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Abstract

Optimizing Access to Scientific Data for Storage, Analysis and Visualization

by

Latchesar Ionkov

Scientific workflows contain an increasing number of interacting applications, often

with big disparity between the formats of data being produced and consumed by

different applications. This mismatch can result in performance degradation as

data retrieval causes multiple read operations (often to a remote storage system) in

order to convert the data. In recent years, with the large increase in the amount

of data and computational power available there is demand for applications to

support data access in-situ, or close-to simulation to provide application steering,

analytics and visualization.

Although some parallel filesystems and middleware libraries attempt to iden-

tify access patterns and optimize data retrieval, they frequently fail if the patterns

are complex. It is evident that more knowledge of the structure of the datasets at

the storage systems level will provide many opportunities for further performance

improvements.

For most developers of scientific applications, storing the application data,

and its particular format on disk, is not an essential part of the application. Al-

though they acknowledge the importance of the I/O performance, their expertise

lies mostly in numerical simulations and the particular models their application

x



simulates. Most of their efforts are spent of ensuring that the it produces correct

numerical results. Ideally, they would like to be able to have a library call that

reads a subset of the data from storage (no matter what its format is), and place

it in the data structures the simulation defines in the computer memory. Since the

data needs to be analyzed and visualized, and the data has to be accessible from

third-party tools, the scientists are forced to know more about the data formats.

In this dissertation we investigate multiple techniques for utilizing dataset

description for improving performance and overall data availability for HPC ap-

plications. We introduce a declarative data description language that can be used

to define the complete dataset as well as parts of it. These descriptions are used

to generate transformation rules that allow data to be converted between different

physical layouts on storage and in memory.

First, we define the DRepl dataset description language and use it to implement

divergent data views and replicas as POSIX files. We evaluate the performance

for this approach and demonstrate its advantages both because of the transparent

application use, and combined performance when the application is combined with

analytics and/or visualization code that reads the data in different format. DRepl

decouples the data producers and consumers and the data layouts they use from

the way the data is stored on the storage system. DRepl has shown up to 2x for

cumulative performance when data is accessed using optimized replicas.

Second, we extend the previous approach to the parallel environment used in

HPC. Instead of using POSIX files, the new method allows data to be accessed in

xi



larger chunks (fragments) in the way it will be laid out in memory. The developers

can define what data structures they have in the process’ memory and the overall

format of the dataset on storage, and the runtime will automatically take care of

transforming the data between the two. Both the formats in memory and on disk

are described with the DRepl language. Replacing the ability for reading the data

as an array of bytes with operations that use descriptions of the data structure,

provides better opportunities for the storage system to optimize the access to

the persistent data. The integration of this technique in Ceph demonstrates the

potential advantages for this approach. The experiments show performance im-

provements up to 5 times for writes and 10 times for reads, compared to collective

MPI I/O.

Third, we explore the future directions of extending the DRepl language to

support more complex datasets. The additions would allow scientists to use dif-

ferent resolutions for different parts of a multi-dimensional spaces, and define

how to transform the data between resolutions. The changes would also allow

completely abstract definitions of datasets not only for continuums, but also for

primitive types like real and integer numbers. The fragments of the dataset that

are present in memory or disk will have concrete types that are compatible with

the abstract types used in the dataset.

Finally, we provide foundations on how to extend the previous functionality to

the most complicated data structures used in scientific applications – unstructured

meshes.
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Chapter 1

Introduction

Scientific models are defined using concepts that can’t be represented in digi-

tal computers. They employ multidimensional continuums and real numbers with

infinite precision. Creating meaningful computer simulations for these models

created a significant field of computing known as numerical analysis. The vari-

ety of approaches for minimizing numerical errors introduced a variety of data

structures for describing multidimensional continuums. Their popularity depends

on the overall computing environment: the programming languages used, the

processing elements, the available memory, and the number of nodes. Although

saving data on persistent storage is a known bottleneck for HPC environments,

the task for defining its format on disk is largely left to the application developers.
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1.1 Traditional Data Storage for HPC

Traditionally storage systems work with two main types of data structures.

The most popular (as available on any computer) way is dealing with streams of

bytes organized in hierarchical namespaces. A common interface for this approach

is POSIX I/O. The application developers are responsible for creating routines for

serializing and deserializig the application data structures to one or many byte

arrays. Another method is using relational databases where data with static

structure is stored in tables with multiple fields, and a declarative language is

used to describe relations between the tables, as well as querying and updating

the data. This approach works well with data that consists of millions of uniform

records and clear relations, but is not optimal for hierarchical or graph-like data

structures.

System configuration in High Performance Computing differs substantially

from other popular setups. Figure 1.1 shows a typical organization of an HPC

cluster. There are two main subsystems: the compute cluster and the parallel file

system. The compute cluster consists of head node(s), compute nodes (CN), and

I/O forwarding nodes (IO). They are connected by a high-bandwidth, low-latency

network. The compute nodes don’t have any local storage. The applications

access the parallel file system through the I/O forwarding layer. In the general

case, the parallel file system is connected to a different network. The I/O nodes

are connected both to the compute and the file system networks. The users can

connect to, and use the cluster by logging in to the cluster’s compute node(s).

2



Head 
Node(s)

CN1 CN2 CNk...

CNk+1 CNk+2 CNl...
CNl+1 CNl+2 CNm...

CNm+1 CNm+2 CNn...

IO1

IO2

IO3

IOp

FS

FS

FS

FS

FS

Desktop Desktop Desktop Desktop

Compute Cluster Parallel File
System

Figure 1.1: Typical HPC cluster. CN depicts the cluster’s compute nodes, IO
is the I/O forwarding nodes, and FS are the file system storage nodes.
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Although there are some advances in using the latter, the vast majority of

the scientific applications use the former technique. The dataset semantics and

structure are not known to the storage system, as the translation from the memory

data structures to a stream of bytes is performed either by the application itself,

or by some middleware libraries that it uses. Some of these libraries, for example

HDF5, save the structure of the data (also known as metadata) as part of the

byte stream, but the storage system cannot tell apart metadata from data and

therefore has has no information on the structure of the data.

1.2 New Challenges to the Storage Systems in

HPC

The amount of data produced by scientific applications increases with the

aggregate memory size of the high-performance supercomputers they run on. Fu-

ture exascale systems will require hundreds of petabytes storage just to satisfy

the need for scratch space [32]. It may be prohibitive to transfer all data pro-

duced by exascale simulations outside of the compute cluster. These issues made

in-situ and close-to analytics and visualization solutions an important research

topic. Analyzing and steering the simulation while it is running can reduce the

resources (both computational and storage) used. In most cases the visualization

and analytics applications need a small part of the data produced by the scientific

application, but because the data layout is optimized to increase the performance

4



of the simulation, finding and reading the required data is slow and may interfere

with the data producer.

Another important trend in high performance computing is increased use of

multi-physics simulations, where many computational models are bundled to-

gether to create more realistic simulation of the studied fields [45]. An exam-

ple of such simulation is the Energy Exascale Earth System Model (E3SM) [1]

that simulates Earth’s climate by including models for simulations of the ocean,

atmosphere, ice (land and sea), and land. As each of the models within the multi-

physics simulation might use different meshing and partitioning techniques, the

data formats used by each models are often incompatible. When data has to be

shared at the boundaries of the models, it needs to be converted from one repre-

sentation to another. Although there is increasing focus on sharing data in RAM,

when possible, most of the models still use files stored in an “outside” storage

system as a way to exchange data with the other models.

Both trends make it harder to define in advance what data format is the best –

the one produced by the simulation, or one of the formats that are more suitable

for the consumers of the data. The storage system, where the data ultimately

reside has a unique opportunity to answer these questions. Unlike the relatively

short-running producers and consumers of the data, it can collect statistics on

the access patterns during whole lifetime of the datasets, and has opportunities

to improve the performance by reorganizing the data or, if space allows, creating

replicas of the data in multiple formats.
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To achieve that, the storage system needs explicit information on the data

semantics and structure. Making that available will allow both better sharing

between loosely coupled applications, and flexibility for autonomous data reorga-

nization in the storage system itself.

VPIC [13, 11, 12] is an example of an HPC application that saves its complex

datasets on parallel storage. VPIC is a general purpose particle-in-cell simula-

tion that models kinetic plasmas in one, two, or three dimensions. It allows

simulations of plasmas with different kinds of particles, with specific masses and

electric charges. It uses a second-order, leapfrog algorithm to update the parti-

cle positions and velocities in order to solve the relativistic kinetic equations in

the plasma. VPIC partitions the space in rectilinear or curvilinear meshes. The

cells are partitioned uniformly across the processing elements the simulation is

running, and the simulation is run in parallel. After each step VPIC shares data

(particles and electromagnetic fields) at the cells’ boundaries. VPIC’s input deck

defines the size of the cells the space is partitioned into, the types and the initial

conditions of the particles, as well as the subset of the data produced that should

be saved for each simulated entity on storage.

In order to improve performance, VPIC employs N-to-N data storage pattern:

each of the simulation ranks saves its data in a separate file. Additionally, the

data for each type of particles, as well as for fields and hydrodynamics data is

written in a separate file. Although writing to multiple files avoids some of the

bottlenecks of parallel filesystems (writing to a single file from hundreds of thou-
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sands of nodes greatly affects the storage performance), there are two main issues

with this approach. First, parallel filesystems don’t perform well when there are

hundreds of thousands, or even millions of files in one directory. The metadata

storage server, which controls the directory structure, becomes a bottleneck at file

creation, as well as when metadata (like file size, or modification time) is changed.

Projects like GIGA+ [59] can be employed to improve that problem. Second, the

data produced by the simulation is split into arbitrary number of files that reflect

the particular configuration of the compute cluster. As the overall storage per-

formance depends on both compute and storage systems configurations, and this

approach may lead to inferior results. Also, tying the number of files to particular

partitioning of the space makes it harder to restart the simulation later, if it is

run on a different compute cluster.

In the examples on how VPIC can utilize the projects described here, we will

focus on the storage of fields calculated by the simulation. Table 1.1 shows the

data stored for each time step. For each rank, VPIC creates a file and stores the

fields for each cell of the local grid. The array allocated in memory has two more

elements in each direction in order to receive and use the ghost values calculated

from the neighboring ranks.

1.3 Contributions of this Dissertation

This dissertation explores techniques for declarative dataset description that

will allow the storage system and/or the applications to utilize automatic data

7



ex, ey, ez electric fields in each dimension
div_e_err div E error
cbx, cby, cbz magnetic field in each direction
div_b_err div B error
tcax, tcay, tcaz TCA fields in each direction
rhob bound charge density
jfx, jfy, jfz free current in each direction
rhof charge density
ematx, ematy, ematz material at edge centers
fmatx, fmaty, fmatz material at face centers
nmat, cmat material at nodes and cell centers

Table 1.1: Important fields data stored by VPIC at each step

transformation and replication. Each of the methods discussed has different appli-

cation interface, a set of data structures and transformations it allows, and types

of scientific data representations that it supports. All methods together support

all primitive types (different sized integers and IEEE 754 floating point numbers),

composite data structures, as well as multidimensional arrays, multi-resolution

multi-dimensional continuum, as well as unstructured grids. These types cover

the overwhelming majority of data structures used in scientific applications.

The dissertation explores the extent to which declarative languages can de-

scribe scientific datasets and the transformations that can be generated for con-

verting the data to different formats. It further outlines the limitations of using

data description languages and proposes possible solutions on how to incorporate

transformations where declarative approaches fail. It provides the ability to de-

fine application datasets as well as subsets and replicas of their data, as well as

accessing the data using the POSIX I/O interface. It then extends the function-

8



ality by making it scale better in a HPC environment where data for a dataset

is produced and stored in many locations. It extends the use of the language by

using it to define the data format in the program’s memory in addition to the

format in the storage system. Further, the contributions include extensions to the

DRepl language that allow support for multi-resolution datasets where the cells

of a multi-dimensional continuum can have different sizes for different parts of

the space. The runtime also provides a way to define, and execute conversions

between the different resolutions.

1.3.1 DRepl: Static Datasets with POSIX I/O Interface

The first contribution is defining a declarative language for describing static

datasets for scientific applications and a custom file system that allows the dataset

to be accessed in different formats.

DRepl improves the performance of the visualization and analysis tools while

keeping the amount of storage and reliability guarantees the same as when using

other data replication mechanisms. DRepl is transparent to the applications and

doesn’t require any modifications of the application’s code. It runs as a file server

that provides different files for each layout of the data desired. The data layouts

(views) can be stored in a file (replica) on the underlying file system (materi-

alized), or can be virtual (non-materialized). If a view is materialized, reading

from its file reads the data from the real file on the parallel file system. Read-

ing from non-materialized view uses data from one of the materialized views and
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converts the data on the fly. When writing data to a view, DRepl updates all

replicas. Depending on the concurrency model, the updates can be synchronous

or asynchronous.

DRepl defines a language that is used to describe the dataset, views and repli-

cas. The description is employed to generate transformation rules for conversion

between the data layouts of each of the views. Given a DRepl description, DRepl

creates a user-level file system that can be mounted on the compute nodes. Each

of the views is represented as a separate file, while the replicas define how the

data is written on the parallel file system. This approach separates the storage

data layout from the one used by the applications to access the data. It allows

support for legacy scientific applications, without any modifications to their code.

As long as one of the views matches the legacy data layout, the application can

continue to operate as before, even if the replicas that store the data on disk are

in a more portable or convenient layouts, like HDF5 [34] or NetCDF[18].

DRepl allows flexibility that might be used in advanced storage architectures

that implement burst-buffer [51] schemes. A burst-buffer is a type of hierarchical

file system designed to reduce the number of checkpoints sent to the parallel file

systems. Sitting between the compute node and the parallel file system, the burst-

buffer is high-speed temporary storage for quick depositing of multiple checkpoints

with only a fraction of them being moved to the parallel file system. Burst-buffer

nodes can run the DRepl file server, providing transparent in-transit access to the

data for the visualization and analytical applications in the appropriate format.
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dataset {
const nx = 100
const ny = 100
const nz = 100

type MaterialId int16
type Field struct {

ex, ey, ez, div_e_err float32
cbx, cby, cbz, div_b_err float32
tcax, tcay, tcaz, rhob float32
jfx, jfy, jfz, rhof float32
ematx, ematy, ematz, nmat MaterialId
fmatx, fmaty, fmatz, cmat MaterialId

}

var fields[nx, ny, nz] Field
}

Figure 1.2: DRepl dataset description for the fields data.

The results of the experiments show improvements in the cumulative perfor-

mance when data is stored in multiple replicas and the data is accessed from the

replica that has its layout optimized for the particular access pattern.

The chief contribution of DRepl is to provide optimized access from various

applications to the same dataset. DRepl decouples the data producers and con-

sumers and the data layouts they use from the way the data is physically stored

on the storage system.

When DRepl is used with VPIC, the developers will need to define the ab-

stract dataset description that defines the data produced by the whole simula-

tion. Figure 1.2 shows the part of the description related to the fields’ data. The

three-dimensional space is split into 10000 cells, 100 in each dimension.

When the simulation is run with N ranks, the user defines two views for each
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of them. Figure 1.3 shows how the views used by the M th rank are defined. For

simplicity, the example assumes that the space is partitioned only across the x

axis. The user passes the values for M and N , the rest of the view constants are

calculated based on the global constants. The rM view is used to read the data

into the 3D array in memory. As the array in memory, it has 2 extra elements in

each direction to allow for the ghost values. the wM view represents only the data

that the rank produces and is used to write the data to disk.

The fields data can be stored on disk as an array of structs that contains all

the data across all ranks and only for the electric field in two replicas (Figure 1.4).

Dreplfs is started before the simulation. It will create two files on disk –

“vpic-fields” and “vpic-electric” for the whole simulation and store the replicas in

them. The default keyword will instruct DRepl to use that replica as default for

accessing data for all views that don’t specify a particular replica. It will create

2N virtual files that can be used to access the data for each rank:

/

r1

w1

r2

w2

..

rN

wN
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view "rM" {
const rank = M
const ranknum = N
const lnx = (nx / N)
const lny = ny
const lnz = nz
const ix = M * lnx
const iy = 0
const iz = 0

var lfields[i:lnx+2, j:lny+2, k:lnz+2] =
fields[i+ix*lnx, j+iy*lny, k+iz*lnz]

}

view "wM" {
const rank = M
const ranknum = N
const lnx = (nx / N)
const lny = ny
const lnz = nz
const ix = M * lnx
const iy = 0
const iz = 0

var lfields[i:lnx, j:lny, k:lnz] =
fields[i+1+ix*lnx, j+1+iy*lny, k+1+iz*lnz]

}

Figure 1.3: DRepl views description for rank M out of N . The first view is used
to read the data (including the ghost values), while the second view is used to
store the data produced by the rank.

replica "vpc-fields" default {
var rfields = fields

}

replica "vpic-electric" {
var efields { ex, ey, ez } = fields

}

Figure 1.4: DRepl replicas for all data and the electric field.
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view "vpic-viz" "vpic-electric" {
var efields { ex, ey, ez } = fields

}

Figure 1.5: DRepl view for visualization application that needs only the data
for the electric field.

