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Abstract

The Discrete Cosine IVansform (DCT) is used in the MPEG and JPEG compression standards. Thus, the
DCT component has stringent timing requirements. The high performance which is required cannot be achieved
by a sequential implementation of the algorithm. In this report, we explore different optimization techniques
to improve the performance of the DCT. We discuss various pipelining options to further reduce the latency.
We present a transformation of the algorithm that reduces the memory requirements and hence, reduces the
cost of the implementation. We also describe RT-level implementations of the sequential, pipelined and memory
optimized designs.
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Abstract

The Discrete Cosine Transform (DCT) is used in the
MPEG and JPEG compression standards. Thus, the
DCT component has stringent timing requirements.
The high performance which is required cannot be
achieved by a sequential implementation of the al
gorithm. In this report, we explore different opti
mization techniques to improve the performance of the
DCT. We discuss various pipelining options to further
reduce the latency. We present a transformation of the
algorithm that reduces the memory requirements and
hence, reduces the cost of the implementation. We
also describe RT-level implementations of the sequen
tial, pipelined and memory optimized designs.

1 Introduction

In recent years, a considerable etmount of research has
focussed on image compression. Compression plays a
significEint role in image/signal processing and trans
mission. Discrete Cosine Transform (DCT) is a type
of transform coding that has a better compressional
capability for reducing bit-rate as compared to other
techniques like predictive or transform coding [1].
DCT is part of the JPEG (Joint Photographic Ex
pert Group) and the MPEG (Motion Picture Expert
Group) compression standards. Recently, DCT has
been proposed as a component in the HDTV (high-
definition television) standard that might replace the
NTSC [2].

There are strict requirements on the performance
of the DCT and the IDCT (Inverse Discrete Cosine
Transform) components since they are part of the
JPEG and MPEG encoders/decoders. The timing
constraint on the DCT component can be computed

from the MPEG standard [3]. Each picture in the
MPEG standard consists of 720x480 pixels which im
plies that there are 1350 macroblocks/picture since
each block is 16x16 pixels of the display. The pic
ture rate is 30 frames/sec and hence, the MPEG
decoder must process 40500 macroblocks/sec. Each
macroblock consists of four 8x8 illuminance blocks

and two 8x8 chrominance blocks. Thus, the rate
is 40500x6=243000 blocks/sec. This translates into
a timing constraint of 4115.22 ns/block. To be on
the safe side, we impose a timing constraint of 4100
ns/block on our implementations for the DCT compo
nent.

The report is organized as follows. The formal spec
ification of the DCT algorithm and a software imple
mentation in C is given in Section 2. The sequential
hardware implementation and optimizations like loop
unrolling^ chaining and multicycling are described in
Section 3. The different pipelining options are dis
cussed in Section 4. We then present a memory opti
mized algorithm and the pipelined version of this al
gorithm in Section 5. We compare the different opti
mization and pipelining techniques in Section 6. We
finally conclude our exploratory study in Section 7.

2 Specification of the DCT

The generic problem of compression is to minimize the
bit rate of the digital representation of signals like an
image, a video stream or an audio signal. Many appli
cations benefit when signals are available in the com
pressed form. Discrete Cosine Transform (DCT) is a
way of transforming the signal from spatial domain to
frequency domain which can then be compressed us
ing some algorithm like run-length encoding [5]. The
details of its use as a lossy compression algorithm are



given in [1, 4].

In this section, we discuss the fundamentals of the
Discrete Cosine Transform and give the formal defi
nition of the algorithm. In Section 2.1 we give the
mathematics and show how the algorithm can be de
composed into two matrix multiplications. This is fol
lowed by the C source code to compute the DOT in
Section 2.2.

2.1 Mathematical Specification

As discussed above, DOT is a function that converts
a signal from the spatial domain to the frequency do
main. In this report, we primarily look at the two-
dimensional transform that takes an image that has
been digitized into pixels as its input. Most of the
theory and implementation remains the same when it
is used with other signals such as audio.

The formal specification of the 2-D DOT operation
is as follows [4].

where:

c(m)c(n)
EE

' (2m-1-l)u7r i2n-\-\)v'K
U„cos COS

u, u = discrete frequency variables such that (0 <
u,v < N —\)

= gray level of pixel at (m, n) in the N x N
image {0 <m,n < N —1)

= coefficient of point (u, u) in spatial frequency
domain

c(0) = l/y/2 and c(m) = 1 for m 7^ 0.
In typical designs (like the MPEG standard), the

image is sub-divided into 8x8 blocks of pixels. We also
use a value of iV = 8 in this example. Furthermore,
let CosBlock be a 8 x 8 matrix defined by

CosBlockun =round{factor *(-coa^^"
8 16

An important property of the cosine transform is
that the two summations are separable. Thus, it can
be shown that

OutBlock = CosBlock x InBlock x CosBlock^

where InBlock is the input 8x8 block of image, /.
OutBlock is the output matrix in the frequency do
main F and CosBlock is defined above. The DOT

can, thus, be modeled as two 8x8 matrix multipli
cations. These matrix multiplications (MM) can be
serialized in time.

TempBlock — InBlock x CosBlock^ (MMl)
OutBlock = CosBlock x TempBlock (MM2)

The DCT transformation can then be modeled as two
processes. The first process completes the first matrix
multiplication and generates the 8x8 TempBlock ma
trix. The results of this matrix multiplication is then
used by the second process that generates the final
output matrix, OutBlock. Both processes have an in
ternal copy of the CosBlock matrix.

2.2 DCT in C

DCT can be computed in software by doing two matrix
multiplications. The code to compute the DCT in C
is given below. The incoming image, InBlock, is 2tn
8x8 array of integers and the DCT is in the frequency
domain, OutBlock, again is an 8 x 8 array.

1 int CosBlock[8][8];
2

3 void MatrixMult (int a[][8], int b[]C8!I,
4 int cnC83) {
5 register int i, j, k;
6

7 for (i=0; i<8; i++)
8 for (j=0; j<8: j++) {
9 c[i][j]=0;
10 for (k=0: k<8; k++)

11 cCi][j] += aCi][k] » bCklfj];
12 }

void Transpose (int aCCS], int b[][8]) <
register int i, j;

for (i=0; i<8; i++)
for (j=0: j<8; j++)

bCj] [i] = a[i] [j] ;

void DCT (int InBlockQ[8],
int OutBlockC] [8]) {

int TempBlock[8][8], CosTrans [8][8];
TransposeCCosBlock, CosTrans);

/* TempBlock = InBlock * CosBlock"T */
MatrixMult(InBlock,CosTrans,TempBlock);

/* OutBlock = CosBlock » TempBlock */
MatrixMult(CosBlock,TempBlock,OutBlock)



Each matrix multiplication is a triple-nested loop.
First the transpose of the CosBlock matrix is calcu
lated and then the InBlock is multiplied with this
transpose. The CosBlock is then multiplied with the
result of the first multiplication. The code is obvi
ously sub-optimal and several optimizations are pos
sible. However, it has been used here to provide an
unambiguous and simple definition to the DOT prob
lem.

3 Design Space Explorations

The DCT component can be designed in a large num
ber of ways. Each design incurs varying performance
in terms of area and delay. In this report, we explore
some of the options and discuss some common opti
mizations that can be used to speed up the design
without incurring large area penalties.

We first tabulate the speed and cost parameters for
component from our RT-level library in Section 3.1.
We start the design exploration with a sequential de
sign in Section 3.2. We then discuss some optimiza
tions beginning with loop unrolling in Section 3.3 fol
lowed by chaining in Section 3.4. Then in Section 3.5
we describe multicycling.

3.1 RT-level Library Components

During our design exploration for the DCT we will
implement the algorithm using register transfer level
(RTL) components like registers, counters, adders,
multipliers, multiplexers and so forth. These compo
nents are taken from a RTL library that maps these
components to their gate level equivalents. The li
brary also stores the delay and cost parameters asso
ciated with each component. The delay parameter is
the critical path (in ns) of the component. The cost
parameter is the area cost in number of transistors

required for the component.

We list the components used for implementing the
different designs in Table 1. This library is described
in [6]. However, we have scaled down the delays of
all components by a factor of 10 since technology im
provements have increased the speed of gates [7]. The
delay of an inverter is now 0.1 ns compared to 1 ns
used by the library of [6]. The delay in the second
column gives the worst case delay from input to out
put for a single signal change. The delay of pipelined
components is represented by the delay of the longest

Table 1: Parameters for RTL components

Component Pelay
tn ns

. Cost
in trans

16 bit selector 0.4 224

32 bit selector 0.4 448

16 bit CLA adder 2.1 1074

32 bit CLA adder 2.9 2148

8 bit multiplier 5.6 3562

8 bit multiplier
2 stage pipe 3.5 4210

8 bit multiplier
4 stage pipe 2.7 5218

16 bit multiplier 8.8 11220

16 bit multiplier
2 stage pipe 5.4 12624

16 bit multiplier
4 stage pipe 3.5 15036

8 bit register 0.4 256

9 bit register 0.4 272

16 bit register 0.4 512

9 bit counter 2.5 414

64x16 RAM 3.5 6144

64x8 ROM 3.5 2048

stage. The delay of storage components is the aver
age of read and write times. The third column gives
the number of transistors required to implement each
component. These numbers are based upon the cost
incurred by the basic gates (nand, nor and inverter)
as discussed in [6]. This RTL library will be used to
determine the performance of the various designs dis
cussed in following sections.

