generate dramatical shifts in the system. This effect is twofold. First it implies that
the affected city will grow. What is more important though, is that that the growth will
come prominently from high skilled workers and more productive firms, generating a high
level of segregation and spatial inequality.

2.3. Conclusion

We study how urban connectivity can affect the spatial segregation we observe in workers’
skills and firm productivities. We focus in an economy that produces knowledge, and to
do so needs to match heterogenous firms and workers. We provide a spatial equilibrium
model that has the unique feature that allows for the sorting of a continuum of firms
and workers where productive complementarities are city specific characteristics. The
model, under certain conditions, has a unique equilibrium that can be used for empirical
applications. The main theoretical result, is that small changes in the connectivity of a
city, can generate non-linear changes in city sizes and the level of skill segregation between
cities.

This model formalizes a under-explore channel, that can explain why cities are moving
further apart in the skill composition of their workers and in the productive differences
between their firms. This suggest that small changes in the productive environment of a
city, which could be driven by technology, could account for big changes in equilibrium
distributions.

In future versions of this paper, we hope to empirically explore these issues, and quantify
the role that relative changes in urban connectivity between cities can account for the
divergent outcomes we have have recently observed.
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Chapter 3

Clustering to Coordinate: Who
Benefits from Knowledge Spillovers?
(with William Grieser and Gonzalo
Maturana)

3.1. Introduction

How do firms benefit from agglomeration, and why do some industries cluster more than
others? Extant research provides compelling evidence that industrial activity is spatially
concentrated and that such agglomeration generates gains in firm and worker produc-
tivity. Since the work of [42], part of this effect is often attributed to the notion that
geographic concentration facilitates the spread of tacit knowledge. However, few theories
provide guidance to empirically test when this mechanism is more prevalent. Further-
more, while productivity gains are generated through the actions of firms, the precise
relationship between the drivers of agglomeration and corporate decisions has not been
widely explored. In this paper, we develop a specific mechanism through which knowledge
spillovers improve corporate decisions, and we provide empirical evidence consistent with
the proposition that this mechanism is an important driver of agglomeration.

We start with a framework in which investment decisions can be conceptualized as games
of incomplete information in which payouts depend on the actions of related firms. When
firms hold heterogeneous and incomplete information regarding these investment payouts,
the sharing of private information can reduce project uncertainty. This feedback generates
the incentive for related firms to coordinate investment decisions. However, there are costs
to coordinating, since knowledge is scattered and difficult to convey. In this context, dense
urban environments can be considered as a technology that reduces coordination costs,
thereby facilitating the transfer of knowledge and improving project selection.

In equilibrium, our model predicts that the investment benefits that arise from the spa-
tial concentration of firms are larger in relatively more uncertain industries that invest
in relatively more complex projects. In particular, coordination costs arise endogenously
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as a byproduct of informational frictions. Firms that invest in relatively more complex
projects (i.e., projects that require the coordination of many complementary assets) and
operate in relatively more uncertain environments face the highest coordination costs.
While feedback between firms’ actions makes it difficult to solve for equilibrium out-
comes, the global games framework developed by [43] and [44] offers a useful approach
for circumventing these difficulties. Furthermore, the global games framework allows us to
capture the miscoordination that arises from the formation of higher-order beliefs between
firms, which may induce inefficient investment.1 In the context of our model, the ability
to share private knowledge translates into firms gaining precision, which mitigates the
miscoordination problem and, in turn, improves investment decisions. Thus, using the
global games framework, we provide a theoretical explanation motivated through firm
behavior to explain why certain industries exhibit stronger degrees of clustering than
others.2

Our model predicts that we should observe a greater degree of clustering for relatively
uncertain (i.e., riskier) and relatively complex industries. It is challenging to test this
prediction empirically, since the benefits of coordination are difficult to measure. However,
a firm’s location decision is informative of these benefits through revealed preferences. An
additional challenge is that, even in the absence of agglomeration externalities, we should
not expect firms to locate randomly. Specifically, spatial concentration depends on the
size of a given industry and the general concentration of the population at large, which
may be determined by a variety of factors, such as local amenities. Thus, a well-designed
test of clustering (i.e., localization) should control for these confounding factors. We
conduct tests of localization based on continuous density estimates, as introduced by
[46], which account for these issues.3

We develop proxies for industry risk and complexity by combining two industry-level met-
rics: (1) stock return volatility and (2) a measure of worker skill.4 We collect geographic
coordinates for the ZIP codes of the corporate headquarters for more than 9,000 firms
in 24 industries, and we find a strong positive relationship between industry clustering
and industry risk/complexity at close distances (between 0 and 20 miles). Moreover, we
do not find a relationship between headquarters location and industry risk/complexity at
longer distances, consistent with the predictions of our model.

Another possible concern with our empirical test is that we rely on corporate activity
being concentrated in headquarters locations. While headquarters location provides a
first approximation for the locality of a firm’s activity, a firm may also conduct some

1[44] explain higher-order beliefs as “... players’ beliefs about other players’ beliefs, players’ beliefs
about other players’ beliefs about other players’ beliefs, and so on.”

2[45] provide a recent example of the global games framework applied to financial economics.
3Duranton and Overman develop a test of localization based on kernel density estimations of bilateral

distances between establishments in an industry. To control for industry size and population concen-
tration, they construct counterfactuals by generating “pseudo-industries” through randomly sampling
firms from the full set of possible locations according to industrial organization and general population
conditions.

4The intuition behind this choice is that industries that invest in relatively more complex projects
require workers that are better trained and better educated than firms that serve less complex markets.
We use a ranking of occupations from the U.S. Department of Labor.
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of its operations elsewhere. To mitigate this concern, we conduct localization tests as
described above using inventor patent locations, and we find similar results.

Our empirical findings are consistent with the underlying mechanism of our model (i.e.,
knowledge spillovers) affecting industry clustering through firm investment decisions.
Nevertheless, the results are also consistent with other possible mechanisms. For ex-
ample, thicker labor markets can facilitate the reemployment of workers in riskier indus-
tries in which the probability of being laid off is higher. To provide further reassurance
that knowledge spillovers are an important driver of heterogeneity in industry cluster-
ing, and to further investigate its relationship with corporate decisions, we examine a
different dimension of corporate decision making, which should be especially prevalent to
our knowledge-sharing story. Specifically, we focus on the abnormal clustering of R&D
expenses across industries. We find that R&D in riskier/complex industries exhibits a
greater degree of clustering than headquarters locations, consistent with a knowledge
channel driving industry clustering through facilitating project implementation. While
our evidence increases our confidence that knowledge spillovers are an important compo-
nent of firm decision making, we acknowledge that we cannot address all labor market
stories, and we acknowledge that multiple mechanisms could simultaneously be at play.5

Finally, we study a setting in which the predictions of our model should be particu-
larly prevalent: Customer–supplier proximity. We analyze a sample of more than 2,300
customer–supplier pairs in which the customer accounts for at least 10% of the supplier’s
total sales. Thus, in this sample, supplier investments depend heavily on the investments
of customers. We find that suppliers are 7.9 percentage points more likely to locate within
20 miles of customers in industries with the highest risk/complexity relative to customers
in industries with the lowest risk/complexity. This 7.9 percentage point increase is eco-
nomically large, representing 89.3% of the sample average propensity for suppliers to
locate near customers. Moreover, when suppliers sell to customers in industries with the
highest risk/complexity, their headquarters tend to be 150 miles closer, on average, to
the customer when compared to suppliers that sell to customers in industries with the
lowest risk/complexity.

Our paper contributes to the literature on the benefits of knowledge spillovers.6 Specifi-
cally, we add to research that provides the microfoundations of knowledge diffusion. [48],
[49], and [13] show that localization alleviates the costs of exchanging ideas.7 [51] and
[52] focus on human capital externalities through learning. We use the insights from the
global games literature to show that the sharing of knowledge may facilitate coordination
among firms and workers. The literature also provides suggestive empirical evidence that
knowledge spillovers play an important role in the clustering of certain industries.8 We
contribute to the empirical literature by providing evidence consistent with knowledge
spillovers leading to different degrees of clustering according to theoretically motivated

5For example, higher-ability workers may benefit more from larger cities.
6See [47] for a survey of the theory.
7Similarly, [50] focus on the consequences of costly idea exchange in a system of cities.
8For example, [53] and Buzard et al. [54] show that innovation is more spatially concentrated than

manufacturing. [55] show a rapid spatial decay in the benefits of knowledge spillovers in the advertising
industry.
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industry characteristics (i.e., risk and complexity). We find corroborating evidence in
three distinct samples.