Each rank then uses the pair of files to read or write to the data in the format

defined by the appropriate view.

If an visualization application needs only the electric force, it can define it’s

own view (Figure 1.5). DRepl will use the “vpic-electric” file to read the data for

the view, improving the overall performance.

1.3.2 Static Datasets with Scalable Interface for HPC

Although DRepl decouples the storage data format from the format the ap-

plications use to access their data, it suffers from some shortcomings in a HPC

environment. The fact that the data is accessed using POSIX I/O helps improv-

ing the performance of legacy applications, but it also makes the metadata of the

dataset is unavailable to the developers. Additionally, the replicas are persisted

to the parallel file system using POSIX I/O therefore missing the opportunity to

explore the distributed nature of the parallel storage in a more direct way.

ASGARD explores advantages of extending the DRepl functionality by dis-

carding the traditional POSIX I/O interface. Instead of operations for accessing

contiguous subset of a file, ASGARD allows the application to access a subset

(fragment) of the dataset as a whole, regardless of how the data for that subset is
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stored. For example, if a data file contains an array of structs, and the application

needs to read only one field from each element of the array, it needs to either read

a lot of data that it will discard, or issue thousand or millions of short reads.

ASGARD allows the field selection to be passed to the storage system and exe-

cuted on the I/O nodes where the data is stored. It extends DRepl by providing

support for dynamic fragment definitions, and functionality for transforming and

gathering data from multiple data fragments. While DRepl provides a POSIX

API for accessing the data as files, ASGARD avoids the file interface and focuses

on the data layout in application memory and how to transform it optimally to

the layout on persistent storage.

ASGARD uses the DRepl language to define the dataset and the fragments.

Once they are declared, ASGARD provides functionality to query how to con-

vert the content of one fragment to another. ASGARD defines transformation

rules, which describe the conversion between two fragments. The values required

for fragment materialization might not be located in a single fragment, so AS-

GARD allows the user to get a list of the fragments required to produce a specific

fragment.

Unlike DRepl, transformation rules in ASGARD define conversion only be-

tween two data layouts. This restriction greatly increases the opportunities for

optimizations that can improve the transformation performance.

In order to decrease network usage, ASGARD splits the transformation rules

into two parts. Remote rules are executed on the server where the source fragment
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is located and produce a compact representation of the data for the destination

fragment. Once the compact representation is received, ASGARD applies local

rules to copy the parts of the source fragment to the appropriate locations in the

destination fragment. ASGARD, in a sense, provides an extension to the standard

scatter/gather operations [6]. The transformation rules allow compact definition

of complex patterns. The combination of gather (on the side where the data is

stored) and scatter (on the side where data is used) provides a powerful tool for

transforming data from the format in which it is produced to a format suited for

consumption. The fact that the fragments are defined in advance allows an active

storage subsystem to perform optimizations that might be too slow or costly if

run at the time the operations are executed. For example, the storage subsystem

can start transforming and prefetching the data for the fragments that will be

read in the future.

In order to evaluate ASGARD’s benefits, we modified Ceph’s [72] RADOS

object store system to support ASGARD’s transformation rules for storing and

retrieving data to objects. We also created a custom object class that allows

developers to define an object that represents an ASGARD dataset and how it is

partitioned into stripes on storage. Each of the stripes is defined as ASGARD’s

fragment. When a client needs to read or write a subset of the data, it can get a

list of the stripe objects that contain the data as well as a pair of transformation

rules that need to be applied to transform the requested subset to each of the

stripes. The operations for each of the stripe objects are executed asynchronously
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fragment {
const nx = 100
const ny = 100
const nz = 100

type MaterialId int16
type Field struct {

ex, ey, ez, div_e_err float32
cbx, cby, cbz, div_b_err float32
tcax, tcay, tcaz, rhob float32
jfx, jfy, jfz, rhof float32
ematx, ematy, ematz, nmat MaterialId
fmatx, fmaty, fmatz, cmat MaterialId

}

var fields[nx, ny, nz] Field
}

Figure 1.6: ASGARD dataset description for the fields data.

to increase the overall performance. Our experiments show that ASGARD can

improve the I/O performance by a factor of seven over both collective and non-

collective MPI I/O.

To work with ASGARD, VPIC needs to be more changes. First, the user needs

to define the fragment dsf that defines the abstract dataset (Figure 1.6) and the

stripe fragments it is partitioned in on disk (Figure 1.7).

The creation of the dataset needs to be done only once, usually by the first

rank of the simulation:

ds = asgard_dataset_create("fields", dsf, stripes, N);

Next, each rank has to define what is the format of the fields data in memory

(i.e. when read), and what part of it is actually produced by the rank (i.e. what
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view "stripeM" {
const stripe = M
const total = N
const lnx = (nx / total)
const lny = ny
const lnz = nz
const ix = stripe * lnx
const iy = 0
const iz = 0

var lfields[i:lnx, j:lny, k:lnz] =
fields[i+ix*lnx, j+iy*lny, k+iz*lnz]

}

Figure 1.7: ASGARD fragment definition for stripe M out of total N .

is stored). Figure 1.8 shows the read definition (rf) of the memory fragment and

Figure 1.9 defines the write definition (wf) of the same fragment.

The memory region is then created as:

mf = asgard_fragment_create(ds, rf, wf);

When data needs to be read and written in the buffer fields:

asgard_fragment_read(mf, fields);

asgard_fragment_write(mf, fields);

1.3.3 Dynamic and Multi-resolution Datasets

Many scientific codes use multiple resolutions, either as separate runs, or as

parts of the same run. There are many reasons for that. Some simulations take

too long to run, so the scientists run coarser-grained simulations first, to evalu-

ate if certain phenomena exists and whether it is beneficial to run finer-grained,
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fragment {
const rank = M
const ranknum = N
const lnx = (nx / ranknum)
const lny = ny
const lnz = nz
const ix = rank * lnx
const iy = 0
const iz = 0

var lfields[i:lnx+2, j:lny+2, k:lnz+2] =
fields[i+ix*lnx, j+iy*lny, k+iz*lnz]

}

Figure 1.8: Read fragment for rank M out of N .

fragment {
const rank = M
const ranknum = N
const lnx = (nx / ranknum)
const lny = ny
const lnz = nz
const ix = rank * lnx
const iy = 0
const iz = 0

var lfields[i:lnx, j:lny, k:lnz] =
fields[i+1+ix*lnx, j+1+iy*lny, k+1+iz*lnz]

}

Figure 1.9: Write fragment for rank M out of N .
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but longer running computation. For other models, the error produced by the

numerical algorithm depends on the data values, so during the execution, some

areas of the simulated contiguous space have to be run at higher resolutions than

others. The multi-resolution approach balances the use of available computational

resources and the overall numerical error.

Keeping grids’ resolution the same for the whole dataset, or for all time steps

of it, is often unfeasible. Additionally, analytics and visualization applications

usually need the data at different resolution than the one produced by the appli-

cation. There are opportunities for performance improvements if the resolution

conversions are executed close to where the data is, i.e. within the storage system.

For example, there is no need to transfer the data in its standard resolution if the

visualization software needs it at much coarser one.

This work investigates the changes required in DRepl and ASGARD in order

to provide multi-resolution grids for abstract datasets. Extensions to the DRepl

language allow definition of more abstract data structures that are closer to the

concepts used in the scientific models. The application developers can define

abstract datasets using abstract types like real numbers, and multidimensional

continuous spaces. They can then express the concrete types used in their numer-

ical codes as concretization of the abstract data types, providing details about the

format of the real numbers (for example 64-bit IEEE 754) or the resolution of the

cells of the multidimensional space.

The runtime or the transformation engine provide support for converting data

20



fragment ds {
type MaterialId int
type Field struct {

ex, ey, ez, div_e_err real@approx(proportional)
cbx, cby, cbz, div_b_err real@approx(proportional)
tcax, tcay, tcaz, rhob real@approx(proportional)
jfx, jfy, jfz, rhof real@approx(proportional)
ematx, ematy, ematz, nmat MaterialId@approx(error)
fmatx, fmaty, fmatz, cmat MaterialId@approx(error)

}

var fields[,,] Field
}

Figure 1.10: Abstract dataset description for the fields data.

from one resolution to another, using hints provided by the user. Integrating the

runtime into the application code (as a library) and the storage system, allows

balanced execution model that performs the optimal conversions close to where

the data resides, and thus improves the overall performance of the HPC system.

We describe the design and the current implementation of the parser and the

transformation engine. This project is a work in progress and requires further

effort in order to integrate with an existing storage system as well as evaluate its

performance and overall applicability with porting an existing application.

Figure 1.10 show the definition of the abstract VPIC dataset. It defines the

Field structure as holding real numbers without specifying the format and the

size of the values. It also defines how each of the fields to be calculated when

the data is converted between different resolutions. The description defines a 3D

space that contains the field values.

Figure 1.11 defines a fragment of the dataset that accesses the data in a grid
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fragment f1 : ds {
const x0 = 0.0
const x1 = 1.0
const dx = 0.3
const y0 = 0.0
const y1 = 1.0
const dy = 0.3
const z0 = 0.0
const z1 = 1.0
const dz = 0.3

var grid[x0:x1:dx, y0:y1:dx, z0:z1:dx] = fields
}

Figure 1.11: Concrete fragment description.

with cell size of 0.3 in each dimension.

1.3.4 Dynamic Datasets with Unstructured Grids

Unstructured grids are the most general case for partitioning multidimensional

spaces. The disadvantages of the maintenance, overhead and complexity often

overcome the advantages in flexibility of the unstructured grid topologies. Nev-

ertheless there are some classes of numerical algorithms that benefit from the use

unstructured grids.

We explored the effort necessary for adding support for unstructured grids into

the storage system. The biggest required change is abandoning the declarative

dataset language. Instead of compact and space bound definition of a language

description, the metadata describing the grid topology requires much bigger meta-

data structure that depicts the relations between cells in the unstructured grid.

We provide initial design and a plan on how to further tackle the problem of
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storing and querying topological unstructured grids.

1.4 Dissertation Outline

The organization of the dissertation is as follows. Chapter 2 provides back-

ground and an overview of the related work in the area. Chapter 3 presents

the work on static datasets and the custom POSIX file systems used to access

the data. Chapter 4 presents the extensions of the static datasets to distributed

storage systems and parallel scientific applications. Chapter 5 outlines the ini-

tial design and the future work for supporting abstract datasets, multi-resolution,

and unstructured grids. Chapter 6 provides a conclusion with some additional

directions for future work.
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Chapter 2

Background

2.1 Simulations and Data Discretization

Major part of the High Performance Computing applications are numerical

simulations of scientific models. Scientific theories employ mathematical models

that use real numbers with infinite precision and continuous multidimensional

spaces. Using computers to solve the equations that describe these models intro-

duce many challenges that are studied by the vast field of numerical algorithm

research.

The equations, and variables, used in scientific theories can describe dis-

crete/monolithic objects (like particles), or can be properties of continuous spaces.

The spaces can be multidimensional, with most models using three dimensions.

Depending on the phenomena they describe and the coordinate systems used, the

dimensions can be open (span from −∞ to ∞), periodic (angles in the polar co-
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ordinate system), or have specific finite shapes (for example, simulation of a finite

object like a piston).

In computer memory, the infinitely precise real numbers are usually repre-

sented as 32- or 64-bit floating point numbers [4]. The calculations with them are

inherently imprecise and introduce rounding errors to the simulations. There are

some efforts in the recent years to introduce new number formats and algorithms

that keep track and asses these errors. For example IEEE 1788-2015 [5] defines

a standard for interval arithmetic. Unum [36] and Posit [35] provide alternative

real number formats that allow variable precision.

2.1.1 Space Tessellation

Numerical algorithms partition the continuous spaces into grids. Splitting

the space into cells that cover it without gaps and overlapping is known as tes-

sellation. The shape and the size of the grid’s cells depends on the particular

numerical methods used for solving the mathematical equations. In most cases,

the simulation of the model can be performed in parallel for each cell, requir-

ing only knowledge of the data from the neighboring cells. This property is the

foundation of parallel computation in scientific applications.

There are two main types of grids [50]: structured and unstructured. If the

cell’s position, size, and shape is defined by a general rule applied for the whole

space, the grid is considered structured. If the number of neighboring cells, the

position, or the shape of the cells are not uniform, the grid is unstructured.
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Structured Grids

Structured grids are applicable for uniform spaces with regular shapes. The

simplest type of structured grid is when the space is partitioned evenly for each

dimension, making rectangularly shaped cells. Other commonly used shapes are

triangles and hexagons in 2 dimensions as well as various pyramids, hexagonal

prisms, octahedrons, and dodecahedrons in 3 dimensions.

Structured grids can be represented in computer memory as N-dimensional

matrices. More generally, a structured grid can be defined as transformation

where space position x =
(
x1, x2, . . .x + n

)
where xi ∈ R is transformed into a

matrix index a =
(
a1, a2, . . .an

)
where an ∈ N.

Unstructured Grids

For unstructured grids, the cells can have different shapes and sizes, and more

importantly, have different number of neighboring cells. Although some definitions

of unstructured grids allow overlapping or enclosing cells, they are rarely used in

scientific models.

Unstructured grids are used for multi-resolution simulations where in order to

contain the numerical errors, some parts of the space need to employ finer-grained

partitioning than other parts. They can also be used for tessellating more complex

shapes. For example, there is no polyhedral tessellation of a sphere that uses only

one type of polyhedron, so ocean simulations use a mix of hexagon and pentagon

prisms for representing the Earth [26].
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a. Square (cartesian) b. Hexagonal

d. Voronoic. Mesh refinement

Figure 2.1: Examples of structured (a and b) and unstructured (c and d) grids.
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In the general case, unstructured grids can be represented as graphs, with each

cell being as a vertex, and the relation “neighbor” depicted as an edge. Although,

in theory, the unstructured grids can produce very complicated graphs, in practice

the physics theories, the numerical algorithms, and the methods used to generate

the grids, lead to certain patterns that are commonly used. For example, the

Adaptive Mesh Refining (AMR) algorithms generally have rules that restrict the

refinement rate, so if the size of a cell is N , the sizes of its neighboring cells

are either N , N/2, or 2N , thus limiting the graph’s rank. The fact that the

unstructured grid tessellates a contiguous space enforces certain locality of the

graph that describes it. For example, unstructured grids for 2 dimensional spaces

are planar graphs.

An important subset of the unstructured grids are the block-structured grids.

They consist of coarse unstructured grids, where each cell of that grid is further

partitioned into a finer structured grid.

In computer memory unstructured grids are represented similarly to graphs.

Usually there is a list that defines all cells. The cells’ neighbors can be stored in

that list for each cell, or there can be a separate list that define the cell’s “neighbor”

relation. Because the cells partition continuous space, often the partitioning is

defined as a list of vertices: points in the space where the cells touch. In that case

the unstructured grid is represented by a list of vertices, and each cell is defined

as a subset of that list. Finding the neighboring cells for a given cell requires

construction of the dual graph of the vertex graph.
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Figure 2.1 shows examples of structured and unstructured grids.

2.2 Scientific Data Formats

Traditionally scientific datasets are stored in persistent memory in files using

custom formats. In most cases the data layout is not stored together with the

data. Instead, in the best case scenario, it is described in the application’s doc-

umentation, and in the worst case, the interested parties have to uncover it by

reading the source code. To make matters even worse, the performance degra-

dation caused by writing to a single file from a distributed applications at scale

usually force the developers to partition the data into multiple files.

There are few standard scientific format that are not application specific, and

store the data description together with the data. The most popular of them is

HDF5 [34]. HDF5 is a library that provides high-level API for storing complex

datasets. The data can be organized in hierarchical groups, similar to directories

on the file system. Datasets are named entities that contain the actual data values.

They are similar to files in a POSIX file system. Unlike files, the datasets also

include metadata that describes the data structure. Each dataset has a datatype.

The datatypes can be atomic (i.e. 32-bit floating point number), compound (i.e. a

list of named records, each with its own datatype), multi-dimensional arrays with

constant size, or variable-length one-dimensional arrays. Each data object (group

or a dataset) can have arbitrary number of attributes assigned to it. Attribute

values belong to one of the defined datatypes. The generality of the HDF5 format
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leads to a very complex file format. The library practically implements a file

system within a file, with inodes, list of free blocks, etc. The complexity makes it

hard to achieve good performance for parallel applications, even though there are

some solutions that try to alleviate that. The modular implementation of HDF5

makes it easier to incorporate other approaches to HPC storage, like DAOS [53].

The fact that HDF5 is a library that is linked to the application makes it harder

to optimize the data layout once the application completes its execution.

Another popular scientific format is netCDF [62]. It allows storage of collection

of multi-dimensional arrays of simple data types as well as attributes for them.

There are parallel versions [48] of netCDF that improve the performance in HPC

environment. Version 4 of the format allows use of the HDF5 format.

The Adaptive IO System (ADIOS) [54] provides a storage abstraction that de-

scribes the data produced by the application. The application dataset is defined

in an XML file outside of the application source code. ADIOS can automatically

generate code snippets for reading and writing the datasets in Fortran and C.

