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Abstract 
As data science comes to buildings, the promise of using machine learning and novel sources of 
data has received much attention. Advances in machine learning and computer vision algorithms, 
combined with increased access to unstructured data (e.g., images and text), have created an 
opportunity for automated extraction of building characteristics – cost-effectively, and at scale. 
Acquisition of features such as footprint are time consuming and costly to acquire with today’s 
manual methods, but can be streamlined through intelligent software-based solutions applied to 
satellite images. When combined with aerial RGB and thermal images, full 3D geometries and 
thermal maps can be constructed to determine additional characteristics such as window to wall 
ratio, height, number of stories and envelope thermal characteristics. In this paper we present 
three contributions to accelerate these high potential opportunities: (1) a methodical analysis of 
how these features can be integrated into today’s simulation and data driven software tools to 
enhance efficiency measure identification and owner/operator decision making; (2) development 
and accuracy testing of open source deep neural network methods to extract building footprints 
from satellite imagery, including the curation and application of openly available GIS datasets 
for training and continued development by others; and (3) an open framework for drone-based 
image capture and creation of 3D building geometries. This work represents an important bridge 
between high-level studies that span diverse application areas and those that detail point 
solutions yet cannot be easily replicated or extended. 

1. Introduction

In recent years advances in the performance of machine learning (ML) methods and
computer vision algorithms, combined with increased access to unstructured data (e.g., images 
and text), have considerably improved the ability to extract information from these types of data. 
They also have created an opportunity for automated extraction of building characteristics – cost 
effectively, and at scale. The promise of using ML and unstructured data to improve energy 
efficiency has received much attention. However, this promise is commonly presented at a high 
level, without methodical evaluation for specific application areas. One of the primary goals of 
this project is to provide a concrete assessment of how novel data sources combined with ML 
can be used to enhance efficiency measure identification in commercial buildings.  



State of the art energy efficiency analytics and modeling tools can provide valuable insights 
into efficiency opportunities. These tools provide a cost-effective and scalable way of identifying 
energy efficiency measures (Summers et al. 2013). With the ability to enable operational savings 
on the order of 5 to 10 percent (Granderson and Lin 2016), and to provide retrofit 
recommendations, they represent a key element in achieving the ambitious goal of reducing 
energy use per square foot of buildings. However prior research has shown that key barriers 
include relatively limited data sources (smart meters and weather being most common in 
commercial tools), or reliance upon user-provided inputs for which default values may be the 
fallback. The addition of unstructured data, enhanced by ML, have the potential to increase the 
accuracy and the adoption of these remote analysis and audit tools.  

The work presented in this paper aimed at identifying ways in which non-traditional data 
sources may be used to support identification of energy efficiency measures (EEM) and to 
improve existing EE tool inputs. In Section 2, we will summarize the performed opportunities 
analysis to apply ML for enhancing the exiting EE tools. This analysis has suggested that the 
most promising data sources to fulfill this goal are: satellite and aerial imagery data, drone based 
visible and thermal imagery data, cities/counties open data, and OpenStreetMap data. Thus, in 
Section 3 we will describe our exploratory findings on these data sources. From this 
investigation three data sources surfaced as the most promising in terms of data availability and 
ease of access. These three data sources will be used in our work for building geometry 
extraction using ML and computer vision. Section 4 presents the developed ML framework to 
extract the building footprint from satellite imagery and the computer vision algorithm to extract 
the building 3D geometry. 

2. Analysis of opportunities to apply machine-learning for enhanced energy
efficiency

While today’s analysis tools are effective and valuable, their outputs can be enhanced even 
further with contextual information that can be gathered from non-traditional data sources, e.g., 
age of the building, envelope characteristics, and presence of certain types of equipment. 
However, the promise of using machine learning and unstructured data to derive this information 
has not yet been methodically evaluated. We conducted an opportunity analysis that provides a 
concrete assessment that maps common efficiency measures to potentially relevant data sources, 
data sources to obtainable features (i.e. building characteristics), and features to the types of tools 
that they could be used to augment. 