Additionally, we contribute to the literature on the determinants of agglomeration exter-
nalities. [42] classifies three main forces that could drive agglomeration: labor market
pooling, input sharing, and knowledge spillovers. A number of studies have established
correlations between agglomeration measures and industry characteristics in an attempt
to uncover the underlying economic mechanisms that drive agglomeration.9 However, the
literature is just beginning to highlight the relative influence of the three agglomeration
forces (see Ellison, Glaeser, and Kerr 57, Rosenthal and Strange 59). While it is not our
goal to disentangle the relative importance of these agglomeration mechanisms, and while
we recognize that multiple forces are probably at play, we provide insights regarding the
specific mechanisms through which knowledge is transferred between firms.

Our paper also relates to the literature on corporate investment. By selecting projects
with the highest net present value, corporate investment policy facilitates one of the
most important functions of financial markets: the allocation of capital to its highest-
valued use. However, valuing projects with uncertain cash flows can be difficult when
information is noisy or signals are imprecise (e.g., [60]). Our model suggests that one
plausible channel for firms to reduce uncertainty, and thereby improve project selection,
is to cluster with related firms in order to facilitate communication and the sharing of
private information.10

Finally, as we provide a rationale for the value of knowledge spillovers, this paper relates
to the literature in urban economics that studies why workers are more productive in
cities (e.g., Moretti 39, Glaeser and Maré 40). More broadly, our work also relates to the
classical literature that links knowledge externalities with economic development (e.g.,
Lucas 62, Romer 63) and, more specifically, to more recent work on the relation of ag-
glomeration and growth (e.g., Rossi-Hansberg and Wright 64, Davis, Fisher, and Whited
65).

The rest of the paper is organized as follows: Section 3.2 describes the model, along with
its main result. Section 3.3 describes the framework, data, and measures used in the
empirical tests. Section 3.4 presents the empirical results. Section 3.5 concludes.

3.2. The Model

The transmission of knowledge plays a growing role in an economy in which services and
technology are becoming increasingly important. Face-to-face interaction greatly facili-
tates the transfer of knowledge, which is embedded in workers and is difficult to transfer
([52]). Thus, although information can flow more freely than ever, distance continues to

9For example, [56] show that innovation activity is more concentrated than industrial activity. Like-
wise, [57] and [58] find substantial heterogeneity in patterns of industry agglomeration using establishment
data from the U.S. and the U.K., respectively.

10This is consistent with the recent empirical findings in [61], who suggest that corporate investment
is highly sensitive to the investment of local firms, after controlling for industry conditions.
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play a pivotal role in the transfer of knowledge: Firms and cities seek to minimize the
transaction costs of acquiring knowledge by coordinating specialized workers, by allowing
them to communicate, and by creating an environment for them to learn from each other.
Next, we introduce a model that captures these features.

3.2.1. Basic Framework

In this section, we introduce our model, which builds on the global games framework of
[44].11 Consider a continuum of firms that face a binary investment decision: To invest
(I) or not to invest (NI). We assume that actions are complementary, consistent with
the idea that complex goods and services require the combining of dispersed knowledge,
and the idea that knowledge is non-excludable by nature. That is, the profitability of an
investment increases with the investment of other firms. More specifically, the payoff of
the investment opportunity is given by

U =

{
θ + l − 1 if I

0 if NI,
(3.1)

where θ is a random variable that represents the realization of uncertain investment and
l is the number of other firms that also decide to invest. Without loss of generality, we
normalize non-investment payoffs to zero.

The informational environment is characterized by a publicly observed signal (e.g., in-
formation) and a privately observed signal (e.g., tacit knowledge). All firms observe an
unbiased, but noisy, signal: yi = θ+ εi, where εi v N(0, τ 2) and τ relate the fundamental
uncertainty of the industry. Additionally, each firm independently observes a private sig-
nal xi = θ + νi, where νi v N(0, σ2) and σ relate to the precision of private assessments.
By construction, all noise terms are independently distributed, and therefore they are
uncorrelated.12

As demonstrated by Morris and Shin, the symmetric equilibrium of these games are fully
characterized by a switching strategy in which firms invest whenever the expected value
of the realization of the outcome θ is higher than some threshold κ, and choose to not
invest otherwise. In this setting, the utility representation has the important feature
that, since payoffs are linear and all signals are independent from one other, studying
a two-player game is equivalent to studying the continuous and more general case of a
continuum of firms.13 Thus, for ease of exposition, and without loss of generality, we focus

11This framework has found useful applications in different areas of economics and finance where there
are informational frictions in coordination. This includes applications in the context of Currency Crises,
Bank Runs, and Debt Runs (see [66]).

12Thus, any correlation that might arise in equilibrium will not stem from the informational structure
but from endogenous strategic considerations.

13Consider a firm that observes a signal x and thinks that all other firms will follow the same switching
strategy with threshold κ. Because the realization of all signals are independent conditional on θ, the
firm’s expectation of the proportion of other firms that will infer an expected value of θ lower than κ will
be equal to the probability that the firm assigns to any other firm that observes a signal with a value
lower than κ.
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on characterizing the equilibrium of the two-player game. The normal form representation
of the game is given by the following payoff matrix:

I NI
I θ,θ θ − 1,0

NI 0,θ − 1 0,0
(3.2)

Given the observed signals y and x and the properties of the normal distribution, each
firm’s expectation of θ is

θ̄ =
σ2y + τ 2x

σ2 + τ 2
, (3.3)

which is the average of both signals, weighted by their noise-to-signal ratio. Similarly,
the standard deviation of θ is

σ̂ =

√
σ2τ 2

σ2 + τ 2
. (3.4)

As mentioned above, each firm will follow a switching strategy s(), which is a function of
its posterior:

s(θ) =

{
I if θ̄ > κ

NI if θ ≤ κ.
(3.5)

In the symmetric equilibrium of this game, firms’ strategies depend on their beliefs about
other firms’ strategies. Therefore, each firm must anticipate other firms’ private signals.

Lemma 3.1. The equilibrium of the game is given by the implicit equation

κ+−Φ {γ(κ− y)} = 0, (3.6)

where γ ≡ (σ2/τ2)√
2σ2τ2+σ4

σ2+τ2

.

Proof. See Appendix A.

The value of γ is such that γ ≤ 2π.14

14This assumption guarantees that–following an Iterated Elimination of Strictly Dominated Strategies–
a unique equilibrium exists (see Morris and Shin 44 for the proof). We revisit this assumption below.
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3.2.2. Information Inefficiency

If firms are using information efficiently, then actions and beliefs should adjust to changes
in public signals on a one-to-one basis. Any difference between actions and beliefs is due
to the strategic effects induced by high-order beliefs about the public signal. To char-
acterize this strategic miscoordination, we define the variable Informational Inefficiency
as the ratio between the equilibrium action and private beliefs. We are interested in
how this ratio adjusts to changes in public information. Let I(y) be the Informational
Inefficiency :15

I(y) = κ/x̄− 1. (3.7)

Note that Informational Inefficiency captures the cost of coordinating actions when
knowledge is dispersed, which arises from the incompleteness of the informational en-
vironment. Therefore, the degree to which the inefficiency adjusts to changes in the
public signal is given by

dI(y) =
∂κ

∂y
/
∂x̄

∂y
, (3.8)

where
∂κ

∂y
= −

σ2

τ2
+
√
γφ()

1−√γφ()

and
∂x̄

∂y
= − τ

2

σ2
.

Thus,

dI(y) =
1 + τ2

σ2

√
γφ()

1−√γφ()
. (3.9)

Equation 3.9 yields two important results. First, the coordination cost (the function
dI(y)) reaches its maximum when the observed signal is 1/2. It is when the informational
content of signals is low that the coordination cost is higher. Second, the coordination
cost is increasing in τ . That is, the higher the level of prior uncertainty, the higher the
coordination failure.

