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Matching diverse feedstocks to conversion processes 
for the future bioeconomy 
Corinne D Scown1,2,3,4, Nawa R Baral1,2, Deepti Tanjore2,5 and  
Vi Rapp6   

A wide variety of wasted or underutilized organic feedstocks 
can be leveraged to build a sustainable bioeconomy, ranging 
from crop residues to food processor residues and municipal 
wastes. Leveraging these feedstocks is both high-risk and 
high-reward. Converting mixed, variable, and/or highly 
contaminated feedstocks can pose engineering and 
economic challenges. However, converting these materials to 
fuels and chemicals can divert waste from landfills, reduce 
fugitive methane emissions, and enable more responsible 
forest management to reduce the frequency and severity of 
wildfires. Historically, low-value components, including ash 
and lignin, are poised to become valuable coproducts 
capable of supplementing cement and valuable chemicals. 
Here, we evaluate the challenges and opportunities 
associated with converting a range of feedstocks to 
renewable fuels and chemicals. 
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Introduction 
The bioeconomy is poised to play a substantial role in 
deep decarbonization and the transition away from 
fossil-based fuels and products. Bio-based aviation fuels 
remain the most viable option for decarbonizing air 
travel and recent investments in alcohol-to-jet, hydro-
processing, and thermochemical processing routes sug-
gest that rapid growth is possible, if not probable, in the 
next few decades [1]. Biomanufacturing promises to 
produce a wide array of drop-in replacements and bio- 
advantaged alternatives to conventional petrochemical 
products and fuels, which will be particularly essential to 
ensure an even drawdown of reliance on both fuels and 
products from the oil and gas industry. There has also 
been an increasing interest in the use of biomass for 
carbon removal and storage, typically relying on ther-
mochemical pathways such as pyrolysis and gasification 
combined with capture and sequestration of CO2 [2]. All 
of these industries will require substantial quantities of 
bio-based feedstocks. In a follow-up to the United States 
(U.S.) White House’s Executive Order 14081, a set of 
goals for harnessing biotechnology and biomanu-
facturing were established, one of which is to collect and 
process 1.2 billion metric tons of feedstocks within 20 
years [3]. This ambitious goal will necessitate the de-
velopment of processes capable of converting a wide 
variety of organic materials, ideally prioritizing beneficial 
use of waste streams and other products with little or no 
land-use impacts. 

Studies focused on large-scale decarbonization and 
carbon removal strategies typically treat all organic 
feedstocks as interchangeable and functionally equiva-
lent on a mass basis. The proliferation of techno-eco-
nomic analyses, some of which are based on idealized 
production systems that have been simulated in software 
but not yet demonstrated, can inadvertently give the 
impression that high yields and minimal costs are pos-
sible even with very-contaminated feedstocks. However, 
there is ongoing research specifically devoted to ad-
dressing feedstock-specific challenges in bioprocessing, 
such as the U.S. Department of Energy-sponsored 
Feedstock-Conversion Interface Consortium [4]. Here, 
we review recent work on the conversion of a wide 
variety of organic feedstocks to renewable fuels and 
products and highlight the challenges and opportunities 
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associated with different feedstock-conversion pairing 
strategies. 

Biomass feedstocks for biochemical 
conversion to fuels and chemicals 
There are a wide variety of potential feedstocks avail-
able for conversion to biofuels and bioproducts (see  
Table 1). The total availability, moisture content, com-
position, and physical properties all factor into de-
termining the best use(s) for these materials. Some, such 
as crop residues and organic wastes, are already pro-
duced but have not yet been collected and converted at 
meaningful scales. Other feedstocks are purpose-grown 
and would require large-scale adoption by farmers to 
enable their use in commercial biorefineries. Diversi-
fying feedstock supply for individual facilities is one way 
that companies can mitigate supply chain risks [5], but 
utilizing a mixture of multiple feedstocks, particularly if 
the relative quantities vary, presents practical chal-
lenges. There are two primary categories of feedstock- 
specific processing considerations that arise, although 
they can share some common root causes: 1) mechanical 
properties, which have been reviewed in a recent article 
by Yan et al. [6] and 2) composition (including moisture 
content and inorganic contamination), which will be the 
primary focus of this review. 

