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Abstract 
When assessing children in laboratory experiments, the 
measured responses also contain task-irrelevant participant-
level variability (“noise”) and measurement noise. Since 
experimental data are used to make inferences of development 
of cognitive capabilities with age, it is important to know if 
reliability of the used measurements depends on child age. Any 
systematic age-dependent changes in reliability could result in 
misleading developmental trajectories, as lower reliability will 
necessarily result in smaller effect sizes. This paper examines 
age-dependency of task-independent measurement variability 
in early childhood (3–40 months) by analyzing two large-scale 
datasets of participant-level experimental responses: the 
ManyBabies infant-directed speech preference (MB-IDS) 
dataset and a saccadic reaction time (SRT) dataset collected 
from rural South Africa. Analysis of participant- and study-
level data reveals that MB-IDS shows comparable reliability 
across the included age range. In contrast, SRTs reflect 
systematically increasing measurement consistency with 
increasing age. Potential reasons and implications of this 
divergence are briefly discussed. 

Keywords: child development; empirical data; statistical 
analysis; data reliability; eye tracking; large-scale data 

Introduction 
Controlled behavioral experiments are one of the basic tools 
for scientific study of human cognition and its development. 
By exposing participants to a series of carefully designed 
stimuli and measuring their responses, one can make 
inferences regarding the underlying mechanisms responsible 
for participants’ learning and information processing. In this 
context, coming up with good experimental designs is far 
from trivial and requires suitable lab environments and 
technological tools to capture the phenomena of interest. Yet, 
even with the best designs and tools, the collected data is 
never a pure image of the phenomenon of interest. Instead, 
participant responses are affected by various sources of 
variability (Faisal, Selen & Wolpert, 2008), such as 
participant factors (e.g., general vigilance, attentiveness, 
comprehension of task instructions, increasing task fatigue), 
as well as neural (e.g., sensory, cellular, and synaptic) and 
measurement noise (e.g., finite measurement resolution, 

human observer effects, or quantization of originally non-
discrete behaviors).  

When measuring children, especially young infants, 
experimenters face a series of additional challenges: young 
infants cannot comprehend and follow explicit task 
instructions. Therefore, spontaneous behaviors, such as 
looking times of the infants, are often used to make 
inferences of stimulus processing (e.g., through eye tracking 
or monitoring head orientation towards spatial location of the 
stimuli). Moreover, babies have limited attention span, 
general executive function, and are yet to develop skills or 
can alternate between exhibiting or not exhibiting the skill 
even within the same assessment session (see Adolph, Hoch 
& Cole, 2014). Hence, experimental research with babies is 
complicated, and the collected data can potentially include a 
notable amount of additional variability that is not dependent 
on the experimental conditions per se. 

Notably, measurement variability could be expected to 
change as a function of infant development and maturation 
(e.g., the standard deviation of infant oculomotor response 
decreases by age, Rose et al., 2002). This age-dependency of 
variability (“noise”) becomes a potential problem when age-
dependent change in cognitive skills is of interest. Such cases 
include derivation of developmental trajectories of language 
skills from meta-analytic models that use age as a moderator 
in the statistical model (e.g., Bergmann et al., 2018; 
Gasparini, Tsuji & Bergmann, 2022; Lewis et al., 2016) and 
use of the developmental trajectories as a reference in 
evaluation of computational models of language 
development (Cruz Blandón, Cristia & Räsänen, 2022). Even 
though meta-analytic models do consider different sources of 
variation, the standard approach for developmental trajectory 
estimation does not reveal whether the potentially observed 
age-dependent effect size changes are driven by changes in 
measurement uncertainty or by developmental changes in the 
language capability of interest. Thereby, it would be 
important to understand what kind of impact participant age 
and the associated experimental designs (if they co-vary with 
age) have on reported effect sizes. This is also related to the 
ongoing debate on how to interpret empirical findings across 
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several studies, given the uncertainties associated with each 
study (see, e.g., Kvarven, Strømland & Johannesson, 2020, 
and  Lewis et al., 2022, for a recent discussion).   

