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Natural speech reveals the semantic maps that tile human 
cerebral cortex

Alexander G. Hutha, Wendy A. de Heerb, Thomas L. Griffithsa,b, Frédéric E. Theunissena,b, 
and Jack L. Gallanta,b

aHelen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA

bDepartment of Psychology, University of California, Berkeley, CA 94720, USA

Abstract

The meaning of language is represented in regions of the cerebral cortex collectively known as the 

“semantic system”. However, little of the semantic system has been mapped comprehensively, and 

the semantic selectivity of most regions is unknown. Here we systematically map semantic 

selectivity across the cortex using voxel-wise modeling of fMRI data collected while subjects 

listened to hours of narrative stories. We show that the semantic system is organized into intricate 

patterns that appear consistent across individuals. We then use a novel generative model to create a 

detailed semantic atlas. Our results suggest that most areas within the semantic system represent 

information about specific semantic domains, or groups of related concepts, and our atlas shows 

which domains are represented in each area. This study demonstrates that data-driven methods—

commonplace in studies of human neuroanatomy and functional connectivity—provide a powerful 

and efficient means for mapping functional representations in the brain.

Introduction

Previous neuroimaging studies have identified a group of regions that seem to represent 

information about the meaning of language. These regions, collectively known as the 

“semantic system”, respond more to words than non-words1, more to semantic tasks than 

phonological tasks1, and more to natural speech than temporally scrambled speech2. Studies 

that have investigated specific types of representation in the semantic system have found 

areas selective for concrete or abstract words3–5, action verbs6, social narratives7 or other 

semantic features. Others have found areas selective for specific semantic domains—groups 

of related concepts such as living things, tools, food, or shelter8–13. However, all previous 

studies tested only a handful of stimulus conditions, so no study has yet produced a 
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comprehensive survey of how semantic information is represented across the entire semantic 

system.

Here we addressed this problem by using a data-driven approach14 to model brain responses 

elicited by naturally spoken narrative stories that contain many different semantic 

domains15. Seven subjects listened to more than two hours of stories from The Moth Radio 
Hour2 while whole-brain blood-oxygen level dependent (BOLD) responses were recorded 

by functional magnetic resonance imaging (fMRI). We then used voxel-wise modeling 

(VM), a highly effective approach for modeling responses to complex natural stimuli14–17, 

to estimate the semantic selectivity of each voxel (Figure 1A).

Estimation and validation of semantic voxel-wise models

In VM, features of interest are first extracted from the stimuli and then regression is used to 

determine how each feature modulates BOLD responses in each voxel. Here we used a word 

embedding space to identify semantic features of each word in the stories12,15,18–20. The 

embedding space was constructed by computing the normalized co-occurrence between each 

word and a set of 985 common English words (such as above, worry, and mother) across a 

large corpus of English text. Words related to the same semantic domain tend to occur in 

similar contexts, and so have similar co-occurrence values. For example, the words “month” 

and “week” are very similar (the correlation between the two is 0.74), while the words 

“month” and “tall” are not (correlation −0.22).

Next we used regularized linear regression to estimate how the 985 semantic features 

influenced BOLD responses in every cortical voxel and in each individual subject (Figure 

1A). To account for responses caused by low-level properties of the stimulus such as word 

rate and phonemic content, additional regressors were included during VM estimation and 

then discarded before further analysis. We also included additional regressors to account for 

physiological and emotional factors, but these had no effect on the estimated semantic 

models (Supplemental Results 3).

One advantage of VM over conventional neuroimaging approaches is that the fit models can 

be validated by predicting BOLD responses to new natural stimuli that were not used during 

model estimation. This makes it possible to compute effect size by finding the fraction of 

response variance explained by the models. Here we tested how well the voxel-wise models 

predicted BOLD responses elicited by a new 10-minute Moth story (Figure 1B) that had not 

been used for model estimation. We found good prediction performance for voxels located 

throughout the semantic system, including in the lateral and ventral temporal cortex, lateral 

and medial parietal cortex, and medial, superior, and inferior prefrontal cortex (Figure 1C 

and Extended Data Fig. 1). This suggests that much of the semantic system is domain-

selective.