3.2 Sequential Design

The DCT can be implemented as a sequential design
in which only one operation is done during each clock
cycle. This design is the slowest since there is no con
currency in execution of operations. However, this
design is a good starting point for exploring different
design alternatives. It is naturally developed from the
software specification and has a simple controller.

As pointed out before the DCT consist of two ma
trix multiplications which are computationally iden
tical. The sequential design does not attempt to do
these matrix multiplications together. Thus, we dis
cuss only one of matrix multiplication with the under
standing that both the multiplications are done in the
same manner. The Algorithmic State Machine (ASM)



Sum = Sum + P

jx)unt - count + 1

count =0

done - 0

start = 1

A = a[i][k]

B = b[k]0]

P=A*B

•^^^<!count —

Sum = P

c[i]D] = Sum

done -1

(i, j, k are the most, middle and least significant 3 bits of "count' respectively)

Figure 1: ASM chart for sequential matrix multiplication



chaxt [8] for an 8 X8 sequential matrix multiplication
is shown in Figure 1.

Sequential matrix multiplication can be imple
mented using RT-level components as shown in Fig
ure 2. This design implements a single matrix mul
tiplication and can be extended for implementing the
actual DCT algorithm which consists of two serialized
matrix multiplications.

A behavioral model of the sequential design in
VHDL is given in Appendix A. The test bench for
verifying the design is given in Appendix C. The struc
tural model of DCT is comprised of a controller and a
datapath. The schematics and VHDL model are given
in Appendix B. Note that Figure 23 in Appendix B
gives the complete datapath while Figure 2 only de
scribes a single matrix multiplication. However, the
basic datapath remains the same. The complete DOT
datapath has an extra memory, and the input to the
A register comes from a multiplexer since the source
is InBlock memory during the first matrix multipli
cation and TempBlock memory during the second ma
trix multiplication. Furthermore, Figure 2 includes
the controller while Figure 23 in the Appendix does
not include the controller. Figure 2 is used as an ex
ample and for calculating the hardware costs of the
design.

The ASM chart for the sequential matrix multipli
cation design can be partitioned into 4 states. Each
state corresponds to a clock cycle. The clock period is,
then, determined by the maximum delay in any of the
states. Thus, from our RT-level component library, we
can determine that the required clock period will be
8.8 + 0.4 = 9.2ns (as determined by the slowest state
that has the multiplier). This leads us to calculate
the time required for the entire DCT computation as
follows. Note that each loop has 512 iterations and
hence the total number of iterations is 512x2=1024.

# states = 4
clock period = 9.2 ns
# iterations = 1024

Latency = #states x clock x ^Jtiterations
= 4x9.2x1024 = 37683.2 ns

The cost of the design in terms of tran
sistors can be calculated using the cost values
of the RTL components from Table 1. The
cost of the datapath components is as follows:
CosBlock=2048, A=512, B=512, multiplier=11220,
P=1024, Sum=1024, adder=2148, selector=448.

TempBlock=6144, counter=414. Thus, the total is
25494 transistors. We do not include the storage re
quirements for the InBlock and OutBlock matrices.
These matrices are the input and output of the DCT
component and may be accessed using RAMs or FI
FOs in sequential or burst modes. The controller has
a 4 bit register (128), a decoder (168) and some gates
(102). The total is 398transistors. Thus, the design is
clearly data-dominated since there is an order of mag
nitude difference between the number of transistors
required for the datapath and the number for con
troller. We, therefore, ignore the controller cost from
consideration. Hence, the cost of the sequential design
is 25494«25K transistors (since the transistor cost is
not exact, and we are interested only in comparing
designs, we round off the cost to 1000 transistors).

It takes 37683.2 ns for the sequential design to com
pute the DCT for an 8x8 input image block. This de
sign is obviously too slow. We next explore different
optimizations techniques to reduce the latency of the
design.

3.3 Loop Unrolling

A design often spends most of the computation inside
a loop. Such designs can typically be speeded up by
unrolling the loop n of times. This implies that the
loop is modified so that n iterations in the loop of the
original design are now done in 1 iteration of the loop.
Thus, the total number of iterations in the loop of
the design go down by ^ (with appropriate boundary
conditions). The obvious requirement for unrolling the
loop is availability of n times the hardware since the n
iterations which were done sequentially in the original
loop are now done concurrently.

Consider unrolling the inner-most loop of the se
quential matrix multiplication by 2. The ASM chart
for 2-unrolled is shown in Figure 3. Two values each
from the A and the B matrices (A[i] [k] , A[i] [k+1]
and BCk] [j], B[k+1] [j] respectively) are read con
currently. In the next clock cycle, A[i] [k] is multi
plied by B[k] [j] and A[i] [k+1] by B[k+1] [j] con
currently. It is clear from the ASM chart that each
iteration of the loop does double the computation and
the number of iterations is reduced by half since count
is incremented by 2.

The effect of unrolling the loop is an increase in the
hardware requirements. Twice the number of regis
ters, multipliers and adders are required. If the loop
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Sum = Sum + Sumi

count = count + 2

count =0

done = 0

start = 1

A1 = a[i][k]. B1 = b[k]0]

A2 = a[i][k+1], B2 = b[k+1I[j]

P1 =ArB1, P2 = A2*B2

Sumi = PI + P2

—<f'''̂ nt=510"'""'5^

Sum = Sumi

cnini = Sum

done = 1

(i, j, k are the most, middle and least significant 3 bits of "count" respectively)

Figure 3: ASM chart for 2-unrolled matrix multiplication



includes memory accesses (as is the case here), un
rolling a loop will also increase the bandwidth require
ments for the memory and multi-port memories will
have to be used. The datapath for a 2-unrolled matrix
multiplication design is shown in Figure 4. The hard
ware requirements for the loop unrolled implementa
tion increases as shown in the figure. A dual-port
memory is required to read two data values in the
same clock cycle. In addition, two multipliers, two
adders and four registers are required. Consequently,
the hardware cost increases, as evaluated below.

The number of states in the loop increase to 5 com
pared to 4 in the sequential non-optimized design, as
shown in the ASM chart of Figure 3. However, the
number of iterations required is reduced by half. Thus,
each matrix multiplication requires 256 iterations in
stead of 512. The total number of iterations for DOT

is then, 256x2=512. The clock period is the same as
that for the sequential design. It is 8.8 -I- 0.4 = 9.2ns
(determined by the slowest state that has the multi
plier) . The latency of the design can then be computed
as follows.

# states = 5
clock period = 9.2 ns
# iterations = 512

Latency = #statesx clock x#iterations
= 5x9.2x512 = 23552 ns

The additional cost of the 2-unrolIed design can
be computed as follows: dual-port RAM=8092-6144,
A2=512, B2=512, multiplier=11220, P2=1024,
adder=2148, Suinl=1024. Thus, the total cost for the
2-unrolIed design is 43882«44K transistors.

3.4 Chaining

It is almost never the case that the delays of states
in a design be identical. The delays are, most often,
not even nearly equal. However, the clock period is
equal to the worst register-to-register delay. The worst
register-to-register delay path goes through the slow
est functional unit and hence, other faster functional
units use only a part of the clock period and are idle
for the remaining. This clearly slows down the design
and is inefficient since some units sit idle.

A common technique to reduce this wastage is
chaining of two or more functional units. Consecu
tive states with functional units whose total delay is
comparable to the maximum delay (the clock period)

can be combined together into one state. This has
the effect of reducing the number of states in the loop
and hence, improving performance. It is not necessary
to keep the clock period same. It may be possible to
chain states even if the cumulative delay is more than
the original clock period if this still leads to a net im
provement in the performance which is determined by
both the number of states and the clock period (La
tency = #states X clock x #iterations).

The basicidea behind chaining is shownin Figure5.
The multiplier in Figure 5(a) is the slowestcomponent.
States S3 and S4 take much less time and are idle for a
part of the clock duration since the delay of an adder
is less than that of a multiplier. The two states can be
chained into one state as shown in Figure 5(b). The
number of states decreases by one and the register
between the two states is removed. The controller is
also modified. The net effect is an improvement in the
performance.

Chaining can be done in the 2-unrolled design from
Section 3.3. The ASM chart for the unrolled and
chained design is shown in Figure 6. The number of
states is reduced from 5 in the only-unrolled design to
4 because of chaining. The clock cycle remains 9.2 ns
since two additions and selection can be done within
this time period. The ASMchart is for a single matrix
multiplication. The latency of a DOT component that
is 2-unrolled and chained can be computed as follows.
Note that each loop has 256 iterations and hence the
total number of iterations is 256 x 2 = 512.

# states = 4
clock period = 9.2 ns
# iterations = 512

Latency = #statesx clockx#iterations
= 4x9.2x512 ^ 18841.6 ns

Chaining only reduces a single register (1024 tran
sistors) from the design. Hence, it does not reduce the
cost by a large margin. The cost for the 2-unrolled
chained design is consequently 41K transistors.

3.5 Multicycling

In the previous section, we discussed how operation
may be chained so as to reduce the number of states
in the iteration loop if the delays of the states are not
nearly equal. Another possible alternative is to split
the longer state into 2 or more states. This is called
multicycling becausethe operation now takes multiple



Figure 4: Datapath for 2-unrolled matrix multiplication



Figure 5: Chaining short operations: (a) before chaining (b) after rhaining

clock cycles to complete. Even though the number of
states increases as a result of raulticycling, there can
still be an advantage due to the decrease in the clock
period.