This is not to say that age-dependency of measurement 
reliability is completely ignored. For instance, the proportion 
of (in)valid trials per participant is often employed as a proxy 
of data reliability. For example, ManyBabies consortium 
(2020), focusing large-scale study of infant-directed speech 
(IDS) preference, found participant age as a significant 
(positive) predictor of missing data. However, the authors did 
not make strong inferences regarding the impact of data 
quality on the observed developmental pattern. 

In this paper, we try to dig deeper into the measurement 
reliability of infant behavior as a function of infant age by 
explicitly focusing on confidence intervals of effect sizes 
estimated from infants and studies consisting of groups of 
infants. We use the large-scale MB-IDS data to study whether 
age-dependency of IDS preference is potentially affected by 
age-dependent trial-level data reliability. In addition to the 
MB-IDS data, we conduct a similar analysis on a large-scale 
dataset of saccadic reaction times (SRTs) measured from 
babies from a non-WEIRD environment to see if a similar 
pattern of data reliability as a function of age emerges. These 
two datasets were chosen as they both contain responses from 
hundreds (SRT) or thousands (MB-IDS) of infants with tens 
of thousands of responses from the same well-established 
experimental design, and with well-documented primary 
findings from the respective studies. 

Throughout the remaining paper, we will use the term 
variability to refer to the subject- or study-level dependent 
measure variability that is not explained by experimental or 
other common factors shared by study participants. 
Moreover, we do not address different sources of within-
subject variability, but focus on the overall contribution and 
age-dependency of variability on the measures of interest. 

Why Effect Sizes Shrink with More Variability? 
The basic problem with task-independent measurement 
uncertainty (variability) is that, on average, the resulting 
effect size estimates will be lower than those of noise-free 
measurement. Our present aim is to estimate the amount of 
variability in infant responses as a function of infant age, i.e., 
to estimate the reliability of the data (see also DeBolt, 
Rhemtulla & Oakes, 2020).  

To approach this formally, a simplistic model of infant 
behavioral response a(x) for a stimulus x in a single test trial 
can be written as 
 

𝑎(𝑥) = 𝑓(𝑥) + 𝑁(0, 𝜎!"),					(1) 
 

where f(x) is stimulus-related cognitive processing (e.g., 
exogenous attention driven by the stimulus) and 𝑁(0, 𝜎!") is 
normally distributed stimulus-independent variability in the 
responses. Variance 𝜎!" > 0 reflects the total contribution of 
all sources of internal variability at the participant level (e.g., 
fussiness, attentiveness, neural noise etc.), and differs across 
participants. In addition, the datum recorded for the given 

trial is not the infant response a(x) as such, but some external 
observation r(x) = g(a(x)) together with measurement noise:  
 

𝑟(𝑥) = 𝑔0𝑎(𝑥)1 + 𝑁(𝜇#, 𝜎#" )							(2) 
 

Even if we don’t know the form of f() or g(), we know that 
larger 𝜎#"  and 𝜎!" result in a smaller effect size (on average). 
This is since the effect size is inversely proportional to the 
variance across the measurements: 
 

𝑑	~ $
%!
~ $
%"!&%#! &'{%$

!}
															(3)    

 

where 𝑔{𝜎!"} denotes variance resulting from application of 
g() to 𝑁(0, 𝜎!"), and 𝜎*" is task-dependent across-subject 
variability in the coded responses.  In the extreme case, poor 
measurements or a complete lack of task engagement results 
in stimulus-independent and hence experimental condition 
independent responses with zero effect.     