Mapping semantic representation across cortex

By inspecting the fit models we can determine which specific semantic domains are 

represented in each voxel. In theory this could be done by examining each voxel separately. 

However, our data consist of tens of thousands of voxels per subject, rendering this approach 
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infeasible. A practical alternative is to project the models into a low-dimensional subspace 

that retains as much information as possible about the semantic tuning of the voxels10,14. We 

found such a space by applying principal components analysis to the estimated models 

aggregated across subjects, producing 985 orthogonal semantic dimensions that are ordered 

by how much variance each explained across the voxels. It is likely that only some of these 

dimensions capture shared aspects of semantic tuning across the subjects; the rest reflect 

individual differences, fMRI noise, or the statistical properties of the stories. To identify the 

shared dimensions we tested whether each explained more variance across the models than 

expected by chance, which was defined by the principal components of the stimulus matrix 

used for model estimation14. At least four dimensions explained a significant amount of 

variance (p<0.001, Bonferroni corrected bootstrap test) in all but one subject; in the last 

subject only three dimensions were significant (Extended Data Fig. 2). This suggests that 

our fMRI data contain about four statistically significant semantic dimensions that are 

shared across subjects.

The four shared semantic dimensions provide a way to succinctly summarize the semantic 

selectivity of a voxel. However, to interpret projections of the models onto these dimensions 

we need to understand how semantic information is encoded in this four-dimensional space. 

To visualize the semantic space we projected the 10,470 words in the stories from the word 

embedding space onto each dimension. We then used k-means clustering to identify twelve 

distinct categories (see Supplemental Methods for details). Each category was inspected and 

labeled by hand. The labels assigned to the twelve categories were tactile (a cluster 

containing words such as “fingers”), visual (words such as “yellow”), numeric (“four”), 

locational (“stadium”), abstract (“natural”), temporal (“minute”), professional (“meetings”), 

violent (“lethal”), communal (“schools”), mental (“asleep”), emotional (“despised”), and 

social (“child”). (See Supplementary Table 2 and Supplementary Results for more detailed 

evaluations of each category.)

Next, we visualized where each of the twelve categories appeared in the shared semantic 

space (Figure 2A). Each category label was also assigned an RGB color, where the red 

channel was determined by the first dimension, the green channel by the second, and the 

blue channel by the third. The first dimension is that which captured the most semantic 

variance across the voxel-wise models of all seven subjects. One end of this dimension 

favors categories related to humans and social interaction, including social, emotional, 
violent, and communal. The other end favors categories related to perceptual descriptions, 

quantitative descriptions and setting, including tactile, locational, numeric and visual. This is 

consistent with previous suggestions that humans comprise a particularly salient and 

strongly represented semantic domain16,21. Subsequent dimensions of the semantic space 

captured less variance than the first and were also more difficult to interpret. The second 

dimension seems to distinguish between perceptual categories, including visual and tactile, 

and non-perceptual categories, including mental, professional, and temporal. The third and 

fourth dimensions are less clear.

Earlier studies identified the cortical regions comprising the semantic system1,2, but could 

not comprehensively characterize their semantic selectivity. Here we were able to visualize 

the pattern of semantic domain-selectivity across the entire cortex by projecting voxel-wise 
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models onto the shared semantic dimensions. Figure 2B shows projections onto the first 

three dimensions for one subject, plotted together using the same RGB color scheme as in 

Figure 2A (Extended Data Fig. 3A shows each dimension separately). Thus, for example, a 

green voxel produces greater BOLD responses to categories that are colored green in the 

semantic space, such as visual and numeric. This visualization suggests that semantic 

information is represented in intricate patterns that cover the semantic system, including 

broad regions of prefrontal cortex, lateral and ventral temporal cortex, and lateral and medial 

parietal cortex. Furthermore, these patterns appear to be relatively consistent across 

individuals (Figure 2C; see also Extended Data Figure 3B).