Multicycling is useful because it decreases the clock
rate which may be based on other system parameters.
It can be used together with loop unrolling and chain
ing. Multicycling may be useful even when it does
not lead to a large reduction in the clock period if the
number of states is large. This is because the increase
in number of states is more than offset by even the
small reduction in the clock period.

The ASM chart for an unrolled, multicycled design
is shown in Figure 7. The multiplier has been mul
ticycled into 2 states S2 and S3 since multiplication
the slowest operation. Note that raulticycling does
not required a change in the datapath of the design.
Only the controller needs to be modified. An extra
state is added in the controller and the output of the
multiplier is latched one clock cycle later. Thus, the
design can be operated at a clock period of 4.6 ns (=
9.2-i-2) since the multiplier gets two cyclesfor comple
tion. This leads us to compute the overall latency of
the DCT design as follows. Note that each loop has
256 iterations and hence the total number of iterations

is 256 X 2 = 512.

# states = 6
clock period = 4.6 ns
# iterations = 512

Latency — #statesx clock x#iterations
= 6x4.6x512 = 14131.2 ns

The cost of the multicycled design remains the same
as that for a 2-unrolled design, i.e., 42K transistors.

4 Pipelining Alternatives

In the previous sections, we optimized the design by
techniques such as loop unrolling, chaining and multi-
cycling. This improved the performance of the DCT
design. Further improvement is possible using the
standard technique of pipelining. In the following sec
tions, we try to improve the performance by pipelining
the DCT core which consists of the two matrix multi
plications as given in lines 59-110 of Appendix A.

There can different levelsof pipelining. Wedescribe
process pipelining in Section 4.1. We then look at loop
pipelining in Section4.2 and functional unit pipelining
in Section 4.3. In Section 4.4 we describe a design in
which the second matrix multiplication is started be
fore the first one is completed. Finally, in Section 4.5



Sum = Sum+P1+P2

count = count + 2

count =0

done = 0

start = 1

A1 = a[i][k], B1 = b[k]U]

A2 = a[i][k+1], B2 = b[k+1in]

PI =ArB1. P2 = A2-B2
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c[i][j] = Sum
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(i, j, k are the most, middle and least significant 3 bits of "count" respectively)

Figure 6: ASM chart for unrolled and chained matrix multiplication



= Sum

count = count + 2 done -1

(i,}, k are the most, middleand least significant 3 bits of "count" respectively)

Figure 7: ASM chart for unrolled, multicycled matrix multiplication



we present a complete design using a "distributed con
troller" model.

4.1 Process Pipelining

The DCT algorithm consists of two matrix multipli
cations serialized in time. In the sequential algorithm
computation of the DCT on a new image block starts
only after both matrix multiplications have been com
pleted. Only one of the processes is active at a time.
However, both processes can be made to operate con
currently on different sets of data. The first process
performs the first matrix multiplication and generates
the TempBlock matrix. The second process uses this
TempBlock and performs the second matrix multipli
cation. Concurrently with this, the first process starts
computing on a new image block. The two processes
are called the pipeline stages as shown in Figure 8.

for i in 0 to 7 loop

for j in 0 to 7 loop

for k in 0 to 7 loop

A := In(i, k); B := Cos(j, k) ;

P := A * B;

if (k=0) then

Sum := P;

else

Sum := Sum + P;

end i f;

if (k=7) then

Temp(i, j) := Sum;

end if;

end loop;

end loop;

end loop; Stage 1

for i in 0 to 7 loop Stage 2
for j in 0 to 7 loop

for k in 0 to 7 loop

A := Temp(k, j); B := Cos(i, k);

P := A • B;

if (k=0) then

Sum := P;

else

Sum := Sum + P;

end if;
if (k=7) then

Out(i, j) := Sum;

end if;

end loop;

end loop;

end loop;

Figure 8: The two stages in process pipelining

Process pipelining requires that both stages (the
two processes) are active together. Thus, same hard
ware resources may not be used for both matrix mul
tiplications. The design consequently requires twice
the number of multipliers, adders, registers and selec
tor logic. In addition, two memories are required for
storing the TempBlock matrix as shown in Figure 9.
In one iteration of DCT computation, stage 1 writes
into RAM 1 and stage 2 reads from RAM 2. In the
next iteration, the memories are switched and stage 1
writes into RAM 2 while stage 2 reads from RAM 1.

The throughput of the process pipelined design is
half that of the the non-pipelined sequential design,
i.e., 18841.6 ns. The cost of the design increases as
suggested by Figure 9. The cost is 50K transistors
since the entire sequential design is duplicated.

4.2 Loop Pipelining

Process pipelining was able to improve the perfor
mance but incurred a large hardware cost since it re
quires double the number of functional units and two
memories. An alternative is to pipeline the loop itself.
In the sequential design, an iteration of the loop begins
after the previous finishes. Only state in the loop is
active at a time and the others are idle. The loop can
be pipelined by starting an iteration of the loop every
clock. The states of the loop are now called stages.
Registers latch the intermediate results between the
stages. Such a loop pipelined design is shown in Fig
ure 10.

Loop pipelining incurs very little additional cost.
Since the two matrix multiplications are serialized in
time, same hardware resources may be used for both
loops and thus, hardware does not have to be doubled
as was the case in process pipelining. All stages are not
active from the start. In the first clock cycle, only the
first stage is active. In the next, the first two stages
are active; the first stage works on data set 1 while
the second stage works on previous data set 0. This
continues till all the four stages become active. This
is pipeline filling and the pipeline is flushed similarly
as shown in Figure 11.

It is difficult to describe a pipelining using the orig
inal ASM chart. The Extended ASM chart shows only
the state in which all pipeline stages are active. The
filling and flushing states are not shown in the ASM
chart but they shall be executed. An Extended ASM
chart for the loop pipelined design is shown in Fig-
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Figure 11: Timing diagram for loop pipelining



ure 12. Thus, the assumption is that in the first clock
cycle, Stage 1 will be executed, in the next clock cycle,
Stage 1 and 2 will be executed and so forth. In order
words, filling and flushing are implicit in the Extended
ASM chart.

The pipeline can also be described using a State
Action Table (SAT) [8]. A SAT can be used to de
scribe the filling and flushing states also, as shown in
Figure 13. The SAT can be used for implementing
the controller of the loop pipelined design as shown
in Figure 14. Each stage works on a difierent set of
data and hence, four coimters are required. Compari
son with Figure 2 shows that there is very little extra
hardware cost. The controller has more number of

states and three extra counters are required.

The timing diagram lets us compute the perfor
mance of the pipelined design as follows. Each loop
requires 3 cycles for filUng the pipelining and 3 for
flushing the pipelining. All states are active for 509
cycles. Thus, each loop takes 3 + 509 -I- 3 = 515 clock
cycles. The clock period remains the same at 9.2 ns.

# states = 1

clock period = 9.2 ns
# iterations = 515 -I- 515

Performance = #statesxclock x#iterations
= 1x9.2x1030 = 9476 ns

The loop pipelined design incurs an extra cost be
cause of the registers for the counter as shown in Fig
ure 14. Each register costs 272 transistors from Ta
ble 1. Thus, the cost of the loop pipelined design is
26K transistors.

4.3 Functional Unit Pipelining

Some functional units may be much slower than the
other components in a design. In such cases, it might
be possible to improve the performance by pipelining
the functional unit. In the DCT design, the multiplier
is the slowest functional unit and can be pipelined.
The pipelined multiplier is divided into 4 stages and
a new data set can be instantiated every clock cy
cle. The latency of the multiplier essentially remains
the same (it may increase because of the partition
and the intermediate latches) but the throughput in
creases. A faster clock can be used because each stage
is shorter than the complete multiplier. The stages
with a pipelined multiplier are shown in Figure 15.

for i in 0 to 7 loop
for j in 0 to 7 loop

for k in 0 to 7 loop

A:=In(i, k); B:=Cos(j, k)

if (k=0) then

Sum := P;

else

Sum := Siuti + P;

end if;

if (k=7) then

Temp(i, j) := Sum;
end if;

end loop;

end loop;

end loop;

for i in 0 to 7 loop
for j in 0 to 7 loop

for k in 0 to 7 loop

A:=Temp(k, j); B;=Cos(i, k)

if (k=0) then

Sum := P;

else

Sum := Sum + P;

end if;

if (k=7) then

Temp(i, j) := Sum;
end if;

end loop;

end loop;

end loop;

Figure 15: The stages in functional unit pipelining

It is important to note that functional unit pipelin
ing requires availability of pipelined functional units
in the RTL-library. The other optimizations were
done using existing RTL components. Functional unit
pipelining also requires availability of data every data
introduction interval of the unit. Thus, there must
be enough computations that can be done using the
pipelined functional unit. If this is not possible, then
the design may be loop pipelined. In our case, there
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is only multiplication in the loop and hence, we need
to pipeline the loop also.

The pipe for each matrix multiplication now con
sists of 7 stages as shown in Figure 15. The delay of a
multiplier with 4 stages is 3.5 ns from Table 1. Thus,
the clock period is 3.5+0.4=3.9 ns. Each loop requires
6 cycles for filling the pipelining and 6 for flushing the
pipelining. All states are active for 506 cycles. Thus,
each loop takes 6 + 506 + 6 = 518 clock cycles.

# states = 1
clock period = 3.9 ns
# iterations = 518 + 518

Performance = #statesxclockx#iterations
= 1x3.9x1036 = 4040.4 ns

The pipelined multiplier is more costly than the
non-pipelined multiplier. It uses 15036 transistors as
opposed to 11220 transistors used by the non-pipelined
multiplier. Thus, the net cost of the design is 30K
transistors.