In addition to the data description, the XML file provides information on the

methods for accessing the data. In addition to the standard POSIX I/O, ADIOS

provides support for MPI individual or collective I/O, as well as other methods.

like routines that are optimized for specific storage systems. The datasets sup-

ported by ADIOS are somewhat limited and supports only simple data types –

integers, floating point numbers, as well as multi-dimensional arrays of them. The

arrays dimensions have to be variables that are also defined in the XML file and
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can be modified from the application code. ADIOS doesn’t support arrays of com-

pound types. For example, if an application like particle-in-cell simulation keeps

multiple values for each particle (position, velocity, energy, etc.), with ADIOS the

application developers need to create multiple arrays, one for each property of

the particle. This approach works well with languages like Fortran, but is not

well suited for the recommended techniques for modern programming languages

like C++. ADIOS provides support for both structured and unstructured grids.

There is also support for in-situ sharing of the data among multiple applications.

Although some modification of the data format can be changed only within the

XML file, the fact that the arrays’ dimensions and offsets need to be provided both

by the application and defined in the XML file, forces the developers to change

both the source code and the XML file. Additional work with ADIOS [70] has

improved performance by using space filling curves for multi-dimensional array

element ordering in long term storage formats. Further developments of ADIOS

provide the ability to replace the XML dataset definition with function calls in

the application code.

2.3 Scientific Data in HPC Environment

High Performance Computing environments introduce many challenges to data

storage. A typical cluster consists of hundreds to hundreds of thousands compute

nodes that run the scientific code. They don’t have local storage and use parallel

file systems to retrieve and save the relevant data. Most scientific applications
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have a specific synchronous computational pattern where each processing element

performs calculations for a certain period of time, then boundary data between

the elements is exchanged, and optionally (at certain number of steps) the data is

saved to persistent storage. Although this design greatly simplifies the numerical

algorithms, it presents many challenges to the storage subsystem, as thousands of

nodes try to use it at the same time.

The most popular parallel file system is NFS [56]. One of the oldest network

file systems, it was designed to be shared by a relatively small number (up to

hundreds) of Unix workstations, instead of compute nodes of a HPC cluster.

There are some extensions to it, for example the Parallel NFS [29] that try to

improve its performance in HPC environment. The popularity of NFS still makes

it ubiquitous for sharing read-only portions of the file system, like standard Unix

binaries, libraries and compilers.

There are many parallel file systems that are designed specifically for the

HPC environments. PVFS [63], and later PVFS2 [68] is an open source project

developed by NASA, Argonne National Laboratory and others. Panasas [73],

Lustre [14], GPFS [64], and Ceph [72] are other examples of widely used parallel

file systems.

Most of the modern parallel filesystems use a common architecture. They

split the file operations into two main groups – data operations and metadata

operations, and create two separate services that handle them. Each of the services

can be deployed on multiple servers that handle parts of the I/O workload. Typical
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parallel storage uses tens or hundreds of data storage servers that operate close

to independently. Due to the hierarchical nature of POSIX files, partitioning the

metadata service is more complicated and requires more coordination. The clients

(i.e. compute nodes) are aware of the distributed architecture of the file system

and communicate directly to the data and metadata instances, decreasing the

bottlenecks of the storage subsystem. There are still issues with scalability when

operations are aimed at the same entity, if thousands of nodes access the same

file, or try to create files in the same directory.

MPI [27] is a widely used communication library for parallel scientific applica-

tions. Since version 2 of the library, it includes MPI I/O – an API for accessing

scientific data on storage. It uses MPI data types to define file’s format. MPI

I/O allows users to define memory and file data layouts, and uses collective I/O

operations that improve the performance by coalescing the access across multi-

ple MPI ranks before the requests are sent to the storage system. The collective

I/O operations help with some non-contiguous local data access [21, 23, 24], that

combined over all ranks ends up being contiguous. But in the general case the

globally non-contiguous data access still doesn’t scale well. Additionally, MPI

I/O performance requires all ranks to progress synchronously, and that mode of

operation is unlikely to be continued in the future HPC configurations at exascale,

where the expected node failure rates will make it more likely that the codes will

adopt more asynchronous techniques.

There is a long tradition of using synthetic files that are indirectly backed by
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data stored in different format. The original Unix used /dev and /proc [28] file

systems to represent diverse type of devices and concepts as files. Plan 9 [61]

extended the idea even further, representing all kernel resources as files, including

the network and displays. Plan9 also introduced the concept of user-level file

systems, allowing user applications to provide functionality by reading and writing

to virtual files, instead of defining custom protocols. Services like DNS, as well

as network protocols like TCP/IP were implemented as user-level file systems.

The SFS semantic file system [30] was a layer on top of NFS that would create

files based on user defined transducers. The transducers would allow retrieval of

pieces of files, although this work was not focused on large application data. The

ATTIC [17] system allowed transparent access to compressed files.

In HPC there are number of middleware libraries that provide file interface

for accessing data that is in different formats. PLFS [10] is a transparent layer

optimized for writing of parallel application checkpoints. It allows each process

of a parallel application to believe it is writing to the a single file while the PLFS

middle-ware separates these writes to disjoint files. Although the approach works

well for writes, its read performance is often poor. Extensions to this work are

focused on increasing read performance. GIGA+ [59] uses similar technique to

improve the performance of the metadata operations. DeltaFS [76] allows the

creation and the tracking of billions of small files that are backed by data residing

in a database. Long distance visualization [7] uses multi-resolution data views

to allow reasonable response times. In this scenario, when looking for an area
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of interest the resolution is sub-sampled to allow fast scanning, and when an

area of interest is selected the high resolution data is then streamed in. None of

the related work combines multiple semantic views with replicas to provide the

configurability and resilience of our proposed solution.

There is not much work done in replicating the data content in different for-

mats, or transforming the data transparently to the application. There is some

work on using erasure codes [74] [60] for providing better availability of data in

distributed environment.

The intrinsic performance bottlenecks of the POSIX file systems, and the rising

popularity of non-traditional databases like Bigtable [19] is increasing the interest

of research into how to use them for storing scientific data. SciQL [44] and Ar-

rayQL [49] provide SQL-like languages for accessing scientific data. SciDB [15] can

store very large arrays of scientific data. MDHIM [31] is a distributed key-value

store designed for parallel applications. SciHadoop [16] is a plugin for Hadoop

that allows storing, and optimized access to scientific data in the Hadoop data

environment.

There is work done on creating adaptive layout strategies based on the data

access patterns[67]. These techniques improve the I/O performance but don’t help

if the data needs to be read in-transit by visualization or analytical tools.

Although there has been a lot of work on taking some of the processing to the

storage system [66, 20], recent work has been done on extending the programma-

bility of the storage system. Malacology [65] exposes some of the standard internal
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interfaces available on most storage systems, so they can be used outside of the

storage system. DeclStore [71] lays the groundwork for using a temporal logic lan-

guage to declaratively specify distributed storage services and to enable automatic

optimizations of their implementations.
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Chapter 3

DRepl for Static Datasets

The goal of DRepl is to provide mechanisms for storing and transforming

scientific datasets in semantically consistent way, so tools with different access

patterns can use a custom replica that allows the fastest access. In order to

do that, DRepl needs semantic knowledge of the data read or written by the

applications.

Some of the existing libraries allow developers to provide partial, or full de-

scription of the scientific dataset. For example, developers using MPI-IO [69] can

specify the MPI types of the data accessed. HDF5 goes even further, allowing

description of the whole data model, where the data elements have names and

can be organized in groups. The drawback of using these libraries is that they

require significant changes in the code base. Furthermore, describing dataset with

their API is often quite verbose and not easily readable. ADIOS uses an external

XML file to define the data format.
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DRepl tries a different approach. Instead of defining a single dataset format,

its goal is to have the data layout decoupled from the data producer and/or

consumers, providing more flexibility at the middleware and storage layers. DRepl

allows separation of the abstract dataset, detaching its content from the data

layout used in application’s memory or the format used on persistent storage.

Instead of providing an API for defining the dataset (or adopting an existing

one), DRepl uses a declarative language that allows definition of a dataset, views

(subsets) of the dataset, as well as, replicas that store the dataset on persistent

storage. Using specific language allows expressive and easy to comprehend defi-

nition of datasets. In order to ensure familiarity, we chose syntax similar to the

syntax of type and data declarations shared by many of the popular programming

languages like C, C++, Java, etc.

We distinguish three major entities related to data and the way it is used and

stored. Dataset is an abstract definition that describes the data types and data

objects that are of interest of any application, regardless of whether it is a producer

or consumer of the data. View is a subset of the dataset that defines the parts

of the data that are of interest of particular application, or set of applications. If

the data is accessed as file(s) from the file system, the view may also define the

order the data objects are laid out in the files. Replica is a subset of the dataset

that is persistently stored on a storage system. A replica is full if it contains all

the data from the dataset, or partial if it contains only a fragment of it. If stored

on a file system, the replica also defines the file format of the data.
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Using a separate language allows us to decouple the dataset definition from

the way various tools and applications see and access the data. The dataset

specifies the abstract data model which can span across data generated by multiple

simulations and sources. Each application can have its own private view of the

data, or subsets of the data. The actual format as stored on the file system can

be decoupled from some, or all, applications. Legacy applications can still read

and write data in the format they use even if the data is stored in HDF5 or other

standard scientific formats.

The DRepl language allows definition of datasets, views and replicas. In order

to allow legacy data access, DRepl can act as virtual file system that contains

separate files for each of the defined views. The data from the dataset is backed

to the specified replicas. The applications access the data using I/O operations

on one of the synthetic view files on the virtual file system. The DRepl runtime

translates these operations to I/O operations on the actual files that store the

data replicas.

Figure 3.1 shows an example of a dataset produced by two simulations, Sim1

and Sim2 and accessed by two other applications, Viz1 and A1. The data is stored

in three replicas, with the A, B, C, and D parts having two copies each. DRepl is

managing the three replicas to provide the custom views the four applications have

defined. As you can see DRepl has a lot of freedom in producing the views and

can optimize for load balancing replicas, to prioritize the view of an application

or to maximize data resilience, for example.
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Figure 3.1: Example of DRepl being used by four applications and storing the
data in three replicas
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3.1 DRepl Language

The DRepl language includes definition of datasets, views and replicas. It

allows declaration of custom data types based on a set of primitive types, as well

as composite types like arrays and structs. Its syntax is loosely based on the type

and variable definition in the Go [33] programming language, which is similar

to the type and variable definitions in C, C++ and Java. The DRepl language

is designed to allow representation of native application datasets with complex

views in order to enable visualization and analytics optimized access to data of

interest. NetCDF [48], HDF5 [34] and the data formats from local large-scale HPC

applications were investigated to ensure good representation of real datasets.

The content of a DRepl definition file can be divided into three main sections:

dataset definition, view definitions, and replica definitions.

3.1.1 Dataset Section

The dataset section defines the types that are used in the dataset as well

as the variables that make up the dataset. The dataset section is an abstract

description of the dataset. Although it defines the sizes of the data types, it

doesn’t define the endianness or way the elements in multidimensional arrays are

laid out (row-major, row-minor, z-order, etc.). These specifics are defined when

views are described based on the dataset.
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int8 1-byte signed integer
int16 2-byte signed integer
int32 4-byte signed integer
int64 8-byte signed integer
float32 single-precision floating point number
float64 double-precision floating point number
string[0-9]+ variable size string of characters

Table 3.1: DRepl primitive types

Primitive Types

DRepl defines 7 primitive types (Table 3.1). The suffix of the string type

defines the maximum size of the string that can be stored in variables of that

type.

PrimitiveType = "int8" | "int16" |

"int32" | "int64" | "float32" |

"float64" | "string"

Structs

DRepl structs are similar to the struct type in Go and C. Multiple elements

of different data types can be arranged in a struct. A name needs to be assigned

to each of the elements.

StructType = "struct" "{" { FieldDecl ";" } "}"

FieldDecl = IdentifierList Type

IdentifierList = identifier { "," identifier }

The example below defines a struct with three fields: a, b, and c:
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struct {

a float64

b, c float32

}

Arrays

An array is a numbered sequence of elements of the same type. Arrays can be

single- or multi-dimensional, with fixed size in each dimension.

ArrayType = "[" ArrayLengths "]" Type

ArrayLengths = Expression { "," Expression }

The Expression in ArrayLengths can be an arithmetic expression containing

integer constants (named or unnamed).

In the example below, b is a two-dimensional 5 × 5 array, and c is one-

dimensional array of size N + 1 (where N is a constant defined in the dataset

section).

var b [5,5]float64

var c [N+1]float32

3.1.2 Named Types

Similarly to Go (keyword type) and C (keyword typedef), the developers can

assign names to the defined custom types. The names allow usage of "shortcuts"

when a type is referenced often.
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TypeDecl = "type" identifier Type

For example the struct from 3.1.1 can be assigned a unique named to be used

later to define variables of that type:

type ABC struct {

a float64

b, c float32

}

3.1.3 Types

Type = identifier | CustomType

CustomType = ArrayType | StructType

Unlike most languages, DRepl allows types to be referenced before they are

defined, so there is no need for forward declaration mechanisms.

3.1.4 Variables and Constants

A variable is a named instance of a type. The names of the variables need to

be unique.

Constants are named values that can’t change. They don’t use storage space

and are replaced with their value while the DRepl description is parsed.

VarDecl = "var" IdentifierList Type

IdentifierList = identifier { "," identifier }
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ConstDecl = "const" identifier "=" Expression

Similarly to Go, DRepl constants don’t have intrinsic type and are converted

to the type required when they are being used.

3.1.5 Dataset

A dataset is the top-level construct in a dataset section. Dataset is a collection

of types, variables and constants.

Dataset = "dataset" "{" { TypeDecl | VarDecl | ConstDecl } "}"

The example below defines a one-dimensional array whose elements have three

32-bit float values:

dataset {

const N = 1000000

type Point struct {

a, b, c float32

}

var data [N]Point

}

As mentioned earlier, DRepl doesn’t require types or constants to be defined

before they are used. The example below is a valid dataset definition and is

identical to the previous example:
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dataset {

var data [N]Point

const N = 1000000

type Point struct {

a, b, c float32

}

}

3.1.6 View Section

Views define subsets of the dataset. Data in a view can be accessed by read

and write operations on the virtual file provided by the DRepl file server. If a

view is stored as part of a replica, the view is materialized. Reading data from

materialized views is fast, but there is performance penalty when the data is

modified due to the need to update replicas that are of different format.

No new types can be defined in the view section, unless they are sub-types

of the types defined in the dataset section. The user can define substructs, i.e.

structs that contain only some of the fields of a dataset struct, or slices – parts of

an array type defined in the dataset section.

The variables defined in the view are also based on dataset variables, providing

full, or partial content of the dataset variable. Each view variable is of the same

type as the variable it is based on, or a compatible sub-type.
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3.1.7 View Substruct

ViewSubstruct = "{" { ViewFieldDecl ";" } "}"

ViewFieldDecl = IdentifierList ViewType

Example of usage of a view substruct:

var b [] {

b

} = data

The view variable b defines an array with the same size as the dataset array

data (from the previous section), but each element of the array contains only the

field b from the original data elements.

3.1.8 View Slice

The view slice contains only subset of the elements of an original dataset array.

ViewSlice = "[" SliceLengths "]"

SliceLengths = Expression { "," Expression }

The Expression in the slice length definition can be an arithmetic expression

containing temporary variable names that are used to express which elements from

the array are included in the slice. For example, the snippet below defines a view

variable d that contains every 5th element of the data array.

var d[i] = data[i*5]
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The temporary variables can’t be used outside of the slice definition, and their

names can be reused. For example, this is valid DRepl definition:

var d[i] = data[i*5]

var a[i] = data[i]

3.1.9 Named View Types

As in the dataset section, the user can assign names to any defined view types,

in order to simplify the view definition. The example below shows the definition

of type Subpoint that is based on dataset type Point but contains only fields a

and c.

type Subpoint {

a, c

} Point

3.1.10 More Complex Examples

A view variable d that contains only the b fields of every 3rd element of data:

var d [i] {

b

} = data[i*3]

The same result with defining view type:
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type PointB { b } Point

var d [i]PointB = data[i*3]

The temporary variables used for defining slices don’t have to be used for the

same dimension across the slice definition. For example, in order to reverse the

column and row order in a two dimensional array, one can use:

var d [i,j] = a[j,i]

3.1.11 View Declaration

The view declaration defines a view. Each view has a name that corresponds

to the name of the virtual file that allows access to the data in the layout defined

in the view definition body. Additionally, a number of flags can be specified that

control the element order in arrays as well as if the view can be used to update

the dataset. The data in the dataset can’t be updated via read-only views.

ViewDecl = "view" identifier ReadOnlyFlag

ElementOrderFlag "{" { ViewTypeDecl | VarTypeDecl } "}"

ViewDecl = "view" FileName

ReadOnlyFlag = "read-only" | <nothing>

ElementOrderFlag = "rowmajor" | "rowminor" | "default"

Views can be defined in the same file as the dataset, or they can be defined in

separate files and the file name can be specified to include to content of the file

while parsing the dataset definition.
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In future, the view declaration will also allow flags that allow control over the

endianness of the data in the view.

