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Abstract 11 

We evaluated the performance of laser-ablation analysis techniques such as LIBS, LA-ICP-OES and 12 

LA-ICP-MS, in comparison with that of ICP-OES using aqueous solutions for the quantification of 13 

sulfur in edible salts from different geographical origins. We found that the laser ablation based 14 

sampling techniques were not influenced by loss of sulfur, which was observed in ICP-OES with 15 

aqueous solutions for a certain salt upon their dissolution in aqueous solutions, originating from the 16 

formation of volatile species and precipitates upon their dilution in water. Although detection of sulfur 17 

using direct laser sampling with LA-ICP-MS has well-known isobaric and polyatomic interferences, 18 

LIBS and LA-ICP-OES showed good accuracy in the detection of sulfur for all salts. LIBS also 19 

provided the ability to identify the dominant chemical form in which sulfur is present in salts. 20 

Correlation between sulfur and oxygen, observed in LIBS spectra, provided chemical information about 21 

the presence of S2- or SO4
2-, which are associated with the origin and quality of edible salts. 22 

 23 

Keywords Edible salt, Sulfur, Laser-Ablation Sampling, LIBS, LA-ICP-OES, ICP-OES 24 

 25 

 26 

 27 



2 

 

Introduction 28 

Salt is a ubiquitously used food additive. Typically, a few to ten grams of salt is consumed by an 29 

average person per day.1,2 According to the source from which salt is extracted, it can be generally 30 

classified into two categories; sea and rock salt.3 Sea salt is produced by evaporating seawater on 31 

saltpans nearby sea shores whereas rock salts are collected from underground caverns. The as-extracted 32 

sea and rock salts (unrefined salts) are either refined for table salts or can be used for further processed 33 

salt products. 34 

The elemental composition of salts depends on their sources and production methods. Sodium 35 

chloride (NaCl) is a common matrix for salts. Major metallic elements in salt are magnesium (Mg), 36 

calcium (Ca), and potassium (K), contained up to a few wt.%.4-7 Minor metallic elements are strontium 37 

(Sr), lithium (Li), aluminum (Al), silicon (Si), titanium (Ti), and iron (Fe).4,6,8-9 Their concentrations are 38 

typically less than a few hundred parts-per-million (ppm). Sulfur (S), oxygen (O), hydrogen (H), and 39 

carbon (C) are major non-metallic elements in salts. Most of S and O in salts come from sulfates (SO4
2-) 40 

that were originally dissolved in seawater.10 SO4
2- is typically the most abundant ion in sea salts 41 

excluding the matrix ions, Cl- and Na+. O also may be included in forms of carbonates (CO3
2-), 42 

bicarbonates (HCO3
-), other oxyanions and water (H2O) that was absorbed by hygroscopic compounds 43 

in salts such as MgSO4 and MgCl2.7,11  44 

Chemical analysis of edible salts is necessary for evaluating their quality, distinguishing their 45 

geographical origin or production method, and monitoring toxic chemical species. To date, the majority 46 

of the studies on quantitative analysis of salts have used inductively coupled plasma optical emission 47 

spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS).4,5,12-14 Other techniques used for 48 

quantitative analysis of salt are ICP-MS,15 instrumental neutron activation analysis (INAA),16-19  49 

combination of chromatography and spectrophotometry,8,20-22 and gas chromatography-mass spectrometry 50 

(GC-MS).25 Fourier-transform near-infrared (FT-NIR) spectroscopy5, LIBS,6,7,9,23 and combination of laser-51 
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ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and  LIBS24 have been use for 52 

classification of salts. 53 

Among the various elements contained in edible salts, analysis of S is particularly important. S is 54 

an essential nutritional element involved in forming important amino acids such as methionine and 55 

cysteine which play an important role in maintaining and supporting human immune function.26 In most 56 

unrefined salts, S is contained in the form of SO4
2-. However, some particular salts, such as the 57 

Himalayan black salt produced in India and the Korean bamboo salt, contain S in the form of sulfide 58 

