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Abstract 
 
 Optical fiber trapping is a technique utilized for manipulating micron-sized dielectric 

particles such as microspheres and biological cells. In this project we describe the fabrication and 

particle trapping performance of a compact and inexpensive optical trapping system. The system 

is constructed using one or more pairs of single-mode optical fibers arranged in a counter-

propagating configuration with a small space between the cleaved fiber ends. Particles are 

trapped by a combination of optical scattering and optical gradient forces from a 980 nm laser, 

where proper alignment of the fibers is essential for stable performance. Uniform fiber alignment 

channels are burned into cast acrylic “plexiglass” using resistive wire. The optical fibers are 

introduced from the sides, stabilized using alignment rods, and glued into place. Observing the 

system through a microscope and monitoring laser light coupled through the trapping space 

verifies proper alignment. The resulting system can be scaled to support numerous independent 

optical traps, and it is small enough to fit into a standard microscope for trapped particle 

observation.  

 We investigate the light force dynamics acting on polystyrene microspheres in such a 

counter-propagating beam trap. Polystyrene particle measurements are a necessary foundation 

for future studies involving optical cell manipulation and sorting within a microlaboratory 

environment. To characterize the trapping forces of the system, we modulate the optical power in 

the trap in order to displace the microsphere from its equilibrium position. The subsequent 

motion of the particle allows us to calculate the effective spring constant of the trap from which 

trapping forces can be estimated. We observe spring constants in the range from 100-500 nN/m 

and forces of 9-60 pN. As an extension of this work, we have scaled the system into a multi-fiber 
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array of traps. This project sets the stage for simple and consumable microfluidic optical trapping 

technology. 
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Introduction 
 
 Optical trapping was first reported by Ashkin in 1970 and is an optical technique that 

utilizes radiation pressure from one or more laser beams on a microscopic particle [Ashkin 1970, 

Ashkin 1987, Constable 1993]. This radiation pressure exerted from laser light induces 

mechanical forces acting on a particle freely suspended in liquid or air. Micron-sized particles 

can be trapped in a single beam of light, as in optical tweezers [Ashkin 1986], or in a dual-beam 

laser trap that permits these particles to be manipulated in three dimensions [Constable 1993, 

Grover 2001, Kawano 2008, and Lincoln 2007]. Additionally, dual-beam trapping affords a non-

contact method to stably hold a single cell or small aggregate [Jess 2006]. 

 In 1970 Arthur Ashkin reports on the first dual beam optical traps comprised of two 

opposing laser beams focused with lenses [Ashkin 1970]. They trapped freely suspended latex 

microspheres in water within a glass cell, and later trapped particles in a gas [Ashkin 1970]. 

They observed that particles wandering near an incident laser beam are drawn in, and accelerate 

to a stable equilibrium point until coming to a stop when trapped [Ashkin 1970]. Ashkin’s initial 

experiments motivated fundamental insights about radiation pressure behavior and the existence 

of stable electrical potential wells in the trapping region. 

 Sixteen years later Ashkin develops the first single-beam optical trapping system for 

trapping dielectric microspheres in water [Ashkin 1986]. This system is comprised of a strongly 

focused beam exerting a powerful gradient force that is proportional to the beam intensity 

gradient [Ashkin 1986]. Ashkin demonstrates successful trapping of dielectric particles ranging 

from ~25 nm to 10 µm in size [Ashkin 1986]. 

 In 1993, Constable, et al. report on a dual-beam optical fiber trapping set-up in which two 

fibers are well aligned and oppose one another [Constable 1993]. Constable, et al. [1993] trap 
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polysytrene spheres of diameters ranging from 0.1 µm to 10 µm with single-mode fibers placed 

into alignment using simple, inexpensive laboratory materials to form a small trapping cell 

space. One trapping scheme involves two pigtailed diode lasers, one with a wavelength of 1.3 

µm and the other with wavelength of 0.831 µm [Constable 1993].  

 

Design considerations 
 Dual-beam optical trapping offers distinguishable benefits compared to other trapping 

techniques (see Fig. 1). In contrast to dual-beam trapping, optical tweezers utilizes the gradient 

force in all three dimensions for trapping particles formed by a tightly focused beam [Ashkin 

1986]. In order to achieve gradient force trapping with a single beam in three dimensions, one 

must use a tightly focused beam, and therefore, optical intensity is typically high in the trapping 

Fig. 1. Schematic of the three most 
common types of optical traps. (a)  Dual-
beam optical fiber trap with overlapping 
diverging beams emerging from the 
counter-propagating fibers. The trapped 
particle sits in the center of the trapping 
region (denoted by the dotted line). (b) 
Typical optical tweezer (single beam trap) 
with a very tightly focused beam. The 
beam waist is the region of strongest 
intensity and a high gradient force. A 
trapped particle sits slightly away from the 
beam waist due to the scattering force in 
direction of beam propagation. (c) Dual-
beam focused trap with two opposing 
beams that are tightly focused. The trapped 
particle sits in the beam waist. 

(a) 

(b) 

(c) 

Fig. 1. 
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region [Grover 2001]. Special care must be taken to insure cell viability since factors such as 

intensity, wavelength, and time span of exposure correlate to viability [Neuman 1999]. Viability 

of E. coli bacterial cells in optical tweezers have been investigated in the near-infrared range of λ 

= 790-1064 nm with continuous-wave (CW) lasers, with λ = 970 nm exhibiting the least damage 

(followed closely by 830 nm) on the cells [Neuman 1999 and Mirsaidov 2008]. Mirsaidov, et al. 

[2008] also perform viability assays on E. coli and find λ = 900 nm causes the least 

photodamage. They indicate that cell viability in CW traps depends little on wavelength, but 

rather depends on peak power, suggesting a detrimental threshold of energy (5 J) for E. coli 

[Mirsaidov 2008].  

 The absorption coefficient for water is a function of wavelength [Jonasz and Fournier 

2007]. For wavelengths ranging from 380 nm to 2.5 µm, our wavelength λ = 980 nm (or 10, 200 

cm-1) exhibits moderate absorption at 22oC with an absorption coefficient of 9 m-1 [Jonasz and 

Fournier 2007]. Due to the high water content of biological cells, this is an essential factor for us 

to consider when we pursue biological cell applications. 

 In comparison to other trapping schemes, the approach of Constable highlights some 

advantages of the dual-beam optical trap: 1) microscope viewing of trapped particles is 

conducted in a different plane from trapping; 2) no external optics are required for focusing 

beams; and 3) trapping is conducted with readily available continuous-wave diode lasers and 

alignment method utilizes inexpensive, consumable materials. Constable [1993] also mentions 

success with trapping living yeast, which at time, biological uses of optical trapping were only 

beginning. 
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Applications 
 Much attention has been drawn to the vast biological applications of optical trapping. 

Optical trapping has been used as a tool to measure piconewton-range forces in a variety of 

biological processes [Constable 1993, Ghosh 2006, and Prasad 2003] and for cell sorting 

applications [Applegate 2006 and Grover 2001]. More recently there is interest in developing 

practical, miniature cell particle sorting microfluidic platforms for medical diagnostics [Wang 

2005, Applegate 2006, Grover 2001]. Conventional fluorescent activated cell sorting (FACS) 

and flow cytometry techniques necessitate cumbersome instrumentation, and are not readily 

available for micro-scale studies [Applegate 2006]. Typical large-scale cell population 

instrumentation techniques often average readouts detailing information about groups of cells, 

often neglecting the dynamic behavior of individual cells within a large group [Eriksson 2007]. 

 Recently, the dual-beam trapping technique has been coupled with other tools such as 

Raman spectroscopy that provides chemical-specific information without the need for protein 

labeling [Jess 2006]. Jess, et al. have shown the implications of using a dual-fiber trap to record 

Raman spectra for large cells (human keratinocytes, human promyelocytic leukemia, and human 

cervical squamous carcima cells) and local parts of these cells to differentiate these various cell 

types [Jess 2006]. Chan, et al. [2009] have employed Raman spectroscopy to biochemically 

differentiate human embryonic stem cells (hESCs), human fetal left ventricular CMs, and hESC-

CMs, with up to 98% accuracy for human fetal CMs.  

 Another method for single-cell interrogation is total internal reflection fluorescence 

(TIRF) microscopy in combination with optical tweezers [Snijder-Van As 2009]. In this study 

binding dynamics of ALCAM-GFP (activated leukocyte cell adhesion molecule with green 

fluorescent protein tag) with its ligand CD6 immobilized onto a surface are investigated  
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[Snijder-Van As 2009]. Here the TIRF-Optical tweezers combination exemplifies a method to 

precisely control the timing and position of cell-substrate interactions to study key cell 

communication responses [Snijder-Van As 2009]. Since optical trapping affords good temporal 

and spatial control of cells, we may utilize our trapping system to study embryonic stem cell 

aggregates of precisely controlled sizes and study the role of cell-cell communication among 

aggregates that mediates differentiation [Park 2007]. Additionally, we aim to incorporate our 

optical system into a microfluidic system. Optical trapping combined with microfluidic devices 

realizes the ability to mimic cell-environment and cell-cell interactions that are present in vivo 

[Cran-McGreehin 2006, Enger 2004, and Lincoln 2007].  

 The current trend in microfluidics is leaning toward flexible and rapid processing 

techniques in order to meet the demands of rapid turn-around time and to lower the cost in 

developing these products [Malek 2006]. While polydimethylsiloxane (PDMS) is one of the 

most commonly used materials for constructing biochips due to its biological compatibility and 

flexible material nature, there is growing interest in fabricating chips from biocompatible, sturdy 

plastic [Becker 2001]. Plastic chips are less expensive and are more adapted to mass-production 

techniques than silica-based products [Malek 2006]. 

Trapping forces and scattering background 
 A laser beam interacting with a particle such as a dielectric sphere or biological cell 

exerts two major categories of forces objects such as dielectric spheres or biological cells 

[Ashkin 1987, Constable 1993, Guck 2005, Lincoln 2007]. The scattering force, acts in the 

direction of beam propagation and it is result of a change in momentum of photons scattering off 

the surface of the microsphere [Constable 1993, Grover 2001, Kawano 2008]. The other force 

acting on a trapped particle is the gradient force that acts proportional to and in the same 
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direction as the spatial gradient in light intensity [Constable 1993, Grover 2001, Kawano 2008] 

(see Fig. 2).  

 

Fig. 2. Schematic describing the concurrent scattering forces from each incident Gaussian beam 
in the direction of light propagation and two gradient forces perpendicular to light propagation. 
A trapped spherical particle experiences a net force of zero. 
 

 

 

 The gradient force arises from the transfer of momentum between photons and the 

particle as light passes through a transparent or near-transparent object [Constable 1993, Grover 

2001, Kawano 2008, Guck 2005]. Photons with a given momentum are refracted through the 

dielectric object with a given index of refraction greater than that of the outside medium [Grover 

2001, Guck 2005]. For this reason, a polystyrene microsphere (of refractive index n = 1.59) 

optically trapped in water (n = 1.33), acts as a focusing lens for the incident beams [Ashkin 

1970]. The change of momentum in the refracted photon causes an equal and opposite change in 

the momentum of the object, imparting a force on the object equal to the net rate of change of 

momentum of all refracted photons [Grover 2001, Guck 2005].  

When the particle is situated at intersecting divergent laser beams, some of the incident 

light is refracted as it passes through the particle and the rest is reflected [Constable 1993 and 
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Grover 2001]. The photons of the refracted light from a particle emerge with a different 

momentum from the incident momentum, imparting a change of direction for the particle, and 

creating a net gradient force that pulls the particle to a beam region of increasing intensity 

[Constable 1993, Grover 2001, Lincoln 2007, Kawano 2008]. On the contrary, the reflected light 

from the net scattering forces exerts a “pushing force” on the particle in the opposite direction 

from the light refraction “pulling force” [Constable 1993, Grover 2001, Lincoln 2007, Kawano 

2008] (see Fig. 3). The net effect of the two forces is a stable trapping region in the center of the 

two opposing laser beams [Lincoln 2007]. The net gradient force is of greater magnitude than 

scattering forces [Lincoln 2007]. Another difference is gradient forces are additive, whereas the 

opposing scattering forces cancel for a stable trap [Lincoln 2007]. As first demonstrated by 

Ashkin in 1970, if a beam hits a microsphere off-center, the sphere is restored back into the beam 

axis and accelerated in the direction of light incidence [Ashkin 1970]. 

 

 

 

 

 
 
. 
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Fig. 3. Illustrations of two counter-propagating divergent laser beams with scattering and 
gradient forces acting on a trapped spherical particle. Forces incident on the particle are depicted 
by light rays (F1, F2, F3, and F4) incident on a particle. The forces are integrated over the entire 
surface, inducing a net force equivalent to 0 when the particle is stably trapped. (a) Two 
opposing optical fibers with diverging overlapping beams depicting the trapping region for a 
particle. (b) Interactions of scattering and gradient forces on a stably trapped spherical particle. 
The scattering forces cancel one another (net Fscatt = 0) and the gradient forces are additive. 
Refraction vectors (due to gradient force) and reflection vectors (due to scattering forces) are 
shown. (c) Schematic of a spherical particle displaced from center of the trap with gradient force 
pulling the particle back into the trap. 
 
 
 
 
 

(a) 

(b) 

(c) 
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Scattering theory 
Before discussing scattering theory and relative mathematical implications, a more 

qualitative explanation for scattering phenomena will be introduced. When an electromagnetic 

field illuminates a dielectric particle, electric dipole moments are induced throughout the 

particle, causing electronic polarizability [Bohren and Huffman 2004, Thomas 2006]. These 

dipole moments oscillate at an equivalent frequency of the incident field, and emit secondary 

radiation wavelets in all directions (all angles of θ) [Bohren and Huffman 2004]. The net 

scattered field is mathematically determined by superposing these scattered wavelets and 

accounting for phase shift variations [Bohren and Huffman 2004]. Phase relations heavily 

depend on parameters such as particle material and scattering direction; the geometrical factors 

of particle size and shape also affect scattering phase behavior [Bohren and Huffman 2004]. Due 

to the symmetry of the microsphere, the scattered field is independent of incident light 

polarization state [Bohren and Huffman 2004]. 