4.4 Long pipe with both matrix multi
plications

In all the previous examples, the second matrix multi
plication was started after the first matrix multipli
cation was completed. Even though both the ma
trix multiplications were performed concurrently in
the process pipelined design, yet they operated on
different image blocks. The first process generated
the entire TempBlock matrix and the second process
then performed the second matrix multiplication on
this matrix. However, both multiplications can be
started together, if the two matrix multiplications are
reversed.

In the current algorithm, the second process reads
the TempBlock matrix in a column-wise manner while
the first process generates the matrix in a row-wise
manner. Thus, we can change the order of matrix
multiplications as follows.

TempBlock = CosBlock x InBlock (MMl)

OutBlock = TempBlock x CosBlock^ (MM2)

It takes 64 iterations of the first multiplication loop
to generate a row (8 values) of the TempBlock matrix
and it takes 64 iterations of the second matrix multi

plication to consume a row of the TempBlock matrix.

Thus, the second process can be started after the first
process completes 64 iterations. In this way, both the
processes will be active concurrently. Each process
can, in addition, be loop pipelined since it does not
incur additional costs. With these changes, the DCT
design consists of a long pipe whose timing diagram is
shown in Figure 16.

The timing diagram lets us compute the perfor
mance of the pipelined design. The first loop requires
3 cycles for filling the pipelining. The second matrix
multiplication is started after the first 64 iterations
axe complete. It then takes 512+3 more clock cycles
to finish the DCT. Thus, the total number of clock
cycles required is 3 + 64 + 512 + 3 = 582.

# states = 1
clock period = 9.2 ns
# iterations = 582

Latency = #statesxclock x#iterations
= 1x9.2x582 = 5354.4 ns

The cost of the design increases since both the
loops are active at the same time. Thus, the data
path is doubled as compared to just loop pipelining
(Section 4.2). The total cost is then 52K transistors.

4.5 Pipelined Design with Distributed
Controller

A typical hardware design consists of a datapath and
a controller as shown in the design for a sequential
design in Figure 2. However, the number of states
in the state transition function of a pipelined design
is large because of the filling-up and flushing of the
pipeline stages. Thus, the FSM inside the controller
gets unwieldy and large as in the design for the loop
pipelined design, shown in Figure 14. We next present
a design that uses a distributed model for the controller
which results in a much simpler design.

The controller design complexity can be reduced by
having a separate controller for each pipeline stage.
Since each controller controls just one pipeline stage,
it is only 1-bit wide and can be implemented using a
D flip-flop or an SR latch. A stage is active and com
putes whenever the corresponding flip-flop is set. The
1-bit single state controllers are themselves connected
as shown in the schematic in Figure 17.

Initially, all the flip flops are reset. Computation
starts by loading T' into the flip flop for Stage 0.
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Then every clock, this '1' token is passed to the next
flip flop. Every clock one more pipeline stage becomes
active. This is the filling up of pipeline. When the
computation is over, the SR latch is reset. This '0'
token is then passed to the next stages and they stop
computing progressively. This is the flushing of the
pipeline.

A distributed control design requires a flip flop for
each pipeline stage. Thus, a minimum of n flip flops
are required if there are n stages in the pipeline. A
single controller will need \log2k^ flip flops where k is
the number of states. In a pipe with n stages, there
would be n —1 states for pipeline filling, 1 for the
full pipe and n —1 for pipeline flushing. Therefore,
the total number of states, fc=:n~l4-l+n—1 =
2n —1. The distributed controller design, thus, uses
less number of flip flops, has minimal next state logic
as shown in Figure 17 and is simpler to design. In
such a design, each pipeline stage can be modeled as
a Finite State Machine with a Datapath (FSMD) [8].

5 Memory Optimization

In the previous sections, we did explorations using
the algorithm presented in Section 2.1. This algo
rithm performs a matrix multiplication on InBlock
and CosBlock and generates the 8x8 TempBlock ma
trix. This TempBlock matrix is used for the second
matrix multiplication. However, in most signal pro
cessing applications like video and speech process
ing, memory occupies more than 50% of the chip
area [9]. In these type of applications, the chip area
can be reduced more effectively with memory opti
mizations than with just datapath optimizations. We

next present an algorithm that does not store the en
tire matrix and uses only 1 word compared to the 64
words required by the earlier algorithm.

The entire TempBlock need not be stored in a mem
ory if each value of the matrix is consumed as soon as
it is produced. Thus, the two matrix multiplications
have to be interleaved. Each TempBlock element is
used for 8 elements of the OutBlock matrix. Hence,
each TempBlock value is multiplied with the corre
sponding CosBlock values and added to the partial
sums in the OutBlock matrix. Thus, at any time the
OutBlock only has partial sums. Every time a new
TempBlock value is computed, it is used to update the
corresponding column as shown in Figure 18(b). The
first matrix multiplication loop produces the element
at {i,j) of the TempBlock matrix. This value is mul
tiplied with the column of CosBlock matrix, i.e.
elements at (0,i), (l,z),..., (7,z). This generates the
partial sums for the column of OutBlock matrix.
Note that every time all TempBlock elements in
column update the column of OutBlock matrix.
The complete VHDL behavioral model is given in Ap
pendix D.

This algorithm requires only 1 word for storing a
TempBlock element since it is consumed as soon as it
is produced. However, the number of memory accesses
increases since the OutBlock stores partial sums and
these must be read and then written back into. How
ever, this does not decrease performance since the ac
cesses axe in different clock cycles and hence, the clock
period does not have to be increased. The perfor
mance can then be calculated as follows.

# states = (4x8)-!-(4x8}=64
clock period = 9.2 ns
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Figure 18: Memory Optimization: (a) Original algo
rithm (b) Memory optimized algorithm

# iterations = 64

Performance = #statesxclockxT^iterations
= 64x9.2x64 = 37683.2 ns

Thus, the performance is the same as for the most
sequential algorithm presented in Section 3.2 but we
have been able to decrease the memory requirements
from 64 words to a single word. Thus, the cost of this
design is 19K transistors.

5.1 Loop and FU Pipelining

The performance of the memory optimized algorithm
can be improved using the techniques used for improv
ing the performance of the sequential algorithm (as
discussed in Sections 3.3, 3.4 and 3.5). In addition,
the design can be pipelined just like the sequential de
sign (as discussed in Sections 4.2 and 4.3). However,
Loop unrolling incurs extra hardware cost. Pipelin-

ing, on the other hand, improves the performance with
little overheads. Since the techniques are similar, we
just discuss loop and functional unit pipelining for the
memory optimized algorithm.

The loop in the memory optimized algorithm can
be pipelined to improve performance as discussed in
Section 4.2. In addition, the same design can use a
pipelined multiplier which reduces the clock period
and, hence, improves the performance. The DCT core
is coded in lines 60-98 of Appendix D. There are
8 X8=64 iterations of the inner loops on variable k. We
pipeline these two loops into eight stages as shown in
Figure 19. The multiplier has two stages.

for i in 0 to 7 loop
for j in 0 to 7 loop

for k in 0 to 7 loop
^A: =In(i^j}j

if (k=0) then
sum:=P;

elsif (k=7) then

temp:=sum + P;

else

sum:=sxim + P;

end i f;

end loop;

for k in 0 to 7 loop
C;=0ut(k,j); D:=Cos(k,i;

Stage4

if {i=0) then StageS
Out(k,j}:= prod;

else

Out(k,j):= prod + C;
end if;

end loop;

end loop;
end loop;

Figure 19: The stages in loop and functional unit
pipelined design

The filling up of the eight pipelining stages takes
more clock cycles than suggested by the loop pipelin
ing example in Section 4.2. The second loop can be
started only after eight iterations of the first loop has
been completed because the second loop requires the
temp value calculated by the first loop (in line 75 of
Appendix D). It takes 8 multiplications and additions
to generate a temp value. Thus, the stages of the sec-
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Figure 20: Timing diagram for pipelined memory optimized algorithm

ond loop are delayed by 8 iterations of the first loop.
It will take 11 clock cycles to perform eight iterations
of the first loop since 3 clock cycles are required for fill
ing the pipeline. The pipeline flushing is similar. The
timing diagram for the loop and multiplier pipelined
design is shown in Figure 20.

The timing diagram lets us compute the perfor
mance of the pipelined design as follows. It takes
11 clock cycles to generate the first temp value. The
stages for second loop take another 3 clock cycles for
filling. Finally, it takes 512 clock cycles for completing
all the iterations of the second loop. Hence, the total
number of clock cycles is 11 -f- 3 -I- 512 = 526. The
clock period is 5.4 -I- 0.4 = 5.8 ns since the delay of a
two-stage pipelined multiplier is 5.4 ns from Table 1.

# states = 1
clock period = 5.8 ns
# iterations = 526

Performance = #statesxclockx ^iterations
= 1x5.8x526 = 3050.8 ns

The pipelined design uses extra registers for stor
ing the count value. Thus, the cost increases to 21K
transistors. The complete behavioral model for the
pipelined memory optimized algorithm is given in Ap
pendix D.

6 Comparison of optimization
techniques

We looked at some commonly used optimization tech
niques like loop unrolling, chaining and multicycling
in Section 3. We explored pipelining options in Sec
tion 4. Finally, we presented a memory optimized al
gorithm in Section 5. We now compare the various

optimization and pipelining techniques. Table 2 gives
a summary of the performance of the non-pipelined,
pipelined and memory optimized designs.