Based on considerations of data availability, ease of access, and potential to enhance measure 
identification, the opportunity analysis suggested that the most promising data sources for this 
work was: satellite and aerial imagery data, drone based visible and thermal imagery data, 
city/county open data (e.g., buildings footprints GIS data, building permit data, property taxes 
data, Lidar data), and OpenStreetMap crowdsourced data. Table 1 connects these four data 
sources to the feature category identified by the opportunity analysis.  



Feature 
(Category) 

Use in Simulation Tools Use in Data-Driven Tools Data Sources 

Devices/Equipment 
Inventory 
(Equipment) 

Used to refine assumptions 
related to equipment (type, 
efficiency level) 

Used to refine assumptions 
related to equipment installed, 
exclude EEM (e.g., skylights 
already present), and quantify 
cost in the cost-benefit analysis 
(i.e., cost can be related to the 
number of units to be replaced) 

Aerial imagery 
Drone imagery 
Building permits 

Building Footprint 
(Envelope) 

Used to calibrate auto-
generated building models 

Can be used in combination 
with building external geometry 
to normalize energy savings for 
benchmarking with other 
buildings 

Building footprint data 
Aerial imagery 
Satellite imagery 
Drone imagery 
OpenStreetMap 

Building Vintage 
(Envelope) 

Used to refine the building 
vintage assumptions 

Used to infer the most likely 
type of envelope and equipment 

Property taxes data 
OpenStreetMap 

Building External 
Geometry 
(Envelope) 

Used to refine inputs related 
to the building envelope 

Used to identify the building, # 
of floors, and shading that may 
prioritize certain EEMs 

Aerial imagery 
Satellite imagery 
Drone imagery 

Building Envelope 
Characteristics 
(Envelope) 

Used to refine inputs related 
to the building envelope 

Used to assess the need for 
envelope measures, such as 
adding insulation or reducing 
leakage 

Aerial imagery 
Drone imagery 

Shading 
(Surroundings) 

Used to refine geometry 
modeling of building block 
simulations 

Used to evaluate the potential 
of using shading as an EEM 

Aerial imagery 
Drone imagery 

Building/Business 
Opening Hours 
(Occupancy) 

Used to refine inputs related 
to operating hours or number 
of occupants, and schedules 

Used in analysis to identify 
EEMs that impact scheduling of 
equipment and operation 

OpenStreetMap 

Building Use 
(Context) 

Used to select a reference 
model 

Used to exclude EEMs related 
to non-pertinent systems (e.g., 
process load in an office) or to 
have a better estimate of a sub-
system load 

OpenStreetMap 
Property taxes data 

Building Change 
Records 
(Context) 

Used to define equipment 
characteristics 

Used to identify whether 
systems have recently been 
updated or replaced. May 
exclude some EEMs 

Building permit data 

Table 1. Mapping features to EE tools and data sources 



3. Unstructured Data sources

Satellite and aerial imagery Data 
High resolution satellite and aerial imagery, which provide a vertical view of the earth, 

have been increasingly popular and widely used in several applications. Several recent studies 
(Demir et al. 2018; Gavankar and Ghosh 2018) have explored the use of these two types of 
imagery for automatic extraction of building footprints. The main difference (that is relevant to 
our work) between aerial and satellite images is the resolution. While most of the recent 
observation satellites can capture images of up to 30 centimeter (cm) resolution (i.e., 1 pixel = 
30 cm), it is possible to capture aerial images with a resolution of up to 7 cm. The higher 
resolution of the aerial images can also provide more information about a building’s rooftop 
equipment (e.g., detection of a cooling tower and/or packaged rooftop unit). Another advantage 
of the aerial imagery is that it can be captured as oblique imagery (i.e., captured at approximately 
45° with the ground), which allows users to analyze building façades. The oblique images can be 
used to detect/segment façade features (e.g., windows, doors) and estimate some of the building 
exterior characteristics (e.g., height, window to wall ratio).  