 Since the early 1900s, thorough analyses detailing the theory of absorption and scattering 

by small spherical particles have been demonstrated [Bohren and Huffman 2004]. Among the 

scientists who worked on the sphere problem were Gustav Mie, Lorenz, and Peter Debye, who 

all sought to develop mathematical approximations and theories to explain absorption and 

scattering effects of a spherical particle with an arbitrary radius and refractive index [Bohren and 

Huffman 2004]. The availability of computers in later years permitted a convenient means to 

perform detailed computations to explain the complex physical interaction of an electromagnetic 

wave with a sphere. Although involved explanations of these rigorous calculations are beyond 

the scope of this thesis project, expressions for absorption and scattering cross sections will be 

discussed as well as the methods used for calculating Mie scattering coefficients for this project.   
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 Our system parameters satisfy Mie scattering conditions for the wavelength (λ = 980 nm) 

and microsphere sizes (d = 6 µm and 10 µm) we employ. Details about Mie particle scattering 

dynamics for our system will be discussed later. In brief, the Mie scattering regime is satisfied 

for particle sizes larger than the incident wavelength, and when these particles are optically 

trapped, the gradient force tends to draw objects toward regions of greater light intensity 

[Constable 1993, Grover 2001, Guck 2005].  

 Light carries both momentum and energy in the direction of its propagation due to 

photons acting as a continuous stream of particles [Bohren and Huffman 2004]. Thus, incident 

light exerts a force on a scattering particle called radiation pressure [Van de Hulst 1981, Bohren 

and Huffman 2004]. For incident light with a certain intensity Io on an isotropic particle of a 

cross sectional area G = πa2, the force acting on the particle due to radiation pressure is F = 

Io(G/c)Qpr, where c is the velocity of light [Van de Hulst 1981]. Qpr is defined as the efficiency 

factor for radiation pressure which is a ratio defining the transfer of momentum to particle from 

the initial electromagnetic radiation momentum [Van de Hulst 1981, Bohren and Huffman 2004]. 

 Spherical particles of geometrical cross section G scatter light equivalent to that of 

incident light on an area GQsca
 and can partially absorb incident radiation on an area GQabs, 

where Qsca and Qabs are scattering and absorption coefficients, respectively  [Burns 1979, Van de 

Hulst 1981]. These coefficients depend on radiation wavelength and relate to energy scattered 

and absorbed by the particle. The relationship among the efficiency factors for extinction, 

scattering, and absorption is summarized as: Qext = Qsca + Qabs [Van de Hulst 1981]. Fully 

absorbing particles have Qext ≠ Qsca  [Van de Hulst 1981] and Qpr = Qabs = 1 [Burns 1979]. 

Complete transmission (i.e. no particle, Qtrans = 1) occurs when Qpr = 0, whereas total absorption 

is equivalent to Qpr = 1 [Burns 1979].  
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 For non-absorbing spheres, Qpr  = 1 – g, where g is the asymmetry parameter defined as  

<cos θ>, a weighted average of scattering angles θ due to elastic scattering occurring at some 

distribution of angles [Bohren and Huffman 2004, Van de Hulst 1981, Irvine 1965]. As stated by 

Irvine [1965], the asymmetry factor characterizes forward-to-backward scattering from a 

particle. In cases of isotropic scattering (i.e. uniform scattering in all directions), <cos θ> = 0 

[Bohren and Huffman 2004, Shah 1991]. The asymmetry parameter <cos θ> also equals zero 

when scattering occurs perpendicular (θ = ± 90°) to the direction of incident radiation (θ = 0°) 

[Shah 1991]. A dominant forward scattering (θ = 0°) insinuates a positive asymmetry parameter, 

whereas a dominant back scattering (θ = 180°) defines a negative asymmetry parameter value 

[Bohren and Huffman 2004]. Values of Qpr and <cos θ> are related to the normalized scattering 

and extinction cross sections Qsca and Qext by Qpr = Qext — < cos θ> Qsca [Irvine 1965]. 

 The total momentum transfer due to radiation pressure acting on a trapped particle must 

be conserved [Bohren and Huffman 2004]. A scattered beam exerts a forward momentum 

equivalent to Qsca <cos θ> in the forward direction [Burns 1979]. Since diffraction does not 

contribute to momentum transfer for a particle, the phenomenon of scattered radiation is defined 

by Qsca + Qabs
 + Qtrans = 1 [Burns 1979]. 

 The complex index of refraction is defined as m = m' + im" where m' is the real refractive 

index for phase velocity, im" indicates the imaginary refractive index component [Bohren and 

Huffman 2004, Mätzler 2002]. The refractive index ratio, m, is equivalent to N1/N, the refractive 

index of the particle relative to the surrounding medium [Bohren and Huffman 2004]. This 

research project assesses spheres of non-absorbing (dielectric) material, meaning the sphere is 

not electrically conductive and the refractive index ratio, m, of the material is a real constant as 

discussed by Van de Hulst [1981]. A real value of m indicates no absorption, so we know 
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beforehand that Qsca = Qext. In contrast, for absorbing particles, Qsca ≠ Qext [Van de Hulst 1981]. 

In this experiment, plain micron-sized polystyrene spheres have a real refractive index of 1.59 

and are assumed to be non-absorbing.  

 In a physical sense, the linearly polarized plane wave scattering process from a sphere 

and all encompassing electromagnetic wave interactions are interpreted with mathematical 

approximations. In order to accurately approximate scattering amplitude and phases, it is 

important to identify the correct scattering model for calculation purposes. Rayleigh scattering 

and Mie scattering are the most general scattering regimes. Both of these regimes have different 

experimental assumptions, including particle size-to-wavelength boundary conditions and media 

refractive indexes to be utilized in an experiment [Van de Hulst 1981]. As explained by Van de 

Hulst [1981], when considering the rigorous formulae of scattering theory, three limiting size 

parameters are fundamental for the theoretical m-x scattering domains, where x = 2πa/λ, a is the 

particle radius, and λ is defined as incident wavelength: 1) the size of the scattering sphere, x, 

can have values ranging from 0 to ∞, with scattering patterns gradually changing for smaller 

spheres to larger spheres; 2) the refractive index, m, which can have values between 1 and ∞, 

(when m = ∞, particle is total reflector); and 3) phase shifts of a light ray passing through the 

sphere along its diameter is 2a · (m – 1) · 2π/λ = 2x(m – 1). As discussed by Van de Hulst, there 

are six boundary regions in the m-x domain that inherently approximate scattering behavior 

[1981]. 

 The first scattering domain is the Rayleigh regime that holds true for particles of small 

size (i.e. atoms and small molecules) in comparison to the applied wavelength [Thomas 2006]. 

Some fundamental conditions for the Rayleigh regime are: ⎜m – 1⎜<<1 and 2x ⎜m – 1⎜ << 1 

[Van de Hulst 1981]. Rayleigh scattering has greater forward scattering than backscattering [Van 
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de Hulst 1981]. Particles experiencing Rayleigh scattering (i.e. small x values) produce 

secondary wavelets with minimal phase shift [Bohren and Huffman 2004]. A central incident ray 

coming into contact with the sphere undergoes a phase lag, ρ, after passing through the sphere 

due to the refractive index boundary (e.g. water to polystyrene material) [Van de Hulst 1981, 

Jonasz and Fournier 2007]. The phase shift is expressed as ρ = 2x (m – 1) [Van de Hulst 1981] 

and typically the condition ρ < 0.3 holds true for Rayleigh scattering [Barth 1984]. While smaller 

particles exhibit less scattering intensity and have characteristically large scattering angles, larger 

particles scatter greater amounts of radiation with smaller angles [Barth 1984]. 

 In contrast to Rayleigh particles, larger particles (compared to incident wavelength) 

scatter wavelets that undergo constructive and destructive interference [Bohren and Huffman 

2004]. The Mie scattering regime generally holds true as particle size increases from 1/10 to 10 

times the incident wavelength [Barth 1984], where x >> 1 [Van de Hulst 1981]. The Mie 

scattering theory is a general solution to Maxwell’s equations for spherical particles of arbitrary 

size and refractive index [Thomas 2006]. Other fundamental characteristics for Mie scattering 

are highly pronounced changes in phase shift [Van de Hulst 1981], where ρ ≈ 1 satisfies Mie 

scattering conditions [Barth 1984].  

 The Mie theory more thoroughly describes the absorption and scattering modes of 

electromagnetic waves interacting with a sphere [Bohren and Huffman 2004]. Scattered waves 

from a homogenous dielectric spherical particle are described as a superposition of normal 

electromagnetic modes for spherical harmonics, each denoted by the coefficients an or bn
 which 

represent two of four linear simultaneous equations [Bohren and Huffman 2004]. The other two 

Mie coefficiencts, cn and dn, relate to the electromagnetic field inside the incident particle 

[Bohren and Huffman 2004]. Refer to Bohren and Huffman [2004] for a detailed overview of 
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these four coefficients. The scattering coefficients an and bn are important quantities to 

determine, since other values including efficiency cross section terms and scattering matrix 

elements can be directly solved from these coefficients [Bohren and Huffman 2004].  

 For our experimental investigation we calculate the phase shift, ρ, for our trapped 

polystyrene microspheres with size parameters x = 19.2 (sphere radius = 3 µm) and x = 32.1 

(sphere radius 5 µm): ρ = 7.7 (for x = 19.2) and ρ = 12.8 (for x = 32.1). This indicates ρ directly 

correlates to microsphere size; that is, more scattering phase interference is generally present. 

Phase shift condition limits do not denote exact scattering regime transitions—rather, they 

provide guidelines for when these regimes are applicable [Barth 1984]. Furthermore, our particle 

size parameters in comparison to the incident wavelength (λ = 980 nm) are considered to be 

intermediately large according to regime standards described by Van de Hulst [1981]. For this 

optical trapping investigation, two microsphere sizes with radius a = 3 µm and = 5 µm are 

trapped with infrared light with λ = 980 nm. When calculating the size-wavelength parameter, x, 

for our experiment, we arrive at x = 19.2 and x = 32.1 for the 3 µm and 5 µm particle sizes, 

respectively. Although Mie theory is typically for “very large” spherical particles such that x >> 

1, after careful study of various scattering regimes and their conditions, we conclude that the Mie 

theory most closely appropriates the scattering behavior of our optical trapping system. 

 Furthermore, our particle material, polystyrene, has a refractive index of 1.59, which 

follows the assumption for m values very close to 1. Our trapping experiments are conducted in 

water (n = 1.33), which cause the incident optical rays to cross a water-polystyrene boundary 

with two different refractive indexes. As a result, the optical rays refract, or internally bend, 

toward the optical normal through the sphere. Since the refractive index ratio of polystyrene to 

water (m = 1.2) is just above unity value of 1, incident rays experience little deviation at the 
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media boundary [Van de Hulst 1981]. Geometrical ray optics explains these ray interactions 

within the sphere, including refraction [Van de Hulst 1981].   

 Mätzler’s Mie coefficient MATLAB programs [2002] have been quite beneficial in our 

project to accurately calculate scattering efficiency factors, including the most relevant, Qpr, the 

efficiency factor for radiation pressure. The factor Qpr is defined in the spring constant 

expression (Eqn. 1) and scattering force expression (Eqn. 2) both of which will be calculated and 

discussed in later detail. Mätzler’s MATLAB programs are heavily based on quantum mechanics 

and electromagnetic theory for particle scattering theory. These MATLAB programs contain 

supplementary material that summarizes some of the most referenced textbooks in particle 

scattering theory, including those of Van de Hulst [1981] and Bohren and Huffman [2004]. 

Furthermore, Mätzler includes comments in most sections of his MATLAB program code that 

often reference page numbers in Bohren and Huffman’s textbook. We will demonstrate how 

Mätzler’s Mie scattering coefficient MATLAB program accurately determines the efficiency 

cross sections Qext, Qsca, Qabs, Qpr, and the asymmetery parameter < cos θ>. 

 Although we conducted minor modifications to Mätzler’s original set of programs for 

ease of use, we have verified the validity of these modified programs by arbitrarily reproducing 

different extinction curves based on Mie’s formulae found in Irvine’s article [1965] and Van de 

Hulst’s textbook. In Fig. 4, we have reproduced efficiency curves using stated parameters 

utilized to plot extinction curves in Irvine’s article [1965, Fig. 1 in article]. By comparing the 

extinction curve plots, we can see that Mätzler’s program accurately calculates efficiency factors. 
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Fig. 4. Here we use Mätzler’s MATLAB Program to plot Mie scattering curves. We have tested 
the accuracy of Mätzler’s program by reproducing curves from Irvine [1965, Fig. 1 in the article] 
of extinction coefficient Qext, asymmetry factor <cos θ>, and radiation pressure coefficient Qpr 
for dielectric spheres with m = 1.20. Calculations conducted for size parameter x = 0.5 to 30. Our 
reproduced plot of the coefficient curves created on MATLAB is shown below.  

 

 

 Once the MATLAB particle tracking is complete, the data comprised of pixel position 

and time stamps are uploaded into IGOR PRO software for curve fitting and further analysis of 

time constants. As previously explained in the experimental methods section, the time constant is 

used to calculate spring constant values for both increase and decrease exponential curves. One 

term in the spring constant expression (Eqn. 1) and scattering force expression (Eqn. 2), radiation 

pressure efficiency coefficient, Qpr, is calculated with Mätzler’s Mie scattering coefficient 

MATLAB program. After input of experimental parameters into the program (sphere radius, 

surrounding medium refractive index, particle refractive index, and incident wavelength), an 

algorithm returns all Mie scattering efficiencies calculated from a matrix of the four scattering 

<cos θ> 

Qpr 

Qext 
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coefficients: an, bn, cn, and dn with infinite n series from n = 1 truncated to nmax = x + 4x1/3 + 2 

(proposed by Bohren and Huffman 2004), where x is the size-wavelength parameter (see Fig. 5). 