As of 2023, all available data suggest that corn stover is 
the single most widely produced crop residue in the 
United States [7–9]. Corn stover is amenable to a range 
of deconstruction processes [10], although its true 
availability is impacted by hesitance on the part of some 
farmers to allow stover removal from their fields [11]. 
Sugarcane bagasse, unlike corn stover, is readily avail-
able because it is a by-product of the sugarcane juice 
extraction step and commercial-scale bagasse-to-ethanol 
conversion is now occurring in Brazil [12]. The primary 
challenge associated with converting these commonly 
used biomass feedstocks is largely centered around the 
severity of the pretreatment process, often gauged by 
temperature; harsh conditions that produce high-sugar 
yields can also generate furfural, hydroxymethylfurfural 
(HMF), acetic acid, and phenolic compounds [12]. Acid- 
based pretreatment processes, while relatively low-cost, 
are the most problematic in terms of forming inhibitors, 
whose effects on downstream conversion will vary by 
microbial host [13,14]. Teramoto et al. used biomass that 
had undergone dilute-acid pretreatment at 160°C [13]. 
Steam explosion can also form these compounds, but at 
lower concentrations; Caporusso et al. noted that 5- 
HMF, furfural, acetic acid, and lignin-derived com-
pounds produced during steam explosion at 203°C of 
wheat straw all negatively impacted yeast growth for 
downstream lipid production [15]. One option for ad-
dressing inhibitors is to select pretreatment processes 
known to generate less of them, in large part because 
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they can operate at lower temperatures: deacetylation 
and mechanical refining pretreatment (80–92°C) and 
ionic liquid pretreatment (up to 160°C) are two ex-
amples [16,17]. Alternatively, researchers have at-
tempted to address the presence of inhibitors by either 
selecting HMF/furfural-tolerant microbial strains or 
adding detoxification strategies to the process [18,19]. 
Llano et al. used multicriteria analysis to explore dif-
ferent detoxification approaches, specifically targeting 
furan derivatives, phenolic compounds, and weak acids  
[20]. Unlike biochemical routes, thermochemical pro-
cesses can increase operating temperatures to overcome 
some feedstock compositional variations (Box 1). 

Even uncontaminated, single-source biomass feedstocks 
do pose challenges in bioprocessing based on their 
composition. Ash content can be inherent to the biomass 
and can also be introduced when harvesting practices 
disturb the soil and entrain it into baled biomass, thus 
introducing sand and other incombustible materials into 
the feedstock [21]. Although high-ash content is un-
desirable in bioprocessing — it translates to larger 
quantities of nonbioavailable material occupying space 
in pretreatment and bioconversion reactors and may 
cause corrosion issues — silica-rich feedstocks do offer 
the possibility of coproducing pozzolanic materials to 
decarbonize the cement industry by displacing the need 
for carbon-intensive portland cement. Rice straw ash, 
corn stalk ash, wheat straw ash, and forest residue ash are 
the four feedstocks with the largest global potential to 
yield secondary cementitious materials [22]. However, 
enabling coproduction of secondary cementitious mate-
rials would require combustion of residual solids at high 
temperatures following any biological conversion process 
because the silica is not reactive unless it is amorphous, 
or glassy. 

Lignin as a feedstock 
Much like high-ash feedstocks, high-lignin feedstocks 
have long been considered undesirable for biochemical 
processes because they are more recalcitrant to decon-
struction. Because cost-effectively converting lignin to 
products or bioavailable intermediates is challenging  
[23], residual solids are typically combusted for heat 
and power [24]. Lignin content in woody and herbac-
eous feedstocks can vary considerably, from 10% or less 
in low-lignin forage sorghum to more than 30% in some 
woody feedstocks [25,26]. There is continued progress 
in the development of conversion routes for lignin-de-
rived intermediate compounds, such as phenol, to 
adipic acid [27] and other salable products. Much of the 
published work focused on biological conversion still 
relies on proxy compounds because lignin depolymer-
ization can result in complex mixtures that are difficult 
to characterize and contain compounds toxic to micro-
bial hosts. Ultimately, research is progressing along 
several paths: a ‘biological funneling’ approach in which 
hosts are capable of utilizing a wide variety of lignin- 
derived compounds to produce aromatic platform che-
micals [28] and a ‘lignin first’ chemical conversion ap-
proach in which lignin is separated and valorized [29]. 
This is not yet evidence to suggest that either of these 
approaches has become sufficiently efficient to ad-
vantage high-lignin feedstocks over lower-lignin feed-
stocks, provided both are available at comparable 
delivered prices. 