Using PrAGMATiC to construct a semantic atlas

Given the apparent consistency in the patterns of semantic selectivity across individuals, we 

sought to create a single atlas that describes the distribution of semantically selective 

functional areas in human cerebral cortex. To accomplish this we developed a new Bayesian 

algorithm, PrAGMATiC, that produces a Probabilistic And Generative Model of Areas 

Tiling the Cortex22. This algorithm models patterns of functional tuning recovered by VM as 

a dense, tiled map of functionally homogeneous brain areas (Fig. 3A), while respecting 

individual differences in anatomical and functional anatomy23,24. The arrangement and 

selectivity of these areas are determined by parameters learned from the fMRI data through a 

maximum likelihood estimation technique similar to contrastive divergence25. Some 

parameters are shared; these describe properties of the cortical map that are common across 

the group. Other parameters are unique to each subject; these capture individual differences. 

Learning both shared and unique parameters simultaneously eliminates the usual 

requirement to perform anatomical or functional alignment of data across subjects.

The PrAGMATiC algorithm has two components: an arrangement model that determines 

where functional areas appear on the cortical sheet, and an emission model that determines 

how the cortical map is produced from an arrangement of areas. The arrangement model 

simulates a physical spring network that joins the centroid of each functional area to its 

neighbors. Equilibrium spring lengths are shared across subjects, but each spring can be 

stretched or compressed in any individual subject. Arrangements are also constrained by 

several functional landmarks, which are known regions-of-interest identified in every subject 

using separate functional data. These constraints ensure that the maps will be similar across 

subjects, but allow for substantial individual variability in the precise arrangement and size 

of the areas. Using the arrangement model, the emission model creates homogeneous 

functional areas by assigning each vertex on the cortical surface to the nearest area centroid. 

The functional value at each vertex is then drawn from a multivariate normal distribution. 

The mean functional value for each area is learned by the algorithm and is shared across 

subjects. Here we define the functional value as a four-dimensional vector that reflects the 

projection of the estimated model for each voxel onto the four shared semantic dimensions.

One important hyperparameter is the total number of areas that PrAGMATiC uses to tile the 

cortex. We used a cross-validation procedure to choose the total number of areas tiling each 

hemisphere and then tested whether each area is semantically selective. PrAGMATiC 

models were estimated on data from six subjects and then used to predict the semantic map 
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in the seventh subject using only cortical anatomy and the locations of functional landmarks 

in that subject. Predicted BOLD responses based on this map were compared to actual 

responses to determine how well the PrAGMATiC model generalizes across subjects. 

Prediction performance climbed quickly as the total number of areas rose from 8 to 128 and 

improved more gradually thereafter (Fig. 3B). In the left hemisphere, prediction 

performance did not improve significantly for models with 192 or more total areas 

(q(FDR)>0.01, Tukey post hoc test with subject-wise random effects). In the right 

hemisphere, prediction performance did not improve significantly for models with 128 or 

more total areas. However, because PrAGMATiC tiles the entire cerebral cortex, these 

numbers include both semantically selective and nonselective areas. To identify the 

semantically selective areas and eliminate those that are nonselective, we tested whether the 

average voxel-wise semantic model in each area predicted responses significantly better than 

the average model for low-level features such as word rate, phoneme rate, and phonemes. 

This excluded areas that were not selective for either semantic or low-level features, such as 

motor and visual cortex. It also excluded areas that were not uniquely selective for semantic 

features, such as Broca’s area, which was desirable because of the increased uncertainty of 

semantic model weights in those areas.

Figure 3C shows the semantic atlas projected onto the cortical surface of one subject (see 

also Extended Data Figures 4 & 5). The left hemisphere contains 77 semantic areas 

(q(FDR)<1/192, bootstrap test) and the right contains 63 semantic areas (q(FDR)<1/128, 

bootstrap test). A diverse tiling of areas that represent different semantic domains appear in 

lateral parietal cortex (LPC, Extended Data Fig. 6), medial parietal cortex (MPC, Extended 

