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Abstract

Modeling Dependence in Large and Complex Data Sets

by

Chao Zhang

Classical statistical theory mostly focuses on independent samples that reside in finite

dimensional vector spaces. While such methods are often appropriate and yield fruitful

results, practical data analyses often go beyond the scope of these classical settings. In

particular, with technological advancements, the computing power to record large vol-

umes of data points at a high frequency is becoming more accessible than ever before. The

large volume of data sets makes it possible to produce metadata on sample points—such

as distributions, networks, or shapes, to name a few, and the high frequency of data

records enables one to model data dependency structures at a fine temporal and/or spa-

tial resolution that would not have been possible with sparsely recorded data. In the

age of big data, the study of data atoms which constitute complex data objects and the

statistical modeling of high resolution signals endowed with rich dependency structures

are hitting their stride.

In this dissertation, we consider two specific instances of such big data. One is

time dependent distributional data represented by the corresponding probability density

functions. Indeed, data consisting of time-indexed distributions of cross-sectional or
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intraday returns have been extensively studied in finance, and provide one example in

which the data atoms consist of serially dependent probability distributions. Motivated

by such data, we propose an autoregressive model for density time series by exploiting the

tangent space structure on the space of distributions that is induced by the Wasserstein

metric. The densities themselves are not assumed to have any specific parametric form,

leading to flexible forecasting of future unobserved densities. The main estimation targets

in the order-p Wasserstein autoregressive model are Wasserstein autocorrelations and the

vector-valued autoregressive parameter.

We propose suitable estimators and establish their asymptotic normality, which is

verified in a simulation study. The new order-p Wasserstein autoregressive model leads

to a prediction algorithm, which includes a data driven order selection procedure. Its per-

formance is compared to existing prediction procedures via application to four financial

return data sets, where a variety of metrics are used to quantify forecasting accuracy. For

most metrics, the proposed model outperforms existing methods in two of the data sets,

while the best empirical performance in the other two data sets is attained by existing

methods based on functional transformations of the densities.

The second instance is the brain functional magnetic resonance imaging (fMRI) signals

that are contaminated by spatiotemporal noise at the voxel level. Such data feature a rich

spatiotemporal dependency structure due to a fine acquisition resolution. In neuroscience

studies, resting state brain functional connectivity quantifies the similarity between pairs

of brain regions, each of which consists of voxels at which dynamic signals are acquired
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via neuroimaging techniques, for example, the blood-oxygen-level-dependent (BOLD)

signals that quantify an fMRI scan. Pearson correlation and similar metrics have been

adopted to estimate inter-regional connectivity, often through averaging of signals within

regions. However, dependencies between signals within each region and the presence

of noise contaminate such inter-regional correlation estimates. We propose a mixed-

effects model with a simple spatiotemporal covariance structure that explicitly isolates

the different sources of variability in the observed BOLD signals, including correlated

regional signals, local spatiotemporal noise, and measurement error. Methods for tackling

the computational challenges associated with restricted maximum likelihood estimation

will be discussed. Large sample properties are established by posing mild and practically

verifiable sufficient conditions. Simulation results demonstrate that the parameters of the

proposed model can be accurately estimated and is superior to the Pearson correlation

of averages in the presence of spatiotemporal noise. The model was also implemented

on data collected from a dead rat and an anesthetized live rat. Brain networks were

constructed from estimated model parameters. Large scale parallel computing and GPU

acceleration were implemented to speed up connectivity estimation.
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Chapter 1

Introduction

This dissertation is a collection of individual projects that deal with large and complex

data sets. Two specific classes of such data sets are studied—1) time-dependent distri-

butional data represented in the form of probability density functions and 2) individual

brain functional magnetic resonance imaging (fMRI) signals that are contaminated by

spatiotemporal noises at the voxel level. Modeling time-dependent distributional data

represented by probability density functions constitutes a rapidly growing subdomain of

so-called next-generation functional data analysis (FDA), which commonly features de-

pendent data atoms and/or complex geometry structures in the space where data atoms

reside (Wang et al., 2016). While the second data class, namely spatially indexed dy-

namic signals, can be treated as spatial functional data (Delicado et al., 2010; Hörmann

and Kokoszka, 2011), we will adopt the more classical linear mixed-effects (LME) models

as our goal is to estimate brain connectivity at the individual level with no independent
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replicates.

Classical statistical inference treats probability density functions as fixed, usually

parametric representations of the underlying mechanisms that generate observations.

Estimating the probability density functions or the corresponding distributions is among

the ultimate goals of inference. However, with technological advancements, nowadays

large volumes of data sets are recorded at increasingly high frequencies and it is increas-

ingly the case that observations are associated with their own probability distributions

(Petersen et al., 2022). In order to model the heterogeneity among these probability

distributions, one can adopt the view that each probability distribution is a data atom.

In particular, we will focus on modeling time-dependent probability distributions in the

form of probability density functions as data objects, yielding the notion of a density

time series. The study of density time series can be categorized as next-generation FDA

due to the nonlinear space in which the densities reside and the dependence across the

time index of the data atoms. These features render the conventional FDA methods and

results, such as functional principal component analysis, functional regression, functional

central limit theorem, to name a few, inapplicable or at least inappropriate as they as-

sume linear structure and independently, identically distributed (i.i.d.) samples. Readers

are referred to the papers and monographs of Gasser et al. (1984); Rice and Silverman

(1991); Ramsay and Silverman (2005); Hsing and Eubank (2015) for a comprehensive

treatment of such conventional, or first-generation FDA topics.

In addition to the dependency across the time index, which is commonly investigated

2



in time series analysis, a growing body of studies are motivated by incorporating data

atoms’ geographical marks as an integral part of statistical inquires and is commonly

known as spatial or geostatistics. In this dissertation, we also work on the blood-oxygen-

level-dependent (BOLD) fMRI signals collected at the voxel level which clearly has spatial

attributes. Our goal of this study is to quantify brain connectivity between brain regions

at the subject level. A large volume of literature has been devoted to brain connectivity

studies aiming to shine a light on the evolution of pathologies such as neurodegenerative

diseases or consciousness disorders. However, one of the common challenges in these

studies is to address the noisy nature of the BOLD signals. In practice, BOLD signals

are collected at voxels over a period of measurement time with fixed frequency. Such

measurements incur spatiotemporal random perturbations and connectivity estimates can

be subject to heavy biases (Achard et al., 2011; Chaimow et al., 2018). Due to the inherent

spatial feature of BOLD sginals, the natural starting point of our inquiry is spatial

statistics. The monograph by Cressie (1993) provides a detailed account of questions

and frameworks in this area for vector-valued spatial data. A common practice is to

assume intrinsic stationarity on the spatial process, then model the semivariogram with

parametric covariance kernels. Predictions are commonly carried out by applying kriging

(linear prediction) with variogram–based covariance estimates. With data processes’

progression along the time domain, functional spatial models constitute a potential venue

for modeling our data sets. Functional kriging can be developed in an analogous way as

in the vector-valued setting to predict processes at unvisited locations.
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However, there are several differences between the application scenarios of spatial

FDA tools and our case of BOLD signals. First, functional spatial data usually assume

a compact time domain, for instance, the Canadian weather data example in Ramsay

and Silverman (2005). Most importantly, the asymptotic regimes of spatial functional

data, either the infill domain or increasing domain sampling schemes, assume increasing

spatial sampling locations, which is not an appropriate assumption for our BOLD sig-

nals. Therefore, spatial functional models are not readily applicable for our investigation

on connectivity. However, we note that another principled approach to address data’s

dependency across space and time is spatiotemporal modeling (Christakos, 2000). This

approach models the covariance structure across both space and time to properly repre-

sent the spatial and temporal features of the signals. The bright side of this method is

that it borrows strength from neighboring signals to reveal dependence structures when

data are scarce or irregular, with the downside of being computationally expensive when

the number of data points increases. As our goal is to use noisy BOLD signals to quan-

tify brain connectivity for individuals without independent replicates, we will adopt the

LME models, which is commonly used in spatiotemporal modeling, to explicitly model

the spatiotemporal features of our data and extract the connectivity estimates.

While both of the projects included in this dissertation investigate large dependent

and complex data sets, their emphasises are in rather different research fields. The

first project focuses on modeling time dependent distributional data as complex data

objects, which is considered as next-generation FDA; the second project emphasizes
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spatiotemporal modeling of large and noisy neuroimaging data sets in order to quantify

brain connectivity. The volume of research work devoted to both of these specific fields

has enriched statistical literature at a rapid rate in the past decades and is still seeing

fast-paced growth, hence it is not the intent of this chapter to catalog a comprehensive

coverage of topics in either of these areas. Instead, its aim is to provide the motivations

for the projects the author has worked on and their relevant backgrounds information in

a self-contained manner.

For the remainder of this chapter, an overview of general settings and notations of

functional data analysis will be presented in Section 1.1. This overview provides context

for both of the projects included in this dissertation. The density time series is built upon

the conventional FDA settings and the BOLD signals can be considered as observations

of spatial functional data on a discrete grid, even though we adopt the spatiotemporal

modeling approach for our studies of the signals. In Section 1.2, we proceed with a brief

introduction to dependent functional data, in particular, conventional functional time

series in linear space as it constitutes an important foundation to understand the moti-

vation for density time series modeling that is thoroughly treated in Chapter 2. A quick

discussion of the linear mixed-effects models is presented in Section 1.3 in order to provide

background information for the methodology that we adopt to develop spatiotemporal

models for BOLD signals in Chapter 3.
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1.1 Overview

At the early stage of the development of functional data analysis, sometimes referred

to as the first-generation functional data analysis, the main focus is on random samples

consisting of independent real-valued functions on a compact interval on the real line,

that is, X1(t), ...Xn(t), t ∈ I ⊂ R, in particular, I = [0, T ]. Early analysis of such

data can be found in Gasser et al. (1984), where nonparametric smoothing, which is

prevalent in FDA, was applied to biomedical data; or Rice and Silverman (1991), who

modeled and estimated the mean function and covariance surface of the gaits data of

a group of 5-year-old children, etc. Indeed, a common setting where FDA is carried

out is Hilbertian structure. The random sample of independent real-valued functions

X1(t), X2(t), . . . , Xn(t), t ∈ I is regarded as realizations of an L2(I) process X(t), that is,

E
[∫
I
X2(t)dt

]
<∞. Such linear structure enables natural and heuristic notions of mean

and covariance, whose estimators and their properties are of fundamental importance

in FDA literature. For example, see Fan and Gijbels (1992); Yao et al. (2005); Hall

et al. (2006); Zhang and Wang (2016); Fan and Gijbels (2018). Monographs by Ramsay

and Silverman (2005); Hsing and Eubank (2015) provide thorough details from both

theoretical and applied perspectives into the early developments of FDA.

An alternative term for the aforementioned type of functional data is “curve data”.

From the theoretical perspective, such data type is considered as the sample path of a

stochastic process X(t, ω) : Ω→ R, t ∈ I, where (Ω,A, P ) is the underlying probability

space. Classical probability theory consctructs suitable filtrations to allow the notion of
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measurability globally, functional data usually adopts a local perspective where X(t, ω),

t ∈ I are treated as elements of RI . Therefore, the measurability is characterized in the

sense that {ω : X(·, ω) ∈ B} ∈ A, where B is a σ-algebra in a subspace E ⊂ RI . In order

for the measurability to hold, a careful choice of the subspace E and the norm on the

space is usually required as RI contains too many elements. A detailed treatment can be

found in Bosq (2000); Wellner et al. (2013); Billingsley (2013). With this understanding,

we reduce the notation from X(t, ω) to X(t) hereafter.

1.2 Dependent Functional Data

Recent developments aim to tackle more complexity built on top of the first-generation

functional data analysis, in particular, dependency in the data structure. A seminal work

that models autoregressive dependent structure for functional data is presented by Bosq

(2000). More recent monographs (Horváth and Kokoszka, 2012; Kokoszka and Reimherr,

2017a) provide thorough accounts of topics covering basics of functional data analysis,

which is usually included in the discussion of first-generation functional data analysis, as

well as estimation and modeling problems for dependent functional data. In this section,

we will briefly discuss several dependency regimes that are relevant to author’s projects.

1.2.1 Functional Time Series

In the case where a collection of functional samples X1(t), . . . , Xn(t) are indexed by

time, the i.i.d. assumption is no longer viable. In the study of scalar or real vector
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valued time series, the most general and popular dependence assumptions are various

mixing conditions, see Bradley (2005); Doukhan (2012). Another widely adopted venue

of dependency modeling is by moments based methods, such as modeling autocovari-

ance functions. While taking different perspective, these two methods are indeed closely

related to each other. These two principled ways of dependency quantification has led

to fruitful developments on time series models and methodologies (Brockwell and Davis,

1991).

In functional time series analysis, one potential approach of temporal dependency

modeling is to model the data dynamics directly, which incorporates the dependency

mechanism. The alternative way, which is widely accepted in the statistical field, is to

model the dependency structures directly. This approach is analogous to the study of

vector-valued time series. Hence, we will adopt the same order of development, from

general notions of dependency to specific models, to introduce the dependence modeling

techniques that are relavant to author’s project.

Notions of Dependency

Among all the relaxation of the independence assumptions, m-dependence has one of

the simplest forms and is still flexible enough to model or approximate more convoluted

dependent cases. Suppose {Xn(t), n ∈ Z} are measurable maps from probability space

(Ω,A, P ) to a space M. Let A−∞k and A∞k be the σ-algebras generated up to time k and

from time k, respectively. Then the sequence {Xn(t), n ∈ Z} is said to be m-dependent

if for any k, A−∞k A∞k+m are independent. One can immediately identify that this in
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indeed a special case of α-mixing. The idea of the notion of m-dependence is that even

though most time series are not m-dependent, they can be approximated by a similar

m-dependent process in some way. When the rate of approximation is fast enough,

properties that are easy to establish for m-dependent processes usually hold on their

approximation targets as well. See for example, Berkes and Horváth (2001); Berkes et al.

(2006); Aue et al. (2009).

To formalize the above idea of approximation, let {Xn(t), n ∈ Z} be a sequence in

Lp[0, 1], that is, E[‖Xn‖p]1/p < ∞. Xn is called Lp-m-approximable if each Xn admits

the representation

Xn = f(εn, εn−1, . . . ), (1.1)

where εi are i.i.d. measurable maps from (Ω,A, P ) to M, then let {ε′i} be independent

copies of {εi} and

X(m)
n = f(εn, εn−1, . . . , εn−m+1, ε

′
n−m+1, ε

′
n−m−1, . . . ), (1.2)

we have

∞∑
m=1

E
[∥∥Xn −X(m)

n

∥∥p]1/p <∞. (1.3)

One can immediately see from the definition (1.1) and (1.2) that the sequence {X(m)
n , n ∈

Z} is strictly stationary and m-dependent, and X
(m)
n is equal in distribution to Xn for

each m and n. With (1.3), the Lp-m-approximability provides a powerful tool in the

study of various properties of functional times series, for example, functional central

limit theorem. It also leads to specific models for functional time series, one of which is
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the functional autoregressive process of order 1 (FAR(1)).

1.2.2 Functional Autoregressive Process of Order 1

Let L = L(Lp[0, 1], Lp[0, 1]), the space of bounded linear operators between Lp[0, 1] and

itself. Suppose Φ ∈ L with operator norm ‖Φ‖L < 1. Denoted by εn, the i.i.d. zero-mean

elements of L2[0, 1]. There exists a unique stationary sequence of L2[0, 1] elements Xn

such that

Xn(t) = (ΦXn−1)(t) + εn(t). (1.4)

For details on existence and uniqueness, see Bosq (2000); Horváth and Kokoszka (2012);

Kokoszka and Reimherr (2017a). It is straight forward to show that the FAR(1) model

admits the representation

Xn =
∞∑
j=1

Φjεn−j, (1.5)

where Φj is applying the operator Φ for j times. Following the idea of (1.2), set

X(m)
n =

m−1∑
j=1

Φjεn−j +
∞∑
j=m

Φjε′n−j.

It is easy to verify that

E
[∥∥Xn −X(m)

n

∥∥p]1/p ≤ 2
∞∑
j=m

‖Φ‖jL E [‖εo‖p]1/p .

Therefore, (1.3) is satisfied with p ≥ 2 provided E‖εo‖p1/p <∞.One can see the processes

whose dependence structure satisfies the FAR(1) process are indeed Lp-m-approximable.
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1.3 Linear Mixed-Effects Models

Recall that we resort to linear mixed effects models for spatiotemporal modeling as spatial

functional data methods are not readily applicable to BOLD signals for our connectivity

study, even though our data sets indeed qualify as spatial functional data. Formally,

denote the samples observed at locations s as {X(s), s ∈ S ⊂ Rd}, d ≥ 1, where X(s) is

usually assume to be a random function in L2[0, T ] for some T > 0. This dimension of

spatial functional data is usually time, hence the notation X(s; t), the value of the spatial

functional process at location s and time t. When observed over a discrete grid, one can

obtain a matrix representation of the data. In the most general setting, one assumes

X(s; t) = µ(t) + ε(s; t), t ∈ [0, T ] (1.6)

where µ(t) is the deterministic mean signal that is independent of spatial locations s

and the random field ε(s; t) contains information of spatiotemporal structure of the data

processes. Furthermore, the covariance operator defined by

Cs,sx = E [〈X(s)− µ, x〉 (X(s)− µ)] , x ∈ L2[0, T ], (1.7)

is assumed to be homogeneous among spatial locations s as well since otherwise the

problem of mean and covariance estimation would be ill-posed (Hörmann and Kokoszka,

2011). With this understanding, let {s1, . . . , sl}, l = 1, . . . , L, and {t1, . . . , tm}, m =

1, . . . ,M be the observation grids in space and time. The discrete version of model (1.6)

is

Xilm = µm + εilm, (1.8)
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where Xilm = Xi(sl; tm), µm = µ(tm), εilm = εi(sl; tm), and i = 1, . . . , n is the index for

subject. To simplify the notation, we implicitly assumed that all objects are observed on

the identical spatialtemporal grids in (1.8). However, such simplification is not necessary

for the adoption of the LME models and can be easily relaxed.

From (1.8), it is clear why linear mixed-effects models can be readily applied to

discretized spatial functional data. In general, let Xi be the ni vector of observations of

subject i = 1, . . . , N , LME models take the form of

Xi = Ziβ +Uibi + εi, (1.9)

where Zi and βi are the ni × p design matrix and p-vector of coefficients of the fixed

effects, respectively. Ui and bi are those of the random effects of dimension ni× q and q.

It is conventionally assumed that bi follows N (0, σ2D) for some covariance matrixD and

σ2 comes from εi ∼ N (0, σ2Ini
), where Ini

is the ni × ni identity matrix. LME models

provide a parsimonious way to model the mean and covariance structures simultaneously

in the sense that they allow nonindependence among samples which usually arise across

different hierarchies or groups. See Chapter 1 of Pinheiro and Bates (2006) for various

examples where LME models arise.

1.3.1 Model Estimation

Due to the Gaussian structures on the random components in (1.8), likelihood methods

are prevailing in LME model estimation. Conventional maximum likelihood (ML) gives

estimators for fixed effects that are invariant to basis changes in data but suffers from
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biases in covariance estimates. These biases arise from the loss of degrees of freedom

from the estimation of fixed effects. To mitigate the situation, Harville (1974) proposed

restricted maximum likelihood (ReML) estimators for linear mixed-effects models. The

main ideas is to fit a joint Gaussian likelihood on the error contrast other than the

original data, such that the fixed effects parameters β will not appear in the likelihood

function. While ReML yields unbiased estimators for covariance component, the fixed-

effects estimates are no longer invariant to basis changes. However, Pinheiro and Bates

(2006) suggested that it is still reasonable to utilize the ReML estimates of fixed effects.

The choice between ML and ReML depends on one’s goal of parameter estimation.

In our case, since the covariance structure is of primary interest, we will adopt ReML

for model estimation. The detailed formulation of the ReML function will be deferred to

Chapter 3 when we develop more details of our BOLD signals. Here we note that common

techniques to find ReML estimators are Newton-Raphson methods, EM algorithm, and

Fisher scoring (Harville, 1974; Lindstrom and Bates, 1988; Cressie and Lahiri, 1993).

The class of Newton-Raphson methods is most popular for its fast convergence rate and

easy evaluation. One of the most well-known approach is the l-bfgs optimizer (Liu and

Nocedal, 1989), which is a quasi-Newton method that only updates the approximated

Hessian matrix with rank two matrices in each iteration other than evaluating the exact

Hessian matrix.
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1.3.2 Model Inference

Large sample properties of model parameters are critical to uncertainty quantification.