3.2.3. The Value of Proximity

One commonly proposed mechanism behind the benefits of agglomeration is based on
the notion that ideas “flow in the air” (e.g., Lucas 62). However, formalizing this notion

15Note that when actions and beliefs coincide, the inefficiency is zero by construction.
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in a theoretical and empirical framework has proved challenging (Duranton and Puga
47). In our theoretical framework, knowledge spillovers can be thought as firms sharing
their private signals.16 This sharing provides firms with a sufficient statistic to guide
their decision-making process. As this unbiased communication takes place, the sufficient
statistic will follow a sampling distribution of private signals. As firms share their private
assessments with n other discrete unbiased firms, the sample of private signals x̄ will be
given by17

x̄ ∼ N(θ, σ/
√
n). (3.10)

High-density regions facilitate the sharing of private signals. In particular, the signal
becomes more precise as the number of clustering firms increases. In the limit,18

σ̂ = σ/
√
n→n→∞ 0. (3.11)

Proposition 3.2. In sufficiently dense environments, knowledge spillovers generate gains
from coordination that are higher for more uncertain industries.

Proof. See Appendix A.

Everything else constant, as the precision of the private signal increases, each firm relies
less on the public signal. The strategic miscoordination induced by the public signal
gradually disappears as it becomes irrelevant.

Proposition 3.2 has implications for empirical analysis. As firms in uncertain or riskier
industries benefit to a greater extent from knowledge spillovers, a higher degree of spatial
concentration should be observed in these industries. Moreover, given the initial assump-
tion of complementary investments, the model implicitly relates to the production of
complex goods or services that require the coordination of a high number of specialized
firms. Importantly, these industry features are fundamental characteristics of industries
that arise endogenously from the model.

Next, we provide empirical evidence consistent with the implications above. First, we
start by describing the empirical framework, our data, and our constructed measures.
Then, we present the empirical results.

16This, in turn, can be thought as a transfer of knowledge. Proximity only affects the assessment
of private signals; it does not affect the assessment of public signals (which consist of more general
information).

17Note that since we have a continuum of players, each discrete and independent signal that gets added
to the sample does not change the overall beliefs about aggregate distributions.

18Note that as σ → 0, γ → 0. This limit is consistent with the region defined by Assumption 3.2.1.
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3.3. Empirical Framework and Data

3.3.1. Kernel Density Estimations and Industry Localization

As a first step, we construct a measure of agglomeration at the industry level. We use
the methodology in [46, hereafter DO], who develop a test of localization based on kernel
density estimations of bilateral distances between establishments in an industry. More
specifically, they estimate the following function for each industry A:

K̂A(d) =
1

nA(nA − 1)h

nA−1∑
i=1

nA∑
j=1

f

(
d− di,j
h

)
, (3.12)

where di,j is the Euclidean distance between the locations of establishments i and j in
industry A. The number of establishments in an industry is denoted by nA. The function
f is a Gaussian kernel density with bandwidth h. Note that equation 3.12 considers
nA(nA−1)

2
unique bilateral distances and generates a density distribution for all potential

distances. In particular, industries with a high degree of agglomeration will tend to have
high values of K̂A(d) at lower distances.

Although the kernel density provides useful information about the distribution of the
different localities in an industry, it does not provide the full picture. Even if a value of
K̂A(d) at a given distance in a given industry appears to be high, it cannot be concluded
that the value is abnormally high without comparing it to the appropriate counterfactual.
In particular, the comparison with other industries may not be informative, as spatial
concentration depends on both the size and the concentration of the industries as well as
the general population density. To address this issue, DO construct counterfactuals by
generating 1,000 pseudo-industries of equivalent size as the industry of interest by random
sampling from the full set of possible locations. From these simulations, DO construct
confidence intervals for each industry and distance. In particular, let K̄A(d) be the upper
limit for the 95% confidence interval. DO define the following index of localization:

γA(d) ≡ max
(
K̂A(d)− K̄A(d), 0

)
. (3.13)

A positive value of γA(d) (i.e., when the kernel density exceeds the upper bound of the
95% confidence interval) indicates a departure from randomness, subject to stylized indus-
try concentration and overall population characteristics. Therefore, industry A exhibits
localization at distance d.19

19DO also define an index of dispersion using the 95% confidence interval lower limit. However, since
we focus on localization and not on dispersion, we refrain from this calculation.
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3.3.2. Data and Measures

To test the implications of our model, we draw on a number of data sources. In this sec-
tion, we discuss each data source, along with the construction of our empirical measures.

3.3.2.1. Firms and Locations

Information on firm headquarters locations, industry characteristics, and financials come
from Compustat. To calculate our kernel density estimates, we collect geographic coor-
dinates from the ZIP code for each firm’s headquarters from 2000 to 2012.20 We restrict
the sample of firms to those firms headquartered in the contiguous United States. The
sample includes a total of 9,167 firms.21 Extant research has indicated the significance
of headquarters location, which provides a useful first approximation for the location of
a firm’s activities (e.g., Dougal, Parsons, and Titman 61, Pirinsky and Wang 68).22

3.3.2.2. Industry Risk

We conduct our analysis at the Fama and French 48 industry classification level. We use
price stock volatility as a proxy for industry-level risk. To construct this measure, we use
data from the Center for Research in Security Prices’ (CRSP) Monthly Stock File. This
file contains monthly stock-price information for more than 30,000 U.S. publicly traded
firms. For each industry classification, we construct a series of value-weighted monthly
returns from 2000 to 2012. Then, we compute industry volatility as the standard deviation
of each series of returns.

3.3.2.3. Industry Complexity

We use a measure of worker skill as a proxy for industry-level complexity. The intuition
behind this choice is that industries that focus on more complex products and markets
require workers that are better trained and educated than firms that serve less complex
markets. We use data from the Occupational Information Network (O*NET), a website
that contains detailed information provided by the U.S. Department of Labor in a survey
of randomly sampled U.S. workers for each occupation. O*NET classifies each occupation
into one of five skill categories according to the degree of preparation needed, stating
that “[e]very occupation requires a different mix of knowledge, skills, and abilities, and
is performed using a variety of activities and tasks.”

20We start in 2000 and not earlier because the productive structure of the U.S. economy has recently
undergone important shifts (Herrendorf et al. 67). This “Structural Transformation” can be understood
as the reallocation of economic activity from agriculture to manufacturing and, recently, to knowledge
services. Thus, in recent years, the forces in our model should be more salient.

21Descriptive statistics for these firms are presented in Appendix B.
22However, a portion of a firm’s operations may take place outside of its headquarters location. To

mitigate this concern, in Section 3.4.3.4.3, we conduct a robustness analysis using corporate inventor
locations, which are not confined to a firm’s headquarters.
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The skill level of occupations range from“little or no preparation needed” (Job Zone 1)
to “extensive preparation” (Job Zone 5). Job Zone 1 includes occupations that may
require a high school diploma or GED, little or no previous work-related skill required,
and a few days to a few months of on-the-job training.23 Job zone 5 includes occupations
that typically require a master’s degree, Ph.D., M.D., or J.D.; extensive skill, knowledge,
and experience; but typically little on-the-job training, because most occupations in this
category assume that the worker already possesses the necessary skills and knowledge.24

To aggregate the O*NET skill measures to the industry level, we use National Industry-
Specific Employment and Wage Estimates from the Bureau of Labor and Statistics (BLS)
Occupational Employment Statistics (OES) database. The OES survey data contain the
number of people employed at each occupation for each 4-digit NAICS industry. We
calculate the total industry cost of input (wage) for each occupation by multiplying the
annual mean wage of the occupation by the number of people employed in an industry
at that occupation. We then create a wage-weighted average skill for each 4-digit NAICS
code, using the job zone assigned to each occupation according to the O*NET database.
To aggregate our wage-weighted skill measure to broader industry classifications (e.g.,
Fama–French 48 industry portfolios), we compute the average skill level across the 4-
digit NAICS contained in the broader industries.