3.1.12 Replica Section

Replica sections define how the data from the views is stored on the underlying

storage system. Replica is a sequence of one or more views. Each replica has a

name that corresponds to a filename on the file system. The replicas are regular

files that are defined on the file system name space level, and can be accessed and

manipulated by all tools that work on regular files. This design choice greatly

simplifies the implementation without impacting the generality of the supported

datasets.

Each materialized view has to belong to at least one replica. The views that are

not part of any replica are non-materialized. When data from non-materialized

view is accessed, it is transformed on-the-fly from the default view. On writes, all

replicas are updated irregardless if the view is materialized or non-materialized.

ReplicaDecl = "replica" identifier

"{" {ReplicaView} "}"

ReplicaDecl = "replica" FileName

ReplicaView = "view" identifier
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3.2 Implementation

The DRepl implementation consists of three main modules: DRepl language

parser, replication engine and a file server (dreplfs).

3.2.1 Language Parser

The DRepl language parser receives a description of the dataset, views and the

replicas, and produces internal representation of the types and variables defined

in each, as well as the relations between them.

The parser includes rudimentary preprocessor that allows the DRepl definition

to be split into multiple files for easier maintenance. For example the main file

of the definition can contain only includes for each view, replica, or the dataset

itself:

include "dataset.drepl"

include "view1.drepl"

include "view2.drepl"

include "replica1.drepl"

include "replica2.drepl’’

In addition to receiving all elements at the same time, the parser allows ad-

dition and removal of view and replica definitions at later times. That allows
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changing the replicas and views as needed.

The parser’s internal representation includes information required for parsing,

but unnecessary for the actual data access. The parser can produce transformation

rules that are used by the replication engine to provide DRepl’s core functionality.

They are described in detail in section 3.3.

While processing the dataset description, for each variable in the dataset, the

DRepl parser locates all related variables in the view. For each pair of related

variables it produces a map describing how to transform data from one variable to

the other. If a view is marked as read-only, the maps describing how to transform

its variables to others are not created.

3.3 Transformation Rules

The transformation rules are compact representation of the views and the repli-

cas, and what conversions are required to transform the data from one view/replica

to another.

3.3.1 Blocks

The internal representation of a view consists of a list of contiguous byte

regions called Blocks. A list of top-level Blocks defines the overall layout of the

view. There is one top-level Block for each variable defined in the view. The rest

of the Blocks describe the structure of the top-level blocks in finer detail. For

example, a Block that describes an array slice references a block that defines the
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element of the array.

Each block has defined an offset from the beginning of the view, size, source

Block (if part of an unmaterialized view) and a list of destination Blocks that

describe regions in other replicas that need to be updated upon the Block’s update.

type Block struct {

offset int64

size int64

source Block

dests list of Block

}

DRepl currently defines three distinct types of Blocks.

The simplest block, SBlock, defines region that is always read or replicated as

a whole entity. All primitive types are described as SBlocks, but in some cases

an optimization code can coalesce multiple adjacent SBlocks into a single, bigger

SBlock.

A TBlock is a collection of other blocks. It corresponds to a struct composite

type in the DRepl language. In addition to the default Block properties, it contains

a list of Blocks that define each of the fields it contains. The offsets of these Blocks

are relative to the beginning of the TBlock. The size of the TBlock can’t be smaller

than the maximum of the offset + size of any of the Blocks it includes.

An ABlock defines a multidimensional array of identical blocks. In addition

to the default Block properties, it contains the dimensions of the array, and a
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reference to a Block that describes the array’s element. The offset of the element

Block is always zero.

The ABlock also has a field defining the element order of the array, with

currently supported orders of row-major or column-major. The element order

defines how to calculate the offset of an array element. For example, in row-

major of a n + 1 dimensional array, the offset D of an element with index x =(
x0, x1, . . .xn

)
in an array with dimensions d =

(
d0, d1, . . .dn

)
is:

D(x) =
n∑

i=0

( i−1∏
j=0

dj

)
xi (3.1)

Calculating the transformation of ABlocks also requires some additional in-

formation about the source and dests blocks in other views. The flexibility of

DRepl slice definition allows both changing the order of the elements within a

dimension as well as across dimensions. For each dimension i of an ABlock, the

source and destination descriptions contain five integer values (ai, bi, ci, di, idxi).

The element with index (x0, x1, . . ., xn) in the original ABlock corresponds to an

element (y0, y1, ...yn) in the source/destination ABlock, where

yidxi
= aixi + bi

cixi + di

(3.2)

If the value of the calculation is not a whole number, the element doesn’t have

a corresponding element in the source/destination block. Once the yj values are

calculated, the offset of the element is calculated using the element order for the
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source/destination ABlock.

3.3.2 Example

Figure 3.2 shows an example the conversion map for the dataset description

below:

dataset {

var p struct {

a, b, c float32

}

}

view default {

var p = p

}

view viz {

var pa { a } = p

var pba { b, a } = p

}

In this figure you can see that the default view is in the lower box, with a

TBlock that holds the variables a,b,c. The top box is the viz view. Variable a in
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default

viz

T 0004pba

T 0000pa S 0000

S 0008

S 0004

T 0000p

S 0000

S 0004

S 0008

field a

field b

field a

field a

field b

field c

dest
dest

dest

dest

dest

dest

dest

Figure 3.2: Example of a conversion table of two views

the default view gets two references from the viz view, while element b gets one

reference and element c gets no references from the viz view.

The conversion map for a replica is constructed by concatenating the conver-

sion maps for all the views that belong to it.
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3.4 Replication Engine

The replication engine uses the transformation rules to implement the core of

DRepl’s functionality. Internally the replication engine keeps similar information

for views and replicas.

3.4.1 Updating Data

The dataset can be updated via a write operation to one of the views. The

write operations receive as arguments the file offset, the number of bytes written

and the data. The replication engine finds all Blocks that belong to the specified

range and applies the conversion rules specified in the blocks. These rules cause

writes to each of the destination Blocks from the Block’s description. If the writes

belong to a replica, instead of a view, they are executed as writes to the underlying

file that contains the replica.

The replication engine ensures that the write operations don’t modify only

parts of a Block (except for ABlock). Operations that break this rule are not

executed and an error is returned to the user. The replication engine doesn’t

guarantee atomicity of the updates. If two applications are modifying the same

data simultaneously, the content of the replicas can be a mix of the two updates.

The replication engine also allows transformation of whole view to another

view.
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3.4.2 Reading Data

Read operations to materialized views are passed through to reads from the

underlying file that contains the replica’s data.

Non-materialized, read-write views use the transformation rules created by the

parser. Using the (offset, count) pair, the appropriate blocks are found from the

conversion map and the data is copied from one or more of the materialized views.

3.5 File Servers

There are two implementations of the DRepl file server – a user-space and

a user/kernel space combined solution. The first implementation (Fig. 3.3) is

written in Go language and uses the 9P file protocol to create a file server in

user-space. It combines the parser, the replication engine, and the file server code

in a single binary.

The second implementation (Fig. 3.4) runs the parser in user-space, but the

replication engine and the file system are written as a Linux kernel file system and

run in kernel mode. The user-space implementation can run on more operating

systems, but has some performance disadvantages.

For the kernel implementation the conversion maps are serialized in a compact

format to a region of memory that is passed to the kernel file system. That

format is used as a basis for the local and remote transformation rules described

in Chapter 4.
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       DRepl

dataset {
        var p struct { a, 
b, c float32 }
}

view default { var p = 
p }
view viz {
        var pa { a } = p
        var pba { b, a } = 
p
}

replica default { view 
default }
replica viz { view viz }
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Figure 3.3: DRepl user-space implementation

3.6 Replica Layout

Each replica is a separate file, or directory, with name specified when the

replica is declared. If any of the views of the replica contains variable-sized data,

the replica is a directory with multiple files in it. Otherwise, data for all views is
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       DRepl

dataset {
        var p struct { a, 
b, c float32 }
}

view default { var p = 
p }
view viz {
        var pa { a } = p
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}
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Figure 3.4: DRepl hybrid implementation

stored in the same file.

The data from the views are laid out in the order they are declared in the

replica definition. Each view starts at offset divisible by 8, and padding is added

between the views if the previous view’s size is not divisible by 8.
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type alignment size
int8 1 1
int16 2 2
int32 4 4
int64 8 8
float32 4 4
float64 8 8
stringN 2 2 + N

Table 3.2: Alignment and size of primitive types

3.6.1 Primitive Types

Each of the primitive types starts at offset that naturally aligns to its type.

Table 3.2 shows their alignment and size. Strings can contain up to N bytes.

Their content is prefixed with a 16-bit value of their actual size.

3.6.2 Structs

The fields in a struct are laid out sequentially without any explicit padding

between them, or at the end of the struct. The alignment rules for the type of the

first field define the alignment requirements for the struct. The rest of the fields

are placed based on their alignment requirements.

3.6.3 Arrays

Elements of an array are laid out sequentially in the order defined by the

element order value. There is no padding between them or at the end of the

array. The alignment rules of the element type define the alignment requirements

for the array type.
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3.7 Experimental Study

While evaluating the user-space prototype, we wanted to make sure we isolate

implementation choices (like programming language, file protocol, etc.) from the

performance inherent to our design choices.

We created a simple dataset and tested the bandwidth when reading and writ-

ing from it. We wrote a description of the dataset and three views in the DRepl

language and measured the performance using DReplfs to access the data. Ad-

ditionally, we created a hand-optimized file system written in the same program-

ming language and file protocol that implements the same dataset. Comparing

DReplfs with the optimized implementation allows the evaluation of the perfor-

mance penalty due to the complexity of the DRepl language and any inefficiencies

in the replication engine implementation. Lastly, we compared the performance

to using a proxy file system, implemented again using the same programming lan-

guage and file protocol, but directly translating the access to the files it serves to

the underlying file system. This comparison allows us to isolate the performance

of the chosen programming language and file protocol from the overhead added

from maintaining views and replicas in DRepl. The results demonstrate that even

though the penalty for maintaining multiple replicas with divergent data formats

is considerable, the combined performance of an application that stores its data in

one replica of a certain format, and a consumer that reads the data from a replica

with a different format have overall better performance than if the consumer uses

the original format.
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3.7.1 Dataset

We used a simple dataset in which the scientific application stores three values

for each “point” of the simulation. The number of “points” is configurable. We

ran our experiments with 168 million points.

struct Point {

a float

b float

c float

}

Point data[N]

3.7.2 Views

We define three views (data layouts) of the dataset:

Array of Structures (aos)

Point data[N]

Structure of Arrays (SOA)

Most of the legacy applications, especially the ones written in FORTRAN,

store separate arrays for each value.

float a[N]
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float b[N]

float c[N]

Visualization (Partial)

In most cases the visualization requires only some of the values. We chose a

visualization view that contains only an array of the b values.

float b[N]

3.7.3 File servers that provide multiple data views

When the file servers are mounted, they provide access to three views of the

data:

SOA Data in legacy format (structure of arrays). First 4 ∗ N bytes contain the

data for the array a, followed by 4 ∗ N bytes for array b, and then 4 ∗ N

bytes for array c.

aos Data in natural format (array of structures). Contains N elements, each 12

bytes long with the values of a, b and c for that element.

b Data in the visualization (partial) format. Contains N elements, each 4 bytes

long with values only of b.

We ran sets of experiments varying the following parameters:

Replica number

We tried three different combinations of replicas: one replica for each view,
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two replicas containing SOA and b views (aos view is unmaterialized), and

one replica containing the SOA view (aos and b views unmaterialized).

Synchrony of updates

We tried synchronous vs. asynchronous updates. At least one of the replicas

is updated synchronously before the write operation completes. Reading

performance is not affected by the synchrony parameter.

Read and write operations access all data in the view sequentially.

The experiments were performed on 4 socket, 4 core servers (total 16 cores)

with 32GB of RAM. We used separate SSD disks for each of the replica files. The

OS buffer cache was cleaned between every experiments. We also performed the

tests on rotational disks and the results were very similar.

3.7.4 User-space file servers

We compared performance of three user-space file servers that provide access

to the data in the three different views:

dreplfs

Our prototype that receives a dataset, view and replica definitions in the

DRepl language, converts it to the internally used conversion tables, pro-

vides access to the views as virtual files, storing the data in the specified

replica files. DReplfs is implemented in Go and uses the 9P2000 file protocol

(go9p [39] library).
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dsfs

A hand-optimized file server that provides access to the three views men-

tioned as virtual files and allows storage of the data to one, two or three

replicas, each containing one of the views. Dsfs is implemented in Go and

uses the 9P2000 file protocol (go9p library).

ufs

A “proxy” file server that provides access to the files on the file system over

the 9P2000 protocol. Ufs is implemented in go and uses the 9P2000 file

protocol (go9p library).

DReplfs and dsfs have an option that allows the transformations to the replicas

to be performed asynchronously. Ufs doesn’t allow replication.

Converting data from one view to another can be very inefficient. For example,

if a program writes to the first 400 bytes of file SOA, updating the first 100 values

of a, the operation needs to be converted to 100 writes to file aos, each writing

4 bytes with stride 12 bytes. Even using functions like writev can be slow,

because of the time and resources required to prepare the data for the call. Using

processors close to the data can improve the performance somewhat. In order

to improve it even further, we use mmap to map the content of the materialized

views to memory. The conversion between different views then is equivalent to

conversion of data in memory. All three implementations use mmap to read and

write to the files, instead of the standard POSIX I/O calls.
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Raw Performance

Figure 3.5 shows reading performance. The read performance when reading

from materialized replica is roughly equal for all tested file servers. Reading from

unmaterialized replica is about 15 times slower for dreplfs and three times slower

for dsfs. The conversion from materialized to unmaterialized view needs to be

done before the read operation can return, so the asynchronous mode doesn’t

provide any performance increases.
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Figure 3.5: Read performance for each of the file servers for various access
patterns.

Figure 3.6 shows writing performance. The hand-optimized file server is about

three times faster than dreplfs. There is big advantage in running the replication

asynchronously. The penalty of maintaining more than one replicas is pronounced

more in dreplfs than the hand-optimized file server.
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Figure 3.6: Write performance for each of the file servers, for various access
patterns.

Combined Performance

In order to evaluate the performance advantage of creating multiple replicas

and reading from the most optimal, we emulate two separate cases:

single replica

The simulation application writing the data to a single replica (containing

the AOS view) and the visualization application reading the partial view

from it;

two replicas

Replicas containing the AOS and the b views are created, the simulation ap-

plication reads the data from the AOS replica, the visualization application
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is reading from the partial replica.

Figure 3.7 shows cumulative bandwidth for accessing the dataset from one or

two replicas. Even though the write performance is decreased when maintaining

two replicas, the cumulative performance is improved by the fact that the read

operations use the optimized replica.
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Figure 3.7: Cumulative bandwidth for accessing one and two replicas

3.7.5 Kernel-space file server

We compared performance of the our kernel implementation of the DRepl file

system (kdreplfs) with conventional POSIX file system.
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Raw Performance

Figure 3.8 shows reading performance. Our tests have shown that there is

no difference between asynchronous and synchronous mode (in both cases the

conversion needs to finish before we return the data), so the figure doesn’t have the

asynchronous results. Reading from materialized view is about nine times faster

than reading from unmaterialized view. Further optimizations of the replication

engine should might decrease the difference between them.

The POSIX read performance is shown only in comparison to the 3 replicas

configurations, because in these configurations and the POSIX case the data is

read directly from the filesystem and no unmaterialized view processing is re-

quired.
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Figure 3.8: Kdreplfs read performance
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Figure 3.9 shows writing performance. The asynchronous mode is usually

faster than the synchronous one, although there are cases when that’s not the

case. In asynchronous mode, the kdreplfs needs to allocate additional memory

in the kernel and copy the data buffer so the replication engine can continue to

work even after the write call returns to the user process. The memory allocation

adds some overhead. Our implementation makes sure that at least one replica has

the data committed before the execution is returned to the user space. That may

slow down the asynchronous mode even further.

The POSIX write performance is shown only in comparison to the one replica

configuration, because in these configurations and the POSIX case the data is

written directly to the file system and no replication of the data is required.
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Figure 3.9: Kdreplfs write performance
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Combined Performance

Figure 3.10 shows cumulative bandwidth for accessing the dataset from one or

two replicas. Even though the write performance is decreased when maintaining

two replicas, the cumulative performance is improved by the fact that the read

operations use the optimized replica. The graph also shows the POSIX perfor-

mance when the data is written in the SOA format and then read in chunks and

converted to the AOS format in memory (the chunk size is 524288 points).
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Figure 3.10: Cumulative bandwidth for accessing one and two replicas

3.8 Discussion

DRepl provides a novel method for optimized access to application datasets

that are read and written with multiple contrasting patterns. DRepl decouples
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the data producers from the data consumers and additionally from the physical

data layouts used on the storage system.

DRepl provides a language for describing binary data saved in files. Com-

bined with custom file system, this approach allows legacy applications to con-

tinue working unmodified, while the data is being transformed to different formats

in persistent storage. It also allows the data to be accessed as if written in other

non-native formats. The data can be replicated on-the-fly.

The experimental studies have shown increased performance in both read and

writes on various physical media. A prototype file system was implemented in

both user and kernel-space and the language was designed and specified to allow

construction of multiple dataset views. These views are displayed as separate but

consistently updated files from the DRepl file server.

