
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Topological Based Machine Learning Methods

Permalink
https://escholarship.org/uc/item/4vr8963d

Author
Georges, Alexander

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vr8963d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Topological Based Machine Learning Methods

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Physics

by

Alex Georges

Committee in charge:

Professor David Meyer, Chair
Professor Benjamin Grinstein, Co-Chair
Professor Melvin Leok
Professor John McGreevy
Professor Tom Murphy
Professor Frank Wüerthwein

2019

Copyright

Alex Georges, 2019

All rights reserved.

The dissertation of Alex Georges is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Co-Chair

Chair

University of California San Diego

2019

iii

DEDICATION

for my family, who is always there for me

for soupy, who was the best

for snoopy, who was the worst

and for everyone that doesn’t take life too seriously

iv

EPIGRAPH

There is nothing either good or bad, but thinking makes it so.

—Shakespeare

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiii

Acknowledgements . xiv

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Scope of the Dissertation . 2

Chapter 2 Data Science Fundamentals . 4
2.1 Common Terms . 4
2.2 What is Data? . 7

2.2.1 Preparing Data . 9
2.2.2 Curses . 10

2.3 What is Data Science? . 11
2.3.1 Typical Workflow . 14
2.3.2 Bias-Variance Tradeoff . 16
2.3.3 Ethics . 19

2.4 Algorithm Classes and Techniques 19
2.4.1 Optimization . 20
2.4.2 Dimensionality Reduction 21
2.4.3 Clustering . 23
2.4.4 Classification . 25
2.4.5 Topological Data Analysis 26

Chapter 3 Dimensionality Reduction on Congress 32
3.1 Data . 33
3.2 Summary of Results . 34
3.3 Principal Component Analysis and Singular Value Decomposition . 35

3.3.1 Information Flow over Time 36

vi

3.3.2 Optimal Rank Flow over Time 40
3.4 Summary . 48
3.5 Acknowledgements . 49
3.6 Additional Figures for Information and Dimension Flows 49

Chapter 4 Learned Persistent Homology . 56
4.1 Background . 57

4.1.1 Homology . 57
4.1.2 Persistent Homology . 59

4.2 Ambiguities in Persistence . 64
4.3 Data . 68
4.4 Learning Persistence . 70

4.4.1 Supervised Learning of Persistence 70
4.4.2 Unsupervised Learning of Persistence 72

4.5 Ambiguities in Persistence: Part Deux! 79
4.6 Acknowledgements . 80

Chapter 5 Learned Mappers . 81
5.1 Introduction . 81

5.1.1 What is Mapper? . 83
5.1.2 Mapper Algorithm . 84

5.2 Training and Testing Procedures 87
5.2.1 Training Procedure . 89
5.2.2 Mapping Unseen Points to the Committee 90
5.2.3 Splitting the Dataset . 92

5.3 Numerical Experiments and Results 93
5.3.1 Main Results . 93
5.3.2 Mapper Committee Dimensions 95
5.3.3 Description of Noise Models 95
5.3.4 Architecture of the End Classifier 98
5.3.5 Discussion . 100

5.4 Theoretical Results . 101
5.4.1 Proof of the MC Robustness 102

5.5 Conclusion . 103

Chapter 6 Conclusion and Future Directions . 105

Appendix A Feature-Based Algorithm Selection for Mixed Integer Programming . . . 107
A.1 Introduction . 108

A.1.1 Mixed Integer Programming 108
A.1.2 Algorithm Selection . 109
A.1.3 Related Work . 110

A.2 Method . 111

vii

A.2.1 Description of Data . 111
A.2.2 Upper Bounds/Well-Defined Features 114

A.3 Feature Analysis . 115
A.3.1 Pearson Correlation Coefficients 115
A.3.2 Principal Component Analysis 116
A.3.3 Multidimensional Scaling 118
A.3.4 Feature Investigation Conclusions 120

A.4 Algorithm Selection Methods . 123
A.4.1 AdaBoost . 123
A.4.2 Hydra . 124
A.4.3 Selecting a Portfolio vs selecting an algorithm 124
A.4.4 Performance Metric . 125

A.5 Results . 126
A.5.1 Performance . 126
A.5.2 Primal-Dual Integrals as a Proxy for Time 128
A.5.3 Software package . 129

A.6 Conclusion . 130
A.7 Extracted Features . 131

A.7.1 Static features . 132
A.7.2 Dynamic features . 133
A.7.3 Top features for M&C . 134
A.7.4 Top features for Regions 135

A.8 Completion Codes . 135

Appendix B Renormalization Group Flows and Morse Homology 137
B.1 Introduction . 137
B.2 Background . 138

B.2.1 Classical Morse Theory 139
B.2.2 Morse-Smale Homology 140
B.2.3 Extensions to Morse Homology 145

B.3 The c-theorems . 146
B.3.1 The d = 2 c-theorem . 146
B.3.2 The even dimensional c-theorem 147
B.3.3 The proposed even dimensional c-theorem 149
B.3.4 The a-theorem . 152

B.4 Acknowledgements . 155

Appendix C Explanations of Select Algorithms . 156

Bibliography . 158

viii

LIST OF FIGURES

Figure 2.1: In this diagram: deep learning is seen as a subset of machine learning,
machine learning as intersecting AI, and data science as intersecting all the
above. Relative sizes in this diagram have little meaning. If you want to pull
in money, it’s best to describe what you do as AI, since the term carries buzz. 12

Figure 2.2: A “not-so-quite” accurate depiction of how computer science, math & statis-
tics, and domain sciences interact. 14

Figure 2.3: A simplified workflow of a data science project. 15
Figure 2.4: The bias-variance tradeoff depicted by errors as a function of model complexity. 18
Figure 2.5: Both of these datasets are topologically equivalent to a circle. TDA in general

attempts to capture this information. 28

Figure 3.1: The PCA retained information as a function of dimension given by Equation
(3.1). The input data is the roll call vote for the 110th Senate (years 2007-2009). 38

Figure 3.2: The PCA retained information as a function of dimension given by Equation
(3.1). The input data is the roll call vote for the 110th House (years 2007-
2009). 39

Figure 3.3: The flow in I(d = 1)(t) for the Senate for years 1789 to 2015 (1st to 113th
Congress). 41

Figure 3.4: The flow in I(d = 1)(t) for the House for years 1789 to 2015 (1st to 113th
Congress). 41

Figure 3.5: The flow in I(d = 1)(t) of the Senate roll call data for years 1957 to 2015 (85th
to 113th Congress). Notice the clear upward flow after the 1979 Congress.
This figure is Figure 3.3 restricted to more recent years. 42

Figure 3.6: The flow in I(d = 1)(t) of the House roll call data for years 1957 to 2015 (85th
to 113th Congress). Notice the clear upward flow after the 1969 Congress.
This figure is Figure 3.4 restricted to more recent years. 43

Figure 3.7: Flow in the dimension of the Senate roll call data for years 1789 to 2015 (1st
to 113th Congress). 45

Figure 3.8: Flow in the dimension of the House roll call data for years 1789 to 2015 (1st
to 113th Congress). 45

Figure 3.9: Flow in the dimension of the Senate roll call data for years 1957 to 2015 (85th
to 113th Congress). Notice the clear upward flow after the 1979 Congress.
This figure is Figure 3.7 restricted to more recent years. 46

Figure 3.10: Flow in the dimension of the House roll call data for years 1957 to 2015 (85th
to 113th Congress). Notice the clear upward flow after the 1979 Congress.
This figure is Figure 3.8 restricted to more recent years. 47

Figure 3.11: The flow in I(d = 1)(t) of the Senate roll call data for years 1789 to 1849 (1st
to 30th Congress). 49

Figure 3.12: The flow in I(d = 1)(t) of the Senate roll call data for years 1847 to 1909
(30th to 60th Congress). 50

ix

Figure 3.13: The flow in I(d = 1)(t) of the Senate roll call data for years 1907 to 1969
(60th to 90th Congress). 50

Figure 3.14: Flow in the dimension of the Senate roll call data for years 1789 to 1849 (1st
to 30th Congress). 51

Figure 3.15: Flow in the dimension of the Senate roll call data for years 1847 to 1909
(30th to 60th Congress). 51

Figure 3.16: Flow in the dimension of the Senate roll call data for years 1907 to 1969
(60th to 90th Congress). 52

Figure 3.17: The flow in I(d = 1)(t) of the House roll call data for years 1789 to 1849 (1st
to 30th Congress). 52

Figure 3.18: The flow in I(d = 1)(t) of the House roll call data for years 1847 to 1909
(30th to 60th Congress). 53

Figure 3.19: The flow in I(d = 1)(t) of the House roll call data for years 1907 to 1969
(60th to 90th Congress). 53

Figure 3.20: Flow in the dimension of the House roll call data for years 1789 to 1849 (1st
to 30th Congress). 54

Figure 3.21: Flow in the dimension of the House roll call data for years 1847 to 1909
(30th to 60th Congress). 54

Figure 3.22: Flow in the dimension of the House roll call data for years 1907 to 1969
(60th to 90th Congress). 55

Figure 4.1: Consider the 2-sphere as the topological space which can be seen as con-
structed from 2-simplices. The boundary operator acts on these simplices
iteratively, at each step producing a set of lower dimensional simplices. Note,
this figure leaves out the fact that ∂2 ≡ 0. 58

Figure 4.2: A depiction of how the Rips complex changes as a function of ε . 0-simplices
are represented by the individual data points, 1-simplices by the black edges
connecting them, 2-simplices by yellow, 3-simplices by green, 4-simplices
by red, and 5-simplices by blue. Image from [48]. 60

Figure 4.3: Three spaces that are topologically distinct and characterized by their set of
Betti numbers. The red lines represent potential 1-dimensional generators.
In the case of S2 the generator can be contracted to a point, so β1 = 0. The
generators for the tori cannot be contracted, hence β1 , 0 for both. 64

Figure 4.4: 500 randomly sampled points from a circle. 65
Figure 4.5: The barcode plot for Fig 4.4. For this example, δR ≈ 11.6 The top barcode

represents how H0 changes with respect to filtration value; the bottom barcode
represents the change in H1. There is no significance to the ordering in either
y-axis. 66

Figure 4.6: A 2D Gaussian distribution used as a noise source. The Gaussian has σ =
0.18 for each axis. 66

Figure 4.7: A circle + Gaussian noise. The circle diameter is 1 and the Gaussian has
σ = 0.18 for each axis. 67

x

Figure 4.8: The barcode plot for Fig 4.7. For this example, the two largest relative
dominances are: δR ≈ 0.23, 0.19. The top barcode represents how H0 changes
with respect to filtration value; the bottom barcode represents the change in
H1. There is no significance to the ordering in either y-axis. 67

Figure 4.9: A GMM with four different covariance matrices (see Appendix C) applied
to classifying noisy circles and figure-8’s with σ = 0.1. Depicted here is a
projection of the GMM and first two relative dominances to R2. 71

Figure 4.10: Test accuracy as a function of σ for a GMM, RF, and NN. Even at σ = 0.5,
the RF and NN are able to predict the topology with 75% accuracy on test
instances. The NN we use is a shallow multilayer perceptron (“MLP”). . . 72

Figure 4.11: Noisy circles for two values of σ. At σ = 0.3 accuracy ∼ 70% and at σ = 0.5
accuracy ∼ 75% for both the RF and NN. 73

Figure 4.12: Noisy figure-8’s for two values of σ. At σ = 0.3 accuracy ∼ 70% and at
σ = 0.5 accuracy ∼ 75% for both the RF and NN. 73

Figure 4.13: p-value with respect to noise for pairwise comparisons of δ(i)R for the circle. 75
Figure 4.14: p-value with respect to noise for pairwise comparisons of δ(i)R for the figure-8. 76
Figure 4.15: Histograms for the 3 largest relative dominances of the circle. At each noise

level, blue is δ(1)R , green is δ(2)R , red is δ(3)R . These colors do not correspond to
the p-value measurements. 77

Figure 4.16: Histograms for the 3 largest relative dominances of the figure 8. At each noise
level, blue is δ(1)R , green is δ(2)R , red is δ(3)R . These colors do not correspond to
the p-value measurements. 78

Figure 5.1: Illustration of our MC method. In practice we use not just one Mapper object
but a whole committee of mappers (see Section 5.2). 83

Figure 5.2: Mapper objects computed for 10k MNIST training data, with contractive
autoencoder projection (see Section 5.2). Color corresponds to projection
value, and node size corresponds to total number of points in the node.
nint = nbins = 10 for the LHS figure, nint = nbins = 20 for the RHS figure. . . 85

Figure 5.3: Histograms of length scales at which clusters are grouped via single-linkage
clustering. These plots represent varied nbins for the first interval in the open
cover of Uα, using the filter f = PCA1. In this case, increasing nbins from 10
to 20 has no effect on the cutoff value, which is set to 6.6. 86

Figure 5.4: Latent space representations of two nodes in the compressed layer of the
VAE (i.e., a 2-dimensional subspace of the projection to 20-dimensions). We
use a β-term that multiplies the KL divergence. β = 0 yields the best overall
robustness. 88

Figure 5.5: Test accuracy of MC trained using 30k sample from MNIST dataset. We
present the accuracy with respect to the number of PCA filters used in the
committee of mappers, and the number of subsets the whole 30k sample was
split into. 93

Figure 5.6: The normalized accuracy with respect to l2-norm. The PCA based Mapper
approach far outperforms the CNN approach for all the noise models. . . . 96

xi

Figure 5.7: The normalized accuracy with respect to l2-norm. The PCA based Mapper
approach far outperforms the CNN approach for all the noise models. For
60k MNIST, we choose to investigate just two Mapper based methods: PCA
and VAE which seem to perform the best on average. 97

Figure 5.8: The number 7 as a function of λ for the Gauss blur noise model. λ can be
thought of as a percentage of 28, a fundamental length scale in this data. . . 98

Figure 5.9: The number 7 as a function of λ for the s&p noise model. λ = 0.01, for
instance, corresponds to a 1% chance of flipping a pixel. 99

Figure 5.10: The number 7 as a function of λ for the Gaussian noise model. 99

Figure A.1: A Pearson correlation coefficient heatmap computed using the first 20 dimen-
sions in the feature space. The diagonal and upper triangular elements have
been removed since this heatmap is a symmetric plot. 117

Figure A.2: The PCA retained information as a function of dimension given by Equa-
tion (3.1). The input data is the static+dynamic feature space. The various
horizontal lines are 70%, 90% and 95% thresholds. The 95% threshold
occurs at d = 71. 118

Figure A.3: PCA components 1 and 2, for just the dynamic features for M&C. Notice the
distinct 2 clusters that emerge. 119

Figure A.4: PCA components 1 and 2, for static and dynamic features for M&C. Notice,
the cluster information is washed away. 120

Figure A.5: The MDS retained information as a function of dimension given by equation
(A.2). The input data is the static+dynamic feature space. The 95% threshold
occurs at d = 19. 121

Figure A.6: MDS projection to d = 2, for just the dynamic features for M&C. Notice the
distinct 2 clusters that emerge. 122

Figure A.7: MDS projection to d = 2, for static and dynamic features for M&C. Notice, the
cluster information is washed away. 122

Figure A.8: Portfolio performance on the M&C data set. Selectors were trained and tested
on Primal-Dual integral values. 127

Figure A.9: Portfolio performance on the M&C data set. Selectors were trained on Primal-
Dual integral values and tested on their time performance. 128

Figure B.1: Torus with level sets and critical points drawn in. With the appropriate
coordinate system, the upmost points correspond to the largest heights. . . 139

Figure B.2: Torus with level sets and a few examples of the stable and unstable manifolds.
The topmost ring depicts just one possible flow coming from the λ = 2 point,
but there is indeed a two dimensional structure flowing from this point. . . 142

xii

LIST OF TABLES

Table 4.1: Parameters of Generated Data . 69
Table 4.2: The p-values we would like to see for the circle and figure-8 for the three

comparisons in δ(i)R . A p-value ≤ 5% means the distributions are different; a
p-value > 5% means the distributions can be considered the same. 74

Table 4.3: The data X is either the letter “A” or “O”. Theoretically, persistent homology
will return a 1 for the first two Betti numbers; mapper will return a graph that
looks different between the datasets. 80

Table 5.1: The initial classification accuracies. PCA, CAE, DAE, VAE are all Mapper
based approaches, and only differ in the type of projection. These values give
the normalization in Equation (5.4). 95

Table 5.2: The total number of nodes in the mapper committee, with respect to choice in
latent space projections. 97

Table B.1: The leading order dependence of χ and W on the couplings for various
physical theories. We specify the loop-order to which each calculation was
done in [142]. 154

xiii

ACKNOWLEDGEMENTS

My time at UCSD has been invaluable, not only for my academic and professional growth,

but also for my personal growth. I have numerous people to thank that have invested their time

into me, which has consequently helped lead to my success so far, for which I am very grateful.

There are far too many people to name individually, and to those people I leave out I apologize.

First off, I would like to thank my family: Richard, Marlene, Marissa, Lauren, and all

the friends I’ve made in San Diego for without whom, I would have gone crazy. Second, my

advisors: David, Ben, and Frank, for without whom, I would still be just 1% as intelligent as

them compared to the 2% that I am now. Third, the staff, including Sharmila, Catherine, Jasmyn,

Kevin, and Lester, for without whom, all of us would be tripping over our shoelaces. Finally, I’d

like to thank Jacek as we accomplished something truly amazing by drawing circles and lines.

Chapter 5, in part is currently being prepared for submission for publication of the

material. Jacek Cyranka, Alex Georges, and David A. Meyer. The dissertation author was a

primary investigator and author of this material.

Appendix A is in part is a reprint of the material as it appears in ZIB-Report 18-17

[1]. The dissertation author was a primary investigator and author of this paper. Alex Georges,

Ambros Gleixner, Gorana Gojić, Robert Lion Gottwald, David Haley, Gregor Hendel, Bartłomiej

Matejczyk. The work for this article was partly conducted within the Research Campus MODAL

funded by the German Federal Ministry of Education and Research (BMBF grant number

05M14ZAM) within the program “Graduate-Level Research in Industrial Projects for Students”

(GRIPS) 2017. The described research activities have been partly funded by the Federal Ministry

for Economic Affairs and Energy within the project BEAM-ME (ID: 03ET4023A-F). The authors

would like to thank the Zuse Institute Berlin, the Institute for Pure and Applied Mathematics and

the National Science Foundation for their contributions in resources and finances to this project.

Special thanks to Daniel Hulme and Karsten Lehmann from Satalia for many fruitful discussions

about the topic.

xiv

VITA

2012 B. A. in Physics, University of California Berkeley

2012 B. A. in Pure Mathematics, University of California Berkeley

2019 Ph. D. in Physics, University of California San Diego

PUBLICATIONS AND OTHER MATERIAL

Cyranka J., Georges A., Meyer D. A. Mapper Based Classifier. Submitted for publication, 2019.

Georges A., Gleixner A., Gojić G., Gottwald R., Haley D., Hendel G., Matejczyk B. Feature-
based algorithm selection for mixed integer programming. Technical Report 18-17, ZIB, Takustr.
7, 14195 Berlin, 2018.

The BaBar collaboration, Lees, J.P., Poireau, V., Tisserand, V., Tico, J.G., Grauges, E., Palano,
A., Eigen, G., Stugu, B., Brown, D.N., Georges, A. and Kerth, L.T., 2013. Search for a low-mass
scalar Higgs boson decaying to a tau pair in single-photon decays of Υ(1S). Physical Review D,
88(7), p.071102.

Georges A., Kolomensky Y., Paudel U. Search for the Tau-Pair Decays of a Light Scalar Higgs
Boson in Radiative Transition of Υ(1S) −→ γA0. BaBar Analysis Document #2272.

xv

ABSTRACT OF THE DISSERTATION

Topological Based Machine Learning Methods

by

Alex Georges

Doctor of Philosophy in Physics

University of California San Diego, 2019

Professor David Meyer, Chair
Professor Benjamin Grinstein, Co-Chair

This dissertation presents novel approaches and applications of machine learning archi-

tectures. In particular, these approaches are based on tools from topological data analysis and

are used in conjunction with conventional machine learning methods. Topological data analysis,

which is based on algebraic topology, can identify significant global mathematical structures

which are out of reach of many other approaches. When we use topology we benefit from

generality, and when we use conventional methods we benefit from specificity.

This dissertation contains a broad overview of data science and topological data analysis,

then transitions to three distinct machine learning applications of these methods. The first

xvi

application uses linear methods to discover the inherent dimensionality of the manifold given by

congressional roll call votes. The second uses persistent homology to identify extremely noisy

images in both supervised and unsupervised tasks. The last application uses mapper objects

to produce robust classification algorithms. Two additional projects are presented later in the

appendix, and are related to the three main applications. The first of these constructs a method to

choose optimal optimizers, and the second places mathematical constraints on the structure of

renormalization group flows.

xvii

Chapter 1

Introduction

Data science is such a rapidly changing field that by the time this sentence finishes, it will

likely be outdated. A few key factors drive its acceleration, which include: the decreasing cost of

hardware pertaining to data needs (i.e., data collection, processing, and storage) [2], the increase

in scientific methods to analyze the data, and the repeated success shown by these methods in

widespread domains. Andrew Ng, a prominent researcher in data science, has referred to artificial

intelligence as “the new electricity.” Many state-of-the-art applications in data science are based

on methods which are inherently geometric: that is, changing the parameter space or data can

significantly change the overall outcome. There are methods, however, that are resistant to these

changes and many of them fall within topological data analysis. Indeed, for any data science

project at hand, there is no universal best algorithm to approach the problem - so described by

the “No Free Lunch Theorem” [3]. Rather than choosing geometric or topological methods, this

dissertation focuses on the combination of both, particularly as they pertain to machine learning.

The terms data science, machine learning, and artificial intelligence will sometimes be used

interchangeably, especially since the distinction between them may be nonexistent or unimportant

depending on the project. However, in Section 2.3 we will see in what context these fields are

different.

1

Data science is becoming more ubiquitous in almost all aspects of life and its transforma-

tive potential has been proven time and time again in widespread domains. Hopefully the work

presented in this dissertation will, to some extent, push the boundary of how we interact with data

science.

1.1 Scope of the Dissertation

Chapter 2 is a broad overview of data science and the fundamental tools that will be used

in later chapters, and should be considered a general introduction to these topics rather than an in-

depth treatment. Chapter 3 is an applied analysis using a linear dimensionality reduction technique

referred to as principal component analysis. The data analyzed consists of voting behavior of

United States politicians in Congress, and the task is to uncover the true dimensionality of the data

with respect to year. Chapter 3 is meant to be an introduction to principal component analysis,

which will be used in Chapter 5 and Appendix A. Chapter 4 is the first analysis in the dissertation

that utilizes methods from topological data analysis (“TDA”) in conjunction with conventional

machine learning methods. The goal in this project is to classify data structures in extremely

noisy data through both supervised and unsupervised approaches. By the end of Chapter 4, we

will see some of the benefits and issues with this approach, and hence will move on to a more

powerful technique in Chapter 5.

Chapter 5 should be considered the seminal work of this dissertation. It incorporates

traditional methods from data science along with tools from topological data analysis, specifically

mapper objects. The novel combination of methods presented here results in a robust algorithm

which resolves some fundamental issues present in other current state-of-the-art methods. We

apply the algorithm we develop to the task of noisy image classification.

Additional projects presented in this dissertation are contained in the appendix, and are

related to the methods in previous chapters. Appendix A is a project in teaching a computer how

2

to select the optimal optimizing function to solve a given task. In Appendix B, we present a

conjecture pertaining to renormalization group flows which shows an equivalence between the

medium and strong versions of the a-theorem. This conjecture allows us to loosen a restrictive

requirement that allows these flows to be written in terms of pure gradients. The mathematical

tools we use in Chapter 5 and Appendix B both, in part, come from Morse theory.

3

Chapter 2

Data Science Fundamentals

This chapter is meant to be a short overview of the main concepts and tools from data

science that will be used in following chapters. The approach to this discussion will be more

intuitive, with specific technical details held off until later chapters. For comprehensive overviews

on data science, machine learning, deep learning, and topological data analysis please see

[4, 5, 6, 7], respectively. For a diagram depicting the differences between these fields, please see

Figure 2.1.

This dissertation broadly focuses on using topological data analysis (“TDA”) in conjunc-

tion with other machine learning methods to produce robust algorithms, so it is necessary to

understand these other algorithms as well. The reader that is familiar with general concepts in

data science can skip the majority of this chapter, but may want to glance at Section 2.4.5 which

introduces the concepts from TDA that will be used in future chapters. As a quick reminder of

terms, please see Section 2.1.

2.1 Common Terms

This section is meant to be a reminder of some terms that are commonly used in data

science. The limited glossary below is likely more useful for the reader that has some background

4

in this field, and would like a reminder of how certain concepts are defined.

• Bagging: A combination of implementing both bootstrapping and ensemble averaging.

The word comes from the combination of bootstrapping+aggregating.

• Bootstrapping: Random sampling of instances from a data set with replacement. See

bagging, feature bagging.

• Class: The category of label assigned to an instance.

• Classification: The process of learning a map f : X→ Y , from features to discrete labels.

See regression.

• Cross Validation: “CV” is a method to construct an accurate representation of the testing

error. In CV, we split the data in such a way so that our model sees more testing data. See

testing error, testing set, training error, training set.

• Discriminative Learning: Attempts to learn a mapping from features to labels. Intuitively

analogous to learning a distribution p(y |x). Geometrically equivalent to learning boundaries

between classes. See generative.

• Ensemble Averaging: Taking a collection of individual machine learning models, and

building one final output from them.

• Feature: A piece of information describing some aspect of a data point. Considering the

data as an m×n matrix, the n features consist of the n columns.

• Feature Bagging: Random sampling of features from a data set with replacement. See

bagging, bootstrapping.

• Generative Learning: Attempts to infer the underlying distribution that created the data.

Intuitively analogous to learning a joint distribution p(x, y). Geometrically equivalent to

learning distributions of classes. See discriminative.

5

• Hyperparameter: A value not learned by the model and doesn’t appear in the loss function.

It can still have a significant impact on the overall performance of our algorithm. See

parameter.

• Instance: The mathematical notation to denote an instance is typically x. See label.

• Label: In supervised learning, labels are continuous or discrete values that characterize

the instance in some way. In the discrete case, classes distinguish the instances. The

mathematical notation to denote a label is typically y.

• Loss: A function that associates some cost to a model’s decisions. Optimization seeks to

minimize this loss in order to reach our goal.

• Overfitting: When our overall procedure learns about individual data points too well.

Generalization can suffer in this case. See underfitting.

• Parameter: A value learned by the model in order to minimize the loss. See hyperparameter.

• Regression: The process of learning a map f : X→ Y , from features to continuous labels.

See classification.

• Semi-supervised Learning: Use both labeled and unlabeled data for training. Typically,

training is done with less labeled than unlabeled.

• Supervised Learning: Use labels to inform the machine what the objects are that it’s

considering. Intuitively analogous to learning a distribution p(y |x), given the features x

and labels y. See unsupervised learning.

• Testing Error: The error associated with testing data, i.e., data the algorithm has not yet

seen. This error gives a measure of how well the model generalizes. See training error.

• Testing Set: The data used to determine generalization performance of our algorithm. See

cross validation, training set.

6

• Training Error: The error associated with the training data. A well-trained model can have

exceedingly low training error. See testing error.

• Training Set: The data used to teach our algorithm. See cross validation, testing set.

• Underfitting: When our overall procedure doesn’t learn enough about individual data points.

Generalization can suffer in this case. See overfitting.

• Unsupervised Learning: No labels are used to inform the machine what the objects are that

it’s considering. Intuitively analogous to learning a prior distribution p(x) given the feature

data only. See supervised learning.

2.2 What is Data?

Data can be anything. It can range from business analytics, to interpersonal relationships,

to exploding stars. Regardless of the data we may be interested in, it remains to be seen whether

we can do something useful with it. There are numerous factors that go into this, but we can

broadly characterize these factors into: the quality of our data and the quality of our algorithm. In

this section we will discuss data and in Section 2.3 we will discuss algorithms.

To have high quality data we must ensure that the information we are grabbing in the

first place is relevant to us, and in the second place that this information can be mathematically

represented in a way that is conducive to producing a high quality algorithm. And to have a high

quality algorithm, we must choose an architecture that works well with our data and accomplishes

a well defined goal.

For instance, let’s say we are trying to design an algorithm that produces optimal seating

arrangements at a wedding. The first piece of information we will need for this is, of course, who

will be present at the wedding. We can already define a placing solely on this information by

random placements, but this probably doesn’t achieve our goal of optimality, whatever that may

7

be. If on the other hand the data we have is the table cloth colors, that probably won’t help us out

at all. In the former case, the information is relevant but not sufficient; in the second case, the

information is irrelevant.

So let’s add interpersonal relationships here, of which there’s any number of ways to

do. For now, let’s say each pair of people is assigned +1 if they are friendly with one another,

−1 if they are not, and 0 otherwise. We can mathematically represent this information in a few

ways, for instance by an m×m matrix where m represents the number of wedding guests, or by

encoding this information in an m-dimensional vector for each person. In the former case, we

would be dealing with an object in Rm×m and in the latter case we would have m objects in Rm.