The classical asymptotic distributions of ML estimators from i.i.d. data are well estab-

lished under certain regularity conditions. For more general settings, Sweeting (1980)

established general asymptotic normality of maximum likelihood estimators which re-

quires increasing, convergent, and smooth information. It is not surprising that ReML

estimators share similar asymptotic properties as the difference between ML and ReML

estimators is effectively a set of linear transformations, i.e., error contrasts. In particular,

the asymptotic properties for ReML estimators under the spatial regression setting, which

is closely related to our project, was investigated by Cressie and Lahiri (1993) where it

was shown that the parameters of the covariance structure of LME models converge to a

Gaussian vector under mild regularity conditions. While we will get more exposures to

LME in Chapter 3 as we develop our spatiotemporal models, we refer readers to Jennrich

and Schluchter (1986); Lindstrom and Bates (1988); Pinheiro and Bates (2006); Jiang

and Nguyen (2007) for more detailed background information.
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Chapter 2

Wasserstein Autoregressive Models

for Density Time Series

2.1 Introduction

Samples of probability density functions or, more generally, probability distributions arise

in a variety of settings. Examples include fertility and mortality data Mazzuco and Scarpa

(2015), Shang and Haberman (2020), functional connectivity in the brain Petersen and

Müller (2019), distributions of image features from head CT scans Salazar et al. (2019),

and distributions of stock returns Harvey et al. (2016), Bekierman and Gribisch (2019),

with the above recent references provided for illustration only. This chapter is concerned

with modeling, estimation and forecasting of probability density functions which form a

time series.
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An early approach to the analysis of distributional data by Kneip and Utikal (2001)

used cross-sectional averaging and functional principal component analysis (FPCA) ap-

plied directly to yearly income densities. In a more recent work, Yang et al. (2020)

represented the sample of distributions by their quantile functions, and applied a linear

function-on-scalar regression model with quantile functions as response variables. These

two approaches are principled alternatives to naively apply methods of functional data

analysis (FDA) to density-valued data. Since there are a variety of functional repre-

sentations that provide unique characterizations of the distributions, including densities,

quantile functions, and cumulative distribution functions, one faces the need to choose a

representation prior to applying the (typically linear) methods of functional data anal-

ysis. Further complicating this dilemma is the fact that these standard functional rep-

resentations do not constitute linear spaces due to inherent nonlinear constraints (e.g.,

monotonicity for quantile functions or positivity and mass constraints for densities), so

that outputs from models with linear underlying structures are generally inadequate.

For this reason, methodological developments for the analysis of distributional data have

taken a geometric approach over the last decade. Rather than choosing a functional form

under which to analyze the data, one chooses a metric on the space of distributions in

order to develop coherent models. Examples of suitable metrics that have been used

successfully in the modeling of distributional data include the Fisher-Rao metric Srivas-

tava et al. (2007), an infinite-dimensional version of the Aitchison metric Egozcue et al.

(2006); Hron et al. (2016), and the Wasserstein optimal transport metric Panaretos and
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Zemel (2016); Petersen and Müller (2019); Bigot et al. (2017).

In many cases, the distributions in a sample are indexed by time, for example annual

income, fertility and mortality data, or financial returns or insurance claims at various

time resolutions. In this chapter, we will assume that all such distributions possess

a density with respect to the Lebesgue measure, and will refer to this type of data

as a density time series. A motivating example is shown in Figure 2.1, depicting the

distribution of 5-minute intraday returns of the XLK fund, which tracks the technology

and telecommunication sectors within the S&P 500 index. The data we plot in Figure 2.1a

covers 305 trading days, each with 78 records of 5-minute intraday return. Figure 2.1b

demonstrates an alternative look at this data set by plotting returns from three selected

trading days. Kokoszka et al. (2019) considered various methods for forecasting density

time series, most of which produced forecasts by first applying FPCA to the densities

(or transformations of these), followed by fitting a multivariate time series models to

the vectors of coefficients. Finally, the density forecasts were obtained by using the

forecasts of the coefficients in the FPCA basis representation. Of these different methods,

a modified version of the transformation of Petersen et al. (2016a) gave superior forecasts

in the majority of cases, and was also based on a sound theoretical justification in terms

of explicitly controlling for the density constraints.

The main contribution of this chapter is to develop a geometric approach to density

time series modeling under the Wasserstein metric. It is well-known that this geometry

is intimately connected with quantile functions, and thus provides a flexible framework
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Figure 2.1: Densities of XLK, the Technology Select Sector SPDR Fund 5-minute intraday returns on
selected dates.

for modeling samples of densities that tend to exhibit “horizontal” variability, which can

be thought of as variability of the quantiles. Examples of such variability in densities are

given in Figure 2.1b. We develop theoretical foundations of autoregressive modeling in

the space of densities equipped with the Wasserstein metric, followed by methodology for

estimation and forecasting, including order selection. Since the Wasserstein geometry is

not linear, care needs to be taken to ensure the model components and their restrictions

are appropriately specified. Autoregressive models have been the backbone of time series

analysis for scalar and vector-valued data for many decades, see e.g. Lütkepohl (2006),

among many other excellent textbooks. Autoregression has been extensively studied in

the context of linear functional time series; most papers study or use order one autore-

gression, see Bosq (2000) and Horváth and Kokoszka (2012). This chapter thus merges

two successful approaches: the Wasserstein geometry and time series autoregression.

In a very recent preprint, Chen et al. (2020) independently proposed a similar geomet-

ric approach to regression when distributions appear as both predictors and responses.

18



As an extension of this formulation, they also developed an autoregressive model of order

one for distribution-valued time series. Our AR(1) model proposed in Section 2.3.1 can

be viewed as a special case of the model in Chen et al. (2020). However, the general-

ization, theory and methodology we subsequently pursue move in a completely different

direction, so the two projects have little overlap. Even though we were not aware of the

work of Chen et al. (2020), we did include their model, which is termed the fully func-

tional Wasserstein autoregressive model in this work, as a one of the competing methods

in our empirical analyses in Section 2.5. We also note that our focus on densities with

respect to the Lebesgue measure is motivated by practical considerations, as such den-

sities occur in applications. In particular, we formulate numerical algorithms applicable

to this common setting. From the theoretical angle, our results related to existence and

convergence could be extended to general probability measures. Working with densities

actually introduces nontrivial complications. For example, the objects we want to predict

must be densities, not general probability measures.

The remainder of the chapter is organized as follows. In Section 2.2 we provide the

requisite background on Wasserstein geometry and introduce relevant definitions related

to density time series. Section 2.3 is devoted to the development of the Wasserstein

AR(p) model, including its estimation and forecasting, both in terms of theory and

algorithms. Proofs of theorems and lemmas are also presented in the same section.

Finite sample properties of our estimator are explored in Section 2.4, while Section 2.5

compares our forecasting algorithm to those currently available. We conclude the chapter
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with a discussion in Section 2.6.

2.2 Preliminaries

A density time series is a sequence of random densities {ft, t ∈ Z}. In the spirit of func-

tional data analysis, no parametric form for the densities will be assumed. Furthermore,

the models will be developed under the setting in which the densities are completely

observed, although in practical situations they will need to be estimated from raw data

that they generate. For example, the densities in Figure 2.1 are kernel density estimates

with a Gaussian kernel.

Density time series are a special case of functional time series, so it would be natural to

adapt a functional autoregressive model (see e.g. Chapter 8 of Kokoszka and Reimherr

(2017b)). However, such a direct approach is only suitable if one first transforms the

densities into a linear space, although this approach too comes with disadvantages. The

transformations of Petersen et al. (2016a) and Hron et al. (2016) require that all densities

in the sample share the same support, an assumption that is often broken in real data

sets. Although Kokoszka et al. (2019) modified the method of Petersen et al. (2016a) to

remove this constraint, the associated transformation is not connected with any mean-

ingful density metric, and can suffer from noticeable boundary effects if the observed

densities decay to zero near the boundaries. Still, the transformation approach remains

viable and will be compared to the Wasserstein models that we propose.
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2.2.1 Wasserstein Geometry and Tangent Space

We begin with a brief discussion of the necessary components of the Wasserstein geometry.

Consider the space of probability measures W2 = {µ : µ is a probability measure on R

and
∫
x2dµ(x) < ∞}. Denoted by D the subset of W2 consisting of measures with

densities with respect to Lebesgue measure, so that one may think of D as a collection of

densities. For f, g ∈ D, consider the collection Kf,g of maps K : R → R that transport

f to g, that is, if K ∈ Kf,g and U is a random variable that follows the distribution

characterized by f , i.e. U ∼ f , then K(U) ∼ g. Intuitively, f and g are close if there

exists a K ∈ Kf,g such that K ≈ id, where id(u) = u denotes the identity map. This is

the motivation behind the Wasserstein distance

dW (f, g) = inf
K∈Kf,g

{∫
R

(K(u)− u)2 f(u)du

}1/2

. (2.1)

That dW is a proper metric is well-established Villani (2003), and (2.1) is indeed

only one of a large class of such metrics that can in fact be defined for measures on

quite general spaces. In the particular setting of univariate distributions, a surprising

property is that the infimum in (2.1) is attained by the so-called optimal transport map

K∗ = G−1◦F, where F and G are the cdfs of f and g, respectively. Note that any optimal

transport map must be strictly increasing, so that, by the change of variable s = F (u),

this leads to an alternative definition of the Wasserstein metric

dW (f, g) =

{∫
R
(K∗(u)− u)2f(u)du

}1/2

=

{∫ 1

0

(
G−1(s)− F−1(s)

)2
ds

}1/2

. (2.2)
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For clarity, we will use u as the input for densities and cdfs, and s as the input for

quantile functions. Interestingly, even for univariate probability measures in W2 that

do not admit a density, the Wasserstein metric remains well-defined, and both optimal

transport maps and corresponding distance can be expressed in terms of their quantile

functions (which always exist), as above.

Another surprising characteristic of the Wasserstein metric is that, although (W2, dW )

is not a linear space, its structure is strikingly similar to that of a Riemannian manifold

Ambrosio et al. (2008). As mentioned previously, a key challenge in analyzing samples of

probability density functions is that these reside in a convex space where linear methods

fall short. However, due to the manifold-like structure, to each µ ∈ W2 corresponds a

tangent space Tµ that is a complete linear subspace of L2(R, dµ) (see Chapter 8 of Am-

brosio et al. (2008)), opening the door for development of linear models for distributional

data. According to (8.5.1) in Ambrosio et al. (2008), we define the tangent space for

µ ∈ W2 by

Tµ = {λ(T − id) : T is the optimal transport from µ to some ν ∈ W2, λ > 0}, (2.3)

where the closure is with respect to L2(R, dµ). With a slight abuse of notation, when

µ possesses a density f, we will denote this tangent space by Tf . The definition in (2.3)

of the tangent space can be motivated by the following fact. For µ, ν ∈ W2 and T

the optimal transport from µ to ν, define the curve (known as McCann’s interpolant)

λ ∈ [0, 1] 7→ [id + λ(T − id)]#µ, where g#µ(A) = µ(g−1(A)) for A ∈ B(R) denotes
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the pushforward measure induced by a measurable function g. For different measures ν,

these are geodesic curves connecting µ to ν in W2 Panaretos and Zemel (2020). Thus,

the extension to values λ > 0 defines a tangent cone. That Tµ is indeed a linear space

is not obvious from the definition, but this property can indeed be established; see, for

example, Chapter 2.3 of Panaretos and Zemel (2020).

We next describe two maps that bridge the tangent space and the space of densities.

Let f, g ∈ D have cdfs F and G, respectively. The map Logf : D → Tf defined by

Logf (g) = G−1 ◦ F − id (2.4)

is called the logarithmic map at f , and effectively lifts the space D to the tangent space

Tf . Intuitively, Logf (g) represents the discrepancy between the optimal transport map

G−1 ◦F and the identity. In fact, (2.2) shows that d2W (f, g) =
∫
R[Logf (g)(u)]2f(u)du, so

that the logarithmic map takes the place of the ordinary functional difference g− f that

is commonly used in linear spaces. The second is the exponential map Expf : Tf →W2.

Let V ∈ Tf , and define Expf by

Expf (V ) = (V + id)#µf , (2.5)

where µf is the measure with density f and

(V + id)#µf (A) = µf
(
(V + id)−1(A)

)
, A ∈ B(R),

where B(R) denotes the Borel sets. Observe that, for any f, g ∈ D, Expf (Logf (g)) = g,
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but Logf (Expf (V )) = V holds if and only if V + id is increasing.

Looking forward to building a Wasserstein autoregressive model, the logarithmic map

will be used to lift the random densities into a linear tangent space, where the autore-

gressive model is imposed. An important point to keep in mind is that the image of D

under Logf is a convex cone, and thus a nonlinear subset of Tµ ⊂ L2(R, f(u)du). We will

deal with this technicality in the development of Wasserstein autoregressive models in

Section 2.3. In particular, the forecasts produced by the model in the tangent space will

not be constrained to lie in the image of the logarithmic map. This poses no practical

problem since the forecasted densities are obtained through the exponential map, which

is defined on the entirety of the tangent space.

2.2.2 Wasserstein Mean, Variance, and Covariance

Consider a random density f , which is a measurable map that assumes values in D almost

surely. Assume E [d2W (f, g)] < ∞ for some, and thus all, g ∈ D. Petersen et al. (2020)

demonstrated sufficient conditions for the Wassersetin mean density of f , written as

E⊕ [f ] = f⊕ = argmin
g∈D

E
[
d2W (f, g)

]
, (2.6)

to exist, which represents the Fréchet mean in the metric space D equipped with the

Wasserstein distance. We will thus assume that f⊕ exists and is unique, and write F⊕

and Q⊕ for the cdf and quantile functions, respectively, that correspond to f⊕. Letting

T = F−1 ◦ F⊕ be the random optimal transport map from f⊕ to f, the Wasserstein
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variance of f is

Var⊕(f) = E
[
d2W (f, f⊕)

]
= E

[∫
R
(T (u)− u)2f⊕(u)du

]
. (2.7)

Since E [d2W (f, g)] <∞ for all g ∈ D by assumption, existence of the Wasserstein mean

f⊕ implies that the Wasserstein variance Var⊕(f) is finite.

Now, suppose f1 and f2 are two random densities, with Wasserstein means f⊕,1 and

f⊕,2, respectively. Since we will consider an autoregressive model, it is necessary to

develop a suitable notion of covariance within and between these random densities. The

usual approach in functional data analysis would quantify this by the crosscovariance

kernel of the centered processes ft−f⊕,t, t = 1, 2. However, as mentioned previously, this

differencing operation is not suitable for nonlinear spaces, and we thus replace it with

the logarithmic map in (2.4). Let Tt = F−1t ◦ F⊕,t be the optimal transport map from

the Wasserstein mean f⊕,t to the random density ft. To make clear the parallel between

the ordinary functional covariance and the Wasserstein version we will define, recall that

the logarithmic map replaces the usual notion of difference between two densities, so we

introduce the alternative suggestive notation

ft 	 f⊕,t = Logf⊕,t
(ft) = Tt − id (2.8)

for the logarithmic map. Then the Wasserstein covariance kernel is defined by

Ct,t′(u, v) = Cov [(ft 	 f⊕,t)(u), (ft′ 	 f⊕,t′)(v)] (2.9)

= Cov [Tt(u)− u, Tt′(v)− v] , t, t′ = 1, 2.
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Since
∫
R E (ft 	 f⊕,t(u))2 f⊕,t(u)du < ∞, E (ft 	 f⊕,t(u))2 < ∞ for almost all u in the

support of f⊕,t. This means that the Wasserstein covariance kernels Ct,t′(u, v) are defined

for almost all (u, v) ∈ supp(f⊕,t) × supp(f⊕,t′). To further solidify the intuition behind

this definition, observe that the Wasserstein variance in (2.7) can be rewritten as

Var⊕(ft) =

∫
R
Ct,t(u, u)f⊕,t(u)du,

echoing the notion of total variance typically used for functional data. This was the

motivation used in Petersen and Müller (2019) in order to define a scalar measure of

Wasserstein covariance between two random densities.

2.2.3 Stationarity of Density Time Series

Stationarity plays a fundamental role in time series analysis. It is a condition generally

imposed on the random part of the process that remains after removing trends, period-

icity, differencing or after other transformations. It is needed to develop estimation and

prediction techniques. Here we develop notions of stationarity and strict stationarity for

a time series of densities {ft, t ∈ Z}.

Definition 2.2.1. A density time series {ft, t ∈ Z} is said to be (second-order) stationary

if the following two conditions hold.

1. E⊕ [ft] = f⊕ for all t ∈ Z, so the ft share a common Wasserstein mean. Denote

supp(f⊕) by D⊕.
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2. Var⊕(ft) <∞.

3. For any t, h ∈ Z, and almost all u, v ∈ D⊕, Ct,t+h(u, v) does not depend on t.

As we take the approach that focuses on the geometry of the space of densities, the

above notion of stationarity is defined by the Wasserstein mean and covariance kernel,

which is not equivalent to those traditional stationarity definitions of functional time

series. In particular, a conventional stationarity notion for a stochastic process is under-

stood in the following sense, see e.g. Bosq (2000).

Definition 2.2.2. A sequence {Vt} of elements of a separable Hilbert space is said to be

stationary if the following conditions hold: (i) E [‖Vt‖2] <∞, (ii) E [Vt] does not depend

on t, and (iii) the autocovariance operators defined by Gt,t+h(x) = E [〈(Vt − µ), x〉(Vt+h − µ)]

do not depend on t (µ = EV0).

Observe that Definition 2.2.2 clearly does not apply to the density time series {ft, t ∈

Z} as densities do not form a vector space. The fact alone that differences ft−E [f⊕] are

not well-defined in a nonlinear space renders Definition 2.2.2 unsuitable for density time

series. However, upon taking Vt = Logf⊕(ft), Definition 2.2.1 implies Definition 2.2.2,

with the separable Hilbert space in the latter being the tangent space Tf⊕ . As has

been observed elsewhere (e.g., Panaretos and Zemel (2016); Petersen et al. (2016a)), the

Wasserstein mean f⊕ (when it exists) is characterized by being the unique solution to

E
[
Logf⊕(ft)(u)

]
= 0 for almost all u in the support of f⊕. Hence, condition (ii) is satisfied

since µ = E [V0] = 0, from which condition (i) follows as E [‖Vt‖2] = Var⊕(ft) < ∞.

Lastly, condition (iii) holds since, for any element x ∈ Tf⊕ ,
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Gt,t+h(x) = E
[(∫

D⊕

Vt(u)x(u)f⊕(u)du

)
Vt+h

]
=

∫
D⊕

Ct,t+h(·, u)x(u)f⊕(u)du,

which is independent of t. Equivalently, if Qt is the quantile function corresponding to

ft, Definition 2.2.1 implies that the optimal transport maps Tt = Qt ◦F⊕ = Xt + id form

a stationary sequence in Tf⊕ according to Definition 2.2.2 with µ = id.

Definition 2.2.3. A density time series {ft, t ∈ Z} is said to be strictly stationary if the

joint distributions on Dk of (ft1 , ft2 , . . . , ftk) and (ft1+h, ft2+h, . . . , ftk+h) are the same for

any k ∈ N and choices t1, t2, . . . , tk, h ∈ Z.

Note that, if the densities ft share a common Wasserstein mean f⊕ and the joint

distributions of (Tt1 , Tt2 , . . . , Ttk) and (Tt1+h, Tt2+h, . . . , Ttk+h) are the same for any k ∈

N and choices t1, t2, . . . , tk, h ∈ Z, then {ft, t ∈ Z} is strictly stationary according to

Definition 2.2.3. Since the existence and uniqueness of the Wasserstein mean implies that

the Wasserstein variance is finite, it also follows that {ft, t ∈ Z} is stationary according

to Definition 2.2.1, provided the Wasserstein mean exists and is unique.

2.3 Wasserstein Autoregression

The above notions of stationarity and strict stationarity in the tangent space facilitate

the development of autoregressive models in Tf⊕ by lifting the random densities via the

logarithmic map. As observed previously, the image of D under this map is a convex

cone in Tf⊕ , so it is not immediately possible to impose onto the tangent space standard
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structures used for functional time series, which rely on linearity of the function space (see

e.g. Chapter 8 of Kokoszka and Reimherr (2017b) and references therein). To illustrate

the challenges that must be overcome, we begin with a simple model involving a single

scalar autoregressive parameter, and then consider extensions. For a stationary density

time series {ft, t ∈ Z}, with Wasserstein mean cdf and quantile functions F⊕ and Q⊕,

respectively, define

γh(u, v) := Cov (ft 	 f⊕(u), ft+h 	 f⊕(v)) . (2.10)

2.3.1 Wasserstein AR Model of Order 1

From Definition 2.2.1, a useful path to pursue in developing an autoregressive model for

density time series is to first establish a suitable primary model for a sequence {Vt} on

a tangent space Tf⊕ , for some f⊕ ∈ D. Recall that Tf⊕ is a separable Hilbert space. The

second step is to impose conditions on {Vt} such that

a) the measures µt = Expf⊕(Vt) possess densities ft that form a stationary density

time series with Wasserstein mean f⊕, and

b) the parameters in the primary model can still be estimated given observations of

the ft.