DRepl’s approach allows flexibility on where the conversion between replicas

is being performed. The file server can be run locally on the node that runs the

scientific application, on the parallel file system nodes, or on nodes that perform

I/O aggregation and forwarding. It works well with legacy scientific applications

without imposing changes in their code.

Using multiple complete replicas of the data increases the reliability of the

storage system. Also in a realistic work flow where multiple readers and writers

are access the data, DRepl will improve the cumulative performance due to the

performance gained from the read operations accessing the optimized replica.

DRepl ideas were used as basis by other researchers to explore similar ap-
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proaches in other fields. For example, DRE [52] describes an FPGA implemen-

tation of a transformation engine that accelerates irregular and data-intensive

applications.

The language has some limitations. The dataset description is static, with all

variables and array sizes predefined at startup. Although this approach supports

many scientific simulations, some like Adaptive Mesh Refinement, do not fit in this

model. Although DRepl supports the most used array element orders, additional

ones like Z-order [55] and Herbert curve [38] would be useful.

The file server implementations also have limitations, most notably the fact

that they don’t allow dynamic addition and removal of replicas and views.

74



Chapter 4

ASGARD: Extending DRepl for

Distributed Storage

The initial work on DRepl provided mechanisms for accessing scientific data

as binary files. Although this approach is useful, as it allows running unmodified

legacy applications, it doesn’t fully address the challenges of running HPC codes

as well as the architecture of the modern storage systems for HPC. Recent adop-

tions of additional storage layers, like burst buffer, make HPC storage systems

are increasingly more hierarchical and harder to represent as standard Unix file

systems.

ASGARD is a more advanced approach on employing DRepl’s ideas in a dis-

tributed environment. It abandons the idea of accessing the data using read and

write operations to a file of a specific format. Instead, it provides a way for the

developer to define how the data needs to laid out in the application’s memory.
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ASGARD uses that description, and the description of the data format on stor-

age on storage to create a plan on how the data, possibly from multiple storage

sources, needs to be retrieved, and what transformations are required to convert

it in the required layout. This approach fits well with hierarchical storage systems

that can include local persistent storage like NVRAM, burst buffer nodes, and

parallel file system consisting of thousands of object store devices. Based on how

data is partitioned across those active elements, ASGARD can generate transfor-

mation rules that can be executed remotely on the storage devices and extract

the necessary subset regardless on the format the data is stored as.

ASGARD retains the language for defining of datasets from the original DRepl.

It discards the concepts of views and replicas, and introduces a new entity that

combines both. A f ragment of the dataset contains a subset of its data. Each

array defined in the application rank can be a fragment. Or, all data, needed by

the rank can be a fragment. Fragment definitions can be quickly created and are

not necessarily kept in a centralized location like in DRepl.

The only information kept in one location is the collection of definitions of

fragments that contain actual data. They are similar to the replicas from the

original DRepl, but they don’t contain all-to-all conversion maps.

Instead of offset and size, the read and write operations in ASGARD receive

a fragment description, and a buffer in RAM where the data that needs to be

written, or where the data that needs to be read should be placed. ASGARD

provides functionality to query how to convert the content of one fragment to
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another. It provides transformation rules that describe the conversion between the

two fragments. ASGARD can also calculate the coverage of fragments, providing

a list of fragments required to produce the data for specific fragment.

In order to decrease the network utilization, ASGARD splits the transforma-

tion rules into two parts. The remote rules are executed on the server where the

data of the source fragment is located. They produce a compact representation

of the data that discard all unnecessary parts of the source fragment. That data

is sent over the network to the node that requested the data. Once the com-

pact representation is received, ASGARD applies the local rules to copy the parts

of the source fragment to the appropriate locations in the destination fragment.

ASGARD, in a sense, provides an extension to the standard scatter/gather op-

erations. The transformation rules allow compact definition of complex patterns.

The combination of gather (on the side where the data is stored) and scatter (on

the side where data is used) provides a powerful tool for transforming data from

the format in which it is produced to a format suited for consumption. The fact

that the fragments are defined in advance allows an active storage subsystem to

perform optimizations that might be too slow or costly if run at the time the oper-

ations are executed. A list of possible optimizations is described in section 4.2.4.

In order to evaluate ASGARD’s benefits, we modified Ceph’s [72] RADOS

object store system to support ASGARD’s transformation rules for storing and

retrieving data to RADOS objects. We also created a custom object class that

allows developers to define an object that represents an ASGARD dataset and
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specify how it is partitioned into “stripes” on storage. Each of the stripes is

defined as ASGARD’s fragment. When a client needs to read or write a subset

of the data, it can get a list of the stripe objects that contain the data as well as

a pair of transformation rules that need to be applied to transform the requested

subset to each of the stripes. The operations for each of the stripe objects are

executed asynchronously to increase the overall performance. Our experiments

show that ASGARD can improve the I/O performance by a factor of seven over

both collective and non-collective MPI I/O.

4.1 Design

In many cases there is not a single “right” data format that is best for storing

application data. The goal of this work is to allow developers to easily define the

subsets of the data that each process needs, and to provide support for transform-

ing the existing data into those subsets. Such functionality allows the storage sub-

system to continually optimize the layout of the data. To support this ASGARD

needs semantic knowledge of the application data. ASGARD doesn’t try to be

an end-to-end solution; instead, it provides functionality that can be integrated

into client libraries and storage systems. It doesn’t cover actual data storage or

decisions on where and how data should be replicated in order to optimize I/O

performance, but does provide the semantic information so these decisions can be

made intelligently.

In addition to DRepl dataset language, ASGARD provides a C API for dataset
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definition. Although using an expressive language makes it easier to communicate

and share data, there are cases when embedding a DRepl parser is too cumber-

some and slow. For example, incorporating a parser in a storage system can

unnecessarily affect its performance and memory footprint, while adding little

value.

ASGARD uses two major entities related to data and the way it is used and

stored. Dataset is an abstract definition that describes the data types and data

objects that are of interest of any application, regardless of whether it is the pro-

ducer or consumer of the data. For scientific applications, datasets are usually

big and consist of all data produced by simulations run on thousands of proces-

sors. Fragment is a subset of the dataset and defines the parts of the data that

are of interest to a particular set of applications, an application, or one of the

application’s ranks.

For ASGARD’s design, the following assumption were used:

• Processes create and use a subset of the application data;

• A process’ fragment(s) don’t change often and don’t depend on dataset

values;

• There is no single “right” data layout. Data might be stored in the format

in which it is produced or consumed, or any other intermediate format;

• Storage systems can optimize performance by using information about the

structure of data and the patterns by which data is accessed;
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• The data is likely to be stored far from where it is used.

Although the main goal of ASGARD is to improve I/O performance for HPC

workloads, its design is general enough so it can also improve other common use

cases. For example, it can be used to access a 2D region an image file, or specific

rows from a database table. This wider applicability can allow ASGARD to be

included in a broader range of storage systems.

4.1.1 Changes to the Language Definition

The DRepl language is was designed to provide virtual files that can be read

and written partially. This approach does not require the size of the array slices

to be restricted, because the user can restrict the amount of data they require

at access time. ASGARD doesn’t allow partial access to fragments, therefore the

arrays size needs to be restricted as part of the fragment definition. ASGARD

extends the DRepl language by allowing the user to define the size of the array

slice in addition to the expression that moves its elements. The example below

creates a 50x50 slice b from the original data array:

var b[i:50,j:50] = data[i, j]

4.1.2 Dataset and Fragment Representation

Unlike DRepl, ASGARD doesn’t generate global conversion map that provides

transformations from each view and replica to any other view or replica. Each

fragment is defined as a list of Blocks, with a subset of them being top-level Blocks.
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Figure 4.1: Construction of fragment’s data from remote content

Each block that is not part of the top-level list can be referenced only once as a

field of a TBlock, or an element of an ABlock. ASGARD doesn’t use the source

Block field of each Block. This approach makes it easier to generate, and optimize

the transformation rules for conversions between two fragments.

The dataset is a special case of a fragment. Blocks in normal fragments have

a single entry in their destination list – the Block in the dataset. The dataset

Blocks keep track of the Blocks in each fragment they correspond to.

4.1.3 Fragment Source Coverage

Due to the fact that data for a dataset is stored in multiple fragments on

storage, materializing a particular fragment into the application’s memory gen-

erally requires pulling data from a subset of the other fragments (Figure 4.1).

ASGARD provides a mechanism to retrieve all possible combinations and what

percentage of the desired fragment they cover. Section 4.2 has details on the
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Figure 4.2: Example of coverage lists for two fragments

implementation specifics. In a complex hierarchical storage system, there might

be multiple fragments at different locations, that contain subsets of the required

data. Providing all possible combinations gives an opportunity to the application,

a runtime, or the storage system, to select a combination that achieves the best

overall performance.

The source coverage of a fragment is described by a list of lists of sources.

Each of the sources contains a name of a fragment and the percent of coverage it

provides. The inner lists provide interchangeable options of fragments, that when

combined with other options within the outer list consist of the fullest possible

coverage.
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Figure 4.2 shows an example for source coverage for fragments 1 and 2 from

fragments A, B, C, D, E, F, G, H, and J. Fragment 2 is 100% covered by fragment H,

while 12.5% of 1 is covered solely by A, 12.5% is covered by both A and J, 12% is

covered solely by B, 13% is covered by both B and J and so forth.

4.1.4 Fragment Transformation

Once a combination of fragments as sources is chosen, the user can generate

transformation rules for converting data from each pair of source and destination

fragments.

The transformation rules are generated for two fragments: a source and a des-

tination fragment. They define what data from the source fragment is needed, and

how to convert it to the format of the destination fragment. They are symmetric

and can be also be used to convert data in the opposite direction.

In complex datasets, the elements of an ABlock can be TBlocks, which can in

turn contain fields that are ABlocks, with TBlock elements, and so forth. Two

fragments of the dataset can contain different subsets of elements and fields for

each of the blocks, and ASGARD will recursively apply the correct transforma-

tions to convert one fragment to the other.

Figure 4.4 shows the internal representation defined for the abstract dataset,

as well as the two fragments frag0 and frag1 defined in Figure 4.3.

The dataset has two blocks defined – an ABlock with two dimensions with sizes

[80000, 80000], and an element of the array which is a SBlock. Fragment frag1
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dataset {
var data[80000, 80000] float64

}

fragment frag0 {
var ds[i:1000, j:1000] = data[i, j]

}

fragment frag1 {
var a [i:5000, j:6000] = data[i+500, j+300]

}

Figure 4.3: Example of a dataset and two fragments
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Figure 4.4: Example of a conversion map of two fragments
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contains an ABlock with 2 dimensions [5000, 6000]. The ABlock is connected

to corresponding ABlock in the dataset, where element [i, j] from it corresponds

to element [i + 500, j + 300] in the dataset ABlock. Similarly, frag0 defines a

smaller ABlock with 2 dimensions: [1000, 1000] and its element [i, j] corresponds

to the element with the same address in the dataset ABlock.

In distributed environments, where communication is expensive, it is benefi-

cial to split the transformation rules into two parts. The remote transformation

rules extract the necessary data from the source fragment and convert it into a

compact intermediate buffer that can be efficiently transmitted over the network

to where the data is needed. The local transformation rules use the data from the

intermediate buffer and place it in the right format in the destination fragment.

The blocks in the fragments have the appropriate dataset blocks as sources,

and accordingly the dataset blocks have the fragments’ blocks as destinations.

Figure 4.5 shows the remote and local transformations for materializing fragment

frag0 from fragment frag1.

4.1.5 Memory vs. Storage Layouts

In some cases, the in-memory data layout is different than the content of the

data that needs to be written. For example, the numerical algorithms require the

data for a cell, and the ghost values from the neighboring cells to be kept together

in the same multidimensional array (Fig. 4.6). The two-dimensional 8x8 array A

updates the central 6x6 elements that represent fragment F22, while the rest are
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Figure 4.6: Array A with ghost cells from fragments F11, F12, F13, F21, A31. The
middle cells of A represents the data for fragment F22.

ghost values from the neighboring fragments Fij. When the rank needs to save

its data, only F22 needs to be saved, and the ghost cell values have to be ignored,

since they are updated by other ranks.

ASGARD provides support for combining more than one set transformation

rules together. The application can use that functionality to transform the frag-

ment representing A to F22 with the local transformation rules that transform F22

to the fragments saved on persistent storage.
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4.2 Implementation

ASGARD’s implementation is based on DRepl’s replication engine. The read

and write functionality was replaced by code that transforms data from one frag-

ment, in its entirety into another. The functionality was greatly extended by pro-

viding support for finding the fragment’s coverage, generating split transformation

rules for a pair of fragment, and improving the transformation by optimizing the

transformation rules description.

DRepl’s language parser, once integral part of the system, is no longer the

only way to construct fragments. It is also the only part that is still implemented

in Go only. The rest of the functionality has both Go and C implementation.

ASGARD’s C implementation is only three thousand lines of code, and the fact

that it is in C makes it easy to integrate it into most storage systems.

4.2.1 Transformation Engine

The most essential part of ASGARD is the transformation engine. It receives

the transformation rules (i.e. two fragments, with their Blocks connected), and a

buffer containing data formatted as defined by one of the fragments. The engine

transforms the data into the format, defined by the other fragment.

The transformation is performed iteratively for each top-level Block from

the source fragment (Algorithm 4.2.1). For compound blocks, like TBlock and

ABlock, the transformation is run recursively for each of their elements.
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Algorithm 4.2.1: Transform(source, dest, srcbuf, destbuf)

for each block ∈ source.toplevel

do
{
for each dblock ∈ block.destinations and dblock ∈ dest
do TransformBlock(block, dest, buffer)

procedure TransformBlock(sb, db, sbuf, dbuf)
dest← db.fragment
switch sb.type

case SBlock

do
{
copy(dbuf + db.offset, sbuf + sbuf.offset)

case TBlock

do



for each fld ∈ sb.fields
do for each dfld ∈ fld.destinations and dfld ∈ dest

do


so← fld.offset
do← dfld.offset
TransformBlock(fld, dfld, sbuf + so, dbuf + do)

case ABlock

do



for each idx ∈ sb.dimensions

do


so← IdxToOffs(sb.elo, sb.dimensions, idx)
didx← ConvertIdx(sb.elo, idx, db.elo)
do← IdxToOffs(db.elo, db.dimensions, didx)
TransformBlock(sb.el, db.el, sbuf + so, dbuf + do)

4.2.2 Fragment Source Coverage

The coverage value is defined between two fragments – a source and a destina-

tion. It defines how much data both fragments share. Coverage of 1 means that

all data for the destination fragment is available in the source fragment. Similarly,

coverage of 0 means that the fragments don’t share any data.

Identifying the list of fragments needed to materialize a given fragment is not a

trivial task. Fragments may (and usually do) overlap, so data might be pulled from

many combinations of remote fragments. The ASGARD runtime doesn’t have
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the knowledge on which combination of fragments will provide the best overall

performance. Therefore, it provides the functionality of finding all variants and

let’s the application, or the storage system, using additional information, to pick

the correct choice.

The API returns a two-level list. The elements of the outer list are lists of

tuples of the format (percentCoverage, fragmentName). Each of the elements

of the inner list are interchangeable and cover the same area of the fragment. The

user needs to pick only one of them in order to cover that area. The maximum

coverage of the fragment is achieved by iterating the outer list, picking an entry

from each inner list and combining them together.

Internally, each inner list is represented by a structure called OrSet. An OrSet

is a list of (percentCoverage, fragmentName) tuples called Source. There are

two operations defined for the OrSet. Adding a Source to the set might add an

additional entry in the list if the fragment is not part of the set. If the tuple

fragment is already part of the set, the coverage is updated to be the maximum

from the original and new value. Scaling an OrSet multiplies the coverage values

of all tuples by the number specified.

The outer list is represented by a structure called AndSet. It is a list of OrSet

entries. Adding an OrSet to an AndSet first checks if there are entries with

exactly the same list of fragments. If so, for each fragment in the set it updates

the coverage value by adding the new one. Otherwise, it adds a new OrSet entry.

The union operation combines two AndSets into one by iteratively adding the
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entries from one to the other. Scaling an AndSet scales each of the OrSet entries

it contains.

Discovering coverage for a SBlock or a TBlock is relatively straightforward.

The coverage of an SBlock is a OrSet with all fragments that contain the same

SBlock and coverage value of 1. Coverage of a TBlock is computed recursively by

finding the coverage for each of the fields, and scaling it by the size of the field

divided by the size of the whole TBlock.

Finding coverage for an ABlock is more convoluted, as described in Algo-

rithm 4.2.2. For each dimension of the multidimensional array, the coordinates of

the vertices for each fragment are collected, and sorted. Then they are used to

generate all combinations of multidimensional cubes. Each cube is associated with

one OrSet. The algorithm checks if each of the fragments overlaps with a cube,

and if so it adds an entry for it to the appropriate OrSet. To make things even

more complicated, the elements of the slices in fragments may only contain the

subset of the data that the element of the array we are covering, so the algorithm

is run recursively to find the coverage of the element before we can create the

appropriate entry. Luckily, we don’t have to check for full coverage of the element

Block, since we only care the percent of coverage for the already selected source

fragment. Lastly, we combine the cubes coverage into one AndSet that covers as

much of the original ABlock as possible.

