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ABSTRACT
Motivation: One important application of gene expression
microarray data is classification of samples into categories,
such as the type of tumor. The use of microarrays allows si-
multaneous monitoring of thousands of genes expressions
per sample. This ability to measure gene expression en
masse has resulted in data with the number of variables
p (genes) far exceeding the number of samples N . Stan-
dard statistical methodologies in classification and predic-
tion do not work well or even at all when N < p. Modifica-
tion of existing statistical methodologies or development of
new methodologies is needed for the analysis of microar-
ray data.
Results: We propose a novel analysis procedure for
classifying (predicting) human tumor samples based on
microarray gene expressions. This procedure involves
dimension reduction using Partial Least Squares (PLS)
and classification using Logistic Discrimination (LD) and
Quadratic Discriminant Analysis (QDA). We compare PLS
to the well known dimension reduction method of Principal
Components Analysis (PCA). Under many circumstances
PLS proves superior; we illustrate a condition when
PCA particularly fails to predict well relative to PLS.
The proposed methods were applied to five different
microarray data sets involving various human tumor sam-
ples: (1) normal versus ovarian tumor; (2) Acute Myeloid
Leukemia (AML) versus Acute Lymphoblastic Leukemia
(ALL); (3) Diffuse Large B-cell Lymphoma (DLBCLL)
versus B-cell Chronic Lymphocytic Leukemia (BCLL);
(4) normal versus colon tumor; and (5) Non-Small-
Cell-Lung-Carcinoma (NSCLC) versus renal samples.
Stability of classification results and methods were further
assessed by re-randomization studies.
Availability: The methodology can be implemented using
a combination of standard statistical methods, available,
for example, in SAS. Illustrative SAS code is available from
the first author.
Contact: nguyen@wald.ucdavis.edu;
dmrocke@ucdavis.edu

∗To whom correspondence should be addressed.

INTRODUCTION
With the wealth of gene expression data from microarrays
(such as high density oligonucleotide arrays and cDNA ar-
rays) prediction, classification, and clustering techniques
are used for analysis and interpretation of the data. Some
important recent applications are in molecular classifica-
tion of acute leukemia (Golub et al., 1999), cluster analy-
sis of tumor and normal colon tissues (Alon et al., 1999),
clustering and classification of human cancer cell lines
(Ross et al., 2000), Diffuse Large B-cell Lymphoma (DL-
BCL; Alizadeh et al., 2000), human mammary epithelial
cells and breast cancer (Perou et al., 1999, 2000) and skin
cancer melanoma (Bittner et al., 2000). These techniques
have also helped to identify previously undetected sub-
types of cancer (Golub et al., 1999; Alizadeh et al., 2000;
Bittner et al., 2000; Perou et al., 2000). The problem of
‘prediction’ may come in various forms of applications as
well; the prediction of patient survival duration with ger-
minal center B-like DLBCL compared to those with acti-
vated B-like DLBCL using Kaplan–Meier survival curves
(Ross et al., 2000).

Gene expression data from DNA microarrays are char-
acterized by many measured variables (genes) on only a
few observations (experiments), although both the num-
ber of experiments and genes per experiment are growing
rapidly. The number of genes on a single array is usually
in the thousands, so the number of variables p easily ex-
ceeds the number of observations N . Although the number
of measured genes is large there may only be a few under-
lying gene components that account for much of the data
variation; for instance, only a few linear combinations of
a subset of genes account for nearly all of the response
variation. In this situation (i.e. when N < p), dimension
reduction is needed to reduce the high p-dimensional gene
space to a lower K -dimensional gene component space.

Under similar data structure in the field of chemo-
metrics, the method of Partial Least Squares (PLS) has
been found to be a useful dimension reduction technique.
PLS has been useful as a predictive modeling regression
method in the field of chemometrics. For example, in
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spectroscopy one may be predicting chemical compo-
sition of a compound based on observed signals for a
particular wavelength, where the number of wavelengths
(variables) is large. (Applications of PLS are abundant in
the Journal of Chemometrics (Wiley) and Chemometrics
and Intelligent Laboratory Systems (Elsevier), for exam-
ple.) An introduction to PLS regression is given by Geladi
and Kowalski (1986). The use of PLS in calibration can
be found in Martens and Naes (1989). Some theoretical
aspects and data-analytical properties of PLS have been
studied by chemometricians and statisticians (de Jong,
1993; Frank and Friedman, 1993; Helland, 1988; Helland
and Almøy, 1994; Höskuldsson, 1988; Lorber et al., 1987;
Phatak et al., 1992; Stone and Brooks, 1990; Garthwaite,
1994).

In this paper we propose a novel analysis procedure for
binary classification (prediction) of human tumor samples
based on microarray gene expressions. Here, the response
variable is a binary vector indicating normal or ovarian
tumor samples, for example. This procedure involves
dimension reduction using PLS and classification using
Logistic Discrimination (LD) and Quadratic Discriminant
Analysis (QDA). That is, the procedure involves two
steps, a dimension reduction step and then a classification
step. The proposed methods are applied to five different
microarray data sets involving various human tumor sam-
ples: (1) normal versus ovarian tumor samples; (2) Acute
Myeloid Leukemia (AML) versus Acute Lymphoblastic
Leukemia (ALL); (3) Diffuse Large B-cell Lymphoma
(DLBCLL) versus B-cell Chronic Lymphocytic Leukemia
BCLL; (4) normal versus colon tumor samples; and
(5) Non-Small-Cell-Lung-Carcinoma (NSCLC) versus
renal. To assess the stability of the prediction results and
methods we used re-randomization studies (as described
in the Section Methods).