Organic wastes for bioprocessing 
Compared to purpose-grown feedstocks and even many 
crop residues, the attractiveness of utilizing organic 
wastes is undeniable: they are currently available, may 
be acquired at low cost or negative cost if producers are 
willing to pay for its removal, and are not subject to the 

Box 1  

Impacts of composition on thermochemical conversion 

Unlike biochemical conversion routes, thermochemical conversion routes can use more severe processing conditions (namely higher tempera-
tures) to overcome feedstock heterogeneity at the expense of efficiency. Gasification and pyrolysis can both be leveraged to produce liquid fuels or 
the processes can be designed with the goal of maximizing carbon dioxide removal, in the form of injectable CO2 (with H2 as the main energy 
product), char, and/or pyrolysis oil for sequestration [69]. Such approaches can be particularly helpful in reducing the mass of residual-mixed 
organics, such as sludge, that cannot be beneficially converted nor land-applied [70]. For these thermochemical processes, minimizing moisture 
content of the incoming feedstock is crucial, given water’s high latent heat of vaporization. Many of the other compositional issues discussed in 
this review may be addressed with engineered solutions, but processing feedstocks that are highly variable in composition and size adds further 
challenges. For example, a recent study by Lestander et al. explored the gasification of single components of spruce trees versus gasifying a 
mixture of stem wood, bark, branches, and needles. They found that even mixing parts of the same wood type could reduce the cold gas efficiency 
by more than 6% [71]. To avoid tars, fouling, and ash during the thermochemical conversion process, feedstocks should ideally have low mineral 
content and low-moisture content (less than 30%, see Figure 1) [72–74]. Additionally, feedstock shape, size, and density can impact char formation 
during the conversion process [74]. Organic wastes that contain a wider variety of plastic, paints, and other contamination present additional 
challenges. Processing chlorinated compounds, such as those originating from polyvinyl chloride (PVC) plastics and chloroprene (PCP), may be 
problematic depending on the reactor design, conditions, and level of preprocessing. Some chlorine-containing wastes can form HCl, posing 
corrosion concerns [75,76].   
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land-use concerns associated with dedicated crops. 
Additionally, some waste feedstocks have negative en-
vironmental impacts associated with their disposal, such 
as landfill methane emissions, so diverting them to 
biorefineries can yield considerable emission avoidance 
benefits (see Table 1). In other cases, the term ‘waste’ 
may be a misnomer. The uses of different organic wastes 
fall into a continuum between negative or very low-value 
fates to higher-value applications. Clean organic waste 
streams are often used in comparatively high-value ap-
plications. For example, almond hulls can be valuable 
animal feed, but if they absorb too much moisture 
during storage, both shells and hulls become a waste 
product in need of combustion or landfilling and would 
instead benefit from conversion to biofuels/bioproducts  
[58]. Some fats, oils, and greases (FOG) are used as 
animal feed supplements, while others serve as very 
attractive feedstocks for anaerobic digesters to boost 
biogas yield [59]. Brown grease (trap grease), conversely, 
can be contaminated with heavy metals and pathogens 
and does have a lower (or negative) value because it 
must be hauled away and treated as septage [60]. Thus, 
diverting brown grease for the production of biofuels 
and/or bioproducts (e.g. hydroprocessed esters and fatty 
acids) will have little-to-no opportunity cost [61]. 

Unlike separately collected wastes such as FOG, the 
composition of municipal wastes and the business-as- 
usual management can vary depending on the level of 
source-separation implemented in each city. Even in 
municipalities that do not compost other materials, 
yard waste is typically collected separately and sent for 
composting. Yard waste is not generally used for high- 
value applications but is an attractive input for com-
posting facilities because of its low levels of inorganic 
contamination and minimal odor [62]. Mixed waste 
streams that include food and other municipal organics 
are more likely to be landfilled because they are un-
suitable for animal feed and are similarly undesirable 
for composting facilities. This means facilities may 
receive mixed waste streams at little or no cost, or in 
some cases, they may even be paid to accept the ma-
terial. For example, Smith et al. reported on the tip-
ping fee structure for an anaerobic digestion facility in 
San Jose, California, where higher fractions of in-
organic contamination corresponded to higher tipping 
fees paid to the facility to offset the cost of removing 
and landfilling the contaminants [63]. These materials 
can be deconstructed to yield sugars for bioconversion, 
as paper products (cellulose) make up a large fraction 
of the organic stream. Most research on conversion to 
biofuels has focused on blending municipal organics 
with cleaner feedstocks, such as crop residues [50], in 
part because the rheological properties of a 100% 
municipal organics stream make conversion challen-
ging. These high-moisture wastes (see Figure 1) do 
come with a substantial downside. Unlike dry biomass, 

which can be stored for months, regulations often limit 
the time facilities can store new high-moisture waste 
shipments before processing. For example, waste at 
the anaerobic digestion facility analyzed in Smith et al. 
cannot be stored for more than 48 hours before being 
loaded into a digester [63]. Although these storage 
regulations minimize fugitive methane emissions, 
odor, and pests, they can increase costs if equipment 
must be sized to ensure adequate throughput of ma-
terial. 