Figure 4.7 shows and example of the four fragments covering part of the same

array. The black dots show all combinations of vertices that we use to generate the
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coverage cubes (in 2D case, rectangles). Each of the dashed rectangles is checked

against the slices areas. Rectangle 1 is not covered by any fragment, so it doesn’t

produce any entries. Rectangle 2 is covered by one fragment, so it produces one

OrSet with a single entry. Rectangles 3 and 4 are covered by 2 and 3 fragments

respectively, and produce OrSets with 2 and 3 entries.

4.2.3 Split Transformation Rules

In distributed environment, the data for a fragment can be on a remote node,

and sending it over the network is both slow and expensive, in energy terms. In

the general case, both the source and the destination fragments are big, but the

size of the data they share is relatively small. Transferring the whole data of

the source or the destination fragments to the other location and performing the

transformations there is ineffective.

ASGARD provides functionality for creating a new fragment that is an inter-

section of the source (i.e. remote) and the destination (i.e. local) fragments. The

transformation rules for converting the destination to the intermediate fragment

are executed remotely. The rules for converting the intermediate fragment to the

destination are executed locally.

The procedure for creating the intermediate fragment is relatively straight-

forward. It iterates through all top-level blocks in the source and creates their

intersection block with the destination. If there is no intersection, no block is

added to the intermediate fragment. If a SBlock from the destination is con-
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nected to a block from the source, the destination is an SBlock with the same

size. If a TBlock is connected to a block from the source, the procedure is exe-

cuted recursively for each of its fields, and the result is a TBlock that includes all

fields that intersect. The intersection of an ABlock has all elements that belong

both to the source and the destination ABlocks.

4.2.4 Optimizer

The investigations on how to improve the performance of the original DRepl

implementation by optimizing the conversion map proved mostly futile. The fact

that the conversion map contains transformation rules from multiple views and

replicas restricts the opportunities for optimization. In ASGARD the transforma-

tion rules define the conversion between two fragments increasing the chances for

optimization opportunities.

As the transformation rules can be complex, ASGARD’s performance in the

general case can be sub-optimal. There are many common cases when the trans-

formation rules can be optimized further. We implemented some optimizations

that cover the most frequently used patterns.

The optimization procedure is given two fragments and produces two new

fragments that have identical data layout, but might contain fewer blocks and

simple transformation rules between them. The algorithm again iterates through

the top-level blocks and tries to optimize each of them individually. For the

compound blocks (i.e. TBlocks and ABlocks), it first tries recursively to optimize
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their fields/elements.

Figure 4.8 shows two of the optimizations that are currently performed on

TBlocks. If sequential SBlock fields within a TBlock are copied to sequential

fields in a destination TBlock, they can be replaced by a single SBlock with their

combined size. If all fields from a TBlock are copied, the whole TBlock is replaced

with an SBlock.

ABlock optimizations (Figure 4.9) are currently performed only if both source

and destination blocks are of the same element type. They include replacing a

dimension of the ABlock with a TBlock if the required elements for the dimension

are sequential. For example, if the transformation rules of a 3D floating-point

matrix with size (100, 100, 100) copy the hyper-slab (10. . .50, 10. . .50, 10. . .50),

the original ABlock is replaced by a 2D matrix with size (100, 100) containing

TBlocks with three fields: a hole of size float[10], a SBlock of size float[40],

and another hole of size float[50]. Thus applying the transformation rules will

be executed for ten thousand (slightly more complicated) elements, instead of one

million. As with TBlocks, if all elements from an ABlock are copied, the optimizer

replaces it with a SBlock with the same size.

4.2.5 Ceph Integration

ASGARD was integrated into the Ceph distributed storage system. The mod-

ifications are primarily in Ceph’s object store device (OSD) layer – RADOS. A

new storage object class that represents a dataset was created. As the default
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read/write operations of RADOS objects were limited (they allow accessing only

one range of sequential data), we introduced two new operations that receive as

one of their parameters transformation rules and can atomically extract all the

data specified by the transformation. In order to achieve good performance, these

operations needed to be extended into the the layer responsible to the actual

saving of data on persistent storage – the ObjectStore level.

The Ceph integration heavily utilizes ASGARD’s functionality that serializes

a collection of fragments, and the connections between their Blocks, into an array

of bytes suitable for transmission over a network connection.

The RADOS distributed object store

RADOS (Reliable Autonomic Distributed Object Store) is part of the Ceph

project. It provides scalable storage for data entities – objects. The objects can

be of arbitrary size. Each object has a name and belongs to an object pool. The

pools define certain policies that apply to all objects in the pool. For example,

they define the replication level and the mapping rules for distributing the replicas

across the storage cluster.

The RADOS storage system consists of multiple object storage devices (OSDs).

They can be accessed directly from the clients, decreasing the single points of

failure in the system, and increasing the overall performance. The OSDs operate

mostly independently from each other, with global cooperation needed only at

events like removing (at failure) and adding additional devices.

There are two types of values associated with an object. The first one is a
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byte array, similar to POSIX files. The user can read or write ranges from the

data array that are defined by an offset and range size. The second set of values,

usually referred as metadata, is a key/value store that allows the user to associate

arbitrary number of values for a key.

RADOS also provides a higher-level interface where storage developers can

create object classes. The object classes define a list of methods that can be used

from RADOS users. The methods are implemented by using the low-level object

interface. The methods are executed on the storage device where the object’s data

is located, and greatly improves the performance since most of the data access is

local.

ASGARD Object Class

An object of the new ASGARD class represents a whole dataset. It doesn’t

contain any actual data from the dataset, only the metadata required to find out

the location of the data. There is similarity between a Ceph object that describes

a file on the Ceph filesystem and an ASGARD object. Both contain the metadata

common for the whole file, as well as names of RADOS objects that contain the

actual data. Unlike files, the ASGARD objects allow the data to be “striped”

in any format supported by the ASGARD runtime. For example, a dataset that

contains an array of structs can have it stored in objects that have a separate

array for each field of the struct instead.

Although all fragments are treated equally by ASGARD, the Ceph integration

uses a certain convention. All fragments, except one, are connected only to one
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other fragment, and that fragment is considered the dataset. The Blocks of the

dataset can be connected to Blocks in multiple fragments. A fragment description

in Ceph always contains both the fragment and the dataset descriptions.

All data for the ASGARD object (i.e. metadata for the ASGARD dataset) is

stored as object properties in the object map.

When an ASGARD object is created, the user provides a description of the

dataset, as well as all ASGARD stripes, or persistent fragments. The input pa-

rameter of the create method is a list of connected fragments. The first fragment

in the list is the dataset description, and the rest are descriptions of the persis-

tent fragments. The name of the object, and the fragments’ names are used to

generate names for the RADOS objects that will contain the actual data for each

fragment.

For existing objects, the user can retrieve the ASGARD description of the

dataset and the stripes as a whole, or just the description of the dataset.

The most significant operation on ASGARD objects is getting a fragment’s

coverage. When the user calls the method, it passes a description of the fragment

it needs to read or write. The ASGARD class calculates which persistent frag-

ments contain the data for the requested fragment, and returns a description that

contains list of fragments: the first fragment in the list is the fragment passed as

an input, the second is the dataset fragment. The rest of the fragments are the

persistent fragments that contain the data necessary for materializing the input

fragment. Based on the information, the user can construct the transformation
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rules for each persistent fragment, and access the RADOS objects directly and

asynchronously.

The ASGARD object class implementation also includes a user library that

hides the burden of reading and writing data stored in the persistent fragments.

Given a fragment, it queries RADOS for the fragment coverage, and calculates

the remote and the local transformation rules for each RADOS object that needs

to be accessed. Since the construction of the transformation rules can be slow,

and it is likely that the same subset of the data will be used multiple times, the

library allows the operation to be performed well in advance and the information

to be stored for later use. When a read or a write operation on the fragment is

performed, the client library asynchronously issues all requests, waits for the data

from each object to arrive, and applies the local transformation rules to convert

it to the right format.

New OSD Operations

The second part of the integration in Ceph is introducing two new operations

on RADOS objects. The original RADOS only supports accessing sequential

regions of an object defined by offset and length. We added two additional oper-

ations dread and dwrite, that use ASGARD transformation rules to specify what

data from the object is needed and how to convert it to a compact buffer that is

passed to/from the client. The transformations are applied on the OSD instances

that contain the data, significantly decreasing the number of operations over the

network, increasing the overall throughput of the storage system, and decreasing

98



the I/O latency. The client has an opportunity to execute multiple operations

asynchronously, potentially to multiple OSD instances, and therefore utilize the

full potential of a Ceph RADOS cluster.

Secondary Storage Fragments

Instead of updating all fragments from the client, the Ceph integration allows

the primary persistent fragments to be associated with other RADOS objects

called secondary fragments. They can be fragments of another dataset, specially

marked fragments of the same dataset, or just replicas of the data that are not

formally connected to a dataset. When the client asks for coverage, the secondary

fragments associated with the same dataset are not returned. If the client updates

one of the primary fragments, the update automatically triggers updates to the

secondary targets, initiated by the OSD where the particular primary target is

located. The implementation uses the transformation rules between the primary

fragments and the associated secondary fragments, and applies the technique men-

tioned in section 4.1.5 to transform the data received from the client directly to

the format appropriate for the secondary fragment.

4.3 Experimental Study

In order to evaluate ASGARD’s performance, we set up a small Ceph cluster

with 4 OSD servers and 1 metadata server, running on 4 nodes. The nodes have

an eight-core Intel Xeon processor and 128GB of RAM. We used Ceph’s default
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settings. Each object store instance was using a single rotational SATA disk with a

capacity of 4 TB. There were 8 additional nodes that we used during the tests. All

nodes were connected with an Infiniband EDR interconnect. We used OpenMPI

as our MPI library.

The goal of our experiments is to demonstrate the benefits of offloading com-

plex data transformations to the storage system. We compared ASGARD to MPI

I/O, as both provide similar functionality and are relatively easy to use. The first

test we ran was the MPI Tile I/O benchmark from the Parallel I/O Benchmarking

Consortium [9]. We modified the code and added support for Ceph ASGARD ob-

jects. We ran the code on total 12 nodes, including the 4 that run Ceph. Tile I/O

partitions a 2D array of data into multiple MPI ranks. Each rank is responsible

for reading or writing a tile of the whole array. We varied the size of the tiles from

512x512 to 4096x4096 elements while running 8 ranks per node (96 total ranks).

In order to evaluate the bottlenecks of the setup, we also ran the tests with the

same tile size (4096x4096), but varying the number of ranks per node, from 1 to

8 (total 96 ranks).

Figure 4.10 shows the read and write performance while varying the tiles and

ranks. ASGARD outperforms both read and write for the non-collective and col-

lective MPI I/O operations. We used Ceph’s monitoring infrastructure to inspect

the number of operations and read/write bandwidth going to the OSD instances.

ASGARD’s implementation used the fewest number of operations per second.

While both ASGARD and collective MPI I/O had similarly high data size per
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operation, non-collective MPI I/O used a high number of operations with much

lower data size per operation. During write operations, in addition to writing data

to the OSDs, non-collective MPI I/O tests were also reading a lot of data. The

reason for that is that the Linux file systems operate on blocks, and modifying

even small amount of data per block requires reading the whole block, modifying

some of the data, and writing the block.

We also evaluated I/O performance using the HPIO benchmark [2]. It is highly

customizable and allows I/O workloads that support contiguous/noncontiguous

data layout both in memory and in files. For these tests we run the benchmark

only on the 8 nodes that were not running Ceph, with 8 ranks per node (total

64).

For the first evaluation we tried to mimic a use case where the dataset consists

of a one-dimensional array of structs, containing three 64-bit values. The appli-

cation is only concerned with one of these values. When the memory or the file

layouts are contiguous (C), only the value of interest is stored. When they are

non-contiguous (N), all data is stored, but only the value of interest is accessed.

Figure 4.11 shows the results for reading, while varying the size of the array. For

contiguous reads from storage, non-collective MPI I/O access performs well, as

Ceph file system is well-optimized for reading the contiguous file layout and most

of the data is prefetched to the local cache. ASGARD’s performance is compa-

rable, but can probably be improved with further optimization. When data is

read from the file in non-contiguous patterns, both collective and non-collective
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MPI I/O degrade significantly, by a factor of 100 for the non-collective case. AS-

GARD clearly outperforms both MPI I/O modes and is up to ten times better

than collective MPI I/O. Figure 4.12 shows similar results for write performance.

ASGARD performs noticeably worse for very small writes, because the overhead

for sending the transformation rules, as well as encoding and decoding them, be-

comes the main bottleneck. For non-contiguous file patterns, ASGARD performs

up to five times better than collective MPI I/O.

Ceph provides statistics on the read and write bandwidth of the overall cluster,

as well as the total number of operations per second. Figure 4.13 shows the

performance while running the 96-rank experiment with MPI Tile I/O benchmark.

The graphs for ASGARD and Collective MPI I/O are much shorter, because

of the higher performance, the experiments completed faster. As expected by

the numbers provided by the benchmark itself, ASGARD has the highest write

bandwidth (Figure 4.13a). Although the collective and non-collective MPI I/O

bandwidths are close, non-collective MPI I/O takes much longer, and writes much

more data. The reason for that is the smaller chunks of data written cause Ceph to

read-modify-write much more often than with collective MPI I/O. Figure 4.13b

partly explains the differences in performance. While ASGARD performs only

few operations per second, collective MPI I/O performs close to 40, and non-

collective MPI I/O performs close to 500. Although ASGARD’s and collective

I/O operations have much larger data loads, the overhead of the operations causes

huge degradation for non-collective MPI I/O.
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4.4 Performance Evaluation with Real Applica-

tions

ASGARD was integrated in the UNITY [43] storage system that is being

developed jointly by Oak Ridge National Laboratory, Georgia Tech, and Los

Alamos National Laboratory. The goal of the project is to unify memory and

storage spaces. It tracks the scientific application data from the application’s

RAM through the multiple locations on storage, including the eventual storage

on archival systems. It extends beyond files, and uses the mechanisms developed

in ASGARD to describe the data in terms of datasets and fragments both in

memory and on storage. ASGARD provides the necessary flexibility so the data

can be replicated closer to where it is needed and transformed transparently to

the user applications so it can be in formats that improve the overall performance.

The UNITY system performance was evaluated [58] with two applications –

SNAP and VPIC. SNAP [75] is a proxy application that represents a determinis-

tic neutral-particle transport simulation. VPIC [13, 11, 12] is a general-purpose

particle-in-cell simulation for modeling kinetic plasmas is one, two, or three spatial

dimensions.

We include these results with permission from the authors of the evaluation in

order to demonstrate that ASGARD performs well with real applications.

Figure 4.14 shows the results comparing UNITY’s performance compared to

collective MPI I/O for storing SNAP checkpoint data on disk. The experiments
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use weak scaling, i.e. the problem size per rank is constant when the number of

ranks varies. The data was stored on a Lustre filesystem. UNITY outperforms

the MPI I/O solutions, while providing greater flexibility on the number of nodes

that can be used to restart the application.

Figure 4.15 depicts the relative performance of VPIC while using UNITY for

data storage. “VPIC I/O” refers to the original VPIC implementation with the

existing I/O functionality activated in the input deck. ‘RT/NS” refers to the VPIC

implementation which uses the UNITY to allocate data but the data is not saved

on disk. “RT/NS I/O” refers to the same runtime data allocation implementation

but file I/O is issued through the UNITY interface. The y-axis represents the

overhead of the experiments as compared to running VPIC with the same input

parameters, but without any I/O being performed. The overhead of using UNITY

for just memory allocations and fragment publishing is negligible. Adding I/O to

the runtime increases the overhead to about 75% in the largest experiment, while

the existing VPIC I/O functions nearly doubled the runtime of the original.

4.5 Discussion

ASGARD provides a simple language for describing complex scientific datasets

and subsets. It creates a compact representation of the transformations required

for data conversion between fragments. ASGARD is designed for distributed

systems and intelligent storage elements. It optimizes the size of the data sent

over the network by offloading some of the conversion to the storage system.
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The results demonstrate that complex scatter/gather transformation rules allow

superior performance without synchronous progress mandated by collective MPI

I/O.

The availability of rich semantic information about the dataset as well as

the separation between the fragments’ declarations and the data conversions pro-

vide many opportunities for performance optimizations. Results showed that AS-

GARD reduced the number of operations going to the OSD per data transferred.