(S2-), not SO4
2-. These salts are widely marketed for their health benefits. For example, the presence of S2- 59 

in bamboo salt was identified as a potential agent to cure allergic inflammation.29 Therefore, accurate 60 

analysis of S in various types of edible salts is important for their quality evaluation and also useful for 61 

selecting better raw unrefined salts for processed products. 62 

In this work, we compare laser-ablation sampling for accurate analysis of S in edible salts over 63 

conventional aqueous solution ICP-OES analysis. LA-ICP-OES, LIBS and LA-ICP-MS analyses were 64 

performed on solid pellets of edible salts from different geographical origins. We found that laser-65 

ablation sampling offered more accurate comparison of the total amount of S among various edible salts 66 

over aqueous ICP-OES. This was because laser ablation sampling does not suffer from loss of sulfur 67 

which occurs for the aqueous solutions of certain types of salts, due to vaporization in the form of 68 

hydrogen sulfide (H2S) or precipitation as insoluble metal sulfides during preparation of the aqueous 69 

solution samples. The intensity correlations of the S I and with O I lines observed in LIBS spectra 70 

indicate that the rock salt contains a relatively large amount of S in a different chemical form (S2-) than 71 

that of the other salts, i.e. SO4
2-. To the best of our knowledge, S in edible salts has been analyzed by 72 

turbidimetry assuming that S exists in form of SO42-. In this analysis, barium chloride (BaCl2) is added 73 

to aqueous solution of edible salts and makes insoluble particles of barium sulfate (BaSO4) that scatter 74 

light.4,15 This method would provide inaccurate results for salt samples containing relatively large 75 

amounts of S2-. ICP-OES, ICP-MS, and AAS have been used to analyze metallic elements in edible 76 
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salts.4,5,12-14 For preparing the sample solutions, deionized water or nitric acid solution were used. As we 77 

observed, water has the loss problem for S when it is in the S2- form. Moreover, in a nitric acid solution, 78 

insoluble metal sulfides can be decomposed more easily to soluble metal nitrate and gaseous H2S that 79 

leads to S loss. Laser-ablation sampling requires no solvents and no chemicals such as acids for 80 

digesting insoluble matters. This strength of laser-ablation sampling enables us to use a single 81 

spectroscopic analysis technique for most of the important elements (including S) contained in edible 82 

salts. Also, our results underscore LIBS as a promising technique for rapid accurate analysis of S in 83 

edible salts and indirect establishment of its speciation in salts.  84 

 85 

Experimental 86 

Salt samples and ICP-OES analysis of aqueous solution samples 87 

Eight commercially available edible salts of different origin were collected for this work. Three of them 88 

are sea salts and the others are rock salts. The geographical origins and types of the salt samples are 89 

listed in Table 1 along with the sample code, which will be used from this point as sample identifiers. 90 

The S concentrations determined by ICP-OES using aqueous solutions of the sample salts are also listed 91 

in Table 1. For the ICP-OES analysis, standard solutions were prepared by dissolving and diluting 92 

mixtures of NaCl (³99.0 %, VWR, Radnor, Pennsylvania, USA) and MgSO4 (³99.5%, Sigma-Aldrich, 93 

St. Louis, MO) powders in distilled water. The mixtures of NaCl and MgSO4 with S concentrations from 94 

0 to 3.72 wt.% were dissolved in distilled water by a dilution factor of 1/5000. The S I line intensity at 95 

182.034 nm was measured for the standard solutions by an ICP-OES spectrometer (5100 ICP-OES, 96 

Agilent Technologies). A power of 1300 W was applied for plasma generation. Argon gas was used for 97 

coolant, auxiliary, and nebulizer (cross) flows with flow rates of 12, 1.0, and 0.7 L/min, respectively. 98 

The uptake rate of the aqueous solutions was 1.0 mL/min. Figure 1 shows the calibration curve for S 99 

obtained by ICP-OES. With a dilution factor of 1/5000, we obtained a good linear correlation of 100 

intensity versus concentrations for the whole concentration range studied. Similarly, for the sample salts, 101 
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their powders were also dissolved and diluted in distilled water by a factor of 1/5000 before measuring 102 

the S I line intensity under the same conditions. 103 

 104 

LA-ICP-OES 105 

For LA-ICP-OES analysis, the salt samples were milled and homogenized into a fine powder using a 106 

ball mill (8000M Mixer/Mill®, SPEX Sample Prep). Five grams of each salt was put in an agate vial with 107 

an agate ball and then rotated at 1450 rpm for 10 min. A 0.5 g of the milled powder was pelletized into a 108 