We compared PLS to the well known dimension reduc-
tion method of Principal Components Analysis (PCA;
Massey, 1965; Jolliffe, 1986). PCA is used to reduce the
high dimensional data to only a few gene components
which explain as much of the observed total gene expres-
sion variation as possible. This is achieved without regard
to the response variation. Gene components constructed
this way are called Principal Components (PCs). In
contrast to PCA, PLS components are chosen so that
the sample covariance between the response and a linear
combination of the p predictors (genes) is maximum. The
latter criterion for PLS is more sensible since there is no
a priori reason why constructed components having large
predictor variation (gene expression variation) should
be strongly related to the response variable. Certainly
a component with small predictor variance could be a
better predictor of the response classes. The ability of the
dimension reduction method to summarize the covariation
between gene expressions and response classes may yield

better prediction results. Thus, for PCA to be competitive,
relative to PLS, one can pre-select the genes which
are predictive of the response classes and then apply
PCA. Otherwise, one might expect PLS to give better
predictions. Using the leukemia data set of (Golub et al.,
1999) we illustrate a condition when PCA fails to predict
well relative to PLS.

This paper is organized as follows. In the Section
Methods we describe the dimension reduction methods
of PCA and PLS, the classification methods of LD and
QDA and a gene selection strategy based on the simple
t-statistics. In the Methods section we also describe the
re-randomization technique used to further assess the
prediction methods and results. The results from applying
the proposed methods to the five microarray data sets are
given in the Results section. Also included in the Results
section is the illustration of a condition when PCA fails to
predict well relative to PLS. We then conclude and discuss
generalizations and other potential applications of PLS to
microarray gene expression data. An Appendix is included
which contains the PLS algorithm and a brief discussion
of the algorithm’s computational feasibility.

METHODS
Traditional statistical methodology for classification (pre-
diction) does not work when there are more variables than
there are samples. Specifically, for gene expression data,
the number of tissue samples is much smaller than the
number of genes. Thus, methods able to cope with the
high dimensionality of the data are needed. In this sec-
tion we describe a novel combination of dimension reduc-
tion with traditional classification methods, such as logis-
tic and QDA, for high dimensional gene expression data.
PLS is the primary dimension reduction method utilized,
although we also consider the related method of PCA for
comparison. The approach taken here consists of two main
steps. The first step is the dimension reduction step, which
reduces the high dimension p down to a lower dimension
K (K < N ). Since the reduced dimension is smaller than
the number of samples, in the second step, we can apply
readily available prediction tools, such as LD or QDA.

We introduce the method of PLS by first briefly describ-
ing the well known and related method of PCA. Classi-
fication methods, namely LD and QDA, are also briefly
described. Prior to analysis, gene selection may be nec-
essary. Hence, we also describe a simple gene selection
strategy based on the t-statistics.

Dimension reduction: PCA and PLS
The goal of dimension reduction methods is to reduce the
high p-dimensional predictor (gene) space to a lower K -
dimensional (gene component) space. This is achieved by
extracting or constructing K components in the predictor
space to optimize a defined objective criterion. PCA and
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PLS are two such methods. To describe these methods
some notations are required. Let X be an N × p matrix
of N samples and p genes. Also, let y denote the N × 1
vector of response values, such as indicator of leukemia
classes or normal versus tumor tissues.

In PCA, orthogonal linear combinations are constructed
to maximize the variance of the linear combination of the
predictor variables sequentially,

vk = argmax
v′v=1

var2(Xv) (1)

subject to the orthogonality constraint

v′Sv j = 0, for all 1 � j < k (2)

where S = X′X. The maximum number of nonzero
components is the rank of X, which is the same as the
rank of X′X. Often in applications of PCA, the predictors
are standardized to have mean zero and standard deviation
of one. This is referred to as PCA of the correlation matrix,
Rp×p = (1/(N −1))(X−1x̄′)′(X−1x̄′). The constructed
PCs, satisfying the objective criterion (1) are obtained
from the spectral decomposition of R,

R = V∆V′, ∆ = diag{λ1 � · · · � λN−1}, (3)

where V = (v1, . . . , vN−1) are the corresponding eigen-
vectors. The i th PC is a linear combination of the origi-
nal predictors, Xvi . Roughly, the constructed components
summarize as much of the original p predictors’ informa-
tion (variation), as possible irrespective of the response
class information.

Note that maximizing the variance of the linear combi-
nation of the predictors (genes), namely var(Xv), may not
necessarily yield components predictive of the response
variable (such as leukemia classes). For this reason, a dif-
ferent objective criterion for dimension reduction may be
more appropriate for prediction.

The objective criterion for constructing components in
PLS is to sequentially maximize the covariance between
the response variable and a linear combination of the pre-
dictors. That is, in PLS, the components are constructed
to maximize the objective criterion based on the sample
covariance between y and Xc. Thus, we find the weight
vector w satisfying the following objective criterion,

wk = argmax
w′w=1

cov2(Xw, y) (4)

subject to the orthogonality constraint

w′Sw j = 0 for all 1 � j < k (5)

where S = X′X. The maximum number of components,
as before, is the rank of X. The i th PLS components are

also a linear combinations of the original predictors, Xwi .
A basic algorithm to obtain w is given in the Appendix.

Based on the different objective criterion of PCA and
PLS, namely var(Xv) and cov(Xw, y), it is reasonable
to suspect that if the original p predictors (genes) are
already predictive of response classes then the constructed
components from PCA would likely be good predictors
of response classes. Therefore, prediction results should
be similar to that based on PLS components. Otherwise,
one might suspect that PLS should perform better than
PCA in prediction. We give examples of this in the Section
Results.

Classification: LD and QDA
After dimension reduction by PLS and PCA, the high
dimension of p is reduced to a lower dimension of K gene
components. Once the K components are constructed
we considered prediction of the response classes. Since
the reduced (gene) dimension is now low (K < N ),
conventional classification methods such as LD and QDA
can be applied.