Data Fig. 7), and superior prefrontal cortex (SPFC, Extended Data Fig. 8). In LPC and MPC, 

central areas (near the angular gyrus and subparietal sulci, respectively) are selective for 

social concepts, while surrounding areas are selective for numeric, visual, or tactile 
concepts. In SPFC, medial areas are mainly selective for social concepts, while dorsolateral 

areas are more diverse. The LPC, MPC, and SPFC also all belong to the default mode 

network (DMN), which is thought to be involved in introspection, rumination, and conscious 

thought26. One interesting possibility is that semantic areas identified here represent the 

same semantic domains during conscious thought. This suggests that the contents of 

thought, or internal speech, might be decoded using these voxel-wise models17. In the lateral 

temporal cortex (LTC, Extended Data Fig. 9) our atlas identifies fewer distinct semantic 

areas than in LPC, MPC, or SPFC. This is surprising because LTC plays a key role in 

language comprehension1,27 and also belongs to the DMN. However, the quality of fMRI 

signals recorded in the anterior temporal lobe is poor, so LTC likely contains other semantic 

areas that could not be recovered using our current approach. Detailed analyses of semantic 

representations in LPC, MPC, SPFC, and LTC, as well as ventral temporal cortex (Extended 

Data Fig. 10), inferior prefrontal cortex (Extended Data Fig. 11), and opercular and insular 

cortex (Extended Data Fig. 12) can be found in Supplemental Materials, along with 

discussion and comparisons to earlier neuroimaging and lesion results.

Discussion

One striking aspect of our atlas is that the distribution of semantically selective areas is 

relatively symmetric across the two cerebral hemispheres. This finding is inconsistent with 
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human lesion studies that argue that semantic representation is lateralized to the left 

hemisphere13. However, many fMRI studies of semantic representation find only modest 

lateralization1 and one study that used narrative stories found highly bilateral results similar 

to ours2. This suggests that right hemisphere areas may respond more strongly to narrative 

stimuli than to the words and short phrases used in most studies. Still, more research will be 

needed to determine what roles these left- and right-hemisphere semantic areas play in 

language comprehension.

Another interesting aspect of these results is that the organization of semantically selective 

brain areas appears highly consistent across individuals. This might suggest that innate 

anatomical connectivity or cortical cytoarchitecture constrains the organization of high-level 

semantic representations28,29. It is also possible that this is due to common life experiences 

of the subjects, all of whom were raised and educated in western industrial societies. Future 

studies that include subjects from more diverse backgrounds will be needed to determine 

how much of this organizational consistency reflects innate brain structure versus 

experience.

One limitation of PrAGMATiC as used here is that each area is assumed to be functionally 

homogeneous. This is a common assumption in the design and analysis of many 

neuroimaging studies30. However, many cortical maps, including semantic maps in visual 

cortex14, seem to contain smoothly-changing gradients of representation. It should be 

possible to modify the PrAGMATiC algorithm to model functional gradients explicitly. This 

will provide an objective tool for determining whether the semantic maps found here are 

best described as homogeneous areas or as gradients.

Data-driven approaches are commonplace in studies of human neuroanatomy31 and resting 

state networks26,32, but are only beginning to be used in functional imaging14,15. Our study 

demonstrates the power and efficiency of data-driven approaches for functional mapping of 

the human brain. Although our experiment used a simple design in which subjects only 

listened to stories, the data were rich enough to produce a comprehensive atlas of 

semantically selective areas. Furthermore, our data-driven framework is quite general. Other 

properties of language can be mapped (even in this same dataset) by using feature spaces 

that reflect phonemes, syntax and so on. Complex semantic models that incorporate 

information beyond word co-occurrence can be tested and compared quantitatively. The 

generalizability of these models can also be tested by using stimuli beyond autobiographical 

stories. It is sometimes difficult to synthesize the results of data-driven experiments with 

those from hypothesis-driven experiments, but future methodological and theoretical 

developments should help to bridge this divide. We expect that the semantic atlas presented 

here will be useful for many researchers investigating the neurobiological basis of language. 

We also expect that this atlas can be refined and expanded by incorporating results from 

future studies. To facilitate this, we have created a detailed interactive version of the 

semantic atlas that can be explored online at http://gallantlab.org/huth2016.
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Methods

MRI data collection

MRI data were collected on a 3T Siemens TIM Trio scanner at the UC Berkeley Brain 

Imaging Center using a 32-channel Siemens volume coil. Functional scans were collected 

using gradient echo EPI with TR = 2.0045s, TE = 31ms, flip angle = 70 degrees, voxel size 

= 2.24 × 2.24 × 4.1 mm (slice thickness = 3.5 mm with 18% slice gap), matrix size = 100 × 

100, and field of view = 224 × 224 mm. 30 axial slices were prescribed to cover the entire 

cortex and were scanned in interleaved order. A custom-modified bipolar water excitation 

radiofrequency (RF) pulse was used to avoid signal from fat. Anatomical data were collected 

using a T1-weighted multi-echo MP-RAGE sequence on the same 3T scanner.