13-mm diameter disc using an automated press (3630 X-PRESS®, SPEX Sample Prep) under 7 ton 109 

pressure for 10 min. The same ICP-OES spectrometer that was used for the analysis of aqueous solution 110 

samples was employed for the analysis of solid sample pellets; the nebulizer and spray chamber were 111 

exchanged with a laser-ablation instrument (J200 LA Instrument, Applied Spectra, Inc.). A Q-switched 112 

Nd:YAG laser beam was focused on the surface of the pellet sample (5´ magnification, 35 mm working 113 

distance) placed in the laser-ablation chamber. The wavelength, pulse duration, pulse energy, repetition 114 

rate and spot size on the sample surface were 213 nm, 10 ns, 5 mJ/pulse, 10 Hz, and 150 µm in diameter, 115 

respectively. For each sample pellet, a 2-mm length line scan composed of 200 laser shots was 116 

performed five times. Helium was used to transport ablated particles to the ICP-OES spectrometer. A 117 

power of 1500 W was applied for plasma generation. Argon gas was used for coolant, auxiliary, and 118 

nebulizer (cross) flows with flow rates of 18, 1.8, and 1.0 L/min, respectively. 119 

 120 

LIBS 121 

For LIBS analysis, sample pellets were prepared using the same process as for the LA-ICP-OES 122 

analysis. The LIBS spectra of the ten salt pellet samples were obtained using a commercial instrument 123 

(J200 LIBS Instrument, Applied Spectra, Inc.). The sample pellet was enclosed in a sampling chamber. 124 

A Q-switched Nd:YAG laser beam was focused on the surface of salt pellets by an objective lens (5´ 125 

magnification, 35 mm working distance) through a quartz window. The wavelength, pulse duration, 126 
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pulse energy, repetition rate, and spot size in diameter on the sample surface were 266 nm, 10 ns, 20 127 

mJ/pulse, 10 Hz, and 150 µm, respectively. For sulfur analysis using LIBS, three spectral regions are 128 

generally considered; (i) vacuum ultraviolet,30,31 (ii) visible,31,32 and (iii) near-infrared spectral regions.31,33-35 129 

Herein, the near-infrared region, where the three S I lines are located at 921.287, 922.809, and 923.754 130 

nm, was selected. Helium ambient gas was used to enhance the S I line intensity.33,34 The optical emission 131 

from the laser-induced plasma was collected by a lens doublet through the sample chamber top quartz 132 

window and sent to a 6-channel charge-coupled device (CCD) spectrometer with ~0.1 nm spectral 133 

resolution and wavelength coverage between 190 and 1040 nm through an optical fiber bundle. The 134 

CCD detection gate width was 1.05 ms and delayed from the laser pulse by 500 ns to optimize the 135 

signal-to-background ratio. For each sample, a 110-mm raster scan composed of 5600 laser shots was 136 

performed on the pellet surface. The 5600 single-shot LIBS spectra were divided into 5 groups 137 

sequentially and accumulated to 5 spectra to be analyzed.  138 

 139 

LA-ICP-MS 140 

For LA-ICP-MS analysis, pellet samples were prepared in the same process as for the LA-ICP-OES 141 

analysis. A Q-switched Nd:YAG laser beam was focused on the sample surface by an objective lens (5´ 142 

magnification, 35 mm working distance). The wavelength, pulse duration, pulse energy, repetition rate, 143 

and spot size on the sample surface were 213 nm, 10 ns, 5 mJ/pulse, 10 Hz, and 150 µm in diameter, 144 

respectively. The particles ablated in the laser-ablation sampling system were transported to a 145 

quadrupole mass spectrometer (Plasma Quant MS Elite, Analytik Jena) by using helium as a carrier gas 146 

flowing at a rate of 0.3 L/min. The forward power was set to 1400 W with 18.0 L/min Ar gas, auxiliary 147 

flow rate of 18 L/min, and sheath gas flow rates of 0.8 L/min. The mass spectra were recorded in the 148 

region of m/z = 31.5 - 35.5.  149 

 150 

Results and Discussion 151 
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Calibration curves of LA-ICP-OES and LIBS 152 