3.3.2.4. Industry Risk/Complexity Index

Recall that uncertainty or riskiness is a necessary but non-sufficient condition for the
implications of the model to hold. A fundamental assumption of the model is the need for
coordinating complementary investments. Therefore, the production of complex goods
or services in uncertain environments benefits to a larger extent from agglomeration
externalities. For this reason, we construct an index to capture both risk and complexity
based on the two metrics above. More specifically, the volatility and skill metrics are
standardized and averaged.25 Then, the resulting values are normalized so that the index
ranges from 0 to 1.

3.4. Kernel Density Plots

3.4.1. Initial Inspection

Figure 3.1 plots the kernel density estimations (equation 3.12) for the highest and lowest
risk/complexity industries (i.e., “Electronic equipment” and “Meals, restaurants, and
hotels,” respectively). Consistent with the predictions of our model, the probability of
two firms being located within 20 miles of each other is about four times larger in the

23Some examples of occupations in this category include taxi drivers, amusement and recreation at-
tendants, and nonfarm animal caretakers.

24Examples of occupations in Job Zone 5 include lawyers, sports medicine physicians, surgeons, trea-
surers, and controllers.

25In this way, both measures, which initially differ in levels, become comparable.
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highest risk/complexity industry than in the lowest risk/complexity industry. In fact,
most of the differences between the two densities are driven by distances of less than 40
miles. That is, there seems to exist significantly more spatial concentration for the high
risk/complexity industry than for the low risk/complexity industry. For larger distances,
the densities are quite similar.

However, as explained in Section 3.3.3.3.1, it is necessary to control for industry size
and concentration in order to gauge whether an industry is abnormally spatially concen-
trated. Consequently, Figure 3.2 further contrasts the two density estimates in the figure
above against their respective 95% confidence intervals. Panel A shows that, indeed, the
highest risk/complexity industry exhibits significant abnormal clustering (localization)
for distances of less than 30 miles. The kernel density estimate exceeds the 95% confi-
dence interval upper limit at those low distance values. In contrast, Panel B shows that
this is not the case for the lowest risk/complexity industry. The kernel density estimate
lies much closer and is within the confidence interval for most distance values.

3.4.2. Localization and Risk/Complexity

In the previous section, we provided evidence consistent with high risk/complexity indus-
tries exhibiting higher levels of localization than low risk/complexity industries. However,
it is not possible to draw generalizable conclusions by comparing only two industries. In
this section, we aim to provide more generalizable evidence for the implications of the
model via broader and more systematic analyses.

As mentioned in the Data section, we base our analysis on the Fama and French 48
industry classifications. We exclude the finance and utilities industries, as well as any
industry for which there are fewer than 100 firms in our sample.26 This leaves us with
24 industries, which represent 91.1% of the firms in our initial sample. Table 3.1 lists the
24 industries, along with their annualized volatility, their required worker skill level, and
their risk/complexity (RC) index (i.e., the combination of industry volatility and skill).
The industries are ordered based on their RC index. Consistent with general intuition, the
highest risk/complexity industries are “Electronic equipment,” “Measuring and control
equipment,” and “Computers,” while the lowest risk/complexity industries are “Meals,
restaurants, and hotels,” “Food,” and “Retail.”

We now turn to analyzing the implications of the model. Recall that Proposition 3.2
suggests that in dense environments, knowledge spillovers generate gains from coordi-
nation that are increasing on the uncertainty/riskiness of an industry. Moreover, as a
consequence of the assumptions of the model, these coordination gains should be more
salient in industries that focus on complex goods or services.

Therefore, in our empirical setting, if knowledge spillovers are an important determinant
of a firm’s location decision, then the industry localization index should be positively
correlated with the RC index at close distance ranges (i.e., there should be a higher

26This cutoff at 100 firms per industry greatly increases the accuracy of constructing the DO counter-
factual.
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degree of clustering in higher risk/complex industries). Further, this relationship should
dissipate at longer distances. We explore this in Figure 3.3.

Consistent with the predictions of our model, Panel A of Figure 3.3 shows that there exists
a strong positive relationship between the localization index and the RC index of the 24
industries in our sample for close distances between 0 and 20 miles. This relationship
weakens substantially once we increase the distance interval to between 20 and 40 miles
(Panel B). For larger distances, the previous relationship disappears completely (Panels
C and D).

Overall, the evidence in Figure 3.3 is consistent with knowledge spillovers driving the
localization decisions of firms. Furthermore, this is consistent with the findings in the
literature that knowledge spillovers operate within close distances (e.g., Arzaghi and
Henderson 55). Next, we estimate similar kernel densities just as we have done so far in
the context of patents.

3.4.3. Robustness

While headquarters location provides a first approximation for the locality of a firm’s
activity, a firm may also conduct some of its operations outside its headquarters location.
For instance, Honeywell is headquartered in New Jersey, while a significant portion of
its patents are produced in Boston and in the San Francisco economic areas. We obtain
information on inventors from the Harvard Patent Network Dataverse, which contains the
locations of inventors for over 151,000 U.S. patents from 2006 to 2009. We are concerned
with the patents that can be assigned to a firm in the Compustat universe at the time
of the patent application. We focus on patent applications for the period from 2006 to
2009.27

We repeat the localization test using inventor patent locations instead of headquarters
locations. Figure 3.4 displays the results. Interestingly, the degree of localization for
inventors is even stronger than for headquarters locations for close distances. This result
is reassuring, since one would expect a higher degree of localization for industries in
which knowledge spillovers play a prominent role. In addition, as with the headquarters
locations, there is a positive relation between the localization index and the RC index for
the 17 industries in our sample. This relationship is most pronounced for close distances
between 0 and 20 miles (Panel A) and disappears for larger distances (Panels B to D).
Overall, our robustness analysis strengthens our confidence in the predictions of our model
and the main empirical results in this paper.

27We restrict the sample to a 4-year period for computational reasons. Also, ending the sample in 2009
provides a 6-year window for a patent application to be granted, which mitigates truncation problems.
Our sample consists of 5,670 patents from with 12,769 inventor locations, operating in 17 different
industries.
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3.4.4. Research and Development Expenses

Thus far, the results are consistent with our model, which suggests that the knowledge
spillover channel is an important determinant of industry clustering. However, the results
are also consistent with a labor-matching channel. For example, dense urban environ-
ments can support thicker labor markets, which in turn can facilitate the matching of
workers and employers. It is natural to expect that the gains to matching may be greater
for industries in which talent is scarce (complex industries) or in industries where the risk
of getting laid off is higher (risky industries). Thus, clustering should generate greater
gains from labor matching for riskier and more complex industries.

We implement two approaches to show that the knowledge spillover channel has an in-
creasing partial effect for riskier and more complex industries, above and beyond any
effect driven by labor matching. First, we investigate the industry clustering of R&D
expenses, which are commonly argued to be particularly sensitive to and indicative of
knowledge spillovers (CITES). Second, we implement an approach to isolate the simi-
larity and timing of investment opportunities. While the labor-matching channel can
partially explain the cross-sectional relationship of industry clustering, it should have lit-
tle to say about the timing and similarity of investment between firms within a location.
In contrast, our model suggests that firm’s investment decisions are interdependent.

As a first step, we repeat our analysis of headquarter location in Section 3.4.3.4.2, with the
only difference being that we weight each pair of headquarters locations by their aggre-
gated R&D expenses when computing the kernel densities. Consequently, the resulting
kernel densities indicate the probability of an additional dollar of R&D agglomerating
within a certain distance for a given industry. Figure 3.5 displays the results of the lo-
calization test. Overall, R&D in riskier or more complex industries clusters even more
than headquarters locations, and the relation among them is strongly positive for close
distances between 0 and 20 miles (Panel A). As in our previous tests, the relation between
localization and the RC index dissipates at longer distances (Panels B to D).

Next, we modify the approach developed in [69] to capture similarity in the timing of
investment decisions. In particular, we examine whether the R&D expenses of firms
located close by (i.e., within 20 miles) exhibit greater similarity within riskier and more
complex industries. We follow two steps:

Step 1) For each firm-year, we obtain residuals by estimating the specification

R&Dit = α +BXi,t−1 + r̃it, (3.14)

whereXi,t−1 is a vector of firm characteristics and time dummies. The residual r̃it captures
the unexplained component of R&D expenses.