Table 2: Comparison of optimization techniques

•• -—^^^^^^^^^^parameter Latency
design ("V

Sequential 37684 ns
2-Unrolled 23552 ns

Unrolled and Chained 18842 ns

Unrolled and Multicycled 14131 ns
Process Pipelined 18842 ns
Loop Pipelined 9476 ns
Loop and FU Pipelined 4040 ns
Both loops together 5354 ns
Memory Optimized 37683 ns
Pipelined Mem Optimized 3051 ns

.Cost
(trans)

Table 2 shows the performance and cost of different
implementations for the DOT. There is a wide range
of latency times and costs of the different designs. A
pipelined design must be used to meet the timing con
straint of 4100 ns given in Section 1. Furthermore, a
pipelined multiplier has to be used along with loop
pipelining since loop pipelining alone cannot meet the
stringent latency requirements. There are two designs
that meet the timing constraints as shown in Table 2.
The memory optimized is the most efficient in terms
of performance and cost.

7 Conclusion

In this report, we presented the formal definition of
the Discrete Cosine Transform and a sequential im
plementation for it using RTL components. We de-



scribed some commonly used optimization techniques
like loop unrolling, chaining and multicycling to reduce
the latency of the sequential design. We also explored
various levels of pipelining like process pipelining, loop
pipelining and functional unit pipelining to further im
prove the performance without incurring extra hard
ware cost. We also described a pipelined implemen
tation using a "distributed controller" which reduced
the complexity of the control-path.

We presented a memory optimized algorithm to fur
ther reduce the hardware costs. We then described

a pipelined implementation of the memory optimized
algorithm. A comparison of the different techniques
showed that pipelining is required for meeting the tim
ing constraints of the DCT component. The large
spectrum of performance to cost tradeoffs is a good
starting point for further optimizations during high
level synthesis.
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A Behavioral model of Sequential Design

In this appendix we give the detailed behavioral model of the most sequential design for the DCT component.
VHDL [10] was used for modeling and simulation.

1

2 — DCT component
3 — compute the transform for a 8x8 image block
4 — sequential algorithm without any optimizations
5

6 — Gaurav Aggarwal; December 20, 1997.
7

8

9 library ieee;
10 use ieee.std_logic_1164.all;
11 use ieee.std_logic_arith.all;

entity dct is

port ( elk
start

end dct;

in std.logic;
in std.logic;
in integer;
out std.logic;
out integer);

eurchitecture behavioral of dct is

begin

process

type memory is array (0 to 7, 0 to 7) of integer;

variable InBlock, TempBlock, OutBlock
variable A, B, P, Sum : integer;
variable CosBlock : memory :=

((88, 122, 115, 103, 88, 69.
(88, 103, 47, -24, -88, -122, -
(88, 69, -47, -122, -88, 24,
(88, 24, -115, -69, 88, 103,
(88, -24, -115, 69. 88, -103,
(88, -69, -47, 122, -88, -24,
(88, -103, 47, 24, -88, 122, -
(88, -122, 115, -103, 88, -69,

begin

— wait for the start signal

wait until start = '1»;

done <= '0';

— read input 8x8 block of pixels

for i in 0 to 7 loop
for j in 0 to 7 loop

: memory;

47, 24),
115, -69),

115, 103),

-47, -122),

-47, 122),

115, -103),

115, 69),

47, -24));



wait until elk = '1';

InBlockd, j) := din;
end loop:

end loop;

— Ten5>Block = InBlock ♦ CosBlock'"T

for i in 0 to 7 loop

for j in 0 to 7 loop
for k in 0 to 7 loop

A ;= InBlockCi, k);
B := CosBlockCj, k);
wait until clk='l';

P := A ♦ B;

wait until clk='l';

if (k = 0) then

Sum P;

else

Sum Sum + P;

end if;

wait until clk='l';

if (k = 7) then

TempBlockCi, j) ;= Sum;
end if;

wait until clk='l';

end loop:

end loop;
end loop;

— OutBlock = CosBlock ♦ TempBlock

for i in 0 to 7 loop
for j in 0 to 7 loop

for k in 0 to 7 loop
A := TempBlockCk, j);

B CosBlock(i, k);
wait until clk='l';

P :» A » B;

wait until clk='l';

if (k = 0) then

Stun := P;

else

Sum := Sum + P;

end if;

wait until clk='l';

if (k = 7) then

QutBlock(i, j) Sum;



end if;

wait until clk='l';

end loop:

end loop;
end loop;

— give the done signal

wait until elk = '1';

Done <= '1';

— output the computed matrix

for i in 0 to 7 loop
for j in 0 to 7 loop

wait until elk = '1';

Bout <= OutBloek(i, j)
end loop;

end loop;
Done <= '0';

end process;
end behavioral;



B Structural model of Sequential Design

The schematics for the structural model have been captured using the Synopsys Graphical Environment (sge)
tools. The top-level model of DCT comprises of a datapath and a controller as shown in Figure 21.
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Figure 21: Schematic of Sequential DCT

The controller is a Mealy type finite state machine. The schematic is shown in Figure 22.
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The datapath comprises of register-level components. The schematic is shown in Figure 23.
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Figure 23: Schematic of Datapath for Sequential DCT

B.l VHDL code for datapath

The datapath for the sequential design consists of RT-level components. We next list the netlist for the datapath
which is shown in Figure 23.

1 — VHDL Model Created from SGE Schematic datapath.sch — Jan 13 10:39:31 1998
2

3 libraory IEEE;

4 use IEEE.std_logic_1164.all;
5 use IEEE.std_logic_misc.all;
6 use IEEE.std_logic_arith.all;

7 use IEEE.std_logic_components.all;
8 use work.components.all;

10 entity DATAPATH is



Port (

end DATAPATH

architecture

signal
signal
signal
signal
signal
signal
signal

signal
signal

signal

signal
signal
signal
signal
signal
signal
signal
signal
signal

component

Port (

CLK

COUNT

DIN

El

E2

E3

E4

LOADAB

LOAD?

LOADSUM

RESET

RWl

RW2

RW3

RW4

SELl

SEL2

SEL3

SEL4

SEL5

SEL6

SEL7

DQUT

STATUS

std_logic;
std_logic;
integer;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std.logic;
std_logic;
std_logic;
std_logic;
std.logic;
std_logic;
std_logic;

std_logic;
std_logic;
integer;
integer );

SCHEMATIC of DATAPATH is

N_22

N_20

N_21

N_i

N_2

N_3

N_4

N 5

N_8

N_9

N_10

N_ll

N_12

N_13

N_14

N_16

N_18

N 19

COUNTER

CLK

integer;

integer;
integer;
integer;
integer;
integer;
integer;

integer;
integer;

integer;
integer;
integer;

integer;
integer;
integer;

integer;

integer;
integer;

integer;

std_logic;



COUNT : In

RESET : In

DDUT : Out

K : Out

end component;

component ROM
Port ( CLK

COL

E

R_WB

ROW

0

end component;

component RAM

Port ( CLK

COL

E

I

R_WB

ROW

0

end component;

component MUX2X1

Port ( C : In

DO : In

D1 : In

DOUT : Out

end component;

component MULTIPLIER
Port ( A

B

PRODUCT

end component;

component REG

Port ( CLK : In

DIN : In

LOAD : In

DOUT : Out

end component;

component ADDER
Port ( A : In

B : In

std_logic;

8td_logic;
integer;
integer;
integer;
integer );

std_logic;
integer;

std_logic;
std_logic;
integer;
integer );

std_logic;
integer;
std_logic;

integer;
std_logic;
integer;

integer );

std_logic;
integer;

integer;
integer );

integer;

integer;
integer );

std_logic;
integer;
std_logic;

integer );

integer;

integer;



SUM : Out integer );
end component;

begin

I_19 : COUNTER

Port Map C CLK=>CLK, COUNT=>COUNT, RESET=>RESET, DOUT=>STATUS,
I=>N_20, J=>N_21, K=>N_18 );

COSBLGCK : ROM

Port Map ( CLK=>CLK, C0L=>N_18, E=>E2, R_WB=>RW2, RDW=>N_4,
0=>K_14 );

OUTBLQCK : RAM

Port Map ( CLK=>CLK, C0L=>N_19, E=>E4, I=>N_1, R_WB=>RW4,
R0W=>N_16, 0=>D0UT );

TEMPBLOCK : RAM

Port Map ( CLK=>CLK, C0L=>N_2i. E=>E3, I=>N_1, R_WB=>RW3, R0W=>N_5,
D=>N_2 );

INBLQCK : RAM

Port Map ( CLK=>CLK, C0L=>N_18, E=>E1, I=>DIN, R_WB=>RW1, R0W=>N_3,
0=>N_8 );