To this end, fix f⊕ ∈ D, where we assume that the support D⊕ of f⊕ is an interval,

possibly unbounded. Let β ∈ R be the autoregressive parameter, and {εt} a sequence of
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independent and identically distributed stochastic processes (innovations) that reside in

Tf⊕ almost surely. We assume that the εt satisfy E [εt(u)] = 0 for all u ∈ D⊕ and define

the innovation covariance kernel

Cε(u, v) = Cov [εt(u), εt(v)] , u, v ∈ R. (2.11)

We say that a sequence {Vt} follows an autoregressive model of order 1 if the random

elements Vt ∈ Tf⊕ satisfy the equation

Vt = βVt−1 + εt, t ∈ Z. (2.12)

As will be detailed in Theorem 2.3.1, (2.12) has a unique, suitably convergent, solution

Vt =
∑∞

i=0 β
iεt−i under the following conditions:

(A1) |β| < 1,

(A2) innovations are iid elements of Tf⊕ , with mean zero and
∫
RCε(u, u)f⊕(u)du <∞.

To ensure that requirements a) and b) above are met, we impose the following con-

dition.

(A3) Almost surely, Vt is differentiable, and V ′t (u) > −1 for all u ∈ D⊕.

Denote the usual Hilbert norm on L2(R, f⊕(u)du) by ‖·‖. We now state our first result

associated with model (2.12), and its consequences for the density time series induced by

the exponential map. Its proof, along with those of all other theoretical results, can be

found in Section 2.3.3.
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Theorem 2.3.1. If (A1) and (A2) hold, then

Vt =
∞∑
i=0

βiεt−i (2.13)

defines a unique, strictly stationary solution in Tf⊕ to model (2.12). This solution con-

verges strongly,

lim
n→∞

∥∥∥∥∥Vt −
n∑
i=0

βiεt−i

∥∥∥∥∥ = 0 almost surely, (2.14)

and in mean square,

lim
n→∞

E

∥∥∥∥∥Vt −
n∑
i=0

βiεt−i

∥∥∥∥∥
2

= 0. (2.15)

If, in addition, (A3) holds, then the measures µt = Expf⊕ (Vt) possess densities that

form a strictly stationary sequence {ft, t ∈ Z} with common Wasserstein mean f⊕, and

Vt = Tt − id almost surely.

In light of Theorem 2.3.1, we define the Wasserstein autoregressive model of order 1,

or WAR(1) model, for a density time series {ft, t ∈ Z} by

Tt − id = β(Tt−1 − id) + εt. (2.16)

Under (A1)–(A3), we now know that a unique solution ft 	 f⊕ = Tt − id =
∑∞

i=0 β
iεt−i

exists such that {ft, t ∈ Z} is strictly stationary according to Definition 2.2.3. Since

they also share a common Wasserstein mean, the sequence is also stationary according
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to Definition 2.2.1.

In order for the results of Theorem 2.3.1 to not be vacuous, we will establish a set

of innovation examples that satisfy (A2) and (A3). Given the structure of the tangent

space in (2.3), consider innovations of the form εt(u) = λt(St(u)− u), where λt > 0 and

St is an increasing map defined on D⊕ (and is thus an optimal transport map from f⊕ to

some ν ∈ W2). Both λt and St can be random. We now list specific examples for which

(A2) and (A3) hold, where |β| < 1 throughout.

Example 2.3.1. Let ηt be iid random variables with mean zero and finite variance.

The WAR(1) model admits constant innovations εt(u) ≡ ηt, which can be identified as

elements in Tf⊕ by setting St(u) = ηtλ
−1
t + u for any λt > 0.

Example 2.3.2. Let ηt be as in Example 2.3.1, and δt be iid random variables with mean

zero such that |δt| < 1 − |β|. Linear innovations εt(u) = ηt + δtu are admissible under

the WAR(1) model. The tangent space representation of εt(u) can be recovered by setting

St(u) = (1 + δtλ
−1
t )u+ ηtλ

−1
t for any λt > |δt|.

Example 2.3.3. Let ηt and δt be as in Example 2.3.2, with the additional constraint that

the δt be symmetric about 0. The WAR(1) model admits periodic innovations εt(u) =

ηt + sin(δtu), which can be viewed as tangent space elements by writing St(u) = u +

ηtλ
−1
t + λ−1t sin(δtu) for any λt > |δt|.

In Examples 2.3.1 – 2.3.3, (A2) is clearly satisfied. Moreover, we have ε′t(u) = 0,

ε′t(u) = δt and ε′t(u) = δt cos(δtu), respectively in each example. Thus, supu∈D⊕ |ε
′
t(u)| ≤

1− |β|, so that differentiation and summation can be interchanged, yielding
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T ′t(u)− 1 =
∞∑
i=0

βiε′t−i(u) ≥ −
∞∑
i=0

|β|i sup
u∈R
|ε′t−i(u)| > (|β| − 1)

∞∑
i=0

|β|i = −1.

These examples establish one way to validate the WAR(1) model, namely by imposing a

deterministic bound on the supremum of the derivative ε′t that is related to β. In general,

(A3) may be considered a compatibility restriction between the innovation sequence and

the autoregressive parameter.

Next, we express the autoregressive coefficient β in terms of the autocovariance func-

tions γh defined in (2.10). Following the derivation of the Yule-Walker equations, it can

be shown that

β =

∫
R γ1(u, u)f⊕(u)du∫
R γ0(u, u)f⊕(u)du

. (2.17)

The denominator is recognizable as the usual Wasserstein variance of each ft, while the

numerator corresponds to the lag-1 scalar measure of Wasserstein covariance defined in

Petersen and Müller (2019). Thus, β can be interpreted as a lag-1 Wasserstein autocor-

relation measure. This characterization of β thus resembles the autocorrelation function

of an AR(1) scalar time series.

Estimation and Forecasting

For any integer h ≥ 0, define the lag-h Wasserstein autocorrelation function by

ρh =

∫
R γh(u, u)f⊕(u)du∫
R γ0(u, u)f⊕(u)du

=

∫
R ηh(u)f⊕(u)du∫
R η0(u)f⊕(u)du

, ηh(u) = γh(u, u). (2.18)

33



For each fixed u, ηh(u) is the autocovariance function of the scalar time series {Tt(u), t ∈

Z}. First, we estimate the Wasserstein mean by

f̂⊕(u) = F̂ ′⊕(u), F̂⊕ =

(
1

n

n∑
t=1

Qt

)−1
. (2.19)

Defining T̂t = Qt ◦ F̂⊕, the estimators for ρh and ηh, h ∈ {0, 1, . . . , n− 1}, are

ρ̂h =

∫
R η̂h(u)f̂⊕(u)du∫
R η̂0(u)f̂⊕(u)du

, η̂h(u) =
1

n

n−h∑
t=1

{
T̂t(u)− u

}{
T̂t+h(u)− u

}
. (2.20)

Then the natural estimator for β in (2.16) is

β̂ = ρ̂1. (2.21)

In order to establish asymptotic normality of the above estimators, we require

(A4) The innovations εt satisfy
∫
R E [ε4t (u)] f⊕(u)du <∞.

The following result is a special case of Theorem 2.3.4 in Section 2.3.2; the proof of the

more general result can be found in Section 2.3.3.

Theorem 2.3.2. Suppose (A1)–(A4) hold. Then

n1/2
(
β̂ − β

)
D→ N

(
0, σ2

ε (1− β2)
)
,

where

σ2
ε =

∫
R2 C

2
ε (u, v)f⊕(u)f⊕(v)dudv[∫
RCε(u, u)f⊕(u)du

]2 (2.22)

is finite due to (A4).

With a consistent estimator of β in hand, we proceed to define a one-step ahead
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forecast. Given observations f1, . . . , fn, we first obtain β̂ and compute the measure

forecast

µ̂n+1 = Expf̂⊕(V̂n+1), V̂n+1 = β̂(T̂n − id),

where T̂n = Qn ◦ F̂⊕. It remains to convert this measure-valued forecast into a density

function. Observe that one can always compute the cdf forecast

F̂n+1(u) =

∫
R

1
(
V̂n+1(v) + v ≤ u

)
f̂⊕(v)dv

=

∫ 1

0

1
(
β̂Qn(s) + (1− β̂)Q̂⊕(s) ≤ u

)
ds,

(2.23)

where the second line follows from the change of variable s = F̂⊕(u). The cdf forecast

can then be converted into a density numerically. The same procedure can be followed to

produce further forecasts f̂n+l, l ≥ 2, by using the previous forecast f̂n+l−1. In practice,

densities are rarely, if ever, fully observed. Instead, one observes samples generated

by the random mechanisms characterized by fi, from which densities can be estimated,

e.g., by kernel density estimation. Under certain conditions, see Petersen et al. (2016a)

and Panaretos and Zemel (2016), one can systematically account for the deviation from

the true densities caused by the estimation process. In our theoretical developments

below, we assume that the n densities f1, f2, . . . , fn are fully observed as our focus is

developing the Wasserstein autoregressive model. The numerical implementation of our

forecasting procedure, summarized below in Algorithm 1, assumes that the available ft

are bona fide densities, in that they are nonnegative and integrate to one. Additionally,

in order to simplify the presentation of the calculations, the algorithm uses the equivalent
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representation of β̂ obtained through the change of variable s = F̂⊕(u) as

β̂ =

∫ 1

0
λ̂1(s)ds∫ 1

0
λ̂0(s)ds

, λ̂h(s) = η̂h(Q̂⊕(s)) =
1

n

n−h∑
t=1

(Qt(s)− Q̂⊕(s))(Qt+h(s)− Q̂⊕(s)). (2.24)

Since λ̂h(s) is computed for s ∈ [0, 1], (2.24) emphasizes that the input densities ft need

not share the same support or be estimated over an identical grid, since all the critical

calculations are carried out in terms of quantile functions. Only the quantile functions

of the density time series need to be estimated over the same grid points, which extends

the flexibility of the model.

Algorithm 1: Forecasting f̂n+1

1 Input: densities ft, t = 1, 2, . . . , n; grid QSup spanning [0, 1]

/* Quantities in steps 2--6 are evaluated for s ∈ QSup */

2 Evaluate Q1(s), Q2(s), . . . , Qn(s);

3 Q̂⊕(s)← n−1
∑n

t=1Qt(s);

4 λ̂h(s)← n−1
∑n−h

t=1 (Qt(s)− Q̂⊕(s))(Qt+h(s)− Q̂⊕(s)), h = 0, 1;

5 β̂ ←
∫ 1

0
λ̂1(s)ds/

∫ 1

0
λ̂0(s)ds;

6 V̂n+1(Q̂⊕(s))←β̂(Qn(s)− Q̂⊕(s)) ;

7 Generate grid dSup spanning

(mins∈QSup V̂n+1(Q̂⊕(s)) + Q̂⊕(s),maxs∈QSup V̂n+1(Q̂⊕(s)) + Q̂⊕(s))

/* Quantities in steps 8--10 are evaluated for u ∈ dSup */

8 Compute {[al, bl]}L(u)
l=1 ←

{
s ∈ [0, 1] : V̂n+1(Q̂⊕(s)) + Q̂⊕(s) ≤ u

}
;

/* {[al, bl]}L(u)
l=1 are disjoint subintervals of [0, 1]. */

9 F̂ (u)n+1 ←
∑L(u)

l=1 (bl − al);

10 f̂(u)n+1 ← F̂ ′(u)n+1

The first step of the algorithm is to convert the available densities ft into quantile
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functions. A simple approach to obtain these quantiles from densities is to first evaluate

smooth cumulative distribution functions by integrating the estimated densities, followed

by some form of numerical inversion. One such approach is readily implemented by the

R function dens2quantile from package fdadensity, and this is the approach taken in our

numerical experiments to achieve step 2 of the algorithm. Steps 7–9 demonstrate how

to implement the exponential map defined in (2.5). From this definition, it is clear that

the support of the forecasted density is given by the formula in step 7. Steps 8 and 9

then discover and evaluate the probabilities Expf̂⊕(V̂n+1)((−∞, u]), for u in the support

of the forecasted measure. Finally, step 10 can be executed by numerical integration, for

example by computing differences.

2.3.2 Wasserstein AR Model of Order p

A natural way to extend the WAR(1) model is to develop a Wasserstein autoregressive

model of order p ≥ 1 defined by

Tt − id =

p∑
j=1

βj(Tt−j − id) + εt, (2.25)

where βj ∈ R, j = 1, 2, . . . , p, and the εt ∈ Tf⊕ are again iid with mean 0 and satisfy

(A2). Define the autoregressive polynomial

φ(z) = 1− β1z − β2z2 − · · · − βpzp, z ∈ C.

The WAR(p) model in (2.25) can then be written as

φ(B) (Tt − id) = εt, (2.26)
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where B is the backward shift operator, i.e., for a discrete stochastic process {Xt, t ∈ Z},

BiXt = Xt−i, i ∈ Z. For the WAR(p) to have a causal solution, we make the following

assumption as a generalization of (A1) in Section 2.3.1.

(A1’) The autoregressive polynomial φ(z) = 1 − β1z − β2z2 − · · · − βpzp has no root in

the unit disk {z : |z| ≤ 1}.

Under (A1’), 1
φ(z)

=
∑∞

i=0 ψiz
i, and the sequence {ψi}∞i=0 satisfies

∑∞
i=0 |ψi| < ∞. We

will show that the solution to equations (2.26) can be written as

Tt − id =
∞∑
i=0

ψiεt−i. (2.27)

Observe (2.27) is a strictly stationary and causal process. Similarly to the develop-

ment of the WAR(1) model, {Tt − id} in (2.25) should be understood at this point

as a general zero mean autoregressive process of order p in Tf⊕ . As shown below,

(A1’) and (A2) together imply the existence of a unique, suitably convergent, solution

Tt − id =
∑∞

i=0 ψiεt−i(u) that is stationary in Tf⊕ according to Definition 2.2.2. Once

again, (A3) applied to Vt = Tt − id ensures that the application of the exponential map

to Tt − id produces a stationary density time series with mean f⊕, as seen in the Theo-

rem 2.3.3 below. We also remark that Examples 2.3.1–2.3.3 can be modified directly to

guarantee the viability of the WAR(p) model; essentially 1 − |β| must be replaced with

(
∑∞

i=0 |ψi|)
−1

.

Theorem 2.3.3. The following claims hold under Assumptions (A1’) and (A2).
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(i) The series (2.27) is a strictly stationary solution in Tf⊕ to the WAR(p) equation

(2.25). This solution converges almost surely and in mean square, i.e.,

lim
n→∞

∥∥∥∥∥Tt − id−
n∑
i=0

ψiεt−i

∥∥∥∥∥ = 0 a.s., (2.28)

and

lim
n→∞

E

∥∥∥∥∥Tt − id−
n∑
i=0

ψiεt−i

∥∥∥∥∥
2

= 0. (2.29)

(ii) There is no other stationary solution (according to Definition 2.2.2) in Tf⊕.

(iii) If, in addition, Assumption (A3) holds for Vt = Tt− id, then Tt is strictly increasing,

almost surely, and the measures Expf⊕ (Tt − id) possess densities ft that form a strictly

stationary sequence according to Definition 2.2.1 with common Wasserstein mean f⊕.

Questions of the existence and uniqueness of solutions to ARMA equations are not

obvious beyond the setting of scalar innovations, even though care must be exercised

even in that standard case, as explained in Chapter 3 of Brockwell and Davis (1991).

In the multivariate case, conditions on the spectral decomposition of the autoregres-

sive matrices are needed, see Brockwell and Lindner (2010) and Brockwell et al. (2013)

whose results were extended to Banach spaces by Spangenberg (2013). Simpler sufficient

conditions in Hilbert spaces are given in Bosq (2000) (AR(p) case) and Klepsch et al.

(2017) (ARMA(p, q) case). In our setting, the coefficients are scalars, but the innovations

must conform to a nonlinear functional structure, so our conditions involve an interplay

between the structure of the functional noise and the coefficients. The fully functional
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WAR(1) considered in Chen et al. (2020) is also constructed in the tangent space, so it is

also subject to similar constraints as our WAR(p) model, namely that the solution must

be restricted to image of the logarithmic map with probability one. We have addressed it

through our assumption (A3) and suitable examples or error sequences. Assumption (B2)

in Chen et al. (2020) is general, and it is, at this point, unclear whether concrete examples

of innovations can be established that satisfy it for fully functional WAR models.

Estimation and Forecasting

Recall f̂⊕, ηh and η̂h as defined in (2.19), (2.18) and (2.20), respectively. Set {Hp(u)}jk =

η|j−k|(u), j, k = 1, . . . , p, β = (β1, . . . , βp)
>, and ηp(u) = (η1(u), . . . , ηp(u))>. Following

the derivation of the Yule-Walker equations, we obtain Hp(u)β = ηp(u) as a characteri-

zation of the autoregressive parameters of the WAR(p) model, whence

β =

(∫
R

Hp(u)f⊕(u)du

)−1 ∫
R
ηp(u)f⊕(u)du, (2.30)

where the integrals are taken element-wise. Plugging in our estimators η̂h(u) to obtain

Ĥp(u) leads to

β̂ =

(∫
R

Ĥp(u)f̂⊕(u)du

)−1 ∫
R
η̂p(u)f̂⊕(u)du. (2.31)

Set {Ψp}ij =
∑

k ψkψk+|i−j|, i, j = 1, . . . , p. The following theorem establishes the

asymptotic normality of the estimator (2.31).

Theorem 2.3.4. Suppose (A1’), (A2), (A3), and (A4) hold. Then

n1/2(β̂ − β)
D→ N (0,Σ) , (2.32)
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where Σij = σ2
ε

{
Ψ−1p

}
ij
, i, j = 1, . . . , p, and σ2

ε is the same as (2.22) in Theorem 2.3.2.

Indeed the above asymptotic covariance matrix is a generalization of the asymptotic

variance in Theorem 2.3.2. The forecasting procedure is exactly the same as described

in (2.23) with steps (4)–(5) of Algorithm 1 replaced by the above steps for estimating β

and step (6) becoming

V̂n+1 =

p∑
i=1

β̂i(Tn−i+1 − id). (2.33)

In addition to the autoregressive parameters, the autocorrelation functions are an

important object in the study of time series. In our case, recall the lag-h Wasserstein

autocorrelation functions are defined in (2.18). Denote %h = (ρ1, ρ2, . . . , ρh)
ᵀ and %̂h =

(ρ̂1, ρ̂2, . . . , ρ̂h)
ᵀ, where ρ̂i =

∫
R η̂i(u)f̂⊕(u)du

/ ∫
R η̂0(u)f̂⊕(u)du, i = 1, . . . , h.

Theorem 2.3.5. Suppose (A1’), (A2), (A3), and (A4) hold. Then

n1/2(%̂h − %h)
D→ N(0,DVDᵀ),

where

D =
1∫

R η0(u)f⊕(u)du


−ρ1 1 0 0 . . . 0
−ρ2 0 1 0 . . . 0

...
...

...
−ρh 0 0 0 . . . 1

 ,
and the entries vjk, j, k = 1, . . . , n − 1, of V are defined in (2.42) and (2.43) in

Lemma 2.3.7 in Section 2.3.3.
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2.3.3 Proofs of Theorems and Lemmas

Proofs of Theorem 2.3.1 and Theorem 2.3.3

Theorem 2.3.1 is a special case of Theorem 2.3.3 when p = 1. Therefore, it suffices to

prove Theorem 2.3.3. We begin with a Lemma needed in the proof. It extends Proposition

3.1.2 in Brockwell and Davis (1991) and the discussion that follows that Proposition to

Hilbert space valued time series.

Lemma 2.3.6. Suppose {Xt} is a stationary, according to Definition 2.2.2, sequence in

a separable Hilbert space.

(i) If
∑∞

j=1 |ψj| <∞, then the sequence ψ(B)Xt :=
∑∞

j=0 ψjXt−j is well defined and and

is stationary. (The convergence is in the space of square integrable random elements.)

(ii) Consider three filters α(B), β(B), γ(B) which satisfy
∑∞

j=1 |αj| <∞,
∑∞

j=1 |βj| <∞

and define the filter γ(B) by setting γk =
∑k

l=0 αlβk−l, k ≥ 0. Then,
∑∞

k=1 |γk| <∞ and

α(B)(β(B)Xt) = γ(B)Xt.

Proof. We may assume that the mean µ = EX0 is zero because it adds constant terms

like µ
∑∞

j=0 ψj or µ
∑∞

j=1 αj to all arguments.