Refer to Appendix for Mie scattering coefficient program. 
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Fig. 5. Mätzler’s Mie scattering MATLAB program is utilized to calculate the radiation pressure 
coefficient Qpr. Here we show the scattering efficiencies and Mie coefficients we calculate for 
our trapping experiment of polystyrene spheres (d = 6 µm and 10 µm) in water. In addition to 
Qpr, Mätzler’s program returns all other Mie efficiencies: Qext (extinction), Qsca (scattering), Qabs 
(absorption), Qb (backscattering), <cos θ> (asymmetry parameter), Qb/Qsca, and Qpr (radiation 
pressure). Mie coefficients an, bn, cn, dn are also returned with the infinite series truncated to nmax 
as formulated by Bohren and Huffman (1983). Mie coefficients are returned in a series of matrix 
columns and rows for each n term, where each row relates to an, bn, cn, and dn in sequential order. 
Columns refer to coefficient groups for each n term. We have shown coefficients for the first 
three n terms only. (a) Mie scattering calculations for plain polystyrene microsphere d = 6 µm. 
(b) Mie scattering calculations for plain polystyrene microsphere d = 10 µm. 
 

(a) 

 

(b) 
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Mechanics of trapped particles 
 Constable’s work is a motivation for this project, and has been fundamental for 

calibrating and characterizing our basic dual-beam optical fiber trapping system. Mathematical 

approximations for determining the spring constant (κ) and scattering forces will be referenced 

throughout this work. For incident light on a dielectric sphere of a given area being trapped with 

two counter-propagating beams the spring constant, κ, is given by: 

 

κ =16π 2aS
P1Qpr,1ω0,1

2

λ1
2(S2 + 4d1

2)2 +
P2Qpr,2ω0,2

2

λ2
2(S2 + 4d2

2)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (Eqn. 1) 

 

where a = 2R2 /c  (the incident geometrical cross-sectional area of the sphere), and R = sphere 

radius (R = 3 µm and R = 5 µm); c = velocity of light in a vacuum; P = incident power; 

d−1 = λ /(πω0
2), where λ = incident laser wavelength (980 nm) and ωo = Gaussian beam waist (5 

µm); S = fiber separation (typical range 50 µm to 250 µm); Qpr = radiation pressure coefficient 

which was calculated from C. Mätzler’s “MATLAB Functions for Mie Scattering and 

Absorption” program (2002) to be discussed in detail later. 

 The equation for the total scattering force acting on a trapped particle is given by: 

Fs =
aP1Qpr,1 /ω0,1

2

1+ d1
−2(S /2 + z)2 −

aP2Qpr,2 /ω0,2
2

1+ d2
−2(S /2 − z)2   (Eqn. 2) 

 

where z is the distance from the center region between the fibers (i.e. z = 0 corresponds to  the 

center point). 
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 An optically trapped microsphere in the dual-beam fiber set-up is a classic example of 

Hooke’s Law (F = – κ∆x) for springs in classical kinematics, where F is the restoring force due 

to a displacement of a particle from its equilibrium position, ∆x. The spring constant, κ, is a 

measure of stiffness for the optical trap. A trapped microsphere at rest with Δx = 0 (static 

equilibrium) will remain at rest (net scattering force = 0). When one of the laser power outputs is 

changed, the shape and location of the optical trap changes. At that instant there exists an 

unbalanced force on the trapped microsphere given by Hooke’s law where Δx is equal to the shift 

in the equilibrium position of the optical trap. For example, increasing the output power 

emerging from the laser on the left results in the equilibrium position of the trap shifting to the 

right. The stiffness of the trap changes as well. The particle experiences a restoring force that is 

proportional to the displacement. 

 The interaction of laser forces propelling a polystyrene sphere through water is modeled 

as a highly overdamped system [Constable 1993]. The equation of motion is expressed as: 

∑ −−== xxcxmF κ&&& . The drag coefficient, c, is given by Stokes’ Law: c = 6πμr  where μ is the 

dynamic viscosity of water and r is the radius of the sphere [Grover 2001 and Deng 2007]. At the 

end of the particle’s motion, the velocity reaches 0. Over damping conditions are satisfied when 

the damping parameter c is larger than the angular frequency, ωo =
κ
m

, where κ is the spring 

constant and m is particle mass [Fowles and Cassidy 2005]. Equivalently, the parameter 

γ 2 −ωo
2  > 0, where γ  = c/2m is satisfied for an overdamped system [Fowles & Cassidy 2005]. 

The time constant, τ, is determined from the exponential fit of a microsphere’s position versus 



 28

time plot when it is displaced from equilibrium. The spring constant, κ, is then determined from 

the following equation: κ =
6πμr

τ
. 

 Theoretical plots (Fig. 6) of spring constant as a function of fiber separation for various 

power output setting highlight the range of spring constant values that can be obtained for these 

controllable parameters. Interestingly, it appears that the peak at a fiber separation of 100 μm 

gives rise to the largest spring constant values for both balanced and unbalanced powers. We 

estimate that this ideal 100 μm separation for achieving the highest spring constant values is due 

to the near field beam properties, as well as the characteristic beam divergence angle for our 

incident wavelength (λ = 980 nm) at a certain distance from the fiber end. Thus, it is presumed 

the curve profile shapes and peak spring constant values are characteristic of incident 

wavelength. This finding indicates that our system can be tuned to achieve desired spring 

constant values by careful control of power settings and fiber separations.  
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Fig. 6. Theoretical plots illustrating spring constant as a function of fiber separation for various 
power settings for left and right outputs (P1 and P2, respectively) illustrated by different curves. 
Curves were plotted according to the spring constant expression (Eqn.1). (a) Three curves 
demonstrate a broad range of fiber separations for balanced output powers (P1 ≈ P2). (b) Six 
curves demonstrate a broad range of fiber separations for both balanced and unbalanced output 
powers. 
 
Figure Legend: 
o : P1 = 0.049 W and P2 = 0.045 W (Balanced Powers); x : P1 = 0.044 W and P2 = 0.041 W 
(Balanced Powers); ∇ : P1 = 0.024 W and P2 = 0.022 W (Balanced Powers); * : P1 = 0.069 W 
and P2 = 0.045 W (Unbalanced Powers); ∆ : P1 = 0.069 W and P2 = 0.041 W (Unbalanced 
Powers); + : P1 = 0.044 W and P2 = 0.022 W (Unbalanced Powers) 
 
 

 
 
 
 
 
 
 
 
 

(a) 
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 In order to further characterize our trapping system, we estimate the net scattering force 

acting on a trapped microsphere within a dual-beam fiber trap, as well as map the potential 

energy well present in the trapping region. Force quantities and potential energy values are 

dimensionless, and are solely meant to illustrate their relative profile shapes rather than define 

specific values. These mappings are based on trapping with balanced powers, laser wavelength λ 

= 980 nm, and a fiber separation of 100 μm. As illustrated in Fig. 7a, the net scattering force at 

50 μm is zero for a microsphere in the center of trap. As expected, the scattering force profile 

reflects Gaussian behavior, such that the intensity drops off exponentially with increased 

distance from the fiber end. Also note the fiber separation region at ~40 μm to 60 μm: here the 

system forces behave in a linear fashion for a given microsphere displacement from the trapping 

(b) 
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center. Fig. 7b depicts the potential energy profile due to the scattering forces acting on a trapped 

microsphere for a balanced power scenario. The zero potential energy location is chosen to be 

the end face of one of the fibers. The minimum potential energy is located at 50 μm from the 

fiber end, corresponding to a stable trap in the center of the trapping region. 
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Fig. 7. (a) Theoretical plot of net scattering force as a function of distance from fiber end for a 
microsphere trapped in a dual-beam fiber trap. (b) Theoretical plot depicting the potential energy 
well for our dual-beam trap. 
 

(a) 

 

 

(b)  
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Methods 

Basic scheme  
 Our dual-beam fiber configurations have an incident wavelengths of λ = 980 nm and do 

not use external focusing lenses or mirrors. The configurations consist of two overlapping 

diverging beams with Gaussian intensity profiles in the trapping region [Constable 1993]. 

Although we will need to perform cell viability tests for our trapping set-up, we anticipate our 

dual-beam trap offers the benefit of reduced intensity in the trapping region due to the lower 

power density in the trapping region [Grover 2001].  

 The optical trapping configuration uses simple, non-consumable materials and 

communication-grade diode lasers. Here we report on our initial trapping design with XYZ 

translational optical stages and highlight the calibrations we perform on the system. Our latest 

trap-on-a-chip approach affords a unique method to optically align counter-propagating optical 

fibers. As an extension of our fiber-pair configuration, we have exploited 2- and 4-fiber arrays of 

aligned traps. 

 In this experimental investigation, we design a trapping scheme in which two opposing 

beams of λ = 980 nm propagate through aligned single-mode optical fibers. Geometric optics is 

suitable to model the ray dynamics of our system, such that the two laser beams are treated as an 

infinite number of optical rays in the direction of beam propagation. The dual-beam optical 

trapping field is modeled as two opposing Gaussian beams such that light from each fiber 

diverges at angle θ with increased distance from the beam waist, ωo, where Z is the distance from 

the fiber end [Hecht 2002]. For our trapping set-up, the highest beam intensity is situated at the 

beam waist, the point at which the beam emerges from the fiber. [Hecht 2002]. As illustrated in 

Fig. 8, the Rayleigh range, ZR, is defined as the distance along a propagating Gaussian beam 
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where the radius increases by a factor of 2  and the beam cross-sectional area is doubled [Hecht 

2002].  

 

Fig. 8. Schematic illustrating the parameters of a Gaussian beam emerging from an optical fiber. 
The beam exits from the single-mode fiber with wavelength λ propagating along the z-axis. The 
beam diverges with angle θ along the beam path. Transverse to the direction of propagation the 
light has a Gaussian intensity gradient profile such that the highest intensity I(r) occurs at the 
beam waist, ωo, the initial point at which the beam emerges from the fibers. 
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 In our trapping experiment, a Gaussian beam of 980 nm wavelength light propagates 

through single-mode optical fibers with beam waist radius, ωo, of 5 micrometers and numerical 

aperture of 0.14, as per manufacturing specifications (Fiber Instrument Sales, Oriskany, NY). 

We estimate the largest trapping area to be 226 µm2 for a fiber separation of ~160 µm.   

 Our basic dual-beam optical trap set-up involves two opposing fiber-coupled beams that 

are manually aligned with respect with one another. The center region between two separated 

fibers (~20 µm to ~200 µm) provides a trapping space for micron-sized particles. An optically 

trapped particle in a Gaussian beam behaves like a particle in a harmonic potential well [Kawano 

2008]. Single or multiple particles can be optically trapped, and within the trapping field they 

rearrange to sit in low potential energy wells [Singer 2003]. In the longitudinal (z) direction, the 

minimum in potential energy corresponds to the minima of beam intensity as a function of z 

[Singer 2003, Kawano 2008]. In the transverse (x-y) direction, the minimum in potential energy 

is the result of induced electrostatic dipole moments of a particle due to a light intensity gradient 

[Ashkin 1983]. 

The trap includes two fiber pigtailed continuous-wave diode lasers (λ = 980 nm, Agere 

Systems SL980, Allentown, PA) (Fig. 9). Optical trapping of polystyrene microspheres is 

conducted using light emerging from two bare single-mode optical fibers (SMF28E+, Fiber 

Instrument Sales, Oriskany, NY), with each fiber held in place by a fiber clamp on an XYZ 

translation stage (NanoMax TS 3-Axis Flexure, Thorlabs, Newton, NJ).  
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Fig. 9. Schematic and picture of a dual-beam trapping set up. (a) Microsphere trapping is 
conducted with two bare, counter-propagating single-mode fibers that are aligned with two 3-
axis translation stages. The bare fibers are separately pig-tailed to two 980 nm diode lasers. 
Microspheres are trapped in water solution on a microscope slide. Real-time trapping is viewed 
from a microscope/CCD camera system and images are captured on the data acquisition 
computer. (b) Picture of trapping design equipped with XYZ stages: 3-axis translational stage 
(left) and multi-axis translational stage with angle alignment capabilities (right).  The trapping 
region is indicated by the arrow. 

 
 

 

 

Trapping 
region 

(a) 

(b) 



 37

The fibers are manually positioned on the translation stages to maximize power coupling into 

one another as measured on an optical power meter (Orion-PD-ROHS, Ophir-Spiricon Inc., 

Logan, UT). This power coupling approach is taken to assure that the trapping beams are exactly 

counter-propagating (Fig. 10). Variations of misalignments can occur: translational 

displacements as well as rotational misalignments in which the fiber faces are skewed from one 

another. Excellent alignment (~2 ± 1 µm) is extremely critical in order to achieve steadily 

trapped microspheres. Translational misalignments (to be discussed in detail later) can induce 

oscillatory particle motion within the trapping region. Increasing the power outputs in both 

directions and adjusting the fiber separations also enhanced particle stability in the trap.  

Particles 
Plain polystyrene microspheres (10.2% (% w/v) suspension in DI water + 0.1% SDS, 

Bangs Laboratories, Inc., Fishers, IN and Corpuscular, Inc., Cold Spring, NY) of diameters 6 µm 

± 0.37 µm and 10 µm are trapped in water solution (~0.005 g/mL, 0.5% w/v bead solution) on a 

small microscope slide placed under the aligned fibers. Fiber separations for trapping ranged 

from approximately 50 μm to 250 μm. Trapping powers range from the minimum of ~4-7 mW to 

a maximum of ~180 mW from each laser. The refractive index of the spheres is equivalent to 

1.59, and is assumed to remain constant throughout the duration of the project. Particle 

concentration solutions utilized were 0.5 % w/v and 5% w/v. Through trial-and-error basis, the 

lower concentration of 0.5% microspheres freely floating in solution provided an ideal amount of 

spheres per volume of solution for single-sphere trapping studies. We find that higher 

microsphere concentrations increase the probability of multiple spheres falling into the trapping 

region, inducing uncertainty into damped motion calculations. Thus, at lower solution 
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concentrations single microspheres are trapped. Microsphere masses are calculated to be: 

1.13x10-10 g (6µm spheres) and 5.24x10-10 g (10µm spheres).   