Several providers offer high resolution satellite or aerial images, either through an 
application programming interface (API) or a direct download. However, one of the biggest 
challenges of using data that can be collected from these imagery companies is the licensing 
agreement, which can tightly limit the type of analysis that we can perform on these datasets and 
on the eventuality of sharing the derivate works (e.g., extracting a footprint from aerial images). 
Several providers also allow free access to satellite and aerial imagery (e.g., Bing map, Google 
Maps, Mapbox), but they do not grant the user the right to download the images and to create 
derivative works based on them. Another potential source for gathering free aerial vertical 
imagery is cities’ open data portals. Cities such as New York City, Los Angeles, Portland, and 
Washington D.C. are regularly releasing high resolution aerial imagery through their open data 
platform. Note that to the best of our knowledge the only freely available aerial oblique imagery 
is the National Oceanic and Atmospheric Administration (NOAA) coastal oblique imagery, 
however this dataset is limited to the coastal cities of the United States. 

(Cities) Open Data 
An increasing number of U.S. cities are providing different public building datasets 

through an easy to access open data web portal. The three most relevant data sources that can 
provide relevant information about building characteristics are building footprint data, building 
permit data, and property tax (Assessor record) data. 

Building footprint data 
Building footprints are provided by several cities (e.g., San Francisco, Washington D.C., 

Boston, Los Angeles, Chicago, New York) through an open data portal. It is usually accessible 
via an API or direct download, and it is available as a geographic information system (GIS) data 



file. In some cases, the height and some type of building ID is also provided. Using some 
preexisting GIS tools, this type of dataset is generally easy to process. Note that although most of 
the explored cities regularly update these datasets, some cities only provide building footprint 
information that has not been updated for the last 5 to 10 years.  

Building permit data 
Building permit data also is provided by several cities (e.g., San Francisco, Washington 

D.C., Boston, Los Angeles, Chicago, New York) through their open data portals. Accessible via
an API or direct download, it comes as tabular data, mostly as JSON or CSV files. Each permit is
usually georeferenced either by the postal address and/or by the geolocation (i.e., latitude and
longitude). This type of dataset is the most challenging to process because they lack of
uniformity and semantic standardization in the permits description. In addition, some cities
provide a direct access for several years of permits in one unique dataset, while others will store
the information in multiple files, sometimes changing the semantic in the description and the
type of information that is provided from one year to another. The buildings features that can be
extracted from this type of datasets are: building change records and building use.

Property tax (Assessor record) data 
Several cities (e.g., San Francisco, New York, Boston and Baltimore) provide this type of 

dataset openly, but it is more challenging to obtain in comparison to the previous two datasets. 
However, when available, it provides information on several building features such as: floor 
area, vintage, number of stories, number of dwellings, and type of use. As with building permit 
data, this type of dataset is shared as tabular data, where each building is georeferenced using the 
postal address and/or by its geolocation (i.e., latitude and longitude). 

OpenStreetMap 
OpenStreetMap (OSM) is currently the largest openly licensed database of geospatial 

data (i.e., GIS data). It is a global dataset that is a collaborative product (i.e., crowd sourced data) 
created mainly by more than one million volunteers who have contributed to editing the database 
content (OSM Wiki: Stats 2019). It includes different types of GIS information, such as road 
infrastructure and built environment, and it is used in many projects as an alternative to 
proprietary or authoritative data. While the crowd sourced aspect of OSM has been a key to its 
success, the low number of volunteers with professional GIS experience has raised significant 
concerns about its accuracy. Several studies (Schiefelbein et al. 2019; Brovelli and Zamboni 
2018) have performed an assessment of OSM spatial accuracy and completeness of buildings 
footprints. However, because all these studies have focused their analysis on very limited 
geographical regions it is not reliable enough to extrapolate a general conclusion regarding the 
quality of OSM in terms of building footprint.  