Using either mathematical encoding, we can analyze this new data and come up with an

answer that’s closer to optimality than just knowing people’s names, but there’s still the issue that

complete strangers may be seated at the same table. From here, again we can do a number of

things to get closer to the optimal seating arrangement. For the sake of argument let’s consider

two ways forward: (1) modify just the data to also include whether two individuals know each

other and leave the fundamental optimality algorithm unchanged (2) add a penalty term in our

optimality algorithm that prefers acquaintances to be seated at the same table. The first of these

methods relies on modifying the data, the second more so on the algorithm. A priori there is likely

no way of knowing which approach is best at this step or even at some of the others. For instance,

perhaps this is not the best way to mathematically represent acquaintances in the first place

because there is redundant information - if a pair of individuals has an interpersonal relationship

of +1 or −1 then they obviously know each other, so we don’t gain any information by inserting

that they are acquaintances.

So at this point, we have skirted around a few fundamental questions: what information do

we need to include in the data, how do we mathematically represent this information, how do we

achieve the goal at hand, and why is the goal we have chosen the goal we should be considering?

In the following sections, we will touch more on these last two questions. In most cases though,

8

the best answers to all these questions come holistically when we think about how the methods

we use to analyze the data interact with the data itself. For instance, if I were to ask “how much

data do we need to answer this question?” or “do we have too little or too much information

describing the data?” the answer in all likelihood is dependent on the method with which we use

to answer these questions. In this contrived wedding example, answering these questions might

be exceedingly simple given the overall setup of the problem. In other cases though, the data or

methods can be exceedingly complex and, in the first place, we might not even know whether

the goal we have chosen is the one we should be using. In these cases, it is worth thinking more

about these fundamental questions to hopefully lay down a holistic path to solving the problem.

In practice, finding this path is an iterative procedure which can be seen in Figure 2.3.

Under the lens that most everything can be seen as data, and that something useful can be

done with that data, it is no wonder that data and data science in general is becoming increasingly

ubiquitous in all facets of life.

2.2.1 Preparing Data

As seen in Section 2.2, one of the first and most important steps is to prepare the data

we’ll use to achieve our goal. A non-exhaustive list of the steps that should be taken to prepare

data include: defining what information is necessary, how to get this information, and how to

solve issues with the data. These issues can range from missing data, corrupted data, or even just

data that we don’t really know how to handle properly. It can be the case that data preparation is

the most difficult and time consuming step, especially for industrial or applied projects. In this

dissertation, we will be more concerned with the methods to analyze the data rather than the data

preparation.

9

2.2.2 Curses

At first thought, it might seem that adding more and more features to data is the best thing

to do, especially given the previous wedding example. This is true to an extent, given that the

information we attach to a data point is relevant, but there are diminishing returns to this at some

point. One of the concrete ways in which adding features ad infinitum can negatively impact

the quality of a dataset is that it can become “cursed.” The curse of dimensionality refers to the

phenomenon that exponentially more data is required to fill higher dimensional spaces.

Let’s say our data lives in a 1-dimensional space, and that we discretize this space so that

the data is restricted to live on n lattice points. In this case, we will need n data points to fill the

space. Now, let’s say we extend this discretized interval to 2-dimensions so that there are now n2

lattice sites. Again, we will need n2 points to fill this space. In general for this scenario, we will

need nd points to entirely fill the space.

Intuitively, if there is significant mathematical structure in the original dimension, we

might assume the data fills a significant portion of the space. In other words, the value nd gives

the approximate number of data points we should have for d-dimensional data in order to find

mathematical structure - note that this is indeed an upper bound as we assume the entire space

is filled. Luckily, interesting datasets are not completely random and have some correlations

in them which reduce the overall dimensionality. In images, for instance, we have a cohesive

picture because individual pixel values are correlated to their neighboring pixels. The information

contained in these correlations effectively restrict the originally d-dimensional data to subspaces

of lower dimensions because the information living in each dimension is not independent of the

other dimensions. In other words, if the correlations are strong, we should be able to predict

neighboring pixel values, and hence not all pixel values are necessary to represent the image. See

Section 2.4.2 for a further discussion on dimensionality reduction.

A different but related way in which more dimensions can reduce the data quality is that

too many dimensions can lead to an overfitted model (see Section 2.3.2). When there are too

10

many features, our model may be able to learn about and discriminate between every single data

point, which means the model is overfit.

Often times, we start out with high dimensional “cursed” data, project it to a lower

dimensional space and work within that space (see Section 2.4.2). Additionally, by performing

exploratory data analysis (Section 2.3.1) we can see the impact of the high dimensionality.

2.3 What is Data Science?

There are numerous terms related to data science as a field that are ill-defined, or at the

very least are commonly conflated with one another. A few of these terms include data science,

artificial intelligence (“AI”), machine learning (“ML”) and deep learning. Even when these

are defined, there might be conflicting notions out there as these fields are constantly changing.

Referring to Figure 2.1, we see overlap between these fields, but they are indeed not the same.1

Broadly speaking, we will use the term AI to mean any machine that somehow mimics a portion

of the human capacity of intelligence. A very important field that can accomplish artificially

intelligent tasks is machine learning. Here, we focus on building the overall architecture of how we

would like the system to think, and the system itself pins down the exact details. Mathematically,

we construct a function with unknown parameters and additionally define a goal for that function.

By feeding the system data, the system chooses for itself the optimal set of parameters given the

goal we have defined. Within machine learning, we have deep learning which is just a class of

functions that currently outperform many other learning tasks and are the state of the art for many

applications. These functions happen to be neural nets with many layers, which are referred to as

deep neural nets or DNN’s (see [8] for a physics motivated discussion on why these have been so

successful).

We can also describe how data science interacts with other academic disciplines. In

1A cursory search online will likely show a different picture altogether, adding to the overall confusion.

11

ARTIFICIAL
INTELLIGENCE

MACHINE
LEARNING

DEEP
LEARNING

Figure 2.1: In this diagram: deep learning is seen as a subset of machine learning, machine
learning as intersecting AI, and data science as intersecting all the above. Relative sizes in this
diagram have little meaning. If you want to pull in money, it’s best to describe what you do as
AI, since the term carries buzz.

Figure 2.2 we see rough categorizations of how mathematics and statistics, computer science,

and domain sciences interact with each other. Here, domain science refers to the natural sciences,

such as physics, chemistry, biology, etc. Taking physics as the example of the domain science,

this figure roughly describes that: the marriage of physics and math research leans more towards

the theoretical realm of study, and that the combination of physics and computer science leans

more toward applied studies. Researchers in all three fields can colloquially be referred to as

“unicorns,” since they seem to be exceedingly rare. However, as data science broadens its realm

and impact, we will likely see more unicorns around.

A few examples of “unicorn work” follow. In the domain of theoretical physics, re-

searchers applied a convolutional neural network (“CNN”) to predict Calabi-Yau volumes from

12

topological quantities, thereby bypassing the standard minimization procedure that was used

previously [9] . This showed the researchers that a functional relationship exists between two

quantities that was not previously known, i.e., that the volume was somehow encoded in the topo-

logical information. In a different theoretical physics project, researchers constructed machine

learning methods which produced conjectures in the string theory landscape that may have not

been known otherwise [10]. In the field of biological medical sciences, researchers showed that

retinal photographs can be used to predict various attributes of a patient, including their age,

gender, potential cardiovascular risks, past cardiac events, blood pressure, and smoking status

[11]. Prior to this study, it was unknown that there was a link between many of these attributes

and retinas. The tool that made this link was a deep neural network.

In these examples, we see that data science can discover relationships that were previously

unknown and had not even been hypothesized to exist in the first place. In mathematical terms,

data science can be used to find structure we think may exist, but it can also find structure

elsewhere in a place in which we didn’t know to look. Take a treasure map as an analogy to this

situation. The actual map itself represents the field of study, and treasure locations represent

interesting results in the field. Through years of study and exploration, a physicist, for example,

may be able to determine some good areas to look. Data science in this analogy would be a

wondrous tool that would let the physicist know whether they’re right about the locations they

have predicted, and could itself also predict other spots they should look.

It is my hope that more researchers include modern data science methods into their

workflows as great leaps and bounds can be made in both the applied and theoretical sciences.

13

DATA
SCIENCE

THEORETICAL
RESEARCH

APPLIED
RESEARCH

COMPUTER
SCIENCE

MATH &
STATISTICS

UNICORN

DOMAIN
SCIENCE

Figure 2.2: A “not-so-quite” accurate depiction of how computer science, math & statistics,
and domain sciences interact. Despite this, the takeaway is that the intersection of all three fields
results in a field which is itself unique and very useful, but rare.

2.3.1 Typical Workflow

A typical workflow for a data science project is depicted in Figure 2.3 and each of these

steps is described below:

1. Goal: The first step in this flow is to define a goal or hypothesis. In the wedding example

(Section 2.2), the goal would be to define an optimal seating arrangement. Inherent in

this is to additionally define a metric on how to measure how close we are to the goal. A

few examples that define this metric for different projects may be: reconstruction error,

classification error, precision, and recall.

14

2. Prepare Data: The next step is to decide what data we need in order to achieve the goal,

while having an algorithm workflow in mind in order to construct a holistic project, and to

prepare it for the data analytics downstream.

3. Exploratory Data Analysis (“EDA”): This critical, but sometimes overlooked step, can

provide us with a wealth of information pertaining to the data. Playing around with the data

in almost any way can be considered EDA, though a very powerful and common tool is

data visualization. If the data is high dimensional, dimensionality reduction (Section 2.4.2)

must be performed in order to visualize the data.

4. Algorithm: Often the last step in the workflow is to feed the data through the algorithm

we have chosen to accomplish the goal. Depending on how it performs, we may have to go

back to any of the other steps to refine the workflow in order to increase performance. See

Section 2.4 for an overview of specific algorithms.

Goal Prepare
Data EDA Algorithm

Figure 2.3: A simplified workflow of a data science project. The path in red is a “typical”
workflow, but indeed any path in general can be taken. Note the cyclic processes which will
likely occur as a result of gathering more information which prompts a modification at any step
in the workflow. The red loop at the end refers to modifying an algorithm’s hyperparameters.

A typical flow shown in the figure is not a hard and fast rule on how to approach data

science, and indeed can be modified in any way - for instance, steps might be left out altogether

or the arrangement of the tasks can be changed (as seen by alternative paths in the flow). In fact,

Goal which is placed first in the flow, can actually come last as EDA may inform us on what

questions to be asking in the first place.

15

There are numerous standardized data sets, which fortunately can reduce this workflow by

removing the Prepare Data step. Two common examples are the MNIST and CIFAR-10 datasets:

• MNIST [12]: “Modified National Institute of Standards and Technology” data consists of

handwritten images of digits. These images are grayscale and discretized into 28×28 grids.

There are 60k training and 10k testing images.

• CIFAR-10 [13]: “Canadian Institute For Advanced Research” data consists of pictures of

common objects. These images are in color and discretized into 32×32 grids. There are

50k training and 10k testing images. For this dataset, there are only 10 classes of objects

(see Section 2.1 for terminology).

There are numerous other standardized datasets, each of which can be used for a different

specialized task. Maintaining such databases are important for the field of data science to progress

as a whole so that results can be benchmarked with one another.

2.3.2 Bias-Variance Tradeoff

Two related sources of errors in any predictive algorithm are bias and variance. Bias

refers to errors coming from the model2 being too simple, hence it will miss relevant mathematical

structure or links in the data. Variance refers to errors coming from the model being too complex,

and hence it will construct mathematical structure or links in the data that should not be there;

these links can vary greatly if the training set is changed. In other words, models that exhibit high

bias are underfit and those that exhibit high variance are overfit 3. Note that when we say the

model is too complex, for instance, we really mean that the model is too complex with respect to

the data at hand - both model and data determine whether the problem is underfit or overfit.

The “bias-variance dilemma” is the problem of minimizing both variance and bias, given

there is a tradeoff between the two. Figure 2.4 captures this tradeoff and dilemma as a plot of
2model and algorithm will be used interchangeably
3these terms will also be used interchangeably

16

training and testing errors with respect to complexity. In Chapter 5, we will see a topologically

based novel approach to resolve this dilemma for image classification; in Section 2.4.5 we will

see how topology can resolve this dilemma more generally.

The two regimes for complexity are overfit and underfit, each of which are characterized

by both model and data considerations:

I. Overfit regime

• If our model is too powerful (i.e., too many parameters)

• If we have too many features in the data (i.e., our model can distinguish every specific

instance)

• Not enough data relative to model (i.e., we’ll be able to fit the data perfectly well)

II. Underfit regime

• If our model is not powerful enough

• If we don’t have enough features in the data

Modern methods typically have increasingly high model complexity, especially in deep

learning, so they are pushed towards the overfit regime. For instance, researchers showed that

deep neural networks are capable of fitting to noisy data perfectly well (i.e., with 100% training

accuracy) [15]. The theoretical reason that allows for this to happen comes from the universal

approximation theorem [16, 17, 18] which states that deep neural networks can approximate any

continuous function arbitrarily well.

There are various methods to resolve this bias-variance dilemma in general. Two data-

oriented approaches are bootstrapping [19] and the random subspace method (also referred to as

feature bagging) [20]. In the former case, we randomly sample which instances from the data

to include in training, and in the latter case we randomly sample which features from the data

17

Figure 2.4: The bias-variance tradeoff depicted by errors as a function of model complexity.
The red and blue curves represent errors due to variance and bias, respectively. The total error
represents the expected generalization error, i.e., the error we would expect to get on a test data
set. If the algorithm resides on the left side of the optimal complexity, boosting can help push
the model to the right; if the algorithm resides on the right side, bagging can help push it left.
Image from [14].

to include while training (in either case, the random sampling is done with replacement). Each

of these approaches can be used in conjunction with an ensemble learning technique, which is a

process by which individual algorithms are combined into one final algorithm. Bootstrapping

keeps our final model from learning the individual training set too well as each individual

algorithm was trained on a random subset of the data, and feature bagging reduces the correlations

between the individual algorithms. These correlations can emphasize mathematical structure

which is not descriptive of the data - in other words, these correlations can lead to overfitting.

Two model-oriented approaches to resolving this dilemma, which are both ensemble

learning techniques, are bagging (the combination of “bootstrapping” and “aggregating”) [21]

and boosting [22]. In both approaches, we construct many individual models and combine them

in some way to produce one final model that has reduced variance and reduced bias. In bagging,

we take individual models that would ordinarily overfit the data by themselves. Variance is

18

reduced by training each of the individual models on the bootstrapped data then averaging out the

prediction made by each of these models. The variance can be further reduced by feature bagging.

In boosting, we construct the final model from individual models that would ordinarily be underfit.

Boosting is an iterative procedure whereby an additional weighted model is constructed in order

to fix failures of the previous model (more on this in Appendix A.4.1).

Combinations of bagging, boosting, and feature bagging procedures commonly appear in

state-of-the-art methods. In Chapter 5, we will see a similar approach used in topological data

analysis in order to produce a final model with reduced variance and bias.

2.3.3 Ethics

To effectively integrate data science and machine learning into the world, it is important

to discuss how our algorithms currently interact with humans and how we would like this

interaction to develop in the future. Both policy and ethics considerations should be included in

this discussion. However, this can be difficult as data scientists are typically more interested in

the algorithms themselves and policy makers typically don’t understand the basics of data science.

There are examples of work being done in this area, for instance at the Stanford Data Science

Initiative [23] and Coursera [24], but these kinds of discussions can get pushed to the background

quickly. Some important topics here pertain to: data privacy issues, biased algorithms (for

instance, racially or gender biased), the intent of the algorithms, and the scope of the algorithms

in terms of what they can and cannot accomplish.

2.4 Algorithm Classes and Techniques

In the remaining few sections of this chapter, we will briefly discuss the main mathemat-

ical concepts used in this dissertation, which include: optimization, dimensionality reduction,

clustering, classification, and topological data analysis. In-depth treatments of these topics can be

19

found, to an extent, in later chapters and in listed references.

2.4.1 Optimization

Optimization generally refers to the process of minimizing a cost function (also referred

to as a “loss” function), or equivalently maximizing one, by way of searching the parameter space.

There is an additional set of parameters, called hyperparameters, that involve user input and can

also be considered as part of the overall optimization process. In Figure 2.3, part of the red loop at

the end includes modifying these hyperparameters in order to improve the quality of the algorithm.

Both the general and explicit forms of the cost function can change depending on the algorithm

architecture and, more specifically, the task we’re considering. Due to this, its mathematical

properties can change, which most importantly include its convexity and convergence properties.

General optimization tasks can be NP-hard, so it is no wonder these techniques themselves

are heavily studied [25]. In Appendix A, we introduce a novel approach of selecting optimal

optimizers for a class of constrained optimization tasks called mixed integer programs.

For differentiable loss functions, we can use gradient descent based techniques [26] to

converge to local minima. In the case where these losses are convex, the local minima are

guaranteed to be the global minima; in the case where they are not convex, there are numerous

methods that help the optimization procedure converge to the global minimum rather than one of

the local minima [27, 28]. In these gradient descent methods, we update parameters of the cost

function by computing its derivatives, i.e.:

θnew = θold −α∇ f (θ)|θold (2.1)

Here, f : Θ→ R refers to the total loss function which takes parameters θ ∈ Θ as input

and computes a number.

An entirely different set of minimizing techniques is presented in Appendix A. These

20

techniques differ in that they handle parameters that can take on both integer and continuous

values, and that have high dimensional bounds imposed on them. Due to their complexity,

we often times don’t know a priori which technique might be best for solving an incoming

optimization problem. In Appendix A we address this issue by constructing a learning algorithm

that makes this choice.

2.4.2 Dimensionality Reduction

Dimensionality reduction is the task of representing high dimensional manifolds with

lower dimensional ones which either approximate the original space reasonably well (intuitively,

think minimizing reconstruction error) or just helps us capture some other useful information

about the dataset. For instance, dimensionality reduction techniques can be used to extract the

most relevant features from the data; the features that are chosen depends on both the model and

the lower dimension we choose for the projection. Techniques in dimensionality reduction will

be discussed more in Chapters 3, 5 and Appendix A. Mathematically, dimensionality reduction is

a map:

φ : Xn→ Xm,where n ≥ m (2.2)

Dimensionality reduction is important for numerous reasons, one of which is that the high

dimensionality of many datasets is often times unnecessary and in fact can lead to an overfit model

(Section 2.3.2). MNIST data, which consists of images of normalized and centered handwritten

digits, is originally (28 pixels) × (28 pixels) = 784 dimensions. Just in terms of the curse of

dimensionality (Section 2.2.2), we would minimally need ∼ 2784 ∼ 10236 points to fill the space.

This is compared to the ∼ 1080 atoms in the universe. Of course, we expect there to be a lower

dimensional structure which captures all the useful information in the handwritten digit.

21

Two choices inherent to the dimensionality reduction procedure are the dimension we

project to, i.e., the value for m, and the method we use to project the data there. Most methods

can be characterized into either linear or nonlinear projections.4 Some common examples of both

these methods include:

I. Linear Projections

• Principal Component Analysis (“PCA”) which maximizes the variance of the pro-

jected data [29]. This will be discussed further in Chapters 3, 5 and Appendix A.

• Fisher’s Linear Discriminant Analysis (“LDA”) which attempts to find linear combi-

nations of features in order to classify the data [30].

II. Nonlinear Projections

• Kernel PCA which uses the kernel trick before performing a normal PCA [31].

• An autoencoder which is a neural network architecture typically optimized to mini-

mize reconstruction error [32]. This will be discussed further in Chapter 5.

• Multidimensional scaling (“MDS”) which attempts to preserve pairwise distances in

the lower dimensional space [33]. This will be discussed further in Appendix A.

• Isomap which attempts to preserve geodesic manifold distances between all pairs of

points [34].

Choosing the model type is motivated from the specific data science question at hand; the

dimension m can be selected in different ways for the different models. A common method is to

vary the value of m and to determine how this changes some overall metric. In the case of PCA,

we can calculate the percentage of variance described by the projections to each of the choices for

m, and determine for which m this quantity flattens out. This will be discussed more in Chapters

3, 5 and Appendix A.
4There are additionally some approaches that utilize both linear and nonlinear techniques in order to construct a

single projection map

22

2.4.3 Clustering

Clustering refers to the general process of assigning instances to groups based on some

affinity measure. Here, the term “groups” is used synonymously with “clusters.” Many clustering

methods fall within four categories which are each determined by what this affinity measure is:

I. Hierarchical Clustering constructs a family of different clusterings based solely on the

distance information between points. A single clustering from this family is determined by

a thresholding parameter and the family itself is constructed by varying this parameter.

II. Density Based Methods define groups based on regions of higher densities in the data.

III. Distribution Based Methods use probability distributions to model the data. Each distribu-

tion defines a group, and an instance is assigned to a group based on maximal probability.

IV. Centroid Based Methods attempt to find the centers of groups of data (called centroids).

Each instance is assigned to the group that contains the nearest centroid.

The approach to hierarchical clustering is motivated by the idea that nearby points should

be categorized in the same group, however it does not specify a priori what “nearby” actually

means. Hence, the family of clusterings is parameterized by a nearness parameter. As an example,

single-linkage clustering [35] starts with n clusters given by each of the n data points. For each

of these points, we can also assign a neighborhood radius ε , a nearness parameter. Two existing

clusters merge if they are within a distance of 2ε of one another (here, the distance is taken as the

minimum between all possible point pairs in each of the clusters). In this method, we see how

these clusters change as a function of ε . Because of this, we do not choose how many clusters to

group the data into before running the algorithm - this number needs to be chosen after looking

at the family. Single-linkage clustering will be used in Chapters 4 and 5 to construct persistent

homology diagrams and mapper objects from TDA (see Section 2.4.5), respectively.

23

Since distribution based clustering learns probability distributions, we can use these as

generative models once they have been trained. A common approach is to utilize a Gaussian

mixture model (“GMM”) [36], which fits the data with multiple Gaussian distributions. In Chapter

4 we will see an application of GMMs with persistent homology (see Section 2.4.5).

A common approach within centroid based methods is k-means clustering [37]. In this

method, we choose the number of clusters prior to running the algorithm. If we choose k clusters,

the algorithm will partition the data into k distinct regions called Voronoi cells [38], each of

which is described by the centroid of the data.

Regardless of the clustering method we choose, an important step in the workflow is to

determine how many clusters best represent our data. In some cases, we run the algorithm first

and then determine the appropriate number of clusters based on its output (i.e., for hierarchical

clustering). In other cases, we insert this number prior to initiating the algorithm, and iteratively

see how this choice affects the outcome. In either case, there are tools to help us ultimately

determine an appropriate value.

For instance, in the case of k-means clustering, we can construct “elbow plots” [39] to

guide our choice, but they can sometimes be ambiguous to interpret. In Chapter 3 and Appendix

A, we will see specifically how elbow plots can be utilized to determine the true dimensionality

of data when used in conjunction with dimensionality reduction techniques. As another example,

the G-means algorithm [40] determines the appropriate number of clusters by seeing how many

Gaussian distributions are needed in order to sufficiently cluster the data. Once this number

is computed we can insert it into another algorithm, for instance it can become the k value in

k-means clustering.

An interesting issue with many clustering methods in high dimensions stems from the

curse of dimensionality. Under certain conditions, as the number of dimensions increase, the

distinction between the nearest points and farthest points in the data gets washed away [41].

Fortunately, when we expect the data to occupy fundamentally lower dimensional manifolds,

24

clustering in high dimensions can still make sense.

Mapper objects from TDA, which will be used in Chapter 5, are related to existing

methods in clustering, but they don’t quite fit neatly into any one of the four above-mentioned

clustering methods. See Section 2.4.5 for an introduction to these objects and Chapter 5 where

they will be used to construct robust classifiers.

2.4.4 Classification

Classification is a very common task in machine learning that attempts to find a function

f that maps features of an instance to its predicted label. More specifically, this function f can be

thought of as a map:

f : X→ Y (2.3)

Here, x ∈ X refers to a vector of features for a specific instance and y ∈ Y refers to the

possible labels.

There are two approaches to constructing the map f which are referred to as “eager” and

“lazy” learning. In eager learning, we attempt to model a probability distribution from the training

data underlying this mapping. The learned distribution differs slightly based on whether we take

a discriminative or generative approach:

f (x) = argmax
y

p(y |x), discriminative

f (x) =argmax
y

p(x |y)p(y) = argmax
y

p(x, y), generative
(2.4)

Using Bayes’ Theorem [42], we see the two maps f are equivalent, though the learned

distributions differ. Geometrically, discriminative classification models can be thought of as

drawing hypersurfaces in X in order to separate the labels in Y as best as possible. These surfaces

are referred to as “decision boundaries.” Generative models carry more information, and indeed

25

we can infer these boundaries from them as well. When an unseen test point is run through

an eager classification model, it is mapped to the label with the highest probability. This of

course works well when the trained probability distribution also represents the testing probability

distribution.

In lazy learning, we store the training data and don’t learn a model beforehand. Instead,

given the unseen test point, we classify it based on its relatedness to existing training points in X .

Throughout this dissertation, we will see both approaches utilized.

Two common eager classifiers are neural networks [43] and random forests [44], and a

common lazy classifier is k-nearest neighbors (“k-NN”) [45]. Neural networks have the ability

to draw any arbitrary decision boundary, owing to the universal approximation theorem [16];

because of this they are prone to overfitting. Random forests draw linear decision boundaries and

are typically less prone to overfitting. For k-NN, we assign a label to a test point by looking at the

k nearest neighbor’s labels in X . For k = 1, 1−NN draws the conventional Voronoi boundaries

[38] between points [46].

2.4.5 Topological Data Analysis

In this final section of the chapter, we will briefly review TDA and its motivations from

a mathematical perspective, its motivations from a human based learning perspective, and a

literature review. Later on in Chapters 4 and 5, we will see specific applications of persistence

and mapper from TDA.

Mathematical Motivation

Many machine learning methods are fundamentally built upon notions from geometry:

including length, area, volume, local curvature and others. These geometric concepts can be

thought of as inferring the structure of the data by building up from local information. This

usually means that if we perturb the data in some way or change some of the parameters in the

26

workflow, the outcome of the algorithm may completely change. If, on the other hand, we can

infer more global information such as the structure of the data or the number of holes in the data,

our algorithm may be more robust to these types of changes. This is the type of information

topological data analysis attempts to capture.

Topological data analysis (“TDA”) is a relatively new field of data science, but is motivated

by much older mathematical concepts. Generally speaking, it wishes to extract topological

quantities from data, which tend to focus on the broader global structure of the data rather than

local information. The tools that allow us to do this come from algebraic topology [47] and, in

the case of TDA, have been extended to allow for the investigation of discretized data spaces.

There are numerous reasons to use TDA in a data science pipeline, many of which come from

three fundamental properties inherent to the field:

1. Compressed Representation

2. Coordinate Invariance

3. Deformation Invariance

Compressed representation can be thought of as a shortened summary of the data that has

been distilled down to its most important structure. Owing to this, TDA is often used solely as

an EDA tool since we can visualize this distilled structure. While this is an important step in

the data science workflow (Figure 2.3), it is by no means the only place TDA can or should be

used. In this dissertation, we will see TDA being used at other steps in the workflow - sometimes

it will be useful to think of TDA as being part of the data preprocessing and at other times it

will be more useful to think of it being fundamentally built into the algorithm. However we

think about it, placing TDA in other workflow spots can be useful especially if we would like to

incorporate coordinate invariance or deformation invariance, which are particularly important

in computer vision (Chapters 4 and 5). We will see in Chapters 4 and 5, that although TDA is

27

(a) A dataset that is topologically equiva-
lent to a circle.

(b) A dataset that is topologically equiv-
alent to a circle, despite the added noise
represented by the red points.

Figure 2.5: Both of these datasets are topologically equivalent to a circle. TDA in general
attempts to capture this information.

theoretically motivated by these three properties, in practice the TDA method we use may have

different regimes on how strongly these properties are met.

The two tools in this dissertation that will be used from TDA are called persistent

homology, or persistence for short, and mapper graphs, or just mappers. Refer to [48, 49, 50] for

overviews of persistent homology and [7, 51, 52] for overviews of mapper.

Human Based Learning Motivation

In Chapter 5, we will see mapper objects being used as part of the algorithm step in the

workflow (Figure 2.3) in order to produce a robust classifier. This approach can be thought of as a

means to minimize the generalization error due to variance (see Section 2.3.2), since it attempts

to capture global structure of the data. In other words, we produce an underfit model in this

approach due to its coarse graining, but we regain complexity by utilizing an ensemble approach

in conjunction with conventional classifiers - i.e., we start out to the left in Figure 2.4 and move

more right. It appears that humans also resolve the bias-variance tradeoff by starting out left then

moving right [53] in a “less-is-more approach.” TDA allows for generality in another way as well:

we can use TDA when we only have a notion of similarity in the data.

Neural nets and random forests, on the other hand, typically start out to the right in

Figure 2.4 and move more left. Additionally, these methods typically need very strong notions of

28

similarity in the data. Because of these features, these algorithms can perform much worse than

humans do at certain tasks. Some issues specific to neural networks include:

• The ability of convolutional neural nets to perfectly fit random noise [15], which is theoreti-

cally consistent with the universal approximation theorem [16, 17, 18]

• The existence of adversarial examples for neural nets, which can be thought of as minimally

intrusive ways to trick the nets [54]

• The necessity of many data points in order to train the nets

• The computational intensivity of training the nets

• The difficulty in optimizing the nets

These issues point to the fact that, although deep learning and ML methods have been

widely successful, they process data differently than humans do.