Figure 2 shows the calibration curves for S acquired by LA-ICP-OES (a) and LIBS (b), and the LIBS 153 

spectra of eight salt samples in the wavelength region between 918 and 932 nm (c). In the LA-ICP-OES 154 

analysis, the intensities of the two emission lines, S I and Cl I lines at 181.972 and 774.497 nm, 155 

respectively, were measured. The intensity ratio of the S I line to the Cl I line was used for the 156 

calibration curve. In the near-infrared wavelength region of the LIBS spectra, three strong S I lines were 157 

observed at 921.287, 922.809, and 923.754 nm along with Cl I, Mg II, and O I lines as shown in Figure 158 

2c.36 In the case of LIBS, the intensity normalization, i.e. the ratio of the S I line intensity to the Cl I line 159 

intensity, did not improve significantly the linearity of the calibration curve or analysis precision as 160 

much as it did in the case of LA-ICP-OES. However, the direct use of the S I line intensity was enough 161 

to obtain a linear calibration curve. For the LIBS calibration curve, the peak areas at 922.809 and 162 

923.754 nm were integrated and their sum was used for the calibration. As can be seen in Figure 2c, the 163 

strongest S I line at 921.287 nm partially overlaps the nearby Mg II line at 921.825 nm and was 164 

therefore excluded. As was mentioned in the experimental section, the true S concentrations in the salt 165 

samples were assumed to be that measured from the ICP-OES analysis of the aqueous solutions of salts. 166 

In both the analyses of LA-ICP-OES and LIBS, the seven salt samples excluding the HI sample show 167 

strong positive correlations of their signal intensities with the concentrations of S, and provide linear 168 

calibration curves in the 0.15 to 1.3 wt.%, range (R2 values: 0.9964 for LA-ICP-OES and 0.9987 for 169 

LIBS). However, the S I lines chosen for LIBS analysis result from the emission between high-lying 170 

excited levels with the lower-level energy of 52623.64 cm-1 so as to minimize self-absorption. The 171 

spectroscopic parameters of these S I lines are listed in Table 2. The limits of detection (LODs) for S 172 

were estimated for the LA-ICP-OES and LIBS analyses using the following equation. 173 

                                     (1) 174 
s
s3LOD =
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For each analysis, s is the standard deviation from five measurements for the salt sample from Poland 175 

(PL) that contains the least amount of S. s is the slope of each calibration curve. The LODs for S were 176 

0.074 wt.% for LA-ICP-OES, and 0.12 wt.% for LIBS analysis. 177 

The HI sample consistently shows a deviation from linearity in the calibration curves of LA-ICP-178 

OES and LIBS in Figures 2a and 2b, respectively. In contrast to these correlations, the LA-ICP-OES 179 

and LIBS signals (Figure 3) show a linear relationship (R2 = 0.9935 of the linear fit) and also strong 180 

positive correlation (Pearson’s correlation coefficient r = 0.9972), including the HI sample,  181 

 182 

LA-ICP-MS analysis of 34S 183 

In order to understand the deviation of certain samples from linearity in the calibration curves (Figures 184 

2a and 2b), another laser ablation sampling technique, LA-ICP-MS, was used for the five salt samples 185 

(JD, HI, HJ, HP, and MG) to compare and correlate the S mass signal to the results obtained by LIBS 186 

with solid pellets and ICP-OES with aqueous solutions. S is one of the difficult elements to analyze with 187 

ICP-MS due to well-known isobaric and polyatomic interferences.37,38 S has four stable isotopes, 32S 188 

(95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%).39 Among these, 34S was chosen for this analysis, to 189 

avoid the interference of 32S+ with 16O2
+. A background spectrum was recorded without firing the ablation 190 

laser and was subsequently subtracted from the LA-ICP-MS spectrum of each salt sample. The LA-ICP-191 

MS spectrum of the HI sample and the corresponding background spectrum are provided in the 192 

Supplemental material (Figure S1). To confirm that the mass peak intensity at m/z = 34 originated from 193 