The proof of claim (i) starts with the verification that
∑n

j=0 ψjXt−j is a Cauchy

sequence. This holds because

E

∥∥∥∥∥
n∑

j=m

ψjXt−j

∥∥∥∥∥
2

= E

∣∣∣∣∣
n∑

i,j=m

ψiψj〈Xt−j, Xt−j〉

∣∣∣∣∣ ≤
(

n∑
j=m

|ψj|

)2

E‖X0‖2.

Thus, the limit
∑∞

j=0 ψjXt−j exists, and by the continuity of the norm X 7→ (E‖X‖2)1/2,

E‖
∑∞

j=0 ψjXt−j‖2 ≤ (
∑∞

j=0 |ψj|)2E‖X0‖2. With the convergence established, it is im-
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mediate that

E

[〈
∞∑
j=0

ψjXt−j, x

〉
∞∑
i=0

ψiXt+h−i

]
=

∞∑
i,j=0

ψiψjC0,j+h−i(x)

does not depend on t.

To prove claim (ii), observe first that
∑∞

k=1 |γk| ≤ (
∑∞

j=1 |αj|)(
∑∞

j=1 |βj|) <∞. Thus,

by part (i),

γ(B)Xt = lim
K→∞

K∑
k=0

γkXt−k = lim
K→∞

K∑
k=0

(
k∑
l=0

αlβk−l

)
Xt−k.

It is useful to visualize the double sum
∑K

k=0

∑k
l=0 · · · as a sum over the indexes in

the (i, j) grid. The summation then extends over a triangle bounded by the diagonal

j = K − i. We can write

K∑
k=0

(
k∑
l=0

αlβk−l

)
Xt−k =

K∑
i=0

αi

K−i∑
j=0

βjXt−i−j.

As K →∞ and J →∞, the sum
∑K

i=0 αi
∑

0≤j≤J βjXt−i−j converges α(B)(β(B)Xt). It

is easy to check that the difference
∑K

i=0 αi
∑

i<j≤J βjXt−i−j tends to zero (of the Hilbert

space) because the indices i and j are contained in the complement of the rectangle

defined by 0 ≤ i < K/2 and 0 ≤ j < K/2. Such details are not provided in Brockwell

and Davis (1991), but an argument like this would be needed even in the scalar case. �

Proof of Theorem 2.3.3. Recall that we work under the setting of the separable Hilbert

space Tf⊕ ⊂ L2(R, f⊕(u)du) with the inner product 〈h, g〉 =
∫
R h(u)g(u)f⊕(u)du and

norm ‖g‖ = 〈g, g〉1/2. To prove claim (i), we first show that the series
∑∞

i=1 ψiεt−i

converges absolutely almost surely. Mean square convergence follows from part (i) of

Lemma 2.3.6. Assumption (A2) implies that there exists some finite L ∈ R such that
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E
∫
R
ε2t (u)f⊕(u)du = L <∞ ∀t ∈ Z.

To show the solution converges almost surely, let Sn =
∑n

i=0 |ψi| ‖εt−i‖, S =
∑∞

i=0 |ψi| ‖εt−i‖,

then 0 ≤ Sn ≤ Sn+1 and limn→∞ Sn = S. Observe that by Monotone Convergence

E [S] = lim
n→∞

E [Sn] = lim
n→∞

n∑
i=0

|ψi|E‖εt−i‖ ≤ lim
n→∞

n∑
i=0

|ψi|
{
E‖εt−i‖2

}1/2
= L1/2

∞∑
i=0

|ψi| <∞.

Thus, S =
∑∞

i=0 |ψi| ‖εt−i‖ is finite almost surely. Since Sn is monotone and bounded

almost surely, Sn converges almost surely. Therefore∥∥∥∥∥
n∑

i=m

ψiεt−i

∥∥∥∥∥ ≤
n∑

i=m

|ψi| ‖εt−i‖ → 0 as m,n→∞,

so that the sequence of partial sums
∑n

i=0 ψiεt−i is Cauchy and converges almost surely.

Set Vt =
∑∞

i=0 ψiεt−i. Due to the mean square convergence and the completeness of

Tf⊕ , each Vt is an element of Tf⊕ because, by assumption, εt ∈ Tf⊕ . We must show that

Vt =

p∑
j=1

βjVt−j + εt.

With the absolute a.s. convergence of the series defining Vt established, the verification

of the above claim proceeds as in the scalar case; all countable manipulations are done

for a fixed outcome in an event of probability 1. Changing the order of summation, we

obtain

p∑
j=1

βjVt−j =
∞∑
k=1

akεt−k,

with the coefficients ak defined by
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∞∑
k=1

akz
k =

(
p∑
j=1

βjz
j

)(
∞∑
i=0

ψiz
i

)
, |z| ≤ 1.

Since
(

1−
∑p

j=1 βjz
j
)

(
∑∞

i=0 ψiz
i) = 1, ψ0 = 1 and ψk = ak, k ≥ 1. Consequently,

p∑
j=1

βjVt−j =
∞∑
k=1

ψkεt−k = Vt − εt.

We now turn to the verification of claim (ii). Suppose {V ?
t } is a stationary sequence

in the Hilbert space Tf⊕ satisfying

V ?
t −

p∑
j=0

βjV
?
t−j = φ(B)V ?

t = εt.

Using Lemma 2.3.6 and φ(z)ψ(z) = 1, we obtain

V ?
t = ψ(B)(φ(B)V ?

t ) = ψ(B)εt = Vt,

proving the uniqueness.

Lastly, we verify claim (iii). By (A3), it is immediate that (Vt(u) + u)′ > 0 implying

Vt + id is strictly increasing almost surely. Thus, by the structure of Tf⊕ , Vt + id is

effectively an optimal transport map from µf⊕ to some µft ∈ W2. Denote Tt(u) =

Vt(u) + u. For ∀a ∈ R, consider

Ft(a) = Expf⊕(Vt) ((−∞, a])

= µf⊕
(
(Vt + id)−1(−∞, a]

)
= F⊕

(
T−1t (a)

)
,

thus ft = F ′t = f⊕
(
T−1t

) (
T−1t

)′
. Consequently, Vt = Logf⊕(ft) almost surely. Station-

arity follows since E [Tt(u)] = u implies that f⊕ is the Wasserstein mean of ft. �
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Proofs of Theorem 2.3.2 and Theorem 2.3.4

Theorem 2.3.2 is a special case of Theorem 2.3.4 when p = 1, hence it suffices to prove

Theorem 2.3.4.

Proof of Theorem 2.3.4. The proof relies on a number of technical lemmas whose formu-

lation requires the notation introduced in its course. For this reason, these lemmas are

stated and proven after the main body of the proof.

Many manipulations become easier if one works with the two-sided moving average

Tt − id =
∞∑

i=−∞

ψiεt−i (2.34)

because one does not have to keep track of indexes corresponding to non-zero coefficients;

one must set ψi = 0 for i < 0. Causality is however needed for our proof to go through,

see the proof of Lemma 2.3.10.

Recall that Qt is the quantile function corresponding to ft and that we assume that

E⊕ [ft] = f⊕ exists and is unique with Q⊕ and F⊕ being its quantile function and cdf,

respectively. We denote Xt(s) = Qt(s) − Q⊕(s) and εt(s) = εt (Q⊕(s)) throughout the

proof. Note that, by the change of variable s = F⊕(u), the WAR(p) model in (2.25) can

be written as

Qt(s)−Q⊕(s) =

p∑
j=1

βj(Qt−j(s)−Q⊕(s)) + εt (Q⊕(s)) , (2.35)

Thus, in order to study the properties of β̂, we consider the following formulation of
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the WAR(p) model.
X0(s) X−1(s) . . . X1−p(s)
X1(s) X0(s) . . . X2−p(s)

...
Xn−1(s) Xn−2(s) . . . Xn−p(s)


︸ ︷︷ ︸

X(s)


β1
β2
...
βp


︸ ︷︷ ︸
β

+


ε1(s)
ε2(s)

...
εn(s)


︸ ︷︷ ︸

ε(s)

=


X1(s)
X2(s)

...
Xn(s)


︸ ︷︷ ︸

Y(s)

. (2.36)

Some elements of X(s) are not observable, but are used in our asymptotic analysis. We

define the least squares estimator

β∗ =

{∫ 1

0

Xᵀ(s)X(s)ds

}−1{∫ 1

0

Xᵀ(s)Y(s)ds

}
=

{∫ 1

0

Xᵀ(s)X(s)ds

}−1{∫ 1

0

Xᵀ(s) [X(s)β + ε(s)] ds

}
=

{∫ 1

0

Xᵀ(s)X(s)ds

}−1{∫ 1

0

Xᵀ(s)X(s)dsβ +

∫ 1

0

Xᵀ(s)ε(s)ds

}
= β +

{∫ 1

0

Xᵀ(s)X(s)ds

}−1{∫ 1

0

Xᵀ(s)ε(s)ds

}
. (2.37)

Under Assumptions (A1’), (A2), (A3) and (A4), by Lemma 2.3.10,

n1/2 (β∗ − β)
D→ N (0,Σ) ,

where Σ is as defined in the statement of Theorem 2.3.4. By Lemma 2.3.11,

n1/2(β̂ − β∗) = op(1),

so that

n1/2(β̂ − β)
D→ N (0,Σ) .

�
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Proofs of Lemmas

To simplify notation in the proofs, for population quantities in the tangent space, we

define alternative versions by applying the change of variable s = F⊕(u). For instance,

we use Xt(s) = Qt(s) − Q⊕(s) instead of Tt(u) − u, and define εt(s) = εt (Q⊕(s)) . The

quantities X(s) and Y(s) are defined in (2.36). Additionally, the key parameters γh in

(2.10) and ηh in (2.18) are replaced by

γ̃h(s, s
′) : = Cov (Qt(s), Qt+h(s

′)) = Cov [Tt ◦Q⊕(s), Tt+h ◦Q⊕(s′)]

= γh (Q⊕(s), Q⊕(s′))
(2.38)

and

λh(s) = ηh(Q⊕(s)) = γ̃h(s, s) = Cov [Qt(s), Qt+h(s)] , (2.39)

respectively. Similarly, we define the sample version

λ̂s = η̂h ◦ Q̂⊕(s) =
1

n

n−h∑
t=1

[Qt(s)− Q̂⊕(s)][Qt+h(s)− Q̂⊕(s)]. (2.40)

Finally, we also define

λp(s) = (λ1(s), . . . , λp(s)), Γp(s) = Hp(Q⊕(s)). (2.41)

with plug-in estimates λ̂p(s) and Γ̂p(s).

Lemma 2.3.7. Assume (A1’), (A2), (A3), and (A4) hold. Consider the following ap-

proximation to the sample autocovariance function:

λ∗h(s) =
1

n

n∑
t=1

[Qt(s)−Q⊕(s)] [Qt+h(s)−Q⊕(s)] , h ∈ Z.
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For i, j = 1, . . . , n− 1, the following limit exists:

vij := lim
n→∞

nCov

[∫ 1

0

λ∗i (s)ds,

∫ 1

0

λ∗j(s)ds

]
=

∞∑
r=−∞

(S1(r)K2 + S2(r)K1 + S3(r)K1) ,

(2.42)

where

S1(r) =
∞∑

k=−∞

ψkψk+iψk+rψk+r+j, S2(r) =
∞∑

k=−∞

ψkψk+r

∞∑
l=−∞

ψlψl+r+j−i,

S3(r) =
∞∑

k=−∞

ψkψk+r+j

∞∑
l=−∞

ψlψl+r−i, K1 =

∫
R2

C2
ε (u, v)f⊕(u)f⊕(v)dudv,

and K2 =

∫
R2

{
E
[
ε2t (u)ε2t (v)

]
− 2C2

ε (u, v)− Cε(u, u)Cε(v, v)
}
f⊕(u)f⊕(v)dudv,

(2.43)

all of which are well-defined.

Proof. First observe

Cov

[∫ 1

0

λ∗i (s)ds,

∫ 1

0

λ∗j(s)ds

]
= Cov

[∫ 1

0

1

n

n∑
t=1

Xt(s)Xt+i(s)ds,

∫ 1

0

1

n

n∑
t′=1

Xt′(s
′)Xt′+j(s

′)ds′

]

=
1

n2

n∑
t=1

n∑
t′=1

∫ 1

0

∫ 1

0

Cov [Xt(s)Xt+i(s), Xt′(s
′)Xt′+j(s

′)] dsds′.

(2.44)

Denote
∑

i =
∑∞

i=−∞ and recall that εt(s) = εt (Q⊕(s)). For any r ∈ Z, define the

covariance kernel

Gijr(s, s
′)

= Cov [Xt(s)Xt+i(s), Xt+r(s
′)Xt+r+j(s

′)]

=E [Xt(s)Xt+i(s)Xt+r(s
′)Xt+r+j(s

′)]− E [Xt(s)Xt+i(s)]E [Xt+r(s
′)Xt+r+j(s

′)] .

(2.45)

Set t′ = t+ r, then (2.44) can be written as
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Cov

[∫ 1

0

λ∗i (s)ds,

∫ 1

0

λ∗j(s)ds

]
=

1

n2

n−1∑
|r|=0

∑
t′−t=r

∫ 1

0

∫ 1

0

Gijr(s, s
′)dsds′.

Notice that

E [Xt(s)Xt+i(s)Xt+r(s
′)Xt+r+j(s

′)]

=E

[∑
k

ψkεt−k(s)
∑
k′

ψk′εt+i−k′(s)
∑
l

ψlεt+r−l(s
′)
∑
l′

ψl′εt+r+j−l′(s
′)

]
=
∑
k,k′,l,l′

ψkψk′+iψl+rψl′+r+jE [εt−k(s)εt−k′(s)εt−l(s
′)εt−l′(s

′)] .

(2.46)

To further analyze (2.46), note that

E [εt1(s)εt2(s)εt3(s
′)εt4(s

′)]

=



E [εt1(s)εt2(s)]E [εt3(s
′)εt4(s

′)] , t1 = t2, t3 = t4 and t1 6= t3,

E [εt1(s)εt3(s
′)]E [εt2(s)εt4(s

′)] , t1 = t3, t2 = t4 and t1 6= t2,

E [εt1(s)εt4(s
′)]E [εt2(s)εt3(s

′)] , t1 = t4, t2 = t3 and t1 6= t2,

E [εt1(s)εt2(s)εt3(s
′)εt4(s

′)] , t1 = t2 = t3 = t4,

0, otherwise.

Hence (2.46) can be decomposed into the following cases:
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k = k′, l = l′ and k 6= l,

k = l, k′ = l′ and k 6= k′,

k = l′, k′ = l and k 6= k′,

k = k′ = l = l′,

o.w.

Denote Cε (s, s′) = Cε (Q⊕(u), Q⊕(v)). Also notice that

γ̃h(s, s
′) = E [Xt(s)Xt+h(s

′)]

= E

[∑
k

ψkεt−k(s)
∑
l

ψlεt+h−l(s
′)

]
=
∑
k

ψkψk+hE [εt−k(s)εt−k(s
′)]

=
∑
k

ψkψk+hCε(s, s
′).

Thus, when k = k′, l = l′ and k 6= l,

∑
k,k′,l,l′

ψkψk′+iψl+rψl′+r+jE [εt−k(s)εt−k′(s)εt−l(s
′)εt−l′(s

′)]

=
∑∑

k 6=l

ψkψk+iψl+rψl+r+jCε(s, s)Cε(s
′, s′)

=

{∑
k

∑
l

ψkψk+iψl+rψl+r+j −
∑
k

ψkψk+iψk+rψk+r+j

}
Cε(s, s)Cε(s

′, s′)

=λi(s)λj(s
′)−

∑
k

ψkψk+iψk+rψk+r+jCε(s, s)Cε(s
′, s′).

(2.47)

Similarly, for k = l, k′ = l′ and k 6= k′,∑
k,k′,l,l′

ψkψk′+iψl+rψl′+r+jE [εt−k(s)εt−k′(s)εt−l(s
′)εt−l′(s

′)]

=γ̃r(s, s
′)γ̃r+j−i(s, s

′)−
∑
k

ψkψk+iψk+rψk+r+jC
2
ε (s, s′);

(2.48)
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for k = l′, k′ = l and k 6= k′,∑
k,k′,l,l′

ψkψk′+iψl+rψl′+r+jE [εt−k(s)εt−k′(s)εt−l(s
′)εt−l′(s

′)]

=γ̃r+j(s, s
′)γ̃r−i(s, s

′)−
∑
k

ψkψk+iψk+rψk+r+jC
2
ε (s, s′);

(2.49)

and for k = k′ = l = l′,∑
k,k′,l,l′

ψkψk′+iψl+rψl′+r+jE [εt−k(s)εt−k′(s)εt−l(s
′)εt−l′(s

′)]

=
∑
k

ψkψk+iψk+rψk+r+jE
[
ε2t (s)ε

2
t (s
′)
]
.

(2.50)

Denote E [ε2t (s)ε
2
t (s
′)] − 2C2

ε (s, s′) − Cε(s, s)Cε(s′, s′) = K(s, s′). By (2.47) - (2.50),

we can rewrite the covariance kernel defined in (2.45) as

Gijr(s, s
′)

=γ̃r(s, s
′)γ̃r+j−i(s, s

′) + γ̃r+j(s, s
′)γ̃r−i(s, s

′) +K(s, s′)
∑
k

ψkψk+iψk+rψk+r+j.
(2.51)

By (A4), we have

∫ 1

0

∫ 1

0

E
[
ε2t (s)ε

2
t (s
′)
]

dsds′ ≤
∫ 1

0

∫ 1

0

E
[
ε4t (s)

]1/2 E [ε4t (s′)]1/2 dsds′ <∞,

and ∫ 1

0

∫ 1

0

C2
ε (s, s′)dsds′ ≤

∫ 1

0

∫ 1

0

E
[
ε2t (s)

]
E
[
ε2t (s

′)
]

dsds′ <∞.

Since {ψk} is absolutely summable, we have∑
k

|ψkψk+iψk+rψk+r+j| ≤
∑
k

|ψk|
∑
k′

|ψk′ |
∑
l

|ψl|
∑
l′

|ψl′ | <∞.
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Hence
∫ 1

0

∫ 1

0
{K(s, s′)

∑
k ψkψk+iψk+rψk+i+j} dsds′ <∞.Note that γ̃r(s, s

′)γ̃r+j−i(s, s
′)

and γ̃r+j(s, s
′)γ̃r−i(s, s

′) can be bounded in a similar way. Therefore, denoted by τr, the

double integral of Gijr(s, s
′) over the unit square is finite, i.e.

τr =

∫ 1

0

∫ 1

0

Gijr(s, s
′)dsds′ <∞.

Next, we will show τr is absolutely summable in r. Notice that the components of

the covariance kernel are absolutely summable in r,∑
r

|γ̃r(s, s′)γ̃r+j−i(s, s′)|

=
∑
r

∣∣∣∣∣∑
k

ψkψk+rCε(s, s
′)

∣∣∣∣∣
∣∣∣∣∣∑

l

ψlψl+r+j−iCε(s, s
′)

∣∣∣∣∣
≤
∑
r

∑
k

∑
l

|ψkψk+rψlψl+r+j−i|C2
ε (s, s′)

≤
∑
k

|ψk|
∑
k′

|ψk′|
∑
l

|ψl|
∑
l′

|ψl′|C2
ε (s, s′) <∞.

(2.52)

Similarly, we have

∑
r

∣∣∣∣∣K(s, s)
∑
k

ψkψk+iψk+rψk+r+j

∣∣∣∣∣ <∞, and∑
r

|γ̃r+j(s, s′)γ̃r−i(s, s′)| <∞.
(2.53)

By (2.52) and (2.53), we have
∑

r |τr| < ∞. Hence by the dominated convergence

theorem
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lim
n→∞

nCov

[∫ 1

0

λ∗i (s)ds,

∫ 1

0

λ∗j(s)ds

]
= lim

n→∞

1

n

n−1∑
|r|=0

∑
t′−t=r

∫ 1

0

∫ 1

0

Gijr(s, s
′)dsds′

= lim
n→∞

{
τ−(n−1) + 2τ−(n−2) + · · ·+ (n− 1)τ−1 + nτ0 + (n− 1)τ1 + · · ·+ τ(n−1)

}
n

= lim
n→∞

∑
|r|<n

(
1− n−1 |r|

)
τr

=
∞∑

r=−∞

τr <∞.

It follows that

lim
n→∞

nCov

[∫ 1

0

λ∗i (s)ds,

∫ 1

0

λ∗j(s)ds

]
=

∞∑
r=−∞

(S1(r)K2 + S2(r)K1 + S3(r)K1) . (2.54)

�

Lemma 2.3.8. Assume (A1’), (A2), (A3), and (A4) hold. Then

1

n

∫ 1

0

Xᵀ(s)X(s)ds
P→
∫ 1

0

Γp(s)ds, (2.55)

where the convergence holds element-wise.