Usually, the aim of an experiment is to measure ES related 
to f(x) while minimizing the impact of 𝜎!" (e.g., by using 
engaging stimuli, limiting experiment length, controlling for 
infant vigilance) and the impact of 𝜎#"  (e.g., by using 
sensitive experimental paradigm, calibrating the 
measurement system, avoiding coding bias etc.). However, in 
practice, these “noise terms” always exist due to individual 
variation and through finite measurement fidelity. This 
means that, on average, the measured effect sizes are smaller 
than what actual differences in infants’ stimulus-dependent 
processing between experimental conditions would entail 
(statistically speaking; but see, e.g., Oakes, 2017, or 
Bergmann et al., 2018, for discussion on the opposite effect 
of publication bias on reported effect sizes). 

In the present study, we are interested in the impact of task-
independent noise factors to the observed effect sizes in 
behavioral studies, and how they may change as a function of 
infants’ age. Both the measurement noise 𝜎#"  (e.g., due to 
different experimental paradigms or their suitability to 
infants of a particular age) and subject-level task-independent 
noise 𝜎!" can, and most likely will, change with infant 
development. If this is the case, then any effect size -based 
developmental trajectory estimates or age group comparisons 
should take the effects of noise into account when 
interpreting age-dependent changes in language capabilities.  

Why Younger Baby Data Could be Less Reliable? 
Many researchers working with infant development can 
probably relate to the anecdotal notion that measuring young 
infants in a lab is more complicated than that of older children 
or adults. This implicitly suggests that data collected from 
older participants could also be more reliable. Besides the 
effort needed for participant recruitment and running the 
practicalities at the lab, the greater variability associated with 
younger infants might be reflected in the collected data in at 
least two ways: 1) a higher proportion of failed trials or 
excluded participants, as determined by the exclusion criteria 
of the study, and 2) larger variance in trial-by-trial responses 
of the infants due to a larger role of 𝜎!" compared to task-
dependent processing in the control of observable action.  
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Note that for 2) to hold, the observed variability should be 
decorrelated across the infants and not dependent on 
experimental or population-level variables, such as stimulus 
identity, presentation order, or native language. By properly 
controlling for different potential explanatory factors, one 
could try to estimate how the 𝜎!" change with infant age, other 
things equal. That is something we try to measure in this work 
by analyzing trial-level response data from a large participant 
population of different-aged babies. 

However, the overall picture is much more complicated 
than the above one. The same experimental paradigm or same 
set of stimuli might not be ideal for babies of different ages, 
and therefore 𝜎#"  may also vary with age (see also 
ManyBabies Consortium, 2020). In addition, the older the 
babies, the more likely they are to reflect individual variation 
in developmental trajectories and stages. This can lead to, 
e.g., additional variability across different stimuli of the same 
experimental condition, whereas the experimenter assumes 
the stimuli to be equally representative of the phenomenon of 
interest. This is a limitation we acknowledge, and hence our 
results should be subject to careful interpretation. 

 

Case study 1: ManyBabies IDS Preference  

Dataset 
As our first dataset, we use the ManyBabies (MB) infant-
directed speech (IDS) preference dataset publicly available at 
https://osf.io/re95x/ from MB study by ManyBabies 
Consortium (2020). The MB study consisted of IDS 
preference experiment conducted separately at 67 different 
labs around the world with a total of 2329 infants using the 
same study design and the same set of IDS and ADS stimuli 
spoken in North American English. The only differences 
between the studies in different labs were 1) whether infant 
responses were either collected using eye tracking, head-turn 
preference procedure (hpp), or single-screen central fixation 
method, 2) whether the infants were native English listeners, 
3) and the infant age group(s) tested at each lab.  

In the MB experiment, infants were exposed to 8 IDS 
and 8 ADS audio clips in North American English while their 
looking times (LTs) to targets were measured. The dependent 
variable was derived as the looking-time difference LTDi = 
LTIDS,i–LTADS,i from pre-defined IDS and ADS stimulus pairs 
(from now on referred to as trials i), reflecting the attentional 
preference towards IDS over ADS stimuli. The MB response 
dataset (03_data_diff_main.csv in the OSF repository) 
consists of these trial-level LTDs for each infant from each 
participating lab together with info on infant age and native 
language. In addition, invalid trials (e.g., shorter than 2-s 
looking time; fussiness etc.; see ManyBabies Consortium, 
2020 for detailed criteria) are separately marked in the data. 