Although the Ceph integration provides support for secondary storage frag-

ments, that functionality hasn’t been fully evaluated yet. The Ceph integration

supports overlapping primary fragments, but there is currently no logic on how

to choose between multiple combinations of overlaps.
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Algorithm 4.2.2: ArraySources(b, sources)

local andset, orset, complete, v, idx, cube
andset← ∅
for each dim ∈ b.dimensions
do vdim ← ∅

for each d ∈ sources and b ∩ d 6= ∅

do


for each dim ∈ b.dimensions

do
{

vdim ← ADD(vdimm, d.startdim)
vdim ← ADD(vdimm, d.enddim)

for each dim ∈ b.dimensions
do sort(vdim)

for each dim ∈ b.dimensions
do idxdim ← 0

complete← false
repeat

for each d ∈ b.dimensions

do
{

cubedim.start← vdim,idxdim

cubedim.end← vdim,idxdim+1
cov ← VOLUME(cube)/SIZE(cube)
orset← ∅
for each d ∈ sources and b ∩ cube 6= ∅

do
{

dcov ← SCALE(BLOCK-COV(b.el, d.el), cov)
orset← ADD(orset, dcov)

if orset 6= ∅
then andset← ADD(andset, orset)

dim← 0
repeat{

idxdim ← idxdim + 1
dim← dim + 1

until dim < LEN(b.dimensions) or idxdim−1 < LEN(vdim−1)
complete← dim ≥ LEN(b.dimensions)

until complete
return (andset)
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4

Figure 4.7: Points of interest for a 2D array with four fragments. The green
fragment has 100% coverage, with some parts of it covered by more than one
other fragment. The black points define rectangles that are checked against each
fragment to find how many of them cover it.
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Figure 4.9: ABlock Optimizations. Two-dimensional ABlocks with SBlock ele-
ments are replaced with one-dimensional ABlocks with TBlock elements.
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Figure 4.10: MPI Tile I/O performance
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Figure 4.11: HPIO read performance

110



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 100000  1x10
6

 1x10
7

B
a
n
d
w
id
th

 
(M
B
/s
)

Contiguous Memory / Contiguous Storage

ASGARD
Collective MPI I/O

Non-collective MPI I/O

 0

 20

 40

 60

 80

 100

 120

 100000  1x10
6

 1x10
7

Contiguous Memory / Non-contiguous Storage

ASGARD
Collective MPI I/O

Non-collective MPI I/O

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100000  1x10
6

 1x10
7

B
a
n
d
w
id
th

 
(M
B
/s
)

Region Count

Non-contiguous Memory / Contiguous Storage

ASGARD
Collective MPI I/O

Non-collective MPI I/O

 0

 20

 40

 60

 80

 100

 120

 140

 100000  1x10
6

 1x10
7

Region Count

Non-contiguous Memory / Non-contiguous Storage

ASGARD
Collective MPI I/O

Non-collective MPI I/O

Figure 4.12: HPIO write performance
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Figure 4.13: Ceph performance for the 96 rank Tile I/O experiment.
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Chapter 5

Future work: Thoughts on

Multi-resolution Datasets and

Unstructured Grids

DRepl and ASGARD provide advanced functionality for scientific workloads in

HPC environment. Although they work well with many applications with fixed, or

bounded datasets, the fact that the dataset is static restricts their use in a number

of applications where structure of the data changes during the simulation execu-

tion. Examples of such behavior are the Adaptive Mesh Refinement algorithms,

as well as some algorithms that periodically repartition unstructured meshes in

order to balance the overall performance and precision of the simulation.

This chapter describes the future work on how to extend the DRepl language

and the transformation engine to provide support for more dynamic datasets.
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Section 5.1 outlines an approach where the structure of the dataset can still be

defined with a declarative language. Extending the language to allow more ab-

stract datasets and allowing the developers to defer the definition of the precision,

format and size of the values to the fragments’ descriptions can greatly extend

the applicability of the approach. In addition to support for Adaptive Mesh Re-

finement techniques, this approach will allow integration in cases where the sim-

ulations use a mix of dense and sparse regions of data. Section 5.2 explores ideas

on how to handle cases where the structure of the datasets changes so drastically

that it can’t be defined in advance with declarative languages.

5.1 Dynamic and Multi-resolution Datasets

Although DRepl allows application developers to define an abstract description

of the application’s data, its design is still too focused on how the data is placed

in memory (RAM or storage). Although it allows flexibility on the endianness of

the data, or the element order of the arrays, the overall structure of the dataset

is still fixed. The variables and types have fixed size. If the developers define an

element of array of type float32, they can’t later decide to use float64 and still

be able to read the old data transparently.

The same deficiencies apply for data stored in arrays. As a rule1 multidimen-

sional arrays store data from multidimensional contiguous spaces. Once a space
1Legacy Fortran code sometimes uses extra dimensions to group properties that are better

represented with structs in modern languages. For example, a 4-dimensional array can partition
a 3D space as the first 3 dimensions, and have ‘pressure’, ‘temperature’, ‘electromagnetic force’
values as indices 1, 2, and 3 in the fourth dimension.
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is tessellated into cells of certain size, it can’t be re-partitioned into a grid with

different resolution.

This section describes the design and the initial steps in implementing the

extended functionality required to support dynamic and multi-resolution dataset.

Further effort is needed to integrate it into a storage system, port existing appli-

cations, and evaluate its performance and applicability.

5.1.1 Data Model

We modified DRepl and ASGARD data model to extend support for more

abstract types. Previously, all data types had to be concrete, i.e. the size that

values of the type will take in memory needed to be defined. Although the new

data model still requires all variables to be typed, the types don’t necessarily need

to be concrete. For example, a variable can be defined to hold real numbers (i.e.

numbers from R), and its presentation in the computer memory (i.e. whether it

is in one of IEEE 754 formats, its size, etc.) can be finalized later.

Similarly, the tessellation of multidimensional spaces into grids can be post-

poned for a later, more concrete representation of the dataset. The data model

allows abstract definition of a space with just the number of dimensions, or further

limiting the dimension range, or completely defining the partitioning of the space,

including the grid’s cell size.

Along with the multiple extensions, there are some features from the previous

work that were removed. Previously, the elements that belong to an array slice
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could be defined in a way that allowed greater flexibility (like “every third ele-

ment”, etc.) and were formally defined by the equation 3.2. The experience with

porting scientific codes to DRepl and ASGARD demonstrated that the feature

was not useful in practice. Most of the applications use contiguous hyperslabs of

the dataset arrays.

Abstract Types

Abstract types are closer to the mathematical sets used by scientists to define

their models. They are detached from the way values are stored in computer

memory.

The data model defines three primary abstract types: integer, real, and

string. Values of the integer type are negative or positive whole numbers. Values

of the real type are any real number. Strings is an array of characters in UTF-8

format.

There are two compound abstract types. A struct type is a collection of

named fields, generally from different types. A space type is an N-dimensional

continuum, where each point in it is associated with a value of its “element” type.

Each dimension can be either open or periodic:

Open The dimension is unlimited, and any value between −∞ and ∞. Each

value is associated with separate element.

Periodic The dimension is unlimited, but periodic. Any value between −∞ and

∞ is valid, but multiple values are associated with the same element. A
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periodic dimension has a period P defined. Values x + nP for n ∈ Z are all

associated with the same element.

Concretization of Abstract Types

Abstract types can be made more concrete by defining some of their properties.

There are four properties currently defined for primary types:

Size Size of the value when stored on memory/disk. For string type, the number

of characters depends on the format and is one, or two bytes less than the

defined size.

Endianness Which byte of the value is stored first: most significant one (MSB),

or the least significant one (LSB).

Alignment Alignment for a value of that type. When value is stored in memory

or disk, the alignment defines the offset of the value. If needed, padding is

prepend so the offset of the value matches the value of the property. For

example, if a value needs to be aligned to 8 bytes, the offset has to be

divisible by 8.

Format For the string type, the property defines if it is stored as a C-string

(i.e. ending with the NUL character), or it has the string size as a 2-byte

prefix. Other formats might be added later, including formats for the real

type, if formats other than IEEE 754 are supported.

In order to concretize a space, it needs to be partitioned into cells. Each of
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the values of a space is associated with one of the cells. A grid is a subset of the

whole space, split into cells of the same size. For each dimension of the grid, there

are three properties defined:

Start The smallest value for the dimension. The start is a real value and has to

be smaller or equal than the end.

End The largest value for the dimension. The end is a real number is has to be

bigger or equal than the start.

Cell Size Size of the cell in that dimension. The size is a positive real number.

Currently the data model postulates that the cell includes the start, but ex-

cludes the end, i.e. cell is defined as (B, E], where B is the start, E is the end,

and S is the size.

The number of cells in the dimension can be calculated as

E −B

S

The properties defined for the whole grid are:

Dimension Order Order of which the dimensions are laid in memory.

Approximator Defines how to convert data across different grids of the same

space. More about it in 5.1.1

If a type has only some of its properties defined, it is still considered an abstract

type. If all properties for a type are defined, it is considered a concrete type. For
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example, an 32-bit integer type is an abstract type, while a 32-bit big-endian

integer type is a concrete type.

Approximators

The data model allows definition of grids that represent the same space that

have different resolutions, i.e. different cell sizes. In order to support converting

data from one grid to another, there must be a way to split or coalesce values that

are associated with multiple adjacent cells.

In the general case, a value for a cell might need to be constructed from data

stored in cells in different resolution. For example, if a fragment defines a one-

dimensional grid with cell size 5, converting the data into a grid with cell size 2

will need to split the value of the first cell into three cells (with the value for the

third cell being constructed by both the current cell from the original grid, as well

as the next one). The general definition of an approximator function is:

type Cell struct {

size []real // original size of the cell (for each dimension)

part []real // part of the cell being used

val Value // the value that is associated with the cell

}

func approx(newsize []real, cell []Cell) (var Value, err error)

The function receives the size of the new cell, as well as a list of the cells that
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overlap with it. The size defines the size of each cell, while part describes the

part of it that overlaps with the new cell. The function returns an approximation

of the value that will be associated with the new cell. In the example above, the

approximator function will be called with newsize value of 2. For the first two of

the new cells, the list of source cells will have a single entry with size 5 and part

2, while for the third cell, there will be two entries, with the value for part of 1.

The approximator can return an error to signal that the transformation between

the data in the fragments is impossible.

The data model defines some standard approximators that can be used.

None If this approximator is set, the data will not be approximated. It can be

used only for spaces that have exactly the same size of the cells.

Proportional The proportional approximator assumes that the value is equally

spread across each of the original cells. It calculates the fraction of the value that

belongs to the portion that belongs to the new cell. The value for the cell is the

sum of all fractions, i.e.

V ′j =
dim∏
i=0

Sji

Sp
ji

P ′ =
k∑

i=0
PiV

′
i

where Sji is the size of the i-th dimension of the j-th cell, Sp
ji is the size of the
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part that overlaps with the new cell, and Pi is the value stored in the i-th cell.

The approximator is defined for values of the integer and real abstract types,

and all their variants. If the type is integer, the value is rounded to the nearest

whole number.

Minimum The minimum approximator returns the smallest of the values of the

overlapping cells. The approximator is defined for values of the integer and real

abstract types, and all their variants.

Maximum The maximum approximator returns the biggest of the values of the

overlapping cells. The approximator is defined for values of the integer and real

abstract types, and all their variants.

Truncate The truncate approximator is defined for values of the string type

and all of its variants. If there is only one original cell, it truncates its value if

necessary, in order to fit into the new type. Otherwise it sets the new value to an

invalid string (if the type supports it), or an empty string (if it doesn’t).

Not-a-Number For the real type, and its variants that support a NaN value,

the not-a-number approximator sets the value to NaN to indicate that it is invalid.

For the string type and all its variants that support invalid string value, it

sets it to that value.

The purpose of the approximator is to indicate that a value is not valid without

preventing the new fragment from being materialized.
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Error Always returns error if the sizes of the new and the original cells differ,

or if there is more than one original cell that overlaps with the new cell. The

approximator is defined for all types.

An approximator can be associated with any type defined in a fragment. The

property is ignored for types that are not associated with grids. The default

approximator for all primary types is Error. The default approximator for a

struct type is to iteratively call the approximators of each of its fields. The default

approximator of a space/grid is Error.

Datasets and Fragments

While the original DRepl defines three abstractions: dataset, view, and repli-

cas, and ASGARD defines datasets and fragments, the new data model unifies all

of them into a single abstraction of scientific data. A fragment is a collection of

data constants, types and variables. Fragments can be organized into hierarchical

relationships. When a fragment is defined, it can be based, or derived from an-

other fragment. In that case, the derived fragment’s types and variables need to

be more concrete variants of the types and variables of the parent fragment. The

special case of a fragment that doesn’t derive from another fragment is known as

a dataset.

A fragment that contains abstract types and variables is an abstract fragment,

and one that contains only variables of concrete types is defined as an concrete

fragment. Data can only be associated with concrete fragments. They are the

only ones that can be instantiated in memory, or saved in persistent storage. The
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abstract fragments exist only as metadata of the dataset definition, and can be

used to direct how data of concrete fragments is transformed.

A fragment is a list of variables with each of them an instance of a defined

type.

5.1.2 Language

The DRepl language was modified to support the new data model. The

dataset, view and replica sections are replaced by a fragment section that al-

lows hierarchical definition of fragments. The type and variable definitions are

streamlined to support the new hierarchical model.

Types

The fact that the types don’t have to be completely specified introduces big

changes from the type definition in DRepl. Each type can have certain list of

properties attached to it. If the properties for the specific type (either primary or

compound) are not fully specified, the type is not concrete.

There are 6 properties: byte order, size, alignment, format, dimension order,

and approximator.

PropertyName = "byteorder" | "size" | "align" | "format" |

"elo" | "approx"

Property = PropertyName { "(" Const ")" }

PropertyList = Property { "," Property }*
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The byte order specifies which byte of the value appears first: lsb for least

significant byte, or msb for most significant byte. It can be specified for primitive

types. The default byte order is derived by the fragment’s byte order (if defined).

The size property specifies size of the type in bytes. It can be specified for

primitive types only. There is no default size.

The alignment specifies how values of the type should be aligned in memory

or storage. It is specified in bytes. If necessary, padding is added before the

memory location so its offset is divisible by the specified property value. The

default alignment is 0.

The format property can be set for string types and defines the format of the

string. If it is set to C, the end of the string is specified by a NUL (0) character. If

it is set to P, the length of the string is specified by the first 2 bytes of the string,

in least-significant-byte first byte order.

The elo property can be specified for space types and defines the order of the

cells in memory. Currently there are two element orders defined: rowmajor and

columnmajor.

The approx property defines how a value of a type that is associated to a cell

of a space is converted to cell(s) of different size.

Type = { | PrimitiveType | StructType | SpaceType | NamedType}

{ "@" PropertyList } { "=" Type }

A type can be primitive, struct, space, or a named type. In some cases, when

the type can be implied, the type name can be omitted.
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integer whole numbers
real real numbers
string variable sized string of characters in UTF-8 format
int8 1-byte signed integer
int16 2-byte signed integer
int32 4-byte signed integer
int64 8-byte signed integer
float32 single-precision IEEE 754 floating point number
float64 double-precision IEEE 754 floating point number
stringN variable size string of characters with length up to N bytes

Table 5.1: Extended list of primitive types

Primitive Types There are ten primitive types defined, as shown in Table 5.1.

The first three types are abstract. Based on those, seven more primitive types are

defined.

PrimitiveType = "integer" | "real" | "string" |

"int8" | "int16" | "int32" | "int64" | "float32" |

"float64" | "string"[0-9]*

Structs Structs are similar to the struct type in Go and C. Multiple fields of

different data types can be arranged in a struct. Each field has a name and a type

assigned to it.

StructType = "struct" "{" { FieldDecl ";" } "}"

FieldDecl = IdentifierList Type

IdentifierList = identifier { "," identifier }*

The example below defines a struct with three fields: a, b, and c:
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struct {

a real

b, c float32

}

Spaces and Grids A space is a multi-dimensional continuum that has values

of a specified type associated with it. If the space is fully, or partially partitioned

into cells, it is also known as a grid.

ArrayType = "[" Dimension { "," Dimension }* "]" Type

Dimension = { Expression } { ":" Expression { ":" Expression } }

{ "@periodic(" Expression ")" }

The Expression in Dimension is a numeric constant (named or unnamed).

All four expressions associated with each dimension are optional. The first

expression is the smallest allowed value. The second is the largest allowed value

for that dimension. If the space is partitioned, the third is the size of the cell.

Note, that it is allowed for a space type to be partitioned only for some of its

dimensions. An optional property of the dimension specifies if it is periodic, and

what its period is. It is invalid to have period smaller than the largest value

(second parameter).

For example, a three-dimensional space of real numbers is defined as:

[,,] real

A space in polar coordinates can be defined as:
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[,0:360:@periodic(360)] real

There are two dimensions, the first is unbounded, while the second one has a

range from 0 to 360 and a period of 360.

A concrete two-dimensional grid with cell size of 5.0 can be defined as:

[0:100:5, 0:100:5] float64

The definition creates a 400 element array, with 20x20 cells.

Named Types

Similarly to Go (type) and C (typedef), the language allows association of

names to custom types. The names allow usage of “shortcuts” when a type is

referenced often.

TypeDecl = "type" identifier Type

NamedType = identifier

As in DRepl, the extended language allows named types to be referenced before

they are defined, so there is no need for forward declaration mechanisms.