We conducted on a sample of U.S. cities a qualitative analysis of the OSM data accuracy 
and availability regarding building footprints and other building characteristics relevant to this 



project. Our findings show that the quality and availability vary significantly, depending on the 
city considered, and that this variability is highly correlated to whether or not the city’s 
authorities have made the building footprint openly available. For example, the quality, and more 
specifically the completeness, of the OSM data for the City of Las Vegas is very low, and to the 
best of our knowledge the city’s authorities do not openly provide complete building footprint 
GIS data. Figure 1 shows an example of a comparison between the OSM map and the satellite 
image (captured from a Google map) of specific region in Las Vegas. The OSM data has a very 
limited building footprint information.  

Figure 1. Left: an OSM map from a specific region in Las Vegas; Right: a satellite image from the same 
image taken from Google map. 

Note that, in addition to the building footprint, the OSM database can provide additional 
information regarding building characteristics, such as: building height, type of building use, 
operation hours for some commercial buildings, and building vintage. However, our analysis has 
shown that only a very limited number of buildings have this information available.  

Drone imagery data 
In the past decade, the rapid advances in drone technologies (e.g., aeronautics, sensing, 

autonomous navigation systems) have made these systems more reliable, easier to operate, and 
significantly cheaper, which has resulted in an exponential growth of their use for monitoring 
building construction and operation. A drone system can easily and quickly capture a large 
number of images of buildings from different angles, and particularly can facilitate the inspection 
of areas that are hard to reach without compromising operator safety. Combined with an RGB 
camera and a thermal camera, as well as with advanced computer vision tools, the drone system 
presents an opportunity to streamline the building energy auditing process by analyzing 
buildings’ envelopes efficiently and accurately at a reduced operational cost in comparison to a 
more traditional energy auditing process (Rakha and Gorodetsky 2018). In comparison to 3D 
building geometry information that is available through city and county open data portals, or that 
can be extracted using satellite/aerial imagery or Lidar data, drone-based approaches can produce 
higher resolution information, enabling more accurate estimation of building geometrical 
characteristics (e.g., footprint, height, window to wall ratio). In addition, the use of thermal 
cameras can provide insights into the building envelope that none of the other data sources can 
offer. 



To define the specifications of the drone system that we have used in our data acquisition, 
the following list of criteria has been used: 

• Type of sites where data will be acquired: individual buildings and clusters of
buildings (e.g., a block of buildings or a neighborhood)

• Type of information that will be extracted: 3D building model generation, façade and
roof segmentation (e.g., detection of windows, doors) and thermal leakages detection

The selected drone system is composed from a quadcopter drone, which has some advantages 
in comparison to other drone types (e.g., fixed wing, helicopter). The main advantages are that a 
quadcopter can hover and is able to fly very slowly, which are two characteristic that can be 
important for obtaining high resolution images, especially from building façades. Other 
advantages of this type of drone are the low cost in terms of purchase price, operation and 
maintenance; very flexible operation, especially in cities (i.e., they do not require a large area to 
take off and land); and relative ease to control in autonomous and manual pilot modes. The 
selected drone also has dual gimbals that enable it to operate the RGB and the thermal camera 
simultaneously. The RGB camera is a high-resolution camera (20.8 megapixels) that can be used 
in still (capturing static pictures) or video mode. This system has also been paired with a high 
resolution (640 × 512) Radiometric thermal camera that has an infrared sensor, which can spot 
pixel temperature with relatively good precision (Al Lafi 2017). 

4. Feature extraction using machine learning and computer vision approaches

The previous section presented the investigation, which was based on the availability, quality
and potential impact of the features that can be extracted from different data sources that 
emerged from the opportunity analysis. Nevertheless, three sources surfaced as most promising, 
and those were used in our work for feature extraction using machine learning and computer 
vision. These three data sources are (1) satellite/aerial images, (2) building footprint GIS data 
and (3) drone-based visible and thermal images. Their strengths are shown below. 