I_18 : MUX2X1

Port Map ( C=>SEL3, D0=>N_20, D1=>N_21, DDUT=>N_3 );
I_17 : MUX2X1

Port Map C C=>SEL4, D0=>N_21, D1=>N_20, D0UT=>N_4 );
r_16 : MUX2X1

Port Map ( C=>SEL5, D0=>N_20, D1=>N_18, DDUT=>N_5 );
I_14 : MUX2X1

Port Map ( C=>SEL7, D0=>N_21, D1=>N_18, D0UT=>N_19 );
I_15 : MUX2X1

Port Map ( C=>SEL6. D0=>N_20, D1=>N_21, D0UT=>N_16 );
I_1 : MUX2X1

Port Map ( C=>SEL2, D0=>N_10, D1=>N_13, DQUT=>N_11 );
I_2 : MUX2X1

Port Map ( C=>SEL1, D0=>N_2, D1=>N_8, D0UT=>N_22 );
I_3 : MULTIPLIER

Port Map ( A=>N_7, B=>N_12, PR0DUCT=>N_9 );
SUM : REG

Port Map ( CLK=>CLK, DIN=>N_11, LaAD=>LGADSUM, DDUT=>N_1 );
P : REG

Port Map ( CLK=>CLK, DIN=>N_9. LOAD=>LOADP, D0UT=>N_10 );
B ; REG

Port Map ( CLK=>CLK, DIN=>N_14, LaAD=>LOADAB, DDUT=>N_12 );
A : REG

Port Map ( CLK=>CLK, DIN=>N_22, LDAD=>LOADAB, D0UT=>N_7 );
I_8 : ADDER

Port Map ( A=>N_10, B=>N_1, SUM=>N_i3 );

end SCHEMATIC;

configuration CFG_DATAPATH_SCHEMATIC of DATAPATH is



162 for SCHEMATIC

163 for I_19: COUNTER

164 use configuration WORK.CFG_CGUNTER_BEHAVIORAL;
165 end for;

166 for COSBLOCK: ROM

167 use configuration WORK.CFG_ROM_BEHAVIORAL;
168 end for;

169 for OUTBLOCK, TEMPBLOCK, INBLOCK: RAM

170 use configuration WORK.CFG_RAM3EHAVI0RAL;
171 end for;

172 for I_18, I_17, 1^16, I_14, 1^15, I_l, I„2: MUX2X1
173 use configuration WaRK.CFG_MUX2Xl_BEHAVIDRAL;
174 end for;

175 for I_3: MULTIPLIER

176 use configuration WGRK.CFG_MULTIPLIER_BEHAVIGRAL;
177 end for;

178 for SUM, P, B, A: REG

179 use configuration WORK.CFG_REG_BEHAVIORAL;
180 end for;

181 for I_8: ADDER

182 use configuration WDRK.CFG_ADDER_BEHAVIORAL;
183 end for;

184 end for;

185

186 end CFG_DATAPATH_SCHEMATIC;

B.2 VHDL code for Next State Logic

The datapath in the structural model is a netlist of RT-level components from a library. The controller is a finite
state machine that consists of a state register and the next state logic. In this section, we give the VHDL code
listing for the Next State Logic component which is shown in Figure 22.

1 — VHDL Model Created from SGE Symbol nsl.sym — Jan 13 10:41:09 1998
2

3 library IEEE;
4 use IEEE.std_logic_1164.all;
5 use IEEE.std_logic_misc.all;
6 use IEEE.std_logic_arith.all;
7 use IEEE.std_logic_component8.all;
8 use work.components.all;

entity NSL is

generic ( Delay
Port ( START

STATE

STATUS

JIEXTSTATE

end NSL;

: Time := 5 ns);

In std_logic;
In STATE^VALUE;

In integer;
Out STATE.VALUE);

architecture BEHAVIORAL of NSL is

begin



process (State, Steort, Status)
variable Count : integer;

variable NewState : STATE.VALUE

begin
Count := STATUS;

case State is

when SI =>

if (Start = '1') then

NewState S2;

else

NewState SI;

end if;

when S2 =>

if (Count = 63) then

NewState S3;

else

NewState := S2;

end if;

when S3 =>

NewState S4;

when S4 =>

NewState S5;

when S5 =>

NewState := S6;

when S6 =>

if (Count - 511) then

NewState j = S7;

else

NewState S3;

end if;

when S7 =>

NewState ;» S8;

when S8 =>

NewState S9;

when S9 =>

NewState := SIO;

when SIO ->

if (Count = 511) then

NewState Sll;

else

NewState := S7;

end if;

when Sll =>

if (Count - 63) then



NevState SI;

else

NewState := 511;

end if;

end case;

NeztState <= NevState after Delay;
end process;

end BEHAVIORAL:

configiiration CFG.NSL.BEHAVIGRAL of NSL is
for BEHAVIORAL

end for;

end CFG_NSL.BEHAVIORAL;

VHDL code for Output Logic

We next list the VHDL code for the output logic which reads in the current state of the controller and gives the
corresponding control signals to the datapath. The Output Logic component is shown in Figure 22.

— VHDL Model Created from SGE Symbol out_l.sym -

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_eirith.all;
use IEEE.std_logic_components.all;
use work.components.all;

entity OUT_L is

generic( Delay
Port ( START

STATE

STATUS

COUNT

El

E2

E3

E4

LOADAB

LOADP

LOADSUM

RESET

RWl

RW2

RU3

RW4

SELl

SEL2

SEL3

SEL4

SEL5

SEL6

SEL7

DONE

TIME

In

In

In

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Gut

Out

Out

Gut

Out

Out

Out

Out

= 5 ns);

std_logic;

STATE.VALUE;

integer;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;

std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;
std.logic;

std.logic;
std.logic);

- Jan 13 10:42:19 1998



end QUT_L;

architecture BEHAVIORAL of DUT_L is

begin
process (State, Start, Status)

variable Counter : unsignedCS dovnto 0);
variable VarDone : STD.LOGIC;

variable VarCW : CDNTRGL.WORD;

variable i, j, k : integer;

procedure DefaultCV (CW
begin

out CDNTRGL.VORD) is

48 — Control Signals for Muxes
49 CW.Sell = '0'

50 CW.Sel2 = '0'

51 CW.Sel3 = »0'

52 • CW.Sel4 - '0'

53 CW.SelS « '0'

54 CW.SelS » '0'

55 CW.Sel7 a »0'

— Control Signals for Registers
CW.LoadAB := '0';

CW.LoadP := '0';

CW.LoadSum := '0';

— Control Signal for Counter
CW.Count := '0';

CW.Reset := '0';

— Control Signals for Memories
CW.El := '0';

CW.RWl :• '0';

CW.E2 := '0';

CW.RW2 :« '0';

CW.E3 »0»;

CW.RW3 := '0';

CW.E4 :• '0';

CW.RW4 '0';
end DefaultCW;

in CONTROL.WORD) isprocedure GutputCW (CW : in CONT
begin

Sell <* CW.Sell after Delay;
Sel2 <= CW.Sel2 after Delay;
SelS <- CW.Sel3 after Delay;
Sel4 <= CW.Sel4 after Delay;
SelS <- CW.SelS after Delay;

SelS <= CW.SelS after Delay;
Sel7 <= CW.Sel7 after Delay;

— Control Signals for Registers
LoadAB CW.LoadAB after Delay;
LoadP <= CW.LoadP after Delay;
LoadSum <= CW.LoadSum after Delay;



— Control Signal for Counter
Count <= CW.Count after Delay;
Reset <= CW.Reset after Delay;

— Control Signals for Hemories
El <= CV.El after Delay;
RWl <= CW.RWl after Delay;
E2 <- CW.E2 after Delay;
RW2 <= CW.RW2 after Delay;
E3 <» CW.E3 after Delay;
RW3 <= CW.RW3 after Delay;
E4 <= CW.E4 after Delay;
RW4 <= CW.RW4 after Delay;

end OutputCW;

begin
Counter := int_to_uvec(STATUS, 9);

if (Counter(C) /= 'U' and Start /= 'U') then
i :» C0NV_INTEGER(Counter(8 dounto 6));
j := C0NV_INTEGER(Counter(5 downto 3));
k := CO^^V_I^^TEGER (Counter (2 downto 0)):

DefaultCW(VarCW);

case State is

when SI ->

~ Counter := "000000000";

VarCW.Reset := '1';

VarCW.Count :» '0';

VarDone := '0';

when S2 =>

if (Counter » 63) then

~ Counter :« "000000000";
VarCW.Reset := '1';

VarCW.Count '0';

else

— Counter r= Counter + 1;

VarCW.Reset := '0';

VarCW.Count :» '1';

end if;

— InBlock( j, k ) :» Din;
VarCW.Sel3 '1';

VarCW.El := '1';

VarCW.RWl := '0';

when S3 =>

— A := InBlock(i, k);
VarCW.LoadAB :» '1';

VarCW.Sell :» »1':

VarCW.Sel3

VarCW.El :

VarCW.RWl



-- B := CDSBlock(j, k);
VarCW.Sel4 := »0';

VarCW.E2 :» '1';

VarCW.RW2 '1';

vken S4 *>

— P := A • B;

VarCW.LoadP := 'V;

when S5 =>

if (k = 0) then

— Sum := P;

VarCW.LoadSum :• '1';

VarCW.Sel2 := '0';

else

— Sum := P + Sum;

VeurCW.LoadSum :» ' 1';

VarCW.Sel2 :» '1';

end if;

vhen S6 »>

if (k = 7) then

— Ten5>Block(i, j) := Sum;
VarCW.SelS := '0';

VarCW.ES := '!»;

VarCW.RWS :» »0':

end if;

if (Counter = 511) then

~ Counter := "000000000";

VarCW.Reset := 'V;

VarCW.Count := '0';

else

— Counter :• Counter + 1;

VarCW.Reset := '0';

VarCW.Count := '1';

end if;

tfhen S7 •>

-- A := TempBlock(k, j);
VarCW.LoadAB := '1';

VarCW.Sell := '0';

VarCW.ES := '1';

VarCW.RW3 := '1';

VarCW.Sel5 := '1';

-- B := CQSBlockCi, k);

VarCW.Sel4 := '1';

VarCW.E2 := '1';

VarCW.RW2 := »1';

vhen S8 =>

— P := A » B;

VarCW.LoadP '1';



vhen S9 =>

if (k = 0) then

— Sum := P;

VarCW.LoadSum :» '1';

VarCW.Sel2 :« '0';

else

— Sum P + Sum!