Let x be the column vector of p predictor values and
y denotes the binary response value. For instance, y = 0
for a normal sample, y = 1 for a tumor sample and x is
the corresponding expression values of p genes. In logistic
regression, the conditional class probability, π = P(y =
1|x) = P(tumor given gene profile x), is modeled using
the logistic functional form,

π = exp(x′β)

1 + exp(x′β)
. (6)

The predicted response probabilities are obtained by
replacing the parameter β with its Maximum Likelihood
Estimate (MLE) β̂. The predicted class of each sample (as
a normal or tumor sample) is ŷ = I (π̂ > 1 − π̂), where
I (·) is the indicator function; I (A) = 1 if condition A is
true and zero otherwise. That is, we classify a sample as a
tumorous (ŷ = 1) if the estimated probability of observing
a tumor sample given the gene expression profile, x, is
greater than the probability of observing a normal sample
with the same gene profile. This classification procedure is
called LD. As mentioned earlier, LD is not defined if N <

p. Thus, in order to utilize the LD procedure, we need to
replace the original gene profile, x, by the corresponding
gene component profile in the reduced space, obtained
from PLS or PCA.

Another usual classification method is QDA based on
the classical multivariate normal model for each class:
x|y = k ∼ Np(Σk, µk), x ∈ Rp and k = 0, 1, . . . , G. For
binary classification, G = 1. The (optimal) classification
regions are

Rk = {x ∈ Rp : pk fk(x) > p j f j (x), j �= k} (7)
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where fk is the pdf of x|y = k given above and pk =
P(y = k). This is equivalent to classifying a given sample
x into the class with max{qi (x), i = 0, 1, . . . , G}, where
qi (x) = x′Ai x + c′x + ci with Ai = −0.5Σ−1

i , ci =
Σ−1

i µi , and ci = log pi − 0.5 log Σi − 0.5µ′
iΣ

−1
i µi . The

posterior probability of membership in class k is πk =
P(y = k|x) = exp[qk(x)]/ ∑K

i=0 exp[qi (x)]. Again, the
full gene profile, x, is replaced by the corresponding gene
component profile in the reduced space obtained from PLS
or PCA.

For details on QDA and other classical classification
methods the reader is referred to Mardia et al. (1979);
Johnson and Wichern (1992) and Flury (1997). Details on
logistic regression can be found in Hosmer and Lemeshow
(1989) and McCullagh and Nelder (1989).

Gene selection
Although the two-step procedure outlined above, namely
dimension reduction via PLS followed by classification
via LD or QDA, can handle a large number (thousands) of
genes, only a subset of genes is of interest in practice. Even
after gene selection, often, the number of genes retained
is still larger than the number of available samples. Thus,
dimension reduction is still needed. It is obvious that good
prediction relies on good predictors, hence a method to
select the genes for prediction is necessary. For two-class
prediction, selection and ranking of the genes can be based
on the simple t-statistics

t = x̄0 − x̄1√
s2

0/N0 + s2
1/N1

(8)

where Nk , x̄k and s2
k is the size, mean and variance,

respectively, of class k, k = 1, 2. For each gene, a t-
value is computed. We retain a set of the top p∗ genes,
by taking p∗/2 genes with the largest positive t-values
(corresponding to high expression for class 1) and p∗/2
genes with smallest negative t-values (corresponding to
high expression for class 2).

We conducted this procedure for p∗ = 50 genes for the
ovarian, leukemia, lymphoma, colon, and NCI60 data. For
the leukemia data set the individual gene discrimination is
relatively strong, which is suggestive of the well-known
separability of AML/ALL leukemia classes based on gene
expression in this data set. However, this differentially
expressed pattern is not as clear for normal and ovarian
tumor tissue samples or normal and colon tissue samples.
Some color figures illustrating this difference are available
on the website handel.cipic.ucdavis.edu/∼dmrocke.

Assessing prediction methods and results
Following gene selection and dimension reduction, we
predicted the response classes. The observed error rate can

be used to give a rough assessment of a method relative to
another. The strength or ‘confidence’ associated with any
specific prediction (i.e. for each sample) can be assessed
by examining the estimated conditional class probability
π̂ described above.

It is also important to get an idea of how the proposed
method will perform in the light of new data. However,
new data are usually not available, so a re-randomization
study is an alternative. For re-randomization studies a
relatively large sample size, N , is needed. If there are
sufficient samples, we carry out a three steps procedure
to assess the prediction methods.

(1) Randomly form a training data set consisting of
N1 of the N samples. These N1 samples in the
training data set will be used to fit the model. The
remaining N2 = N − N1 samples are saved for
model validation (testing).

(2) A model is fit to the training data and the fit to
the training data is assessed by leave-out-one Cross-
Validation (CV). That is, one of the N1 samples is
left out and a model is fitted based on all but the left
out sample. The fitted model is then used to predict
the left out sample. Leave-out-one CV is used for
each of the N1 samples in the training data set. This
provides some protection against overfitting, but it is
still possible accidentally to select a model that fits
the training data especially well due to capitalizing
on chance.

(3) The model fit to all N1 training data items will
be tested on the N2 samples not used to fit the
model. This provides additional protection against
overfitting.

(4) Even with these precautions, a sufficiently intensive
search over methods can produce good results for
the test data by capitalizing on chance properties. A
final protection against this problem is obtained by
re-randomization. After determining the full method
including any model selection steps, we automate it
so that it can be run on an arbitrary data set. We then
repeat steps 1–3 for several re-randomizations of the
original data set. We take these results as the best
indication of the success of the methodology.

We carried out this procedure for the leukemia and
lymphoma data sets which contain enough samples. For
the ovarian and NCI60 data sets, which contain few
samples, we performed only leave-out-one CV prediction.

RESULTS
We demonstrate the usefulness of the proposed method-
ology described above to five microarray data sets with
various human tumor samples: (1) ovarian (Furey et al.,
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2000); (2) leukemia (Golub et al., 1999); (3) lymphoma
(Alizadeh et al., 2000); (4) colon (Alon et al., 1999); and
(5) cancer cell lines from the NCI60 data set (Ross et al.,
2000). Data sets (2), (3) and (5) are published data sets and
are publicly available at http://waldo.wi.mit.edu/MPR/,
http://llmpp.nih.gov/lymphoma/ and http://genome-www.
stanford.edu/ respectively. The ovarian data set is yet to be
published but analyzed results were published by Furey et
al. (2000).