Literature Review

Data science is a rapidly changing field and TDA is no exception. Here, we will see a

brief overview of past and current accomplishments in TDA. Additional citations will be given

where relevant in later chapters.

1. TDA as an EDA tool

TDA methods are commonly used as EDA tools since they produce low dimensional

visualizations of the data. Persistence has been used to show that natural images are topologically

equivalent to the Klein bottle, and that this correspondence can be used as an encoding scheme

for images [55]. In [56], persistence is used to drive the hypothesis that certain activations

in the visual cortex correspond to certain topologies. In [57, 58], persistence is used to study

galaxy distributions, which construct the “cosmic web.” In [59], mapper objects are used to

study RNA hairpins to identify dominant folding paths. In [60], mapper objects are used to:

29

discover significant clusters in breast cancer gene expression, classify NBA player performance,

and uncover voting behavior in the United States Congress.

2. Well Definedness of TDA

There are numerous rigorous mathematical studies which show that methods in TDA

are well defined, and that they maintain coordinate and deformation invariance under certain

assumptions. In [61], persistence is used to study how the homology of randomly generated data

changes with respect to the choice in distributions used to create the data, and in [62] the same

authors establish a connection between probability theory and homology. Sampling and noise

were studied in [63], which provides bounds on how many samples need to be drawn from a

dataset in order to accurately recover its homology, and how much noise can be added in order to

recover the homology. The “nerve theorem” [64] guarantees that the simplicial complex used

in persistence is homotopy equivalent to the underlying space. [65] shows barcodes are stable

for perturbations in a Morse filtration for computing persistence, and [66] provides stability

guarantees on mappers and shows that they are structurally a coarse graining of Reeb graphs. [67]

presents robust and simplified methods (in terms of complexity) for computing persistence.

3. ML with TDA

The utility in using TDA comes from the three properties listed in Section 2.4.5, namely

compressed representation, coordinate invariance and deformation invariance. When we use TDA

along with well established ML methods, which typically don’t have these properties, we are able

to construct a more robust algorithm. In [68], mappers are used to classify error modes for CNNs

when applied to MNIST data, and are consequently used to enhance classification robustness.

In [69], persistence is leveraged as a regularizer in a classifier. In [70], metrics are learned in

order to calculate distances between persistence diagrams; these are then used in order to classify

graphs. In [71], persistence is used as a graph reconstruction tool in noisy data.

4. The Software of TDA

There are several different open source implementations for computing mappers: TDAmap-

30

per [72] (implementation in R), Python Mapper [52] (implementation in Python), KeplerMapper

[73] (implementation in Python).

There are also open source packages for computing persistence, which include: JavaPlex

[74] (MATLAB), Perseus [75] (C++), Dionysus [76] (C++), DIPHA [77] (C++), GHUDI [78]

(C++).

5. Other

In [79], cohomology is used to construct an optimal ranking system and is applied to

ranking titles hosted on Netflix. An alternate ML method that is related to mapper is spectral

clustering. In [80], mapper is seen as a generalized method of spectral clustering and is used to

detect communities in graphs.

31

Chapter 3

Dimensionality Reduction on Congress

A common task in data science is to find a low dimensional representation of the data in

question. Doing so might help fix issues stemming from the curse of dimensionality (Section

2.2.2). It can also help us pick out which features in the data are the most important descriptors of

the data or are the most useful for tasks down the line (Figure 2.3), for instance in a classification

task. Additionally, dimensionality reduction can be used to visualize the data which is a very

powerful tool in exploratory data analysis (Section 2.3.1).

This chapter introduces Principal Component Analysis (“PCA”), a linear dimensionality

reduction technique, as an application to studying the true dimensionality of a dataset. In

Chapter 5 and Appendix A we will additionally see applications of nonlinear techniques. See

Section 2.4.2 for a short overview of these methods. By using PCA, we will investigate low

dimensional representations of voting behavior in the United States Congress. This data is

referred to as roll call data or simply the roll call. Singular Value Decomposition (“SVD”) is an

equivalent dimensionality reduction technique (see Section 3.3), and we will refer to PCA and

SVD interchangeably.

There are numerous methods for choosing optimal low rank approximations of data by

using PCA. The optimal rank is equivalently the optimal dimension of the lower dimensional

32

manifold, and we refer to this optimal dimension as the “true” dimension. For instance, [81] and

[82] estimate rank through Factor Analysis and Principal Component Analysis, respectively. For

more recent studies, refer to [83, 84, 85, 86, 87]. In this analysis, we apply results from [88]

to find the optimal dimension for a low rank approximation of the roll call data. A distinct but

similar concept we investigate is the extent of the cumulative explained variance contained in a

strictly one-dimensional representation of the roll call data. According to Poole and Rosenthal

[89], roll call data is increasingly better explained by one-dimensional representations, especially

in recent history. We take a different approach to that seen in Poole’s and Rosenthal’s analysis,

and we come to a more fine-grained result. For additional background in political polarization in

the United States, refer to [90, 91].

3.1 Data

The data we use comes from Keith Poole’s and Howard Rosenthal’s Voteview project [92],

which consists of roll call data for both the House of Representatives and Senate for Congress

between the 1st and 113th sessions (spanning the years from 1789 to 2015), where each session

spans two years. For each session, the data is represented as an n×m matrix where n represents

the number of politicians and m represents the number of votes in the session. We point out that

both n and m may change between sessions, with larger variation seen in m. The various types of

votes are assigned the following integers in this data:

• 0 Not a member of the chamber when the roll call vote was taken

• 1 Yea

• 2 Paired Yea

• 3 Announced Yea

33

https://voteview.com/

• 4 Announced Nay

• 5 Paired Nay

• 6 Nay

• 7 Present (some Congresses, also not used some Congresses)

• 8 Present (some Congresses, also not used some Congresses)

• 9 Not Voting

In our analysis we are interested in three classes of votes: votes in the affirmative, votes in

the negative, and null votes. Thus, we make the following replacements in the data from Voteview:

{1,2,3} → 1, {4,5,6} → −1, {0,7,8,9} → 0. This procedure is similar to that followed in [86].

There are numerous studies in how to best choose low rank approximations in roll call data.

For instance, Poole considers how well the W-NOMINATE algorithm performs in classifying

correct voting patterns as a function of rank [89]. If the classification performs sufficiently well

for a certain dimension, then the data is said to have a low-dimensional approximation equal

to this dimension. Our approach differs in that we compute this dimension directly, without

assuming anything about how well a classification scheme should perform in order to classify the

data as a certain dimension.

3.2 Summary of Results

The main results of this chapter are summarized here. The first result is consistent with

other work [89]; the second result is new to the best of our knowledge.

1. We construct the cumulative explained variance from PCA in order to:

34

• See how this quantity flows over time for Congress. This trend shows us that a

one-dimensional PCA model has increasingly become a better approximation of the

data since 1969 in the Senate and 1979 in the House of Representatives.

2. We apply the main method from [88] to:

• See how the dimension of Congress flows over time. This relative trend shows us

that the overall dimensionality of the data has been increasing since 1979 in both the

Senate and House of Representatives. We interpret this trend as meaning the number

of political factions is increasing. This result may appear to be in direct conflict with

the previous result, and we resolve this paradox later.

3.3 Principal Component Analysis and Singular Value Decom-

position

Principal Component Analysis (“PCA”) is a method that constructs a new coordinate

system to represent data. This new coordinate system is constructed to maximize the variance in

data amongst the axes, under the constraint that each axis is orthogonal. The data represented in

the first principal component, or first new axis in the coordinate system, has the largest variance.

Each additional axis describes less variance of the data. PCA can be used as a dimensional

reduction tool owing to this decrease in descriptive power (i.e., after a certain point, the series can

be truncated when it reasonably approximates the data). Singular Value Decomposition (“SVD”)

is a similar method, and we point out that our results remain unchanged if we were to alternatively

use this approach. In PCA, one diagonalizes the covariance matrix, and in SVD the data matrix is

factored directly. Below, we use X to represent an n×m data matrix.

35

PCA

C = XT X/(n−1) = VΣVT

SVD

X =USVT

The diagonal entries of Σ are the variances of the data in the new PCA space, and

the diagonal entries of S are called the singular values. These constants represent the same

information as they are related via: σ2
i =

s2
i

n−1 . In particular, this means that using results from

SVD are equivalent so long as the appropriate substitution is made for the variances in terms of

the singular values. We point out this relation between PCA and SVD for two reasons: (1) we

have seen researchers in this field using PCA or SVD; (2) it may help to think about variances

or singular values depending on the context. Using either of these methods, we are interested

in a few questions about the data. We address each of the questions below in the remaining

subsections of this section.

• How do the singular values change with respect to time, and does this say anything

important about the data series?

• How does the optimal choice in rank change with respect to time, and what does this trend

say about the data series?

3.3.1 Information Flow over Time

In this section, we answer the first question: “How do the singular values change with

respect to time, and what does this say about the data series?” We use PCA to map from the

36

original feature space to the new PCA space: F→ F̂. We vary the dimension of F̂ and calculate

the percentage of variance described by this space to study the information dynamic of projecting

to lower dimensional spaces. We compute the “information” retained by F̂ as:

I(d) =
d∑

i=1
σ̂2

i /

m∑
i=1

σ̂2
i (3.1)

Where m is the dimension of F, d is the dimension of F̂, and σ̂2
i is the variance of the data

represented by the i-th axis in F̂. This ratio is typically referred to as “PCA explained variance” or

“cumulative explained variance,” and we take a non-traditional approach in calling this ratio the

“information” as shorthand.1 Since this equation represents a percentage value, it is in the range

of [0,1] and monotonically increases with d. Additionally, I(0) = 0 and I(m) = 1. See Figures

3.1, 3.2 for plots of the information as a function of d for the 110th Senate and House (years

2007-2009), respectively. It is tempting to use the information content of the data to determine

the “true” dimensionality of the data by setting an information threshold then solving for the

dimension that crosses this value. For instance, dtrue ≡ arg(I(d) = 0.95). Although keeping

95% of the information seems an appropriate threshold to make, it is somewhat arbitrary. We

address this problem later by using an alternative method which discovers values we refer to as

“GD-thresholds,” coming from the authors Matan Gavish and David Donoho [88].

As has been done in [89], we aim to quantify how good of an approximation a one-

dimensional model is with respect to time. To do this, we plot the trend in I(d = 1)(t), where

t represents the specific congress session start year (see Figures 3.3 through 3.6). For instance

I(d = 1)(t = 2007) represents the one-dimensional information content from the 2007 to 2009

Congress. We can similarly ask how well d = 2 or d = 3, and so forth, approximations are, and

the reason we choose to analyze the d = 1 case is due to the existing claim that a one-dimensional

model can be used to accurately describe voting patterns in roll call data, especially in recent

history [89]. To this end, we answer how well a d = 1 approximation is with respect to time.

1Not to be confused with rigorous concepts of information as they apply to PCA.

37

0 20 40 60 80 100 120
Dimension

0.60

0.70

0.80

0.90

1.00

0.95

In
fo

rm
at

io
n

Re
ta

in
ed

PCA Retained Information, 100th Senate

Figure 3.1: The PCA retained information as a function of dimension given by Equation (3.1).
The input data is the roll call vote for the 110th Senate (years 2007-2009). The red horizontal
line defines a 95% threshold and the green horizontal line defines the GD-threshold. The vertical
lines show the corresponding dimension, which in either case are much lower than the total
number of votes which was 657.

To put the data from year to year on equal footing, and to produce a measure of error for

the quantities we calculate, we randomly select rows and columns from the data matrix which

results in a square matrix. Sampling the rows is referred to as bootstrapping and the columns as

feature bagging - see Section 2.3.2 for an overview of these methods. From this matrix, we are

able to compute I(d = 1)(t) and we repeat this procedure at each time step by selecting a different

subset of rows and columns on each iteration, ultimately to produce an average and variance.

Specifically, we produce 50×50 roll call data for both the Senate and House, and we iterate this

procedure 500 times at each time step. In general we can iterate this procedure more, for instance

1000 times, but at this point the error σe becomes arbitrarily small. By sampling the data in this

manner, which puts all the data on equal footing, we are able to compare between the Senate and

House and also between sessions for each branch. We use a similar sampling procedure in later

38

0 100 200 300 400 500
Dimension

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.95
In

fo
rm

at
io

n
Re

ta
in

ed

PCA Retained Information, 100th House

Figure 3.2: The PCA retained information as a function of dimension given by Equation (3.1).
The input data is the roll call vote for the 110th House (years 2007-2009). The red horizontal
line defines a 95% threshold and the green horizontal line defines the GD-threshold. The vertical
lines show the corresponding dimension, which in either case are much lower than the total
number of votes which was 1,865.

sections. Figures 3.3 through 3.6 plot this average along with the standard error (we use ±2σe on

plots for the error). However, the errors are so small on these specific figures that they do not

appear, whereas in some later figures they do appear.

Figures 3.3 and 3.4 show the information flow for all Congress sessions from 1789 to

2015, while Figures 3.5 and 3.6 are restricted to more recent years. The clearest trends occur

directly after 1979 for the Senate and 1969 for the House, in which on average, the flow is upward.

This means that the first principal component is increasingly describing relatively more variance

in the data. In other words, if a one-dimensional PCA model is to be used, this approximation

is becoming better as this flow is upward in recent history. According to [93], parties produce

low dimensional/partisan ideologies in order to win office. It is this pressure to win office that

is driving this flow upward. There are three additional questions here, and we only posit their

39

answers. The interested reader may wish to investigate these points more.

The first question is “why do these trends start to flow upwards only in recent history?”,

the second is “why is there a discrepancy between when the trend becomes upward for the House

and Senate?”, and finally “why is the trend for the Senate more dispersed than the trend for the

House?” We posit that the increasing use of media, especially televisions, connected politicians

to their constituents in such a way as had never been possible before. Owing to this increased

connection, politicians were pressured to produce and present their low dimensional ideologies

as in [93]. Second, the discrepancy between when the trend becomes upward for the House

and Senate may be a direct consequence of the length of terms served by the politicians. Since

senators’ elected terms are longer than that of house officials, they have to win office at a less

rapid rate, which is the driving force ultimately producing these low dimensional ideologies

according to [93]. We also attribute this constant driving force as the reason for the stability,

or less dispersed results, we see in the information trend for the House when comparing to the

Senate trend.

3.3.2 Optimal Rank Flow over Time

As mentioned in the previous section, the true dimensionality (i.e., optimal rank) of the

data can be determined by setting a threshold in the information function (3.1). However, a more

useful threshold can be constructed using results from [88]. The authors construct hard thresholds

in singular values from noisy data and we refer to these as “GD-thresholds.” These thresholds

are optimal in the sense that they produce an optimally low value for the asymptotic mean

squared error between data (without noise) and a low-rank approximation to the data (including

noise). An optimal value on this error means that the low-rank approximation to the noisy data

is optimally close to the fundamental structure of the data. One interesting result we will point

out is that the information approach of setting I(d) = 0.95 and the GD-threshold approach are

negatively correlated to one another. However, the results from the former approach appear to be

40

1800 1850 1900 1950 2000
Year

0.2

0.3

0.4

0.5

0.6

0.7

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow Senate

Figure 3.3: The flow in I(d = 1)(t) for the Senate for years 1789 to 2015 (1st to 113th Congress).

1800 1850 1900 1950 2000
Year

0.2

0.3

0.4

0.5

0.6

0.7

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow House

Figure 3.4: The flow in I(d = 1)(t) for the House for years 1789 to 2015 (1st to 113th Congress).

41

1960 1970 1980 1990 2000 2010
Year

0.3

0.4

0.5

0.6

0.7

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow Senate

Figure 3.5: The flow in I(d = 1)(t) of the Senate roll call data for years 1957 to 2015 (85th to
113th Congress). Notice the clear upward flow after the 1979 Congress. This figure is Figure
3.3 restricted to more recent years.

more “fuzzy,” likely due to the fact that it does nothing to denoise the data so some of the true

dimensionality may be plagued by noise even if the information threshold is set somewhat low.

The result we use from [88] is that the optimal choice of hard threshold, for an n× n

matrix with unknown levels of white noise, is:

2.858ymed

where ymed is the median singular value. We define this quantity to be the “GD-threshold.”

The general results in [88] apply to data with n ≤ m for an n×m matrix. Before bootstrapping

and feature bagging our data, this requirement is not always satisfied. To calculate the true

dimensionality of the data, we again produce 50×50 roll call data for both the Senate and House,

and we iterate this procedure 500 times for each of the time steps. While sampling the data in

42

1960 1970 1980 1990 2000 2010
Year

0.3

0.4

0.5

0.6

0.7

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow House

Figure 3.6: The flow in I(d = 1)(t) of the House roll call data for years 1957 to 2015 (85th to
113th Congress). Notice the clear upward flow after the 1969 Congress. This figure is Figure
3.4 restricted to more recent years.

this way allows us to compare between the Senate and House, and from year to year, the actual

value of dtrue may not be significant or provide much insight since we are sampling a subset of the

column space. Rather, the trend in dtrue is what we are interested in in this section, and sampling

the data in this way allows us to determine the relative changes in dtrue.

Figures 3.7 and 3.8 show this flow for all Congress sessions from 1789 to 2015, Figures

3.9 and 3.10 show these same plots restricted to more recent years. Again, the clearest trends in

these plots occur directly after the 1979 Congress in both the Senate and House, and the trend

again is upward. Referring back to the information flow, namely that a one-dimensional model has

been increasingly a better descriptor of the data in recent history, we are faced with the following

question of how this can be consistent with an increase in the dimensionality of the data.

The trends from the information flow tell us that if a one-dimensional PCA model is used,

this model has been an increasingly better approximation to the data in recent history. Similarly,

43

the increase in the dimensionality of the data tells us that more total dimensions are necessary

to represent the data. Although these trends seem to be contradictory they are mathematically

compatible. As a toy model, consider an ellipse in two dimensions as a descriptor of some dataset.

Now, stretch the data along the first principal component to increase its variance, and also give the

data a third dimension. This model describes an example where a one-dimensional PCA model

becomes an increasingly better approximation of the data and with more dimensions becoming

important to describe the data.

As discussed, we attribute the driving force that produces increasingly better one-dimensional

PCA approximations to political parties which produce low dimensional ideologies in order to

win office [93]. We posit that the driving force that has been increasing the dimensionality in

recent years is linked to the number of voting blocs or to new complex voting strategies within

the parties. It is reasonable to imagine that an increase in the voting blocs or new strategies would

cause a “leaking” into other dimensions in the data as is the case in the toy model. Depending on

how the data moves into these new dimensions, we may be able to determine the precise cause of

the increasing dimensionality. New clusters appearing would provide evidence that the increasing

dimensionality is due to voting blocs, and if they do not appear, the higher dimensionality may be

attributed to the new voting strategies.

44

1800 1850 1900 1950 2000
Year

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow Senate

Figure 3.7: Flow in the dimension of the Senate roll call data for years 1789 to 2015 (1st to
113th Congress).

1800 1850 1900 1950 2000
Year

4

6

8

10

12

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow House

Figure 3.8: Flow in the dimension of the House roll call data for years 1789 to 2015 (1st to
113th Congress).

45

1960 1970 1980 1990 2000 2010
Year

6

7

8

9

10

11

12

13

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow Senate

Figure 3.9: Flow in the dimension of the Senate roll call data for years 1957 to 2015 (85th to
113th Congress). Notice the clear upward flow after the 1979 Congress. This figure is Figure
3.7 restricted to more recent years.

46

1960 1970 1980 1990 2000 2010
Year

4

5

6

7

8

9

10

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow House

Figure 3.10: Flow in the dimension of the House roll call data for years 1957 to 2015 (85th to
113th Congress). Notice the clear upward flow after the 1979 Congress. This figure is Figure
3.8 restricted to more recent years.

47

3.4 Summary

In this analysis, we mainly focused on the upward trends seen in recent history in the

information and dimension flows. Similar analyses can be applied to any time interval by

looking at the combination of these flows. Additionally, we focused more on the mathematical

explanations to these trends in this analysis. We leave it to the reader to discover the historical,

political, or broader significance in the trends we show. To reiterate the questions we do not have

answers for:

• Why do the information & true dimension trends start to flow upwards only in recent

history?

• Why is there a discrepancy between when the information trend becomes upward for the

House and Senate?

• What is the significance of the dispersion in these trends?

We have shown two new results in this analysis. Due to these results, we argue that

Congress is not low dimensional as is often the claim, for instance in [89, 93], but rather has a

richer structure than this. We summarize the trends seen thus far in both the information and

dimension flows:

• House: upward trend in information starting 1969 (91st Congress), upward trend in di-

mension starting 1979 (96th Congress); both trends are less dispersed than the Senate

trends

• Senate: upward trend in information starting 1979, upward trend in dimension starting

1979; both trends are more dispersed than the House trends

These trends show us that one-dimensional PCA models have been increasingly better

descriptors of the data, and at the same time, more total dimensions are necessary to describe

48

the data. We attribute these mathematical trends to the increasing polarization and an increasing

number of voting factions or new voting strategies in Congress. An appropriate next step for this

analysis is to determine whether new clusters emerge between years, which will provide evidence

of new voting blocs.

3.5 Acknowledgements

We would like to thank Thad Kousser at the University of California San Diego and Arthur

Stein at the University of California Los Angeles for all the insights they gave into the world of

political science and for the many discussions they humored my politically naive mind with.

3.6 Additional Figures for Information and Dimension Flows

1790 1800 1810 1820 1830 1840
Year

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow Senate

Figure 3.11: The flow in I(d = 1)(t) of the Senate roll call data for years 1789 to 1849 (1st to
30th Congress).

49

1850 1860 1870 1880 1890 1900 1910
Year

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow Senate

Figure 3.12: The flow in I(d = 1)(t) of the Senate roll call data for years 1847 to 1909 (30th to
60th Congress).

1910 1920 1930 1940 1950 1960 1970
Year

0.20

0.25

0.30

0.35

0.40

0.45

0.50

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow Senate

Figure 3.13: The flow in I(d = 1)(t) of the Senate roll call data for years 1907 to 1969 (60th to
90th Congress).

50

1790 1800 1810 1820 1830 1840
Year

10

12

14

16

18

20

22

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow Senate

Figure 3.14: Flow in the dimension of the Senate roll call data for years 1789 to 1849 (1st to
30th Congress).

1850 1860 1870 1880 1890 1900 1910
Year

7

8

9

10

11

12

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow Senate

Figure 3.15: Flow in the dimension of the Senate roll call data for years 1847 to 1909 (30th to
60th Congress).

51

1910 1920 1930 1940 1950 1960 1970
Year

6

7

8

9

10

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow Senate

Figure 3.16: Flow in the dimension of the Senate roll call data for years 1907 to 1969 (60th to
90th Congress).

1790 1800 1810 1820 1830 1840
Year

0.2

0.3

0.4

0.5

0.6

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow House

Figure 3.17: The flow in I(d = 1)(t) of the House roll call data for years 1789 to 1849 (1st to
30th Congress).

52

1850 1860 1870 1880 1890 1900 1910
Year

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow House

Figure 3.18: The flow in I(d = 1)(t) of the House roll call data for years 1847 to 1909 (30th to
60th Congress).

1910 1920 1930 1940 1950 1960 1970
Year

0.30

0.35

0.40

0.45

0.50

In
fo

rm
at

io
n

Re
ta

in
ed

Information Flow House

Figure 3.19: The flow in I(d = 1)(t) of the House roll call data for years 1907 to 1969 (60th to
90th Congress).

53

1790 1800 1810 1820 1830 1840
Year

4

6

8

10

12

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow House

Figure 3.20: Flow in the dimension of the House roll call data for years 1789 to 1849 (1st to
30th Congress).

1850 1860 1870 1880 1890 1900 1910
Year

4

5

6

7

8

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow House

Figure 3.21: Flow in the dimension of the House roll call data for years 1847 to 1909 (30th to
60th Congress).

54

1910 1920 1930 1940 1950 1960 1970
Year

4

5

6

7

8

Di
m

en
sio

n
fro

m
 G

D-
Th

re
sh

ol
d

Dimension Flow House

Figure 3.22: Flow in the dimension of the House roll call data for years 1907 to 1969 (60th to
90th Congress).

55

Chapter 4

Learned Persistent Homology

In this chapter, we will review persistent homology (also referred to as persistence), which

is one of the main tools from TDA and generalizes hierarchical clustering methods to identify

significant higher dimensional properties. It has been used to discover interesting and useful

properties of data that had not been seen before in systems ranging from natural images [55]

through the visual cortex [56] to RNA folding [59].

One of the motivations of using persistence is its robustness to data perturbations. See

Section 2.4.5 for a broad overview of TDA motivations, [67] for robustness guarantees, and

Figure 2.5 for a toy example of what this robustness means. In this chapter, we will investigate

how noise in a dataset changes the topological information gathered from persistent homology.

We do this by aggregating results gathered from running multiple trials, each of which outputs

a set of Betti numbers. This set of results are then run through various classifiers in order to

characterized the topology of the data. These concepts will be elaborated on in this chapter, and

can also be reviewed in Section 2.4.3 and [47].

This chapter is meant to be an introduction to persistent homology, and we apply its tools

to constructed noisy circles and noisy figure 8’s. While we will see the utility of using persistence

in being able to capture global information in these noisy datasets, we will also review some of

56

its issues. These issues will eventually lead us to modifying our approach in studying noisy data

in Chapter 5, where we will construct a robust algorithm based on a topological method which

does not share the persistence issues we will review. The main tool we will use from persistent

homology is the relative dominance which will be defined in Section 4.1.2.

4.1 Background

4.1.1 Homology

In its broadest form, homology is a mathematical prescription that calculates algebraic

properties of objects called chain complexes [47]. When these chain complexes consist of sim-

plices, the homology that is calculated is a topological invariant of the space, and fundamentally

relates to the number of n-dimensional holes of the space. It is thus a way to talk about isomor-

phisms of groups rather than homeomorphisms of spaces. This turns out to simplify the question

of whether two spaces are fundamentally put together the same way or not. Formally, simplicial

homology is defined as follows.

A simplicial k-chain (ck) is a sum of k-simplices (σk):

ck =
∑

i

αiσ
i
k, αi ∈ F (4.1)

where F is some field. Each k-simplex can be thought of as a k-dimensional polytope. Thus, a

2-simplex represents a solid triangle; a 3-simplex represents a solid tetrahedron, etc. A collection

of k-chains define a free Abelian group which is denoted as Ck - i.e., ck ∈ Ck . The boundary

operator ∂k : Ck → Ck−1, is a linear homomorphism defined to act on σk = [v0,v1, . . .,vk]

∂kσk =
∑

i

(−1)i[v0,v1, . . ., v̂i, . . .,vk] ∈ Ck−1

57

where “v̂i” means this element is removed from the simplex. This definition leads to a flow of

information in the various chain groups:

. . .→ Ck+1
∂k+1
−−−→ Ck

∂k
−→ Ck−1→ . . .

See Figure 4.1 for a depiction on what these simplices are and how the boundary operator

acts on them.

Subgroups of this map can be defined that carry information about the global structure

of the space. In particular, the cycle group Zk ≡ ker ∂k and the boundary group Bk ≡ im ∂k+1.

Because ∂2 ≡ 0, this implies Bk ⊆ Zk ⊆ Ck . This condition is necessary so the homology group

can be defined as the quotient group:

Hk ≡ Zk/Bk = ker ∂k/im ∂k+1

Each homology group, Hk , contains information about the existence of k-dimensional

holes in the space. For instance, the torus has H0 = Z, H1 = Z
2, H2 = Z and all the remaining

homology groups vanish. Refer to Hatcher’s text [47] for a full treatment of the subject.

Figure 4.1: Consider the 2-sphere as the topological space which can be seen as constructed
from 2-simplices. The boundary operator acts on these simplices iteratively, at each step
producing a set of lower dimensional simplices. Note, this figure leaves out the fact that ∂2 ≡ 0.

58

4.1.2 Persistent Homology

The previous discussion on homology requires the spaces to be triangulable, that is able to

be thought of as a sum of k-simplices. Topological data analysis allows us to extend this notion in

order to triangulate datasets. Various methods of generalizing exist, each with their own distinct

set of rules, that can be used to construct simplices from data. For each of these procedures, we

choose the coefficients in Equation 4.1 to be in Z2.

We use the terms point cloud and data set interchangeably. Let d(a,b) denoted the

distance in a metric space between points a and b. Let Z denote the point cloud. We refer to ε as

the filtration value, or simply the filtration. The vertex set consists of either the entire dataset’s

points or some subset of them. Refer to [48, 49, 50] for overviews of persistent homology. The

remainder of this section will focus on the various ways in which we can construct the persistence.

Vietoris-Rips Complex

Given a point cloud, the Vietoris-Rips Complex (Rε) defines k-simplices as being deter-

mined by (k +1)-tuples of points whose balls of radius ε/2 pairwise intersect [48] (see Figure 4.2

for a depiction of this procedure). The balls are drawn around each point in the point cloud, and

the radius can be computed with an arbitrary metric. Specifically, to construct R(Z, ε):

1. The vertex set is Z or some subset of Z

2. Edge [a,b] is in R(Z, ε) iff d(a,b) ≤ ε

3. Higher dimensional simplices are in R(Z, ε) if all of its edges are in R(Z, ε)

One of the motivating reasons for this construction is that the union of the balls, which we

interpret as being fundamentally representative of whatever topology the points came from, has a

homotopy type that is closely related to the homotopy type of R(Z, ε) (see [7]). Note that for a

59

PERSISTENT TOPOLOGY OF DATA 5

Figure 3. A sequence of Rips complexes for a point cloud data
set representing an annulus. Upon increasing ϵ, holes appear and
disappear. Which holes are real and which are noise?

high-dimensional data, algebraic topology works like a telescope, revealing objects
and features not visible to the naked eye. In what follows, we concentrate on
homology for its balance between ease of computation and topological resolution.
We assume a rudimentary knowledge of homology, as is to be found in, say, Chapter
2 of [15].