Subjects

Functional data were collected from five male subjects and two female subjects: S1 (male, 

age 26), S2 (male, age 32), S3 (female, age 31), S4 (male, age 31), S5 (male, age 26), S6 

(female, age 25), and S7 (male, age 30). Two of the subjects were authors on the paper (S1: 

AGH and S3: WAdH). All subjects were healthy and had normal hearing. The experimental 

protocol was approved by the Committee for the Protection of Human Subjects at University 

of California, Berkeley. Written informed consent was obtained from all subjects.

Natural Story Stimuli

The model estimation dataset consisted of ten 10- to 15-minute stories taken from The Moth 
Radio Hour. In each story, a single speaker tells an autobiographical story in front of a live 

audience. The ten selected stories cover a wide range of topics and are highly engaging. 

Each story was played during a separate fMRI scan. The length of each scan was tailored to 

the story, and included 10 seconds of silence both before and after the story. These data were 

collected during two 2-hour scanning sessions that were performed on different days. The 

model validation dataset consisted of one 10-minute story, also taken from The Moth Radio 
Hour. This story was played twice for each subject (once during each scanning session), and 

then the two responses were averaged. For story synopses and details of story transcription 

and preprocessing procedures see Supplemental Methods.

Stories were played over Sensimetrics S14 in-ear piezoelectric headphones (Sensimetrics, 

Malden, MA, USA). A Behringer Ultra-Curve Pro hardware parametric equalizer was used 

to flatten the frequency response of the headphones based on calibration data provided by 

Sensimetrics. All stimuli were played at 44.1 kHz using the pygame library in Python. All 

stimuli were normalized to have peak loudness of −1 dB relative to max. However, the 

stories were performed by different speakers and were not uniformly mastered, so some 

differences in total loudness remain.

Story transcription and preprocessing

Each story was manually transcribed by one listener, and then the transcript was checked by 

a second listener. Certain sounds (e.g. laughter, lip-smacking and breathing) were also 

marked in order to improve the accuracy of the automated alignment. The audio of each 

story was downsampled to 11 kHz and the Penn Phonetics Lab Forced Aligner (P2FA33) 
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was used to automatically align the audio to the transcript. The forced aligner uses a 

phonetic hidden Markov model to find the temporal onset and offset of each word and 

phoneme. The CMU pronouncing dictionary was used to guess the pronunciation of each 

word. When necessary, words and word fragments that appeared in the transcript but not in 

the dictionary were manually added. After automatic alignment was complete, Praat34 was 

used to check and correct each aligned transcript manually. The corrected aligned transcript 

was then spot-checked for accuracy by a different listener.

Finally the aligned transcripts were converted into separate word and phoneme 

representations. The phoneme representation of each story is a list of pairs (p, t), where p is 

a phoneme and t is the time from the beginning of the story to the middle of the phoneme 

(i.e. halfway between the start and end of the phoneme) in seconds. Similarly the word 

representation of each story is a list of pairs (w, t), where w is a word.

Semantic model construction

To account for response variance caused by the semantic content of the stories we 

constructed a 985-dimensional semantic feature space based on word co-occurrence 

statistics in a large corpus of text12,18,19. First, we constructed a 10,470 word lexicon from 

the union of the set of all words appearing in the stories and the 10,000 most common words 

in the large text corpus. We then selected 985 basis words from Wikipedia’s List of 1000 
basic words (contrary to the title, this list contained only 985 unique words at the time it was 

accessed). This basis set was selected because it consists of common words that span a very 

broad range of topics. The text corpus used to construct this feature space includes the 

transcripts of 13 Moth stories (including the 10 used as stimuli in this experiment), 604 

popular books, 2,405,569 Wikipedia pages, and 36,333,459 user comments scraped from 

reddit.com. In total the 10,470 words in our lexicon appeared 1,548,774,960 times in this 

corpus.