We report the results for our estimation of Step 1 in Panel A of Table 3.2. We esti-
mate three specifications. In the first specification, we account for any static differences
across headquarters location by implementing Core-Based Statistical Area (CBSA) fixed
effects transformations. In the second specification, we additionally control for hetero-
geneity in the level of R&D across industries by including industry dummies. In the
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third specification, we exploit within-firm variation by implementing firm fixed effects
transformations.28

Step 2) For each possible pair of firms in a given industry, we then calculate the absolute
value of the differences in residuals from Step 1 and estimate the following specification

|r̃it − r̃jt| = β0 + β11(d ≤ 20miles)ij ×RC indexij+

β21(d ≤ 20miles)ij + β3RC indexij + εijt,
(3.15)

where 1(d ≤ 20miles)ij is an indicator that takes the value of 1 if the headquarters of firm
i and firm j are within 20 miles, and zero otherwise. If β1 < 0, then firms headquartered
within 20 miles make more similar R&D expenses decisions in relatively riskier and more
complex industries, on average. Alternatively, we estimate similarities between changes
in R&D expenses by estimating the following specification

|(r̃it − r̃i,t−1)− (r̃jt − r̃j,t−1)| = β0 + β11(d ≤ 20miles)ij ×RC indexij+

β21(d ≤ 20miles)ij + β3RC indexij + εijt.
(3.16)

We report estimates of equation 3.15 in Panel B of Table 3.2. The statistically negative
coefficient on 1(d ≤ 20mi) × RC index in specifications 2 and 3 indicates that firms
located within 20 miles exhibit a greater degree of similarity in R&D expenses in riskier
and more complex industries.

Finally, we report estimates of equation 3.16 in Panel C of Table 3.2. The coefficient
on 1(d ≤ 20mi)×RC index is negative and statistically significant for all specifications,
indicating that not only R&D expenses of firms headquartered close by are more similar
in more uncertain and more complex industries, but also changes in R&D expenses.

We recognize that many labor market forces are likely to drive firm clustering decisions
and it is not our aim to disprove these channels, or even to measure the relative importance
of each channel. Instead, our aim is to convincingly show that knowledge spillovers have
a positive partial effect on industry clustering. The clustering of R&D expenses in riskier
and more complex industries in the cross-section, and more importantly through time, is
strongly supportive of our goal. The similarity of investment decisions, and the clustering
of investment through time, are inputs specific to our model.

3.4.5. Customer-Supplier Proximity

Firms in bilateral relationships, such as customers and suppliers, are likely to develop
relation-specific investments (e.g., [70]). These relation-specific investments cause the

28Note that the firm fixed effects transformations subsume the industry dummies and CBSA level
effects, as these are invariant through time within a given firm.
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firms’ investments to be heavily interdependent, which is consistent with the comple-
mentarity assumption of our model. Locating a headquarters near customers can allow
suppliers to learn information about the investment opportunities of the customers, which
in turn can increase the precision of their expectations regarding their own investment
payouts. In turn, customers can learn from suppliers regarding the quality and timing of
the production of intermediate goods. Our model predicts that a firm that sells a high
proportion of its output to a few important customers should gain more from proxim-
ity to customers in risky/complex industries. Thus, we study the relationship between
customer–supplier headquarters distance and industry risk/complexity.

We identify suppliers and customers from the Compustat segment files.29 According
to financial accounting standards, publicly listed corporations are required to disclose
the amount of revenue raised from each customer that accounts for at least 10% of total
revenue. Often, suppliers only list abbreviated or informal customer names.30 To map the
information from the customer–supplier file to a firm’s financial and headquarters location
information in Compustat, we implement the name-matching algorithm implemented by
[71].31 Our final sample includes 2,323 customer–supplier pairs from 1997 to 2013.

In our sample, we can identify suppliers that are heavily dependent on customers, but
we cannot necessarily identify customers that depend heavily on suppliers.32 The aver-
age customer is approximately 14 times as large as the average supplier in our sample,
according to total assets. Thus, in our sample, it is more likely that customer locations
enter the location decisions of suppliers rather than supplier locations affecting the loca-
tion decisions of customers. As such, we construct our tests around suppliers’ decisions
to locate near customers. In particular, we examine the relationship between the risk
and complexity of customer industries and the distance that suppliers choose to locate
from customers. Nonetheless, we perform a robustness exercise in which we view the
colocation of customers and suppliers as a joint decision in relation to the combined risk
of the two adjoining industries, and we find similar effects.33.

Results from estimating the relationship between customer–supplier proximity and cus-
tomer risk/complexity are presented in Table 3.3. The dependent variable in Columns
1-2 is the natural log of the distance between headquarters locations (in miles) for each
customer–supplier pair.34 The coefficient estimates suggest that when suppliers sell to
customers in the highest risk/complexity industry, their headquarters tend to be 172 miles
closer to the customer, on average, when compared to suppliers that sell to customers that
are in the lowest risk/complexity industry.35 Furthermore, suppliers are 7.9 percentage

29These data have been used in recent studies by [71], [70], and [72], among others.
30As highlighted by [72], the SFAS No. 131 does not require firms to list the identity of major customers.

It only requires firms to record the presence of a customer that makes up at least 10% of sales. However,
most suppliers voluntarily disclose the customer name.

31We would like to thank Ted Fee and Shawn Thomas for providing us with this algorithm, which was
recently extended to include firms through 2013.

32For example, Walmart constitutes at least 10% of sales for six firms in Compustat, but none of the
referenced suppliers constitute 10% of Walmart’s expenditures.

33These results are reported in Appendix B.
34We only include one observation for each customer–supplier pair.
35The average log distance is 6.317. Consequently, the marginal effect at the mean is exp(6.317)–

exp(6.317–0.3721), which yields 172.11.
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points more likely to locate within 20 miles of customers in the highest risk/complexity
industry relative to customers in the lowest risk/complexity industry (Column 4). The
7.9 percentage point increase is economically large, representing 104.9% of the sample
average propensity for suppliers to locate near customers.

Table 3.4 examines the relationship between customer risk/complexity and the likelihood
of suppliers to locate within 20 miles of customers, between 20 miles and 40 miles, be-
tween 40 miles and 60 miles, and between 60 miles and 80 miles. Consistent with the
results presented in previous sections, the estimates indicate that the relationship between
customer risk/complexity and customer–supplier proximity dissipates at larger distances.
The coefficient estimate associated with customer risk/complexity is almost 6 times larger
for distances within 20 miles than for distances between 20 and 40 miles. Further, the
relationship between customer risk/complexity and customer–supplier proximity is not
statistically significant for distances between 20 and 60 miles (Columns 2 and 3), and it
changes sign for distances between 60 and 80 miles (Column 4).

3.5. Conclusion

We build on the global games literature by developing a theory in which investment de-
cisions can be thought of as games of incomplete information in which payouts depend
on the decisions of related firms. We propose that when firms observe noisy private
signals about investment opportunities, co-locating with related firms facilitates commu-
nication and the sharing of private information. By sharing private information, firms
gain precision in project valuations. In this context, dense urban centers can be thought
of as a technology that facilitates face-to-face interaction and knowledge sharing, reducing
project uncertainty and therefore improving project selection.

Our model shows that the benefits from this process are greater for firms in relatively more
uncertain industries and more complex industries. Consistent with this proposition, we
show that agglomeration patterns are significantly more pronounced for relatively more
complex industries in relatively more uncertain environments, using both firm headquar-
ters and patent inventor locations as a proxy for business activity. Further, we show that
this pattern also holds for R&D expenses and in customer–supplier locations. Finally,
we show that customer–supplier proximity is strongly and positively related to the risk
and complexity of the customer industry. Overall, our results link knowledge sharing
with intrinsic industry characteristics, and they contribute to the understanding of the
important phenomenon of firm clustering.
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Figure 3.1: Kernel densities
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are based on the Fama and French 48 industries classification (industries related to Finance and Utilities
are not considered). Industries are ranked by risk/complexity based on stock index volatility and skill
requirements.
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Figure 3.2: Kernel densities with confidence intervals
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Kernel densities of the highest and lowest risk/complexity industries (×1,000 for scale) with 95% confi-
dence intervals. Industry groups are based on the Fama and French 48 industries classification (industries
related to Finance and Utilities are not considered). Industries are ranked by risk/complexity based on
stock index volatility and skill requirements.