VarCV.LoadSum :• '1';

VarCW.Sel2 :« '1';
end if:

vhen SiO »>

if (k = 7) then

— OutBlockCi, j) := Sum;
VarCW.Seie := '0';

VarCW.Sel7 := '0';

VarCW.E4 := '1';

VaxCW.RW4 :« '0';

end if;

if (Counter » 511) then

~ Counter := "000000000";

VarCW.Reset := '1';

VarCW.Count '0';

VarDone :» '1';

— Counter := Counter + 1;

VarCV.Reset '0';

VarCW.Count ;= '1';

end if;

vhen Sll =>

VarDone := '0';

if (Counter = 63) then

~ Counter ;» "000000000";
VarCV.Reset := *1';

VarCV.Count := '0';
else

— Counter := Counter + 1;

VarCW.Reset '0';

VarCV.Count := '1';

end if;

— Dout <= GutBlock(j, k);
VarCV.Sel6 := '1';

VarCW.Sel7 := '1';

VarCW.E4 := '1';

VarCW.RW4 := '1';

end case;

DutputCW(VarCW);
Done <= VarDone;

end if;

end process;
end BEHAVIORAL;



256 configuration CFG.OUT.L.BEHAVIORAL of OUT.L is
257 for BEHAVIORAL

258 end for;

259 end CFG.OUT.L.BEHAVIORAL;



C Test Bench for the DCT models

The test bench feeds the DCT component with an input 8x8 image block that consists of a black-and-white
"sandwich" pattern. Theexpected transform values have been computed using a C program.

— Test Bench for DCT con^onent
— input image block is a black ft vhite sandvitch
— con^are transform with values computed by C code

— Gaurav Aggaorwal; December 20, 1997.

library ieee;
use ieee.std_logic_1164.all;

entity tb is
end tb;

architecture behav of tb is

component dct
port( elk : in std^logic;

start : in std.logic;
Din : in integer;
Done : out std.logic;
Dout : out integer);

end component:

signal start, Done : std_logic;
signal elk : std_logic := '1';
signal Din, Dout : integer;

begin

U1 : dct

port map (elk, start. Din, Done, Dout);

elk <= not elk after 20 ns;

start <= '0' after 0 ns,

'1' after 50 ns,

'0' after 80 ns;

process

type memory is array (0 to 7, 0 to 7) of integer;

variable Result : memory (
(77785200, -21343500, 16837650, -5928750, 9248850, -711450, 5217300, 2371500),
(-11375040, 3121200, -2462280, 867000, -1352520, 104040, -762960, -346800),
(58882560, -16156800, 12745920, -4488000, 7001280, -538560, 3949440, 1795200),
(-11542320, 3167100, -2498490, 879750, -1372410, 105570, -774180, -351900),
(-13215120, 3626100, -2860590, 1007250, -1571310. 120870, -886380, -402900),
(-6691200, 1836000, -1448400, 510000, -795600, 61200, -448800, -204000),
(18066240, -4957200, 3910680, -1377000, 2148120, -165240, 1211760, 550800),
(5854800, -1606500, 1267350, -446250, 696150, -53550, 392700, 178500));



begin
wait until Start = '1*;

— give the input block: BftV sandwitch

for i in 0 to 23 loop
wait until elk = '0';

Din <= 256;

end loop;

for i in 24 to 39 loop
wait until elk = '0';

Din <= 0;

end loop;

for i in 40 to 63 loop
wait until elk = '0*;

Din <= 2SS;

end loop;

— wait till DCT unit is done

wait until Done » '1';

wait until elk = '1';

check the result with expect values

for i in 0 to 7 loop
for j in 0 to 7 loop

wait until elk = '0';

assert (Dout - Resultd, j))
report "DCT^TB: confutation error" severity warning;

end loop;

end loop;
end process;

end behav;

configuration efg_tb of tb is
for behav

end for;

end efg_tb;



D Behavioral model of Memory Optimized Design

In this appendix we give the behavioral model ofthe non-pipelined design for the memory optimized algorithm
discussed in Section 5.

— behavior of DCT component
— compute the transform for a 8x8 image block
— sequential memory optimized algorithm

— Gaurav Aggarwal; December 26, 1997.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity dct is

port ( elk
start

din

done

dout

end dct;

in std.logic;
in std.logic;
in integer;
out std.logic;
out integer);

architecture opt.beh of dct is
begin

process

type memory is array (0 to 7, 0 to 7) of integer;

variable InBlock, OutBlock : memory;
variable CosBlock : memory

((88, 122, 115, 103, 88, 69, 47, 24).
(88, 103, 47, -24, -88, -122, -115, -69),
(88, 69, -47, -122, -88, 24, 115, 103),
(88, 24, -115. -69. 88, 103, -47, -122),
(88, -24, -115, 69, 88, -103, -47, 122),
(88, -69, -47, 122, -88, -24, 115, -103),
(88, -103, 47, 24, -88, 122, -115, 69),
(88, -122, 115, -103, 88, -69, 47, -24));

variable a, b, c, d, p, prod, temp, sum ; integer;
begin

— wait for the start signed

wait until start = '1';

done <= '0';

wait until elk « '1';

— read input 8x8 block of pixels

for i in 0 to 7 loop



for j in 0 to 7 loop
wait until elk = '1';

Infilock (i, j) din;
end loop;

end loop;

the matrix multiplications

for i in 0 to 7 loop

for j in 0 to 7 loop

— generate one entry of Teiiq>Block

for k in 0 to 7 loop
A Infilock (i, j);
B :» CosBlock (j, k);

P := A ♦ B;

if (k = 0) then

sum := P;

elsif (k = 7) then

temp sum + P;

else

sum := sum + P;

end if;

end loop;

— now use this entry for generating
— paortial sums in the Outfilock

for k in 0 to 7 loop
C := Outfilock (k, j);
D := CosBlock (k, i);

prod := d » temp;

if (i ~ 0) then

Outfilock (k, j) prod;
else

Outfilock (k, j) := 0 + prod;
end if;

end loop;
end loop:

end loop:

— give the done signal

wait until elk • '1';

done <= '1';



— output the computed matrix

for i in 0 to 7 loop
for j in 0 to 7 loop

wait until elk • '1';
done <= '0';

dout <= OutBlock (i, j);
end loop;

end loop:
end process;

end opt.beh;



E Behavioral model of Pipelined Memory Optimized Design

In this appendix, we give the behavioral model of the loop and functional unit pipelined design for the memory
optimized algorithm. The multiplier has two stages and there are eight stages in the pipeline. The model consists
of separate states for filling and flushing of the pipeline. This design is dicussed in Section 5.1.

— Behavioral model of pipelined memory optimized DCT
— no temporary matrix, single word used

— December 18, 1997.

library IEEE;
use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

entity dct is
port (

elk

steurt

din

done

dout

);
end dct;

in std.logic;

in std.logic;
in integer;
out std.logic;

out integer

architecture pipe.beh of dct is

type STATES is (SO, SI, S2, S3, S4, S5, S6, S7, SB, S9,
SIO, Sll, S12, S13, S14, S15, S16, S17, SIS);

signal oldtemp, temp, tempProd, Prod, P, tempP : integer;
signal A, B, C, D, sum, oldC, olderC : integer;
signal fCountO, fCountl : unsigned (8 downto 0) := "000000000";
signal fCoimt2, fCount3 : unsigned (8 downto 0) := "000000000";
signal sCountO, sCountl : unsigned (8 downto 0) := "000000000";
signal sCount2, sCount3 : unsigned (8 downto 0) :* "000000000";
signal state

begin
STATES SO;

process (elk)
type memory is array (0 to 7, 0 to 7) of integer;

variable InBlock, OutBlock : memory;
variable CosBlock : memory := (

( 125, 122, 115, 103, 88,
( 125, 103, 47. -24, -88, -1( 125,

( 125,

( 125,

( 125,

( 125.

103, 88, 69, 47,

-24, -88, -122, -115,

122, -88, 24, 115,

-69, 88, 103, -47,

69, 88, -103, -47,

122, -88, -24, 115,

47, 24 )

115, -69 )

115, 103 )

-47, -122 )

-47, 122 )

69, -47, -122, -88,

24, -115, -69, 88,

-24, -115,

-69, -47,

103, 47,

115, -103 )
( 125, -103,
( 125, -122,

24. -88, 122, -115,

115, -103,

vzLriable iO, jO, kO, 10, mO, nO : integer;

69 ),

-24 ));



variable k3, 13, m3, n3: integer;
begin

if (clk='l') then

— sepeirate the bits of the 9 bit counter
iO := conv_integer(fCountO(8 downto 6));
jO := conv_integer(fCountO(5 downto 3));
kO := conv_integer(fCountO(2 downto 0));
k3 := conv_integer(fCount3(2 downto 0));

conv_integer(sCountO(8 downto 6))
conv_integer(sCountO(5 downto 3))
conv_integer(sCountO(2 downto 0))
conv_integer(sCount3(8 downto 6))
conv_integer(sCount3(5 downto 3))
conv_integer(sCount3(2 downto 0))

case state is

when SO =>

done <= '0';

if (staurt = '1') then

state <= SI;

fCountO <= (other8=>'0');
else

state <= SO;

end if;

— read the incoming matrix into InBlock
when SI =>

InBlock (jO, kO) := din;
if (fCountO = 63) then

fCountO <= (others=>'0');
state <= S2;

else

fCountO <= fCountO + 1;

state <= SI;

end if;

when 32 =>

— stage 1
A <= InBlock (iO, kO);