• Satellite/aerial images
- These images are highly available because several providers can provide access to

images that cover most major U.S. cities.
- They offer a high potential to scale because of the high coverage of these data

sources and the potential to automate feature extraction via ML and computer
vision algorithms.

- Several sources of openly available data exist that can be used for R&D.
• Building footprint GIS data

- These data are openly available for many U.S. cities and are relatively easy to
extract and process.

- Combined with satellite/aerial images and ML, this source can provide a large



labeled dataset that can be leveraged to build accurate models to extract building 
footprints of U.S. regions where GIS footprint data are not available. 

• Drone-based visible and thermal images
- These high-resolution images (up to 10 times higher than satellite images) can be

captured easily, quickly and relatively cost-effectively.
- They offer a high potential to use thermal data to assess building envelope

characteristics.
- These images can facilitate inspection of areas that are hard to reach, without

compromising safety.

In the following sections we will present the ongoing work on the building geometrical 
features extraction from the selected data sources using ML and computer vision approaches. 

4.1 ML-based satellite/aerial image feature extraction 

In recent years advances in the performance of ML methods have considerably improved the 
ability to accurately extract information from images. Identification of building footprints from 
satellite/aerial imagery is an example of an application that is time consuming and costly to 
perform manually, and where automatic feature extraction holds great promise. This application 
has therefore triggered several attempts to develop ML based solutions. These prior works 
(USBuildingFootprints 2018, Van Etten et al. 2018; Maggiori et al. 2017), however, are limited 
in that the data and models are either not available for use by others or are too limited for 
development of generalized solutions. A major contribution of this project is the provision of an 
open and replicable solution for building feature extraction from satellite/aerial images. The 
majority of these prior research efforts have framed the challenge as a semantic segmentation 
problem, which is a computer vision task that partitions the image into semantically meaningful 
predefined classes. In other words, each pixel of the image is assigned a class.  

Recently, Microsoft (USBuildingFootprints 2018) published building footprints for all 
buildings in the United States. These footprints were generated from aerial/satellite images using 
a deep learning based semantic segmentation approach. While the Microsoft dataset provides the 
building footprint GIS data, it does not make available the images that were used to train the 
model. Moreover, only a limited description of the model and the training process is provided. 
Since the quality of the footprint information is somewhat limited, and the data represents a 
snapshot in time of the building stock, it is useful (but not possible with the information 
Microsoft has released) to be able to both replicate and improve upon the current footprint 
inventory. In addition to the Microsoft work, several benchmark datasets include both 
aerial/satellite images and building footprints (manually labeled) (Van Etten et al. 2018; 
Maggiori et al. 2017). However, these datasets are limited to a small number of U.S. cities, 
making it difficult to use them to develop a model that can be generalized to the entire 
U.S. territory.  



In this project, we initiated the development of a replicable workflow to extract building 
footprints from satellite/aerial images using a state of the art deep learning image segmentation 
algorithm. This workflow is composed of three modules: 

• A data preparation module, which aims to generate training data with a very limited
manual effort using openly available data sources:

- Automatic generation of training features masks by querying city/county
footprint GIS open data

- Automatic extraction of satellite/aerial tiles using Mapbox. These tiles cover
the geographical areas that are available from the city/county footprint GIS
open data

• Deep learning modeling, which aims to establish an easy modeling pipeline to
reproduce the analysis and test new deep learning architectures:

- Standardized training pipeline
- A state of the art fully convolutional neural network architecture models (i.e.,

DeeplabV3+)
• A postprocessing of model results module, which aims to generate results that are

easily transformable into data formats that are compatible with required inputs to
existing measure-identification tools:

- Prediction cleaning (i.e., removal of noisy prediction)
- Prediction transformation (i.e., convert predictions that are pixel-based masks

into polygons with geographic coordinates)