60



Figure 3.3: Industry localization index and risk/complexity
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This figure plots the industry localization index (defined in equation 3.13) against the RC index for
different distance intervals. The solid line represents a quadratic interpolation.
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Figure 3.4: Industry localization index of patent activity and risk/complexity
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This figure plots the industry localization index of patent activity (defined in equation 3.13) against the
RC index for different distance intervals. The solid line represents a quadratic interpolation.
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Figure 3.5: Industry localization index and risk/complexity when weighting by R&D
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This figure plots the industry localization index when weighting headquarters by their R&D expense
against the RC index for different distance intervals. The solid line represents a quadratic interpolation.
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Table 3.1: Summary

Annualized Rank Rank RC
Industry volatility Skill (volatility) (skill) index

Electronic equipment 0.339 3.508 1 4 1
Measuring and control equipment 0.322 3.556 2 2 0.970
Computers 0.271 3.763 6 1 0.901
Automobiles 0.320 2.734 4 17 0.679
Steel 0.320 2.718 3 18 0.675
Machinery 0.262 3.071 7 10 0.637
Oil 0.215 3.368 13 6 0.611
Personal Services 0.230 3.229 11 9 0.605
Electrical equipment 0.255 2.997 9 11 0.592
Construction 0.271 2.836 5 16 0.581
Healthcare 0.202 3.372 15 5 0.579
Telecommunications 0.200 3.328 16 7 0.558
Pharmaceuticals 0.147 3.524 22 3 0.479
Entertainment 0.260 2.580 8 20 0.461
Chemicals 0.211 2.920 14 13 0.444
Construction materials 0.239 2.688 10 19 0.442
Medical equipment 0.154 3.299 21 8 0.420
Transportation 0.185 2.853 18 14 0.351
Wholesale 0.168 2.969 20 12 0.345
Clothing 0.229 2.255 12 23 0.264
Household consumer goods 0.141 2.844 24 15 0.229
Retail 0.173 2.367 19 21 0.149
Food 0.142 2.329 23 22 0.052
Meals, restaurants, and hotels 0.188 1.812 17 24 0

This table ranks the different industries based on stock index volatility and skill requirements. To
construct the risk/complexity index (RC index), the volatility and skill metrics are standardized and
averaged. Then, the resulting values are normalized so that the RC index ranges from 0 to 1.
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Table 3.2: Clustering of R&D Expenses

Panel A: First Stage

(1) (2) (3)

Leverage 0.0029 0.0261*** 0.0186***
(0.0026) (0.0024) (0.0026)

log(Sales) -0.0302*** -0.0144*** 0.0013*
(0.0006) (0.0006) (0.0007)

log(Assets) 0.0099*** -0.0013** -0.0392***
(0.0006) (0.0006) (0.0008)

Market-to-book 0.0000** 0.0000 0.0000**
(5.79e-06) (5.30e-06) (3.78e-06)

Z-score 0.0000 0.0000 0.0000***
(5.63e-07) (5.15e-07) (3.77e-07)

ROA 0.0000** 0.0000 -0.0000***
(7.87e-06) (7.19e-06) (7.88e-06)

Year FE yes yes yes
CBSA FE yes yes no

Industry FE no yes no
Firm FE no no yes

N 45,640 45,640 45,640
R2 0.251 0.376 0.803

Panel B: Residual Distance

(1) (2) (3)

1(d≤20mi)×RC index -0.0103 -0.0198** -0.0232***
(0.0085) (0.0090) (0.0063)

1(d≤20mi) -0.0068 0.0012 0.0066**
(0.0048) (0.0050) (0.0030)

RC index 0.0409*** 0.0452*** 0.0223**
(0.0158) (0.0166) (0.0091)

Panel C: Residual Changes

(1) (2) (3)

1(d≤20mi)×RC index -0.0298*** -0.0301*** -0.0260***
(0.0080) (0.0080) (0.0077)

1(d≤20mi) 0.0114*** 0.0121*** 0.0091**
(0.0041) (0.0041) (0.0038)

RC index 0.0242 0.0217 0.0229*
(0.0147) (0.0143) (0.0132)

This table reports the results of the two-step test of residual distances. Panel A reports the results of
the first step, where R&D is regressed on lagged firm controls to obtain the residuals for step 2. Panel
B reports the results of the estimation of equation 3.15, where the dependent variable is the absolute
value of the residual distances for all possible pairs of firms in an industry. The explanatory variable of
interest is 1(d ≤ 20mi) × RC index, the interaction between a dummy variable that takes the value of
1 if the pair of firms are headquartered within 20 miles and zero otherwise, and the RC index. Panel
C reports the results of the estimation of equation 3.16, where the dependent variable is the absolute
pair difference in changes in the first-stage residuals. In panels B and C, standard errors are clustered at
the Fama–French 48 industry-year level and are reported in parentheses, below the coefficient estimates.
***p<0.01, **p<0.05, *p<0.1.
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Table 3.3: Supplier Locations and Customer Risk

log(distance) Within 20 mi
(1) (2) (3) (4)

RC indexcustomer -0.4288*** -0.3721*** 0.0942*** 0.0785**
(0.1274) (0.1361) (0.0321) (0.0323)

log(Sales)customer 0.0767 -0.0121*
(0.0469) (0.0063)

log(Sales)supplier -0.0465** 0.0037*
(0.0215) (0.0019)

Number of firmscustomer 0.0288 -0.0060
(0.0349) (0.0063)

Number of firmssupplier 0.0202 0.0005
(0.0269) (0.0051)

R2 0.0445 0.0514 0.0694 0.0747
N 2,323 2,323 2,323 2,323

This table reports estimates for the relation between customer and supplier locations and customer
risk/complexity. Customers are identified from the Compustat segment files. The dependent variable in
Columns 1-2 is the natural log of the distance (in miles) between a customer and a supplier headquarters
location. The binary dependent variable in Columns 3-4 is equal to 1 if a customer and a supplier are
located within 20 miles of each other. Distances are calculated from geographic coordinates for corporate
headquarters ZIP codes. Standard errors are clustered at the Fama–French 48 industry level and are
reported in parentheses, below the coefficient estimates. ***p<0.01, **p<0.05, *p<0.1.
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Table 3.4: Supplier Locations and Customer Risk at Larger Distances

Within 20 mi Within 20-40mi Within 40-60mi Within 60-80mi
(1) (2) (3) (4)

RC indexcustomer 0.0785** 0.0132 0.0141 -0.0148*
(0.0323) (0.0085) (0.0119) (0.0084)

log(Sales)customer -0.0121* 0.0004 -0.0050 0.0015
(0.0063) (0.0021) (0.0036) (0.0018)

log(Sales)supplier 0.0037* -0.0029* 0.0008 -0.0026
(0.0019) (0.0015) (0.0017) (0.0030)

Number of firmscustomer -0.0060 0.0044 -0.0024 0.0000
(0.0063) (0.0029) (0.0040) (0.0014)

Number of firmssupplier 0.0005 0.0004 0.0016 -0.0023
(0.0051) (0.0025) (0.0025) (0.0029)

R2 0.0747 0.0241 0.0260 0.0167
N 2,323 2,148 2,096 2,068

This table reports estimates for the relation between customer and supplier locations and customer
risk/complexity at larger distances. Customers are identified from the Compustat segment files. The
dependent variables in Columns 1-4 are indicators for whether a customer and supplier are located within
20 miles, between 20 miles and 40 miles, between 40 miles and 60 miles, and between 60 miles and 80
miles, respectively. Distances are calculated from geographic coordinates for corporate headquarters
ZIP codes. Standard errors are clustered at the Fama–French 48 industry level and are reported in
parentheses, below the coefficient estimates. ***p<0.01, **p<0.05, *p<0.1.
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Appendix A

Appendix Chapter 1

A1. Housing Prices

I estimate equilibrium bids which will be representative of equilibrium housing prices.
Here I closely follow [Albrecht, Gautier and Vroman 2013].