Ovarian data
The microarray experiments consist of hybridizations of
normal and ovarian tissues on arrays with probes for
97 802 DNA clones. The ovarian data set considered here
consists of 16 normal tissue samples and 14 ovarian
tumor tissue samples. The normal tissue samples consist
of a spectrum of normal tissues: 2 cyst, 4 peripheral
blood lymphocytes, 9 ovary and 1 liver normal tissue.
All normal and tumorous samples are distinct, coming
from different tissues (patients). We log transformed all
the gene expression values due to the highly skewed
data, typical of gene expression data. The expressions of
all genes were also standardized to have mean zero and
standard deviation of one across samples.

We considered p∗ = 50, 100, 500, 1000, 1500 genes
selected as described in the Section Methods. Since there
are few samples, we made leave-out-one CV prediction.
Classification of the 30 tissue samples based on K = 3
gene components constructed from p∗ genes using PLS
and PCA are given in Table 1. Overall, the classification
results are good. All normal and ovarian tumor samples
were correctly classified using LD with PLS and PCs.
Results for QDA is the same, except, with PCs one
normal (cyst) sample was misclassified (p∗ = 50 and
500). Also, different analyses using p∗ = 1000 and 1500
misclassified one normal ovarian sample. However, all
classification methods using PLS gene components are
100% correct for the ovarian data. Furey et al. (2000) also
used leave-out-one CV prediction for this data set as well,
but using Support Vector Machines (SVM; Vapnik, 2000).
Although it is not our intent to tune our analyses to theirs
to make exact comparisons, a crude observation can be
made. Furey et al. reported 3–5 normal samples and 2–4
ovarian tumor samples misclassified using SVM based on
25 to 100 genes. (See Table 1 of Furey et al.†)

The strength or ‘confidence’ in the predictions made
can be assessed by examining the estimated conditional
class probability, namely π̂i = P̂(Y = k|x∗

i ), k = 0, 1,
where x∗

i is the gene profile (pattern) in the reduced K -
dimensional space. For p∗ = 50 and 100 genes, the

† Furey et al. included another sample tissue from the same patient. We only
use samples from distinct patients since samples should be independent.
However, inclusion of this one extra sample did not change the results
reported here.

Table 1. Classification results for normal and ovarian tumor samples. Given
are the number of correct classification out of 30 samples (16 normal and 14
ovarian tumor samples)

LD QDA Sample
p∗ PLS PC PLS PC misclassified

50 30 30 30 29 #1
100 30 30 30 30
500 30 30 30 29 #1

1000 30 30 30 29 #4
1500 30 30 30 29 #4

estimated conditional probability is essentially one for
PLS and the lowest π̂ is 0.973 for PCA. This holds for
p∗ = 1000 and 1500 genes as well. However, for p∗ =
500 genes, two samples were correctly classified (PCA)
with moderate estimated conditional class probability
of 0.922 and 0.925. Sample 16 is a normal sample
from a white blood cell line (HWBC3) and exhibits
characteristics of both normal and tumor cells, which
makes it a likely candidate for misclassification. SVM
had problems classifying this sample (Furey et al., 2000,
p. 910) but PLS correctly classified this sample as normal
tissue.

Leukemia data
The data set used here is the acute leukemia data set pub-
lished by Golub et al. (1999). The original training data
set consisted of 38 bone marrow samples with 27 ALL
and 11 AML (from adult patients). The independent (test)
data set consisted of 24 bone marrow samples as well as
10 peripheral blood specimens from adults and children
(20 ALL and 14 AML). Four AML samples from the in-
dependent data set were from adult patients. The gene ex-
pression intensities were obtained from Affymetrix high-
density oligonucleotide microarrays containing probes for
6817 genes. We log transformed the gene expressions to
have mean zero and standard deviation one across sam-
ples. No further data preprocessing was applied.

We first applied the proposed methods to the original
data structure of 38 training samples and 34 test samples
for p∗ = 50, 100, 500, 1000, and 1500 genes selected
as described earlier. The results are given in Table 2. All
methods predicted the ALL/AML class correctly 100% for
the 38 training samples using leave-out-one CV. Prediction
of the test samples using LD based on the training (PLS
and PCA) components resulted in one misclassification:
sample #66. This is based on p∗ = 50 genes. This AML
sample was also misclassified by Golub et al. (1999) using
a weighted voting scheme‡.

‡ Participants of the Critical Assessment of Techniques for Microarray Data
Mining (CAMDA’00, December 2000) Conference analyzing the leukemia
data set all misclassified sample #66. Whether the sample was incorrectly
labeled is not known.
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Table 2. Classification results for the leukemia data set with 38 training
samples (27 ALL, 11 AML) and 34 test samples (20 ALL, 14 AML). Given
are the number of correct classification out of 38 and 34 for the training and
test samples respectively

Training data Test data
(leave-out-one CV) (out-of-sample)

LD QDA LD QDA
p∗ PLS PC PLS PC PLS PC PLS PC

50 38 38 38 38 33 33 28 30
100 38 38 38 38 32 32 29 30
500 38 38 38 38 31 31 32 28

1000 38 38 38 38 31 31 31 28
1500 38 38 38 38 31 30 30 28

Table 3. Classification results for re-randomization study of the leukemia
data set with 36/36 splitting. Each value in the table is the correct
classification percentage averaged over 100 re-randomizations. Perfect
classification is 36

Training data Test data
(leave-out-one CV) (out-of-sample)

LD QDA LD QDA
p∗ PLS PC PLS PC PLS PC PLS PC

50 36.00 34.08 35.99 34.92 34.72 33.66 34.63 34.63
100 35.88 33.29 35.89 34.89 34.30 32.92 34.80 34.58
500 36.00 34.32 36.00 35.09 34.73 34.08 34.53 34.60

1000 36.00 32.95 36.00 34.57 34.82 32.50 34.77 34.09
1500 36.00 32.51 36.00 33.79 34.71 32.11 34.67 33.66

To assess the stability of the results shown in Table 2
we carried out a re-randomization study as described in
the Section Methods. We considered an equal random
splitting of the N = 72 samples: N1 = 36 training and
N2 = 36 test samples. The analysis above was repeated
for 100 re-randomizations. Table 3 gives the average
classification rates over the 100 re-randomizations. LD
and QDA prediction based on PLS gene components
resulted in near perfect classification (between 99 and
100% correct) for the training samples using leave-out-
one CV. PCs fared slightly worse (between 90 and 97%
correct). This is based on all p∗ considered. For the
test samples, PLS gene components in LD performed
better than PCs. However, both PLS and PCs performed
similarly in QDA.