Application of the workflow 

Data capture and preparation 
To date, we have collected building footprint GIS data from 14 cities and 6 counties, with 

the total dataset covering 8,607,677 buildings. For each GIS building footprint dataset collected, 
we created a list of tile coordinates that cover the specific region. These coordinates follow the 
Mapbox Raster Tiles API default format, which is the slippy maps (OSM Wiki: Slippy map 
2020) standard that defines each tile by the zoom level, which defines the resolution and the tile 
coordinates. Satellite images were collected from the satellite layer of the Mapbox Maps 
(Mapbox 2019), which provides high resolution satellite images. This imagery data is a 
compilation of several commercial and open data sources, and is color-corrected and stored in 
raster format, which is a pixel-based data format “that efficiently represent continuous surfaces” 
(Mapbox 2019). These satellite images can be retrieved relatively easily using the Mapbox 
Raster Tiles API. The zoom level that was considered in this work was 19. This level was chosen 
based on an empirical analysis that tested several zoom levels in the machine learning pipeline 
and compared the accuracy of the results on a very limited dataset. The total number of images 
collected at zoom level 19 that cover geographical regions for which building footprints are 



available is 2,432,019. The corresponding feature mask images, which are the representation of 
the buildings footprints that are contained in the corresponding satellite images, were produced 
by reformatting the GIS files into binary images. Note that the feature mask images have the 
same resolution as the satellite image tiles. To avoid overlapping masks between adjacent 
buildings, we decreased the size of the footprint polygons by a factor of ~8%, in terms of surface 
area. 

Figure 2. Illustration of the data preparation process 

The full dataset is divided into three samples to be used for training, validation and 
testing (see Figure 2). Each sample contains pairs of a feature mask image and a satellite image 
that were randomly selected. The training dataset has ~60 percent of the total number of pairs (n 
= 1.5M pairs), the validation dataset has ~ 20 percent (n = .45M pairs) and the test dataset also 
has ~20 percent (n = .45M). 

Deep learning model tuning and training 
In this step of the process, deep learning model hyperparameters are tuned. Data from the 

training sample are used to fit the models using different combination of hyperparameters. The 
models are then used to predict footprints from the validation sample. The model-
hyperparameter combination(s) that exhibit the best performance can then be evaluated for 
overall accuracy using data from the testing sample. In the general case supported in this 
workflow, any model can be explored. In the work conducted specifically for this project, we 
have explored deep convolutional neural networks that are deployed in fully convolutional 
fashion – that is, the neural networks are composed only of convolutional layers and do not 
contain fully connected layers (i.e., all the output neurons are connected to all input neurons) just 
before the output. This type of neural network architecture has been shown to be very effective 
for semantic segmentation because they tend to learn spatial information.  

We experimented with state of the art fully convolutional neural network model Deeplab 
V3+ (Chen et al. 2018). Given computational run-time constraints, a limited portion (i.e., ~5 %) 
of the training and validation samples were used for model tuning. The hyperparameters 
considered were: optimization algorithms, learning rate, learning rate decay strategies, loss 
functions, and data augmentation strategies. Even with the high-performance graphics processing 
unit (GPU) that was used, each assessment (i.e., one configuration of hyperparameters) took 
several days of computation. The top performing combination of hyperparameters (see AutoBFE 



2019) was used to train a model on the full dataset using multi-GPU high performance 
computers. 

Postprocessing the predictions 
The final step in the workflow is the postprocessing. The prediction masks that are 

produced using the neural network model need to be transformed to become meaningful 
footprint features that can be input into existing measure identification analysis tools. This 
requires the use of image processing algorithms such as morphological operation (to remove 
noise in the prediction mask), contouring, and polygonization (to generate GIS polygons from 
the pixel-based mask). 