Type Concretization

A type can be defined as a concretization of another type. For primary types,

concretization consists of defining previously undefined properties. It is an error

to change a property that is already defined. For example, type concretization for

the integer type is defining its size:
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@size(64) = integer

For structs, in addition to defining new properties, concretization can also

include selecting a subset of the base type fields.

struct {

a, b, c integer

} = struct {

a, b integer

}

The concretization can be run recursively for each of the fields. For example,

the similarly to the example above, the fields a and b can be defined as concrete

types instead of the abstract integer.

struct {

a, b, c integer

} = struct {

a, b int64

}

The type that is being concretized is called a base type. The relation between

a type and its base is significantly different than the relations between a class and

its base class commonly found in object oriented languages. While classes usually

extend the functionality and contain more data than their base class, the types in

the data model are always subsets of their base types.
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Variables and Constants

A variable is a named instance of a type. It is associated with real data. If

the type is concrete, a variable defined in a fragment takes space in memory when

the fragment is materialized. The names of the variables should be unique.

VarDecl = "var" IdentifierList Type { "=" IdentifierList }

IdentifierList = identifier { "," identifier }*

When a variable is declared, it can be defined to contain subset of the data of

a variable defined in a base fragment. In that case, the type of the new variable

has to be concretized type of the type of the old variable. For example, if the

current fragment is based on a fragment with variables a and b:

var a real

var b [,]real

variables aa and bb can be defined as:

var aa @size(64) = a

var bb [0:10:1,0:10:0.1] = b

Constants

Constants are named values that can’t change. They don’t use storage space

and are valid only during the parsing stage.

ConstDecl = "const" identifier "=" Expression
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Similarly to Go, DRepl constants don’t have intrinsic type and are converted

to the appropriate type when they are used.

const N = 1000

const M = 4.3

Fragment

A fragment is a collection of constants, types and variables. It can be based

on another fragment definition, in which case it inherits all constants and types

previously defined. It doesn’t automatically derive the variables of the base frag-

ment.

Fragments can be viewed as organized in a tree. The root of the tree, a

fragment that doesn’t have a parent, is known as the dataset. It usually consists

of abstract types and variables based on them. Each of the other fragments in the

tree provides increasing concretization of the types and the variables defined in

the dataset. Variables can be freely defined only in the dataset. Variables defined

in the other fragments have to be concretizations of the variables defined in the

fragment’s parent.

Fragment = "fragment" identifier { "@" FragmentPropertyList }

{ ":" identifier } "{"

{ TypeDecl | ConstDecl | VarDecl }* "}"

FragmentPropertyName = "byteorder" | "format" | "elo"
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FragmentProperty = FragmentPropertyName { "(" Const ")" }

FragmentPropertyList = Property { "," Property }*

A subset of the types properties can be defined for the fragment as a whole.

If they are, their values are default of all types defined in the fragment. The user

can override these defaults in the type definition.

For example if the user creates a dataset, and two fragments based on it:

fragment dataset {

type Point struct {

x, y real

}

var data [,]Point

}

fragment f1 : dataset {

var d [0:1:0.1, 1:10:1] = data

}

fragment f2 : dataset@byteorder(msb) {

var d [0:100:1, -30:10:1] struct {

x float64

} = data

}

Fragment f1 is not concrete and can’t be materialized in memory. Although

the space is concretized, field x and y are not of concrete type – they lack both
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byte order and size. Fragment f2 is a concrete fragment, because all types used

in its variables have defined sizes and byte orders.

More Complex Examples

The primitive types that are not completely abstract can be defined as:

type int8 @size(1),align(1) = integer

type int16 @size(2),align(2) = integer

type int32 @size(4),align(4) = integer

type int64 @size(8),align(8) = integer

type float32 @size(4),align(4) = real

type float64 @size(8),align(8) = real

The example below defines an abstract dataset, with two concrete fragments.

All data in fragment f1 is “least significant byte” first, the second in “most signif-

icant byte first”. The exception if variable n, which is in “least significant byte”

order in both cases:

fragment dataset {

var a, b, c, n int64

}

fragment f1@byteorder(lsb) : dataset {

var fa, fb, fc, fn = a, b, c, n

}

fragment f2@byteorder(msb) : dataset {
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var fa, fb, fc = a, b, c

var fn@byteorder(lsb) = a

}

Note that although the dataset fragment is mostly abstract, the variable sizes

are already limited to 64-bit integers and can’t be changed further. Similarly the

dataset can limit the range of a space without setting the size of the cells:

fragment dataset {

var a [-100:100]real

}

fragment f1 : dataset {

var fa [::0.1]float64 = a

}

fragment f2 : dataset {

var fa [0:20:1.3]float32 = a

}

Fields in a structure can have different approximators:

fragment dataset {

type Point struct {

x real@approx(proportional)

y real@approx(nan)

}
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var data []Point

}

5.1.3 Implementation

The two main parts of the implementation are the language parser and the

transformation language. Both of them are based on ASGARD’s code, but re-

quired major changes and enhancements.

Language Parser

The introduction of the hierarchical fragments in place of the two-level dataset

and fragment arrangement in DRepl and ASGARD resulted in major redesign of

the code. The space definition streamlined the complex array and slice data

structures and requires less code than the previously used view slice definitions.

Type and fragment properties are new features that require careful handling when

they are inherited by base types and fragments.

The parser keeps its own internal descriptions of the fragments. It gener-

ates transformation engine descriptions only for concrete fragments, or abstract

fragments that are not based on other fragments.

Overall, the new parser is about 30% smaller than the original DRepl’s parser.

Fragment Source Coverage

The source coverage uses the size of the types and can therefore be calculate

intersections only for concrete fragments. The coverage for primitive and struct
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types is similar to the approach used in ASGARD. A major difference is taking

into account the approximators when evaluating the coverage. An Error approxi-

mator, for example, makes the block unsuitable for consideration and its coverage

is assumed to be zero. Similarly, if a type’s approximator is set to None, but it is

in grids of different sizes, the coverage is considered to be zero.

In ASGARD an element of an array corresponded to at most one element of an

array of another fragment. The coverage between the two arrays could be easily

calculated by counting the number of common elements, and dividing it by the

number of elements in the destination arrays. The introduction of different grid

cell sizes poses new challenges of the fragment source coverage. Counting common

elements is no longer applicable. Instead, the runtime uses the volume of the cells

for calculating its coverage. The volume is defined as a product of the cell’s sizes

in each dimension.

In ASGARD, spatially an element of an array is always either completely cov-

ered by an element from another array, or completely uncovered. The new system

allows a cell to be partially covered by another cell. While in some cases partial

coverage might be permissible, in many other cases the numerical algorithms will

produce invalid results if they use values calculated on partial coverage.

There are three cases for a cell to be covered by data from other fragments, A

cell of a space can be fully covered from a single fragment. They are considered

SF (single-fragment/fully) covered. There are two ways for a cell to be partially

covered. It can be partially covered by every single other fragment, but fully

136



MP MF MF

MF SF SF

SF SF SF

MP

MP

MP

SF SF SF MP

Figure 5.1: Example of cell coverage.

covered, when all the fragments are taken into account. In that case, the cell

is MF (multiple-fragment/fully) covered. If the cell is partially covered even if

all fragments are used, it is considered MP (multiple-fragment/partially) covered.

Figure 5.1 show examples of cell coverage types.

There are multiple ways to try to alleviate the problem of MP cells. One is

to extrapolate the value for the missing part. For the proportional approximator

that means calculating the average for the rest of the cell (based on it volume),
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and using the calculated average for the uncovered volume. There doesn’t seem

to be similarly feasible approaches for other approximators, and even for the

proportional one the solution might be incorrect. Therefore there is no perfect

answer whether a MP cells should be considered covered at all. Currently the

implementation uses the approximator property of the space to decide on how

to return coverage for partially covered cells. If the space approximator is set to

proportional, the coverage algorithm considers MP cells as part of the coverage

for the whole space (depending on the volume of the cell covered). Otherwise the

algorithm considers the cell uncovered.

Transformation Rules

In ASGARD the transformation rules for converting between two fragments

were symmetrical and could be used in both directions. The introduction of

variable-sized cells and approximators makes it impossible to do that in the general

case.

The removal of the flexibility of definition of slices reduced the complexity

of ABlock connectivity. The connections between equivalent ABlocks no longer

require additional parameters for calculating the equivalent indices in the desti-

nation ABlock.

Transformation Engine

Previously, materializing a fragment from multiple sources could be done in

completely parallel. Each region in the destination fragment memory was refer-

138



enced by a single other fragment. Support for MF cells breaks that advantageous

rule. The values for these cells need to be calculated once the data from all frag-

ments covering it is available. This creates synchronization points that can affect

the overall performance of the transformation.

Supporting variable-sized cells and approximators makes the general case for

grid transformation more complex and potentially slower. The values from all

source cells need to be collected, the sizes and parts of the cells calculated (as

described in 5.1.1) before the approximator can be called. Although there is po-

tential for optimizations (for example the sizes and parts don’t matter for the

Maximum approximator), the current implementation doesn’t support any opti-

mizations. They will be added in the future, once the overall design is confirmed

and the performance in real applications is evaluated.

5.1.4 Discussion

The work described in this section allows major enhancements to the way

scientific datasets are described and used. The scientists can tell the storage

system not only what data structures they use in the simulation, but how they

relate to the abstract concepts in the scientific models they simulate. It allows

data to be produced and consumed at different resolution levels, making it easier

to decouple visualization and analytics applications from the simulation. It also

allows different parts of the simulation to use different resolutions. This allows

support for applications that use block-structured grids and AMR techniques.
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During the design phase there were considerations to allow even more flexible

data definitions. One such enhancement would be to introduce abstract structs,

similarly to abstract spaces. Instead of defining the list of fields, an abstract

struct would allow dynamic addition of fields to it in sub-fragments. Although

there are cases that this feature could be useful, it was ultimately rejected as too

complicated to implement and support.

Although substantial, the list of supported approximators might not cover all

possible use cases. Numerical scientists often take extreme care for minimizing

the numerical errors, and our implementations might not meet their requirements.

In the future, we plan to extend the implementation to support custom approx-

imators. Their definition is going to be outside of the language for fragment

description. Instead, we will allow the application developers to mark certain

functions in the application’s native code as approximators, and as a part of

the build process will produce code suitable for shipment to the storage system

to act as approximators. One of the approaches currently considered is to use

the LLVM [46] framework to translate the native code into LLVM’s intermediate

representation (IR) or WebAssemply (WA) [37] code. The custom code will be

registered with the storage system upon application’s startup and can be later

used as approximators in the fragment definitions.

Although the new design extends the dataset support and transformation con-

siderably, there are still few areas where it falls short. For example, it doesn’t

support coordinate system conversion. If an application defines its spaces in spher-
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ical coordinates, the system doesn’t allow the visualization to read it in cartesian

coordinate system.

When fragment coverage is calculated, the current implementation also doesn’t

give preference to fragments that use the same primitive types’ format and byte

order. In future, the coverage information will be changed to include not only the

percent of the fragment covered, but also the complexity of the transformation.

That will give the runtime better knowledge on what alternative to choose if there

are multiple fragments that cover the same region.

5.2 Unstructured Grids

The previously described approaches cover cases where dataset’s description

can be concisely depicted in a declarative language. There is an important class

of scientific data, where the structure is so variable, that describing it with a

language is difficult. Unstructured meshes provide a great challenge for separating

the data values from the dataset description. Because of the variability of the

multidimensional grid tessellation, the cells can have variable number of neighbors,

making all approaches to introduce uniformity impossible. Another challenge is

the fact that the tessellation is not static, or even predictably dynamic. Very often

it depends on some of the values calculated during the simulation, and is driven

by the goal to achieve a good balance between performance and correctness.

Very often, the grid decomposition information is intermixed with the cell’s

data. In one of the most popular approaches, the data for all cells are stored in
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a one-dimensional array (or list), with pointers to the cell’s neighbors as part of

the cell data.

This section describes some approaches for supporting unstructured data in

storage systems. They vary based on the amount of metadata that need to be

stored and the operations that the storage system can provide to the application

developers.

The approaches still assume that the abstract dataset that the application uses

is uniform and can be described in the terms defined by a declarative language.

There are multi-dimensional spaces, real and integer values, and they all can be

grouped together in structs.

All approaches separate the information on how the unstructured grids are

partitioned from the data itself. The goal is for the storage system to be able to

perform metadata operations (i.e. operations on the dataset as a whole) without

going through all the data. The potentially smaller size of the metadata makes it

easier to read and update, and it can be easily replicated for better performance

in distributed environment.

5.2.1 Unstructured Grids as Graphs

Some numerical algorithms can be implemented based only on the topology

of a grid. In this case, the grid can be represented as a graph. An important

assumption for this class of data structures is that the metadata doesn’t contain

any spatial information, and the querying operations can’t answer questions about
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coordinates in the grid’s spaces. There are two popular representations grids that

use graphs.

Graph of Cells

For the first, each cell is represented as a vertex, and an there are edges between

each neighboring vertices. The metadata describing the grid consists of two lists:

list of vertices (cells), and list of edges (cell pairs). Assuming that the edges only

connect spatially close cells, the average amount of space required to store the

metadata is proportional to the number of cells.

This format allows only one operation. It can return a list of neighboring

cells up to a specified distance (in connectivity sense). Distance 1 is the most

commonly used operation for retrieving cell’s direct neighbors.

Graph of Vertices

The second representation has points as vertices, and cells defined as a list of

vertices. It has more information and can be used to derive the first. Additionally,

it can also be used to derive the planes and edges where neighboring cells touch.

The metadata describing a grid requires two lists: list of vertices, and a list of

cells (and each cell is a list of vertices). Depending on the number of vertices

that describe a cell, the amount of storage space required to store the metadata

is larger than the first approach, and is proportional to both the number of cells,

and number of vertices.

This format allows more operations than the previous one. In addition to
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finding out the neighboring cells, it also allows to find how many vertices the cells

share, and therefore the dimensionality of touching surface. For example, cells

that share two vertices share an edge (2D shape), cells that share three or more

vertices share a 3D surface, and so forth.

5.2.2 Unstructured Grids as Geometric Regions

Assuming that a cell has a convex shape in the N dimensional space, it can

be defined by a list of N −1 dimensional hyperplanes. Each hyperplane is defined

by N + 1 values. The total number of values, specifying a cell is proportional

to N2. Therefore, the amount of storage space required to store the metadata is

proportional to CN2 where C is the number of cells.

This format allows operations that use coordinates in the space. For example,

the user can find a list of cells, that are at a certain distance from a point in

space. Or a list of cells that intersect with another cell. Calculating most of

these operations precisely can be computationally expensive and can affect the

performance of the storage system as a whole. A big advantage of this format is

that the space can be partitioned into the operations don’t require the complete

metadata in order to perform spatially local queries.

5.2.3 Unstructured Grids and Voronoi Diagram

An important subclass of unstructured grids described as geometric regions

are the Voronoi tessellations. Given a set of points Pj where 0 < j < n in the N
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dimensional space, Voronoi’s tessellation partitions the space into n cells, where

all points in the j-th cell are closest to Pj than any other point.

Cj = {x ∈ X | d(x, Pj) 6 d(x, Pk) ∀k 6= j}

The Voronoi tessellation is usually constructed by Delaunay triangulation al-

gorithms [8, 47]. Although there are distributed algorithms [57] for calculating

Voronoi diagrams, the algorithms are computationally intensive. A great advan-

tage of this format is that it uses much less storage metadata space than the

general description of geometric regions.

5.2.4 Incorporating Unstructured Grids

Although there are multiple advantages of representing the unstructured grid

as a graph, there is a distinct challenge of constructing the global graph from

fragments. Unlike the geometrical representations, the topological representations

lack criteria how to stitch fragments into a whole. The applications that use

topological unstructured grids usually have the initial construction outside of the

application, or as a serial part where a single process creates the whole graph.

Once the graph is created, modifying it is simpler operation that needs only global

information only to ensure that newly created cells have unique IDs.

Within the ASGARD framework, the unique ID generation can be associated

with the dataset object. As the dataset is abstract and doesn’t contain details

about space partitioning, it can still be described with a declarative language.
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One approach for the grid construction is for a single process to create a fragment

that contains the complete graph using the unique ID service. Once the grid

is constructed, the distributed application that will use it will create its own

fragments of it, and the global graph can be discarded if it takes too much space.

Modifications of the grid include adding and removing cells. The operation can

be performed on fragments of the grid, again by using the unique ID service.
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Chapter 6

Conclusion

Productive storage systems for exascale demand drastic changes to the data

organization and the interfaces they provide to the applications. In this disserta-

tion, we explored new approaches of improving the storage system interfaces and

performance by introducing more knowledge of the structure of scientific data to

the storage subsystem. These techniques enable the storage system to provide

optimal performance throughout the full life cycle of the data, by changing its

on-disk format, as well as using multiple divergent replicas.

In addition to further exploring the challenges of storing and sharing unstruc-

tured grids, there is a number of other directions for improving the work presented

here. The data description language still doesn’t capture all the metadata for sci-

entific datasets. For example, there is no way to express the coordinate systems

used for multidimensional spaces. The lack of the information makes it harder

to share data between multi-physics codes that use different coordinate systems.
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The visualization software needs extra direction on how to show the data on the

computer screen. The problem needs to be further researched and appropriate

enhancements to be implemented. Another improvement that can be useful is

allowing the application developers to define their own approximators to be used

when data is converted from one resolution to another.
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