We also classified the samples based on the 50 ‘pre-
dictive’ genes set reported by Golub et al. Leave-out-one
CV predictions of the 38 training samples using QDA and
LD with PLS gene components resulted in 100% correct
and 36/38 for PCs. Based on only the training compo-
nents, out-of-sample predictions of the 34 test samples
were also made. LD with PLS gene components resulted
in one misclassification (#66). Golub et al. associated with

each prediction a ‘Prediction Strength’ (PS). (For details,
see Golub et al.) Five test samples were predicted with low
(PS < 0.30) to borderline PS: samples #54, 57, 60, 67 and
71 (PS = 0.23, 0.22, 0.06, 0.15 and 0.30) with one sample
misclassified. These five samples were all correctly classi-
fied using LD with PLS gene components with moderate
to high conditional class probabilities of 0.97, 1.00, 0.98,
0.89 and 1.00 respectively. Results for all 72 samples are
given in Table 4 and re-randomization results, given in Ta-
ble 5, showed the stability of the estimates.

Lymphoma data
The lymphoma data set was published by Alizadeh et
al. (2000) and consists of gene expressions from cDNA
experiments involving three prevalent adult lymphoid
malignancies: DLBCLL, BCLL and Follicular Lym-
phoma (FL). Each cDNA target was prepared from an
experimental mRNA sample and was labeled with Cy5
(red fluorescent dye). A reference cDNA sample was
prepared from a combination of nine different lymphoma
cell lines and was labeled with Cy3 (green fluorescent
dye). Each Cy5 labeled target was combined with the
Cy3 labeled reference target and hybridized onto the
microarray. Separate measurements were taken from the
red and green channels. We analyzed the standardized log
relative intensity ratios, namely the log(Cy5/Cy3) values.
To test the binary classification procedures proposed in
this paper, we analyze a subset of the data consisting of
45 DLBCL and 29 BCLL samples with p = 4227 genes.

Using leave-out-one CV, each sample was predicted to
be DLBCL or BCLL based on 3 gene components con-
structed from p∗ = 50, 100, 500 and 1000 genes. The re-
sults are given in Table 6. Of the 74 total samples, PLS
gene components resulted in either one or two misclassi-
fications at most. The two misclassified samples, #33 and
51, were consistently misclassified. PCs did not perform as
well using LD, with at most four misclassifications. How-
ever, PCs used with QDA performed similar to PLS com-
ponents.

As with the analysis of the leukemia data, we turned
next to re-randomization studies to assess the stability of
the classification results. Table 7 summarizes the results
of 100 re-randomizations (with 37/37 random split). For
this data set, PLS components in LD appear to perform
best for leave-out-one CV (of the training data sets).
Out-of-sample prediction results for PLS and PCs are
similar. On average, classification of the training samples
using leave-out-one CV is nearly 100% correct and
about less than two misclassifications out of 37 for test
samples.

Colon data
Alon et al. (1999) used Affymetrix oligonucleotide arrays
to monitor expressions of over 6500 human genes with
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Table 4. 50 Genes from Golub et al. Predicted (1 = ALL, 0 = AML) probabilities using leave-out-one CV for original 38 training samples and out-of-sample
prediction for the 34 test samples using PLS and PC. PS is the prediction strength from Golub et al. For LD, π̂ is an estimate of π = P(Y = 1|data), and for
QDA it is the posterior probability or conditional class probability. Samples marked with an ∗ were misclassified

Training data Test data
LD QDA LD QDA

i yi PS π̂PLS π̂PC π̂PLS π̂PC i yi PS π̂PLS π̂PC π̂PLS π̂PC

1 1 1.00 1.00 1.00 1.00 1.00 39 1 0.78 1.00 1.00 1.00 1.00
2 1 0.41 1.00 1.00 1.00 1.00 40 1 0.68 1.00 1.00 1.00 1.00
3 1 0.87 1.00 1.00 1.00 1.00 41 1 0.99 1.00 1.00 1.00 1.00
4 1 0.91 1.00 1.00 1.00 1.00 42 1 0.42 1.00 1.00 1.00 1.00
5 1 0.89 1.00 1.00 1.00 1.00 43 1 0.66 1.00 1.00 1.00 1.00
6 1 0.76 1.00 1.00 1.00 1.00 44 1 0.97 1.00 1.00 1.00 1.00
7 1 0.78 1.00 1.00 1.00 1.00 45 1 0.88 1.00 1.00 1.00 1.00
8 1 0.77 1.00 1.00 1.00 1.00 46 1 0.84 1.00 1.00 1.00 1.00
9 1 0.89 1.00 1.00 1.00 1.00 47 1 0.81 1.00 1.00 1.00 1.00