Alignment procedure 
 To increase efficiency of the fiber alignment process, we used optical couplers (AC 

Photonics, Inc., Santa Clara, CA) with 50% coupling ratio spliced into the system. As shown in 

Fig. 10, the transmitted power from one fiber to the other can be maximized by monitoring the 

power on port “b” of each coupler while continuing to adjust alignment of the translation stage. 

This alignment method also showed to be beneficial in steadying the motion of a trapped 

microsphere. 

 
Fig. 10. Basic fiber alignment technique via maximizing optical coupling. Laser light from Laser 
2 is coupled into Fiber 1 (or vice versa) and power output is maximized to assure superb fiber 
alignment. 
 

 

 

 One other source of error is the uncertainty associated with misaligned fibers, causing 

trapped spheres to be unstably trapped. As discussed earlier, manually aligning fibers with the 

XYZ translational is quite tedious, taking as long as a few hours to align. Power output could 
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then be measured from the back end of one of the fibers to maximize coupling. Excellent 

alignment (± 1 µm) is required. Poor alignment causes the trapping potential energy surface to be 

misshapen. Rather than containing a single, well-formed concave potential well, misaligned 

fibers transform the depth of the well, causing it to become more shallow, or even cause two 

small potential wells to form. Effects of misaligned fibers can be seen in Fig. 11, when the 

trapped sphere sinusoidally oscillates within the trap. Less subtle fiber alignments sometimes 

cause two or three spheres to rotate and switch positions with one another sporadically, coming 

in an out of focus with respect to the microscope. These spheres appear to be held weakly within 

the trap. It is often possible to finely tune alignment while microspheres are still held in the trap; 

tweaking fiber alignment can drastically improve the steadiness of a trapped sphere. A 

representation of trapped particle motion when the optical fibers are transversely misaligned is 

shown in Fig. 11. As can be seen, the particle undergoes a rhythmic sinusoidal motion within the 

trap. 
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Fig. 11. Example of microsphere (d = 10 µm) motion in trap when fibers are slightly misaligned 
in two directions. 
 

 

Experiment control and video acquisition 
 Trapped stationary and moving particles are imaged via a microscope (Thales Optem, 

Inc., model: Zoom 125, Fairport, NY) with 10x/0.28 N.A. and 5x/0.14 N.A. objectives 

(Mitutoyo). Videos are captured at 30 frames per second from a digital color CCD camera 

(Industrial Vision Source, model: CCAM Series, Farmers Branch, TX) connected to the 

microscope. Images and videos were viewed via the video capturing software (Hauppage 

WinTV-HVR 950, Hauppauge, NY). 

 During the trapping process, it can be difficult to determine whether one or two 

microspheres are trapped because the trapped spheres scatter the 980 nm incident laser light 

which appear as intense blue scattered light when viewed with the CCD microscope camera. To 
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circumvent this problem, an optical filter (type: SPF 900, CVI Melles Griot, Albuquerque) is 

placed over the microscope lens to filter out the scattered light. Using this method we can verify 

that only one microsphere is in the trap. 

 A suitable frequency of power modulation from one laser channel was determined to be 

0.17 Hz. Power modulation amplitude is an input parameter that repeatedly changes the initial 

power from the base power. To verify that the laser powers were being modulated in a periodic 

square-wave fashion, we observed the power modulation on an oscilloscope (LeCroy 

WaveSurfer®, model: Xs Series, Chestnut Ridge, NY) with a fast photodiode (Electro-Optics 

Technology, Inc., ET-2030 Silicon PIN Detector, Traverse City, MI). Oscilloscope traces 

confirm that the diode lasers exhibit the expected minimal amount of background noise. We also 

confirm that both diode laser powers are being modulated instantaneously, as seen by the vertical 

edges of the pulse trains. This verifies that when a trapped microsphere is displaced from its 

equilibrium position via a sudden change in laser power, the microsphere exponential trajectory 

is truly a response to the power change. The fastest frequency that could be utilized in our 

LabVIEW (version 8.2, National Instruments, Austin, TX) rectangular modulation program was 

4 KHz. When the frequency setting was set at a faster rate, the laser modular controller does not 

respond properly.  

The effectiveness of the program strongly depends on the illumination of the trapped 

microsphere, particle focus on the camera, particle size, and most importantly, the velocity of the 

moving sphere. One limitation of the system is the relatively slow frame rate (30 fps) of the 

image acquisition system that restricts the number of positions that can be tracked per time. 

Depending on particle size and amount of sphere displacement, the shortest time constant (of the 
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exponential sphere trajectories is estimated to be approximately 0.13s to 0.17s that can be 

accurately tracked with our CCD camera system.  

 Video clips in mpg format (30 sec. to 60 sec. long) of microsphere oscillations within the 

trap are recorded. The MATLAB particle tracker program is set to analyze 30-second intervals of 

particle motion. The particle tracking program, written by Blair and Dufresne [2008], allows the 

position of one microsphere to be tracked as a function of time. The particle tracking program 

can track one trapped microsphere; it is presumed that having multiple trapped microspheres will 

introduce uncertainty to the spring constant calculations. Microsphere positions as a function of 

time are extracted from videos using the particle tracking MATLAB program and utilizing a 

digital CCD camera system recording at 30 frames/second. Results indicate that particle tracking 

is achievable with sub-pixel resolution (1 pixel ≈ 1 μm). In order to explore the underlying 

trapping mechanics, including spring constants and restoring forces, the microsphere motion is 

fitted to an exponential function to reflect an overdamped system. 

 The MATLAB particle tracking program is capable of reading .mpg format video clips. It 

analyzes the movie as a series of pictures via functions that track particle position (in pixels) 

versus time in seconds. A summary of the MATLAB particle tracking functions is described in 

Fig. 12. The main mpg tracking program calls eight other MATLAB files, and each file has a 

different role in the process particle tracking. The program is comprised of carefully selected 

image processing parameter filters that track the particles in real time, calculating the bright 

centroid (cntrd.m) of the particle every time a frame is registered by the camera. The program 

turns the movie into an array that first looks at the negative of each image (Fig. 13). 

Subsequently, it looks at the blue part of the image (the trapped microsphere), and then makes it 

a positive image again. The bandpass filter program (bpass.m) suppresses background noise and 
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image variations in order to locate the particle of interest. Then the program scans for a peak 

(pkfnd.m) for an object about 11 pixels wide, until the centroid (cntrd.m) of the microsphere is 

found. The results are saved as output data arrays. Image processing parameters are easily 

modified to optimize the tracking process. 
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Fig. 12. Summary of MATLAB particle tracking process from an uploaded .mpg format video 
clip. The program employs a series of algorithms to locate particle position as a function of time 
for the entire length of the video. 
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Fig. 13. Images of optically trapped 6- and 10 µm spheres in water. Fibers aligned via XYZ 
translation stage design. (a) Video snapshot of 6 µm polystyrene sphere trapped with ~47 mW 
power output. Fiber separation ~163 µm. (b) Respective negative image of 6 µm sphere from 
MATLAB particle tracker program after video upload into the tracker program. MATLAB 
program converts image matrices into pixel format for tracking process. (c) Video snapshot of 10 
µm polystyrene sphere trapped with ~47 mW power output. Fiber separation ~104 µm. (d) 
Respective negative image of 10 µm from MATLAB particle tracker program after video upload 
into the tracker program. MATLAB program converts the image matrices into pixel format for 
tracking processes. 
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 In order to assess the motion noise from a single trapped microsphere (with both lasers 

set to about the same power, P1 ≈ P2), we tracked the motion of the microsphere in trapped 

“equilibrium state.” Fig. 14 and Fig. 15 illustrate microsphere position (in two directions) as a 

function of time. 

Fig. 14. MATLAB particle tracking program plot of trapped microsphere (d = 6 µm) at constant 
laser power (before laser power modulation). Laser 1= 49 mW and Laser 2 = 45 mW, and fiber 
separation = 125 µm. These figures demonstrate the natural noise of the system. (a) Plot of X-
position (pixels) as a function of time. (b) Plot of Y-Position (pixels) as a function of time. 

 

(a) 

(b) 
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Fig. 15. MATLAB particle tracking program plot of trapped microsphere (d = 10 µm) at constant 
laser power (before laser power modulation). Parameters utilized: P1: 49 mW and P2: 45 mW, 
and fiber separation = 77 µm. The following plots demonstrate the natural noise of a trapped 
microsphere before modulation. (a) Plot of X-position (pixels) as a function of time. (b) Plot of 
Y-Position (pixels) as a function of time. 

(a) 

(b) 
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Obtaining trap parameters from tracking data 
 We measure κ after tracking the particle’s x-position as a function time with the CCD 

camera and video/frame grabber software. Upon analyzing microsphere motion in the trap using 

our MATLAB particle tracking program, the data of was imported into IGOR Pro v. 6.0 ( Lake 

Oswego, OR), for data analysis. 

 The spring constant κ (N/m) is determined for a strongly overdamped system for a 

particle moving through water. Particle position versus time exponential motion curves are fitted 

to: ε = c1e
(−κτ / 6πμR ) + c2 and κ is given by the following formula: κ =

6πμR
τ

 where μ is the 

viscosity of water (at 25ºC) = 0.89x10-3 Pa·s; R = microsphere radius (m); τ = time constant (s) as 

determined from IGOR PRO exponential curve fitting. Note that constants c1 and c2 are not 

needed for the spring constant calculations. 

 Theoretical spring constants (κ) are computed according to Eqn. 1 for incident light upon 

a dielectric sphere of a given area being trapped with two counter-propagating beams with 

constant intensity and phase values: 

 

κ =16π 2aS
P1Qpr,1ω0,1

2

λ1
2(S2 + 4d1

2)2 +
P2Qpr,2ω0,2

2

λ2
2(S2 + 4d2

2)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (Eqn. 1) 

 

where a = 2R2 /c  (the incident geometrical cross-sectional area of the sphere), and R = sphere 

radius (R = 3 µm and R = 5 µm); c = velocity of light in a vacuum; P = incident power; 

d−1 = λ /(πω0
2), where λ= incident laser wavelength (980 nm) and ωo = Gaussian beam waist (5 

µm); S = fiber separation (typical range 50 µm to 250 µm); Qpr = radiation pressure coefficient 

which was calculated from C. Mätzler’s “MATLAB Functions for Mie Scattering and 
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Absorption” program [2002]. We calculate the Qpr values for our microspheres to be: Qpr = 

0.2968 (for R = 3 µm) and Qpr = 0.2013 (for R = 5 µm). Fiber separations are measured using 

scaling capabilities on ImageJ, a public domain image processing and analysis software 

[NIH.gov]. 

 The total scattering force (Fs) for both fibers is also calculated from the following 

expression (Eqn. 2): 

Fs =
aP1Qpr,1 /ω0,1

2

1+ d1
−2(S /2 + z)2 −

aP2Qpr,2 /ω0,2
2

1+ d2
−2(S /2 − z)2  (Eqn. 2) 

 

where z is the distance from the center region between the fibers (i.e. z = 0 corresponds to  the 

center point). It is expected that when both output powers are equal to each other the net 

scattering force is 0, since the opposing force vectors balance one another. All other parameters 

in the scattering force expression are previously defined above for the spring constant 

calculation. 

Power modulation experiment procedure 
We also evaluate the behavior of our trapped microspheres when one laser power is 

suddenly increased and then restored back to the original power. In response to the power 

change, the microsphere rapidly changes its x-direction position. The water provides a highly 

overdamped environment, causing the microsphere motion to exponentially decrease and 

approach zero velocity. We investigated the motions of the both sizes of spheres (d = 6 µm and d 

= 10 µm) moving through the water when power output from one laser is changed from 0.049 W 

to 0.069 W, while the other laser remains constant at 0.045 W (Fig. 16 and Fig. 17). All power 

modulations were performed at a 0.17 Hz frequency.  
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Fig. 16. MATLAB particle tracking program plots of displaced microsphere (d = 6 µm) position 
as a function of time. “Laser 1” power was systematically modulated from 49 mW to 69 mW 
using LabVIEW at 0.3Hz, while “Laser 2” remained constant at 45 mW. Fiber separation = 125 
µm. (a) Plot of X-Position (pixels) as a function of time. (b) Plot of Y-Position (pixels) as a 
function of time. 
 

 

 

 

 

 

 

 

 

 

 

(b) 

(a) 
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Fig. 17. MATLAB particle tracking program plots of displaced microsphere (d = 10 µm) 
position as a function of time. “Laser 1” power was systematically modulated from 49 mW to 69 
mW using LabVIEW at 0.3Hz, while “Laser 2” remained constant at 45 mW. Fiber separation = 
125 µm. (a) Plot of X-Position (pixels) as a function of time. (b) Plot of Y-Position (pixels) as a 
function of time. 
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 When we induce a sudden change in power from one laser, a trapped microsphere is 

displaced from the center of the trap. When analyzing our data we use the terms “increase 

exponential” and “decrease exponential” to refer to the motion of the trapped particles under two 

different conditions. Increase exponential curves refer to the microsphere falling into a trap 

formed when the total power is increased (one laser’s power has increased while the other has 

stayed the same). Decrease curves relate to the microsphere falling into the trap when the total 

power is decreased (the two lasers have approximately the same power as each other). Since the 

total power is larger while all other parameters stay the same, the spring constants will be larger 

(i.e. “stiffer spring” characteristic). In contrast, the spring constants will likely be smaller (i.e. 

less stiff of a spring) when the total power is reduced. 