Accuracy assessment process 
The accuracy of the trained Deeplab V3+ model is measured using the F1 score (F1), the 

precision and the recall. These metrics are based on pixel predicted values represented by the 
total number of true positive (TP), false positive (FP) and false negative (FN), which are 
computed using the number of pixels classified as buildings in the predicted masks and in the 
ground truth masks. Thus: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
	(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
	(2) 

𝐹1 = 	
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
= 2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

	(3) 

To assess the accuracy, we performed two analyses. The first one used the test sample of 
~.45M satellite images that was previously generated by randomly selecting 20 percent of the 
whole dataset. The results of this analysis are shown in Table 2. 

Table 2. Summary of accuracy results using the test sample 
Precision Recall F1 score 

Test sample 0.91 0.89 .90 

The second analysis was performed by using the trained Deeplab V3+ model to make a 
prediction for a small region of Manhattan in New York City (i.e., a very dense urban area of 
about 8,000 buildings). This analysis was performed to assess the quality of the prediction in 
comparison to the footprints recently released by Microsoft. Table 3 summarizes the accuracy 
metrics computed using our predicted footprints and the footprints provided by Microsoft. Note 
that the metrics have been computed using as ground truth the footprints gathered from NY city 
open data web portal. For this particular test our predictions, in comparison to the predictions 
provided by Microsoft, produced better results in terms of Recall and F1 score, which means our 



approach had a higher rate of correctly classifying pixels that correspond to a building footprint. 
Note that the higher precision metric for Microsoft data means our approach has a higher rate of 
false positives among the pixels that were classified as buildings. 

Table 3. Summary of accuracy results 
Precision Recall F1 score 

Trained Deeplab V3+ 0.89 0.96 0.92 
Microsoft 0.93 0.83 0.88 

Figure 3 shows two examples of the difference in prediction between our approach and 
the footprints provided by Microsoft. The Microsoft footprint did not detect two adjacent 
buildings as being separate, while our approach performed better in this task. However, this is 
not always the case, as shown in example 2. In many situations our model also failed to find the 
separation between two adjacent buildings, and this can be due to many reasons (e.g., complex 
roof structure, shading, vegetation). 

Satellite image (example 1) Actual mask (example 1) Microsoft mask (example 1) Prediction mask (example 1) 

Satellite image (example 2) Actual mask (example 2) Microsoft mask (example 2) Prediction mask (example 2) 

Figure 3. Two examples of prediction results with a comparison to Microsoft building footprints dataset and 
the ground truth 

4.2 Computer vision approach to extract building 3D geometry from drone images 

In this section we present the drone-based data capture process and the method developed to 
extract building 3D geometry from drone RGB images (for more details see WuDunn et al. 
2020). To describe this, a case study of an abandoned Naval Air Station office building is used. 
This building is located in Alameda, California. 



Flight Procedure 
The drone flight was planned so the drone would fly roughly 20 to 30 feet above the 

building, with a camera angle of 45◦ below the horizontal. To facilitate the 3D reconstruction of 
a building, each of its parts must appear in several images taken at different angles. Therefore, 
images were captured so that successive images have a 90 percent side overlap. The drone flight 
paths were a series of overlapping circles, as shown in Figure 4. This ensures that images taken 
are sufficiently close to the building, to allow a good reconstruction.  

Photogrammetry 
The set of overlapping 2D RGB images captured by the drone system are processed using 

a photogrammetry software (i.e., Pix4D), which generates a set of data points in 3D space 
(Figure 5. This is achieved by recognizing the image content and finding tie points between 
images. This set of data points in a 3D space is called a point cloud. Pix4D (Pix4D 2019) uses a 
fully automated process to achieve accurate 3D reconstruction based on the 2D image sets. 

Figure 4. Position of the drone during the data 
capture 

Figure 5. 3D point clouds 

Projection of the 3D point clouds into a 2D space 
After the point cloud is extracted, the points in the cloud are projected into a 2D grid 

(top-down view), with a resolution of 0.1meter (m). This permits a count of the number of points 
in a 0.1m x 0.1m area. This can be visualized in Figure 6, with the white areas indicating a cell 
with a higher point count. Note that the walls of the building are clearly visible in the image, as 
each wall has a very high point density when viewed from the top down. 