10 1 0.56 1.00 1.00 1.00 1.00 48 1 0.94 1.00 1.00 1.00 1.00
11 1 0.74 1.00 1.00 1.00 1.00 49 1 0.84 1.00 1.00 1.00 1.00
12 1 0.20∗+ 1.00 0.02∗ 1.00 0.00∗ 50 0 0.97 0.00 0.00 0.00 0.00
13 1 1.00 1.00 1.00 1.00 1.00 51 0 1.00 0.00 0.00 0.00 0.00
14 1 0.73 1.00 1.00 1.00 1.00 52 0 0.61 0.00 0.01 0.00 0.00
15 1 0.98 1.00 1.00 1.00 1.00 53 0 0.89 0.00 0.00 0.00 0.00
16 1 0.95 1.00 1.00 1.00 1.00 54 0 0.23+ 0.03 1.00∗ 0.00 0.15
17 1 0.49 1.00 1.00 1.00 1.00 55 1 0.73 1.00 1.00 1.00 1.00
18 1 0.59 1.00 1.00 1.00 1.00 56 1 0.84 1.00 1.00 1.00 1.00
19 1 0.80 1.00 1.00 1.00 1.00 57 0 0.22+ 0.00 1.00∗ 0.00 0.03
20 1 0.90 1.00 1.00 1.00 1.00 58 0 0.74 0.08 0.00 1.00∗ 0.01
21 1 0.76 1.00 1.00 1.00 1.00 59 1 0.68 1.00 1.00 1.00 1.00
22 1 0.37 1.00 1.00 1.00 1.00 60 0 0.06+ 0.02 1.00∗ 0.00 0.68∗
23 1 0.77 1.00 1.00 1.00 1.00 61 0 0.40 0.35 1.00∗ 1.00∗ 0.02
24 1 0.82 1.00 1.00 1.00 1.00 62 0 0.58 0.00 0.63∗ 0.00 0.00
25 1 0.43 1.00 1.00 1.00 1.00 63 0 0.69 0.00 0.98∗ 0.00 0.00
26 1 0.89 1.00 1.00 1.00 1.00 64 0 0.52 0.00 0.27 0.00 0.01
27 1 0.82 1.00 1.00 1.00 1.00 65 0 0.60 0.00 0.21 0.00 0.00
28 0 0.44 0.00 0.00 0.00 0.00 66 0 0.27∗+ 0.93∗ 1.00∗ 1.00∗ 0.99∗
29 0 0.74 0.00 0.02 0.00 0.00 67 1 0.15∗+ 0.89 1.00 1.00 0.20∗
30 0 0.80 0.00 0.00 0.00 0.00 68 1 0.80 1.00 1.00 1.00 1.00
31 0 0.61 0.00 0.00 0.00 0.00 69 1 0.85 1.00 1.00 1.00 1.00
32 0 0.47 0.00 0.00 0.00 0.00 70 1 0.73 1.00 1.00 1.00 1.00
33 0 0.89 0.00 0.00 0.00 0.00 71 1 0.30+ 1.00 1.00 1.00 1.00
34 0 0.64 0.00 0.00 0.00 0.00 72 1 0.77 1.00 1.00 1.00 1.00
35 0 0.21+ 0.00 1.00∗ 0.00 1.00∗
36 0 0.94 0.00 0.00 0.00 0.00
37 0 0.95 0.00 0.00 0.00 0.00
38 0 0.73 0.00 0.00 0.00 0.00

# correct 38 36 38 36 33 27 31 31

samples of 40 tumor and 22 normal colon tissues. Using a
clustering algorithm based on the deterministic-annealing
algorithm, Alon et al. clustered the 62 samples into two
clusters. One cluster consisted of 35 tumor and 3 normal
samples (n8, n12, n34†). The second cluster contained 19
normal and 5 tumor tissues (T2, T30, T33, T36, T37).
(See Figure 4 of Alon et al.) Furey et al. (2000) did
leave-out-one CV prediction of the 62 samples using SVM

† The labeling for the 22 normal tissues in Alon et al. are not in consecutive
order.

and six tissues were misclassified, namely (T30, T33,
T36) and (n8, n34, n36). As Furey et al. pointed out, the
three misclassified tumors (T30, T33, T36) were among
the five tumor samples which clustered into the normal
group by Alon et al. Also, two normal samples (n8, n34)
misclassified by Furey et al. were among the three normal
samples clustered into the tumor group by Alon et al.

Classification of tumor and normal colon tissues using
the method proposed here are displayed in Table 8. We
carried out analyses for p∗ = 50, 100, 500 and 1000. PLS
gene components in LD for 50 and 100 genes performed
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Table 5. Results from re-randomizations using the 50 genes obtained by
Golub et al. Given are average classification rate from all re-randomizations
(36 training/36 test samples splitting)

LD QDA
PLS PC PLS PC

Training data 99.56 96.44 99.56 97.00
Test data 95.94 94.17 96.44 95.44

Table 6. Classification results for DLBCL and BCLL lymphoma samples.
Given are the number of correct classification out of 74 samples (45 DLBCL
and 29 BCLL samples). Samples misclassified are given in parentheses on
the right side of the table

LD QDA Sample(s) misclassified
p∗ PLS PC PLS PC PLS PC PLS PC

50 72 73 73 72 (33, 51) (51) (51) (33, 51)
100 72 71 72 73 (33, 51) (9, 33, 51) (33, 51) (51)
500 72 71 73 73 (33, 51) (9, 45, 51) (51) (45)

1000 72 70 73 73 (33, 51) (9, 32, 48, 51) (51) (51)

best with four misclassifications. For p∗ = 50 genes
T2, T11, T33, and n36 were misclassified. For p∗ =
100 genes T11, T30, T33, and n11 were misclassified.
Note that with the exception of T11 and n11 the samples
misclassified here were also misclassifed using SVM
and by clustering. Note from Table 8 that PCs is not
competitive relative to PLS components for this data set.
We also note that gene expression patterns for this data set
are quite heterogeneous. Further, the samples that are most
commonly misclassified by various methods of analysis
have expression patterns that are quite different from their
respective groups.