Heat-Etching Fiber Wave Guides in Cast Acrylic Plexiglass Chips 
 We developed a procedure for creating fiber alignment channels that simplifies our initial 

trapping design and allows 1, 2, or 4 fiber pairs to be aligned within the channels. Uniform fiber 

alignment channels are burned into black cast acrylic “plexiglass” chips (McMaster-Carr, 

Robbinsville, NJ) using high-resistive nichrome wires (36 gauge, Jacobs Online, Moxee, WA) 

that are the same diameter as the optical fibers (~125µm). Heated wires are ~7.0 cm in length for 

constructing 1- and 2- channel etchings, and ~10.0 cm in length for 4- channel etchings. These 

wires are pulled tight across electrical leads from a power supply (BK Precision, model 1672 

Triple Output, Yorba Linda, CA) (refer to Fig. 18). One plexiglass chip cut to be ~2x2” is placed 

under the wires and a dummy chip is placed on top of the wire(s) and bottom chip to be etched. 

Depending on the number of channels desired, the appropriate amount of electrical current is 

conducted through the wire(s) according to the tabulated recipe (Table 1). Hanging weights (370 

g each) are attached to the heated wires and hung off the table next to the main heat-etching set-
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up. These weights provide constant wire tension even when the wires endure heat-induced 

expansion due to the electrical current. Small alignment rods are placed under the wire(s) (and on 

top of the etching chip) to serve as “rollers” and aid in providing a smooth, flat profile for the 

heating wire(s). 

 

Fig. 18. Equipment set-up for heating-etching cast acrylic chips. (a) Power supply with electrical 
leads held in place with screws. Tension weights that provide tension to the nichrome high-
resistive wires are shown hanging off the table edge. (b) Close-up shot of nichrome wires strung 
across electrical leads. The wires are clamped tight around the right electrical lead and are free to 
expand through a propped open clamp. 

(a) (b) 
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Table 1. Parameters utilized for heat-etching channels in cast acrylic chips with nichrome heater 
wires. 
  

  

 It is important to note that for the two-channel scheme, we are able to string two wires 

next to each other (without any space between them) fairly easily. However, stringing together 

four wires, either right next to one another or evenly spaced, is very difficult with our current 

design. To remedy this issue, two small metric screws with thread separation of ~457 µm, are 

glued to very small plexiglass chips and placed under the heating wires to act as a bridging 

mechanism that keeps the wires straight, tight, and evenly spaced. 

 Once the fiber channels on the chip are heat-etched, we use a technique that keeps the 

optical fibers (single mode) in place and in their individual channels. The final chip arrangement 

provides a method to add a gentle downward bending tension so that the fibers are guided into 

the channels. 

 Small aluminum rods (Digi-Key Corp., Thief River Falls, MN) are super glued onto the 

chip for fiber alignment and positioning purposes. The two outer rods of the chip (refer to Fig. 

19) are bonded directly onto the chip with super glue. The two center rods are raised up from the 

bottom of the chip. The back ends of these rods were glued onto a small microscope slide. This 

Number of 
Channels 

Current 
(A) 

Approximate 
Wire Length 

(cm) 

Heating 
Time (s) 

Tension Weights 

1 0.75 7.0 90 1 weight, 370 g 

2 1.1 7.0 90 2 weights, 370 g each 

4 2.1 10.5 90 2 weights, 370 g each 
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design allows for an “over and under” approach to keeping the fibers in place. Subsequently, 

bare single-mode fibers are placed into the channels. 

 
Fig. 19. Schematic and picture of the trapping chip layout. (a) Depiction illustrates 4 channel 
arrays on a cast acrylic “plexiglass” chip with bonded aluminum fiber alignment rods. Four fiber 
pairs are shown in their channels, with the alignment rods providing a gentle mechanical 
downward tension to the fibers. (b) Image of 2-channel heat-etched chip with two aligned fiber 
pairs for the 2x2 fiber array design.  

 

 For the one- and two-fiber channel design, two bare fibers were utilized. For the four-

fiber channel design, fiber ribbon cables (SMF, Fiber Optics for Sale Co., Milpitas, CA) is an 

easier option for manipulating and keeping the fibers aligned in the channels (see Fig. 20). 

Maximizing the output coupling from one of the ribbon cables into the other ribbon cable 

provides confirmation of good fiber alignment. Once positioned, the fibers are carefully 

superglued into place, while continuing to monitor the alignment by measuring the power 

transmitted through the trap. 

 

 

 

(a) (b) 
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Fig. 20. Schematic and picture of 4x4 fiber array trapping platform. (a) Schematic: Power from 
980 nm laser is split seven ways through 50/50 couplers (50% coupling) and then spliced 
individually into 4-fiber ribbon cables. Bare fiber end extending from the fiber ribbon cables are 
inserted into the trapping platform scheme. (b) Picture of 4-channel heat-etched chip with two 
counter-propagating fiber cables, with each cable containing four fibers. This design was used 
for the 4x4 fiber array design. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Results 
 
 Here we report on our initial trapping design with XYZ translational optical stages and 

highlight the calibrations we perform on the system. Using this setup we measure spring 

constants in the range from 100-500 nN/m by displacing a stably trapped microsphere (d = 6 µm 

and 10 µm) in water with a sudden change in power. By tracking particle motion as a function of 

time, we show particle motion exemplifies overdamped exponential motion in the water. We also 

report scattering force values of 9-60 pN. 

 Time constants for exponential decreases for the 6 µm spheres range from 0.117s to 

0.478s for all experimental trials (κ = 4.30x10-7 N/m and κ = 1.05x10-7 N/m, respectively), 

whereas time constant for exponential increases range from 0.045 s to 0.252 s (κ = 1.12x10-6 

N/m and κ = 2.00x10-7 N/m, respectively). Fiber separations ranging from 67.9 µm to 125 µm for 

6 µm trapping assays are utilized. As expected, time constants and spring constants for the 

trapped 10 µm spheres are larger than those for 6 μm spheres for most of the trials conducted. 

Time constants for 10 µm range from 0.259 s to 0.511 s (κ = 3.24x10-7 and κ = 1.64x10-7 N/m, 

respectively). Time constants for exponential increases for the 10 µm spheres range from 0.126s 

to 0.258s (κ = 6.66x10-7 N/m and κ = 3.25x10-7 N/m, respectively). Fiber separation of ~77.0 µm 

is used for all 10 µm trapping experiments. 

 Example IGOR PRO curve fits are shown in Fig. 21 for the same assays performed in 

Fig. 16 for 6 µm- and Fig. 17 for 10 µm spheres. Respective experimental and theoretical spring 

constant values are shown in the tables below in Fig. 21. Scattering forces exerted onto a trapped 

microsphere from the left and right are calculated from Eqn. 2. 
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Fig. 21. Exponential curve fits of  microsphere x-position motion through water due to a sudden 
change in laser power. (a) Exponential curves for 6 µm microsphere and (b) respective chart of 
calculations for each periodic increase and decrease. (c) Exponential curves for 10 µm 
microsphere and (d) respective chart of calculations for each periodic increase and decrease. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exponential 

Curve 

Time 

constant 

τ (s) 

Spring 

Constant κ 

(N/m) 

Theoretical 

Spring Constant  

κ (N/m) 

Left 

Scattering 

Force (pN) 

Right 

Scattering 

Force (pN) 

Increase 1 0.252 2.00x10-7 6.11x10-7 25.6 23.6 

Decrease 1 0.117 4.30x10-7 5.04x10-7 20.9 20.7 

Increase 2 0.234 2.15x10-7 6.11x10-7 25.6 23.6 

Decrease 2 0.121 4.16x10-7 5.04x10-7 20.9 20.7 

Increase 3 0.225 2.24x10-7 6.11x10-7 25.6 23.6 

(a) 

(b) 
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 Several experimental assays with the 10 µm spheres were performed with approximate 

fiber separations of 76 ± 2 µm. The average spring constant values for exponential decreases is 

2.2x10-7 N/m (σ = 0.6 N/m) when powers are balanced: P1 = 0.049 W and P2 = 0.045 W. To 

induce exponential motion increases, P1 was increased to powers of 0.059 W and 0.069 W. 

Average spring constants for these powers are 4.5x10-7 N/m (σ = 2.1 N/m) for P1 = 0.059 W and 

3.4x10-7 N/m for P1 = 0.069 W. 

 

Exponential 

Curve 

Time 

constant 

τ (s) 

Spring 

Constant κ 

(N/m) 

Theoretical 

Spring Constant  

κ (N/m) 

Left 

Scattering 

Force (pN) 

Right 

Scattering 

Force (pN) 

Increase 1 0.236 3.55x10-7 1.21x10-6 49.1 60.4 

Decrease 1 0.511 1.64x10-7 9.98x10-7 50.4 51.7 

Increase 2 0.258 3.25x10-7 1.21x10-6 49.1 60.4 

Decrease 2 0.49 1.71x10-7 9.98x10-7 50.4 51.7 

(d) 

(c) 
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Analysis of results 
  

 We compare theoretical predictions to experimental data for 6 µm spheres. Here we plot 

spring constant as a function of power for three different fiber separations: 68.6 µm, 86.5µm, and 

122.0 µm. The lines are plots of Eq. 1 as a function of trapping power (balanced power cases). 

As can be seen in Fig. 22, there is a direct correlation between power and spring constant values. 

Also note that the theory curves for separations 68.6 µm and 122.0 µm nearly overlap one 

another. Markers illustrate experimental spring constant data for three trapping power pairs for 

the left fiber and right fiber, respectively: P1 = 0.024 W and P2 = 0.022 W; P1 = 0.044 W and P2 

= 0.041 W; and P1 = 0.049 W and P2 = 0.045 W. 
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Fig. 22. Spring constant as a function of trapping power for given fiber separations. Continuous 
lines are based from the spring constant expression (Eqn. 1) for given powers up to 0.1 W and 
three fiber separations: 68.8 µm, 86.5 µm, and 122.0 µm. Data points represent experimental 
data for measured spring constants as a function of trapping power also for the same fiber 
separations of 68.8 µm, 86.5 µm, and 122.0 µm. 
 
Figure Legend. Fiber separations for the theoretical linear plot: ‘∆’ : 68.8 µm; ‘*’ : 86.5 µm; ‘--’ 
: 122.0 µm. Fiber separations for experimental data points: ‘+’ : 68.8 µm, ‘x’ : 86.5 µm, ‘o’: 
122.0 µm. 
 

 

 

 

  

 

 To further assess experimental characteristics of the trapping system, Constable’s 

mathematical spring constant approximation is plotted according to the parameters utilized in our 

study. Taking into account the same three sets of balanced power outputs noted before in Fig. 18 

(P1 = 0.024 W and P2 = 0.022 W; P1 = 0.044 W and P2 = 0.041 W; and P1 = 0.049 W and P2 = 

0.045 W), we investigate the effect of fiber separations ranging from 15 µm to 500 µm on 

calculated spring constant values. Note for all curves in Fig. 19a and Fig. 19b, the maximum 

peak occurs at a fiber separation of ~100 µm. It appears that a fiber separation of approximately 

100 µm is the optimal separation to achieve the largest spring constant. After this maximum, all 

spring constant values decrease to κ = 0 N/m as fiber separation increases. 
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 We then statistically compare our data to the mathematical models for spring constants 

and scattering forces (Eqn. 1 and Eqn. 2). When trapping 6 µm spheres with balanced power 

settings (~0.047 W) with fiber separations of ~68.8 µm, the average spring constants for 

decrease curves is 1.87x10-7 N/m (-63% error from theoretical); for balanced powers ~0.0425 W 

with a fiber separation of ~86.5 µm, the average spring constant for decrease curves is 3.57x10-7 

N/m (-27% error from theoretical); for balanced powers ~0.023 W with fiber separation of 86.5 

µm, the average spring constant is 3.01x10-7 N/m (+14% from theoretical); for balanced powers 

~0.047 W and fiber separation ~122.0 µm, the average spring constant is 4.23x10-7 N/m (-16% 

error from theoretical); and for balanced powers ~0.023 W and fiber separation ~122.0 µm, the 

average spring constant is 2.31x10-7 N/m (-8% error from theoretical). 

 Measured spring constants are found to increase with higher powers. Experimental spring 

constants for higher optical power traps are approximately 1.1 to 3 fold times higher than the 

respective curves for 6 µm spheres trapped in equal power traps. For 10 µm spheres, increase 

curves have spring constants that are 1.4 to 2 fold times higher than their respective decrease 

curves.  

 In some trials the decrease curves have unusually steep initial slopes and do not appear 

exponential in nature (see Fig. 21). For instance, in these cases with steep curves, about 4 

tracking points (i.e. “4 frames”) along the steepest part of the curve are plotted with the particle 

tracker, rather than the typical average of 10 points tracked. However, keeping in mind our 

camera system runs at 30 frames/second, our image capability system limits the ability to track 

moving particles with exponential time constants less than 0.13 s to 0.17 s. 

 We find that trials with power setting of ~0.023 W with 122.0 ± 2.0 µm fiber separation, 

and ~0.047 W power for 68.8 ± 1.0 µm fiber separation exhibit approximately identical spring 
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constant values of 2x10-7 N/m (see Fig. 22). Although more experimental trials need to be 

conducted to fully map out the spring constant versus fiber separation curves, shown in Fig. 6, 

we observe that these identical spring constant values closely reflect curve trends in those 

figures. Fig. 22 also highlights another finding: it appears that at higher power settings ~0.047 

W, the 122.0 µm fiber separation (denoted by ‘o’) exerts higher spring constant values than the 

smaller separation of 68.8 µm (denoted by ‘+’). It is thought that as fiber separation decreases, 

the trapping volume becomes smaller. Likewise, to some limit, trapping volume increases as 

fiber separation increases. From Fig. 6 there appears to be an ideal fiber separation of ~100 µm 

that warrants a maximum spring constant value for the plotted power settings. 

 We note from Fig. 6b that highly unbalanced curve sets (i.e. P1 = 0.069 W and P2 = 0.045 

W, and P1 = 0.069 W and P2 = 0.041 W) can exert maximum spring constants of 6.6x10-7 N/m at 

fiber separation ~100 µm. However, our relatively slow camera frame rate of 30 fps does not 

permit us to measure spring constants higher than ~3.8x10-7 N/m for a 6 µm sphere trapped in 

water, assuming the fastest measurable time constant is approximately 0.13 s to 0.17 s for 

trapped spheres. Our imaging capabilities also suggest the maximum spring constant we can 

measure for 10 µm spheres is ~6.5x10-7 N/m. As can be seen in Fig. 22 the majority of data 

points lie below the maximum observable spring constant of 3.8x10-7 N/m for assays performed 

with 6µm spheres. To obtain larger time constants, larger microspheres could be utilized, as well 

as trap in a more viscous fluid. 