34S, and not molecules or other isobaric isotopes, the mass peak intensity ratios of 34S/33S for the salt 194 

samples were compared with the corresponding natural abundance ratio (5.61) (see Figure S2 in the 195 

Supplemental material). 196 

In Figure 4a, the 34S isotope signal intensities are plotted versus the S concentration determined by 197 

the ICP-OES analysis for the aqueous solutions. The poor precision of the LA-ICP-MS analysis is 198 

mainly due to the weak mass signal intensity of 34S. However, similarly to the LA-ICP-OES and LIBS 199 
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analyses, LA-ICP-MS provided a linear calibration with the exception of the HI sample. However, the 200 

34S mass signal intensity showed a linear relation with the S I line intensity of LIBS including the HI 201 

sample (see Figure 4b). The same was observed for LA-ICP-OES and LA-ICP-MS signal intensities. 202 

This LA-ICP-MS analysis result confirmed that the S concentration in the HI sample was greater than 203 

that determined by the ICP-OES analysis for its aqueous solution. 204 

 205 

S loss mechanism 206 

The S concentration of the HI sample calculated from the LA-ICP-OES (Figure 2a), LIBS (Figure 2b), 207 

and LA-ICP-MS (Figure 4a) calibration curves are plotted in Figure 5, along with the S concentration 208 

directly measured from the aqueous ICP-OES analysis. The concentrations calculated from the laser-209 

ablation sampling techniques, agree well with one another within their 1s error bars (LA-ICP-OES: 210 

0.804 ± 0.093 wt.% , LIBS: 0.823 ± 0.068 wt.%, LA-ICP-MS:, 0.76 ± 0.17 wt.%). These concentrations 211 

are consistently greater than that resulting from the aqueous ICP-OES analysis of the HI sample (0.470 212 

± 0.010 wt.%).  213 

The dissolution of the HI sample in water to prepare its aqueous solution for ICP-OES analysis 214 

generated both a very strong odor associated with the presence of H2S and a relatively large amount of 215 

insoluble precipitates. The most common sulfur species in most edible salts, SO4
2-, is not prone to 216 

vaporization and precipitation when dissolved in water. Although clear identification of the chemical 217 

forms of S2- in the HI sample, based on instrumental analyses, has not been reported so far, the 218 

significant amount of S2- may exist in the forms of sulfides of Na, K, Mg, and Ca that are abundant in 219 

edible salts. MgS and CaS decompose into their hydroxides and generate H2S in water. Na2S primarily 220 

produces bisulfide ion (HS-) in its aqueous solution, but generates H2S even in contact with moist air 221 

following the reaction of Na2S + H2O + CO2 ® Na2CO3 + H2S.40 All of the sulfides, Na2S, K2S, MgS, 222 

and CaS make the aqueous solution basic. The alkaline nature of the HI aqueous solution was verified 223 

(see the images of pH papers in Figure S3 of the Supplementary material) supporting the presence of 224 
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these alkali or alkaline earth metal sulfides. Also, the insolubility of transition metal sulfides such as 225 

iron sulfide can be suggested as the other possible S loss mechanism through precipitation. Of the 3.343 226 

g of HI sample dissolved in distilled water, 0.031 g of insoluble particles were filtered and collected, 227 

amounting to a percentage of 0.92 wt.%.  228 

The intensity correlation between the S I and O I LIBS lines in Figure 6 provides a means 229 

discriminating between chemical forms of S in the salt samples. To obtain the intensity values, baseline-230 

subtracted integrated peak areas were taken for the three overlapping O I lines at 777.194, 777.417, and 231 

777.539 nm, and the two S I lines at 922.809 and 923.754 nm. The LIBS spectra for O I lines are shown 232 

as the inset of Figure 6. All salts, excluding the HI sample, form a trend of positive correlation between 233 

the S I and O I line intensities. This observation is consistent with SO4
2- as the most prevalent form of S 234 

in most edible salts. For the HI sample, the O I intensity is relatively low as compared to the rest of the 235 

salts with similar S I emission intensity, and again is consistent with the presence of S2- rather than SO4
2-.  236 