Proof. Note the ijth element of 1
n

∫ 1

0
Xᵀ(s)X(s)ds is

1

n

∫ 1

0

n∑
t=1

Xt−i(s)Xt−j(s)ds =
1

n

∫ 1

0

n−i∑
t=1−i

Xt(s)Xt+i−j(s)ds =

∫ 1

0

λ∗|i−j|(s)ds.

By stationarity, E
∫ 1

0
λ∗|i−j|(s)ds =

∫ 1

0
λ|i−j|(s)ds. Hence it suffices to show for i, j =
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1, . . . , p,

lim
n→∞

Var

[∫ 1

0

λ∗|i−j|(s)ds

]
= 0. (2.56)

By Lemma 2.3.7, the variance of
∫ 1

0
λ∗|i−j|(s)ds converges at rate O(n−1), i.e.

lim
n→∞

nVar

[∫ 1

0

λ∗|i−j|(s)ds

]
<∞. (2.57)

Therefore, (2.56) holds and the result follows.

�

Lemma 2.3.9. Assume (A1’), (A2), (A3), and (A4) hold. Then

1

n

∫ 1

0

Xᵀ(s)Y(s)ds
P→
∫ 1

0

λp(s)ds, (2.58)

where the convergence holds element-wise.

Proof. The proof is a small modification of the proof of Lemma 2.3.8, so it is omitted. �

Lemma 2.3.10. Assume (A1’), (A2), (A3), and (A4) hold. Then

n1/2 (β∗ − β)
D→ N (0,Σ) ,

where the matrix Σ is the same as in Theorem 2.3.4.

Proof. By (2.37),

n1/2(β∗ − β) = n

{∫ 1

0

Xᵀ(s)X(s)ds

}−1{
n−1/2

∫ 1

0

Xᵀ(s)ε(s)ds

}
. (2.59)
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To further analyze the second factor in (2.59), we set Ut(s) = [Xt−1(s), . . . , Xt−p(s)]
ᵀεt(s),

t ≥ 1. Then

n−1/2
∫ 1

0

Xᵀ(s)ε(s)ds = n−1/2
∫ 1

0

n∑
t=1

Ut(s)ds.

The sequence Xt(s) is causal under (A1’), hence it is easy to check E
∫ 1

0
Ut(s)ds = 0

and for i, j = 1, 2, . . . , p,

E
[∫ 1

0

Ut(s)ds

∫ 1

0

Uᵀt (s
′)ds′

]
ij

=

∫ 1

0

∫ 1

0

E [Xt−i(s)εt(s)Xt−j(s
′)εt(s

′)] dsds′

=

∫ 1

0

∫ 1

0

E [Xt−i(s)Xt−j(s
′)]E [εt(s)εt(s

′)] dsds′ (by causality)

=

∫ 1

0

∫ 1

0

∑
k

ψkψk+|i−j|C
2
ε (s, s′)dsds′ <∞.

(2.60)

Moreover, E
[∫ 1

0
Ut(s)ds

∫ 1

0
Uᵀt+h(s

′)ds′
]
ij

= 0 for h 6= 0.

Recall the notation in (2.34), i.e., Xt(s) =
∑∞

k=−∞ ψkεt−k(s). For some m ∈ Z+, we

define the process Xm
t (s) =

∑m
k=−m ψkεt−k(s) and Um

t (s) = [Xm
t−1(s), . . . , X

m
t−p(s)]

ᵀεt(s).

By (2.60), for i, j = 1, 2, . . . , p, the following expected values exist:

E
[∫ 1

0

Um
t (s)ds

∫ 1

0

Umᵀ
t (s
′)ds′

]
ij

.

For any a ∈ Rp such that aᵀE
[∫ 1

0
Um
t (s)ds

∫ 1

0
Umᵀ

t (s
′)ds′

]
a > 0,

∫ 1

0
aᵀUm

t (s)ds is

an (m + p)-dependent process, hence by the Central Limit Theorem for m-dependent
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processes,

n−1/2
n∑
t=1

∫ 1

0

aᵀUm
t (s)ds

D→ Zm, (2.61)

where Zm ∼ N
(

0, aᵀE
[∫ 1

0
Um
t (s)ds

∫ 1

0
Umᵀ

t (s
′)ds′

]
a
)
.

Clearly E
[∫ 1

0
Um
t (s)ds

∫ 1

0
Umᵀ

t (s
′)ds′

]
ij
→ E

[∫ 1

0
Ut(s)ds

∫ 1

0
Uᵀt (s

′)ds′
]
ij

as m → ∞,

hence

Zm
D→ Z, (2.62)

where Z ∼ N
(

0, aᵀE
[∫ 1

0
Ut(s)ds

∫ 1

0
Uᵀt (s

′)ds′
]

a
)
.

Moreover, for ∀n,

n−1 Var

[
aᵀ

n∑
t=1

∫ 1

0

(Um
t (s)−Ut(s)) ds

]

=aᵀ
∫ 1

0

∫ 1

0

E [(Um
t (s)−Ut(s)) (Um

t (s′)−Ut(s
′)ᵀ)] dsds′a→ 0 as m→∞.

(2.63)

According to (2.61) through (2.63), by a well-known result used to establish weak

convergence via truncation (see Proposition 6.3.9 in Brockwell and Davis (1991)), and

the Cramér-Wold device, we have

n−1/2
∫ 1

0

Xᵀ(s)ε(s)ds
D→ N

(
0,E

[∫ 1

0

Ut(s)ds

∫ 1

0

Uᵀt (s
′)ds′

])
. (2.64)

Denote Σ = Γ−1p E
[∫ 1

0
Ut(s)ds

∫ 1

0
Uᵀt (s

′)ds′
]

Γ−1p . By Lemma 2.3.8 and (2.64),

n1/2 (β∗ − β)
D→ N (0,Σ) .
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Also by (2.60), we can verify the ijth element of Σ defined in Theorem 2.3.4 is

Σij =

∫
R2 C

2
ε (u, v)f⊕(u)f⊕(v)dudv[∫
RCε(u)f⊕(u)du

]2 {Ψ−1p }ij = σ2
ε{Ψ−1p }ij, i, j = 1, 2, . . . , p.

�

Lemma 2.3.11. Assume (A1’), (A2), (A3) and (A4) hold. Then

n1/2
(
β̂ − β∗

)
= oP (1).

Therefore, n1/2β̂ and n1/2β∗ share the same weak limit provided the weak limit exists.

Proof. Note that

n1/2(β̂ − β∗)

=n1/2

[(∫ 1

0

Γ̂p(s)ds

)−1 ∫ 1

0

λ̂p(s)ds−
(∫ 1

0

Xᵀ(s)X(s)ds

)−1 ∫ 1

0

Xᵀ(s)Y(s)ds

]

=n1/2

(∫ 1

0

Γ̂p(s)ds

)−1(∫ 1

0

λ̂p(s)ds− n−1
∫ 1

0

Xᵀ(s)Y(s)ds

)
(?)

+ n1/2

[(∫ 1

0

Γ̂p(s)ds

)−1
− n

(∫ 1

0

Xᵀ(s)X(s)ds

)−1]
n−1

∫ 1

0

Xᵀ(s)Y(s)ds. (??)

To analyze (?), first observe

58



n1/2

∫ 1

0

EX̄2(s)ds

=n1/2

∫ 1

0

E

{
1

n

n∑
j=1

Xj(s)

}2

ds

=n1/2

∫ 1

0

n−2 {nλ0(s) + 2(n− 1)λ1(s) + . . . 2(2)λn−2(s) + 2λn−1(s)} ds

=n1/2

∫ 1

0

n−1
n−1∑

h=−n+1

(
1− |h|

n

)
λh(s)ds

=n−1/2
n−1∑

h=−n+1

(
1− |h|

n

){ ∞∑
k=−∞

ψkψk+h

∫ 1

0

Cε(s, s)ds

}

≤n−1/2
n−1∑

h=−n+1

∞∑
k=−∞

|ψkψk+h|
{∫ 1

0

Cε(s, s)ds

}

=n−1/2
∞∑

k=−∞

|ψk|

(
n−1∑

h=−n+1

|ψk+h|

)
︸ ︷︷ ︸

<∞ as n→∞

{∫ 1

0

Cε(s, s)ds

}

→ 0 as n→∞.

Therefore n1/2
∫
X̄2(s)ds

L1→ 0 implying n1/2
∫
X̄2(s)ds = oP (1). Hence for i =

1, 2, . . . , p, p < n,

C1 := n1/2

∫ 1

0

{
X̄(s)

(
(1− i/n)X̄(s)− n−1

n−i∑
j=1

(Xj+i(s) +Xj(s))

)}
ds = oP (1).

(2.65)

It is clear that

C2 := n−1/2
∫ 1

0

{
−

0∑
j=1−i

Xj(s)Xj+i(s)

}
ds→ 0 as n→∞. (2.66)
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By (2.65) and (2.66), for i = 1, 2, . . . , p, we have

n1/2

(∫ 1

0

λ̂i(s)ds− n−1
∫ 1

0

n∑
j=1

Xj−i(s)Xj(s)ds

)

=n−1/2
∫ 1

0

{
n−i∑
j=1

(Xj(s)− X̄(s))(Xj+i(s)− X̄(s))−
n−i∑
j=1−i

Xj(s)Xj+i(s)

}
ds

=n−1/2
∫ 1

0

{
−

0∑
j=1−i

Xj(s)Xj+i(s)−
n−i∑
j=1

X̄(s)Xj+i(s)−
n−i∑
j=1

Xj(s)X̄(s) + (n− i)X̄2(s)

}
ds

=n−1/2
∫ 1

0

{
−

0∑
j=1−i

Xj(s)Xj+i(s)

}
ds

+ n1/2

∫ 1

0

{
X̄(s)

((
1− i

n

)
X̄(s)− n−1

n−i∑
j=1

(Xj+i(s) +Xj(s))

)}
ds

=C1 + C2

=oP (1).
(2.67)

Therefore

n1/2

(∫ 1

0

λ̂p(s)ds− n−1
∫ 1

0

Xᵀ(s)Y(s)ds

)
= oP (1). (2.68)

Moreover, we can also conclude from (2.67) that

n1/2

(∫ 1

0

Γ̂p(s)ds− n−1
∫ 1

0

Xᵀ(s)X(s)ds

)
= oP (1). (2.69)

Hence, we can conclude (?) = oP (1).
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To analyze (??), let ‖·‖F be the Frobenius norm, we have

n1/2

∥∥∥∥∥
(∫ 1

0

Γ̂p(s)ds

)−1
− n

(∫ 1

0

Xᵀ(s)X(s)ds

)−1∥∥∥∥∥
F

=n1/2

∥∥∥∥∥
(∫ 1

0

Γ̂p(s)ds

)−1(
n−1

∫ 1

0

Xᵀ(s)X(s)ds−
∫ 1

0

Γ̂p(s)ds

)
n

(∫ 1

0

Xᵀ(s)X(s)ds

)−1∥∥∥∥∥
F

≤n1/2

∥∥∥∥∥
(∫ 1

0

Γ̂p(s)ds

)−1∥∥∥∥∥
F

∥∥∥∥n−1 ∫ 1

0

Xᵀ(s)X(s)ds−
∫ 1

0

Γ̂p(s)ds

∥∥∥∥
F

∥∥∥∥∥n
(∫ 1

0

Xᵀ(s)X(s)ds

)−1∥∥∥∥∥
F

= oP (1),

since n
(∫ 1

0
Xᵀ(s)X(s)ds

)−1 P→ Γ−1p , and
(∫ 1

0
Γ̂p(s)ds

)−1 P→ Γ−1p . Then with Lemma 2.3.9,

we can conclude (??) = oP (1). Therefore the claim n1/2
(
β̂ − β∗

)
= oP (1) follows. �

Proof of Theorem 2.3.5

Proof. For some integer h ∈ {0, 1, . . . , n− 1}, define the vector

Λ∗h =

[∫ 1

0

λ∗0(s)ds,

∫ 1

0

λ∗1(s)ds, . . . ,

∫ 1

0

λ∗h(s)ds

]ᵀ
,

Λh =

[∫ 1

0

λ∗0(s)ds,λ
ᵀ
h

]ᵀ
, and Λ̂h =

[∫ 1

0

λ̂0(s)ds, λ̂
ᵀ
h

]ᵀ
.

Similarly to the proof of Lemma 2.3.10,

n1/2 (Λ∗h −Λh)
D→ N (0,V) ,

where V is the covrariance matrix whose ijth elements vij are defined in (2.42) and

(2.43) in Lemma 2.3.7.

By a similar argument as in the proof of Lemma 2.3.11, we have
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n1/2
(
Λ̂h −Λ∗h

)
= oP (1).

Thus

n1/2
(
Λ̂h −Λh

)
D→ N (0,V) .

The result follows from an application of the delta method. �

2.4 Finite Sample Properties of Autoregressive Pa-

rameter Estimators

Simulations of the WAR(p) model were conducted to show that the autoregressive coef-

ficients βj can be accurately estimated, and to explore the normality of the estimators in

finite samples. The simulation parameters included the Wasserstein mean density f⊕ and

quantile function Q⊕, the autoregressive parameters βj, and a generative process for the

innovations εt. The relation Qt(s) = Tt ◦Q⊕ was used to obtain the quantile functions Qt

for use in our algorithms. Simulations were conducted using different Wasserstein mean

densities and innovation processes to probe the sensitivity of estimators. In this section,

results are presented for a setting in which the Wasserstein mean density corresponds to

the uniform distribution on the unit interval, i.e., Q⊕(s) = s, for s ∈ [0, 1]. Results under

more complicated settings can be found in Section 2.4.1.
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The optimal transport maps Tt were generated from a WAR(3) model specified by

Tt − id = β1 (Tt−1 − id) + β2 (Tt−2 − id) + β3 (Tt−3 − id) + εt, (2.70)

with autoregressive coefficients β1 = 0.825, β2 = −0.1875, β3 = 0.0125, and innovations

εt(u) = ηt + sin (δtu) with ηt
iid∼ N(0, 1), δt

iid∼ Uniform[−0.2, 0.2], ηt ⊥ δt, u ∈ [0, 1].

To begin, it is necessary to generate the initial maps T1, T2, and T3. There exists a unique,

stationary and causal solution to (2.70) in the form of (2.27). Hence, one can generate

the initial signals purely based on past innovations. A burn-in period of m = 1000

was used to stabilize the simulated signals. Given a sequence of m burn-in innovations

{ε1−m, ε2−m, . . . , ε−1, ε0} generated as above, based on (2.27), define
T1−m = id + ε1−m,

T2−m = id + ε2−m + β1(T1−m − id),

T3−m = id + ε3−m + β1(T2−m − id) + β2(T1−m − id).

Then (2.70) can be applied recursively until T1 − id through T3 − id are obtained. One

can then generate a time series of desired lengths with T1 − id through T3 − id and

(2.70). This approach is equivalent to truncating the infinite sum in (2.27) but avoids

the calculation of the coefficients ψi. In our numerical implementation, an equally spaced

grid of length 100 on [0, 1] was used for both u and s arguments, since the support of the

Wasserstein mean and that of the quantile functions are both [0, 1] in this setting. The

autoregressive parameter estimates in (2.31) were computed using numerical integration.

The simulation was repeated 1000 times with sample sizes n = 50, 100, 500, 1000, 2000.

The bias, standard deviation and root mean-square error (RMSE) are summarized in
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Table 2.1: Bias, standard deviation and RMSE of β̂i, i = 1, 2, 3.

Sample Size Bias SD RMSE

β̂1 β̂2 β̂3 β̂1 β̂2 β̂3 β̂1 β̂2 β̂3
50 -0.0686 0.0028 -0.0297 0.1432 0.1605 0.1313 0.1588 0.1606 0.1347
100 -0.0319 0.0062 -0.0186 0.0996 0.1171 0.0948 0.1045 0.1172 0.0967
500 -0.0073 0.0022 -0.0028 0.0458 0.0566 0.0453 0.0464 0.0567 0.0454
1000 -0.0043 0.0017 -0.0012 0.0317 0.0406 0.0319 0.0320 0.0406 0.0320
2000 -0.0011 0.0003 -0.0004 0.0227 0.0285 0.0225 0.0228 0.0285 0.0225

Table 2.1, from which we can observe that they all trail off as sample size increases. For

the purpose of demonstration, we only display histograms and QQ-plots for n = 50, 100

and 1000. The graphical evidence of the asymptotic marginal normality of the estimators

β̂i, i = 1, 2, 3, is presented in Figures 2.2–2.4.
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Figure 2.2: QQ plots and histograms of β̂1
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Figure 2.3: QQ plots and histogram of β̂2
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Figure 2.4: QQ plots and histograms of β̂3

To investigate the joint normality, denote β̂j = [β̂1j, β̂2j, β̂3j]
ᵀ, where j = 1, 2, . . . , 1000

denotes the number of replicates. We randomly generate three pairs of 3× 1, linearly in-

dependent unit vectors (v1, v2), (v3, v4) and (v5, v6). Calculate Xij = vᵀijβ̂j, i = 1, 2, . . . , 6,
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j = 1, 2, . . . , 1000. Scatter plots of Xij v.s. X(i+1)j, i = 1, 3, 5, are shown in Figure 2.5.

The idea is that if a vector [β1, β2, β3]
ᵀ is normal, then for any coefficients, the vectors∑3

j=1 v1jβj and
∑3

j=1 v2jβj have a joint bivariate normal distribution, which can be ap-

proximately verified by visual examination of scatter plots, if replications of [β1, β2, β3]
ᵀ

are available. As before, we only display the cases where n = 50, 100 and 1000 for demon-

stration. The elliptical patterns in Figure 2.5 suggest bivariate Gaussian distribution,

which is what we expect. Moreover, for each n, we calculate Σ̂, the sample covariance

matrix of {β̂j, j = 1, 2, . . . , 1000}, which is an estimator of the theoretical covariance

matrix Σ in (2.32). Let ‖·‖F be the Frobenius norm, we use the relative Frobenius norm,

‖Σ̂−Σ‖F/‖Σ‖F to measure the differences between the sample covariance matrix and the

theoretical asymptotic covariance matrix based on equation (2.32). Figure 2.6 shows that

the relative difference approaches zero as sample size increases. All the aforementioned

evidence supports the result of Theorem 2.3.4.

2.4.1 Additional Simulation Results

In order to explore the impact of a more complicated Wasserstein mean and noisy in-

novations on our estimators, we present an additional simulation that assumes all the

same settings as in Section 2.4, except that the Wasserstein mean is set to Beta(2,5),

and the innovation components ηt
iid∼ N(0, 25), δt

iid∼ Uniform[−0.3, 0.3]. We conduct this

simulation for sample sizes n = 50, 100, 500, 1000, 2000. Since the theoretical sampling

distributions of the estimators are well approximated by their finite sample versions at
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Figure 2.5: Scatter Plots of Xi v.s. Xi+1, i = 1, 3, 5.

n = 1000, we will only present related plots for cases n = 50, 100, 1000 for demonstration

purpose. The bias, standard deviation and RMSE will be reported for all the sampling

sizes.

Figures 2.7–2.9 demonstrate the visual evidence of marginal asymptotic normality

of β̂i, i = 1, 2, 3. The graphical evidence of asymptotic joint-normality is presented in

Figure 2.10. The reader is referred to Section 2.4 for more details of the interpretation

of Figure 2.10.

We use the relative Frobenius norm as in Section 2.4 to measure the differences

between the sample covariance matrix and the theoretical asymptotic covariance matrix

based on equation (2.32) and present the result in Figure 2.11. The difference tends to
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Figure 2.6: Difference between sample and theoretical covariance matrices

Table 2.2: Simulation Beta(2, 5): Bias, standard deviation and RMSE of β̂i, i = 1, 2, 3.

Sample Size Bias SD RMSE

β̂1 β̂2 β̂3 β̂1 β̂2 β̂3 β̂1 β̂2 β̂3
50 -0.0691 0.0032 -0.0294 0.1437 0.1602 0.1311 0.1594 0.1602 0.1342
100 -0.0321 0.0066 -0.0187 0.1001 0.1176 0.0950 0.1051 0.1178 0.0968
500 -0.0074 0.0023 -0.0028 0.0458 0.0565 0.0452 0.0464 0.0566 0.0452
1000 -0.0043 0.0017 -0.0013 0.0318 0.0407 0.0320 0.0321 0.0407 0.0321
2000 -0.0012 0.0003 -0.0005 0.0227 0.0285 0.0225 0.0227 0.0285 0.0225

zero as the sample size gets larger. In particular, a drastic decrease in the difference can

be observed as we increase the sample size from 100 to 500. The asymptotic properties

remain robust to the choice of a more complicated Wasserstein mean. Lastly, according to

Table 2.2, despite that the bias, standard deviation and RMSE of β̂i, i = 1, 2, 3 are slightly

larger in most cases than those presented in Section 2.4, they all decay consistently as

the sample size increases. The theoretical properties of our estimators are well supported

in this simulation with Wasserstein mean Beta(2, 5) and increased noise level.
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Figure 2.7: Simulation Beta(2, 5): QQ plots and histograms of β̂1
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Figure 2.8: Simulation Beta(2, 5): QQ plots and histogram of β̂2
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Figure 2.9: Simulation Beta(2, 5): QQ plots and histograms of β̂3
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Figure 2.10: Simulation Beta(2, 5): Scatter Plots of Xi v.s. Xi+1, i = 1, 3, 5.
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Figure 2.11: Simulation Beta(2, 5): Difference between sample and theoretical covariance matrices

2.5 Comparison with Other Forecasting Methods

We proceed to applying our WAR(1) model to real data sets and comparing its forecasting

performance with that of four other density time series forecasting approaches, studied

in Kokoszka et al. (2019), where they are introduced in great detail.