 Our relatively slow image tracking rate gives insight into the low spring constants 

measured in comparison to theoretical calculations for both microsphere sizes. In some cases, 

percent error from the theoretical value is relatively high. For instance, the theoretical spring 

constant for a 10 µm sphere displaced with unbalanced powers (P1 = 0.069 W and P2 = 0.045 W, 
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increase curve) is 1.21x10-6 N/m, giving a percent error of 86% from the measured experimental 

trials. The theoretical value is much higher than can be measured with our current imaging 

capabilities. 

 The microscope set-up is highly sensitive to exterior motion vibrations and audio noise in 

our laboratory room. This is likely a major source of error that is apparent in some video clips. 

We have since mechanically stabilized the microscope, which has decreased the observable 

noise. 

 Additionally, in our calculations of scattering forces incident on the sphere from the left 

and right directions, we find that both scattering forces exert approximately the same magnitude 

on a sphere situated close to the center of the trap. Left and right scattering forces on a 6 µm 

sphere are within ± 0.2 pN of one another; in contrast, the scattering forces on a 10 µm sphere 

are ± 1.6 pN with respect to each other. This confirms that the net scattering force acting on a 

particle in the center of the trapping region counter-act one another; that is, theoretically the net 

force should be zero. However, in our calculations for scattering forces acting on a particle 

displaced from the center point are not equal in magnitude. The designated “left scattering force” 

is consistently shown to be ~8.0 pN higher than the “right scattering force” for displaced 6 µm 

spheres; for 10 µm spheres the “left scattering force” was an average of ~6.0 pN higher than the 

“right scattering force.” At this point, the net scattering force should be zero again since the 

sphere is now in equilibrium and no longer accelerating. It is thought that poor fiber alignment or 

thermal lensing may cause these scattering force offsets to be larger than expected. 

 It is possible to induce weak trapping of multiple microspheres. Although the SPF 900 

optical filter aided in distinguishing between one or more microspheres by eliminating some 

scattered light, in some instances it is still difficult to determine, for example, if an adjacent 
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microsphere is weakly trapped almost directly behind the main trapped sphere. In other cases a 

linear array of ~3 to ~15 microspheres could fall into the trapping region. Note that for these 

occurrences of multiple trapped spheres, data calculations were not performed, as the output 

laser light is attenuated differently for an array than a single sphere. This phenomenon of trapped 

microsphere arrays has been investigated by other research groups [Kawano 2008] and could be 

one future research endeavor to continue mathematical characterizations of our trap. 

 In the second part of this investigation, we aim to improve the efficiency of trapping with 

the XYZ stages. We also look to improve the reproducibility of optical trapping results. As 

discussed in previous sections, excellent fiber alignment is mandatory for stable traps. With our 

method of heat-etching channels the diameter of an unjacketed fiber (125 µm) into small cast 

acrylic plexiglass chips with high-resistive nichrome wires, we demonstrate: 1) the channels 

serve as feasible waveguides for the optical fibers, thus providing an easy way to achieve fiber 

alignment; 2) efficient method for getting an array of fibers aligned for array trapping (see Fig. 

23). 
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Fig. 23. Microscope images of trapping in heat-etched channels. (a) Representative microscope 
image of two heat-etched channels with two optical fibers sitting well in the channels. (b) A 
trapped 6 µm sphere between two fibers in a single-channel heat-etched plexiglass chip. 
Trapping power ~23 mW. (c) Two simultaneously trapped 6 µm spheres in 2x2 fiber array 
scheme. Fibers sit in the two channels of the heat-etched chip. Trapping power ~23 mW from 
each fiber. (d) Four simultaneously trapped 6 µm spheres in 4x4 fiber array scheme. Fibers sit in 
the four channels of the heat-etched chip. Trapping power ~12 mW from each fiber. 
 

 

 

 

  

(a) (b) 

(c) (d) 
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Discussion and conclusions 
 
 We have successfully demonstrated and investigated the mechanics of optically trapped 

microspheres exhibiting overdamped exponential motion through water. Microspheres are 

trapped in our dual-beam optical trap scheme with XYZ translational stages that align the 

counter-propagating beams. The forces acting on a trapped particle provide a stable trapping 

situation that is utilized here to hold and manipulate polystyrene microspheres in water. Thus, 

this design allows an effective, non-contact method for surveying the trapping forces present in 

our dual-beam system. 

 A major limitation of the XYZ translation stage configuration is the tedious nature of 

manual fiber alignment. Due to the inconsistencies in fiber alignment for each set of 

experiments, we speculate slight changes in the electric gradient across the trapping region can 

be affected greatly by micron-sensitive alignment in transverse and angle directions. Later in this 

investigation we developed a method for easy fiber alignment on plexiglass cast acrylic chips 

that have provided a major improvement in trapping stable particles in an efficient and consistent 

manner. We also anticipate this new trapping configuration will decrease the noise observed in 

position detection plots, decreasing errors in measured spring constants and scattering forces. 

Furthermore, our technique allows fibers to be superglued into place so that fiber separation is 

fixed. This improves our ability to quickly perform several sets of measurements; for instance, 

we can construct various chips of different fixed fiber separations and systematically investigate 

the effect of a wide spectrum of powers for trapping particles of a given size. The fiber array 

configuration may offer the opportunity to study several cells simultaneously while exhibiting 

control of power output for each fiber pair.  
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 Our results explore the pN-force mechanics and behavior of a dual-beam trapping 

system, and they compare well with published experimental measurements and theoretical 

calculations from other research groups [Constable 1993 and Jess 2006]. We attribute slight 

disparities in our data in comparison to published works to different parameters of control: fiber 

size and mode-field diameter, fiber separation, output power, laser wavelength, and microsphere 

size. Some of the main findings include: the magnitude of the scattering forces (in the direction 

of beam propagation) respond linearly to the output power and larger microspheres exert larger 

time constants (i.e. smaller spring constant values) in comparison to smaller spheres. 

Furthermore, depending on incident wavelength and output power, there is an ideal fiber 

separation to achieve maximum spring constant values. In particular, our trap-on-a-chip system 

is flexible as it permits experimental parameters to be easily altered to obtain desired restoring 

forces.  

 Since the first demonstration of optical tweezers by Ashkin [1986], optical manipulation 

of micron-sized particles has grown into a versatile tool in the physical and life sciences. 

Integration of optical trapping with modern imaging techniques such as Raman spectroscopy 

[Jess 2006 and Chan 2009] and total internal reflection fluorescence (TIRF) microscopy 

[Snijder-Van As 2009] is gaining importance due to the numerous possibilities in biotechnology 

for this technique. Furthermore, dual-beam optical traps are particularly well suited for 

integration with microfluidic chips due to the system not requiring bulky, external optical 

components. Microfluidic-optical trapping combinations have shown promise for various 

biological and biophysical studies, including single-cell mechanical properties [Cran-McGreehin 

2006, Enger 2004, Guck 2005, Lincoln 2007]. We will continue to render our most current 
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system of trapping on a chip to reflect the need for more cost-effective and easily assembled 

microfluidic systems.  

 In the attempt to create a scaled-down approach with greater stability for optically 

trapping, we have successfully demonstrated trapping on small plexiglass cast acrylic chips (Fig. 

23). The trapping occurs within the heat-etched channels, and this method has initially provided 

a reproducible procedure for creating straight channels. Our scaled-down trap-on-a-chip 

approach has some benefits including the use of consumable, and inexpensive equipment to trap 

particles. To date there are no dual-fiber array schemes similar to our configuration employed in 

current literature. With this chip we have shown we can stably trap 6 µm spheres: one 

microsphere in a dual-beam trap with ~0.023 W power, two microspheres simultaneously in a 

2x2 fiber array with ~0.023 W power, and four simultaneously in a 4x4 fiber array with ~0.012 

W power. These microspheres appear to be more stably trapped than spheres trapped with our 

initial trapping system encompassing XYZ stages.  

 In the near future we look forward to continuing to calibrate our trapping system with our 

trap on a chip setup. One first step we will plan to take toward biological studies is trapping cells 

and conducting viability assays using a near-infrared wavelength (λ = 980 nm) and a range of 

power settings. We have demonstrated trapping embryonic mouse stem cells with our XYZ 

translation stage configuration (see Fig. 24), but have not yet conducted cell viability tests. 
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Fig. 24. Microscope image of mouse embryonic stem cell aggregates trapped with two single 
mode fibers. Minimum required trapping power ~10 mW with 980 nm light. 
 

 

 

 

 

 

 

 

 

 

 

 

 

We will optimize power settings to reduce cellular photodamage, and test other wavelengths if 

necessary. Our new trapping system appears to exhibit much improved fiber alignment, we plan 

to utilize our new trap-on-a-chip device to continue calibrating our system. We anticipate 

gathering additional data to expand on the initial results we obtain using the XYZ stage system. 

With better fiber alignment we anticipate improved results for measured spring constants and 

scattering forces that more closely reflect theoretical values. Gaining a full understanding of our 

system capabilities will add value when we pursue biological studies. Since single-cell 

biophysics is a blossoming field, we foresee numerous opportunities to further optimize our 

optical trapping tool for biological applications. 

125 µm 
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Appendix 
 

MATLAB .mpg video particle tracking program, Blair and Dufresne (2008) 

 
%MPG video tracking program for trapped microspheres and plot position as 

function of time 

%Based from Blair and Dufresne (2008) 

 

%clean up the work environment 

clear all 

close all 

 

%begin and end time for processing the data in seconds 

stime=1; 

ftime=26; 

 

%approximate size of the particle in pixels USE AN ODD NUMBER 

ptclsize=11; 

 

%needs to be figured out during trial run...set to a large number and see 

%what is the size of xcenters to get the real number 

nframes=749; 

 

%loads up the video named movie.mpg 

vid=mmread('movie2.mpg',[],[stime ftime],false,true);     

 

%loop through the individual pictures to get the position of the particle 

for p=1:nframes; 

     

% gets the frames from bizarre mmread format into the right format (height X 

width array of unit8), scale and contrast: find "cdata" one frame 

aa = vid.frames(p).cdata; 

tim(p)=vid.times(p); 

aa=255-aa; % look at negative of image 

a=aa(:,:,3); % look only at blue part of image 

a=255-a; % make it a positive image again 

b = bpass(a,1,50); %do a bandpass filter (I used 0,50 and it worked well...but 

you might need to change these) 

thresh = max(max(b))*.95; %pick the threshold (I used 95% and that was fine) 
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pk = pkfnd(b,thresh,ptclsize) %locate the peak for an object about 31 pixels 

wide 

 

cnt = cntrd(b,pk,ptclsize+10) %centroid of the found peak 

 

%insert the results into output data arrays 

indx(p)=p; 

xcenters(p)=cnt(1); 

ycenters(p)=cnt(2); 

 

end 

 

%plot the results 

figure; 

colormap('gray'), imagesc(b); 

 figure; 

 plot(tim,xcenters,'o'); 

  

%nice labels on the plots 

xlabel('Image Number') 

ylabel('X-Position on Image (pixels)') 

title('Plot of Pixel X-Position versus Time (s)','FontSize',14) 

 

figure; 

plot(tim,ycenters); 

xlabel('Time (s)') 

ylabel('Y-Position on Image (pixels)') 

title('Plot of Pixel Y-Postition versus Time (s)','FontSize',14) 

%csvwrite('movie2_time.csv',transpose(tim)); 

%csvwrite('movie2xpos_1-26s.csv',transpose(xcenters)); 

%csvwrite('movie2ypos_1-26s.csv',transpose(ycenters)); 
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Mie scattering coefficient programs (Mätzler 2002, with minor modifications by Tessa 

Piñón)  

#a) This program utilizes an, bn, cn, and dn to calculate scattering coefficient values 
%Mie scattering coefficient program calculations are from Christian Matzler's 
"MATLAB 
%Functions for Mie Scattering and Absorption" paper-Research Report no. 
%2002-08. June 2002. 
 
%I have done minor modifications to Mätzler's original code to fit the 
%parameters of our experiment 
 
 
function result = tessamie_abcd6um(m, x) 
 
%For 6.0 um diameter polystyrene microsphere 
r = 3.0E-6; 
x = (2*pi*r*1.33)/980E-9; 
m = 1.59/1.33; 
 
 
%Statement below satisfies requirement for an and bn mie coefficients: that 
%they are 0 for x = 0 and are continuous functions of x. They are 0 for 
%m=1 and continuous functions of m [Van de Hulst p.136]. 
 