Figure 6. 2D projection of the 3D point cloud 

Line Detection and poligonization 
We apply the Hough Transform to the resulting grid (i.e., 2D projection). This is a well-

known method for detecting lines in an image, by converting an image to “Hough space.” First 



note that a line can be represented by two parameters in 2D space: an angle (rotation) of a 
horizontal line passing through the origin, and an offset from the origin. A Hough space is an 
NxM matrix where each entry represents a possible line. The rows represent all possible 
distances of a line from the origin, and the columns represent all possible angles (from -180° to 
180°). The scalar value of the entries represents the total number of points that the line passes 
through. By applying the Hough Transform, and finding peaks in the resulting matrix, we can 
extract lines in the 2D projection. We further refine the lines by applying a developed algorithm 
that processes the lines and extracts the segments that likely correspond to walls (Figure 7). Once 
the line segments have been extracted, polygons are constructed. As the line extraction process 
has various limitations and likely either misses a wall or does not extract the full line segment 
corresponding to a wall, we have developed an algorithm that completes the polygons by taking 
a set of edges that would nearly form a polygon, and fill in the gaps (Figure 8). Note that the fifth 
wing on the left of Figure 7 and Figure 8 was not considered during the polygonization step 
because of the missing walls in the point cloud, which is due to the fact that we only targeted the 
four right wings of the building when we defined our flight path.   

Figure 7. Lines segments that are likely walls Figure 8. Resulting polygonization 

Merging polygons and height estimation 
Once all the polygons have been completed, we recursively merge adjacent polygons if 

they are close together in (average) height. To compute the average height of the polygon, we 
compute the average height of the points (from the 3D points cloud) in each cell, and then 
average the heights of the cells. This essentially “spreads out” the height computation across the 
full area of the polygon, minimizing the effects of objects that may lie on top of the roof. We 
consider two polygons to be close together if they lie within 0.5 meters of each other. To do so, 
we can simply iterate through each edge that is used in two polygons and check their heights. 
After merging two polygons, we update the height of the merged polygon by simply performing 
a weighted average of the average heights of the two polygons, where the weighting factor is just 
the number of cells that lie within a polygon. The merged polygons are shown in Figure 9, and 
the resulting heatmap of the heights of the merged polygons is shown in Figure 10.  

Figure 9. Resulting polygons after the merge 
process Figure 10. Heatmap of the heights of merged 

polygons 



5. Conclusion and future work

In our initial work we selected three data sources that were determined to be the most
promising sources in term of data availability, quality and the potential uses of the features that 
can be extracted. Using the satellite imagery and openly available footprint GIS data, we 
developed and applied an ML workflow to extract the building footprint. By developing this 
workflow and making it openly available (AutoBFE 2019), we are providing a toolbox that 
allows others to easily reproduce our approach, that offers transparency in modeling solutions, 
and that facilitates continuous improvement via incorporation of alternative deep learning 
algorithms and/or expansion of the training data (e.g., adding more cities into the training 
dataset). Our preliminary analysis using data gathered from 14 cities and 6 counties have shown 
promising results in comparison, with existing work (i.e., Microsoft’s building footprint results). 
We also developed a computer vision-based building footprint extraction algorithm that uses as 
an input points cloud generated by photogrammetry from drone imagery. This algorithm also 
provides an estimation of buildings heights, which enable users to extract the 3D geometry of the 
building. 

Building upon the work presented in this paper, we are improving the postprocessing 
module of the building footprint extraction ML tool (i.e., tuning some postprocessing 
hyperparameters). We will also explore the potential improvement of the model accuracy by 
using higher resolution aerial data combined with Lidar data. In addition, we are developing a 
machine learning method to estimate window to wall ratio using drone imagery, as well as 
designing a pipeline to capture thermal imagery and extract thermal features. 
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