NCI60 data
The NCI60 data set, published by Ross et al. (2000),
consists of samples from human tumor cell lines. The
data is from 60 cDNA arrays each containing 9703
spotted cDNA sequences. The cDNAs arrays contain
approximately 8000 unique genes in 60 human cell lines
obtained from various tumor sites: 7 breast, 5 Central
Nervous System (CNS), 7 colon, 6 leukemia, 8 melanoma,
9 NSCLC, 6 ovarian, 2 prostate, 9 renal, and 1 unknown.
The reference sample used in all hybridizations was
prepared by combining an equal mixture of mRNA from
12 of the cell lines. As with the lymphoma (cDNA data)
we analyzed the standardized log relative intensity ratios,
namely the log(Cy5/Cy3) values. To illustrate our binary
classification procedures to this cell lines gene expression
data, we selected two of the largest groups: 9 NSCLC
and 9 renal samples. Using a subset of 6814 genes we

Table 7. Classification results for re-randomization study of the lymphoma
data set with 37/37 splitting. Each value in the table is the correct
classification percentage averaged over 100 re-randomizations. Perfect
classification is 37

Training data Test data
(leave-out-one CV) (out-of-sample)

LD QDA LD QDA
p∗ PLS PC PLS PC PLS PC PLS PC

50 36.87 36.26 36.64 35.60 35.57 36.03 35.88 35.81
100 36.86 36.38 36.74 36.30 35.84 36.29 36.03 36.10
500 36.89 35.15 36.77 35.99 35.76 35.21 35.69 35.85

1000 36.83 34.94 36.90 35.68 35.58 33.87 35.32 35.12

Table 8. Classification results for normal and colon tissue samples. Given
are the number of correct classification out of 62 samples (40 tumors and 22
normal samples)

LD QDA
p∗ PLS PC PLS PC

50 58 54 57 54
100 58 53 56 52
500 56 53 57 53

1000 57 52 56 54

applied dimension reduction methods to the selected p∗ =
50, 100, 500 and 1000 genes. The results are given in
Table 9. PLS gene components predicted all NSCLC and
renal cell lines samples correctly 100% in all instances.
For each analysis, PCs only misclassified one sample,
either sample 4 or 15. The expression patterns of these
two misclassified samples are quite different from their
respective groups.

A condition when PCs fail to predict well
The conditions under which PLS predicts well have
not yet been fully characterized in the statistics or
chemometrics literature. In this section we illustrate, by
example, a condition when PCs fail to predict well, but
PLS components continue to predict well. The example to
be given is based on the leukemia data set of Golub et al.
(1999).

In the analyses given above, although the results for
PLS components were better than that for PCs, the results
for PCs were competitive nonetheless. Examining the
objective criterion of PLS and PCA, we noted earlier that
it would be reasonable to expect predictions based on PCs
to be similar to that from PLS if the predictors (genes)
are highly predictive of response (leukemia) classes. This
is the case of the analyses based on the 50 predictive
genes reported by Golub et al., for instance. However, to
see when PCs fail to predict well, while PLS components
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Table 9. Classification results for NSCLC and renal cell lines. Given are the
number of correct classification out of 18 samples (9 NSCLC and 9 renal
samples)

LD QDA Sample
p∗ PLS PC PLS PC misclassified

50 18 17 18 18 #4
100 18 17 18 18 #4
500 18 18 18 17 #15

1000 18 18 18 17 #15

succeeded, we considered their prediction ability based
only on expressed genes, but not exclusively expressed
differentially for leukemia classes. This test condition is
based on the simple fact that an expressed gene does
not necessarily qualify as a good predictor of leukemia
classes. For instance, consider a gene highly expressed
across all samples, ALL and AML. In this case, the
gene will not discriminate between ALL and AML well.
We define five nested data sets consisting of all genes
expressed on (A) at least one array (p = 1554), (B) 25%
(p = 1076), (C) 50% (p = 864), (D) 75% (p = 662) and
(E) 100% (p = 246) of the arrays. Note that these genes
are expressed but not necessarily differentially expressed
for ALL/AML. As before, we applied PLS and PCA to
extract three gene components from these five data sets
based on the 38 training samples. Predictions of the 38
training samples were based on leave-out-one CV and
predictions of the 34 test samples were based on the
training components only.

The results are given in Table 10. As can be seen, the
decrease in performance of PCs relative to PLS is drastic
compared to the result of the 50 predictive genes (Tables 4
and 5). To check the stability of the results in Table
10, we ran 50 re-randomizations. The results are given
in Table 11. PCs did much worse relative to PLS gene
components in the re-randomizations as well. The result
here is not surprising since PCA aims to summarize only
the variation of the p genes. However, only a subset of p
expressed genes are predictive of leukemia classes. Why
then do PLS components still perform well in this mixture
of expressed genes, both predictive and non-predictive
of leukemia classes? This is most likely attributed to
the choice of objective criterion used, namely covariation
between the leukemia classes and (the linear combination
of) the p genes. Since PLS components are obtained from
maximizing cov(Xw, y) it is more able to assign patterns
of weights to the genes which are predictive of leukemia
classes.

Further indication of this condition, where PCs fail
to predict leukemia classes while PLS components suc-
ceeded, can be found in the table of response (leukemia

Table 10. LD and QDA of original (38 training/34 test samples splitting)
based on class prediction using leave-out-one CV for training data set and
out-of-sample prediction for test data set. The five data sets consist of
expressed genes, but not all are differentially expressed for AML/ALL

% correct, train % correct, test
Gene set PLS PC PLS PC

LD

Set A 100.00 84.21 91.18 73.53
Set B 100.00 81.58 91.18 73.53
Set C 100.00 84.21 91.18 73.53
Set D 100.00 81.58 91.18 73.53
Set E 100.00 76.32 79.41 64.71

QDA

Set A 100.00 84.21 91.18 82.35
Set B 100.00 84.21 94.12 82.35
Set C 100.00 81.58 91.18 82.35
Set D 100.00 81.58 91.18 88.24
Set E 100.00 57.89 71.05 50.00

Table 11. Average classification rates from 50 re-randomizations (36
training/36 test samples splitting) and prediction using leave-out-one CV
for training data sets and out-of-sample prediction for test data sets

% correct, train % correct, test
Gene set PLS PC PLS PC

LD

Set A 99.67 86.67 93.78 82.00
Set B 99.94 87.44 94.39 83.00
Set C 99.83 89.94 93.89 83.83
Set D 99.78 85.00 94.78 83.39
Set E 97.44 73.89 89.22 69.00