In our analyses, we started with all data from all 
participants and labs. If one lab had tested multiple age 
groups (in bins of 3–6, 6–9, 9–12, and 12–15 months) and/or 
using multiple methods, each age-group/method combination 
was treated as a separate study. Babies with less than 5 valid 

trials were excluded from bootstrap analyses (next Section), 
resulting in valid data from 1433 infants between 3.0 and 15.0 
months of age. For study-level bootstrap statistics, a study 
was included if there were valid data (≥ 5 trials) from at least 
10 babies. This resulted in a dataset of 62 studies with 1155 
infants. For the specific methods, the number of valid studies 
(babies) corresponded to 29 (618) for hpp, 26 (407) for 
central fixation, and 7 (130) for eye tracking. All trials of all 
babies were used for counting the proportion of valid trials. 

Measuring Age-Dependency of Data Reliability 
To investigate the potential age-dependency of measurement 
reliability, we used two complementary methods to estimate 
the amount of noise in infant responses: 1) the proportion of 
invalid trials, and 2) 95% confidence intervals (CI95) of 
effect sizes (ES), as obtained from bootstrapping. For IDS, 
the first one was already reported in ManyBabies Consortium 
(2020), but we replicate the analysis for completeness. For 
invalid trial proportion, we simply count the number of 
invalid trials for each baby and then report the average 
proportions for the different age groups in the two datasets. 

For ES CI95 estimation, we conduct standard empirical 
bootstrapping by resampling trial-level responses of each 
infant with replacement. On MB data, for each bootstrap 
sample, we calculate 1) IDS preference ES (Cohen’s d) for 
each infant using the bootstrap sample of LTDs of valid trials 
of that baby, and 2) IDS preference ES for each study using 
the means of participant-level bootstrap samples of LTDs. 
We perform bootstrap resampling 10,000 times for each 
baby, and then use 2.5% and 97.5% percentiles of the 
resulting ES to define the CI95 for individual babies (CI95B) 
and studies (CI95S). For all CI95 results, we report the width 
of the confidence interval (max–min) and study how it 
changes with age (Pearson correlation between age and CI). 

Note that while derivation of participant-level effect sizes 
is not normally meaningful (corresponding to a study with 
N=1), it allows us to test the stability of participant-level 
responses as a function of age. We expect more noise to result 
in higher LT variability across trials, and hence also 
increasing the CI95B captured by the bootstrap analysis.  

In the main analyses, we pool the MB-IDS data from all 
three testing methods (eye-tracking, hpp, central fixation), as 
pooling is also often employed in developmental trajectory 
estimation, but also report results for the separate methods.  

To ensure that the bootstrapping is capturing variance that 
is independent of cross-subject factors, the MB-IDS data was 
normalized by subtracting the LTD predictions of the 
following linear model: 

 

     𝐿𝑇𝐷	~	𝑡𝑟𝑖𝑎𝑙 +𝑚𝑒𝑡ℎ𝑜𝑑 + 𝑁𝐴 + 𝑠𝑡𝑖𝑚𝐼𝐷 + 𝑡𝑟𝑖𝑎𝑙 ∗ 𝑎𝑔𝑒 +
																			𝑚𝑒𝑡ℎ𝑜𝑑 ∗ 𝑎𝑔𝑒          (4) 

 

from the original LTDs, where NA = North American 
English as infant L1, stimID = stimulus identity (categorical) 
and trial = trial number (1–8). After the normalization, CI95 
estimates from the bootstrapping reflect uncertainty 
associated with within-subject residual variance, and we are 
interested if this depends on the age of the infants. Intuitively, 
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magnitude of the resulting CI95B reflects the randomness in 
infant responses across trials, as measured separately for each 
baby, while CI95S reflects how this participant-level 
uncertainty propagates to study-level effect size statistics. 