Write the expected bid as

E(b(w(s)) =

∫ w(s)

r
b(w(s))h(w(s))dw(s)∫ w(s)

r
h(w(s))dw(s)

where b(w(s))is the optimal bid in a first price auction and h(w(s)) is the density of the
highest valuation drawn by the buyers visiting a particular seller, conditional on the seller
having at least one visitor.

Assume that the reservation value will be the lowest wage available w(s), so we can write:

E(b(w(s)) =

∫ w(s)

w(s)
b(w(s))h(w(s))dw(s)∫ w(s)

w(s)
h(w(s))dw(s)

=

∫ s
s
b(w(s))h(s)ds∫ s
s
h(s)ds

Notice that

h(s) = f(s|H) =
P (H|s)vi(s)

P (H)

Given the properties of Poisson distributions, the probability that a buyer who has w(s)
has the highest valuation is

P (H|s) = e−θ(1−V
i(s))
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and the unconditional probability that any buyer has the highest valuation is

P (H) =

∫
e−θ(1−V

i(s)vi(s)ds =
1− e−θ

θ

So

h(s) =
θe−θ(1−V

i(s))vi(s)

1− e−θ

Given the optimal bidding in a first price auction,

b(w(s)) = w(s)− V (s)

v(s)

Basically, each bidder who faces an uncertain number of buyers would offer his expected
value minus its virtual surplus.

Finally, calculate the expected bid:

E(b(w(s)) =

∫ s
s
b(w(s))h(s)ds∫ s
s
h(s)ds

= w(s)−
∫ s
s

(V (s))
v(s)

h(s)ds∫ s
s
h(s)ds
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(A2. Full Characterization of the Two Cities Case) Lets prove the existence and unique-
ness for two cities. Since there is free mobility, the utility of a worker of ability s must be
equal across space. Workers must be indifferent between the two cities. Then, for every
worker s, it must be the case that

EU1(s) = EU2(s) ∀sε[s, s]

The second condition is that I have a fixed amount of talent within the country (closed
economy), which means that

V (s) = V 1(s) + V 2(s) ∀sε[s, s]

Thus I can re-write the above condition as:

1− V 1(s)

v1(s)
e−θ

1(1−V 1(s)) =
1− V (s) + V 1(s)

v(s)− v1(s)
e−θ

2(1−V (s)+V 1(s)) ∀sε[s, s]

There are two important observations to make here: This is a difficult problem, since I
must search for a function V 1() that can hold this condition for every s. Now, it is crucial
to note that, since this must hold for every point and that v1 = ∂V 1

∂s
, this is equivalent

to solving an ordinary differential equation (ODE) for every point s. Also notice that
< V (s), v(s), θ1, θ2 > are exogenous parameters.

Thus by rearranging the terms, I arrive at the following expression for the equilibrium
ODE:

∂V 1(s)

∂s
= v(s)

[1− V 1(s)]e−θ
1(1−V 1(s))

[[1− V 1(s)]e−θ1(1−V 1(s)) + [1− V (s) + V 1(s)]e−θ2(1−V (s)+V 1(s))]

Given that I have a first-order differential equation with an initial condition, I must show
thatf(s, V 1(s)) is Lipschitz–continuous in V 1 and continuous in s. Lipschitz continuity
(i.e., bounded variation) is easy to observe. Notice that f(s, V 1(s)) is bounded by one
(since it is a weighted average), thus it is Lipschitz. Second, sinceV is continuous by
definition, the composition of continuous functions is also continuous, thus f(s, V 1(s))
is continuous in s. Note that < j1, j2 >are endogenous parameters, since they depend
on the number of workers that come to produce to the city. So, it is necessary to find
a fixed point. I fix ji, solve the system of differential equations, and compute a new
tightness parameter. I do this until ji converges to a stable parameter. I can now recall
the Picard–Lindeloff Theorem, which states that there exists a unique solution to this
contraction.

(A2. Monotone likelihood property proof)

Given that our analytical results are comparisons of different levels of housing tightness,
as this is an endogenous parameter, I would first like to know whether there is a monotonic
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relation between supply and tightness (since we will be observing supply and comparing
different housing supplies). I must show that the elasticity of new buyers to new houses
is smaller than one. The condition I must look for is

B1 +4B
S1 +4S

<
B2 −4B

S2

This will always hold as long as 4B4S < 1/2

To prove that this is true, notice that

B1 =

∫
(v(s)

[1− V 1(s)]e
−B1
S1

(1−V 1(s))[
[1− V 1(s)]e

−B1
S1

(1−V 1(s))
+ [1− V (s) + V 1(s)]e

− (1−B1)
S2

(1−V (s)+V 1(s))

])ds

After some algebraic manipulation, we can show that

∂B1/∂S1 < 1

This is always lower than 1, Thus, tightness is monotonic in housing supply. What about
relative tightness? Given that extra (or less) supply has an effect on the tightness of both
cities, the last thing we must check is whether the change in tightness in City 1 is larger
than the change in tightness in City 2:

B1

S1

− B1 +4B
S1 +4S

>
B2

S2

− B2 −4B
S2

⇐⇒ B14S − S14B
S1(S1 +4S)

>
4B
S2

This condition will depend on the level of the original elasticities. For example, if City
2 originally had a extremely restricted housing supply, then the number of people that
leave the city will create a very strong change in its local housing market. In general, the
following condition must hold:

4B
4S

<
1

2

Given this expression, I derive for this elasticity this will be the case, except for extreme
values of S2:

ϑ ≡ θ1/θ2 =
S2

S1

B1

B2

=
S2

S1

∫
(

[1− V 1(s)]e
−B1
S1

(1−V 1(s))[
[1− V (s) + V 1(s)]e

− (1−B1)
S2

(1−V (s)+V 1(s))

])ds
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=
S2

S1

∫
(
[1− V 1(s)]e

1
ϑ

(1−V 1(s))

[1−V (s)+V 1(s)]

[[1− V (s) + V 1(s)]]
)ds

I now wish to analyze how this relative tightness measure would change if, for example,
the supply of housing in City 2 were to change. This will have a mechanical effect in
terms of relaxing the tightness of the housing market in City 2, but as people move
from City 1 to city two, this will have the same effect in City 1. The system of cities
receives a “positive” shock; the question now is: In which city will the tightness condition
relax more? If the monotonicity condition holds, I should expect that a higher supply
of houses in City 2 makes the City 2 housing market less tight relative to City 1, thus
relative tightness should increase:

∂ϑ

∂S2

=

1

S1

∫
(
[1− V 1(s)]e

1
ϑ

(1−V 1(s))

[1−V (s)+V 1(s)]

[[1− V (s) + V 1(s)]]
)ds− S2

S1

[1− V (s) + V 1(s)]

[1− V 1(s)]

1

ϑ2

∫
(
[1− V 1(s)]e

1
ϑ

(1−V 1(s))

[1−V (s)+V 1(s)]

[[1− V (s) + V 1(s)]]
)ds

∂ϑ

∂S2

(A.1)

⇐⇒ ∂ϑ

∂S2

=
ϑ

S2

1

(1 + S2

S1

[1−V (s)+V 1(s)]
[1−V 1(s)]

1
ϑ
)
> 0

Finally, I must show that v1/v2(s) is an increasing function. Write

v1/v2(s) =
(1− V 1(s))e−θ

1(1−V 1(s))

(1− V 2(s))e−θ2(1−V 2(s))
=

(1− V 1(s))

(1− V 2(s))
exp(

θ2

θ1

(1− V 2(s))

(1− V 1(s))
)

Let us define g(s) = (1−V 1(s))
(1−V 2(s))

, then

v1/v2(s) = g(s)exp(
θ2

θ1

1

g(s)
)

Thus,

∂(v1/v2)(s)

∂s
= g′(s)exp(

θ2

θ1

1

g(s)
)[1− θ2

θ1

1

g(s)
]

Now, I must show that [1− θ2

θ1
1
g(s)

] > 0⇔ θ2

θ1
1
g(s)

< 1⇔ θ2

θ1
< g(s)

Since θ1 > θ2 , θ2

θ1
< 1
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Finally, I must show that g(s) is an increasing function (since g(0) = 1), if g(s) in an
increasing function then θ2

θ1
< 1 ≤ g(s) will hold for every 1 > s > 0

Notice that

g′(s) =
−v1(s)(1− V 2(s)) + v2(s)(1− V 1(s))

(1− V 2(s))2

=
v(s)g(s)

[1− V 1(s)]e−θ1(1−V 1(s)) + [1− V 2(s)]e−θ2(1−V 2(s))
[e−θ

2(1−V 2(s)) − e−θ1(1−V 1(s))]

Therefore, I must show again that

e−θ
2(1−V 1(s)) − e−θ1(1−V 1(s)) > 0⇔ θ2

θ1
< 1 <

(1− V 1(s))

(1− V 2(s))

This is equivalent to showing that

V 1(s) < V 2(s) ∀s

If I can show that
v1(s) < v2(s) ∀s

then the above will also hold.