Despite being both computable and insightful, the homology of a complex asso-
ciated to a point cloud at a particular ϵ is insufficient: it is a mistake to ask which
value of ϵ is optimal. Nor does it suffice to know a simple ‘count’ of the number and
types of holes appearing at each parameter value ϵ. Betti numbers are not enough.
One requires a means of declaring which holes are essential and which can be safely
ignored. The standard topological constructs of homology and homotopy offer no
such slack in their strident rigidity: a hole is a hole no matter how fragile or fine.

2.1. Persistence. Persistence, as introduced by Edelsbrunner, Letscher, and Zomo-
rodian [12] and refined by Carlsson and Zomorodian [22], is a rigorous response to
this problem. Given a parameterized family of spaces, those topological features
which persist over a significant parameter range are to be considered as signal with
short-lived features as noise. For a concrete example, assume that R = (Ri)

N
1 is

a sequence of Rips complexes associated to a fixed point cloud for an increasing
sequence of parameter values (ϵi)

N
1 . There are natural inclusion maps

(2.1) R1
ι

↪→ R2
ι

↪→ · · · ι
↪→ RN−1

ι
↪→ RN

Figure 4.2: A depiction of how the Rips complex changes as a function of ε . 0-simplices
are represented by the individual data points, 1-simplices by the black edges connecting them,
2-simplices by yellow, 3-simplices by green, 4-simplices by red, and 5-simplices by blue. Image
from [48].

large enough filtration, the complex will become one connected component (see Figure 4.2). For

a small enough filtration, there will be as many connected components as there are vertices.

The construction of R(Z, ε) can be computationally expensive if the vertex set is large.

Choosing the vertex set as a subset of Z reduces the computation necessary to construct the

simplex set over the range of all filtration values. L ⊂ Z is called the landmark set, and points in

it are chosen in one of two ways by selecting from Z [94]:

• random point selection: select points randomly from Z , the resulting set being L

• maxmin point selection: first, choose a random point in Z to serve as the first point in L.

Each additional point in L is chosen from Z by maximizing d(z, li) ∀ li ∈ L, z ∈ Z

60

The size of L is variable depending on how large a vertex set is needed.

Lazy Witness Complex

If a landmark set is taken as the vertex set for a Rips construction, information about the

rest of the point cloud, Z \ L, is lost. To incorporate back in some of this information, we can

construct the “Lazy Witness” complex LW(Z, L, ε, ν):

1. The vertex set is L

2. Edge [a,b] is in LW(Z, L, ε, ν) iff ∃ z ∈ Z such that max{d(a, z),d(b, z)} ≤ Dν(z)+ ε

3. All higher dimensional simplices are in LW(Z, L, ε, ν) if all of its edges are in LW(Z, L, ε, ν)

Dν(z) is defined to be the distance from z to its νth closest landmark point. A feature of

the lazy witness complex is that it behaves like a Delauney triangulation of the space when ν = 1 ;

for ν = 0, the complex behaves similarly to R(Z, ε) [94].

Core Subsetting

Core subsetting is a procedure that helps uncover statistically significant topological

structure in data. In a real world dataset, there is no reason a priori to expect the entire data set to

have an interesting topological structure. Rather, we may expect subsets of the data to have the

interesting structure. The procedure of core subsetting follows. First, start with an abritrary n×n

metric space D, where di j represents the distance between the i-th and j-th data point:

D =

©«

d11 d12 · · · d1n

d21 d22 · · · d2n

...
...

. . .
...

dn1 dn2 · · · dnn

ª®®®®®®®®¬
61

The second step is to produce a density vector:

∆k =

©«
δk

1
...

δk
n

ª®®®®®¬
Where δk

i is defined to be the inverse of the distance from the i-th point in the metric

space (i.e., the i-th row of D) to the k-th closest neighbor. Hence, k is a parameter we can scan

over. A large k can be thought of as giving a more global estimate of the topology; similarly, a

small k gives a more local estimate. Additionally, there are other ways in which the density can

be defined which we will not investigate here. The final step is to select a percentage “p” of the

densest points in ∆k . The densest points within the cutoff determined by p can then be used to

form a smaller metric space:

D̃ =

©«

d11 d12 · · · d1m

d21 d22 · · · d2m

...
...

. . .
...

dm1 dm2 · · · dmm

ª®®®®®®®®¬
, m ≤ n

Analytical Tools

There are various quantities we examine when determining the fundamental topological

structure of the point cloud and we compute these using javaPlex - a software built to construct

persistent homology from an arbitrary point cloud [74]. The quantities we examine are:

• Barcode Plots: These depict the various generators of the different

LW(Z, L, ε, ν) or R(Z, ε). The x-axis represents the filtration value; the y-axis represents, in

no physically significant ordering, the different homology generators. A barcode exists for

each Hn.

62

• Betti Numbers: Are the rank of the n-th homology group and are denoted as βn. They are

integers that count how many generators of a specific dimension exist, and for persistence,

this value is dependent on the filtration value. For example, in persistence

β1 = |H1(R(Z, ε), ε = 3)| = 2

means the first dimensional homology group for a Vietoris-Rips complex at a filtration of

ε = 3 has Betti number equal to 2. In other words, it has 2 one-dimensional holes at this

filtration, much as how the torus in Figure 4.3b has 2 one-dimensional holes. See Figure

4.3 for a depiction of Betti numbers for different topological spaces. Note that the list of

Betti numbers can be merged to form a single vector that characterizes all the homological

information about the space - we will use this concept later.

• Relative Dominance [94]: A few definitions are necessary in order to define the relative

dominance:

1. ε0 = The filtration value at which a topological structure appears, also referred to as

the “birth” of the feature

2. ε1 = The filtration value at which a topological structure disappears, also referred to

as the “death” of the feature

3. ε = The filtration value at which the complex becomes one connected component

Relative Dominance is defined as δR =
ε1−ε0
ε . Heuristically, we think of this as a meaningful

quantity to look at because if δR is large then the topological structure is likely significant,

and on the other hand, a small δR likely corresponds to the topological structure being

noise. A priori it is not clear what is meant by a “small” or “large” relative dominance as

this changes depending on the dataset and other choices made in the analysis. The idea

then becomes, can we teach a computer to recognize what a large or small δR is, given the

63

(a) S2, the 2-sphere has Betti
numbers: β0 = 1, β1 = 0, β2 = 1.

(b) T2, the 2-torus has Betti
numbers: β0 = 1, β1 = 2, β2 = 1.

(c) The solid 2-torus has Betti
numbers: β0 = 1, β1 = 1, β2 = 0.

Figure 4.3: Three spaces that are topologically distinct and characterized by their set of Betti
numbers. The red lines represent potential 1-dimensional generators. In the case of S2 the
generator can be contracted to a point, so β1 = 0. The generators for the tori cannot be contracted,
hence β1 , 0 for both.

precise conditions of our project. In this chapter, we indeed show that this is possible in the

case of simple noisy data, but we will also see some of the shortcomings to this approach,

specifically of using δR.

4.2 Ambiguities in Persistence

The tools to compute persistent homology we have briefly surveyed can work particularly

well for “pure” and sufficiently sized datasets with no further analysis required to extract the

true topological structure of the data. By “pure,” we ultimately mean that the topology is readily

apparent by reading off the barcode, for instance in Figure 4.5. For many datasets though, reading

off the topology from the barcode is not so straightfoward, for instance in Figure 4.8. There

are numerous reasons a dataset may produce uninterpretable (by human eyes) barcodes, a few

of which include data that is: “fuzzy” (i.e., dispersed), large, noisy, or there may just be no

interesting topology to begin with (i.e., the data can be a simple blob in n-dimensional space, an

n-blob).

As an example of pure data, if we apply persistent homology to a dataset where we

64

randomly sample a sufficient number of points from a circle, it is quite clear from the relative

dominances that the structure is indeed circular. Figure 4.4 shows data randomly sampled from a

circle and Figure 4.5 shows the barcode for this data. Notice that the barcode clearly shows the

topological structure is a circle. As an example of fuzzy or noisy data, we take the pure circle

from Figure 4.4 and add noise to each of the data points. The noise in this example consists of

random samples from a 2D Gaussian (Figure 5.10). In Figure 4.7, the circle+noise point cloud

still looks roughly circular, but looking at the barcode plot Figure 4.8, this is not as clear. In the

noisy barcode, two issues make it hard to interpret: (1) there are numerous dominances each of

which have comparable lengths, and (2) they are an order of magnitude shorter than for the circle

without noise. By eye, there is some transition point where the barcodes become readable to

non-readable, so we train a computer to extend this transition point.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 4.4: 500 randomly sampled points from a circle.

65

0 0.1 0.2 0.3 0.4 0.5

Noisy Circle, Maxmin, N=0 (dimension 0)

0 0.1 0.2 0.3 0.4 0.5

Noisy Circle, Maxmin, N=0 (dimension 1)

Figure 4.5: The barcode plot for Fig 4.4. For this example, δR ≈ 11.6 The top barcode represents
how H0 changes with respect to filtration value; the bottom barcode represents the change in H1.
There is no significance to the ordering in either y-axis.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 4.6: A 2D Gaussian distribution used as a noise source. The Gaussian has σ = 0.18 for
each axis.

66

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 4.7: A circle + Gaussian noise. The circle diameter is 1 and the Gaussian has σ = 0.18
for each axis.

0 0.1 0.2 0.3 0.4 0.5 0.6

Noisy Circle, Maxmin, N=0.18 (dimension 0)

0 0.1 0.2 0.3 0.4 0.5 0.6

Noisy Circle, Maxmin, N=0.18 (dimension 1)

Figure 4.8: The barcode plot for Fig 4.7. For this example, the two largest relative dominances
are: δR ≈ 0.23, 0.19. The top barcode represents how H0 changes with respect to filtration
value; the bottom barcode represents the change in H1. There is no significance to the ordering
in either y-axis.

67

4.3 Data

The data we use to learn persistence consists of randomly sampled points from pure

circles and figure-8’s, with some degree of noise added to each of these points. The noise we

add serves to make the data closer to what a real world data set may consist of, and consists of

data randomly sampled from a Gaussian in n-dimensional space. If we call G an n-dimensional

Gaussian, X the pure data space, and σ the symmetric variance of the Gaussian, then the space X̃

we study consists of points whose coordinates are given by:

x̃i = xi +gi(σ),

x̃ ∈ X̃, x ∈ X, g ∈ G

The range of the pure data is typically around one (more on this in the next section).

Given the range of our data, when σ ≡ 0 the data consists of the pure data; when σ ∼ 0.5 the

magnitude of the noise is on the order of the magnitude of the data, in which case the data will

be too noisy to uncover any topological structure. In fact, we expect the data to be too noisy

except for relatively small values of σ. In constructing the data in conjunction with persistence,

we choose various parameters which we summarize below and in Table 4.1:

1. N ≡ number of generated points in X.

2. Nl ≡ number of landmark points from X̃ (see Section 4.1.2). We call the set of these points

X̃l (i.e., X̃l ⊂ X̃). The complexity of computing the homology of a dataset scales with

this parameter. We set |Nl | = 80 based on heuristic observations in which we compare the

computation time versus the quality of the barcode.

3. σ ≡ variance of the Gaussian (i.e., a noise parameter). We vary this from 0.10→ 0.50 in a

step size of 0.05.

68

4. k ≡ core subset parameter, which we set to 1 in this analysis. Zigzag persistence can

be used to investigate the topology when this parameter changes [95]. Again, this is set

heuristically.

5. We choose a Lazy complex with ν = 0, maxmin selection, and Euclidean metric

Table 4.1: Parameters of Generated Data

Structure Landmark Selection Diameter N p k Nl

circle maxmin 1 500 50 1 80
figure-8 maxmin 1 1000 50 1 80

Note that increasing N or Nl may bias the analysis towards better results (i.e., the relative

dominances show more clearly the underlying topological structure). Up to a certain point,

increasing N more clearly defines the pure data structure we analyze and increasing Nl gives

us more information about this total space. We heuristically set Nl based on observing how the

relative dominance changes when it is varied.

The purpose of this analysis is to present a procedure which quantifies the significance of

δR in the barcodes, and in doing so we should be able to determine its topology. We present both

supervised and unsupervised approaches to learning this structure in Sections 4.4.1 and 4.4.2,

respectively.

Since we are working with two dimensional point clouds (the circle and figure-8), we

only look up to H1. To build up the mathematical structure of δR, we submit 300 runs for a set

of given parameters. Each run produces a barcode plot with the same set of parameters as the

previous run, the only difference between them is the inherent randomness involved which may

produce different results. The randomness comes from producing the pure point cloud X each

run, from the landmark selection X̃l , and from producing the Gaussian noise G for each run. To

give an example of this for the noisy circle, we produce 300 runs following the procedure below:

69

One Run

• Produce 500 points randomly sampled from a circle with diameter=1

• Set σ and add Gaussian noise to each coordinate in the data

• Core subset the data, with p = 50% and k = 1

• Choose maxmin points from the core, with Nl = 80

• Produce barcode then relative dominances

4.4 Learning Persistence

In the following sections, we present supervised and unsupervised approaches (Section

2.1) in analyzing the structure of δR from the barcodes. The supervised approaches we use include

Gaussian mixture models (“GMM”) [36], random forests (“RF”) [44] and neural networks (“NN”)

[6]. In the unsupervised approach, we will use a Kolmogorov-Smirnov (“KS”) test [96, 97]. In

the supervised cases, we will train up accurate classifiers and in the unsupervised method we will

ultimately look at p-values with respect to noise.

4.4.1 Supervised Learning of Persistence

We will use three classifiers in our supervised approach: GMMs, RFs, and NNs. Gaussian

mixture models are generative, while random forests and the neural network we use are discrim-

inative (see Section 2.4.4). At first thought, a GMM would seem to be a better classifier since

we might expect the Gaussian noise, which is added to the pure data, to permeate through to the

structure of δR. While a GMM model still maintains relatively good classification, the random

forest and neural network outperform it, especially for larger noise values. In Figures 4.15 and

4.16 we see the distributions of δR in 1-dimensional slices are indeed not Gaussian. The data we

70

use as input to these classifiers is another point cloud in R5 where the coordinates correspond

to the largest H1 relative dominances for a given run, arranged in descending magnitude. For

instance, the first coordinate corresponds to the largest relative dominance and the last coordinate

corresponds to the smallest. If a relative dominance doesn’t exist for one of the coordinates, we

populate that coordinate with a zero.

Train accuracy: 99.8
Test accuracy: 98.3

spherical
Train accuracy: 99.6
Test accuracy: 96.7

diag

Train accuracy: 100.0
Test accuracy: 99.2

tied
Train accuracy: 99.8
Test accuracy: 100.0

full=0.10
circle
figure8

Figure 4.9: A GMM with four different covariance matrices (see Appendix C) applied to
classifying noisy circles and figure-8’s with σ = 0.1. Depicted here is a projection of the GMM
and first two relative dominances to R2.

A GMM consists of fitting the data to a weighted sum of Gaussians: p(x;θ)=
∑C

c=1αcN(x; µc,Σc),

where αc is the weight of the component c, 0 < αc < 1,
∑C

c=1αc = 1 and θ is a list of parameters.

See Appendix C for a further description of a GMM and its parameters.

In Figure 4.10 we see that the random forest and neural network retain high accuracies

even for high levels of noise, which means they are able to detect the mathematical structure of

δR and generalize to unseen instances. Even at σ = 0.5, these classifiers are able to predict the

71

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Supervised Classification Accuracy
RF
GMM
MLP

Figure 4.10: Test accuracy as a function of σ for a GMM, RF, and NN. Even at σ = 0.5, the RF
and NN are able to predict the topology with 75% accuracy on test instances. The NN we use is
a shallow multilayer perceptron (“MLP”).

topology with 75% accuracy on test instances. In Figures 4.11 and 4.12 we see how large noise

actually affects the datasets.

4.4.2 Unsupervised Learning of Persistence

In this section, we present an unsupervised approach in learning the persistence. The idea

here is to aggregate the relative dominances for the various Hk homology groups into histograms,

and to use just these histograms to determine whether a generator in each of the Hk is statistically

significant. More specifically, the approach will be to populate nk histograms for each of the

Hk (in our case, we only analyze H1 and set n1 = 3 for simplicity) for each dataset where the

statistics are generated by the runs as in Section 4.3. The value of nk sets the limit on the number

of k-dimensional generators we will analyze to see if they’re statistically significant. If we expect

m significant generators for H1, for instance, n1 should be set higher than m.

The histograms correspond to the three largest relative dominances (i.e., n1 = 3), param-

72

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(a) Noisy circle with σ = 0.3

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Noisy circle with σ = 0.5

Figure 4.11: Noisy circles for two values of σ. At σ = 0.3 accuracy ∼ 70% and at σ = 0.5
accuracy ∼ 75% for both the RF and NN.

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) Noisy figure8 with σ = 0.3

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

(b) Noisy figure8 with σ = 0.5

Figure 4.12: Noisy figure-8’s for two values of σ. At σ = 0.3 accuracy ∼ 70% and at σ = 0.5
accuracy ∼ 75% for both the RF and NN.

73

eterized by the amount of noise added to the data. We expect the distribution to be positively

skewed, i.e., with a longer right tail, as the predominance of fleeting or small δR will likely be

more numerous in noisy data. Below, we show the histograms in Figures 4.15 and 4.16.

For small values of noise, it is clear what the homology is for both the circle and figure-8

from these histograms. However, even for these small values of noise there is still a large standard

deviation, and hence a single sampling of a relatively clean dataset in general may be insufficient

to determine the homology (which is related to other issues brought up in Section 4.5). As noise is

increased, the average of the relative dominances shifts left, and the standard deviation decreases.

Considering the distributions of the circle (Figure 4.15) we see that the first histogram

for low noise is clearly shifted right with respect to all higher order distributions. Thus, an unsu-

pervised approach in determining the homology would be to test which lower order histograms

are sufficiently different from higher order ones. A two sample Kolmogorov-Smirnov (“KS”)

test can be used to determine how distinct any pairs of the histograms are [96, 97]. The KS test

returns a p-value which is the probability that, if the null hypothesis were true (being that the

two distributions were drawn from the same model), we would observe the two distributions we

constructed. 1 If we set a threshold on this value, say p = 5%, then when the KS test returns a

value ≤ 5%, we will say that the distributions are different.

If we use δ(i)R to represent the distribution of the i-th largest relative dominance (i.e., δ(1)R

is the largest), we would like to see the following p-values:

Table 4.2: The p-values we would like to see for the circle and figure-8 for the three comparisons
in δ

(i)
R . A p-value ≤ 5% means the distributions are different; a p-value > 5% means the

distributions can be considered the same.

Data δ
(1)
R vs δ(2)R δ

(1)
R vs δ(3)R δ

(2)
R vs δ(3)R

circle ≤ 5% ≤ 5% > 5%
figure-8 > 5% ≤ 5% ≤ 5%

1Technically speaking, the p-value tells us the probability of observing a D-value, a measure of statistical
difference in KS testing, as discrepant or more so than what we observed.

74

These cutoffs are determined by the assumption that noisy δR distributions are fundamen-

tally different from topologically significant δR. In a future analysis, these cutoffs or different

criteria may be more appropriate.

Figures 4.13 and 4.14 show the p-value between these pairwise comparisons with respect

to noise level. We see that the distributions do fairly well in maintaining the cutoff requirements

from Table 4.2, but two improvements can be made here: (1) reduce the overall number of

violations to Table 4.2 and (2) smooth out the jumpiness in these plots. Preprocessing the δ(i)R

distributions improves this behavior to an extent, and indeed Figures 4.13 and 4.14 were computed

on δ(i)R that had been scaled to the interval [−1,1]. In a future analysis, modifying the cutoffs, the

preprocessing, or statistical test may improve the quality of these plots.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KS
 p

-v
al

ue

KS p-value for longest H1 generators, Circle
(1)
R vs (2)

R
(1)
R vs (3)

R
(2)
R vs (3)

R

Figure 4.13: p-value with respect to noise for pairwise comparisons of δ(i)R for the circle.
The red line determines the 5% cutoff. We would like to see the following conditions met:
≤ 5%, ≤ 5%, > 5%.

75

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KS
 p

-v
al

ue

KS p-value for longest H1 generators, Figure8
(1)
R vs (2)

R
(1)
R vs (3)

R
(2)
R vs (3)

R

Figure 4.14: p-value with respect to noise for pairwise comparisons of δ(i)R for the figure-8.
The red line determines the 5% cutoff. We would like to see the following conditions met:
> 5%, ≤ 5%, ≤ 5%. Modifying the cutoffs, the preprocessing, or statistical test may improve
the quality of this plot and smooth out its jumpiness.

76

	
	
	
	
	

Figure 4.15: Histograms for the 3 largest relative dominances of the circle. At each noise
level, blue is δ(1)R , green is δ(2)R , red is δ(3)R . These colors do not correspond to the p-value
measurements.

77

	

Figure 4.16: Histograms for the 3 largest relative dominances of the figure 8. At each noise
level, blue is δ(1)R , green is δ(2)R , red is δ(3)R . These colors do not correspond to the p-value
measurements.

78

4.5 Ambiguities in Persistence: Part Deux!

The supervised classifiers in Section 4.4.1 were able to maintain a high level of test

accuracy even for large noise values. This is somewhat surprising at first thought given that

Figures 4.11b and 4.12b appear to have little topological structure. The core subsetting could be

one of the reasons why the overall algorithms are still able to pick out the topological structure,

or perhaps it’s just the contrived nature of the data itself. Speaking to the latter point, all the

data were produced under the same set of assumptions between the runs (i.e., same diameters,

same density, etc.). However, if we were to feed in a figure-8 with diameter=2 through the entire

classification algorithm, it would likely be confused due to issues in δR. Some of these issues

come from the fact that, though it is a quantity derived from topological notions, it is not a

completely topological quantity.

For instance, the relative dominance is not scale invariant, which is indeed one of the

motivations of using TDA in the first place (Section 2.4.5). To give an example, consider two

pure circles with no noise each with the same density of points, however one has two times the

radius of the other. If circle A is the smaller of the two, for H1 we would expect to find:

δA
R =

ε1− ε0
ε

δB
R =

ε′1− ε0

ε
=

2(ε1− ε0)
ε

= 2δA
R

(4.2)

Note that the birth time is the same in either case since the densities of each circle are the

same. However, the (death) − (birth) time is 2 times longer in the case of circle B as it has 2

times the radius of circle A. Thus, δR can change drastically between datasets even if they are

topologically equivalent.

A second issue with using persistence to study the topology of an object is that it is

constructed to capture solely the n-dimensional hole information in the data. If this is all that

79

is required for understanding the data, then persistence can be a useful tool. However, in many

cases, there is interesting structure to the data that can be missed by δR. For instance, take the

letter “A” and the letter “O” as the datasets in question. Theoretically, persistence should say

both these objects are topologically equivalent to a circle. While this is true from the homological

standpoint, it certainly coarse grains the dataset too much if we are interested in distinguishing

between these objects. Now, given the considerations in previous sections, namely that barcode

plots can look much different even for two different (noisy) circles, there could be the hope that

the barcode plot structure actually does resolve the “A” vs “O” structure. But if we start to shorten

the legs of the “A”, at some point persistence will certainly miss this structure.

An alternate TDA method to persistence utilizes objects called mappers, which we will

review in Chapter 5, that can capture the information about the legs of “A”. See Table 4.3 for a

summary of how persistence and mapper should theoretically resolve structure in “A” and “O”.

Table 4.3: The data X is either the letter “A” or “O”. Theoretically, persistent homology will
return a 1 for the first two Betti numbers; mapper will return a graph that looks different between
the datasets.

Due to these issues in δR, we will use mapper objects in Chapter 5 as a basis for a robust

image recognition algorithm.

4.6 Acknowledgements

We would like to thank the developers of javaPlex, and specifically to Henry Adams for

all the insight he provided into the world of persistent homology.

80

Chapter 5

Learned Mappers

Topological data analysis aims to extract topological quantities from data, which tend

to focus on the broader global structure of the data rather than local information. The Mapper

method, specifically, generalizes clustering methods to identify significant global mathematical

structures, which are out of reach of many other approaches. We propose a classifier based on

applying the Mapper algorithm to data projected onto a latent space. We obtain the latent space

by using PCA or autoencoders. Notably, a classifier based on the Mapper method is immune to

any gradient based attack, and improves robustness over traditional CNNs. We report theoretical

justification and some numerical experiments that confirm our claims.

5.1 Introduction

Deep neural networks [98, 6] are well known to be not robust with respect to input image

perturbations, and to be susceptible to so-called “adversarial attacks” which are designed by

adding to images perturbations that are typically non-perceptible by humans [99, 100, 101].

In this chapter we explore opportunities for combining deep learning techniques with a well

known topological data analysis (TDA) algorithm – the Mapper [51], which we use to create

classifiers with improved robustness. First, the training data is projected onto a latent space.

81

The latent space in the simplest variant is constructed using PCA components, and we also use

nonlinear projections by utilizing various autoencoders [98, 102, 103, 104]. Then, a discrete

graph representation (Mapper) is assigned to the training data projected onto the latent space.

Having this trained graph structure built, any input can be binarized, by assigning the binary vector

representing the nodes in the graph to which it belongs. We emphasize that such discretization

step makes our algorithm essentially immune to any white-box gradient based adversarial attack.

The test data is treated by a special mapping procedure that is essentially performing a weighted

k-nearest neighbor search in the preimage of some portion of the latent space in order to compute

a vectorized representation of the testing points. We apply the algorithm we have developed,

using methods from topological data analysis and more traditional approaches, to the MNIST [12]

datasets as an application of robust computer vision.

The main ingredient in this algorithm is our implementation of a topological object, called

a Mapper, which captures global information about the data space. Intuitively, these objects allow

for some “stretchiness” in the data while still producing the same desired output [66]. In general,

methods in topological data analysis are robust to perturbations in data because the overall global

structure remains relatively unchanged, and these methods capture this information. Owing to

this property, the variance in our predictive model is reduced, and due to an ensemble approach

we implement the bias is additionally reduced. Hence, our algorithm resolves, to an extent, the

bias-variance tradeoff. We will note that Mappers have been used to classify error modes for

CNNs when applied to MNIST data [68].

The original software to produce Mapper objects is Python Mapper [52]. The code

we have constructed for this analysis is a prototype implementation and is built around an R

implementation of the Python Mapper software [72]. Using Mapper as a means to compare shapes

has been done before in [51] and [105]. Our approach is different in that we utilize traditional

machine learning approaches in conjunction with Mapper. We additionally apply our method to

more extensive data and construct a measure of robustness of our approach. Our algorithm is

82

NN Dense Module

Graph

Binarization

Projection Onto

Latent Space

(d=20)

Data

(d=784)

(1,0,0,0)

Mapper Algorithm

Component 1

(d=1)

Mapper Algorithm

Component 20

(d=1)

etc...

(0,0,0,1,1)

}etc...

Figure 5.1: Illustration of our MC method. In practice we use not just one Mapper object but a
whole committee of mappers (see Section 5.2).

general and can likely serve as a robust classifier for data other than image data. For the purpose

of this chapter, we interpret inputs as Nin dimensional real-valued vectors, and denote the full

space of inputs by X ⊂ RNin . We denote a set of examples in some given benchmark dataset by

X ⊂ X, which is split into the training and the testing sets, i.e., X = Xtrain ∪ Xtest. We use the

notation X to denote a general dataset, i.e., either Xtrain or Xtest when the distinction between

these is not important. The notation for the space of images X will become useful later, especially

when we discuss perturbed data.

5.1.1 What is Mapper?

The Mapper method [51] is a discretized analog of Reeb graphs [7, 106], which are tools

used in Morse theory [107]. Both Mapper and Reeb graphs provide topological information

pertaining to connectivity of the space. More precisely, they describe changes in level sets

in a space given a function over this space. Some motivations for using these approaches to

understand data consist of: the ability to get a higher-level understanding of the structure of data

83

by determining clustering information (which is based on clusters in X and how various functions

behave on X), and the low computation cost of producing these topological networks. They have

been used for a number of different applications, including: the discovery of significant clusters

in breast cancer gene expression, the classification of player performance in the NBA, and voting

behavior in the United States Congress [60]; to study RNA hairpins to identify dominant folding

paths [59].

We denote a specific Mapper object as M = M(X, f) and the space of Mapper objects by

M. Below, we describe the Mapper algorithm and provide specific examples of Mapper objects.

5.1.2 Mapper Algorithm

INPUT:

• The dataset Xtrain ⊂ R
Nin .

• The choice of metric for computation of the pairwise distances (fixed to Euclidean).

• The function f : X→ R, referred to as the “lens” or “filter function.” 1

• The number of intervals in the open cover ≡ nint of R, the percent overlap of the intervals

(also referred to as the gain), the number of bins in a histogram consisting of distances

at which clusters merge in a single-linkage clustering ≡ nbins. We set nbins = nint = 10 and

gain = 0.33 (more on this in Section 5.3).