 
%if x==0                 % To avoid a singularity at x=0 
    %result=[0 0 0 0 0 1.5]; 
    % This is the normal situation 
     
nmax=round(2+x+4*x.^(1/3));  %Termination for n value [Bohren & Huffman] 
n=(1:nmax);  
nu = (n+0.5); %denotes half-integral order 
z=m.*x; %given argument 
m2=m.*m;  
 
%Spherical Bessel functions defined-(Bohren & Huffman, p. 86) 
sqx= sqrt(0.5*pi./x); sqz= sqrt(0.5*pi./z); 
 
 
bx = besselj(nu, x).*sqx; 
bz = besselj(nu, z).*sqz; 
 
yx = bessely(nu, x).*sqx; 
 
hx = bx+i*yx; 
 
b1x=[sin(x)/x, bx(1:nmax-1)];  
b1z=[sin(z)/z, bz(1:nmax-1)];  
 
y1x=[-cos(x)/x, yx(1:nmax-1)]; 
 
h1x= b1x+i*y1x; 
 
ax = x.*b1x-n.*bx; 
az = z.*b1z-n.*bz; 
 
ahx= x.*h1x-n.*hx; 
 
an = (m2.*bz.*ax-bx.*az)./(m2.*bz.*ahx-hx.*az); 
bn = (bz.*ax-bx.*az)./(bz.*ahx-hx.*az); 
cn = (bx.*ahx-hx.*ax)./(bz.*ahx-hx.*az); 



78 

dn = m.*(bx.*ahx-hx.*ax)./(m2.*bz.*ahx-hx.*az); 
result=[an; bn; cn; dn]; 
     
     
     
               
    n1=nmax-1; 
    n=(1:nmax);cn=2*n+1; c1n=n.*(n+2)./(n+1); c2n=cn./n./(n+1); 
    x2=x.*x; 
    f=tessamie_ab6um(m,x);          %an = first row, bn = second row 
    anp=(real(f(1,:))); anpp=(imag(f(1,:))); 
    bnp=(real(f(2,:))); bnpp=(imag(f(2,:))); 
    g1(1:4,nmax)=[0; 0; 0; 0]; % displaced numbers used for 
    g1(1,1:n1)=anp(2:nmax);    % [asymmetry parameter, Bohren & Huffmaan, p. 
120] 
    g1(2,1:n1)=anpp(2:nmax); 
    g1(3,1:n1)=bnp(2:nmax); 
    g1(4,1:n1)=bnpp(2:nmax);    
     
    % Extinction Coefficient 
    dn=cn.*(anp+bnp); 
    q=sum(dn); 
    qext=2*q/x2; 
     
    % Scattering Coefficient 
    en=cn.*(anp.*anp+anpp.*anpp+bnp.*bnp+bnpp.*bnpp); 
    q=sum(en); 
    qsca=2*q/x2; 
    qabs=qext-qsca; 
     
    % Backscattering -- [Bohren & Huffman, p. 122] 
    fn=(f(1,:)-f(2,:)).*cn; 
    gn=(-1).^n; 
    f(3,:)=fn.*gn; 
    q=sum(f(3,:)); 
    qb=q*q'/x2; 
     
    asy1=c1n.*(anp.*g1(1,:)+anpp.*g1(2,:)+bnp.*g1(3,:)+bnpp.*g1(4,:)); 
    asy2=c2n.*(anp.*bnp+anpp.*bnpp); 
    asy=4/x2*sum(asy1+asy2)/qsca; 
    qratio=qb/qsca; 
     
     
    qpr = qext-(asy*qsca); 
     
     
    Table = [qext',  qsca',          qabs',                            qb',     
asy'        qratio     qpr'];  
    disp('') 
    disp('For 6.0um diameter dielectric polystyrene microsphere') 
    disp('     Qext       Qsca        Qabs    Qb   <cos(theta)> Qb/Qsca    
Qpr') 
    disp('') 
    disp(Table) 
    disp('') 
     
     
 
#b) 
 
function result = tessamie_ab6um(m,x) 
 
% Computes a matrix of Mie Coefficients, an, bn,  
% of orders n=1 to nmax, for given complex refractive-index 
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% ratio m=m'+im" and size parameter x=k0*a where k0= wave number in ambient  
% medium for spheres of radius a; 
% Eq. (4.88) of Bohren and Huffman (1983) 
% using the recurrence relation (4.89) for Dn on p. 127 and  
% starting conditions as described in Appendix A. 
% C. Mätzler, July 2002 
 
r = 3.0E-6; 
x = (2*pi*r*1.33)/980E-9; 
m = 1.59/1.33; 
 
 
z=m.*x; 
nmax=round(2+x+4*x.^(1/3)); 
nmx=round(max(nmax,abs(z))+16); 
 
n=(1:nmax); nu = (n+0.5);  
 
sx=sqrt(0.5*pi*x); 
 
px=sx.*besselj(nu,x); 
p1x=[sin(x), px(1:nmax-1)]; 
 
 
chx=-sx.*bessely(nu,x); 
 
ch1x=[cos(x), chx(1:nmax-1)]; 
 
gsx=px-i*chx; gs1x=p1x-i*ch1x; 
 
dnx(nmx)=0+0i; 
 
for j=nmx:-1:2      % Computation of Dn(z) according to (4.89) of Bohren 
& Huffman (1983) 
    dnx(j-1)=j./z-1/(dnx(j)+j./z); 
end; 
dn=dnx(n);          % Dn(z), n=1 to nmax 
da=dn./m+n./x;  
db=m.*dn+n./x; 
 
an=(da.*px-p1x)./(da.*gsx-gs1x); 
bn=(db.*px-p1x)./(db.*gsx-gs1x); 
 
result=[an; bn]; 
 
 
 
 

MATLAB spring constant program, Eqn. 1 as referenced in text. Program based from 
Constable (1993). 
 
%This program calculates the spring constant "k" (theoretical) for a  
%trapped 10um diameter polystyrene microsphere in water. This program  
%is based from Constable's (1993) article--Eq. 2. 
 
%Qpr value calculated using Mätzler's Mie scattering coefficient MATLAB 
%program (separate from this code) 
 
 
%For 10.0 um diameter polystyrene microspheres 
a = (2*(5.0E-6)^2)/3E8; %Incident cross-sectional area 
q = 0.2013; %Qpr 
w = 5E-6;   %Gaussian beam waist 
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n = 980E-9; %Laser wavelength 
d = (pi*(w)^2)/n; 
 
 
%Output power (W) of counter-propagating beams 
p1 = 69E-3; %Left beam 
p2 = 45E-3; %Right beam 
 
s = 77E-6;  %Fiber separation 
 
k1 = (16*(pi^2)*a*s); 
k2 = (p1*q*(w^2))/((n^2)*((s^2)+(4*(d^2)))^2); 
k3 = (p2*q*(w^2))/((n^2)*((s^2)+(4*(d^2)))^2); 
k = k1*(k2+k3) %Theoretical spring constant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MATLAB Scattering Force Program, Eqn. 2 as Referenced in Text. Program based from 
Constable (1993). 
 
 
%This program calculates the net scattering force on a trapped 10um 
% sphere in water. This program is based from Constable's (1993) 
%article--Eqn. 1. 
 
%Qpr value calculated using Matzler's Mie scattering coefficent MATLAB 
%program (separate from this code) 
 
 
 
%For 10.0 um diameter polystyrene microsphere 
a = (2*(5.0E-6)^2)/3E8; %Incident cross-sectional area 
q = 0.2013; %Qpr (radiation pressure coefficient) 
w = 5E-6; %Gaussian beam waist 
n = 980E-9; %Laser wavelength 
d = (pi*(w)^2)/n; 
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s = 77.0E-6; 
 
%Output power (W) of counter-propagating beams  
p1 = 69E-3; %Left beam 
p2 = 45E-3; %Right beam 
 
z = 37E-6; %Displacement of microsphere relative to trap center 
 
f1 = ((a*p1*q)/(w^2))/(1+((d^-2)*((s/2)+z)^2)); %Left scattering force 
f2 = ((a*p2*q)/(w^2))/(1+((d^-2)*((s/2)-z)^2)); %Right scattering force 
 
f = f1 
f = f2 
f = f1-f2 %Net scattering force 
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Raw data of experimental trapping data conducted by T. Piñón. The following charts only 
include experimental runs when powers are offset (i.e. microsphere is displaced from trap). 
 
 
7/1/2008 Data (Movie 1): _scope_20080701_142659.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 

Left Scattering 
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 6 
µm  

Increase 1  0.08  6.29E-07  11.6  33.5  25.3  

Laser 1: 44 mW <-
-> 69 mW  

Decrease 1  0.148  3.40E-07  3.68  23.3  23.5  

Laser 2: 41 mW  Increase 2  0.045  1.12E-06  11.6  33.5  25.3  
Fiber Separation: 
86.5 µm  

Decrease 2  0.135  3.73E-07  3.68  23.3  23.5  

Time Frame 
Analyzed: 18-48s  

      

Qpr = 0.2968 
(from Matzler 
Program)  

   Theoretical κ for 
Decrease (N/m)  

Theoretical κ 
for Increase 

(N/m)  

 

Scaling: 221 pix = 
125 µm  

 Increase Ave 
(τ): 0.063 s  

Increase Ave 
κ: 8.75E-7 
N/m  -------- 6.33E-07  

% Error: 
38%  

153 pix = 86.5 µm  

 Decrease 
Ave (τ): 
0.142 s  

Decrease Ave 
κ: 3.57E-7 
N/m  4.89E-07  ------- 

% Error: 
27%  

   
   Sphere initial 

position: 6.5 pix  
from center = 3.68 
µm  

      

Comments: Increase curves are really steep (don't look exponential)  
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7/1/2008 Data (Movie 2): _scope_20080701_143138.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 

Left 
Scattering 
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 6µm  Increase 1  0.126  3.99E-07  18.4  21.9  14.3  
Laser 1: 24 mW <--> 
49 mW  

Decrease 1  0.148  3.40E-07  3.11  12.8  12.5  

Laser 2: 22 mW  Increase 2  0.116  4.34E-07  18.4  21.9  14.3  
Fiber Separation: 86.5 
µm  

Decrease 2  0.192  2.62E-07  3.11  12.8  12.5  

Time Frame 
Analyzed: 12-42s  

      

   Theoretical κ 
for Decrease 

(N/m) 

Theoretical κ 
for Increase 

(N/m) 

 Qpr = 0.2968 (from 
Matzler  
Program)  

 Increase 
Ave (τ): 
0.121 s  

Increase Ave 
κ: 4.17E-7 
N/m  ------- 4.09E-07  

% Error: 2% 

Scaling: 221 pix = 
125 µm  

 Decrease 
Ave (τ): 
0.170 s  

Decrease 
Ave κ: 
3.01E-7 N/m  2.65E-07  -------- 

% Error: 
14%  

153 pix = 86.5 µm  
   

   

Sphere initial 
position: 5.5 pix from 
center = 3.11 μm 

   

  
 

Comments:  
 
 
 
7/1/2008 Data (Movie 3): _scope_20080701_143427.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement from 
Center (µm) Left Scattering 

Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 6µm  Increase 1  0.234 s  2.07E-7 
N/m  

45.8  9.24  2.85  

Laser 1: 4 mW <--> 
29 mW  

      

Laser 2: 4 mW     Theoretical 
Scattering Force 

for Decrease (N/m) 

Theoretical κ 
for Increase 

(N/m)  

 

Fiber Separation: 
86.5 µm  

   
N/A  1.90E-07  

 

Time Frame 
Analyzed: 22-26s  

    % Error: 9%   

Qpr = 0.2968 (from 
Matzler Program)  

   
  

 

Scaling: 221 pix = 
125 µm  

      

153 pix = 86.5 µm        
Sphere initial 
position: 1.5 pix 
from center = 0.85 
µm  

      

Comments: Too large of a power change--sphere moved all the way to the end of the fiber, but curve looks good; 4 mW of power 
is most likely lower than minimum power required for trapping  
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9/19/2008 Data (Movie 2): _scope_20080919_160325.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 
Left Scattering 

Force (pN) 
Right 

Scattering 
Force (pN) 

Bead diameter: 6µm  Increase 1  0.252  2.00E-07  14.4  25.6  23.6  
Laser 1: 49mW <--> 
69 mW  

Decrease 1  0.117  4.30E-07  3.06  20.9  20.7  

Laser 2: 45 mW  Increase 2  0.234  2.15E-07  14.4  25.6  23.6  
Fiber Separation: 
125 µm  

Decrease 2  0.121  4.16E-07  3.06  20.9  20.7  

Time Frame 
Analyzed: 1-37s  

Increase 3  0.225  2.24E-07  14.4  25.6  23.6  

      Qpr = 0.2968 (from 
Matzler  
Program)  

   Theoretical κ 
for Decrease 

(N/m) 

Theoretical κ 
for Increase 

(N/m) 

 

Scaling: 143 pix = 
125 µm  

 Increase 
Ave (τ): 
0.237 s  

Increase Ave 
κ: 2.13E-7 
N/m  ------- 6.11E-07  

% Error: 
66%  

Sphere initial 
position: 3.5 pix 
from center = 3.06 
µm 

 Decrease 
Ave (τ): 
0.119 s  

Decrease 
Ave κ: 
4.23E-7 N/m 

5.04E-07  ------- 
% Error: 
16%  

Comments: Data is noisy--time constant values not consistent with data trend  

 
 

 

9/19/2008 Data (Movie 3): _scope_20080919_160751.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant (κ)-

-N/m 

Displacement 
from Center 

(µm) 
Left Scattering 

Force (pN) 
Right 

Scattering 
Force (pN) 

Bead diameter: 
6µm  Increase 1  0.133  3.78E-07  16.6  15.1  12  
Laser 1: 24mW 
<--> 41 mW  

Decrease 1  0.199  2.53E-07  4.37  10.3  10.5  

Laser 2: 22 mW  Increase 2  0.138  3.65E-07  16.6  15.1  12  
Fiber Separation: 
122 µm  

Decrease 2  0.233  2.16E-07  4.37  10.3  10.5  

Time Frame 
Analyzed: 1-31s  

      

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 Qpr = 0.2968 
(from Matzler  
Program)   Increase Ave 

(τ): 0.136 s  
Increase Ave 
κ: 3.72E-7 
N/m  ------ 3.42E-07  % Error: 9% 

Scaling: 143 pix 
= 125 µm  

 Decrease 
Ave (τ): 
0.169 s  

Decrease Ave 
κ: 2.35E-7 
N/m  2.50E-07  ------- % Error: 6% 

140 pix = 122 µm  
   

   
      Sphere initial 

position: 5 pix  
from center = 
4.37 µm  

      

Comments: Modulation is odd--looks like Laser 2 is being modulated instead? (or Laser 1 decreased?), difficult to tell, so data 
may be off  
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9/19/2008 Data (Movie 7): _scope_20080919_162422.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant (κ)-

-N/m 

Displacement 
from Center 

(µm) 

Left Scattering 
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 
6µm  Increase 1  0.065  7.74E-07  20.5  17.4  12.6  
Laser 1: 24mW 
<--> 49 mW  