2.5.1 Benchmark Methods

We consider the following existing methods.

Compositional Data Analysis. The general methodology of Compositional Data Analysis

has been used in various contexts for about four decades, see Pawlowsky-Glahn et al.

(2015) for a comprehensive account. Inspired by the similarity between density observa-

tions and compositional data, Kokoszka et al. (2019) proposed to remove the constrains

on ft by applying a centered log-ratio transformation. The forecast is produced by first

applying FPCA to the output of these transformations, then fitting a time series model

to the coefficient vectors.

Log Quantile Density Transformation. This approach is based on the work of Petersen
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et al. (2016a) and modified by Kokoszka et al. (2019). It transforms the density ft to

a Hilbert space where multiple FDA tools can be applied to forecast the transformed

density, then apply the inverse transformation to get the forecast density back. Specifi-

cally, a modified log quantile density(LQD) transformation was applied to get the density

forecasts.

Dynamic Functional Principal Component Regression. This method was implemented

exactly the same way as in Horta and Ziegelmann (2018). Essentially it applies FPCA

with a specific kernel, then forecasts the scores with a vector autoregressive(VAR) model.

Predictions are produced by reconstructing densities with predicted scores. Negative

predictions are replaced by zero and the reconstructed densities are standardized.

Skewed t Distribution. Proposed by Wang (2012), this method fits a skewed t density to

data at each time point. Predictions are made by fitting a VAR model to the MLEs of

the coefficients of the t distribution.

2.5.2 Data Sets and Performence Metrics

The data sets we use are monthly Dow Jones cross-sectional returns from April 2004 to

December 2017, monthly S&P 500 cross-sectional returns from April 2004 to December

2017, Bovespa 5-minute intraday returns that cover 305 trading days from September 1,

2009, to November 6, 2010, and XLK, the Technology Select Sector SPDR Fund returns

sampled at the same time intervals as the Bovespa data. The DJIA, S&P 500 and XLK

data used in this research are publicly available from the CRSP database (Center for
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Research in Security Prices, crsp.org). They are available as supplementary files. The

Bovespa data were provided by Capse Investimentos (capse.com.br), and can be requested

from that company.

To measure the accuracy of forecast results, we consider the following metrics

1. The discrete version of Kullback-Leibler divergence (KLD; see Kullback and Leibler

(1951))

2. The square root of the Jensen-Shannon divergence (JSD; see Shannon (1948))

3. L1 norm.

Again, we refer to Kokoszka et al. (2019) for more details on the data sets and these

metrics as we carry out the comparison exactly the same way as in their paper to keep

the comparison consistent.

2.5.3 WAR(p) Models

We implement a data-driven procedure to select the order p and the size of training

window K. Denote by n the present time. We use K samples in the time interval

[n − K + 1, n] to predict fn+1. For each t ∈ [n − K + 1, n] we compute the prediction

f̂t,p based on the WAR(p) model and samples in the interval [t − K, t − 1]. Let ρ be a

performance metric, Ip and IK be some sets for possible choices of p,K, respectively. We

evaluate

Rp(n,K) =
∑

t∈[n−K+1,n]

ρ
(
f̂t,p, ft

)
, p ∈ Ip and K ∈ IK .
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Denote by p̂(n) and K̂(n), the value of p and K which minimizes Rp(n,K), we use

WAR(p̂(n)) and the training window [n − K̂(n) + 1, n] to predict fn+1. One way to

implement this data-driven procedure is to select K and p simultaneously, which entails

|Ip|×|IK | runs of the forecasting algorithm. In our numerical experiments in this section,

we observed that the choice of K has greater impact on the forecasting accuracy than the

choice of p. In addition, within the data sets we investigated, the choice of K is relatively

robust to the choice of p as the number of window sizes are small, i.e., |IK | = 2 for intra-

day data sets and |IK | = 3 for cross-sectional data sets (see Section 2.5.5). Therefore, in

order to reduce the computational cost, we first use the WAR(1) model to determine K.

After choosing training windows for each day, we then determine the order p.

2.5.4 Fully Functional WAR(p) Models

Similar to the idea of the WAR(p) model, one can build a fully functional model in the

tangent space to forecast and use the exponential map to recover the forecast density.

As mentioned in the introduction, in a recent preprint, Chen et al. (2020) investigated

this approach in the case p = 1. We specify the general order p model as follows. The

fully functional WAR(p) model is defined by

Tt(u)− u =

p∑
j=1

∫
R
φj(u, v)(Tt−j(v)− v)f⊕(v)dv + εt(u), (2.71)

where φj are the autoregressive parametric functions to be recovered. Thus, the key

difference between the WAR(p) model proposed in this chapter and that of Chen et al.
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(2020) is in how the quantities Tt−j − id from previous timepoints are mapped to the

tangent space prior to adding the innovations. In the WAR(p) model, these are simply

multiplied by the autoregressive coefficients βj. In contrast, the fully function WAR(p)

applies an integral operator with kernel φj to these quantities. Note that, technically, the

WAR(p) model is not a special case of the fully functional version, since the operation of

multiplying by βj is not compact, whereas the integral operators in (2.71) are compact.

The estimation procedure follows by fitting the usual functional AR(p) model (see, for

example, Bosq (2000)) to the observed quantile functions Qt, yielding estimates ϕ̂j of

the kernels ϕ(s, s′) = φj(Q⊕(s), Q⊕(s′)). In the case p = 1, this matches the estimation

of Chen et al. (2020). Similarly to the WAR(p) model, forecasts are then constructed

in the tangent space using the plug-in estimates φ̂j(u, v) = ϕ̂j(F̂⊕(u), F̂⊕(v)), followed

by application of the exponential map (2.5). Thus, in the presentation of our results,

the method labeled “Fully Functional WAR(p)” can be considered as an extension of the

model of Chen et al. (2020) to include orders p ≥ 1.

In particular, we implement the same data-adaptable procedure as described in Sec-

tion 2.5.3 with one additional component. The method used to fit the functional AR(p)

model to the quantile functions performs functional principal component analysis as a

first, which requires one to specify the number of components to retain. We thus intro-

duce an additional tuning parameter R that represents proportion of variance required

by the FPCA. Specifically, in the forecasting procedure, we reconstruct T̂t − id with the

smallest number of PCs that explain R percent of variance; see, for example, Section 3.3
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of Horváth and Kokoszka (2012). We incorporate R into the data-driven procedure to

determine its value for forecasting. Specifically, we compute

Rp(n,K,R) =
∑

t∈[n−K+1,n]

ρ
(
f̂t,p, ft

)
,

where p ∈ Ip, R ∈ IR and K ∈ IK . For each n, we use the optimal p̂(n), K̂(n) and R̂(n)

to predict f̂n+1. Within the fully functional WAR(p) model, some initial results show

that the case p = 1 outperforms higher order cases across all different settings of K and

R, hence to simplify the procedure, we fix p = 1 and implement the procedure to choose

R and K.

2.5.5 Results

The WAR(p) model was tuned with both Kullback-Leibler divergence and Wasserstein

distance under the data-adaptable procedure with Ip = {1, 2, . . . , 10}, while the fully

functional WAR(p) model was only tuned with the former one for demonstration purpose

with IR = {0.4, 0.5, . . . , 0.8}. For both approaches, we use IK = {20, 62} for the intra-day

data sets and IK = {12, 24, 48} for the monthly cross-sectional data sets. These choices

correspond approximately to monthly and quarterly data (20, 62) and to 1, 2, and 4

years (12, 24, 48) for the monthly data. They are often used for financial and economic

data, but there is no profound statistical reason for choosing them. Our method could

be elaborated on by using a data driven maximum value of K, some form of an approach

advocated in Chen et al. (2010), but the simple choices we propose work well and do not

lead to an excessive computational burden.
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From Tables 2.3–2.6, we can see both WAR(p) and fully functional WAR(p) models

produce excellent predictions in the XLK and DJI data sets. (In 19 out of 20 cases the

WAR(p) performs better than the fully functional WAR(p).) Indeed, the WAR(p) model

is the top performer in these two data sets. In the XLK data set, the WAR(p) model

tuned by KL divergence topped under three performance metrics, and ranked second

under the rest two metrics with small margins to the top performer LQDT. In the DJI

data set, the WAR(p) model topped under two metrics, and again, with narrow margins

to the top performers under the rest of the metrics. Specifically, we can see in DJI

data set, the average rank of forecasting performance of WAR(p) model (tuned by KL

divergence) is 1.6, while the two contenders LQDT and CoDa (no standardization) scored

2.8 and 1.6, respectively, which put the WAR(p) model in tie with the CoDa method as

the top performers.

The performance of WAR(p) model in the Bovespa and S&P500 data sets is not

as competitive. Since our models rely on stationarity, we informally investigate the

stationarity condition for each data set. In Figure 2.12, we plot the Wasserstein distance

from all densities used in forecasting to their sample Wasserstein mean. These distances

are larger in the Bovespa and S&P500 data sets, compared to those in XLK and DJI

data sets. Indeed, the average Wassertein distance from these plots in Figure 2.12 are

XLK: 4.045, Bovespa: 4.255, DJI: 421.25 and S&P500: 571.63. Hence stationarity could

be a potential cause for a weaker performance of the WAR(p) model in the Bovespa and

S&P500 data sets. Generally, no prediction method can be expected to be uniformly
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superior across all data sets and all time periods and according to all metrics. In our

empirical study, The WAR(p) methods performs best for some data sets, and the LQDT

and CoDa methods perform better for others.
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Figure 2.12: Wasserstein Distance Between Sample Points To Their Wasserstein Mean

Table 2.3: Forecast accuracies of five methods, XLK intraday returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein

Horta-Zieglman 0.2831 1.5095 4.2909 11257.47 3.97 ×10−4

LQDT 0.3831 1.3411 5.2559 10891.16 3.97 ×10−4

CoDa(standardization) 0.3231 2.6076 4.9518 14689.67 4.04×10−4

CoDa(no standardization) 0.3579 2.8919 5.2173 15053.57 4.11×10−4

Skewed-t 0.2666 1.7418 3.8736 13701.89 4.16×10−4

WAR(p) (KL) 0.1761 1.4408 2.7569 11214.40 3.32× 10−4

WAR(p) (WD) 0.1827 1.4713 2.8730 11418.83 3.38×10−4

Fully Functional WAR(p) (KL) 0.1837 1.4753 2.8821 11576.42 3.36×10−4
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Table 2.4: Forecast accuracies of five methods, Bovespa intraday returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein

Horta-Ziegelman 0.4009 1.9098 6.1713 16993.19 4.47×10−4

LQDT 0.4258 1.6634 6.0687 16313.87 3.09×10−4

CoDa(standardization) 0.2271 1.7360 3.7000 16351.17 3.08× 10−4

CoDa(no standardization) 0.2278 1.7448 3.7038 16391.76 3.10×10−4

Skewed-t 0.2750 1.9909 3.9774 19261.90 4.13×10−4

WAR(p) (KL) 0.2534 1.8769 4.1364 17153.26 3.92×10−4

WAR(p) (WD) 0.2383 1.8065 3.8622 16878.16 3.86×10−4

Fully Functional WAR(p) (KL) 0.2550 1.8963 4.1478 17226.79 3.79×10−4

Table 2.5: Forecast accuracies of five methods, Dow-Jones cross-sectional returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein

Horta-Ziegelman 1.3070 3.5986 9.4038 1039.36 3.99×10−2

LQDT 1.0421 3.0129 6.9443 948.77 2.61×10−2

CoDa(standardization) 0.6658 3.2359 5.1780 953.42 2.63×10−2

CoDa(no standardization) 0.6510 3.1785 5.0572 943.62 2.59× 10−2

Skewed-t 1.3590 5.2532 10.4784 1324.97 3.82×10−2

WAR(p) (KL) 0.6448 3.0407 5.0965 947.0983 2.59× 10−2

WAR(p) (WD) 0.6616 3.1838 5.1538 975.3546 2.63×10−2

Fully Functional WAR(p) (KL) 0.6480 3.0821 5.0993 952.4613 2.61×10−2
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Table 2.6: Forecast accuracies of five methods, S&P 500 cross-sectional returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein

Horta-Ziegelman 0.5315 1.9986 3.1032 222.62 6.94×10−2

LQDT 0.4252 1.8165 2.5232 213.10 4.78× 10−2

CoDa(standardization) 0.3156 1.7994 2.3023 208.71 6.45×10−2

CoDa(no standardization) 0.3233 1.8465 2.3550 211.29 6.50×10−2

Skewed-t 0.5560 3.0961 3.6383 286.04 6.67×10−2

WAR(p) (KL) 0.4454 1.9578 2.7626 213.2848 7.37×10−2

WAR(p) (WD) 0.4349 1.9166 2.7163 216.4794 7.23×10−2

Fully Functional WAR(p) (KL) 0.4762 2.1384 2.8143 223.7424 7.91×10−2

2.6 Discussion

The WAR(p) model provides an interpretable approach to model density time series by

representing each density through its optimal transport map from the Wasserstein mean.

Under this representation, stationarity of a density time series, whose elements reside in

a nonlinear space, is defined according to the usual stationarity of the random transport

maps in the tangent space, which is a separable Hilbert space. This chapter demonstrates

how autoregressive models, built on the tangent space corresponding to the Wasserstein

mean, possess stationary solutions that, in turn, define a stationary density time series.

This link is not automatic, however, due to the fact that the logarithmic map lifting the

densities to the tangent space is not surjective, and constraints are necessary to ensure the

viability of the model. In our empirical analysis, the proposed WAR(p) model emerged as
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a competitive forecasting method for financial return densities when compared to various

existing methods and using several different metrics for forecasting accuracy. The option

of selecting the order p to suit a specific purpose is a useful feature of the model. We

proposed a data-driven procedure that targets optimal prediction in terms of a specific

metric, but other objectives, including a model fit in terms of information criteria could

be used as well.

There are several research directions that emerge from our work. It can be expected

that the theory for more general ARMA(p, q) processes can be developed by extending

the arguments we used. However, as we discussed, even scalar ARMA processes are

theoretically more complex than pure AR(p) models and ARMA processes in function

spaces must be approached with particular care. The extension thus appears to be not

trivial, but may turn out to be useful for some purposes. In the case of scalar, but not

necessarily vector, observations, ARMA processes provide more parsimonious models, but

their predictive performance is not necessarily better that that of AR(p) models. ARMA

predictors are constructed through the Durbin-Levinson or innovations algorithms, but

truncated predictors, effectively equivalent to order selected AR(p) models, generally

perform better, see e.g. Section 3.5 of Shumway and Stoffer (2018).

We explored empirically the fully functional WAR(p) model, but we did not pursue

its theoretical underpinnings because its predictive performance was not competitive;

simpler models often provide better predictions. The theory of fully functional WAR(1)

model was developed, independently and in parallel with our research, in Chen et al.
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(2020). It is also a model constructed in the tangent space and so it is subject to similar

constraints as our WAR(p) models, namely that the solution must be restricted to image

of the logarithmic map with probability one (see assumption (A3) in this chapter, and

assumption (B2) in Chen et al. (2020)). It is unclear whether concrete examples of

innovations can be established that satisfy this constraint for fully functional WAR(p)

models, whereas we have established several concrete examples for WAR(p) models in this

chapter. Still, fully functional WARMA(p, q) models might be useful in some settings,

and their theory might then be developed.

We have seen that, as for any time series models, assumptions of stationarity are

key to establishing theoretical properties, such as the asymptotic normality of the WAR

parameters and Wasserstein autocorrelations, and to good forecasting performance. Re-

search on testing stationarity and detecting possible change points may be facilitated by

our work. Research of this type has been done for linear functional time series, see e.g.

Berkes et al. (2009), Horváth et al. (2014), Zhang and Shao (2015), but not for density

times series. In general, it is hoped that this chapter not only provides a set of theoretical

and practical tools, but also lays out a framework within which questions of inference for

density time series can be addressed.
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Chapter 3

Quantifying Brain Functional

Connectivity with Noisy Voxel Level

Signals

3.1 Introduction

In recent years, with the rapid advancement and increasing accessibility of neuroimaging

techniques, data sets that record brain activities, such as electroencephalogram (EEG)

scans and functional magnetic resonance imaging (fMRI) time series, are becoming widely

available to scientists and medical practitioners. The rich volume of previously unattain-

able data sets has consequently catalyzed a wide range of interests in modeling and

estimating functional brain connectivity, which is of paramount importance in shedding
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lights on the evolution of pathologies such as neurodegenerative diseases or consciousness

disorders.

However, challenges arise in preprocessing and conducting robust and reproducible

analyses with the massive amount of data. Signals collected from human brains are fre-

quently modeled as realizations of random fields that traverse across both the spatial and

temporal domains (Achard et al., 2011; Achard and Gannaz, 2019). These signals are

usually of noisy nature due to the inherent properties of random fields and (or) the mea-

suring instrument errors (Chaimow et al., 2018). Various methods have been proposed

to overcome these challenges. Achard et al. (2006) applied a wavelet transformation to

obtain brain networks based on frequency-dependent correlations between regional fMRI

time series. Machine learning techniques, in particular, feature embedding and clustering

are investigated to classify and characterize changes in brain dynamics due to pathology

or cognitive state changes (Richiardi et al., 2013). Termenon et al. (2016) studied the re-

lationship between the reproducibility of brain networks and the subject count and fMRI

scan length using the large test-retest (TRT) resting-state fMRI data set from the Hu-

man Connectome Project (HCP). In addition, Petersen et al. (2016b) proposed to view

the path lengths of brain networks as functions of network density, so that functional

principal component analysis (fPCA) are used and covariates are regressed on functional

principle component scores to study the association between connectivity and subjects’

age, episodic memory, and executive function.

Functional connectivity quantification and estimation is a primary goal of these neu-
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roscience inquiries. Following the characterization of Van Den Heuvel and Pol (2010),

functional connectivity is the temporal dependency of neuronal activation patterns of

anatomically separated brain regions. Consequently, the vast majority of existing stud-

ies aggregate signals within certain regions instead of directly modeling voxel level signals.

This definition is also known as the inter-regional, or sometimes referred to as the long-

range connectivity. Brain regions usually refer to the disjoint anatomical or functional

parcellation of the brain. The choice of the parcellations is still an open question and is

attracting active investigations. In this chapter, we will use a parcellation of rat brains

that contains 51 regions, and with our model, we aim to provide a way to quantify

functional connectivity and construct brain networks on the individual level. Another

measurement of connectivity is termed the intra-regional connectivity, which measures

the connectivity within a particular brain region. We will emphasize on modeling the

inter-regional connectivity as it is of primal interest of a large body of neuroimaging

studies (Eickhoff et al., 2018; Moghimi et al., 2021).

A brain can be considered as a network. Thus, it is not surprising that network-based

approaches are prevalent in inter-regional connectivity modeling (Van Den Heuvel and

Pol, 2010; Meskaldji et al., 2011; Kaiser, 2011). The nodes and edges in a brain network

represent brain regions and connections, respectively. An edge is identified by a high

degree of some similarity metric for the brain activity signals, which is usually quantified

by the Pearson correlation (Achard et al., 2006; Zalesky et al., 2012; Becq et al., 2020).

While this estimator provides a consistent estimation in general, it does not take the

85



spatiotemporal noise that is inherent to BOLD signals into account (Achard and Gannaz,

2019). More details on this matter will be discussed in Section 3.2 as we develop our

model. In addition, While some of these existing methods can localize connectivity to

the subject level (Petersen et al., 2016b), the analysis phase usually requires group level

information.