B <= CosBlock (jO, kO);

fCountl <= fCountO;

fCountO <- fCountO + 1;

state <= S3;

— start filing up pipeline for first multiplication
when S3 °>

— stage 1
A <= InBlock (iO, kO);
B <= CosBlock (jO, kO);
fCountl <= fCountO;

fCountO <= fCountO + 1;

— stage 2
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tempP <= A » B;
fCountQ <= fCountlj

when S4 =>

— staige 1
A <= InBlock (iO, kO);

B <= CosBlock (jO, kO);
fCountl <= fCountO;

fCoimtO <= fCountO + 1;

— stage 2
temp? <= A ♦ B;
fCount2 <= fConntl;

— stage 3
P <= teii5>P;

fConntS <= fCount2;

when S5 ->

— stage 1
A <= InBlock (iO, kO);

B <* CosBlock (jO, kO);
fCountl <= fCountO;

fCountO <= fCountO + 1;

— stage 2
ten^P <= A ♦ B;
fCount2 <= fCountl;

— stage 3
P <» tempP;
fCount3 <= fCount2;

— stage 4
if (k3 » 0) then

sum <= P;

elsif (k3 = 7) then

oldten^) <* sum + P;
else

sum <= sum + P;

end if;

if (fCountO 10) then

state S6;

sCountO <» (others=>*0');

else

state <" S5;

end if;

when S6 =>

— stage 1



A <= InBlock (iO, kO);

B <= CosBlock (jO, kO);
fCountl <= fCoimtO;

fCountO <= fCountO + 1:

— stage 2
tempP <= A * B;

fCotmt2 <• fCountl:

— stage 3
P <= ten^P;
fCounts <= fCount2:

— stage 4
if (kS = 0) then

sum <= P;

elsif (kS • 7) then

oldtemp <~ sum + P;
else

sum <= sum + P;

end if:

— stage 5

C <= OutBlock (nO, mO);

D <= CosBlock (nO, 10);
teiq) <= oldtemp;
sCountl sCountO;

sCountO <- sCountO + 1;

vhen S7 =>

— stage 1
A <= InBlock (iO, kO);
B <= CosBlock (jO, kO)
fCountl <= fCountO;

fCountO <= fCountO + 1

— stage 2
tempP <= A ♦ B;

fCount2 <» fCountl;

— stage 3
P <- tempP;

fCounts <= fCount2;

— stage 4
if (k3 = 0) then

sum <® P;

elsif (kS » 7) then

oldtemp <= sum + P;

sum <= sum + P;

end if;



— stage 5
C <= OutBlock (nO, mO);

D <= CosBlock (nO, 10);
temp <= oldtemp:
sCountl <= sCountO;

sCoimtO <= sCoimtO + 1;

— stage 6
ten^Prod <= D ♦ temp;
oldC <= C;

sCouiit2 <= sCountl;

state <= S8;

vhen S8 =>

— stage 1
A <= InBlock (iO, kO);

B <= CosBlock (jO, kO);
fCount1 <= fCountO;

fCountO <= fCountO + 1;

— stage 2
tenq)? <= A » B;

fCount2 <= fCountl;

— stage 3
P <= tempP;
fCounts <=• fCount2;

— stage 4
if (kS = 0) then

sum <= P;

elsif (kS = 7) then

oldten^ <= sum + P;
else

sum <= sum + P;

end if;

— stage 5
C <= OutBlock (nO, mO);

D <= CosBlock (nO, 10);

temp <= oldtemp;
sCountl <= sCountO;

sCountO <= sCountO + 1;

— stage 6
tempProd <= D ♦ temp;
OldC <= C;

sCount2 <= sCountl;

— stage 7
Prod <= tempProd;
olderC <= oldC;

sCountS <= sCount2;



state <= S9;

when S9 =>

— stage 1
A <= InBlock (iO, kO);

B <= CosBlock (jO, kO);
fCountl <= fCountO;

fCountO <= fCountO + 1;

— stage 2
tempP <= A * B;

fCount2 <= fCountl:

— stage 3
F <= tempP;
fCounts <= fCount2;

— stage 4
if (kS = 0) then

sum <= P;

elsif (kS = 7) then

oldtemp <= sum + P;
else

sum <= sum + P;

end if;

— stage 5
C <= QutBIock (nO, mO);
D <= CosBlock (nO, 10);
temp <= oldtemp;

sCountl <= sCountO;

sCountO <= sCountO + 1;

— stage 6
tempProd <= D » tezq>;
oldC <= C;

sCount2 <= sCountl;

— stage 7
Prod <= tempProd;
olderC <= oldC;

sCountS <= sCount2;

— stage 8

if (13 = 0) then

QutBIock (nS, mS) := Prod;
else

QutBIock (nS, mS) := olderC + Prod;
end if;

if (fCountO = 511) then

state <= SIO;

else

state <= S9;

end if;



— begin flushing the first mult stages
when SIO =>

— stage 2

tempP <= A * B;

fCount2 <= fCountl;

— stage 3

P <• ten5>P;
fCounts <= fCount2:

— stage 4
if (kS - 0) then

sum <= P;

elsif (kS ~ 7} then

oldten^j <= sum + P;
else

sum <- sum + P;

end if;

— stage 5
C <= OutBlock (nO, mO);
D <= CosBlock (nO, 10);
temp <= oldtemp;

sCountl <- sCountO;

sCountO <= sCountO + 1;

— stage 6
tempProd <= D * temp;
oldC <= C;

sCount2 <= sCountl:

— steige 7
Prod <= tempProd;

olderC <= oldC;

sCountS <= sCount2;

— stage 8

if (13 = 0) then
OutBlock (n3, m3) Prod;

else

OutBlock (nS, m3) := olderC + Prod;
end if;

— flushing the first mult stages
when Sll ">

— stage 3

P <= teiiq)P;
fCounts <= fCount2;

— stage 4

if {k3 = 0) then

sum <= P;



elsif (k3 " 7) then

oldtemp <= sum + P;

else

sum <» sum * P;

end if:

— stage 5
C <= OutBlock (nO, mO);
D <= CosBlock (nO, 10);
ten^ <= oldtemp;

sCountl <*= sCountO;

sCountO <= sCountO + 1;

— stage 6
ten^Prod <» D * ten^;
oldC <= C;

sCouiLt2 <= sCountl;

— stage 7
Prod <= tempProd;
olderC <= oldC;

sCountS <» sCount2;

— stage 8
if (13 = 0) then

OutBlock (n3, m3) := Prod;
else

OutBlock (n3, m3) := olderC + Prod
end if;

state <- S12;

— flushing the first mult stages
vhen S12 =>

— stage 4

if (k3 = 0) then
sum <= P;

elsif (k3 = 7) then

oldtemp <= sum + P;
else

sum <= sum + P;

end if;

— stage 5
C <= OutBlock (nO, mO);
D <= CosBlock (nO, 10);

temp <- oldtemp;

sCountl <= sCountO;

sCountO <= sCountO + 1;

— stage 6

tempProd <= D * temp;
OldC <= C;

sCount2 <» sCountl;



— stage 7

Prod <= tempProd;

olderC <= oldC;

sCount3 <= sCount2:

Prod;

— stage 8

if (13 = 0) then

OutBlock (n3, m3) :

else

OutBlock (n3, m3) :

end if:

= olderC + Prod;

state <= S13;

— flushed the first mult stages; only second mult
when S13 =>

— stage 5
C <» OutBlock (nO, mO);
D <= CosBlock (nO, 10);
temp <= oldtemp;
sCountl <= sCountO;

sCountO <= sCountO + 1;

— stage 6

tempProd <= D » temp;

oldC <= C;

sCount2 <= sCountl;

— stage 7
Prod <= tempProd;

olderC <= oldC;

sCount3 <= sCount2;

— stage 8

if (13 = 0) then

OutBlock (n3, m3) := Prod;
else

OutBlock (n3, m3) := olderC + Prod;
end if;

if (sCountO = 511) then

state <= S14;

else

state <= S13;

end if;

— begin flushing the second mult stages
when S14 =>

— stage 6
tempProd <= D ♦ temp;

oldC <= C;

sCount2 <= sCountl;



— stage 7
Prod <= tempProd;
olderC <» oldC;

sCount3 <= sCouiit2;

— stage 8
if (13 = 0) then

OutBlock (n3, mS) :
else

OutBlock (n3, Iii3) :
end if:

state <= SIS;

Prod:

= olderC + Prod

— flushing the second mult stages
when SIS ->

— stage 7

Prod <= tempProd;
olderC <= oldC;

sCountS <= sCount2:

— stage 8

if (13 = 0) then

OutBlock (n3, m3) := Prod;
else

OutBlock (n3, ni3) ;= olderC + Prod;
end if;

state <= S16;

— flushing the second mult stages
when S16 =>

— stage 8
if (13 = 0) then

OutBlock (n3, m3) := Prod;
else

OutBlock (n3, m3) := olderC + Prod;
end if;

state <= S17:

— finished with computation, give done signal
when 317 =>

done <= '1';

fCountO <= (others=>'0');
state <= S18;

— output the OutBlock matrix

when S18 ->

dout <= OutBlock (jO, kO);
if (fcountO = 63) then

fCountO <= (others=>'0');
state <= SO;



else

fCountO <= fCountO + 1;

state <s S18;

end if;

vhen others ->

end case;

end if;

end process;
end pipe.beh;