QDA

Set A 100.00 83.44 93.17 82.39
Set B 99.94 86.33 94.28 85.00
Set C 99.72 88.28 93.50 85.17
Set D 99.78 85.00 94.78 83.39
Set E 98.06 67.28 89.61 64.89

classes) and predictor (genes) variation accounted for by
the extracted gene components. For example, Table 12a
summarizes variation explained by the constructed PLS
components and PCs for gene set A (p = 1554). Note
that three (K = 3) PLS components explained 93.8%
of response variation and about 58.7% of predictor
variability, compared to three PCs explaining 55.3 and
60.4% respectively. Thus, the total gene variability ac-
counted by PCs and PLS components are similar, but PCs
were unable to account for much of the leukemia class
variation. Note also that the first PC accounted for 44.5%
of total predictor (gene) variability but it accounted for
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Table 12. Variability explained by PLS components and PCs. The number
of components extracted is K

K Predictor Response
Proportion Cumulative Proportion Cumulative

proportion proportion

(a) Gene set A
PLS

1 26.4713 26.4713 50.0156 50.0156
2 27.1942 53.6655 26.0319 76.0475
3 5.0562 58.7217 17.7467 93.7942

PC
1 44.4644 44.4644 2.3520 2.3520
2 10.5679 55.0323 38.2658 40.6177
3 5.3219 60.3542 14.6836 55.3014

(b) 50 Predictive
genes

PLS

1 46.2635 46.2635 86.1931 86.1931
2 14.7372 61.0006 3.4223 89.6154
3 7.2307 68.2314 4.4394 94.0548

PC

1 46.3143 46.3143 84.9414 84.9414
2 19.3407 65.6549 0.7407 85.6821
3 5.3636 71.0185 0.1557 85.8377

only 2.4% of total response (leukemia class) variability.
This is an indicator that it will poorly predict the leukemia
classes, as it indeed did (Tables 10 and 11). Now consider
the same analysis but with the 50 informative genes. This
is given in Table 12b. This time, the first PC accounted for
about 46.3% of predictor variability but also accounted
for 84.9% of response (leukemia class) variation—this is
a notable increase from 2.4 to 84.9%.

CONCLUSIONS AND DISCUSSIONS
We have introduced statistical analysis methods for
the classification of tumors based on microarray gene
expression data. The methodologies involve dimension
reduction of the high p-dimensional gene expression
space followed by logistic classification or QDA. We have
also illustrated the methods’ effectiveness in predicting
normal and tumor samples as well as between two
different tumor types. The samples varied from human
tissue samples to cell lines generated from both one and
two channels microarray systems, such as oligonucleotide
and cDNA arrays. The methods were able to distinguish
between normal and tumor samples as well as between
two types of tumors from five different microarray data
sets with high accuracy. Furthermore, these results hold
under re-randomization studies. Finally, we have also
illustrated a condition under which PLS components are
superior to PCs in prediction.

The problem of distinguishing normal from tumor
samples is an important one. Another problem of interest
is in characterizing multiple types of tumors. A data
set illustrating this multiple classification problem is the
NCI60 data set, which contains nine types of tumors.
The problem of multiple classification based on gene
expression data is much more difficult than the problem
of binary classification illustrated in this paper and is the
topic of current research. The method of multivariate PLS
(Höskuldsson, 1988; Garthwaite, 1994) could be of use for
this problem.

The PLS method can be of use for gene expression anal-
ysis in other contexts as well. Predicting the expressions
of a target gene based on the remaining mass of genes
is one example. Here, PLS is used to reduce the dimen-
sion of the predictors and then multiple linear regression
(or another prediction method for continuous response) is
used to predict the expressions of the target gene. Quanti-
fying the predicted gene expression values such that they
are compatible with some clinical outcomes are of practi-
cal value.

A related problem which may benefit from PLS is the
problem of assessing the relationship between cellular re-
action to drug therapy and their gene expression pattern.
For example, Scherf et al. (2000) assessed growth inhibi-
tion from tracking changes in total cellular protein (in cell
lines) after drug treatment. Here, the response of cell lines
to each drug treatment are the response variables. Associ-
ated with the cell lines are their gene expressions. Since
the expression patterns are from those of untreated cell
lines, Scherf et al. focused on the relationship between
gene expression patterns of the cell lines and their sen-
sitivity to drug therapy. This relationship can be studied
via a direct application of univariate or multivariate PLS,
which can handle the high dimensionality of the data.

A final example, in cancer research, is the prediction
of patient survival times based on gene expressions. For
example, Ross et al. (2000) compared patient survival
duration with germinal center B-like DLBCL compared to
those with activated B-like DLBCL using Kaplan–Meier
survival curves (Kaplan and Meier, 1958). These groups
were determined by gene expression analysis. A more
general and useful approach is to model the observed
survival (and censored) times as a function of the p gene
expressions. A common tool widely used for this purpose
is the proportional hazard regression proposed by Cox
(1972). Again, straightforward application of this method
is not possible since N < p. Hence, dimension reduction
is needed, however, care is needed to address the observed
censored times. Our preliminary studies indicate that PLS
may be of use in this context as well.
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APPENDIX
The following PLS algorithm is given in Höskuldsson
(1988) and adopted in Garthwaite (1994). For details, see
also Helland (1988) and Martens and Naes (1989).

1. FOR k = 1 to d set u to first column of Y(k) and
DO:

2. w = X′u/(u′u) and scale w to be of unit length.

3. t = Xw.

4. c = Y′t/(t′t) and scale c to be of unit length.

5. u = Yc and GO TO 6 IF convergence ELSE return
to 2.

6. p = X′t/(t′t).
7. b = u′t/(t′t).
8. Residual matrices: X(k+1) = X(k) − tp′ and

Y(k+1) = Y(k) − btc′ (with X(1) = X, Y(1) = Y).

9. END FOR
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