OUTPUT:

• The Mapper object M ∈ M (undirected graph encoding the clustering of data and the

intersection structure (see Remark 5.1)).

begin

1. Set I = im(f). Choose an open cover {Uα} for I.

1The Mapper algorithm does not require a mapping to one dimension, and indeed it is possible to replace this
step with f : X→ Rm for arbitrary m.

84

2. Set Vα = f −1(Uα). Then {Vα} is an open cover for X .

3. Refine {Vα} to {Vα,iα} where iα indexes the Nα components of Xtrain ∩Vα defined by

connecting points that have distance less than ε > 0, where ε is dependent on nbins. Let

Ñ =
∑
α Nα.

4. Let {(α, iα)} label the Ñ vertices of a simplicial complex. It is useful to think of data points

living in these vertices.

5. Connect vertices labeled (α, iα) and (α′, iα′) iff Vα,iα ∩Vα′,iα′ , ∅.

end

5/21/2019 auto1_10_10_lamda=e-4.html

file:///Users/ageorges/Desktop/Mapper_CNN/images/Mapper Objects Autoencoder/Shallow/auto1_10_10_lamda=e-4.html 1/2

5/21/2019 auto1_20_20_lamda=e-4.html

file:///Users/ageorges/Desktop/Mapper_CNN/images/Mapper Objects Autoencoder/Shallow/auto1_20_20_lamda=e-4.html 1/2

Figure 5.2: Mapper objects computed for 10k MNIST training data, with contractive autoen-
coder projection (see Section 5.2). Color corresponds to projection value, and node size corre-
sponds to total number of points in the node. nint = nbins = 10 for the LHS figure, nint = nbins = 20
for the RHS figure.

In general, Ñ will be a function of both nbins, nint, the function f , and the data. The Mapper

procedure gives clustering information based on the original data Xtrain and the information

contained in f |Xtrain . In step (3), a local neighborhood scale must be defined or recovered in order

to produce a refinement of the open cover Vα. This is done by first producing a histogram of

the number of components that become connected at varying length scales via single-linkage

clustering (see Figure 5.3). If there are distinct clusters in the data, the histogram will have

at least two main peaks: one peak corresponding to points that become connected at smaller

distance scales, and another corresponding to points that become connected at larger lengths

which represent the distance between clusters. The heuristic we use to choose the small distance

85

scale is the value at which the first break in the histogram occurs, which is motivated from the

distinction between separate peaks in the histogram that come from different scale properties of

the data. This process is repeated for each set Uα in the open cover, and a new local neighborhood

scale is recovered for each of these sets.

A higher bin value will tend to push down the distance scale that is required in step (3),

and hence produce more nodes in the Mapper. Thus, a higher bin value can also be seen to

correspond to, on average, an increase in the complexity of the Mapper object. In general, there

is a bias-variance tradeoff in setting this value. See Figure 5.2 to see how this choice can change

the Mappers. Additionally, we fix the gain for the sets in the open cover Uα, to be a 33% overlap.

This will cause each data point to be assigned to at most 2 nodes in the Mapper.

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Single Linkage Cluster PCA1, Interval 1, 10 Bins

(a) Produced with nint = 10,nbins = 10.

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Single Linkage Cluster PCA1, Interval 1, 20 Bins

(b) Produced with nint = 10,nbins = 20.

Figure 5.3: Histograms of length scales at which clusters are grouped via single-linkage
clustering. These plots represent varied nbins for the first interval in the open cover of Uα, using
the filter f = PCA1. In this case, increasing nbins from 10 to 20 has no effect on the cutoff value,
which is set to 6.6.

Remark 5.1 The undirected graph constructed from the set of vertices {(α, iα)}, and having

edges whenever the intersection of two data components is nonempty, i.e., Vα,iα ∩Vα′,iα′ , ∅, is

interpreted as the nerve complex of the dataset X . In particular, when using a one-dimensional

filtration the resulting nerve complex is one-dimensional (composed out of nodes and edges only).

This construction is generalized to higher dimensions.

86

5.2 Training and Testing Procedures

We will refer to our algorithm as a Mapper Classifier, or MC for short. In our MC

algorithm, using the provided dataset Xtrain, we construct a committee of Mappers, meaning a pair

of sequences of Mapper objects and the corresponding filtration functions used to generate them:

C(Xtrain, f) :=
(
{Mj}

NC

j=1, { f j}
NC

j=1

)
=

(
{Mj}, { f j}

)
, (5.1)

where f j : X→ R are the filter functions and NC is the number of members chosen to be included

in the committee. We emphasize that building a committee of Mappers requires in the first place,

some systematic way of generating filter functions. For our analysis, we choose the overall filter

f (projection onto a latent space) to be either:

1. PCA [29], where each f j is a mapping onto the j-th principal component which is con-

structed using Xtrain.

2. An autoencoder, which we use several variants of, including: contractive [102], deep [103],

and variational [104]. Each f j is a mapping onto the latent space generated by j-th hidden

node of the autoencoder. The autoencoder is first trained using Xtrain.

We define a map that takes data points in Xtrain to the vector representation of the Mapper nodes

in a single Mapper M by:

gM : Xtrain→ R
NM, (5.2)

where NM is the number of nodes of Mapper M . The map gM has a natural definition for all the

data in Xtrain, as it sends points to a vectorized binary representation: gM(Xtrain) ⊂ {0,1}NM . Each

training point x ∈ Xtrain gets assigned by gM the binary vector representing the mapper vertices

Ṽα,lα , such that x ∈ Ṽα,lα .

Example 5.2 Assume that a Mapper M is composed of 3 nodes. Let x1, x2, x3 ∈ Xtrain, such that

87

they are in the 1st, 2nd and 3rd vertices of M respectively. Then, gM(x1) = (1,0,0),gM(x2) =

(0,1,0),gM(x3) = (0,0,1).

The map gM has a natural extension to the Mappers committee C:

gC : Xtrain→ R
∑NC

j=1 NMj , (5.3)

where Mj represents the j-th Mapper object in the committee, which consists of NC total Mappers,

and NMj corresponds to the number of nodes in Mj . This procedure can be seen as joining the

vector representations for all the individual Mappers in the committee into a long vector.

The procedure that has been presented for mapping data points in Xtrain to the vectorized

binary representation applies to the training data only, and for datapoints in Xtest we need to utilize

an alternate procedure, that we present in Section 5.2.2.

10 5 0 5
z[0]

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

z[
1]

0

1

2

3

4

5

6

7

8

9

(a) β = 0

0.2 0.1 0.0 0.1 0.2
z[0]

3

2

1

0

1

2

z[
1]

0

1

2

3

4

5

6

7

8

9

(b) β = 1

Figure 5.4: Latent space representations of two nodes in the compressed layer of the VAE (i.e.,
a 2-dimensional subspace of the projection to 20-dimensions). We use a β-term that multiplies
the KL divergence. β = 0 yields the best overall robustness.

88

5.2.1 Training Procedure

INPUT:

• The internal parameters of the Mapper algorithm (see Section 5.1.2).

• The number of components (NC > 0) used to build the committee of Mappers. We set

NC = 20 (more on this in Section 5.3).

• The choice in the latent space projection method (either PCA or an autoencoder).

• A split for the training dataset: Xtrain = X1
train∪X2

train∪· · ·∪Xn
train, such that X i

train∩X j
train = ∅.

• Labels Ytrain for the training set.

OUTPUT:

• Classifier for the training set Xtrain with labels Ytrain.

begin

1. Build the committee of Mappers for each data-split X i
train: Ci = C(X i

train, f i) =
(
{M i

j}, { f i
j }

)
.

Note that each projection f i is trained independently on each of the X i
train.

2. Using the map gCi (see Equation (5.3)) applied to each of the Ci committees, compute

the binary matrix representations of the subsets denoted by i: gCi (X
i
train) ∈ {0,1}

Ni×
∑

k NMk ,

where Ni is the number of examples in X i
train.

3. (only if Xtrain is split) using the computed committee of Mappers, compute the ‘off-diagonal’

binary matrix representations, i.e., for all i = 1, . . .,n compute g′Ci
(X j

train) ∈ R
Nj×

∑
k NMk

for all j , i, using the mapping procedure presented in Section 5.2.2.

4. Train an end classifier (in our case we use a neural network), using the merged data from
the previous step. The merged data is represented as a matrix which can be seen as a map
g(Xtrain) ∈ {0,1}Ntot×NMtot , where Ntot is the total number of instances in Xtrain, and NMtot is
the total number of nodes over the entire collection of committees, i.e., NMtot =

∑
i
∑

j NMj

89

where i runs over all data splits and j denotes specific Mappers in a split. In block form:

gC1 (X
1
train) g′

C2
(X1

train) . . . g′
Cn
(X1

train)

g′
C1
(X2

train) gC2 (X
2
train) . . . g′

Cn
(X2

train)

.

.

.
.
.
.

.

.

.
.
.
.

g′
C1
(Xn

train) g′
C2
(Xn

train) . . . gCn (X
n
train)

end

5.2.2 Mapping Unseen Points to the Committee

We describe how we construct the g′Ci
map, a generalization of the gCi map (Equation

(5.3)) to test datasets (analogously define g′M map). g′Ci
is used in order to map test data points to

an existing committee of Mappers that is constructed using the i-th split of data.

The data-points that are being tested through the committee of Mappers can be any set in

principle. In the algorithm below, we will denote this set as Xnew, and assume that it is provided as

input to our testing algorithm. Examples are Xnew = X i
train and Xnew = Xtest (or some perturbations

of data in Xtest as used for robustness testing). We describe in more detail the splitting procedure

and its utility in Section 5.2.3.

IN:

• The same input information from the training procedure in Section 5.2.1,

• k ≥ 1, the number of nearest neighbors considered in the algorithm. We set k = 6 (more on

this in Section 5.3),

• the testing data Xnew.

OUT:

• Vector committee representation of the new points g′Ci
(Xnew).

90

begin

1. Find α’s such that
��� f j(x)−mid(Ui j

α)

��� < max(Ui j
α)−min(Ui j

α)

2 (1+δ), for x ∈ Xnew. The δ param-

eter consequently enhances the robustness as it broadens the search space (defined in step

3). The α denotes the interval in the cover for R (see Section 5.1.2), i denotes the split, and

j denotes the filter (i.e j = 1 for PCA would mean the first principal component).

2. For these α, collect the corresponding refined vertices Ṽ i j
α,lα

. These are the clusters in the

i-th data split X i
train that are mapped to Ui j

α by f j and are indexed by lα.

3. For all x ∈ Xnew and for all splits indexed by i perform the k-nearest neighbors search within

the Mapper vertices found in the previous step {Ṽ i j
α,lα
} to find nni

1(x), . . .,nni
k(x) ∈ Xtrain,

where the distance function is chosen to be consistent with the choice of metric used to

compute the Mapper committee (Euclidean).

4. For all x ∈ Xnew and for all splits indexed by i define:

g′Ci (x) = wi
1 · gCi (nni

1(x))+w
i
2 · gCi (nni

2(x))+ · · ·+w
i
k · gCi (nni

k(x)),

where the weights are defined by wi
j =

[
d(x,nnij (x))+η

]−1

∑k
j=1

[
d(x,nnij (x))+η

]−1 where η = 10−5.

end

η is a stability parameter and does not have a large impact on the results so we opt for

setting it to this small value. We use this procedure for any new data point not yet assigned to the

i-th committee, including both Xtrain \Xi and Xtest. This process is precisely the g′ map mentioned

in Section 5.2.1, and we use it to fill in the missing values of g(Xtrain) and to construct in its

entirety g(Xtest).

The computational complexity of the training and testing portions of solely the Mapper

procedure are, in the worst-case scenario, O(n2), where n is the number of data points. There are

additional computational costs incurred before (i.e., when constructing f) and after this procedure

91

(i.e., when training the end classifier - see Figure 5.1). A lower bound on the complexity is

O((n/c)2), where the c factor is determined by how points are distributed in the open cover of R.

5.2.3 Splitting the Dataset

As presented in Section 5.2.1 for the purpose of training and testing we operate on the

split training dataset

Xtrain = X1
train∪ X2

train∪ · · · ∪ Xn
train.

There are two main advantages of splitting the training dataset into subsets. First, it provides

a natural way of parallelizing computations during the training/testing phases. This distributed

computation procedure is amenable for modern architectures. Computing several small Mapper

objects instead of a single large one allows for an easy model by distributing computation among

the processor cores. Second, it improves the overall accuracy of the classifier, as illustrated by

our results using the MNIST dataset presented in Figure 5.5. The comparison is done using

different splittings of a 30k subset of the MNIST training set. Due to computational and memory

complexity of the Mapper algorithm, a 30k training dataset is the limit of what we were able to

compute using a PC machine having 32gb memory. The run time for 30k was several hours and

the memory was fully utilized.

92

0.9192

0.9309

0.9506
0.9556

0.9622 0.9627

0.7

0.75

0.8

0.85

0.9

0.95

1

6 8 10 12 14 16

M
N

IS
T

te
st

 a
cc

ur
ac

y

number of PCA components

Test accuracies of our TDA based classifier
when trained on a 30k sample of MNIST dataset

30k 3 x 10k 6 x 5k 15 x 2k

Figure 5.5: Test accuracy of MC trained using 30k sample from MNIST dataset. We present
the accuracy with respect to the number of PCA filters used in the committee of mappers, and
the number of subsets the whole 30k sample was split into.

5.3 Numerical Experiments and Results

5.3.1 Main Results

In order to quantify overall robustness, we calculate the “normalized accuracy” in Equation

(5.4). The main numerical results we report are this accuracy with respect to different noise

models for various classifiers, and all are applied to the usual 10k test MNIST data. The noise

models we use include: Gaussian blur, random noise selected from a Gaussian, and salt & pepper

noise. For additional information on these noise models and how we generated noise, see Section

5.3.3. Additionally, we train on both a 10k subset (examples chosen by random) in the data and

the full 60k set. We do not normalize data using std. dev. and mean. For testing, we use the usual

10k MNIST test set. We compute the normalized accuracy as:

93

a(x) = 1−
missclassified ((0, x])

initial correct
, (5.4)

where missclassified((0, x]) is the number of misclassified perturbations within l2 perturbation

norm range (0, x]. This equation has the benefit that it removes, to an extent, potential dependen-

cies of robustness on the data itself (i.e., we would like robustness to be more a property of the

classifier rather than how the classifier interacts with the specific dataset).

There are a few hyperparameters we use, which we will briefly mention here. We set

NC , the number of Mappers in a committee to 20, because for various classifiers, the initial

classification accuracy levels off around this number. By initial classification accuracy, we mean

the number of initially correctly classified instances with no noise added. Additionally, we set

the number of bins and intervals nint = nbin = 10 heuristically, through a combination of what

provides a high initial classification accuracy while still uncovering interesting topology as seen

by the Mapper objects (see Figure 5.2 and Table 5.2). The δ parameter is set to 0.2 (see Section

5.2.2) as this appears to provide the best robustness. Lastly, we set k = 6 when mapping new

points to the committee as this provided the best overall robustness for our Mapper classifier (see

Section 5.2.2).

We compare our approach based on the Mapper method to the robustness results of

a CNN (the standard architecture LeNet [108] was used). The Mapper based methods only

differ in their initial projections. For 10k training of MNIST, we investigate Mapper approaches

based on: PCA, contractive autoencoder (“CAE”) 784-sigmoid-20-linear-784. For the CAE we

include a contractive loss term with a multiplying factor of 10−4. Deep autoencoder (“DAE”):

784-ReLU-1000-ReLU-500-ReLU-250-linear-20 encoder and symmetric decoder; variational

autoencoder (“VAE”): 784-ReLU-512-linear-20 encoder and symmetric decoder with sigmoid

output. For the VAE, we insert a β term multiplying the KL divergence in the loss [109], and in

our case, β = 0 provides the most robust results. All these methods can be thought of as projection

models to 20-dimensional space (i.e., NC = 20), and for an example of the VAE projection in

94

a 2-dimensional subspace, see Figure 5.4. For 60k training of MNIST, we investigate Mapper

approaches based on just PCA and VAE since they appear to be the best performing on average.

We present the structure of the end classifier that we use in our MC method in Section 5.3.4.

For the initial accuracies of our methods and the traditional CNN approach, see Table 5.1;

for the overall robustness calculations, see Figures 5.6 and 5.7.

Table 5.1: The initial classification accuracies. PCA, CAE, DAE, VAE are all Mapper based
approaches, and only differ in the type of projection. These values give the normalization in
Equation (5.4).

10k 60k
Init. Accuracy (%) Init. Accuracy (%)

CNN 97.00 98.51

PCA 94.53 97.33
CAE 93.61 NA
DAE 93.99 NA
VAE 94.95 97.68

5.3.2 Mapper Committee Dimensions

In this section, we summarize the overall mapper dimensions (i.e., total number of nodes

in a committee) that data points are sent to. In our analysis, the mapper committee dimension

depends on the latent space we project to. In general, this number is highly dependent on nbins

and nint , but we keep these fixed to nbins = nint = 10.

5.3.3 Description of Noise Models

Models

We implement three different noise models in order to determine overall classifier robust-

ness. The models we use include: Gaussian blur, Gaussian, and salt & pepper. All are consistent

95

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
l2-Norm

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Normalized Classification Accuracy, 10k MNIST, Gauss Blur

PCA
CAE
DAE
VAE
CNN

(a) 10k MNIST, Gaussian blur

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
l2-Norm

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Normalized Classification Accuracy, 10k MNIST, Gaussian

PCA
CAE
DAE
VAE
CNN

(b) 10k MNIST, Gaussian

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
l2-Norm

0.94

0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Normalized Classification Accuracy, 10k MNIST, S&P

PCA
CAE
DAE
VAE
CNN

(c) 10k MNIST, Salt & Pepper

Figure 5.6: The normalized accuracy with respect to l2-norm. The PCA based Mapper approach
far outperforms the CNN approach for all the noise models.

96

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
l2-Norm

0.5

0.6

0.7

0.8

0.9

1.0
No

rm
al

ize
d

Ac
cu

ra
cy

Normalized Classification Accuracy, 60k MNIST, Gauss Blur

PCA
VAE
CNN

(a) 60k MNIST, Gaussian blur

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
l2-Norm

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Normalized Classification Accuracy, 60k MNIST, S&P

PCA
VAE
CNN

(b) 60k MNIST, Salt & Pepper

Figure 5.7: The normalized accuracy with respect to l2-norm. The PCA based Mapper approach
far outperforms the CNN approach for all the noise models. For 60k MNIST, we choose to
investigate just two Mapper based methods: PCA and VAE which seem to perform the best on
average.

Table 5.2: The total number of nodes in the mapper committee, with respect to choice in latent
space projections. For 60k, we choose to use just PCA and VAE since they are the highest
performing. Additionally, for 60k MNIST, we use the splitting procedure presented in Section
5.2.2 which will increase the dimensionality of the Mapper committee.

Latent Space 10k 60k

PCA 215 1326
CAE 201 NA
DAE 201 NA
VAE 207 1337

with the models in [110], and we give a brief explanation below. For each of these models, we

use a parameter to control the extent of the perturbation, which we refer to as λ.

The Gaussian blur model performs a convolution with a 2-dimensional Gaussian centered

at each pixel in the image. Each pixel is replaced by the Gaussian weighted sum of nearby pixel

values. The λ parameter we use for robustness calculations is related to the Gaussian standard

deviation by: σ = 28λ. The final perturbed image is clipped to the max and min values of the

original image. The 28 comes from the image size of 28×28.

The salt & pepper or s&p model replaces random pixel values with the minimum (i.e.,

97

“pepper”) or maximum (i.e., “salt”) in the image. Setting q1 as the probability of flipping a pixel,

and q2 as the ratio of salt to pepper, we use: q1 = λ and q2 =
1
2 .

The Gaussian model adds in noise to each pixel which is sampled from a Gaussian

distribution. The distribution we use is centered at zero and has σ = 0.1
√
ε . The final perturbed

image is clipped.

There are a few subtle differences between the robustness results when λ vs the l2-norm

is used, which we remark on here. λ is the internal parameter we use to quantify the scale of

noise that is added. While the value of λ correlates to the actual l2 distance an image is perturbed,

there is not a one-to-one correspondence. Perhaps a more useful way to think about λ is that it

sets a range over which l2 perturbations may occur. As λ increases, so does this range. Since the

l2-distance is a more physical measure in this experiment, we report robustness as a function of

l2 rather than λ.

Image Data as a Function of Noise Parameter

0 5 10 15 20 25

0

5

10

15

20

25

Gauss Blur

(a) λ = 0.01;
l2 ≈ 0.02

0 5 10 15 20 25

0

5

10

15

20

25

Gauss Blur

(b) λ = 0.02;
l2 ≈ 1.4

0 5 10 15 20 25

0

5

10

15

20

25

Gauss Blur

(c) λ = 0.03;
l2 ≈ 2.5

0 5 10 15 20 25

0

5

10

15

20

25

Gauss Blur

(d) λ = 0.04;
l2 ≈ 3.4

0 5 10 15 20 25

0

5

10

15

20

25

Gauss Blur

(e) λ = 0.05;
l2 ≈ 4.1

0 5 10 15 20 25

0

5

10

15

20

25

Gauss Blur

(f) λ = 0.06;
l2 ≈ 4.6

Figure 5.8: The number 7 as a function of λ for the Gauss blur noise model. λ can be thought
of as a percentage of 28, a fundamental length scale in this data.

5.3.4 Architecture of the End Classifier

We used the following neural network architecture as the classifier on top of the Mapper

method (see Figure 5.1):

1. ReLU(committee C dim
∑NC

j=1 NMj , 4000),

98

0 5 10 15 20 25

0

5

10

15

20

25

S&P

(a) λ = 0.01;
l2 ≈ 2.4

0 5 10 15 20 25

0

5

10

15

20

25

S&P

(b) λ = 0.02;
l2 ≈ 2.7

0 5 10 15 20 25

0

5

10

15

20

25

S&P

(c) λ = 0.03;
l2 ≈ 3.6

0 5 10 15 20 25

0

5

10

15

20

25

S&P

(d) λ = 0.04;
l2 ≈ 4.3

0 5 10 15 20 25

0

5

10

15

20

25

S&P

(e) λ = 0.05;
l2 ≈ 4.8

0 5 10 15 20 25

0

5

10

15

20

25

S&P

(f) λ = 0.06;
l2 ≈ 5.6

Figure 5.9: The number 7 as a function of λ for the s&p noise model. λ = 0.01, for instance,
corresponds to a 1% chance of flipping a pixel.

0 5 10 15 20 25

0

5

10

15

20

25

Gaussian

(a) λ = 0.01;
l2 ≈ 2.2

0 5 10 15 20 25

0

5

10

15

20

25

Gaussian

(b) λ = 0.02;
l2 ≈ 2.9

0 5 10 15 20 25

0

5

10

15

20

25

Gaussian

(c) λ = 0.03;
l2 ≈ 3.4

0 5 10 15 20 25

0

5

10

15

20

25

Gaussian

(d) λ = 0.04;
l2 ≈ 3.8

0 5 10 15 20 25

0

5

10

15

20

25

Gaussian

(e) λ = 0.05;
l2 ≈ 4.4

0 5 10 15 20 25

0

5

10

15

20

25

Gaussian

(f) λ = 0.06;
l2 ≈ 4.6

Figure 5.10: The number 7 as a function of λ for the Gaussian noise model.

2. Dropout with p = 0.25,

3. ReLU(4000, 2000),

4. Dropout with p = 0.25,

5. ReLU(2000, 10),

6. LogSoftmax normalization,

• The negative log likelihood loss,

• batch size 100,

• SGD optimizer with learning rate=0.01, momentum=0.9.

99

5.3.5 Discussion

We present some conclusions from the performed numerical experiments. Our MC

method is in general more robust than the CNN, however MC achieves slightly less initial

accuracy. We believe that a more extensive hyperparameter optimization of our algorithm would

result in a higher initial accuracy. Rather surprisingly, the nonlinear latent space generation

using autoencoders performs, on average, worse than the linear PCA method. This is interesting

especially because one of the applications of CAE and VAE methods is for adversarial defense by

projecting perturbed data onto a small neighborhood in the latent space. Using an autoencoder

resulted in better robustness when compared to PCA only in the case of Gaussian blur for 10k

training, but this difference is not large. When we extend the analysis to 60k, we see PCA being

the clear winner. While we currently do not have a precise answer as to why PCA does so well

overall, we expect that the nonlinear methods may be overfitting to the mathematical structure

and hence the overall robustness is negatively affected when using them.

Although our MC method performs particularly well for all noise models, it far outper-

forms the CNN for the case of Gaussian blur noise. This noise model is a global perturbation

rather than a local one because it takes a weighted sum of other pixels. Our intuition is that a

global perturbation is more likely to change the activation patterns of the feature module in the

CNN and hence fool the classifier. We believe our MC methods will do far better than CNNs in

general for other global based noises. Geometrically, we take this to mean that there are certain

perturbation directions in X which are more prone to fooling the CNN; whereas in our MC based

approach, the directionality of the perturbation should not matter. A different way of saying this

is that the MC approach is noise agnostic, while the CNN is not.

Also, we stop perturbing points when their l2-norm becomes around 5 as this range is a

more typical “adversarial” range. However, since the MC methods have a smaller slope at the

tail ends of the curves, we expect our method to perform even better than the CNN if we were to

probe larger perturbation regions, especially since these will approach more global scales.

100

We will also briefly comment on the flat regions appearing for Gaussian noise Figure

5.6(c). This turns out to be an artifact of our sampling procedure, where we sample noise

perturbations scaled uniformly by a “lambda” parameter (see the description in Section 5.3.3).

This procedure is not equivalent to sampling among l2-norm perturbations (again, see Section

5.3.3).

5.4 Theoretical Results

We present a Proposition that formalizes the intuition that our method should be robust

with respect to small perturbations of input images.

Intuitively, the presented proposition states that for any training point x ∈ Xtrain it holds

that a slight perturbation of the point within range ε will also satisfy ‖gM(x) − g′M(x
′)‖l1 ∼ ε

(dependence is linear with a small constant). This in turn implies that small changes in inputs

will transfer onto slight changes in the gM map output. Eventually, the gM map outputs are fed

into a neural-network based classifier, hence, the eventual robustness is dependent on the precise

properties of the employed classifier and how it interacts with the g map. We denote the k nearest

neighbors of x′ by nn1(x′),nn2(x′), . . .,nnk(x′).

Proposition 5.3 Let {Uα} be the open interval cover of I. Let f : X→ R be a Mapper filter

function; let 0 < δ < 1 be a parameter of the method (in the actual algorithm δ = 0.2), and let

k be the number of nearest neighbors considered in the algorithm. d(·, ·) is the l2 distance. Let

hk(x′) =
∑k

l=1 d(nnl(x′), x′)−1. To simplify the notation, we denote below X = Xtrain.

Let x ∈ X be perturbed to x′ ∈X such that ‖x− x′‖2 ≤ ε for some small ε�(Ex∈X hk−1(x))−1.

Let g′M(x
′) be computed using the algorithm described in Section 5.2.2. If for all intervals

Uα 3 f (x), | f (x′)−mid(Uα)| <
max(Uα)−min(Uα)

2 (1+ δ), then

Ex∈X
��g′M(x′)−gM(x)

��
l1
≤ ε ·C(k,Ex∈X hk−1(x))+O(ε2),

101

in particular Ex∈X
��g′M(x′)−gM(x)

��
l1
→ 0 as ε→ 0.

5.4.1 Proof of the MC Robustness

Proof 5.4 First, the condition | f (x′)−mid(Uα)| <
max(Uα)−min(Uα)

2 (1+ δ) guarantees that the

perturbed point x′ is mapped by the filter f into the same intervals in the open cover as the

original point x (see the corresponding description in the algorithm).

Observe that the assumption guarantees that the nearest neighbor is x. That is, nn1(x′)= x,

and hence w1 =
1

ε
∑k

l=1 d(nnl(x′),x′)−1 . Therefore, we obtain

g′M(x
′) =

1
ε
∑k

l=1 d−1
l

gM(x)+w2gM(nn2(x′))+ · · ·+wkgM(nnk(x′)),

and for j = 2, . . ., k

w j =
1

d j
∑k

l=1 d−1
l

,

where we denote d j = d(nn j(x′), x′). It holds that gM(x) = (1,0, . . .,0) or gM(x) = (1,1,0, . . .,0),

as nn1(x) = x. Also we have

hk(x′) = ε−1+

k∑
l=2

d(nnl(x′), x′)−1 = ε−1+ hk−1(x)+O(ε).

Also,

wl =
(
d(nnl(x′), x′)hk(x′)

)−1

= 1/
(
dlε
−1+ dl hk−1(x)+ dlO(ε)

)
≈ ε/dl

= ε/
(
d(nnl−1(x), x)+O(ε)

)
= ε/d(nnl−1(x), x)+O(ε2)

102

Thus, by the triangle inequality,

‖g′M(x
′)−gM(x)‖l1 ≤

|1− εhk(x′)| |gM(x)|
εhk(x′)

+ ε

k∑
l=2

‖gM(nnl−1(x))‖l1

d(nnl−1(x), x)
+O(ε2)

≤ ε
(
2hk−1(x)+

k∑
l=2

‖gM(nnl−1(x))‖l1

d(nnl−1(x), x)

)
+O(ε2)

≤ 4εhk−1(x)+O(ε2).