In this chapter, we focus on the analysis of resting-state fMRI data on a subject level

using signals at the voxel level. The main contribution of this paper is twofold. First,

we propose a novel spatiotemporal statistical model for the BOLD signals at the voxel

level. These signals are considered as realizations of a Gaussian process with a carefully

designed covariance structure that explicitly models the spatiotemporal dependency of

BOLD signals. The inter-regional connectivity between two arbitrary regions is quantified

by a primal model parameter, which needs to be estimated along with a collection of

auxiliary parameters that characterize the statistical properties of the model. One should

keep in mind that our model has the flexibility to be extended to relatively general

spatiotemporal processes. However, we will restrict our discussion within the scope of

brain connectivity quantification using BOLD signals in this chapter as it is the intended

application at the current stage. We also derive the large sample properties of the model

parameter estimators, propose methods to construct brain networks using the estimated

parameters, and conduct simulations to investigate robustness and reproducibility of the

analysis. Secondly, we devise an efficient two-stage strategy to estimate model parameters

as computations associated with Gaussian processes are usually prohibitive. We also
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document the detailed implementation of our method, which involves large scale parallel

computing with GPU accelerated matrix operations.

The remainder of the chapter is arranged as follows. In Section 3.2, we present

model construction, parameterization, and estimation. In particular, we propose the two-

stage estimation procedure in Section 3.2.3. Assumptions and results on the asymptotic

behaviour of our model parameter estimators are presented in Section 3.3. Section 3.4

provides a set of simulation studies that demonstrates the empirical performance of our

estimators. In Section 3.5, our model is applied to real rat data sets and brain connectivity

is quantified by the estimated model parameters. We further construct brain networks

with the estimated parameters by utilizing their large sample properties. Section 3.6

discusses results and the potential extension to this chapter.

3.2 Model

Our main goal is to model the BOLD signals at the voxel level such that spatiotemporal

features are sufficiently addressed and brain connectivity, hence a network, can be recov-

ered from the estimated model parameters. The model is developed in a data-inspired

manner, that is, we propose our model with a clear goal to model the properties of

BOLD signals, even though such properties may not be exclusive to BOLD signals only

and the resulting model can be applied to more general spatiotemporal processes. Then

we proceed with the investigation of model estimation and large sample properties.
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3.2.1 A Spatiotemporal Model for BOLD Signals

A brain volume B is divided into spatially disjoint and contiguous regions Rj, that is,

B = ∪Jj=1Rj and Rj∩Rj′ = ∅, j 6= j′. In principle, brain activity is a continuous process,

though we do not observe it directly or cleanly. So, we begin by building a model for

the unobserved (thus latent) process which will be the foundation for the data model in

(3.2). To that end, the latent BOLD signals from voxel v ∈ Rj, j = 1, . . . , J , at time

t ∈ [0, T ], where T is the duration of fMRI scan, is modeled by

Yj(v, t) = µj + ηj(t) + γj(v, t), (3.1)

where µj is the deterministic mean signal assumed to be constant in time throughout.

The process ηj is a common signal that is shared by all voxels in a given region, and repre-

sents the idea that signals within each region are, in some sense, homogeneous. Note that

this is consistent with the characterization of connectivity by Van Den Heuvel and Pol

(2010). The spatiotemporal process γj represents the voxel-specific variations from the

regional signals that are correlated across both spatial (within region only) and temporal

domains. By the decomposition in (3.1), it is clear that ηj contains the inter-regional

connectivity information, while the random perturbations from γj can be considered as

voxel-level spatiotemporal noise. Therefore, we propose covariance structures with ηj

representing inter-regional while γj representing intra-regional connectivity.

First, we assume the collection of regional signals {ηj} is uncorrelated with the voxel-

specific fluctuations {γj}, j = 1, . . . , J. Furthermore, the random fields γj and γj′ are

uncorrelated whenever j 6= j′. The spatiotemporal covariance structures for ηj (inter-
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regional dependence) and γj (intra-regional dependence) are given by

1. Cov (ηj(t), ηj′(t
′)) = ρjj′Aη(t, t

′), where ρjj = 1, R = {ρjj′}Jj,j′=1 is a J×J positive-

definite (p.d.) correlation matrix, and Aη is a p.d. covariance kernel on [0, T ]2.

ρjj′ , 1 ≤ j 6= j′ ≤ J , are the primal parameters of interest that we use to quantify

brain functional connectivity, which will be referred to as the inter correlation

throughout.

2. Cov (γj(v, t), γj(v
′, t′)) = Bj(t, t

′)Cj(v, v
′), where Bj and Cj are p.d. covariance and

correlation kernels, respectively, on [0, T ]2 and Rj ×Rj.

It is clear the latent BOLD signal model (3.1) can be viewed as spatial functional

data, which is a rapidly developing subject of functional data analysis (FDA). In spatial

FDA, classical problems of mean and covariance estimations are extensively studied. For

example, see Hörmann and Kokoszka (2011) and Gromenko et al. (2012). The principled

approaches to predict the spatial functional processes at unknown locations are nonpara-

metric regression and functional kriging. Nonparametric regression mainly uses kernel

type techniques to model the conditional mean of a process at an unknown location. Mix-

ing conditions are often invoked to make convergence problems tractable (Dabo-Niang

and Yao, 2007). Functional kriging is developed analogously to the kriging method of

real-valued spatial processes, which mainly models the variogram to obtain an optimal

linear predictor of the process at unknown locations (Giraldo et al., 2010, 2011). Func-

tional kriging is best suited in the situations where the deterministic mean component of

the functional spatial processes contain the most important information and the random
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component is mainly independent random errors (Delicado et al., 2010). These spatial

FDA methods usually assume a compact domain of spatial functional data. Furthermore,

the asymptotic regimes of spatial functional data, either the infill domain or increasing

domain sampling schemes, assume increasing spatial sampling locations, which is not an

appropriate assumption for our BOLD signals. Indeed, our setting is more relevant to

spatiotemporal modeling (Christakos, 2000) which usually assumes that rich information

is contained in data’s spatiotemporal dependency and models the covariance structures

of data processes directly. For example, Bel et al. (2008) used spatiotemporal kriging to

align data atoms on irregular grids with the assumption of separable radial basis function

(RBF) kernel based spatiotemporal covariance structures. Therefore, we will take the

spatiotemporal modeling point of view and adopt a mixed-effects model approach, which

is a primary tool in spatiotemporal modeling, to carry out our connectivity study.

3.2.2 Mixed-Effects Models

In practice, one observes the signals Yj only at a discrete number of voxels vjl ∈ Rj,

l = 1, . . . , Lj, and at time points tm, m = 1, . . . ,M , where we assume the latter to be

equispaced with t1 = 0 and tM = T . The observed BOLD signals are modeled as

Xjlm = µj + ηjm + γjlm + εjlm, (3.2)

where ηjm = ηj(tm), γjlm = γj(vjl, tm), and εjlm ∼ N(0, σ2) are independently, identically

distributed (i.i.d.) across all indices.

Model (3.2) constitutes a linear mixed-effects model, where µj is an overall signal
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level related to the neurophysiological behavior during rest, ηjm are random effects that

encapsulate the long-range connectivity that is the target of brain functional connectivity

studies, γjlm represent local variations in blood flow that induce correlated behavior

between signals that are measured closely in time and space, and εjlm represent additional

noise inherent to the scanner or other external sources.

To stabilize estimation of this mixed-effects model, we will assume that the random

effects have joint Gaussian distributions with the following parameterized spatial and

temporal covariance structures.

1. {A}mm′ = Aη(tm, tm′) = kη exp{−τ 2η
(tm−tm′ )2

2
} + σ2

ηδmm′ , where δmm′ is the Kro-

necker delta and σ2
η represents the nugget effect that models the short-scale vari-

ability of the signals.

2. {Bj}mm′ = Bj(tm, tm′) = kγj exp{−τ 2γj
(tm−tm′ )2

2
}.

3. {Cj}ll′ = Cj(vjl, vjl′) =
(

1 + φγj
√

5d+ 5
3
φ2
γj
d2
)

exp{−
√

5φγjd}, where d = ‖vjl − vjl′‖2.

We use the RBF and Matérn-5/2 kernels to model the temporal and spatial depen-

dencies, respectively. Indeed, the choices for the spatiotemporal covariance structures

A,Bj, and Cj could be potentially quite flexible provided that the model parameters

can be consistently estimated. We will postpone the discussion of these conditions after

the development of our model. We choose RBF and Matérn-5/2 as they are flexible and

popular choices for spatiotemporal modeling that have been extensively investigated. For

example, see (Stein, 1999; Flaxman et al., 2015).
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With model (3.2), it is also possible to investigate our observation that the commonly

used Pearson correlation estimator could be heavily biased due to the spatiotemporal

noise. For a pair of regions, the common approach is to first average voxel level signals

across space to obtain a mean signal for each region given by

X̄jm = L−1j

Lj∑
l=1

Xjlm. (3.3)

Then, letting µ̃j and ζ̃2j be the empirical mean and variance of X̄jm across m (time), the

usual Pearson correlation type estimator of connectivity is given by

ρ̂CA
jj′ =

∑M
m=1

(
X̄jm − µ̃j

) (
X̄j′m − µ̃j′

)
ζ̃j ζ̃j′

. (3.4)

We term the estimator in (3.4) the “correlation of averages” estimator as it averages

signals by regions prior to the calculation of the Pearson correlation. In view of this esti-

mator, one could get a consistent estimator for Corr (Xj(t), Xj′(t)) with mild conditions

on the decaying rate of spatiotemporal dependency. However, in view of model (3.2),

Corr (Xj(v, t), Xj′(w, t)) =
ρjj′A(t, t)√

A(t, t) +Bj(t, t) + σ2
√
A(t, t) +Bj′(t, t) + σ2

, (3.5)

which indicates that ρ̂CA
jj′ tend to underestimate the ρjj′ that we use to quantify the

functional connectivity. The bias would disappear provided that both the measurement

errors and spatiotemporal noise are correlated across regions with correlation strength of

the same magnitude as those of the signals, which is a rather counter intuitive assumption

to make. Indeed, it is easy to show that in general, the Pearson correlation can be cor-

rupted by uncorrelated additive errors. Nevertheless, we note that when spatiotemporal
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dependencies are weak and region sizes are large, one should expect that ρ̂CA
jj′ provides

an easy and reasonable estimator to quantify functional connectivity.

3.2.3 Model Estimation

An obvious approach to estimate the parameters of model (3.2) is to assume a Gaussian

likelihood, which would arise if {ηj}Jj=1 is a multivariate Gaussian process and the {γj}Jj=1

are independent Gaussian spatiotemporal random fields. However, as Gaussian likelihood

usually requires, with n being the sample size, O(n3) computing time and O(n2) memory,

the large size of the data set usually makes a straight shot at likelihood evaluation

prohibitive. Therefore, we will endeavor to break down the computation into smaller,

simpler pieces.

In short, we will restrict our attention to pairs of regions so that each time, we will get

one estimate of the inter correlation parameter for one pair of regions. More importantly,

we propose a two-stage estimation approach. In the first step, one isolates data for each

region in order to estimate the covariance parameters associated with the intra-regional

spatiotemporal noise γj. In the second step, one isolates each pair of regions in order

to estimate the remaining parameters, which include the inter correlation. One should

bear in mind that the sole primary parameter of interest is the inter correlation matrix

R, whereas all others serve the secondary, but crucial roles, of improving estimation of

R by adequately modeling the inherent spatiotemporal dependencies in the data.
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Stage 1: Estimating Region-Specific Parameters

In the first step, one considers all data for each region Rj individually. A benefit of this

approach is that all regional parameters

θj = {φγj , kγj , τγj} (3.6)

can be estimated in parallel. It is important to note that at this stage, all signals within

a same region have a common component signal that is a single realization of ηj, which

should be effectively treated as a fixed effect. Letting νjm = µj + ηjm, we define the

intra-regional model of the observed BOLD signals by conditioning on ηj, yielding

Xjlm | {ηjm}Mm=1 = νjm + γjlm + εjlm. (3.7)

Note that, since the spatiotemporal noise γj and measurement errors are assumed to

be independent of ηj, their variance components are not affected by conditioning. Thus,

the sole effect of conditioning on ηj is to treat it as a fixed effect in the first step of

estimation.

Because the number of fixed effects now scales with the number time points M , we

reduce the dimension of the problem by using a basis expansion. Specifically, suppose

{ψk}Kk=1 is a cubic B-spline basis on a given set of interior knots {su}K−4u=1 . Then we

approximate the fixed effects by νjm ≈
∑K

k=1 vjkψk(tm). Let vj = [vj1, . . . , vjK ]ᵀ. An

initial estimate of the fixed effect represented by vj can be obtained by regressing B-

spline basis on the sample pairs {tm, Xjlm}, l = 1, . . . ,M , m = 1, . . . ,M , which yields v̂j.

This estimate can either be fixed throughout the minimization of the negative likelihood

function, or simply be used as a starting point that is updated along with the variance
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components.

For j = 1, . . . , J , denote the observed signals for region Rj by

Xj = [Xj11, Xj12, . . . , Xj1M , Xj21, . . . , XjLjM ]ᵀ, (3.8)

which is a column vector of stacked BOLD signals. Similarly, set

ηj =[ηj1, . . . , ηjM ]ᵀ, (3.9)

γj =[γj11, γj12, . . . , γj1M , γj21, . . . , γjLjM ]ᵀ, and (3.10)

εj =[εj11, εj12, . . . , εj1M , εj21, . . . , εjLjM ]ᵀ. (3.11)

Define the matrix

G̃ =


ψ1(t1) ψ2(t1) . . . ψK(t1)
ψ1(t2) ψ2(t2) . . . ψK(t2)

...
...

. . .
...

ψ1(tM) ψ2(tM) . . . ψK(tM)

 , (3.12)

and G = 1Lj
⊗ G̃, where ⊗ denotes the Kronecker product and 1Lj

is the column vector

of 1’s with length Lj. Then the matrix form of (3.7) is

Xj | νj = Gjvj + γj + εj. (3.13)

Looking ahead, in order to estimate the regional parameters (3.6) in this model, we

construct and solve for restricted maximum likelihood (ReML) problem, or equivalently,

minimize the negative value of the restricted log likelihood function of Xj|νj. The reason

that we prefer ReML over the usual maximum likelihood (ML) is because ReML yields

unbiased estimators for the covariance components by fitting likelihood based on a set of
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contrasts that eliminates the fixed effects (Harville, 1974; Jennrich and Schluchter, 1986;

Lindstrom and Bates, 1988; Pinheiro and Bates, 2006). We note that it is feasible and

reasonable to recover the fixed effects from ReML estimates. However, the caveat is that

the ReML estimated fixed effects are not invariant under change of basis of data, which is

a desired property possessed by the usual ML estimators (see Pinheiro and Bates, 2006,

page 76). It is clear that the ReML function includes the variance of measurement errors

σ2, which enters the covariance matrix diagonally in an additive manner. If one factors

out σ2 from the entire covariance structure of Xj|νj, σ2 can be analytically represented

by the other parts of the likelihood function, which makes the computation process faster

and more accurate; see (3.17) and (3.25).

This implies that the model parameter estimates are invariant to, provided that one

uses the analytical solution for σ2, whether one estimates kγj , σ
2, the variance of γj and εj··

explicitly, or estimates the variance ratio between signals and measurement errors, kγj/σ
2,

as a whole. We adopt the latter approach for improved computation efficiency. Indeed,

one can observe that the estimation of the primal parameter only requires estimating

the variance ratios of the model components. Therefore, let k̃γj = kγj/σ
2, {B̃j}tmtm′ =

B̃j(tm, tm′) = k̃γj exp{−τ 2γj(tm − tm′)
2/2}, and IL be the L × L identity matrix. The

marginal model of (3.7) is

Xj ∼ N(Gjvj, σ
2Vj(θj)), (3.14)

where

Vj(θj) = Cj ⊗ B̃j + IMLj
(3.15)
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and the corresponding negative ReML function is (notational dependency on θj is sup-

pressed when there is no ambiguity of the context)

LReML
j (vj,θj |Xj,ηj) =

1

2
log |Vj|

+
1

2
log
∣∣GᵀjV −1j Gj

∣∣
+

1

2
(MLj −K) log (Xj −Gjvj)

ᵀ V −1j (Xj −Gjvj) ,

(3.16)

where we profiled

σ2 =
1

LjM −K
(Xj −Gjvj)

ᵀ V −1j (Xj −Gjvj) . (3.17)

Estimating the regional covariance components θj by minimizing the negative ReML

function in (3.16) is referred to as Stage 1 estimation in our two-stage approach. In

particular, θ̂j will be plugged into the full ReML function at Stage 2, where it can be

further updated or held fixed to reduce computation cost. The estimated parameters

for fixed effects v̂j obtained by B-Spline regression are used as the initial values of the

optimization. In the case where one updates these estimates, the analytical generalized

least square (GLS) estimator should be used rather than running the optimizer on vj

directly, that is, v̂j = (Gᵀj V̂
−1
j Gj)

−1Gᵀj V̂
−1
j Xj.

A modified version of the correlation of averages estimator might also be considered

at the end of Stage 1. Recall that one obtains the fixed-effects estimates at Stage 1

ν̂jm =
K∑
k=1

v̂jkψk(tm), j = 1, . . . , Lj,m = 1, . . . ,M. (3.18)

Then, letting µ̌j and ζ̌2j be the empirical mean and variance of ν̂jm across m (time), this
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modified estimator of ρjj′ is

ρ̂CAb
jj′ =

∑M
m=1(ν̂jm − µ̌j)(ν̂j′m − µ̌j′)

ζ̌j ζ̌j′
. (3.19)

This estimator will be similar to the correlation of averages when the number of knots

is large (close to M) and the estimate of vj is computed only using the initial spline

computation, without updating it in the likelihood maximization step.

Stage 2: Estimating Global and Inter-Regional Parameters

Having obtained estimates for the regional variance components in Stage 1, we advance

to pairwise regional data. Without loss of generality, consider regions R1, R2. Let X =

[Xᵀ
1 ,X

ᵀ
2 ]ᵀ, µ = [µ1, µ2]

ᵀ, η = [ηᵀ1 ,η
ᵀ
2 ]ᵀ, γᵀ = [γᵀ1 ,γ2]

ᵀ, α = [ηᵀ,γᵀ]ᵀ, and ε = [εᵀ1, ε
ᵀ
2]
ᵀ.

Furthermore, define the design matrices

Z =

[
1ML1 0ML1

0ML2 1ML2

]
,

and U = [Z, IM(L1+L2)], where 0L is the column vector of 0’s of length L. Then the

pairwise inter-regional model has the matrix form

X = Zµ+Uα+ ε. (3.20)

Following the discussion under (3.7), define k̃η = kη/σ
2, σ̃2

η = σ2
η/σ

2, and {Ã}tmtm′ =

Ãη(tm, tm′) = k̃η exp{−τ 2η (tm− tm′)2/2}+ σ̃2δmm′ . Let θ be the vector of parameters that

characterizes the covariance structure of X, which is a superset of the regional parameter

vector θ1,θ2, given by

θ = [τη, kη, φγ1 , φγ2 , τ̃γ1 , k̃γ1 , τ̃γ2 , k̃γ2 , ρ12, σ̃
2
η]
ᵀ. (3.21)
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Then, the corresponding marginal model is

X ∼ N(Zµ, σ2V (θ)), (3.22)

where

V (θ) =

[
C1 ⊗ B̃1 + JL1,L1 ⊗ Ã ρ12JL1,L2 ⊗ Ã

ρ12JL2,L1 ⊗ Ã C2 ⊗ B̃2 + JL2,L2 ⊗ Ã

]
+ IM(L1+L2) (3.23)

and JL,L′ is the L× L′ matrix of 1’s. To simplify the notation, we will reduce V (θ) to

V . One can estimate the model parameters θ, µ by minimizing the negative value of

the ReML function for inter-regional model, given by

LReML(µ,θ |X) =
1

2
log |V |

+
1

2
log
∣∣ZᵀV −1Z∣∣

+
1

2
(M(L1 + L2)− 2) log (X −Zµ)ᵀ V −1 (X −Zµ) .

(3.24)

As aforementioned, the estimates from Stage 1 can either be fixed throughout the op-

timization iterations, or be used as initial values for the full optimization procedure and

updated during the optimization. Similar to Stage 1, µ̂ is obtained by GLS its estimator.

In addition, we profiled

σ2 =
1

M(L1 + L2)− 2
(X −Zµ)ᵀ V −1 (X −Zµ) . (3.25)

We refer the estimation of θ as Stage 2 of our two-stage approach, and denote the

estimated primal parameter as ρ̂ReML
12 .
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3.3 Large Sample Properties

Large sample properties of model parameters are critical to uncertainty quantification.