Decrease 1  0.242  2.08E-07  3.06  10.6  10.4  

Laser 2: 22 mW  Increase 2  0.099  5.08E-07  20.5  17.4  12.6  
Fiber Separation: 
120 µm  

Decrease 2  0.23  2.19E-07  3.06  10.6  10.4  

Time Frame 
Analyzed: 8-38s  

      

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 Qpr = 0.2968 
(from Matzler  
Program)   Increase Ave 

(τ): 0.082 s  
Increase Ave 
κ: 6.41E-7 
N/m  -------- 

3.88E-07  % Error: 
65%  

Scaling: 143 pix 
= 125 µm  

 Decrease 
Ave (τ): 
0.236 s  

Decrease Ave 
κ: 2.14E-7 
N/m  

2.51E-07  
------- 

% Error: 
15%  

137 pix = 120 µm  
   

   

      Sphere initial 
position: 3.5 pix  
from center = 
3.06 µm  

      

Comments: Looks like there are 2 beads trapped  

9/19/2008 Data (Movie 6): _scope_20080919_162245.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant (κ)-

-N/m 

Displacement 
from Center 

(µm) 

Left Scattering 
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 
6µm  

Increase 1  0.205  2.46E-07  20.1  17.2  12.4  

Laser 1: 24mW 
<--> 49 mW  

Decrease 1  0.251  2.01E-07  4.37  10.3  10.5  

Laser 2: 22 mW  Increase 2  0.112  4.49E-07  20.1  17.2  12.4  
Fiber Separation: 
122 µm  

Decrease 2  0.176  2.86E-07  4.37  10.3  10.5  

Time Frame 
Analyzed: 1-31s  

      

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 Qpr = 0.2968 
(from Matzler  
Program)   Increase Ave 

(τ): 0.159 s  
Increase Ave 
κ: 3.48E-7 
N/m  -------- 3.85E-07  

% Error: 
10%  

Scaling: 143 pix 
= 125 µm  

 Decrease 
Ave (τ): 
0.214 s  

Decrease Ave 
κ: 2.44E-7 
N/m  2.50E-07  ------ % Error: 2% 

140 pix = 122 
µm  

   
   

      Sphere initial 
position 5 pix  
from center = 
4.37 µm  

      

Comments: 2 beads might be trapped  
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9/20/2008 Data (Movie 6): _scope_20080920_195859.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 
Left Scattering 

Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 6µm  Increase 1  0.173  2.91E-07  12.3  41.7  30.1  
Laser 1: 49mW <--> 
79 mW  

Decrease 1  Too noisy  Too noisy  N/A  N/A  N/A  

Laser 2: 45 mW  Increase 2  0.211  2.39E-07  13.5  41.7  30.1  
Fiber Separation: 
67.9 µm  

      

Time Frame 
Analyzed: 12-42s  

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 

Qpr = 0.2968 (from 
Matzler Program)  

 Increase 
Ave (τ): 
0.192 s  

Increase Ave 
κ: 2.65E-7 
N/m  ------- 6.71E-07  

% Error: 
61%  

Scaling: 208 pix = 
125 µm  

 Decrease 
Ave (τ): 
N/A  

Decrease 
Ave κ: N/A  5.09E-07  ------ 

% Error: 
N/A  

113 pix = 67.9 µm  
  

    
      Sphere initial 

position: 8.5 pix from 
center = 5.11 µm  

      

Comments: Data plots were extremely noisy-Decreases could not be analyzed 

 
 
 
9/20/2008 Data (Movie 7): _scope_20080920_200117.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant (κ)-

-N/m 

Displacement 
from Center 

(µm) 
Left Scattering 

Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 
6µm  

Increase 1  0.103  4.89E-07  10  37.6  29.4  

Laser 1: 49mW 
<--> 69 mW  

Decrease 1  0.224  2.25E-07  3.94  28.4  28  

Laser 2: 45 mW  Increase 2  0.172  2.93E-07  10  37.6  29.4  
Fiber Separation: 
68.6 µm  

Decrease 2  0.192  2.62E-07  3.94  28.4  28  

Time Frame 
Analyzed: 13-43s  

      

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 Qpr = 0.2968 
(from Matzler  
Program)   Increase Ave 

(τ): 0.138 s  
Increase Ave 
κ: 3.91E-7 
N/m  ----- 6.20E-07  %Error: 37% 

Scaling: 206 pix 
= 125 µm  

 Decrease 
Ave (τ): 
0.208  

Decrease Ave 
κ: 2.44E-7 
N/m  5.11E-07  ------- %Error: 52% 

113 pix = 68.6 
µm  

   
   

      Sphere initial 
position 6.5 pix  
from center = 
3.94 µm  

      

Comments: Noisy data 
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9/20/2008 Data (Movie 9): _scope_20080920_200458.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant (κ)-

-N/m 

Displacement 
from Center 

(µm) 
Left Scattering 

Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 
6µm  

Increase 1  0.237  2.12E-07  13  41.7  29.9  

Laser 1: 49 mW <-
-> 79 mW  

Decrease 1  0.292  1.72E-07  5.09  28.1  28.3  

Laser 2: 45 mW  Decrease 2  0.251  2.01E-07  5.09  28.1  28.3  
Fiber Separation: 
68.8 µm  

      

Time Frame 
Analyzed: 1-31s  

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 

Qpr = 0.2968 (from 
Matzler Program)  

 Increase 
Ave (τ): 
0.237s  

Increase Ave 
κ: 2.12E-7 
N/m  ------ 6.75E-07  

% Error: 
69%  

Scaling: 381 pix = 
125 µm  

 Decrease 
Ave (τ): 
0272s  

Decrease Ave 
κ: 1.87E-7 
N/m  5.11E-07  -------- 

% Error: 
63%  

209 pix = 68.8 µm  
   

   
      Sphere initial 

position 15.5 pix  
from center = 5.09 
µm  

      

Comments: Noisy data  

 
 

9/20/2008 Data (Movie 10): _scope_20080920_200638.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 

Left Scattering 
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 
6µm  

Increase 1  0.204  2.47E-07  15.3  48.1  30.3  

Laser 1: 49 mW <-
-> 94 mW  

Decrease 1  0.332  1.52E-07  3.65  28.4  27.8  

Laser 2: 45 mW  Decrease 2  0.237  2.12E-07  3.65  28.4  27.8  
Fiber Separation: 
69.6 µm  

      

Time Frame 
Analyzed: 1-31s  

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 

Qpr = 0.2968 (from 
Matzler Program)  

 Increase Ave 
(τ): 0.204 s  

Increase Ave 
κ: 2.74E-7 
N/m  ------- 7.60E-07  

% Error: 
64%  

Scaling: 377 pix = 
125 µm  

 Decrease 
Ave (τ): 
0.285 s  

Decrease Ave 
κ: 1.82E-7 
N/m  5.14E-07  -------- 

% Error: 
65%  

210 pix = 69.6 µm  
   

   
      Sphere initial 

position 11.0 pix  
from center = 3.65 
µm  

      

Comments: Noisy data  
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9/20/2008 Data (Movie 12): _scope_20080920_201004.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 

Left 
Scattering 
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 6µm  Increase 1  0.2  2.52E-07  17.7  49.7  30.8  
Laser 1: 49 mW <--> 
99 mW  

Decrease 1  0.478  1.05E-07  5.77  28  28.5  

Laser 2: 45 mW  Increase 2  0.159  3.17E-07  17.7  49.7  30.8  
Fiber Separation: 
68.3 µm  

Decrease 2  0.304  1.66E-07  5.77  28  28.5  

Time Frame 
Analyzed: 1-31s  

      

Qpr = 0.2968 (from 
Matzler  

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 

Program)   Increase 
Ave (τ): 
0.180 s  

Increase Ave 
κ: 2.85E-7 
N/m  ------ 7.81E-07  

% Error: 
64%  

Scaling: 379 pix = 
125 µm  

 Decrease 
Ave (τ): 
0.391 s  

Decrease 
Ave κ: 
1.36E-7 N/m  5.10E-07  -------- 

% Error: 
73%  

207 pix = 68.3 µm  
   

   
Sphere initial 
position: 17.5 pix 
from center = 5.77 
µm 

   

   
Comments: Noisy decrease curves  

 
 
  
9/23/2008 Data (Movie 2): _scope_20080923_192424.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant (κ)-

-N/m 

Displacement 
from Center 

(µm) 

Left Scattering 
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 
10 µm  

Increase 1  0.236  3.55E-07  37  49.1  60.4  

Laser 1: 49 mW 
<--> 69 mW  

Decrease 1  0.511  1.64E-07  5.72  50.4  51.7  

Laser 2: 45 mW  Increase 2  0.258  3.25E-07  37  49.1  60.4  
Fiber Separation: 
77.0 µm  

Decrease 2  0.49  1.71E-07  5.72  50.4  51.7  

Time Frame 
Analyzed: 1-37s  

      

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m)  

 Qpr = 0.2013 
(from Matzler  
Program)   Increase Ave 

(τ): 0.247 s  
Increase Ave 
κ: 3.40E-7 
N/m  ------ 1.21E-06  %Error: 86% 

Scaling: 164 pix 
= 125 µm  

 Decrease 
Ave (τ): 
0.501 s  

Decrease Ave 
κ: 1.68E-7 
N/m  9.98E-07  ------- %Error: 83% 

101 pix = 77.0 
µm  

   
   

      Sphere initial 
position 7.5 pix  
from center = 
5.72 µm  

      

Comments: 
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9/23/2008 Data (Movie 3): _scope_20080923_192624.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 
Left Scattering 

Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 10 µm  Increase 1  0.133  6.31E-07  28.6  50.5  59.5  
Laser 1: 49 mW <--> 
64 mW  

      

Laser 2: 45 mW        

Fiber Separation: 77.0 
µm  

   Theoretical κ--
Decrease (N/m)  Theoretical κ--

Increase (N/m)  

 

Time Frame 
Analyzed: 15-45s  

   9.98E-07  1.16E-06   

Qpr = 0.2013 (from 
Matzler  

   % Error: N/A  %Error: 46%   

Scaling: 164 pix = 
125 µm  

      

101 µm = 77 um        
Sphere initial 
position: 4.5 pix from 
center = 3.43 um  

      

Comments: Data very noisy and not exponential--only one increase curve was decent (fibers misaligned)  

 
 
9/23/2008 Data (Movie 4): _scope_20080923_192831.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 
Left Scattering 

Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 10 µm  Increase 1  0.354  2.37E-07  18.7  52.5  56.9  
Laser 1: 49 mW <--> 
59 mW  

Decrease 1  0.493  1.70E-07  3.43  51.6  50.7  

Laser 2: 45 mW        

Fiber Separation: 77.0 
µm  

   Theoretical κ--
Decrease (N/m)  Theoretical κ--

Increase (N/m)  

 

Time Frame 
Analyzed: 15-45s  

   9.98E-07  1.10E-06   

Qpr = 0.2013 (from 
Matzler Program)  

   

% Error: 84%  % Error: 68% 

 

Scaling: 164 pix = 
125 µm  

      

101 pix = 77.0 µm        
Sphere initial 
position: 4.5 pix from 
center = 3.43 µm  

      

Comments: Data was really noisy for other curves and could not analyze them  
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9/23/2008 Data (Movie 5): _scope_20080923_193055.mpg  
       

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 

Left 
Scattering 
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 10 
µm  

Increase 1  0.185  4.53E-07  18.7  52.5  56.9  

Laser 1: 49 mW <--> 
59 mW  

Decrease 1  0.259  3.24E-07  3.43  51.6  50.7  

Laser 2: 45 mW  Increase 2  0.126  6.66E-07  18.7  52.5  56.9  
Fiber Separation: 
77.0 µm  

Decrease 2  0.332  2.53E-07  3.43  51.6  50.7  

Time Frame 
Analyzed: 15-45s  

      

Qpr = 0.2013 (from 
Matzler Program) 

   Theoretical κ--
Decrease (N/m)  

Theoretical κ--
Increase (N/m) 

 

Scaling: 164 pix = 
125 µm  

 Increase 
Ave (τ): 
0.156 s  

Increase Ave 
κ: 5.60E-7 
N/m  ------- 1.10E-06  

%Error: 
49%  

101 pix = 77 µm  

 Decrease 
Ave (τ): 
0.296 s  

Decrease 
Ave κ: 
2.89E-7 N/m  9.98E-07  ------ 

%Error: 
71%  

Sphere initial 
position: 4.5 pix from 
center = 3.43 μm 

   

   
       
Comments: Curves were not exponential (too steep)  

 

 

9/23/2008 Data (Movie 7): _scope_20080923_193517.mpg  

Experimental 
Parameters: 

Exponential 
Curve 

Time 
Constant 

(τ)--s 

Spring 
Constant 
(κ)--N/m 

Displacement 
from Center 

(µm) 

Left 
Scattering  
Force (pN) 

Right 
Scattering 
Force (pN) 

Bead diameter: 10 
µm  

Increase 1  Not 
exponential  

N/A  N/A  
  

Laser 1: 49 mW <--> 
59 mW  

Decrease 1  0.408  2.06E-07  1.03  53.6  50.2  

Laser 2: 45 mW  Increase 2  Not 
exponential  

N/A  N/A  
  

Fiber Separation: 
74.2 µm  

Decrease 2  0.38  2.21E-07  1.03  53.6  50.2  

Time Frame 
Analyzed: 10-40s  

      

   Theoretical κ--
Decrease (N/m)  

Theoretical κ-
-Increase 
(N/m)  

 Qpr = 0.2013 (from 
Matzler  
Program)  

 Increase Ave 
(τ): N/A  

Increase 
Ave κ: N/A  ----- 1.09E-06  

% Error: 
N/A  

Scaling: 364 pix = 
125 µm  

 Decrease Ave 
(τ): 0.394  

Decrease 
Ave κ: 
2.14E-7  9.88E-07  ----- 

%Error: 
78%  

216 pix = 74.2 µm        
Sphere initial 
position: 3.0 pix 
from center = 1.03 
µm  

  

    
Comments: Increase curves were not exponential 