Now, let us show that v1(0) < v2(0)⇔ v1(0)−v2(0) < 0⇔ e−θ
1
< e−θ

2
and since θ1 > θ2

this will be true.

Second, I must also show that

∂v1/∂v2 ≤ 1

(The intuition is that if v1 does not grow faster than v2, then it will always be the case
that v1(s) < v2(s) ∀s )

Now, after some algebraic manipulation, I can show that ∂v1/∂v2 = 1 Thus the result
will hold.

Finally, from Proposition 2, I have shown that the skill distribution in City 1 is more
skill-abundant than in City 2 (i.e., the monotone likelihood ratio property holds). The
rest of the proof for Proposition 3 directly follows from Costinot Voguel 2009 Lemma 3.
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A4. Lumosity Data: robustness check

As a robustness check, I employ a novel data set that can provide explicit measurements
of talent for a large sample of workers in different occupations and in different cities across
the US. I use data from a large online brain training and neuroscience research company
which offers a brain training service that consists of different games in the areas of memory,
attention, flexibility, speed of processing, numerical problem solving, and verbal fluency.
For a sample of almost 90,000 users across 54 MSAs, the company provides information of
performance in 10 different games that could be used as a measurement of talent or ability
in different cognitive dimensions. For each user, I also have their occupation detail, along
with some baseline characteristics including age, gender, years of completed education,
and MSA. I aggregate the performance in each separate task into an overall cognitive
ability index, whose distribution I will use to alternative target different moments of the
talent distribution. It is important to note that I must move away from other alternative
measures of talent (such as the AFQT in NLSY79), because of sample size restrictions,
which are binding once we aim to characterize the distribution of skills at the MSA level1.

One important drawback of using data from an online app is that it is not necessarily a
representative sample of the population. In order to deal with the nonrandom nature of
our sample, I use a weighting method so that, for each MSA, I match the first and second
moments of the observables in our sample to the equivalent moments observed for each
MSA in the CPS2. By doing this, I generate weighted moments for the skill distribution
that are representative of the underlying population3.

The estimates for the taste for amenities parameter, using either years of completed
education from the CPS or Lumosity data, are very consistent among each other. For
consistency, I present the results using the CPS.

1Nevertheless, I check that our alternative talent measurements are consistent with other sources of
ability measures which have been previously used in the literature, such as AFQT. I do this by occupation
(given sample restrictions). For each occupation, we compare residuals of a regression that uses either
the AFQT score or the game score as the dependent variable and includes education, gender, and age as
explanatory variables. At an aggregate occupation level, both measures of game scores and AFQT seem
to provide similar distributions of unobserved talent, which is captured by the residuals in the regression.

2I target the mean and variance for gender, age and years of completed education for each city in our
sample.

3I use a method called stable weights that balances covariates for estimation with incomplete outcome
data. This new methodology provides a new weighting approach that finds the weights of minimum vari-
ance that adjust or balance the empirical distribution of the observed covariates up to levels prospected
by us. This method allows me to balance very precisely the means of the observed covariates and other
features of their marginal and joint distributions, such as variances. I apply this procedure for each MSA,
generating the minimum variance weights for each city. For more details, see Zubizarreta (2015).
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Appendix B

Appendix Chapter 3

Appendix A

Proof of Lemma 3.1

Let x′ be the firm’s belief about the other firm’s private signal. This belief is a random

variable distributed N(θ̄,
√

2σ2τ2+σ4

σ2+τ2
). Consequently, both firms will invest if

θ̄ =
σ2y + τ 2x′

σ2 + τ 2
≥ κ,

or equivalently

x′ ≥ κ+ (σ2/τ 2)(κ− y). (A.1)

The probability of investment is given by the cumulative probability of x′ being higher
than κ+ (σ2/τ 2)(κ− y), that is

P (I) = 1− Φ

κ+ (σ2/τ 2)(κ− y)− θ̄√
2σ2τ2+σ4

σ2+τ2

 . (A.2)

Given that firms have linear payoffs, their expected utilities are equal to
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v(θ̄, κ) = θ̄ + 1

1− Φ

κ+ (σ2/τ 2)(κ− y)− θ̄√
2σ2τ2+σ4

σ2+τ2


− 1

= θ̄ +−Φ

κ+ (σ2/τ 2)(κ− y)− θ̄√
2σ2τ2+σ4

σ2+τ2

 ,

(A.3)

and since the payoffs of Not invest are 0, the threshold κ is such that equation A.3 is
equal to zero:

v(κ, κ) = κ+−Φ

(σ2/τ 2)(κ− y)√
2σ2τ2+σ4

σ2+τ2

 = 0. (A.4)

Finally, defining γ ≡ (σ2/τ2)√
2σ2τ2+σ4

σ2+τ2

, we obtain the following implicit equation that character-

izes the equilibrium:

κ+−Φ {γ(κ− y)} = 0. (A.5)

Proof of Proposition 3.2

When σ → 0, the information structure is similar to the one in the nonlimit case, but
now

θ̄ =
σ2y + τ 2x

σ2 + τ 2
→ x. (A.6)

As in the nonlimit case, solving the general game for a continuum of players is equivalent
to solving the two-player game. Since each firm observes an independent private signal
x, they will infer the other firm’s private signal x′ v N(x, 2σ2). The switching strategies
are

s(x) =

{
I if x > κ

NI if x ≤ κ,
(A.7)

and therefore the probability that the other firm observes a signal less than κ will be
given by
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Φ

(
k − x√

2σ

)
, (A.8)

so each firm’s expected pay-off is

x− Φ

(
k − x√

2σ

)
. (A.9)

By Iterated Elimination of Strictly Dominated Strategies (see Carlsson and Van Damme
43) the unique equilibrium of this game is one where both firms will invest only if they
observe a private signal equal or greater than 1/2, and thus dI(y) = 0. Consequently, the
gain in coordination in this case is the totality of the miscoordination from the nonlimit
case. Thus, the gain in coordination is an increasing function of τ .
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Appendix B

Table B.B.1: Firm summary statistics

Mean SD p25 p50 p75

Log(Assets) 3.23 2.76 1.60 3.44 5.09
ROA -0.13 0.30 -0.20 0.01 0.07
Log(Size) 3.28 2.57 1.50 3.38 5.08
Market leverage 0.16 0.19 0.00 0.09 0.25
Investment 0.34 22.70 0.01 0.03 0.07
R&D 7.4 13.1 0.0 0.0 7.4

This table describes the 9,167 firms in the main sample. The variables Assets, Size (Market Cap), and
R&D are denominated in Millions.
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Table B.B.2: Robustness for Table 3.3

log(distance) Within 20 mi
RC indexcombined -0.2921* -0.2760 0.0753*** 0.0642**

(0.1691) (0.1885) (0.0275) (0.0311)
log(Sales)customer 0.0785*** -0.0125**

(0.0287) (0.0051)
log(Sales)supplier -0.0458** 0.0036

(0.0194) (0.0029)
Number of firmscustomer 0.0375 -0.0075

(0.0344) (0.0059)
Number of firmssupplier 0.0251 -0.0009

(0.0343) (0.0054)

R2 0.0426 0.0503 0.0671 0.0734
N 2,323 2,323 2,323 2,323

This table repeats the estimations in Table 3.3, with the only difference being that the RC index of the
customer and the RC index of the supplier are averaged. Standard errors clustered at the Fama–French
48 industry level and are reported in parentheses, below the coefficient estimates.
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