Results for MB-IDS 
Top row of Fig. 1 shows the effect sizes for MB-IDS data at 
participant (left) and study levels (right). As reported by 
ManyBabies Consortium (2020), ES representing infant IDS 
preference increases with infant age (r = 0.31; p = 0.0151) 
with a positive mean effect. As for the reliability of the data, 
Fig. 1 middle row shows the confidence interval estimates of 
the bootstrapping (left and center) and the proportion of 
invalid trials (right) in the data. Bottom row shows the 
corresponding results for the three experimental methods.  

As seen from Fig. 1, the CI95s of participant- and study-
level ES do not have a statistically significant change as a 
function of age when data is pooled across the three methods. 
Concerning the individual methods, central fixation has a 
slight increase in CI95B with age (r = 0.118, p = 0.011) while 
the other two methods do not show age dependency. As noted 
by ManyBabies consortium (2020), the proportion of invalid 
trials increases with infant age (r = 0.194, p < 0.001). The 
original authors provided faster habituation of older infants 
as a likely explanation to this. Due to this, valid sample size 
per study (after exclusion criteria) was also slightly 
negatively correlated with age (r = –0.158, p = 0.001). 

Overall, the results show that data collected from younger 
infants do not show larger trial-by-trial variability in 
responses. This suggests that the amount of noise in the data, 
as captured with the present methodology, should not 
substantially bias age-dependent effect size fits to the study-
level data for developmental trajectory estimation (e.g., 
ManyBabies Consortium, 2020). More specifically, the 
observed increase in IDS preference with aging does not 
appear to be simply a result of more task-independent 
randomness in the data of younger babies.  

Case study 2: Saccadic Reaction Times from 
Eye Tracking  

Dataset  
As the second dataset, we utilize SRT data collected from 
Greater Tzaneen area within Mopani District, Limpopo 
Province, South Africa, as originally described in Leppänen 
et al. (2023). The data consists of responses from an SRT 
experiment administered to infants at 7-, 17-, and 36-month 
checkpoints in a longitudinal manner. Participant caregiver-
infant dyads were a subsample of dyads taking part in broader 
study investigating the impact of a package of early 
childhood interventions in the area. 

SRTs were collected when the dyads visited a lab where 
the children were administered EEG and eye tracking 
assessments on the same visit. Eye tracking measurements 
were collected in a quiet room using Tobii X3-120 
equipment. Each test consisted of two 3–4 min sessions. One 
session consisted of calibration targets, videos depicting 

short (5–45 s) social scenes (data not used here), and visual 
saccadic target sequences for SRT measurement. The three 
target types were sequentially presented in the given order 
several times across the session. In total, 6–18 calibration 
targets and 40 saccade targets were presented to each child 
across the two sessions. The targets consisted of colored 
animated cartoon drawings of objects (e.g., bird, fish, face, 
soccer ball; size ~ 5.7° x 5.7°), starting from center and then 
with pseudo-random 10° shifts between subsequent targets.  

For the SRT data, a saccadic trial was considered as valid 
if the starting position of the saccade was placed on the 
previous target (discarding the first target), there were no 
missing samples exceeding 100-ms between target onset and 
saccade registration, gaze entry to target was not preceded by 
a missing sample, and SRT fell within expected target range 
of 100–1000 ms from target onset. In addition, outlier SRTs 
(2.5 SDs from grand average SRT) were discarded.  

In addition to SRTs, the dataset contains estimates of 
household wealth of the individual children, a proxy for 
relative socioeconomic status of the children. Household 
wealth was estimated based on a checklist of 29 assets that a 
household might own, subjected to principal component 
analysis as described by Filmer and Pritchett (2001). The 
reader should see Leppänen et al. (2023) for complete details 
of the experimental setup, participants, and collected data. 