The classical asymptotic distributions of ML estimators from i.i.d. data are well es-

tablished under certain regularity conditions. For spatiotemporal data, with our model

(3.22) being a special case of the more general class of spatial regression models, one

essentially have a single observation from a multivariate distribution whose dimension

grows along with sample size. Therefore, it is not immediately obvious that the estimated

model parameters are consistent and asymptotically normal as one would generally ex-

pect in the i.i.d. case. To that end, Sweeting (1980) established general asymptotic

normality of maximum likelihood estimators which requires increasing, convergent, and

smooth information. Mardia and Marshall (1984) proposed analogous regularity condi-

tions such that the ML estimators of spatial regression model parameters, which include

those of regressors and covariance matrix of residuals, converge weakly to a Gaussian

random vector. The asymptotic properties for the ReML estimators under the spatial

regression setting was investigated by Cressie and Lahiri (1993) in which the main focus

was on the parameters of the residual covariance structure. Cressie and Lahiri (1996)

further proposed practically verifiable sufficient conditions for the asymptotic results of

ReML estimators to hold under various common spatial regression settings. We will fol-

low the discussions therein to propose the sufficient conditions to establish asymptotic

distribution of ρ̂ReML in our model.

Since we always consider the pairwise model (3.20), the sample size is n = M(Lj+Lj′)
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and the model parameters of interest is θ with ρ̂ReML being the primal parameter. Despite

the fact that we specify the covariance structure V (θ) and its parameter vector θ in

section 3.2.1 and 3.2.2, we note that the sufficient conditions for the asymptotic normality

depend on the decaying rate of dependency rather than the specific form the V (θ) and

θ. That being said, it is possible to extend the results in this section to other instances of

covariance matrices that adequately model the spatiotemporal signals of interest and the

parameter vectors, say θ ∈ Θ ⊂ Rp, that characterizes such covariance structures. To

that end, we will assume θ is a p-vector throughout. Theorem 2.1 of Cressie and Lahiri

(1996) proposed three sufficient conditions for the ReML estimators to be asymptotically

normal, one of which is replaced by their Theorem 2.2 which imposes bounds on the

spectrum of the covariance structure. This condition is further replace by their Theorem

3.1 by assuming the data process is on a rectangular lattice and is covariance stationary.

We note that while our model shares similarities with the case discussed in their Theorem

3.1, there are striking differences between the two. First of all, our data is collected over

regularly spaced time domain, and the spatial domain consists of subsets that are enclosed

within a 3D rectangular lattice. Depending on the choice of pairs of regions, such spatial

domain may not be contiguous. More importantly, it is clear that our model covariance

V (θ) is only stationary within regional blocks but nonstationary across blocks. However,

we note that Theorem 2.2 strikes a good balance between generality and easy verification.

Therefore, we will proceed with stating Theorem 2.1 and 2.2 of Cressie and Lahiri (1996)

in our context, for the sake of completeness, as Proposition 3.3.1 and 3.3.2 and then

101



verify that our model satisfies these sufficient conditions.

Let Vi(θ) = ∂V (θ)/∂θi, where θi is the ith element of θ, i = 1, . . . , p. Also define

Π(θ) = V −1(θ)− V −1(θ)Z(ZᵀV −1(θ)Z)
−1
ZᵀV −1(θ), which is V −1(θ) projected onto

the complementary column space of the design matrix Z. Given the nature of the ReML

estimation, it is not surprising to see this projection. Let I(θ) be the p × p matrix

of second-order partial derivatives of the negative ReML function, that is, {I(θ)}ij =

∂2LReML(θ)/∂θi∂θj, 1 ≤ i, j ≤ p. It is straightforward to show that the ijth element of

Fisher information matrix is given by

Eθ(I(θ))ij =
1

2
Tr {Π(θ)Vi(θ)Π(θ)Vj(θ)} , 1 ≤ i, j ≤ p. (3.26)

Further define p×p matrices of parameter vectors θM0 = (θ01, . . . , θ
0
p), θ

0
i ∈ θ, i = 1, . . . , p.

We write {I(θM0 )}ij = ∂2LReML(θ)/∂θi∂θj |θ=θ0i , that is, the matrix of the second-order

partial derivatives of LReML where each row is evaluated at the corresponding row of θM0
ᵀ.

Denote the Frobenius norm of a matrix by ‖E‖ and the spectral norm by ‖E‖s.

Proposition 3.3.1. Assume that

A.1 V (θ) is twice continuously differentiable on Θ.

A.2 for any θ, there exists nonrandom, positive-definite (p.d.) p×p matrices W (θ) and

a sequence of matrices {En(θ), n ≥ 1}, continuous in θ, such that ‖E−1n (θ)‖ → 0

and E−1n (θ)In(θ)(E−1n (θ))ᵀ  W (θ), both uniformly over any compact subset

F ⊂ Θ.

A.3 for all c > 0, ξ > 0,
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(i) sup{‖E−1n (θ)E−1n (θ0)− Ip‖ :
∥∥(E−1n (θ))

ᵀ
(θ − θ0)

∥∥ ≤ c;θ,θ0 ∈ F } → 0 uniformly

over any compact subset F ⊂ Θ and

(ii) for any fixed matrix θM0 , let D(θM0 ,θ) =
(
In(θM0 )− In (θ)

)
,

Pθ( sup{
∥∥E−1n (θ)D(θM0 ,θ)(E−1n (θ))

ᵀ∥∥ :∥∥(E−1n (θ))
ᵀ
(θ − θ0i )

∥∥ ≤ c, 1 ≤ i ≤ p;θ,θ0 ∈ F } > ξ)→ 0,

uniformly over any compact subset F ⊂ Θ.

Then,

(En(θ))ᵀ(θ̂ReML − θ) N(0,W−1(θ)). (3.27)

As observed in Cressie and Lahiri (1993, 1996), the main challenge in verifying these

conditions is A.2. Condition A.1 is easily verified for a specific covariance structure.

Along with a properly chosen normalizing sequence {En(θ)} that is sufficiently smooth,

A.3 is also easily verified. Indeed, Cressie and Lahiri (1996) suggested a normalizing

sequence

En(θ) = diag{‖Π(θ)V1(θ)‖ , . . . , ‖Π(θ)Vp(θ)‖} (3.28)

and proposed a set of sufficient conditions in Theorem 2.2 for A.2 to hold. It is straight

forward to see that if A.2 holds, then by (3.23) and (3.28), A.1, A.3 also hold. Thus, we

will verify that their Theorem 2.2 holds for our model.

Denoted by S ⊂ Rd the lattice of data sites. Let R = {l1, l2, l3} ⊂ Z3
+ and T =

{tm} ⊂ Z+ We work under the assumption that our data is collected over S = R × T .

The asymptotic regime we consider is increasing time domain and fixed spatial domain,

that is, |T | → ∞, which is a reasonable assumption for BOLD signals. Furthermore, we
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introduce the normalized information matrix Qn(θ) whose ijth element is given by

{Qn(θ)}ij =
Tr(Π(θ)Vi(θ)Π(θ)Vj(θ))

‖Π(θ)Vi(θ)‖ ‖Π(θ)Vj(θ)‖
, 1 ≤ i, j ≤ p. (3.29)

Also, let |λ1n| ≤ · · · ≤ |λnn|, |λi1n| ≤ · · · ≤ |λinn|, and
∣∣λij1n∣∣ ≤ · · · ≤ |λijnn| be the ordered

absolute values of eigenvalues of V (θ),Vi(θ), and Vij(θ), 1 ≤ i, j ≤ p, respectively. In

addition, define the a sequence {rn, n ≥ 1} such that lim supn→∞ rn/n ≤ 1− δ, for some

δ ∈ (0, 1). To simplify the notation, We will suppress the dependence on θ and n when

there is no ambiguity of context. The sufficient condition for Assumption A.2 is

Proposition 3.3.2. Assume that Assumptions A.1 and A.3 hold and that there exists a

p.d. matrix W (θ), continuous in θ, such that Qn(θ) W (θ) uniformly. Furthermore,

for any compact subset F ⊂ Θ, suppose there exist constants 0 < h(F ) < ∞ and

0 < g(F ) such that

lim sup
n→∞

max{|λn| ,
∣∣λin∣∣ , ∣∣λijn ∣∣ : 1 ≤ i, j ≤ p} < h(F ) (3.30)

and

lim inf
n→∞

min{|λ1| ,
∣∣λirn∣∣ : 1 ≤ i ≤ p} > g(F ), (3.31)

uniformly in F . Then

{E [In(θ)]}1/2 (θ̂ReML − θ) N(0, Ip). (3.32)

Next, we state two lemmas that will be used to verify that our model satisfies Propo-

sition 3.3.2. The proofs of these two lemmas are omitted as they follow standard matrix

algebra.

Lemma 3.3.3. Let D be a nonsingular matrix and C be a square matrix, both of size
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n× n such that

‖D − C‖s
∥∥D−1∥∥

s
< 1.

Then, C−1 exists and

∥∥C−1∥∥
s
≤

∥∥D−1∥∥
s

1−
∥∥In −D−1C

∥∥
s

.

Lemma 3.3.4. Let D be an n×n matrix with eigenvalues λ1 ≤ · · · ≤ λn. Then, for any

0 ≤ r ≤ n− 2, and any 1 ≤ i1 < · · · < ir ≤ n,

λr+1 ≥ min{λ′ : (Di1,...,ir − λ′I) = 0},

where Di1,...,ir is the matrix obtained by deleting the i1th, . . . , irth columns and rows of

D.

Theorem 3.3.5. The model (3.22) satisfies Propositions 3.3.2. Therefore,

{E [In(θ)]}1/2 (θ̂ReML − θ) N(0, Ip). (3.33)

Proof. Denoted by V(·)
uv the uvth element of V(·) = V ,Vi,Vij, 1 ≤ i, j ≤ p. Let λ

(·)
n be

the largest eigenvalues of V(·). Then, by Gershgorin circle theorem, it is straight forward

that

|λ(·)n | ≤ max
1≤u≤n

{
n∑
v=1

V(·)
uv

}
≤ h(K). (3.34)

The existence of such bound h(K) is guaranteed due to a) the exponentially decaying

B̃1, B̃2, and Ã along the temporal domain and b) the fixed spatial grids, hence the fixed

C1,C2,JL1,L2 , and JL2,L1 in (3.23). The uniform property comes from the smoothness

of V(·) in θ and the fact that F is compact.
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To verify the lower bounds in (3.31), we first check |λ1|. Let D = diag{V }. Then,

‖D − V ‖s ≤
∑

1≤u6=v≤n

|V uv| ≤ g1(F ) max
1≤u≤n

{V uu}, (3.35)

where the existence of g1(F ) is guaranteed by the exponential decaying elements of V .

By Lemma 3.3.3,

λ1 ≥
1− g1(F )

max1≤u≤n{V uu}
. (3.36)

Next, we proceed to obtain the lower bound for λirn . Recall that S = {(l1, l2, l3, tm)},

where li, i = 1, 2, 3, encode signals’ spatial locations, whose size are considered to be

fixed. tm = 1, 2, . . . are the regularly spaced measurement points in time, and is assumed

to grow to infinity. Denoted by S̃ = S \{tm = 2N+1}, the index set obtained by deleting

the odd number time points. Define rn = n− |S̃|, then

lim sup
n→∞

rn
n
≤ 1

2
.

Next, let Ṽi be the matrices obtained by deleting the elements of Vi that correspond to

even time points. Now, set D = diag
(
Ṽ 2
i

)
I and C = Ṽ 2

i , 1 ≤ i ≤ p. Then,

‖D − C‖s ≤
∑

1≤u6=v≤n

∣∣∣(Ṽ 2
i )uv

∣∣∣ ≤ g2(F ) max
1≤u≤n

{(Ṽ 2
i )uu}, 1 ≤ i ≤ p. (3.37)

By Lemma 3.3.3 and 3.3.4, one obtains

|λirn|
2 ≥ 1− g2(F )

max1≤u≤n{(Ṽ 2
i )uu}

. (3.38)

The verification is complete by choosing g = max{g1, g2}. �
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3.4 Simulation Study

To understand the performance of our model, we proceed with a simulation study. BOLD

signals are simulated by an M(L1 + L2) Gaussian vector according to (3.20) with model

parameters (3.21). Various values of θ are used to simulate different settings. For each

setting, we ran Q = 30 simulations and across all simulation settings, we set L1 = L2 = 30

and M = 50. One of the main goals is to study the performance of our estimator ρ̂ReML
12

under different settings of signal strength relative to spatiotemporal noise, which is mainly

quantified by the values of k̃η relative to those of k̃γ1 and k̃γ2 . Therefore, we fix σ2 = 1,

τη = 1/25, and σ̃2
η = 0.1 across all simulations. Table 3.1 summarizes the simulation

settings. We compare three estimators, ρ̂ReML
12 , ρ̂CA

12 , and ρ̂CAb
12 , which are the ReML

estimator of ρ12, the conventional Pearson correlation of averages, and the correlation of

averages on B-spline fitted signals, respectively. The calculation of the two correlation

of averages type estimators are detailed in (3.19) and (3.4). The empirical distributions

of these estimators are plotted in Figures 3.1 and 3.2 and the RMSE are presented in

Table 3.2.

Settings k̃η φ1 φ2 τγ1 k̃γ1 τγ2 k̃γ2 ρ12

1 0 1
√

2/3
√

2/3 2 1/
√

2 4 0

2 1 1/
√

2
√

2/3
√

2/3 2 1/
√

2 4 0

3 1 1
√

2/3
√

2/3 2 1/
√

2 4 0.5

4 0.1 1/
√

2
√

2/3
√

2/6 0.2
√

2/7 0.4 0.5

5 10 1/
√

2
√

2/3
√

2/6 2
√

2/7 4 0.5

6 0.1 1/
√

2
√

2/3 1 0.2
√

2/3 0.4 0.5

Table 3.1: Simulation settings.

Settings 1 and 2 represent the case where a pair of regions are not connected. In
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Figure 3.1: Simulation settings 1 and 2: disconnected regions.

Settings ρ̂ReML
12 ρ̂CA

12 ρ̂CAb
12

1 0.1982 0.0020 0.0785
2 0.2139 0.0843 0.1691
3 0.1987 0.2104 0.2116
4 0.2240 0.2626 0.3855
5 0.1457 0.2248 0.2689
6 0.2400 0.1750 0.0246

Table 3.2: RMSE of ρ̂ReML
12 , ρ̂CA

12 , and ρ̂CAb
12 .

particular, setting 1 is emulating the case of a dead brain, as the variation of signals

k̃η = 0. We can see from (a) - (c) in Figure 3.1 that in setting 1, all estimators are

concentrated around the true parameter value 0, with ρ̂CA
12 having the smallest RMSE.

ρ̂ReML
12 has better concentration around zero than ρ̂CAb

12 which is slightly more biased

toward the negative values. Setting 2 aims to simulate two disconnected regions in a live

brain. In this setting, the simulation results tell a similar story as in setting 1. Overall,

in these two settings of disconnected regions, all three estimators perform reasonably
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Figure 3.2: Simulation 3 to 6: connected regions.
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well with ρ̂CA
12 having the lowest RMSE. One should not be surprised by this result as

we have seen that this estimator tend to be biased towards 0 with the presence of large

spatiotemporal noise. The rest 4 settings represent the cases where regions are actively

connected but with different levels of relative signal strength. In particular, setting 3 has

stronger signal and weaker spatiotemporal noise compared to setting 4 in the sense that

the spatiotemporal noise decays slower in setting 4. While ρ̂ReML
12 performs best in both

cases, we can clearly see the increase in RMSE in setting 4. In Figure 3.2 (a) and (d), one

can see the increased spread of ρ̂ReML
12 due to higher spatiotemporal noise. The interesting

observation is that ρ̂CA
12 is heavily biased towards 0 in these two cases, which verifies our

claim. ρ̂CAb
12 is less biased than ρ̂CA

12 but suffers from large spread. In setting 5 where

the signal strength dominates the spatiotemporal noise, ρ̂ReML
12 gains further advantage in

terms of RMSE. Setting 6 has the same setting as setting 4 except that the noise decays

faster on the time domain. We can see ρ̂ReML
12 is relatively robust with faster tapering

temporal dependence in the noise. However, ρ̂CAb
12 performs surprisingly well in this case,

which suggests that ρ̂CAb
12 could be a decent estimator when noise decays fast enough

along the temporal domain. This is intuitive as correlation of average type of estimators

is ideal for i.i.d. data. Overall, we can observe that ρ̂ReML
12 is the most robust estimator

across all different simulation settings.
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3.5 Data Application

With the robust empirical performance of our estimator ρ̂ReML observed in the simulation

studies, we proceed to real data application. Our model is applied to one dead and one

anesthetized live long Evans rat. The data set we use is the same as the one studied in

Becq et al. (2020). In particular, the live rat we work on is labeled as rat 20160616 145220

whose BOLD signals are collected with anesthetic (Etomidate) administrated. The dead

rat we use is labeled as rat 0160524 153000. For both rats, the BOLD signals are collected

at the frequency of 2 Hz for the duration of 30 minutes. Preprocessing steps include

motion removal and wavelet transformation of the original signals. Becq et al. (2020)

found that the level 4 wavelet coefficients tend to decorrelate brain connectivity from

systematic variable such as heart rat, body temperature, and so on, which were known

factors to perturb functional connectivity. We will adopt this procedure and apply our

model to the level 4 wavelet coefficients. For more details on these preprocessing steps,

we refer readers to Becq et al. (2020).

We focus on 21 out of 51 regions in rat brains. First, we obtain ρ̂ReML
jj′ for 1 ≤ j <

l′ ≤ 21, then using the asymptotic distribution derived in Theorem 3.3.5 to calculate

the z-scores of these estimators. We further adopt the Benjamini–Yekutieli (BY) pro-

cedure (Benjamini and Yekutieli, 2001) to test for significant pairs of regions. The BY

procedure is used to control the false discovery rate (FDR) under arbitrary dependence

assumptions, which is suitable for our use case. Furthermore, since we are expecting to

make discoveries for connected brain regions, controlling FDR means we do not penalize

111



single false discovery as harsh as controlling the family-wise error rate, which makes it

less conservative and more reasonable for our purpose.

Looking at the network for the dead rat in Figure 3.3, we discover zero connected

regions, which is the expected result for dead rats. Furthermore, by comparing the result

in Figure 3.4 and 3.5 with the network of the same rat in Becq et al. (2020). We found

that our result is mostly consistent with the previous studies. For example, regions

such as ACC, M1, M2, AU are known to be highly connected. In our result, we also

observed a high connectivity level for these regions. On the other hand, for Ent, RSC,

these commonly unconnected regions, a low level of connectivity is also observed in our

result. However, our result does show more discoveries compared to the results in the

previous study. For example, Apir. This is not fully unexpected since the work done by

Becq et al. (2020) is based on Pearson correlation of averages, which we have shown to

be biased towards 0 in the presence of spatiotemporal noises. We also constructed node

degree (ND) and functional connectivity strength (FCS) plots by regions in Figure 3.6

to further summarize the recovered network. The minor degree of asymmetry in both

ND and FCS metrics between left and right regions are around the similar scale as those

observed in Becq et al. (2020).

Furthermore, despite that our two-stage approach effectively reduces the dimension of

parameter space, likelihood evaluation remains expensive due to the large dimensionality

of our covariance matrix. To speed up the computation, we utilize parallel computing to

run estimations simultaneously. Also, we delegate level 3 Basic Linear Algebra Subpro-
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Figure 3.3: Brain network of dead rat 20160524 153000.

grams (BLAS) matrix operations to GPU using NVIDIA’s CUDA framework to accelerate

matrix calculations. These operations are complex enough, for example, matrix-matrix

product, solving triangular matrix equations, so that the speed gain of using GPU out-

shines the overhead of transferring data between CPU and GPU. To demonstrate this

point, we benchmarked matrix inversion and log determinant calculations, which are com-

monly encountered in log likelihood evaluation, using CPU and GPU for n×n matrices,

n = 1000, 2000, . . . , 8000. Figure 3.7 shows a decisive advantage of GPU calculation

when matrix size grows over a certain level (4000× 4000 in our experiment). In our data

application, the covariance matrix could easily go beyond 10000 rows (columns) so using

GPU acceleration could greatly improve computation efficiency.
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3.6 Discussion

We proposed a spatiotemporal model to model voxel level BOLD signals that are tam-

pered by spatiotemporal noises. By fully addressing the spatiotemporal dependency

structure, we were able to estimate the correlation coefficient in our model and use it

to quantify brain connectivity. Large sample properties were established with mild con-

ditions on the smoothness of covariance structure and the decaying rate of dependency.

Simulation studies showed that our model parameters can be accurately estimated and
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is advantageous to the conventional Pearson correlation of averages in the presence of

spatiotemporal noises. Furthermore, the application on rat data showed that our findings

are mostly consistent with previously established results, which indicates that our model

can produce reasonable results while being superior in certain noisy settings. Further de-

velopment includes more flexible covariance structure construction. Indeed, section 3.3

indicates that the covariance structure could be rather flexible. Consequently, our model

can be extended to more general processes that share the similar noisy spatiotemporal

features.
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