Contamination in municipal waste streams (see Figure 1), 
which often comes in the form of plastic waste, adds cost 
at conversion facilities. Brown et al. developed cost esti-
mates for different decontamination strategies, all of 
which were below the target cost of $30/dry ton [48]. The 
impact on the cost per unit output from a conversion fa-
cility will be highly dependent on scale; many of the 
strategies for decontaminating feedstock involve equip-
ment purchases that can increase the capital ex-
penditures, particularly for smaller facilities. However, 
smaller decentralized facilities do have the advantage of 
tailoring preprocessing for a single locally sourced feed-
stock in some cases (Box 2). Decontamination processes 
also result in some losses. Press extrusion, for example, is 
a popular method for separating organic waste from plastic 
and metals, which involves forcing high-moisture waste at 
high pressure into a chamber with holes, leaving fibrous 
and other dry materials for separation and disposal [64]. 

Construction and demolition (C&D) wood waste, in 
contrast with mixed municipal organics, is relatively 
low-moisture and consequently is not subject to si-
milar regulatory limits on storage duration. The fate 
of wood C&D waste is not well-documented at a U.S. 
national or global level, but estimates for California 
suggest that nearly 90% is landfilled and the re-
mainder is combusted as fuel or reused [65]. As with 
other woody biomass, it can be deconstructed to su-
gars and lignin. The utilization of waste from C&D 
for production of fuels and/or chemicals appears to be 
mostly theoretical to-date, explored through mod-
eling studies [66]. However, there is at least one re-
cent study exploring gasification of construction 
wood waste in Brazil [67]. Inorganic contamination is 
likely to be a major challenge, particularly if nails and 
other items risk damage to equipment. Resins, 
paints, and other chemicals present may also impact 
conversion processes, particularly if they are toxic to 
host microbes. The degree to which C&D waste can 
be feasibly converted in commercial-scale biofuel or 
biochemical production facilities is still worthy of 
further exploration. There is intense interest in 
leveraging building materials as a mechanism for 
carbon sequestration [68] and the end-of-life fate of 
biogenic materials remains a limiting factor in the 
duration of carbon storage. 

Diverse Feedstocks for the Future Bioeconomy Scown et al. 5 

www.sciencedirect.com Current Opinion in Biotechnology 2023, 84:103017 



Conclusions 
Building the future circular bioeconomy will necessitate 
utilization of a wide variety of feedstocks, each with 
their own unique set of challenges. However, the po-
tential environmental benefits are considerable: di-
verting forest residues can reduce wildfire risk and 
harmful smoke emissions, while diverting high-moisture 
organic waste from landfills can avoid fugitive emissions 
of potent greenhouse gases. By shedding light on the 
compositional differences and practical considerations 
associated with converting each feedstock type, it is 
possible to identify and prioritize research and devel-

opment, demonstration, and deployment needs. 
Increasing demand for bio-based products and energy 
carriers presents a unique opportunity to address long- 
standing challenges in the management of waste from 
cities, agriculture, and food processing while reducing 
demand for fossil fuels and petrochemicals. 
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Figure 1  
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Compositional variability and moisture content of common organic feedstocks.   

Box 2  

Depot model for heterogeneous feedstocks 

An alternative to designing flexible conversion processes that are tolerant to variable composition and potentially high levels of contamination is to 
build out a network of infrastructure capable of processing individual feedstocks in smaller local facilities and shipping standardized intermediates 
to centralized conversion and upgrading facilities. The smaller size allows depots to tailor their preprocessing and downstream processing to the 
contamination and compositional challenges specific to their locally sourced feedstock. Depots can produce anything, ranging from pellets to 
sugars, aromatics, carboxylic acids, platform chemicals, H2, or their mixtures [77,78]. They can also enable blending of feedstocks to obtain a 
particular feedstock specification in composition and/or rheological properties that will enable higher conversion yields [79]. Even building facilities 
to densify biomass for shipping and storage can substantially reduce transportation costs [80]. This model is already taking hold in the biojet fuel 
industry, where preexisting corn-to-ethanol facilities are shipping ethanol to off-site alcohol-to-jet conversion facilities [78].   
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