In our experiments, we analyzed data from all the 
participants who had at least 10 valid trials per visit and at 
least one visit. This left us with 357 out of 386 original 
participants and with 717 unique participant/age-bin 
combinations. This corresponded to a total of 28,520 SRT 
trials and 15,835 valid trials across the three age bins.  

Measuring Age-Dependency of Data Reliability 
The basic procedure for CI95 estimation on the Tzaneen SRT 
data was similar to the MB-IDS data. However, instead of 
measuring ES, we directly estimate CI95s of SRTs of 
individual participants and test if they depend on age, as the 
SRTs are the primary measure of interest in this case. In 
addition, as an aggregate “study-level” phenomenon, we 
measure correlations and their CI95s between SES scores of 
infant households and infant SRTs for the different age bins. 
This is since earlier research has reported a reduction in SRTs 
with increasing household wealth on the same data 
(Leppänen et al., 2023). 

For individual SRT CI95 analysis, the model used for 
residual variance calculation was  
 

𝑆𝑅𝑇	~	𝑠𝑡𝑖𝑚𝐼𝐷 + 𝑆𝐸𝑆 + 𝑡𝑟𝑖𝑎𝑙 + 𝑡𝑟𝑖𝑎𝑙 ∗
																															𝑎𝑔𝑒 + 𝑆𝐸𝑆 ∗ 𝑎𝑔𝑒              .                                   (5) 

 

The same model but without the SES term was used for the 
correlation r{SES, SRT} CI95 estimation. As with the MB-
IDS data, residual variance after applying the above model 
was subjected to 10,000 bootstrap simulations to estimate the 
95% CIs for the participant SRTs (CI95B) and the correlation 
between SES and SRT.  
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Figure 2: Top left: participant SRTs as a function of their age. Top right: Pearson correlation between family SES and
infant SRT for different age groups. Bottom left: 95% confidence interval width (CI95) for SRT data. Bottom middle:

CI95s for the correlation between family SES and infant SRT. Bottom right: proportion of invalid trials for the different

age groups. Straight lines on the left plots denote least squares fits to the data.

Figure 1: Top row: IDS preference effect sizes for individual participants (left) and studies (right) as a function of
infant age. Individual dots denote individual infants (left) or studies (right) and solid line shows least-squares fit to the

data together with Pearson correlation between effect sizes and infant ages. Middle row: participant (left) and study

level (middle) 95% confidence interval widths (CI95) for the effect sizes together with the proportion of invalid trials

(right) as a function of infant age. Bottom row: CI95s and invalid trial results shown separately for the three used

experimental paradigms (singlescreen = central fixation, hpp = head-turn preference paradigm).
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Results for SRTs 
Top row of Fig. 2 shows the basic results for SRT analysis 
with age-dependency of SRTs on the left and SES-SRT 
correlation on the right. As expected (e.g., Alahyane et al., 
2016), the SRTs systematically decrease with age (r = –0.57,  
p < 0.001). In addition, household wealth (SES) and SRTs 
are inversely correlated in the 17- and 36-month age groups, 
as reported by Leppänen et al. (2023).  

As for the respective CI95s (Fig. 2, bottom row), there is 
now also a decreasing trend with age for both the subject-
level SRTs (r = -0.496, p < 0.0001) and age-group SES-SRT 
correlations, and for the proportion of invalid trials. This 
shows that not only that the SRTs become lower for older 
infants, but also the reliability of individual saccadic trials 
becomes higher with age. This is in contrast with the MB-
IDS results, where no notable reliability differences were 
observed between the age groups. As a posthoc analysis, we 
also verified that a significant age-dependent decline in the 
CI95s remains when the CIs are adjusted for the mean SRT 
of each participant (r = -0.297, p < 0.0001). 

Finally, we checked the complementarity of invalid trial 
counts and CI95s from the bootstrapping by measuring their  
correlation at participant level using the SRT data. The 
analysis reveals that they are related but still complementary 
(r = -0.6531; p < 0.0001). This indicates that participant-level 
CI95s estimated from residual variance can provide 
additional information on data reliability.  