In the last inequality above we used the bound ‖gM(nnl−1(x))‖l1 ≤ 2, as gM(nnl−1(x)) have either

one or two nonzero entries equal to 1 (x is in one or two nodes of the mapper M). Finally, taking

the expectation we have that

Ex∈X
��g′M(x′)−gM(x)

��
l1
≤ 4εEx∈X hk−1(x)+O(ε2),

and obviously as ε→ 0, then Ex∈X
��g′M(x′)−gM(x)

��
l1
→ 0.

We computed in practice an estimate for the constant C(k,Ex∈X hk−1(x)) appearing in

Prop. 5.3, taking k = 6 (the value used in practice), the empirical expectation of the pairwise

distance between points is equal Ex∈X hk−1(x) ≈ 0.5, we obtain that C(k,Ex∈X hk−1(x)) ≈ 1.5.

5.5 Conclusion

We have developed an algorithm which performs classification that is both robust to

adversarial examples and also highly accurate for non-adversarial examples, resolving, to an

extent, the bias-variance trade-off present in many machine learning methods. Although we apply

our MC to the task of improving robustness of image classifiers, we expect the algorithm to lend

itself well to many other classification tasks in general.

There are various avenues for future work pertaining to this research. One such avenue

103

is to perform a more extensive hyperparameter search. Many of these were set heuristically, or

scanned over slightly, but with little scientific approach on converging to optimal values. This is

partly due to time considerations in our algorithm - in order to accomplish this search, we will

need to construct our software to be more scalable. Another avenue will be to understand why

PCA does so well versus the nonlinear projections in our MC. We expect that the MC is less

prone to overfitting when using PCA, but this should be verified. A related path to explore is to

determine how the MC methods interact with specific noise models - though we expect the MC

approach to be noise agnostic. It appears that the MC does much better for global types of noise

than the CNN, but this notion can be made more precise, perhaps from a geometric standpoint.

Also related, we would like to extend the l2 search to larger values of perturbations, where we

expect our MC to highly outperform the CNN.

Lastly, we would like to understand further how the choice in architecture of the end

classifier impacts the overall robustness. In this analysis, we chose the specific NN architecture

that is presented, but indeed we utilized different architectures and even random forests at points.

We would like to understand more broadly how this classifier interacts with the Mapper procedure.

Acknowledgment

Chapter 5, in part is currently being prepared for submission for publication of the

material. Jacek Cyranka, Alex Georges, and David A. Meyer. The dissertation author was a

primary investigator and author of this material.

104

Chapter 6

Conclusion and Future Directions

In this dissertation, we have seen to an extent how topological methods in data science

can be combined with more conventional machine learning methods in order to produce robust

algorithms. In Chapter 4, we saw an example of how persistence can be used as an initial

preprocessing step before classification in order to correctly identify extremely noisy data. In

Chapter 5, we saw an extension of this work with Mapper objects instead of persistence as the

initial preprocessing step.

In either case, the utility of using topological methods was clear from a theoretical and

practical viewpoint. The theoretical justifications include: compressed representation, coordina-

tion invariance, and deformation invariance. From the practical viewpoint, we saw how extremely

accurate classifiers can be produced. In the case of persistence, we constructed a classifier that’s

75% accurate for noise that’s on the order of the image size; for Mappers, we constructed a

classifier that retained ∼ 95% classification accuracy, whereas the state-of-the-art CNN had an

accuracy of ∼ 60% for the adversarial regions we probed.

The Mapper based classifiers in Chapter 5 are an extremely promising avenue for future

work given the extent of their robustness. There are a few questions that went unanswered by the

end of that analysis which merit further exploration. A few of these include: what is the reason

105

behind the interactions we saw between the Mapper classifier and specific noise models, how

does the Mapper procedure interact with the rest of the workflow, how does the classifier overall

perform for larger perturbation regions, and why is PCA the optimal mapping in this approach?

Mapper classifiers are a novel based approach that have been shown to be much more

robust than current state-of-the-art methods. It is my hope that they continue to be studied and

applied further.

106

Appendix A

Feature-Based Algorithm Selection for

Mixed Integer Programming

Mixed integer programming is a versatile and valuable optimization tool. However,

solving specific problem instances can be computationally demanding even for cutting-edge

solvers. Such long running times are often significantly reduced by an appropriate change of the

solver’s parameters. In this chapter we investigate “algorithm selection,” the task of choosing

among a set of algorithms the ones that are likely to perform best for a particular instance.

The title of this could more colloquially be referred to as “Teaching a Computer to

Problem Solve,” since the overall approach taken here can be applied to more general workflows.

The general idea is analogous to how humans are confronted with and solve problems. When

we are confronted with a problem, we typically have a number of ways to solve it. What is most

import to us in the problem solving (perhaps it is time, money, glamour) will guide how we go

about the solution. Computers, on the other hand, typically need to be directed how to approach a

problem. This project teaches a computer how to problem solve, in that it will eventually be able

to choose how to solve an incoming problem by itself.

In our case, we treat different parameter settings of the MIP solver SCIP as different

107

algorithms to choose from. Two peculiarities of the MIP solving process have our special attention.

We address the well-known problem of performance variability by using multiple random seeds.

Besides solving time, primal dual integrals are recorded as a second performance measure in

order to distinguish solvers that timed out.

We collected feature and performance data for a large set of publicly available MIP

instances. The algorithm selection problem is addressed by several popular, feature-based

methods, which have been partly extended for our purpose. Finally, an analysis of the feature

space and performance results of the selected algorithms are presented.

A.1 Introduction

A.1.1 Mixed Integer Programming

Throughout this paper we present results derived from instances of mixed integer pro-

gramming (MIP). For our purposes, a mixed integer program can be represented as:

argmin
x

{
cT x

��� b1 ≤ Ax ≤ b2, l ≤ x ≤ u, xi ∈ Z ∀i ∈ I
}
. (A.1)

Here, the variables xi are constrained to take integer values for all i in the variable subset

I , ∅. An integer variable is called a binary variable if, li = 0 and ui = 1.

Solving a MIP instance (or even determining if a solution exists) is NP-hard in general,

and there are a variety of competitive solvers available that use different methods and approaches.

These solvers are generally used as stand-alone applications and permit the user to specify a large

number of parameters which influence the method/approach that the solver uses. For instance,

parameters may affect the time spent in presolving, the aggressiveness with which cutting planes

are used or the amount of reliance on branch and bound techniques. In their work, Hutter et al

[111] describe one of the leading commercial solvers (CPLEX) as having more than 1045 distinct

108

combinations of parameter settings possible (this number has likely changed since the paper was

released).

This leads to a number of questions, perhaps the most important of which is what

combination of parameters should be used to solve a MIP instance. Arguably, one should use the

parameter settings that have the best mean performance on some benchmark set. However, the

results that one can achieve in this manner have a limit to their effectiveness, and to overcome

this limit one must pay more attention to the properties (features) of an individual instance and

allow these features to guide the parameter selection, which is commonly addressed as Algorithm

Selection.

A.1.2 Algorithm Selection

The underlying nature of MIPs remains an area of open research, and so is not fully

understood in terms of complexity. There is no solver that is optimal for a wide class of problems.

While it is possible to choose an algorithm with the best average performance on a representative

benchmark set, being able to select from a portfolio of algorithms has been shown to be better in

cases where complementary, fundamentally different strategies are available [112]. In algorithm

selection, this idea is taken one step further by constructing custom portfolios using instance-

specific features [113]. To this end, we use features specific to the problem instance to select an

algorithm (or a portfolio of algorithms) that are likely to perform well on the given instance.

Algorithm selection has been gaining attention in the artificial intelligence community. To

aid in this task, recent libraries have been established that compile and organize data for a wide

range of NP-hard tasks [114]. While approaches to the algorithm selection problem have been

effective for the satisfiability problem, algorithm selection for mixed integer programming has

still produced only modest results [113]. It is on this last point that our research is focused.

In the present work, we focus on the algorithm selection problem using various algorithms

contained in the SCIP Optimization Suite [115], which is one of the leading non-commercial

109

software packages that can solve MIP instances. We use 14 different combinations of parameters

supplied by SCIP. These parameter combinations serve as the algorithms that we will be selecting

from. While we restrict ourselves to the collection of parameter settings suggested by SCIP,

we note that due to the highly parameterizable nature of the solver, the number of considered

algorithms can be easily increased.

We test the different algorithms on two different benchmark sets, one homogeneous and

one heterogeneous. General features of the benchmark instances are obtained from the MIP

representation (A.1) to inform our selections and compare the predictive results of different

machine learning engines trained on the benchmark runtime data.

The MIP instances within our benchmark sets are supplied in MPS format. We use the

SCIP interface to load them and then extract the features, which will be described in Section A.2

and in full detail in Appendix A.7 of this document.

A.1.3 Related Work

Algorithm configuration of MIP solvers has been widely discussed and researched (see

[111, 116] and references therein), the main task being to produce solvers that have good average

performance on a particular benchmark set. These solvers should then be good predictors of

algorithms to use for instances that are similar to those within the benchmark.

Leyton et al. [112] demonstrate the effectiveness of using a portfolio approach in which

several algorithms are used either by a schedule or in parallel rather than restricting the solving

process to only a single algorithm. This approach has since become commonplace as seen in

[113, 117, 118]. We will also use a portfolio approach in our work, selecting more than one

algorithm in order to improve performance when the average-best solver does not perform well

on a specific instance.

Algorithm selection has proven effective for SAT instances (in particular, for SAT compe-

titions), but has not yet had the same success for MIP instances [118]. Why this is the case is still

110

an open question.

In [116, 119], combinatorial auction problems are used as the benchmark set for testing

solver efficiency. Some previous literature has explored the feature space [111] as well as an

attempt to use features to select algorithms. However, we desire to understand the problem in

the context of a wider benchmark set with a wider representation of possible features. We also

implement the algorithm described in [117] together with some variants of the approach.

A.2 Method

A.2.1 Description of Data

Every MIP is characterized by a vector of numeric properties, so-called features. The

complete feature data is represented as an n×m matrix F, where n is the number of MIP instances

under consideration and m is the total number of features extracted from each problem instance.

The performance data (referred to as P) consists of an 5n× s matrix, where s is the total number of

settings used. The factor 5 here comes from running each solver on every instance 5 times, each

with a different random seed specified on the run. The random seed serves as a final tie-breaker

for numerous algorithmic components within SCIP. The intention behind seeded runs is to make

the performance evaluation between settings more robust in the light of the phenomenon of

performance variability [120, 121]. We take the arithmetic mean of results over these random

seeds to smooth out statistical fluctuations produced by each run.

What is more, the data comes from two distinct sets: Regions which is a collection

of 2000 combinatorial auction instances [119], and a general MIP testset called M&C with 713

instances compiled from the publicly available libraries MIPLIB 3 [122], MIPLIB 2003 [123],

MIPLIB 2010 [124], and COR@L [125]. Each of these sets has their own performance data

which was computed on an HPC cluster, and we compute feature data independently for each of

these sets.

111

While each instance from the Regions set was feasible and reasonably sized, it was

necessary to exclude some instances from the M&C set. For our pourpose, and in particular for our

desired experiments with the primal-dual integral (which does not have substantial qualitative

meaning for infeasible instances), we excluded the 93 infeasible instances from the M&C library.

We also excluded eight instances for which features could not be extracted without exceeding the

amount of memory available on a desktop computer. This leaves 612 feasible instances in the

M&C benchmark set with which we conduct our experiments.

The M&C library seems to be more challenging for the machine learning methods as it is

a hetoregenous set of problems and in addition, it contains fewer instances than the Regions

library.

Feature Data

The idea of using features from MIPs for algorithm selection was first explored in [113].

As an example, features can be statistical summaries of the coefficients of the objective function,

“right-hand side” vectors and the constraint matrix itself. Features extracted in such a way are

generally called ‘static’ features since they can be extracted without invoking the operant functions

of the solver. We use some static features introduced in [113] as a basis for our static feature

calculation.

We extract 133 static features for each problem instance. The list of all static features

that we extract can be found in Appendix A.7 along with a description. Since presolving can

significantly improve the performance of the solving process, we also extract static features after

presolving the problem instance with SCIP’s default and fast presolve settings, which leads to a

total number of 399 static features for each problem instance.

With our benchmark instances, we also extract “dynamic” features which include infor-

mation extracted from the log files of running SCIP with default settings on a particular instance.

We limit such extraction to features that are available up to and including the solving of the

112

root node relaxation. In the larger context of algorithm selection, it is our expectation that this

dynamic feature extraction at the root involves only a minimal time commitment relative to the

time involved to solve a difficult instance to completion.

Performance Data

For each instance in our benchmark sets, and for each of the 14 different algorithms, we

have the following data listed below. To increase robustness, we have averaged the data over five

runs for each instance/algorithm. If any run for a particular instance/algorithm takes longer than

600 seconds, we terminate the run early and report the information accumulated up to that point.

• Timing Data

The solving time is the most important performance data for instances on which the solver

did not run into the time limit. For the homogeneous Regions benchmark set, with few

exceptions, SCIP was able to solve the instances within the given time limit. For the more

heterogeneous set M&C, the timing data is much more varied, with a much larger number of

timeouts, and in fact, some instances timed out regardless of the algorithm chosen.

• PD-Integral

As a second measure of performance, the integral of the primal-dual gap was used. Herein

referred to as the primal-dual integral, this measures jointly the quality of solutions found

during the solving process as well as the efficiency with which these solutions are found.

Particularly it is the percent gap between the best known upper and lower bounds on the

true solution found in the branch and bound tree, integrated over time. This measure

was introduced in [126] and does not require any prior knowledge of the ground truth

solution for an instance. In our research, we investigated this value and its usefulness as a

suitable proxy for runtime when the runtime information was not available (for instance,

113

if a particular run was cut off early by timing out). For further information on how this

integral is explicitly calculated, we refer the reader to [126].

• Completion Codes

As a final categorical measure of performance, we have the exit codes provided by

SCIP corresponding to various forms of success/failure of the solver on a particular in-

stance/algorithm attempt. We have aggregated these completion codes into the three coarser

categories of ‘ok’, ‘timelimit’, and ‘fail’ (details of this aggregation are given in Appendix

A.8). ‘Ok’ corresponds to a successful run of the algorithm and no data adjustment is

necessary. ‘Timelimit’ corresponds to an algorithm that went beyond its allotted time, in

which case we take the execution time to be 600s. ‘Fail’ corresponds to a situation in which

either the solver failed to complete (e.g. due to memory limits), or delivered an answer that

was not satisfactory (e.g. claiming optimality of a suboptimal solution). If the solver failed,

we take the execution time to be 600s and the PD Integral to being 60,000 (corresponding

to 600s of 100% gap).

A.2.2 Upper Bounds/Well-Defined Features

Within the benchmark set, there can be instances for which numeric data is not well-

defined. For instance, if an instance has no left bounds in its constraints, then no average value of

the left bounds can be found. In such cases, we use zero.

Additionally, within the timing data, it is possible for an algorithm to complete an instance

early but incorrectly (e.g. exceeding the available memory). In such cases, we set the numeric

time to completion as 600 seconds (which is our time limit) and the PDI to 60,000 (which is the

maximum possible PDI). We note that this presents a challenge for our regression engines because

such values are not chosen quantitatively but qualitatively, and it is likely that this choice favors

114

certain classes of machine learning techniques that utilize branching and decision boundaries

over continuous techniques that function primarily on regression.

A.3 Feature Analysis

As stated previously, we currently extract 399 static features and 103 dynamic features.

The static and dynamic features can be considered independently from one another or simultane-

ously. Since the dimensionality of the feature space is relatively large in either case, a few natural

questions that arise are:

Q1 Which features are the most important?

Q2 Which features are the least important?

Q3 Is there a lower dimensional representation of the feature space that accurately encapsulates

most of the information.1

We devote the majority of our attention in answering Q1 and Q3 by using Pearson

correlation coefficients, principal component analysis, and multidimensional scaling.

A.3.1 Pearson Correlation Coefficients

Pearson correlation coefficients are normalized values of the covariance matrix, and they

take on values between +1 and −1. A score of +1 indicates that two variables are positively

linearly correlated, and a score of −1 indicates they are negatively linearly correlated. We compute

this via:

ρ(x, y) =
cov(x, y)
σxσy

1This is defined in more detail in a later section

115

Here, cov(x, y) denotes the covariance between x and y, which are features in F. Also,

σx and σy denote the standard deviation in x and y, respectively. We plot a heatmap of these

correlation coefficients, which allows us to qualitatively answer a few questions:

• Are there any features which can be removed from the feature space? Features which have

many correlations, whether they are positive or negative, have their information more or

less encoded in other features. These highly correlated features can be removed from the

space because of this, thus answering Q2.

• What features are important and why? This is most useful when used in conjunction with

another approach. For instance, we utilize various techniques that predict which features

are the most important. The heatmap can be a useful tool in answering why are they the

most important, thus answering Q1.

• Are there any issues in the features themselves? For instance, does a particular feature fail

to vary within our benchmark set?

As an explicit example, we produce the correlation heatmap using the first 20 dimensions

in the feature space (Figure A.1). In this case, the feature with zero correlation turns out to

be a feature which can be removed from the features space as it renders no useful information.

Specifically, this feature was zero across all instances.

A.3.2 Principal Component Analysis

We use the same PCA approach presented in Section 3.3 to study the feature space, and

we similarly plot the information as a function of d in Figure A.2.

PCA additionally allows us to answer the question of “what features are the most impor-

tant?” The components of F̂ are constructed through linear combinations of features in F. By

determining which features are the highest weighted across all linear combinations, we are able to

116

lo
g_

va
rs

pe
r_

bi
n_

va
r

pe
r_

in
t_

va
r

pe
r_

co
nt

_v
ar

pe
r_

im
pl

in
t_

va
rs

pe
r_

fix
ed

_v
ar

s

pe
r_

to
t_

no
nz

er
o

pe
r_

bi
n_

no
nz

er
o

pe
r_

in
t_

no
nz

er
o

pe
r_

co
nt

_n
on

ze
ro

pe
r_

im
pl

in
t_

no
nz

er
o

pe
r_

fix
ed

_n
on

ze
ro

_v
ar

s

pe
r_

fin
it_

up
pe

r

pe
r_

fin
it_

lo
we

r

ub
_m

ea
n

ub
_m

in

ub
_m

ax

ub
_s

td

ub
_m

ed
ia

n

log_vars

per_bin_var

per_int_var

per_cont_var

per_implint_vars

per_fixed_vars

per_tot_nonzero

per_bin_nonzero

per_int_nonzero

per_cont_nonzero

per_implint_nonzero

per_fixed_nonzero_vars

per_finit_upper

per_finit_lower

ub_mean

ub_min

ub_max

ub_std

ub_median

Feature Pearson Correlation Heatmap

0.8

0.4

0.0

0.4

0.8

Figure A.1: A Pearson correlation coefficient heatmap computed using the first 20 dimensions
in the feature space. The diagonal and upper triangular elements have been removed since this
heatmap is a symmetric plot.

select a list of individual features which PCA relied most heavily on to construct F̂. By keeping

95% of the PCA information2, we select 71 features.3 Thus, we answer both Q1 and Q3 using

PCA.

We note a peculiar clustering that occurs in d = 2 when we consider just the dynamic

features (refer to Figure A.3). When we consider all features, or just the static features, we obtain

no similar clustering (Figure A.4).

2i.e., setting I(d) = 0.95
3We point out that although d = 71 refers to 71 dimensions in PCA space, and not in the original feature space,

we nonetheless use this as motivation to select 71 features from the original space.

117

0 25 50 75 100 125 150 175 200
Dimension

0.00

0.20

0.40

0.60

0.80

1.00

0.70

0.90
0.95

In
fo

rm
at

io
n

Re
ta

in
ed

PCA Retained Information

Figure A.2: The PCA retained information as a function of dimension given by Equation (3.1).
The input data is the static+dynamic feature space. The various horizontal lines are 70%, 90%
and 95% thresholds. The 95% threshold occurs at d = 71.

A.3.3 Multidimensional Scaling

Similar to PCA, multidimensional scaling (“MDS”) is a dimensional reduction technique,

but it fundamentally differs in that it does so nonlinearly. Rather than attempting to maximize the

variances as PCA does, MDS tries to preserve pairwise distances as well as possible in a lower

dimensional space. How well the method does can be quantified through an error4 function which

depends on the dimension being mapped to:

err(d) =
∑
i, j

|di j − d̂i j(d)|2

Here, di j is the pairwise distance between the i-th and j-th points in the original space, d̂i j

is the pairwise distance in the lower dimensional space and d is the dimension being mapped to.

4The loss function used in MDS is typically referred to as the “stress”

118

0
Component 1 Value

0Co
m

po
ne

nt
 2

 V
al

ue

Feature PCA Component 1 vs Component 2

Figure A.3: PCA components 1 and 2, for just the dynamic features for M&C. Notice the distinct
2 clusters that emerge.

The goal in MDS is to minimize err(d) by choosing an appropriate d̂i j . Similar to PCA, we also

define a measure of the retained information when mapping to a lower dimension:

I(d) = 1− err(d)/err(2) (A.2)

This form was chosen so that the information is constrained to [0,1] and so that it

monotonically increases with respect to the dimension. Additionally, I(2) = 0 and I(m) = 1.

Setting a 95% threshold on the retained information results in d = 19 (refer to Figure A.5). Using

this technique we are also able to answer Q3.

Similarly, we note a peculiar clustering that occurs for just the dynamic features when the

MDS projection is done for d = 2. See Figures A.6 and A.7. We aim to identify the source of

these clusters in future work. Currently, we posit that each cluster will correspond roughly to two

classes of problem difficulties.

119

100 0 100

Component 1 Value

0

100
Co

m
po

ne
nt

 2
 V

al
ue

Feature PCA Component 1 vs Component 2

Figure A.4: PCA components 1 and 2, for static and dynamic features for M&C. Notice, the
cluster information is washed away.

A.3.4 Feature Investigation Conclusions

We summarize a few key observations and results to answer our original questions about

the feature space.

We break up our first question (Q1) about the feature space into two questions: Q1a which

features are the most important to a specific model and Q1b which features are the most important

in general? The answer to Q1a simply depends on the model. For instance, the heuristic for

selecting the top features for PCA has already been addressed. The heuristic for selecting the top

features for a Random Forest Regressor or Classifier depends on which features result in the best

tree splits. More specifically, each feature results in a split with a certain amount of information

gain (in the case of a decision tree) or error reduction (in the case of a regression tree). The splits

with the most5 information gain or the least error over the entire forest become the top features.

5Here, “most” can be set in various ways, but it more or less means higher than some multiple of the average

120

0 10 20 30 40 50 60
Dimension

0.00

0.20

0.40

0.60

0.80

1.00

0.70

0.90
0.95

In
fo

rm
at

io
n

Re
ta

in
ed

MDS Normalized Retained Information

Figure A.5: The MDS retained information as a function of dimension given by equation (A.2).
The input data is the static+dynamic feature space. The 95% threshold occurs at d = 19.

To answer question Q1b, we take the intersection of all the model dependent results to

construct a more model independent result:

Top Features =
⋂

i

Top Featuresmodeli

The models we currently use that go into this intersection are: a random forest regressor,

random forest classifier that utilizes Hydra (see below), decision tree classifier that utilizes Hydra

(see below), and PCA. The full list of model independent top features for the M&C library is

available in Appendix A.7.

To answer Q3 (i.e., the question of the true dimensionality of the feature space), we look

at the number of each model dependent top features list and the information content of PCA and

MDS (refer to Figures A.2, A.5). The true dimensionality of the feature space appears to be, on

average, around 15% of the dimensionality of the total feature space.

121

100 0 100

100

0

100

Feature MDS

Figure A.6: MDS projection to d = 2, for just the dynamic features for M&C. Notice the distinct
2 clusters that emerge.

100 0 100
101

100

0

100

Feature MDS

Figure A.7: MDS projection to d = 2, for static and dynamic features for M&C. Notice, the
cluster information is washed away.

122

A.4 Algorithm Selection Methods

Three distinct methods have been used extensively in the algorithm selection community

to predict which algorithms might be the most successful: those based on classification, regression,

and clustering. We consider machine learning methods that are based on all these approaches.

However, we note the success of random forest regressors for the task of algorithm selection

[118]. More specifically, we apply random forest regressors, random forest classifiers, support

vector machine classifiers, k-nearest neighbours, and logistic regressors. In Section A.5, we

present the best performing methods only.

For some of the learning methods, we choose to implement additional boosting methods:

Adaptive Boosting (AdaBoost) [127] or Hydra [117]. Each of these methods trains on a set of

weak learners, the output of which is a weighted sum of these weak learners. Additionally, we

tune various parameters independently for each method in order to minimize the testing error. To

reach maximal performance, a future investigation may be to tune these parameters without this

independence assumption. Again, we only present methods that were the highest performing.

A.4.1 AdaBoost

AdaBoost [127] learns a weighted combination of weak learners in multiple iterations.

The motivation for this is to build a strong learner from weak learners. In other words, each weak

learner is biased, and AdaBoost is a method to produce minimal generalization error (see Section

2.3.2 for a further explanation of the “bias-variance dilemma”). In each iteration, it selects a

weak learner that minimizes the weighted error on the training data. The weights of misclassified

samples in the training data increase in the next iteration. In the end, weights of the selected

learners themselves are adjusted to minimize the total error of the ensemble’s prediction. We use

AdaBoost in conjunction with random forest regressors, and we compare these boosted random

forests to the non-boosted versions.

123

A.4.2 Hydra

Hydra is a learner voting approach which was originally described by Xu et al. [117].

Their approach uses cost-sensitive decision forests as a decision mechanism and a voting schema

that summarizes the results. The experiments here were conducted using a reimplementation

of the algorithm as described in the original article. Additionally the algorithm was extended

to use other decision-making mechanisms within the general voting part. Particularly decision

trees, k-nearest neighbours, support vector classifiers, and logistic regression algorithms were

implemented and evaluated.

For the set of algorithms {s1, ..., sm} Hydra constructs a set of m(m − 1)/2 pairwise

decision-making mechanisms. For a pair of algorithms i, j a mechanism DM(i, j) is trained

to decide whether algorithm i or j is ranked higher on a given instance. To perform the algorithm

selection for an instance, each DM(i, j) decides which algorithm is better and grants one vote to

it, so in the end, m(m−1)/2 votes are distributed. Since a larger number of learners is trained

for each run of Hydra, the computational effort is higher than for the other approaches presented

here. Also Hydra does not predict actual running times but only a ranking of the algorithms.

A.4.3 Selecting a Portfolio vs selecting an algorithm

Often, there exist subsets of MIP instances for which a single algorithm performs par-

ticularly good or bad. It has been shown in [112, 117, 118] that identifying several algorithms

(called a ‘portfolio’) which are used to solve the instance simultaneously, increases the likelihood

to conclude in a short amount of time. Following this trend, we also predict not only one best

algorithm but a portfolio of algorithms that covers the entire test bed better than any single

algorithm.

124

A.4.4 Performance Metric

With our performance data, we want to compare a series of values which can be somewhat

disparate or irregular in their distribution. Using the arithmetic mean would over-emphasize

outliers, and using the geometric mean would over-emphasize the ratios between small numbers.

In [128], Achterberg identified the shifted geometric mean as a suitable compromise between the

two approaches, and so it provides a more robust measure of performance for algorithm selection.

For a vector ®x = (x1, x2, ..., xn), the shifted geometric mean is given by

σs(x) =
©« n

√√ n∏
i=1
(xi + s)ª®¬− s

where the shift value s reduces the influence of observations close to 0.

In order to calculate the performance of the algorithm selection mechanism on a test

set, we calculate the shifted geometric mean of the best performing algorithm in the portfolio

predicted by the mechanism. The mean is taken over all of the test instances. The values of xi

are taken from the real performance data (Primal-Dual integral or solving time as it is described

further) and then compared with other algorithm selection mechanisms. In our work we take

s = 10 for time data and s = 1000 for PD-Integral data.

Additionally, since we are also making predictions on portfolios of algorithms, in the case

that more than one algorithm is selected, we use the value that corresponds to the best of the

portfolio. The best number for each instance is taken to be the value of the portfolio, and then

the shifted geometric mean over the instances is calculated. As a basis for comparison, we use a

portfolio which is constructed without using the feature data. Using the timing data available, we

place algorithms into the portfolio preferentially based upon their shifted geometric means over

the instances. We refer to this as featureless algorithm selection.

In order to compare the performance of two algorithms to each other, we calculate the

shifted geometric mean over the instances separately for each algorithm, and then compute the

125

following performance metric6:

ps(f ,g) = 1−
σs(f (X))
σs(g(X))

(A.3)

This formula gives us the relative improvement of portfolio producer f versus portfolio

producer g. In our results, we take f to be predictions made from our various machine learning

methods (i.e., predictions based on both performance and feature data) and g to be the portfolio

produced by featureless algorithm selection.

A.5 Results

A.5.1 Performance

We present the highest performing prediction engines we found for the M&C benchmark.

Recall that this benchmark set is heterogeneous, and while this makes prediction more difficult,

we feel that this makes the results more readily generalizable, unlike the Regions library which is

a homogeneous benchmark and should not be expected to represent the vastly larger MIP instance

space. The diagrams we present here are generated using the M&C set, as the results from the

Regions set were quite similar and so for conciseness we present the sole benchmark.