Finally, the following three facts exclude the possibility of strong matrix effects enhancing the S I 237 

line intensity particularly for the LIBS spectrum of the HI sample: 238 

(i) Our samples have a common matrix, NaCl. 239 

(ii) The optical emission spectroscopic techniques (LIBS and LA-ICP-OES) and the mass 240 

spectrometry (LA-ICP-MS) showed consistent results. This indicates that the S I line intensity in the 241 

LIBS spectra reflect the mass of S ablated from the samples and the S I line intensity of the HI sample 242 

was not enhanced by any matrix effects further heating the laser-induced plasma. 243 

(iii) A plot of the Mg I line intensity observed in the LIBS spectra versus the Mg concentrations 244 

obtained from the aqueous-solution ICP-OES analysis shows no significant deviation for the HI sample. 245 

This excludes the possibility of a particularly large amount of ablated mass for the HI sample (see 246 

Figure S4 in the Supplementary material). 247 

 248 

Conclusions 249 
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Three laser ablation sampling techniques, LA-ICP-OES, LIBS and LA-ICP-MS were used for the 250 

analysis of S in edible salts from different geographical origin. These techniques provided reliable 251 

calibrations to the concentrations of S determined by ICP-OES using aqueous solution samples. 252 

However, for the Himalayan rock salt from India, all laser ablation sampling techniques measured a 253 

concentration significantly higher than the corresponding values predicted by ICP-OES for the aqueous 254 

solution samples. This effect was traced to ample loss of sulfur in the rock salt when it was dissolved in 255 

water for ICP-OES analysis through vaporizing as H2S or precipitating as insoluble metal sulfides. For 256 

these samples, all laser ablation techniques provided good results for accuracy and sensitivity. In 257 

addition, LIBS stands out for the analysis of S in salts due to its simplicity and ability to provide 258 

information about speciation. The intensity correlations of the S I and O I LIBS lines indicate that the 259 

rock salt contains relatively large amount of S in a different chemical form (S2-) from that of the other 260 

salt samples (SO4
2-).  261 
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Table 1. Sample list and S concentrations analyzed by ICP-OES for aqueous solution samples. 

Sample 

code 

Geographical origin Type S conc. 

(mg/Kg) 

HJ Hokkaido Japan Sea salt 4700 ± 100 

HI Himalaya, India Rock salt 5750 ± 120 

HP Himalaya, Pakistan Rock salt 3259 ± 70 

JD Jeung-Do, South Korea Sea salt 9200 ± 200 

MAB Mt. Andes, Bolivia Rock salt 1811 ± 39 

MG Mongolia Rock salt 1900 ± 41 

OJ Okinawa, Japan Sea salt 13098 ± 290 

PL Poland Rock salt 1549 ± 32 
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Table 2. Spectroscopic parameters of S I lines observed in LIBS spectra. 

Observed 

wavelength (nm) 

Transition 

probability (s-1) 

Lower-level 

energy (cm-1) 

Upper-level 

energy (cm-1) 

Lower-level 

statistical 

weight 

Upper-level 

statistical 

weight 

912.287 2.79 ´ 107 52623.640 63475.051 5 7 

922.809 2.77 ´ 107 52623.640 63457.142 5 5 

923.754 2.77 ´ 107 52623.640 63446.065 5 3 
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Figure 1. Calibration curve of S obtained by ICP-OES analysis for standard solutions of NaCl-MgSO4 

mixtures. 
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Figure 2. Calibration curves of S developed by LA-ICP-OES (a) and LIBS (b), and the LIBS spectra of 

eight salt samples in the wavelength region between 918 and 932 nm (c). 
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Figure 3. The plot of the signal intensities from LIBS with respect to those from LA-ICP-OES. 
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Figure 4. Plots of 34S isotope signal intensities with respect to the S concentrations determined by the 

ICP-OES analysis for aqueous solution samples (a) and the S I line intensities observe in LIBS spectra 

(b). 
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Figure 5. S concentrations in the HI sample estimated by LA-ICP-OES, LIBS, LA-ICP-MS, and ICP-

OES analysis for the aqueous solution samples. 
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Figure 6. Plot of the O I line intensities observed in the LIBS spectra of the eight salt samples with 

respect to the corresponding S I line intensities. 
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