Discussion and Conclusions 
The study set out to investigate whether reliability of 

cognitive measures in children depends on the child age, as 
measured by confidence intervals of subject- and study-level 
behavioral responses. For the MB-IDS data, we did not find 
evidence of higher across-trial variability and hence lower 
reliability of the measurements for younger children. In 
contrast, there was a very slight increase in uncertainty of the 
measurement of participant-level ES as a function of child 
age, but reliability of full studies did not have an age-
dependent trend. The result suggests that comparison of IDS-
preference effect sizes between age groups is not critically 
biased by age-dependent noise in the empirical data, hence 
supporting the idea of developmental trajectory estimation 
with age-dependent statistical models fit to large-scale data 
(cf., Bergmann et al., 2018; Cruz Blandón et al., 2022).  

In contrast, results with SRTs from eye tracking showed 
that the trial-by-trial variability of the SRTs decreased by age, 
being consistent with Rose et al. (2002). Note that no such 
decrease in variability was observed even for eye tracking in 
the case of MB-IDS data. The higher variability at younger 
ages may also explain why the associations to other 
measures, such as SES here, become stronger with age, as the 
“signal-to-noise” ratio of the SRT measurements might be 
worse with younger infants.  

The contradictory findings from the two datasets are 
puzzling. If the MB-IDS task were to be more suitable for 
younger compared to older children, that may counterweight 
otherwise potentially higher response variability at a younger 

age. However, the IDS preference effect increases with age, 
hence the experimental setup is at least somewhat applicable 
across the studied age groups. Also, the used normalization 
of the LTD in Eq. (4) (esp. trial*age) attenuates systematic 
effects of faster habituation at older ages (see ManyBabies 
Consortium, 2020, for a discussion) that could otherwise 
cause higher across-trial variability with increasing age and 
thereby counterbalance age-dependent effects of variability. 
Also, the age ranges in the two tasks overlap only partially, 
which may hide non-linearly changing variability factors. 

As another potential factor, MB-IDS data come from a 
multimodal task where auditory processing is measured via 
visual looking behavior, and where the measured LTDs 
(attentional preference) are a result of relatively advanced 
cognitive analysis of prosodic and linguistic differences in 
stimulus characteristics. In contrast, SRT only involves 
relatively simple sensory-motor transformation of visual 
information needed for visual target pursuit. Given the 
gradual maturation of cortical connectivity and development 
of higher-level cognitive processes (see also Blumberg & 
Adolph, 2023), sensorimotor processing required for the MB-
IDS task may simply be cognitively more demanding than 
saccadic reactions, which could be seen as a more 
“elementary” cognitive process. The age differences between 
the MB-IDS and SRT participant populations can also 
increase the relative contribution of the task complexity on 
the measured responses. 

Finally, MD-IDS relies on a difference of two noisy 
constituent measures whereas SRT does not. As a result, the 
“signal-to-noise” ratio in the two datasets is very different 
with trial-level SRTs having relatively modest variability 
around the mean participant SRTs (CI95s are approx. 1/8th of 
the means). In contrast, participant-level CI95s in MB-IDS 
are approx. tenfold to the means. Hence, it is possible that 
even if age-dependent factors to data reliability exist for MB-
IDS, they are swamped by other sources of variability in the 
given experimental setup. 

In general, the present study highlights how reliability of 
child data as a function of child age can vary from an 
experimental setting to another. In addition, the intuition of 
getting less reliable data from younger children does not 
always necessarily hold—at least to the extent that the 
present methodology can dig into this issue.  Given that only 
two qualitatively distinct datasets were investigated, it is 
difficult to draw broader conclusions or predictions on 
measurement reliability with participant age. Instead, 
additional analyses with different experimental paradigms 
and cognitive phenomena should be conducted for cases 
where suitable large-scale data are available. 
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