Going into each of these methods is a choice in: the input data, the machine learning

method, and whether to boost the learning or not. Random forests were the highest performing

methods and inherent to these is a random seed that is used for training. Additionally, a random

seed is used for the test/training split (20%/80% in our case). Since there are these sources

of randomness, we submit 100 independent runs, where each run is trained on a different seed

(i.e., we produce 100 different portfolio predictions for each learning method we utilize). For

each run, we compute the performance ps(random forest prediction, default) of our prediction,

6The performance metric, which we use to measure the quality of our predictions, is not to be confused with
performance data!

126

cf. Equation (A.3).

We compare the portfolio predictions produced from the random forest to the portfolio

produced by always selecting the default solver. We also produce a portfolio from a featureless

approach in which we rank each solver by the shifted geometric mean, and iteratively select the

best performing solvers (i.e., with the lowest shifted geometric mean). This featureless approach

is also compared to always selecting the default solver. In either case, the quantity ps can then be

thought of as the percent improvement over always choosing the default solver. For example, a

value of ps = 0.05 means that the random forest is choosing a portfolio, the solvers of which will

run 5% faster than choosing the default solver.

Figure A.8: Portfolio performance on the M&C data set. Selectors were trained and tested on
Primal-Dual integral values.

We present our results by taking the arithmetic mean of the 100 different ps values coming

from the independent runs over seeds, and we plot the standard deviation to show the variance

of the performance. Using our machine learning methods, we are able to select algorithms

that outperform the choice of always selecting the default solver and outperform the featureless

127

approach (refer to Figures A.8 and A.9). We note that when the size of the portfolio is 14, which

is the total number of solvers to choose from, the value of the performance is equal to the value

of the virtual best performing portfolio selector (i.e., no selection method will be able to exceed

this value).

A.5.2 Primal-Dual Integrals as a Proxy for Time

Figure A.9: Portfolio performance on the M&C data set. Selectors were trained on Primal-Dual
integral values and tested on their time performance.

One of the questions we sought to answer was whether or not the PDI values will act

as a proxy for time information in training, since PDI values provide more information about

the progress of the solver than does the timing data, especially in the case that many (or all)

algorithms simply reach the time limit.

From Figure A.9 we show that in circumstances where time data is not available for

training, it is still possible to meaningfully train using primal-dual integral data. The reader

will note that this is not automatic – some of our predictor engines performed worse than the

128

featureless approaches, notably for portfolios of size one (attempting to predict only the best

algorithm).

Since we are predicting not just a single algorithm but a portfolio of many algorithms,

Figure A.9 also highlights an important point: competitive methods that work well for choosing a

portfolio may not appear competitive when they are used to select only a single algorithm. This

itself provides strong evidence that some of the previous research on single algorithm selection

could behave very differently if revisited in the context of portfolio selection.

A.5.3 Software package

We developed a Python software package named “Algorithm Predictor” to support our

methodology. All results and plots in this work were produced with this package. Our package

supports:

• Feature Investigation using various techniques (currently Pearson correlations, MDS and

PCA) as well as machine learning methods (currently random regression forest). Each of

these software modules produces plots and depending on the method, a list of features that

it finds to be the most important.

• Algorithm Selection such as random regression forests, random forest classifiers and

others combined with AdaBoost and Hydra boosting techniques. Currently, the Algorithm

Predictor package supports training models based on input features and performance data

for single or multiple seeds by splitting training data into 80:20 train to test ratio. Trained

models can be serialized to a file, but using trained models for predicting on a single

problem instance is not implemented yet.

• Performance Measurement for a single model or set of models using shifted geometric

mean (SGM) explained in Section A.4.4. Additionally, these results can be plotted with

variance and/or standard error overlaid.

129

• Centralized Configuration System that controls many parameters of our package.

We also produced documentation where the reader can find more details about our package,

as well as tutorials for each point described above. To access the documentation, navigate to

the docs/build directory and open index.html in any web browser. The package has been made

publicly available under: https://github.com/GregorCH/algoselection/.

In addition to this package, the feature computation was implemented using SCIP as a

callable library. We also created various Python scripts used for data cleaning and curation that

we didn’t include in our package because we found them very specific to our problem.

A.6 Conclusion

Random forests seem to be the clear winner, which is a result consistent with the findings

in [118]. We believe random forests somewhat get around this difficulty owing to their ability to

locally segment off subspaces, and train on these spaces. Other methods seem to be more affected

globally by various subspaces, which throws off the general predictive power of the machine

learning method. Additionally, this is an indication of how homogeneous the M&C dataset actually

is. We have demonstrated that accurate predictions can be made with our various methods and

that our approaches outperform the featureless approach.

In each of our methods, we tune various parameters independently to minimize the testing

error. In a future analysis, we would like to remove this assumption and scan the parameter space

more effectively to find the global minimum of the testing error.

In the course of our experiments, we also identified a promising avenue for future research.

In our experiments we used machine learning techniques and predictive engines to rank algorithms

and produced portfolios based upon this ranking, in effect choosing the first best, second best, etc.

in that order, demonstrating the usefulness of instance-specific features in this process. However,

in the case that one is predicting a nontrivial portfolio (size more than one), it is possible to

130

improve upon the results by focusing on choosing portfolios that focus on including algorithms

that complement the existing ones. It is the belief of the authors that one can use the features

of instances to intelligently predict such a portfolio, but how to use the features to identify the

correct portfolio has not yet been explored. We believe that research in this direction will be

valuable in the application, for instance, by identifying the best set of algorithms to run in parallel.

Acknowledgment

This research is in part is a reprint of the material as it appears in ZIB-Report 18-17 [1].

The dissertation author was a primary investigator and author of this paper.

The work for this article has been partly conducted within the Research Campus MODAL

funded by the German Federal Ministry of Education and Research (BMBF grant number

05M14ZAM) within the program “Graduate-Level Research in Industrial Projects for Students”

(GRIPS) 2017. The described research activities have been partly funded by the Federal Ministry

for Economic Affairs and Energy within the project BEAM-ME (ID: 03ET4023A-F). The authors

would like to thank the Zuse Institute Berlin, the Institute for Pure and Applied Mathematics and

the National Science Foundation for their contributions in resources and finances to this project.

Special thanks to Daniel Hulme and Karsten Lehmann from Satalia for many fruitful discussions

about the topic.

A.7 Extracted Features

This section gives a detailed description of the features extracted from both the M&C and

Regions datasets. For all instances where the value of some feature is undefined, we use a zero

value as replacement. Further in this section, whenever we refer to nonzero or finite values, we do

that in the context of the corresponding SCIP functions for checking if a value is zero or infinity.

131

More details can be found in the SCIP documentation7.

A.7.1 Static features

Static features are extracted based on the problem instance objective function, the con-

straint matrix and the right hand side vector. It follows a list of static features based on the

objective function of an instance:

• Logarithm of the number of all variables in the objective function.

• Percentage of all binary, integer, implicit integer, continuous, and fixed variables in the

objective function, where fixed variables are variables with equal upper and lower bounds.

• Percentage of all nonzero binary, integer, implicit integer, continuous, and fixed variables

in the objective function.

• Minimum, maximum, mean, standard deviation and median values (further called summary

statistics) for each variable type (binary, integer, implicit integer, continuous, and fixed)

and for all types together.

• Summary statistics of finite upper and lower bounds for all variables and amount of finite

entries.

• Objective dynamism calculated as the logarithm of the ratio of the maximal and minimal

element in the vector of all absolute nonzero objective coefficients.

Before feature extraction, every constraint (all coefficients from the constraint matrix, left

and right hand sides) was normalized such that the maximal absolute coefficent value of is one. It

follows a list of the features extracted from the constraint matrix, left and right hand sides of the

problem instance:

7http://scip.zib.de/doc/html/

132

• Logarithm of number of all constraints.

• Percentage of each linear constraint type in problem instance. All 16 constraint types used

for classification are listed MIPLIB2010 webpage. 8

• Summary statistic of finite right and left hand sides vectors (separately and together),

including vectors density.

• Percentage of finite right and left hand sides.

• Summary statistics of number of nonzeros of each constraint.

• Summary statistics for vectors of mean, minimum, maximum and standard deviation values

of linear constraint coefficients and also summary statistics for vector of ratio of maximum

and minimum value for each linear constraint in problem instance.

• Constraint matrix density.

• Summary statistics for clique vector.

• Dynamism statistics which is calculated on vector of elements calculated for every linear

constraint. Each value is calculated as logarithm of ratio of maximum and minimum

nonzero coefficients for particular linear constraint.

A.7.2 Dynamic features

In order to extract dynamic features, instances were given to the SCIP solver using the

default settings, and the solving process was allowed to continue up until the completion of the

solution at the root node. No data was extracted from the time after the branching process began.

It is our belief that this partial solving process can be done efficiently for most instances since in

practice most of the computational effort on hard instances is spent in branching.

8https://miplib.zib.de/

133

More precisely, dynamic features used in this chapter are extracted from SCIP execution

logs based on the SCIP statistics output which gives performance information, for instance,

resolving, separating and LP statistics at the root node. More details about SCIP statistics output

can be found in [115]. In the case that one of the features extracted in this manner has a value of

zero for every instance in the dataset, we drop that feature for the purposes of our experiments.

Also, we do not use information that is provided in units of time, since such information is highly

machine dependent; however, it is conceivable that one could use this information in future study

if one also took the standpoint that it is acceptable to demand that an end-user benchmark and

train the predictor on the machine that will be later making the predictions. In our experiments,

we have the expectation that the training and prediction will be completed on different machines,

and so we do not incorporate dynamic time information into our feature set.

A.7.3 Top features for M&C

The list of the important features obtained using the procedure described in Section A.3.4

for the M&C data set:

Separators Cuts clique

log constr with off presolve

nvar all max with off presolve

clique max with fast presolve

log vars with off presolve

Separators Calls strongcg

clique max with default presolve

rh constr ratio with default presolve

RootNode FinalRootIters

134

A.7.4 Top features for Regions

The list of the important features obtained using the procedure described in Section A.3.4

for the Regions data set:

constr matrix density with default presolve

coeff bin mean with default presolve

coeff bin std with fast presolve

Separators Calls clique

Separators Calls impliedbounds

Presolvers Calls trivial

Presolvers Calls dualfix

coeff bin median with off presolve

coeff all median with off presolve

A.8 Completion Codes

• Ok

– ‘ok’: a typical satisfactory completion code.

– ‘fail_solution_infeasible’: the algorithm terminated and gave a solution, but

that solution does not satisfy the constraints. This is usually due to rounding errors

and other forms of numerical inaccuracy within the machine so can be considered

’ok’.

– ‘solved_not_verified’: the algorithm terminated and found a solution that was

better than the reported bound in the instance definition (happens either because the

instance had not previously been solved or because the bound was simply missing

in the instance definition). This should mean that the algorithm has correctly solved

135

the instance, but because we do not have the ground truth we cannot confirm its

correctness.

• Fail

– ‘fail_abort’: indicates a catastrophic failure of the algorithm resulting in its early

termination

– ‘fail_dual_bound’: this only happened on one of our training instances. This

happens when the algorithm times out but reports a lower bound on the dual which is

inconsistent with the known lower bound.

– ‘fail_objective_value’: the algorithm terminated and gave a feasible solution,

but that solution was not optimal.

• Timelimit

– ‘timelimit’: typical completion code when algorithm exceeds the time limit.

– ‘better’: will happen when the algorithm times out, but it did find at least one

feasible solution that was better than the reported bound in the instance definition

(happens either because the instance had not previously been solved or because the

bound was simply missing in the instance definition)

136

Appendix B

Renormalization Group Flows and Morse

Homology

In this chapter, we discuss general aspects of renormalization group flows in arbitrary

dimensions using tools from Morse homology. Morse specifically, we propose an alternate

version of the a-theorem, and in general the even dimensional c-theorem. We show that the strong

condition on these theorems is unnecessary given a mathematical constraint we will define later,

and apply our results to the a-theorem to show that the beta function can be written as a gradient

flow.

B.1 Introduction

Topological quantum field theories arise when one considers invariants of quantum field

theories with no propagating physical states. For instance, Coleman [129] shows that in the case

of Georgi-Glashow models, the existence of numerous connected components can be used to

prove the existence of non-dissipative solutions, each labeled by a quantized quantity analogous

to magnetic flux. Mathematically speaking, the zeroth homology has a consequence on what this

flux is. In this example, studying even a zeroth homology resulted in a physically interesting

137

result.

In this chapter, rather than directly study the topological properties coming from fields

living on manifolds, we investigate the topological properties coming from quantum field theory

renormalization group (“RG”) flows living on manifolds. How these two distinct sets of properties

are related is an interesting question which we unfortunately do not discuss here. The fixed points

of these RG flows are conformal field theories (“CFTs”), and we are interested in the flows that

originate from high energy (UV) points and end on low energy (IR) points. A recent study by

Sergei Gukov [130] investigates topological properties of the RG space using tools from Morse

homology by applying them to this set of flows. This novel method of studying the theory space

structure may prove fruitful for a number of reasons, perhaps the most important being that it

may allow for a deeper understanding of the c-theorem in any dimension.

This paper is roughly divided into two main sections: the first being a rough mathematical

background of Morse homology, the second being an attempt to connect some of the results

from this math to physically relevant quantities in RG flows. Not all of the results in the math

section will find an application in our physics section, so for the hasty reader, we suggest skipping

forward to the physics of it all and referring back when necessary.

B.2 Background

In this chapter functions will be assumed to be smooth functions over a manifold M,

unless specified otherwise, such that f : M → R. Intuitively, f can be thought of as a height

function, so that level sets on M are given by f −1(c), where c is the “height”. Figure B.1 shows

an example of the torus with level sets drawn in. For a more detailed treatment of the subject

refer to [131, 132, 133, 134, 135, 136].

138

Figure B.1: Torus with level sets and critical points drawn in. With the appropriate coordinate
system, the upmost points correspond to the largest heights.

B.2.1 Classical Morse Theory

Definition B.1 The Hessian is the matrix of second derivatives of the function evaluated at a

point. Component-wise, Hi j(f , p) = ∂i∂j f |p. Generalizations of this exist for general smooth

manifolds. A non-degenerate Hessian means we can definitively say what the curvature of the

manifold is at every critical point, or equivalently, the determinant of the Hessian is non-zero.

Definition B.2 The set of critical points of a continuous function f is defined to be the set

Cr(f) ≡ {p ∈ M | dfp = 0}

Definition B.3 The function is said to be a Morse function if the Hessian at critical points is

non-degenerate:

∀ p ∈ Cr(f) ⇒ |Hp(f)| , 0

Lemma B.4 (Morse Lemma) Let p be a critical point of a Morse function f on an n-dimensional

manifold. Then locally,

f = f (p)− (y1)2−(y2)2− . . .−(yλp)2+ (yλp+1)2+ . . .+ (yn)2 (B.1)

139

λp is an invariant over the set of all Morse functions on M , so already there is some notion

of topological information in the sense that these functions can be deformed into one another

without changing this quantity. λp is called the index of the Morse function and is the number of

negative eigenvalues of Hp(f) (i.e., the number of ways to independently descend the manifold at

point p.) In Figure B.1 the topmost critical point has λp = 2; the two critical interior points have

λp = 1; the bottommost critical point has λp = 0.

Since each critical point of a Morse function is non-degenerate, we can decompose the

tangent space of a manifold into subspaces constructed by taking linear combinations of both the

negative and positive eigenvectors of the Hessian independently:

TpM = T s
p M ⊕Tu

p M , where:

T s
p M ≡ span {vλi | λi > 0}

Tu
p M ≡ span {vλi | λi < 0}

(B.2)

Notice that dim(Tu
p M) = λp and dim(T s

p M) = n−λp

Corollary B.5 The set of non-degenerate critical points are isolated.

Corollary B.6 A Morse function on a compact manifold has a finite number of critical points.

Corollary B.6 will be useful when constructing a well defined homological boundary

operator. In particular, it forces the coefficients of the terms in the boundary operator to be

finite. If degeneracy is allowed, care has to be taken as these corollaries may not hold (we briefly

mention this later).

B.2.2 Morse-Smale Homology

Define a function ϕ to be a gradient flow of a Morse function which satisfies:

140

1. ϕ : R×M→ M

2. ∂
∂t ϕ(t, x) = −∇ f (ϕ(t, x)) ≡ β̃

3. ϕ(0,∗) = idM

The second condition defines a vector field called β̃, which is given by minus the gradient

of a Morse function called f . The second condition can be generalized to include “gradient-like”

vector fields. If β is a gradient-like flow to the gradient flow β̃, the following conditions are met

[137]:

• β̃ = β, in neighborhoods of critical points

• β̃iβ
i > 0, away from critical points

Here, we assume there exists some invertible metric so that χi j β̃ j = β̃i. The first condition

requires both vector fields to point in the same direction in neighborhoods of the critical points;

the second condition requires the gradient-like vector field to point “roughly” in the same direction

as the gradient field for all other points away from the critical points. Assuming these conditions

on β are met, the structure of the flow lines given by ϕ can then be restated as:

1. ϕ : R×M→ M

2. ∂
∂t ϕ

i(t, x) = βi

3. ϕ(0,∗) = idM

The results of Morse theory also hold with this looser structure on the vector field flows

[133, 135].

Definition B.7 The unstable and stable manifolds of a manifold M are constructed by taking

141

limits of ϕ:

Wu
p = {x ∈ M | lim

t→−∞
ϕ(t, x) = p} (B.3)

W s
p = {x ∈ M | lim

t→+∞
ϕ(t, x) = p} (B.4)

Corollary B.8 TWu
p � Tu

p M⇒ dim(Wu
p) = λp

It is useful to think of Wu
p as a λp-dimensional open ball since the stable and unstable

manifolds give a CW-structure over M . Intuitively, the unstable manifold is the collection of flow

lines flowing out of a critical point and the stable manifold is the collection of flow lines flowing

in to a critical point. So, flows will start at unstable manifolds and flow to stable manifolds.

Figure B.2 depicts this situation for a few example flows.

Figure B.2: Torus with level sets and a few examples of the stable and unstable manifolds. The
topmost ring depicts just one possible flow coming from the λ = 2 point, but there is indeed a
two dimensional structure flowing from this point.

Definition B.9 If the stable and unstable manifolds of a Morse function all intersect transversally,

the function is called Morse-Smale. Given any point x ∈ M, transversality means there exist

flows going from critical points p→ q such that:

142

Tx M = TWu
p +TW s

q

This means that at any point in M , the tangent spaces of the stable and unstable manifolds

have enough information to construct the entire tangent space at that point. For example, the

stable/unstable manifolds drawn for the height function in Figure B.2 don’t satisfy the transversal-

ity condition between the two inner λ = 1 critical points because TWu
p = TW s

q and each of these

spaces are one-dimensional so the full tangent space cannot be constructed. However, a Morse

function can always be made Morse-Smale by perturbing the metric; see Theorem B.11 for the

general statement.

Morse-Smale functions are necessary to define a boundary operator because they flow

out of unstable critical points to stable points of strictly lower indexes. This can be proven using

Corollary B.10, which itself can be proven using the transversality condition of the stable and

unstable manifolds and by a simple set theoretic argument.

Corollary B.10 For Morse-Smale functions and for flows starting at critical point p and ending

on critical point q:

dim(Wu
p ∩W s

q) = λp−λq (B.5)

Theorem B.11 (Kupka-Smale Theorem) For any metric on a manifold M, the set of smooth

Morse-Smale functions is dense in the space of all smooth functions on M . Also, one can always

find a Riemannian metric on M to make a Morse function into a Morse-Smale function.

Definition B.12 For flows going from p→ q the Moduli Space is defined as:

M(p,q) = (Wu
p ∩W s

q)/R (B.6)

Corollary B.13 λp−λq = 1⇒ M(p,q) is a compact 0-dimensional manifold.

143

A classification theorem states these manifolds are finite (i.e., there is a finite number of flows

going from two critical points which differ in index by 1).

Following Gukov’s work [130], the dimension of Wu
p can be thought of as the number of

relevant operators at a critical point in the theory space of RG flows. Indeed, there are a certain

number of relevant operators, each of which will flow from a UV → IR critical point. This

parallels the situation in Morse theory where the index of a critical point counts the number of

independent ways there are to flow from a higher to lower index point.

Another result from Gukov’s work follows directly from Corollary B.13. Namely, we

should be able to count the number of flows between two points by considering the moduli space

of the flows.

Definition B.14 The boundary operator can be defined as acting on the free Abelian group

generated by critical points of a Morse-Smale function of index k:

∂k : Ck(f) → Ck−1(f)

p→
∑

q∈Crk−1(f)

#M(p,q)q , p ∈ Crk(f)
(B.7)

#M(p,q) ∈ Z is defined to be the signed number of flow lines from p→ q, and Crk(f) is

the set of critical points of f of index k.

A necessary step for having this define a homology is to show that ∂2 ≡ 0. We consider

points p and q such that λp = i+2 and λq = i. Rather than go through the steps of the derivation,

we hope to give an intuition (albeit a very tenuous one) for why this is true. We need to rely on a

few results:

• M(p,q) can be compactified to M(p,q)

• The boundary of M(p,q) turns out to be equivalent to the action of ∂2. In other words,

∂2p ∼ #∂M(p,q)

144

• M(p,q) is an oriented 1-manifold with boundary, so its signed number of boundary points

is zero

Theorem B.15 (Morse Homology Theorem) The homology of the Morse-Smale chain complex

(C∗(f), ∂∗) is isomorphic to the singular homology on M .

Corollary B.16 M =
∐

p Wu
p =

∐
p W s

p. i.e., the stable and unstable manifolds can be used to

construct the original manifold M .

B.2.3 Extensions to Morse Homology

We briefly mention Morse-Bott and Floer homology, extensions of Morse-Smale homol-

ogy each of which are best suited in certain circumstances. Both fields have a deep and beautiful

structure which we unfortunately do not go into here.

In the case where the critical points are non-isolated, i.e., whereby Cr(f) now consists

of manifolds rather than points, we should rely on Morse-Bott homology. Because the critical

points are non-isolated the boundary operator is no longer well defined so the Morse Homology

theorem does not hold. In this case, we should now set Cr(f) =
∐

i Ui where Ui are connected

submanifolds of M such that df |Ui ≡ 0. If Hp(f) is non-degenerate in the normal direction for all

p ∈ Ui then f is called Morse-Bott. By the Kupka-Smale theorem, a Morse-Bott function can be

perturbed to a Morse-Smale function, which means the Morse homology theorem can be applied

to this perturbed function! Refer to [138] for the explicit form of the perturbed function.

In the case where the critical points have infinite index, but still a finite relative index, we

should rely on Floer homology. More specifically, Floer homology deals with the case where

the Hessian operator decomposes into infinite dimensional spaces in which it is either positive or

negative definite. The Yang-Mills Lagrangian appears in variants of Floer homology [139].

145

B.3 The c-theorems

B.3.1 The d = 2 c-theorem

There is an intuition that the RG flow is an irreversible process, where the number of

massless degrees of freedom decreases along the flow: higher energies allow for more excited

degrees of freedom to appear, and some of this information is lost as the flow can be seen as

a course-graining procedure. In 2d field theory, Zamolodchikov’s c-theorem [140] provides a

function which satisfies this decreasing property and is equal to the central charge of the Virasoro

algebra for CFTs. At fixed points, the 2d c-function is the trace anomaly that appears from

regularizing the stress energy tensor:
〈
T µ
µ

〉
d=2 = −

cR
12 where R is the scalar curvature of the

spacetime manifold. We refer to the total parameter space the flows live in as T and the flows

themselves as TRG (i.e., TRG ⊆ T). Traditionally, an “RG time” is introduced as t = −ln(µ), which

increases toward the IR. With this variable, Zamolodchikov’s theorem states:

Theorem B.17 (c-theorem) There exists a positive-definite function c : TRG→ R such that

1. Monotonically decreases along flow lines:

dc(g)
dt
= βi(g)

∂c(g)
∂gi ≤ 0

where equality is met only at the fixed points of the RG flow

2. Stationary at fixed points:

βi(g∗) = 0 =⇒
∂c(g)
∂gi |g=g∗ = 0

3. Equals the CFT central charge at fixed points

These quantities have analogs to the objects in Morse homology, and we make these

connections explicit in a later section. In Zamolodchikov’s work, a positive definite symmetric

146

matrix appears that can be thought of as a metric over the theory space. It is used to relate the

beta function to the derivative of the c-function with respect to the coupling constants:

βi ∂c(g)
∂gi = −12βiβ jGi j (B.8)

B.3.2 The even dimensional c-theorem

For d , 2 the stress-energy tensor trace takes on additional anomalies, so the proof of the

theorem above currently only holds for d = 2. A possible generalization to even dimensions was

proposed by Cardy [141], which collectively are now called c-theorems. The potential candidate

for a higher dimensional c-function can be motivated using the generalized Gauss-Bonnet theorem

which relates the geometry (in the sense of curvature) to the topology (in the sense of genus) of a

spacetime manifold M. For d = 2:

∫
M

〈
T µ
µ

〉
d=2
√
gd2x = −

c
12

∫
M

R
√
gd2x = −

c
12
χ (B.9)

Here, χ is the Euler characteristic of M. In general, the Euler characteristic disappears for

an odd dimensional compact manifold, so the theorem is only useful for gathering information

for even d ≥ 2. So as an ansatz, the arbitrary even dimensional c-function is taken to be:

C = αd

∫
M

〈
T µ
µ

〉√
gdd x (B.10)

In the case of d = 4, the stress energy trace takes on an additional anomaly:
〈
T µ
µ

〉
d=4 =

−aE4+ cW2. E4 is the 4-dimensional Euler density and W is the Weyl tensor. (Note that the Euler

density is precisely the Ricci scalar in two dimensions). In this case, the candidate function is

the constant in front of the Euler density. So for d = 4 the c-theorem is known as the a-theorem,

which has yet to be proven in full generality. A number of results have been proven about the

a-theorem so far: Osborn has shown that the a-function decreases to all orders in perturbation

147

theory [142]; Fortin, Grinstein, and Stergiou showed RG flows which are cyclic correspond to

CFTs which are consistent with the a-theorem (in this they showed that along the cycle, da
dt = 0,

and that the whole cycle corresponds to a CFT) [143]; Komargodski and Schwimmer gave an

argument in support of the theorem [144] in even dimensions. We discuss an application of Morse

homology specifically to the case of d = 4 in the last section. However, for the remainder of this

section we focus on even dimensions.

Similar to the 2d c-theorem, there is a general even dimensional c-theorem (for instance,

in [145]) which is constructed to satisfy similar requirements:

Conjecture B.18 (c-theorem) For even dimensional QFTs there exists a positive-definite func-

tion c : TRG→ R such that

1. (Weak Version): cUV > cIR

2. (Medium Version): dc(g)
dt ≤ 0 where equality is met at CFTs, and c is stationary at CFTs

(i.e., ∂c(g)
∂gi
|g∗ = 0)

3. (Strong Version): The beta function is a gradient flow of the c-function with βi(g) =

Gi j(g)
∂c(g)
∂g j , with Gi j = (Gi j)−1 and Gi j positive definite

We follow a similar delineation as Ken Intriligator and his collaborators have done [145] to

distinguish the various levels of mathematical structure the c-function may satisfy (in their work,

they specifically investigate the a-function). We call these various levels the “weak,” “medium,”

and “strong” versions of the c-theorem. They are not independent claims due to the fact that

if a stronger version of the c-theorem is satisfied, then all weaker conditions are automatically

satisfied. We also point out that the medium version of the c-theorem in Intrilligator’s work

does not include the condition for the c-function to be stationary at fixed points. We include this

condition as it is both reminiscent of Zamolodchikov’s work and because it will be necessary in a

later proof.

148

B.3.3 The proposed even dimensional c-theorem

In this section, we introduce a new version of the even dimensional c-theorem by using

tools from Morse homology. First, we make a few connections between the objects in this math

and the objects that appear in the c-theorem:

Morse c-Theorem

f : M→ R ∼ c : TRG→ R

ϕ : R×M→ M ∼ g : R×TRG→ TRG

∂

∂t
ϕi(t, x) = −∇i f (ϕ(t, x)) ∼

∂

∂t
gi(t,g0) = −∇

ic(g(t,g0))

ϕ(0,∗) = idM ∼ g(0,∗) = idTRG

Notice that the coupling constants are functions of the RG time and of the initial conditions

of the flow. Also, recall that the mathematical tools from Morse theory can be applied to flows so

long as they are gradient-like. So a natural question at this point is the following: does assuming

the existence of a gradient-like flow on the RG space tell us anything about the c-function? A

benefit to studying the RG space with algebraic topology, rather than the conventional differential

geometry tools, is that topology is well suited to discovering global properties of the space

which are invariant under certain deformations. This invariant information seems to be useful

in uncovering properties of the c-function, as we have the following Conjecture B.19. We only

partially prove the conjecture, and hence do not refer to it as a theorem. Conjecture B.19 can be

proven as a theorem if one of the details (shown in bold) can be shown to be true.

Conjecture B.19 β gradient-like⇔ dc(g)
dt ≤ 0 where equality is met at CFTs, and c is stationary

at CFTs

Proof B.20 We denote an arbitrary beta function by β, and use β̃ to denote a gradient flow (i.e.,

β̃ = −∇ f , f : TRG→ R, where f is an arbitrary function). Recall, the two conditions for β to be

149

considered gradient-like to β̃, are that (1) these vector fields point in the same direction away

from the critical points and (2) that they agree in neighborhoods of the critical points.

For the⇐ implication:

dc
dt
≤ 0⇒−

∂c
∂gi

dgi

dt
≥ 0⇒ β̃iβ

i ≥ 0

where equality is met only at the fixed points as βi(g∗) = 0. Additionally, the vector fields

agree at the fixed points due to the fact that c is stationary at these points: β̃i(g∗) = β
i(g∗) = 0.

However, we have yet to show that these fields agree in the neighborhoods, and hence this

is not a full proof. We leave this detail for future work, or for the reader as an exercise.

For the⇒ implication:

β̃iβ
i ≥ 0⇒−

∂ f
∂gi

dgi

dt
≥ 0⇒

df
dt
≤ 0

Additionally, this function will satisfy dg
dt = −

∂ f
∂g in neighborhoods of critical points as this

is one of the conditions for being gradient-like. This implies that the function f is stationary at

critical points. Recall that, according to Zamolodchikov’s theorem, a stationary function is one

such that β = 0⇒ ∂ f
∂g = 0.

We remark on a few subtleties in this proof and on some key points related to the proof:

• In the⇐ direction, the gradient flow function f : TRG→ R is automatically assumed to be

the candidate c-function, and hence we have β being a gradient-like flow to β̃ = −∇c. In

the⇒ direction, we show that there exists a function that monotonically decreases along

the flows and is stationary at critical points, which are the conditions for the candidate

c-function. It is just a matter of notation that we call this function f .

• The approach we took via the results from Morse theory allowed for a few line proof. If we

instead used an actual c-function, the proof certainly would not have been so short or clean.

150

For instance, equation B.11 shows the a-function that Jack and Osborn derive [142], and it

is not entirely clear how to prove Theorem B.19 in this case.

• Nothing in this discussion depends on the dimensionality of the spacetime. Although we

introduce the application of Morse homology to renormalization group flows in the even

dimensional case, there is no reason a priori these results cannot be applied to the odd

dimensional case.

Stephen Smale proved that, given a gradient-like vector field, there exists a metric such

that the field is the gradient of some function [134]. So β gradient-like⇒ βi = −∇i f for some

metric.

Corollary B.21 If the beta function defines a gradient-like flow, or equivalently if there exists a

function that monotonically decreases along the flow and is stationary at fixed points, there exists

a metric where the beta function is a gradient of some function.

This suggests an alternate form of the c-theorem, with the strong version completely

removed due to Corollary B.21 and with an equivalent form of the medium version rephrased in

the context of Morse theory (i.e., the conditions 2a and 2b below are equivalent):

Conjecture B.22 (alternate c-theorem) For even dimensional QFTs there exists a positive-

definite function c : TRG→ R such that

1. (Weak Version): cUV > cIR

2a. (Medium Version): dc(g)
dt ≤ 0 where equality is met at CFTs, and c is stationary at CFTs

2b. (Medium Version): The β function is gradient-like

151

B.3.4 The a-theorem

Corollary B.21 shows that for beta functions that define a gradient-like flow, or equivalently

monotonically decrease, there is a metric which makes the beta function a gradient flow. In this

section, we apply this result to the case of d = 4 and use the notation ∂i ≡
∂
∂gi

, and also g∗ to

denote critical points. Jack and Osborn derive a condition relating the a-function to the beta flow

for d = 4 [142]:

8∂ia = β j[χi j + (∂iW j − ∂jWi)],

a = βb+
1
8

Wiβ
i

(B.11)

It is interesting to note that Zamolodchikov [140] derives a similar result perturbatively,

the main difference being that the d = 2 case is written as a gradient flow:

βi = −
1
12

Gi j∂jc

In equation B.11, although different schemes change the form of the W tensors, the overall

equation is covariant with respect to changing these schemes as the additional contributions

cancel. If we rearrange and redefine some of the terms in this equation, and if we also assume

that χik χk j = δ
i
j , we arrive at:

8χi j∂ia = β j + χi j(∂iWk − ∂kWi)β
k

∇
j
Ha = β j + ζ j

(B.12)

Here, we have made two substitutions. In the first place, ∇ j
Ha ≡ 8χi j∂ia. This emphasizes

the fact that we are taking the derivative with a specific choice in metric, H. With this choice, the

beta function has an additional ζ term. The second substitution we make is χi j(∂iWk −∂kWi)β
k ≡

152

ζ j . This emphasizes the fact that ζ can be seen as a perturbation contribution. Thus, by using the

H metric, we do not have a pure gradient flow. Using Conjecture B.22, we will be able to show

that there is an appropriate modification to H which will eliminate the ζ term. In order to use this

Conjecture, we must show Equation B.12 satisfies gradient-like properties:

• χi j(∂iWk − ∂kWi)β
k |g∗ ≡ 0

• β2 > −χi j(∂iWk − ∂kWi)β
k β j

The first of these conditions is true at critical points since βk(g∗) = 0. Again, we leave out

the proof that this condition is true in neighborhoods of g∗. To verify the second condition,

we rely on the explicit forms of χi j and Wi which Jack and Osborn calculate using the usual

perturbative loop expansion for gauge theories with a single coupling, multicomponent φ4 scalar

field theories, and field theories with Yukawa interactions. Up to the lowest order in each of these

theories, the curl term vanishes due to Wi being linear in the couplings (or inverse proportional to

a single coupling in the case of Yang-Mills), so the second requirement is also satisfied at this

order.

More generally though, we can see that the second requirement is satisfied by counting

powers of the couplings on each side of the inequality. Since each side has a factor of β with an

upper and lower index, these can be removed from consideration. Thus, we determine how many

factors of the coupling constants are contributed from χi j(∂iWk − ∂kWi). Since we are working

perturbatively, the inequality above will be true if χi j(∂iWk − ∂kWi) ∼ g
n since 1 > gn ∀ n > 0.

To leading order, we specify the dependence on the coupling for each of these objects

for various physical theories in Table B.1. We point out that the calculations that Jack and

Osborn perform are explicitly for χi j and not χi j , and that they don’t consider theories with

interactions between Yang-Mills and Dirac fields or Yang-Mills and φ4 theories. The former case

is dealt with simply by taking an inverse, and the latter case we handle by considering the leading

order contributions in the Feynman diagrams. Each of the three theories have their own set of

153

coupling constants; however we do not distinguish between them in the table below as we are

only interested in the leading order dependence of χi j and Wi on the total number of factors of

the couplings.

Table B.1: The leading order dependence of χ and W on the couplings for various physical
theories. We specify the loop-order to which each calculation was done in [142].

Theory object,

g-dependence,

loop order

Yang-Mills with single coupling
χi j g2 2-loop

Wi g−1 2-loop

Scalar φ4 χi j 1 3-loop

Wi g+1 3-loop

Yukawa
χi j 1 2-loop

Wi g+1 2-loop

YM+φ4 χi j g+3 2-loop

φ4+Dirac χi j g+1 3-loop

YM+Dirac χi j 0 2-loop

In the first three theories listed in the table, to leading order χi j(∂iWk − ∂kWi) ∼ g0.

However the inequality above is still satisfied at this order because the curl term vanishes and

additionally satisfied at higher orders because χi j(∂iWk − ∂kWi) ∼ gn. For the following two

theories listed in the table, χi j(∂iWk − ∂kWi) ∼ gn to lowest order. And the last theory has a

vanishing χi j to lowest order, but has χi j(∂iWk − ∂kWi) ∼ g
n at higher orders.

Since these conditions are met, we conclude that the beta function can be written as

a gradient flow with respect to some metric other than χi j in the case of d = 4 quantum field

theories.

154

B.4 Acknowledgements

We’d like to thank Justin Roberts for the invaluable insights he provided into the world of

Morse theory, and for putting up with us for so long.

155

Appendix C

Explanations of Select Algorithms

A GMM consists of fitting the data to a weighted sum of Gaussians:

p(x;θ) =
C∑

c=1
αcN(x; µc,Σc) (C.1)

where αc is the weight of the component c, 0 < αc < 1,
∑C

c=1αc = 1 and θ is a list of

parameters:

θ = {α1, µ1,Σ1, ..., αC, µC,ΣC}

Here, µ is the mean and Σ is the covariance matrix. The Gaussian probability density

function N is the standard bell curve in one-dimension. In a D-dimensional space, it is defined as:

N(x; µ,Σ) ≡
1

(2π)D/2 |Σ |1/2
exp[−

1
2
(x− µ)TΣ−1(x− µ)] (C.2)

We can impose certain restrictions on the covariance matrix, which in turn will affect the

performance of the GMM. We use four different forms of the covariance matrix in this chapter to

see the affect of how these choices affect the performance of the GMM. These choices are full,

tied, diagonal, and spherical (see Figure 4.9 to see how these choices affect the classification

156

accuracy):

• Full: Σc = E[(x− µ)(x− µ)T]c, where each component receives it’s own covariance matrix

• Tied: Σ = 1
C
∑C

c=1Σc. So all components receive the same averaged covariance matrix.

• Diagonal: Σc = diag(σ1, ...,σD)c, where each σi is the variance in the i-th coordinate

• Spherical: Σc = diag(σ1, ...,σD)c, where all σi take on the same value

157

Bibliography

[1] Alexander Georges, Ambros Gleixner, Gorana Gojic, Robert Lion Gottwald, David Haley,
Gregor Hendel, and Bartlomiej Matejczyk. Feature-based algorithm selection for mixed
integer programming. Technical Report 18-17, ZIB, Takustr. 7, 14195 Berlin, 2018.

[2] Gordon E Moore. Cramming more components onto integrated circuits, 1965.

[3] David H Wolpert and William G Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[4] Jeff Leek. The elements of data analytic style. J. Leek.Amazon Digital Services, Inc, 2015.

[5] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[7] Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,
46(2):255–308, 2009.

[8] Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning work
so well? Journal of Statistical Physics, 168(6):1223–1247, 2017.

[9] Daniel Krefl and Rak-Kyeong Seong. Machine learning of calabi-yau volumes. Physical
Review D, 96(6):066014, 2017.

[10] Jonathan Carifio, James Halverson, Dmitri Krioukov, and Brent D Nelson. Machine
learning in the string landscape. Journal of High Energy Physics, 2017(9):157, 2017.

[11] Ryan Poplin, Avinash V Varadarajan, Katy Blumer, Yun Liu, Michael V McConnell,
Greg S Corrado, Lily Peng, and Dale R Webster. Prediction of cardiovascular risk factors
from retinal fundus photographs via deep learning. Nature Biomedical Engineering,
2(3):158, 2018.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[13] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

158

[14] Understanding the bias-variance tradeoff. http://scott.fortmann-
roe.com/docs/BiasVariance.html. (Accessed on 04/11/2019).

[15] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530,
2016.

[16] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

[17] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

[18] Boris Hanin. Universal function approximation by deep neural nets with bounded width
and relu activations. arXiv preprint arXiv:1708.02691, 2017.

[19] Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in
statistics, pages 569–593. Springer, 1992.

[20] Iñigo Barandiaran. The random subspace method for constructing decision forests. IEEE
transactions on pattern analysis and machine intelligence, 20(8), 1998.

[21] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[22] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997.

[23] Ethics and data science — stanford data science initiative.
https://sdsi.stanford.edu/about/ethics-and-data-science. (Accessed on 04/10/2019).

[24] Data science ethics — coursera. https://www.coursera.org/learn/data-science-ethics. (Ac-
cessed on 04/10/2019).

[25] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[26] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[28] Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for rmsprop and
adam in non-convex optimization and an empirical comparison to nesterov acceleration.
2018.

159

[29] Karl Pearson F.R.S. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[30] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of
eugenics, 7(2):179–188, 1936.

[31] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[32] Cheng-Yuan Liou, Jau-Chi Huang, and Wen-Chie Yang. Modeling word perception using
the elman network. Neurocomputing, 71(16-18):3150–3157, 2008.

[33] Ingwer Borg and Patrick Groenen. Modern multidimensional scaling: Theory and applica-
tions. Journal of Educational Measurement, 40(3):277–280, 2003.

[34] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework
for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[35] John C Gower and Gavin JS Ross. Minimum spanning trees and single linkage cluster
analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics), 18(1):54–64,
1969.

[36] Brian S Everitt. Finite mixture distributions. Encyclopedia of statistics in behavioral
science, 2005.

[37] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[38] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für
die reine und angewandte Mathematik, 134:198–287, 1908.

[39] David J Ketchen and Christopher L Shook. The application of cluster analysis in strategic
management research: an analysis and critique. Strategic management journal, 17(6):441–
458, 1996.

[40] Greg Hamerly and Charles Elkan. Learning the k in k-means. In Advances in neural
information processing systems, pages 281–288, 2004.

[41] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is nearest
neighbor meaningful? In International conference on database theory, pages 217–235.
Springer, 1999.

[42] Thomas Bayes. Lii. an essay towards solving a problem in the doctrine of chances. by
the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfr s.
Philosophical transactions of the Royal Society of London, (53):370–418, 1763.

160

[43] Marcel van Gerven and Sander Bohte. Artificial neural networks as models of neural
information processing. Frontiers Media SA, 2018.

[44] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on
document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

[45] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician, 46(3):175–185, 1992.

[46] Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane. IEEE transactions on
computers, 100(6):478–487, 1982.

[47] Allen Hatcher. Algebraic topology. , 2005.

[48] Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American
Mathematical Society, 45(1):61–75, 2008.

[49] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete &
Computational Geometry, 33(2):249–274, 2005.

[50] Gunnar Carlsson and Vin De Silva. Topological approximation by small simplicial com-
plexes, 2003.

[51] Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. Topological methods for the
analysis of high dimensional data sets and 3d object recognition. In SPBG, pages 91–100,
2007.

[52] Daniel Müllner and Aravindakshan Babu. Python mapper: An open-source toolchain for
data exploration, analysis and visualization, 2013.

[53] Gerd Gigerenzer and Henry Brighton. Homo heuristicus: Why biased minds make better
inferences. Topics in cognitive science, 1(1):107–143, 2009.

[54] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and
Ananthram Swami. Practical black-box attacks against machine learning. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security, ASIA
CCS ’17, pages 506–519, New York, NY, USA, 2017. ACM.

[55] Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local
behavior of spaces of natural images. International journal of computer vision, 76(1):1–12,
2008.

[56] Gurjeet Singh, Facundo Memoli, Tigran Ishkhanov, Guillermo Sapiro, Gunnar Carlsson,
and Dario L Ringach. Topological analysis of population activity in visual cortex. Journal
of vision, 8(8):11–11, 2008.

161

[57] Jens Schmalzing and Krzysztof M Górski. Minkowski functionals used in the morphologi-
cal analysis of cosmic microwave background anisotropy maps. Monthly Notices of the
Royal Astronomical Society, 297(2):355–365, 1998.

[58] Pratyush Pranav, Herbert Edelsbrunner, Rien Van de Weygaert, Gert Vegter, Michael
Kerber, Bernard JT Jones, and Mathijs Wintraecken. The topology of the cosmic web
in terms of persistent betti numbers. Monthly Notices of the Royal Astronomical Society,
465(4):4281–4310, 2016.

[59] Gregory R Bowman, Xuhui Huang, Yuan Yao, Jian Sun, Gunnar Carlsson, Leonidas J
Guibas, and Vijay S Pande. Structural insight into rna hairpin folding intermediates.
Journal of the American Chemical Society, 130(30):9676–9678, 2008.

[60] Pek Y Lum, Gurjeet Singh, Alan Lehman, Tigran Ishkanov, Mikael Vejdemo-Johansson,
Muthu Alagappan, John Carlsson, and Gunnar Carlsson. Extracting insights from the
shape of complex data using topology. Scientific reports, 3:srep01236, 2013.

[61] Robert J Adler, Omer Bobrowski, and Shmuel Weinberger. Crackle: The persistent
homology of noise. arXiv preprint arXiv:1301.1466, 2013.

[62] Robert J Adler, Omer Bobrowski, Matthew S Borman, Eliran Subag, and Shmuel Wein-
berger. Persistent homology for random fields and complexes. In Borrowing strength:
theory powering applications–a Festschrift for Lawrence D. Brown, pages 124–143. Insti-
tute of Mathematical Statistics, 2010.

[63] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. A topological view of unsupervised
learning from noisy data. SIAM Journal on Computing, 40(3):646–663, 2011.

[64] Anders Björner. Topological methods. Handbook of combinatorics, 2:1819–1872, 1995.

[65] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence
diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.

[66] Mathieu Carriere and Steve Oudot. Structure and stability of the one-dimensional mapper.
Foundations of Computational Mathematics, 18(6):1333–1396, 2018.

[67] Mickaël Buchet, Frédéric Chazal, Steve Y Oudot, and Donald R Sheehy. Efficient and
robust persistent homology for measures. Computational Geometry, 58:70–96, 2016.

[68] Leo Carlsson, Gunnar Carlsson, and Mikael Vejdemo-Johansson. Fibres of Failure:
Classifying errors in predictive processes. arXiv e-prints, page arXiv:1803.00384, February
2018.

[69] Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. A topological regularizer for
classifiers via persistent homology. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 2573–2582, 2019.

162

[70] Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applica-
tions for graph classification. arXiv preprint arXiv:1904.12189, 2019.

[71] Tamal K Dey, Jiayuan Wang, and Yusu Wang. Graph reconstruction by discrete morse
theory. arXiv preprint arXiv:1803.05093, 2018.

[72] P Pearson, D Muellner, and G Singh. Tdamapper: Analyze high-dimensional data using
discrete morse theory(2015).

[73] Hendrik Jacob van Veen and Nathaniel Saul. Keplermapper.
http://doi.org/10.5281/zenodo.1054444, Jan 2019.

[74] Henry Adams, Andrew Tausz, and Mikael Vejdemo-Johansson. Javaplex: A research
software package for persistent (co) homology. In International Congress on Mathematical
Software, pages 129–136. Springer, 2014.

[75] Vidit Nanda. Perseus: the persistent homology software. Software available at http://www.
sas. upenn. edu/˜ vnanda/perseus, 2012.

[76] Dmitriy Morozov. Dionysus, a c++ library for computing persistent homology, 2007.

[77] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Distributed computation of persistent
homology. In 2014 proceedings of the sixteenth workshop on algorithm engineering and
experiments (ALENEX), pages 31–38. SIAM, 2014.

[78] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi
library: Simplicial complexes and persistent homology. In International Congress on
Mathematical Software, pages 167–174. Springer, 2014.

[79] Lek-Heng Lim. Hodge laplacians on graphs. arXiv preprint arXiv:1507.05379, 2015.

[80] Mustafa Hajij, Bei Wang, and Paul Rosen. Mog: Mapper on graphs for relationship
preserving clustering. arXiv preprint arXiv:1804.11242, 2018.

[81] Raymond B Cattell. The scree test for the number of factors. Multivariate behavioral
research, 1(2):245–276, 1966.

[82] Svante Wold. Cross-validatory estimation of the number of components in factor and
principal components models. Technometrics, 20(4):397–405, 1978.

[83] Patrick O Perry. Cross-validation for unsupervised learning. arXiv preprint
arXiv:0909.3052, 2009.

[84] Art B Owen and Patrick O Perry. Bi-cross-validation of the svd and the nonnegative matrix
factorization. The annals of applied statistics, 3(2):564–594, 2009.

[85] Peter D Hoff. Model averaging and dimension selection for the singular value decomposi-
tion. Journal of the American Statistical Association, 102(478):674–685, 2007.

163

[86] Persi Diaconis, Sharad Goel, and Susan Holmes. Horseshoes in multidimensional scaling
and local kernel methods. The Annals of Applied Statistics, pages 777–807, 2008.

[87] Paul Breiding, Sara Kalisnik Verovsek, Bernd Sturmfels, and Madeleine Weinstein. Learn-
ing algebraic varieties from samples. arXiv preprint arXiv:1802.09436, 2018.

[88] Matan Gavish and David L Donoho. The optimal hard threshold for singular values is
4/
√

3. IEEE Transactions on Information Theory, 60(8):5040–5053, 2014.

[89] Keith T Poole and Howard L Rosenthal. Ideology and congress, volume 1. Transaction
Publishers, 2011.

[90] Morris P Fiorina and Samuel J Abrams. Political polarization in the american public. Annu.
Rev. Polit. Sci., 11:563–588, 2008.

[91] Geoffrey C Layman, Thomas M Carsey, and Juliana Menasce Horowitz. Party polarization
in american politics: Characteristics, causes, and consequences. Annu. Rev. Polit. Sci.,
9:83–110, 2006.

[92] Keith T Poole and Howard Rosenthal. Voteview. University of California, San Diego.
www. voteview. com. Poole, Keith T, 2012.

[93] Gerald C Wright and Brian F Schaffner. The influence of party: Evidence from the state
legislatures. American Political Science Review, 96(2):367–379, 2002.

[94] Vin De Silva and Gunnar E Carlsson. Topological estimation using witness complexes.
SPBG, 4:157–166, 2004.

[95] Gunnar Carlsson and Vin De Silva. Zigzag persistence. Foundations of computational
mathematics, 10(4):367–405, 2010.

[96] Andrey Kolmogorov. Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital.
Attuari, Giorn., 4:83–91, 1933.

[97] Nickolay Smirnov. Table for estimating the goodness of fit of empirical distributions.
Annals of Mathematical Statistics, 19(2):279–281, 1948.

[98] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436444,
2015.

[99] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. CoRR,
abs/1312.6199, 2013.

[100] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing
Adversarial Examples. arXiv e-prints, page arXiv:1412.6572, December 2014.

164

[101] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. In International Conference on Learning Representations, 2017.

[102] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive
auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th
International Conference on International Conference on Machine Learning, ICML’11,
pages 833–840, USA, 2011. Omnipress.

[103] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

[104] Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. In ICLR, 2017.

[105] Silvia Biasotti, Bianca Falcidieno, and Michela Spagnuolo. Extended reeb graphs for
surface understanding and description. In International conference on discrete geometry
for computer imagery, pages 185–197. Springer, 2000.

[106] Georges Reeb. On the singular points of a completely integrable form of pfaff or of a
numerical function [on the singular points of a completely integrable pfaff form or of a
numerical function]. Accounts Rendus Acad. Sciences Paris, 222:847 – 849, 1946.

[107] John Milnor. Morse Theory.(AM-51), volume 51. Princeton university press, 2016.

[108] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[109] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. In International Conference on Learning
Representations, volume 3, 2017.

[110] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first
adversarially robust neural network model on MNIST. In International Conference on
Learning Representations, 2019.

[111] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Automated configuration of mixed
integer programming solvers. Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, pages 186–202, 2010.

[112] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and Yoav
Shoham. A portfolio approach to algorithm selection. In IJCAI, volume 3, pages 1542–
1543, 2003.

[113] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC-Instance-
specific algorithm configuration. In ECAI, volume 215, pages 751–756, 2010.

165

[114] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin
Vanschoren. Aslib: A benchmark library for algorithm selection. Artificial Intelligence,
237:41–58, 2016.

[115] Stephen J. Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner,
Robert Lion Gottwald, Gregor Hendel, Thorsten Koch, Marco E. Lübbecke, Matthias
Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt,
Sebastian Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Dieter Weninger,
Jonas T. Witt, and Jakob Witzig. The SCIP Optimization Suite 4.0. Technical Report
17-12, ZIB, Takustr.7, 14195 Berlin, 2017.

[116] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI
Magazine, 35(3):48–60, 2014.

[117] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Automated
algorithm configuration and selection for mixed integer programming.

[118] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence, 206:79–111, 2014.

[119] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite
for combinatorial auction algorithms. In Proceedings of the 2nd ACM conference on
Electronic commerce, pages 66–76. ACM, 2000.

[120] Emilie Danna. Performance variability in mixed integer programming, 2008. Presentation
at Workshop on Mixed Integer Programming.

[121] Andrea Lodi and Andrea Tramontani. Performance variability in mixed-integer program-
ming. Tutorials in Operations Research, pages 1–12, 2013.

[122] Robert E. Bixby, Sebastiàn Ceria, Cassandra M. McZeal, and Martin W. P. Savelsbergh.
An updated mixed integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

[123] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations
Research Letters, 34(4):1–12, 2006.

[124] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy, and
Kati Wolter. MIPLIB 2010. Mathematical Programming Computation, 3(2):103–163,
2011.

[125] Computational Optimization Research at Lehigh Laboratory. MIP instances.
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/. Visited 12/2017.

166

[126] Timo Berthold. Measuring the impact of primal heuristics. Operations Research Letters,
41(6):611–614, 2013.

[127] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[128] Tobias Achterberg. Constraint Integer Programming. PhD thesis, 2007.

[129] Sidney Coleman. Aspects of symmetry: selected Erice lectures. Cambridge University
Press, 1988.

[130] Sergei Gukov. Counting RG flows. JHEP, 01:020, 2016.

[131] Matthias Schwarz. Morse homology. In Progress in Mathematics. Citeseer, 1993.

[132] Yukio Matsumoto. An introduction to Morse theory, volume 208. American Mathematical
Soc., 2002.

[133] John M Franks. Morse-smale flows and homotopy theory. Topology, 18(3):199–215, 1979.

[134] Stephen Smale. On gradient dynamical systems. Annals of Mathematics, pages 199–206,
1961.

[135] John Willard Milnor, L Siebenmann, and J Sondow. Lectures on the h-cobordism theorem,
volume 390. Princeton University Press Princeton, NJ, 1965.

[136] Morris W Hirsch. Differential topology, volume 33. Springer Science; Business Media,
2012.

[137] Mikhail Grinberg. Gradient-like flows and self-indexing in stratified morse theory. Topol-
ogy, 44(1):175–202, 2005.

[138] David E Hurtubise. Three approaches to morse-bott homology. African Diaspora Journal
of Mathematics. New Series, 14(2):145–177, 2012.

[139] Edward Witten. Monopoles and four-manifolds. arXiv preprint hep-th/9411102, 1994.

[140] A. B. Zamolodchikov. Irreversibility of the Flux of the Renormalization Group in a 2D
Field Theory. JETP Lett., 43:730–732, 1986. [Pisma Zh. Eksp. Teor. Fiz.43,565(1986)].

[141] John L. Cardy. Is There a c Theorem in Four-Dimensions? Phys. Lett., B215:749–752,
1988.

[142] H Osborn. Derivation of a four dimensional c-theorem for renormaliseable quantum field
theories. Physics Letters B, 222(1):97–102, 1989.

[143] Jean-François Fortin, Benjamı́n Grinstein, and Andreas Stergiou. Limit cycles in four
dimensions. arXiv preprint arXiv:1206.2921, 2012.

167

[144] Zohar Komargodski and Adam Schwimmer. On renormalization group flows in four
dimensions. Journal of High Energy Physics, 2011(12):1–20, 2011.

[145] Edwin Barnes, Ken Intriligator, Brian Wecht, and Jason Wright. Evidence for the strongest
version of the 4d a-theorem via a-maximization along rg flows. Nuclear Physics B,
702(1):131–162, 2004.

168

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Scope of the Dissertation

	Data Science Fundamentals
	Common Terms
	What is Data?
	Preparing Data
	Curses

	What is Data Science?
	Typical Workflow
	Bias-Variance Tradeoff
	Ethics

	Algorithm Classes and Techniques
	Optimization
	Dimensionality Reduction
	Clustering
	Classification
	Topological Data Analysis

	Dimensionality Reduction on Congress
	Data
	Summary of Results
	Principal Component Analysis and Singular Value Decomposition
	Information Flow over Time
	Optimal Rank Flow over Time

	Summary
	Acknowledgements
	Additional Figures for Information and Dimension Flows

	Learned Persistent Homology
	Background
	Homology
	Persistent Homology

	Ambiguities in Persistence
	Data
	Learning Persistence
	Supervised Learning of Persistence
	Unsupervised Learning of Persistence

	Ambiguities in Persistence: Part Deux!
	Acknowledgements

	Learned Mappers
	Introduction
	What is Mapper?
	Mapper Algorithm

	Training and Testing Procedures
	Training Procedure
	Mapping Unseen Points to the Committee
	Splitting the Dataset

	Numerical Experiments and Results
	Main Results
	Mapper Committee Dimensions
	Description of Noise Models
	Architecture of the End Classifier
	Discussion

	Theoretical Results
	Proof of the MC Robustness

	Conclusion

	Conclusion and Future Directions
	Feature-Based Algorithm Selection for Mixed Integer Programming
	Introduction
	Mixed Integer Programming
	Algorithm Selection
	Related Work

	Method
	Description of Data
	Upper Bounds/Well-Defined Features

	Feature Analysis
	Pearson Correlation Coefficients
	Principal Component Analysis
	Multidimensional Scaling
	Feature Investigation Conclusions

	Algorithm Selection Methods
	AdaBoost
	Hydra
	Selecting a Portfolio vs selecting an algorithm
	Performance Metric

	Results
	Performance
	Primal-Dual Integrals as a Proxy for Time
	Software package

	Conclusion
	Extracted Features
	Static features
	Dynamic features
	Top features for M&C
	Top features for Regions

	Completion Codes

	Renormalization Group Flows and Morse Homology
	Introduction
	Background
	Classical Morse Theory
	Morse-Smale Homology
	Extensions to Morse Homology

	The c-theorems
	The d=2 c-theorem
	The even dimensional c-theorem
	The proposed even dimensional c-theorem
	The a-theorem

	Acknowledgements

	Explanations of Select Algorithms
	Bibliography