Next, we constructed a word co-occurrence matrix, M, with 985 rows and 10,470 columns. 

Iterating through the text corpus, we added 1 to Mi,j each time word j appeared within 15 

words of basis word i. A window size of 15 was selected to be large enough to suppress 

syntactic effects (i.e. word order) but no larger. Once the word co-occurrence matrix was 

complete we log-transformed the counts, replacing Mi,j with log(1 + Mi,j). Next, each row of 

M was z-scored to correct for differences in basis word frequency, and then each column of 

M was z-scored to correct for word frequency. Each column of M is now a 985-dimensional 

semantic vector representing one word in the lexicon.

The matrix used for voxel-wise model estimation was then constructed from the stories: for 

each word-time pair (w, t) in each story we selected the corresponding column of M, 

creating a new list of semantic vector-time pairs, (Mw, t). These vectors were then resampled 

at times corresponding to the fMRI acquisitions using a 3-lobe Lanczos filter with the cutoff 

frequency set to the Nyquist frequency of the fMRI acquisition (0.249 Hz).

Voxel-wise model estimation and validation

A linearized finite impulse response (FIR) model14,17 consisting of four separate feature 

spaces was fit to every cortical voxel in each subject’s brain. These four feature spaces were 
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word rate (1 feature), phoneme rate (1 feature), phonemes (39 features), and semantics (985 

features). The word rate, phoneme rate, and phoneme features were used to account for 

responses to low-level properties of the stories that could contaminate the semantic model 

weights (see Supplemental Methods for details of how these low-level models were 

constructed). A separate linear temporal filter with four delays (1, 2, 3, and 4 time points) 

was fit for each of these 1026 features, yielding a total of 4104 features. This was 

accomplished by concatenating feature vectors that had been delayed by 1, 2, 3, and 4 time 

points (2, 4, 6, and 8 seconds). Thus, in the concatenated feature space one channel 

represents the word rate 2 seconds earlier, another 4 seconds earlier, and so on. Taking the 

dot product of this concatenated feature space with a set of linear weights is functionally 

equivalent to convolving the original stimulus vectors with linear temporal kernels that have 

non-zero entries for 1-, 2-, 3-, and 4-time point delays.

Before doing regression, we first z-scored each feature channel within each story. This was 

done to match the features to the fMRI responses, which were also z-scored within each 

story. However, this had little effect on the learned weights.

The 4104 weights for each voxel were estimated using L2-regularized linear regression 

(a.k.a. ridge regression). To keep the scale of the weights consistent and to prevent bias in 

subsequent analyses, a single value of the regularization coefficient was used for all voxels 

in all subjects. This regularization coefficient was found by bootstrapping the regression 

procedure 50 times in each subject. In each bootstrap iteration, 800 time points (20 blocks of 

40 consecutive time points each) were removed from the model estimation dataset and 

reserved for testing. Then the model weights were estimated on the remaining 2937 time 

points for each of 20 possible regularization coefficients (log spaced between 10 and 1000). 

These weights were used to predict responses for the 800 reserved time points, and then the 

correlation between actual and predicted responses was found. After the bootstrapping was 

complete, a regularization-performance curve was obtained for each subject by averaging the 

bootstrap sample correlations first across the 50 samples and then across all voxels. Next, 

the regularization-performance curves were averaged across the seven subjects and the best 

overall value of the regularization parameter (183.3) was selected. The best overall 

regularization parameter value was also the best value in three individual subjects. For the 

other four subjects the best regularization parameter value was slightly higher (233.6).

To validate the voxel-wise models, estimated semantic feature weights were used to predict 

responses to a separate story that had not been used for weight estimation. Prediction 

performance was then estimated as the Pearson correlation between predicted and actual 

responses for each voxel over the 290 time points in the validation story. Statistical 

significance was computed by comparing estimated correlations to the null distribution of 

correlations between two independent Gaussian random vectors of the same length. 

Resulting p-values were corrected for multiple comparisons within each subject using the 

false discovery rate (FDR) procedure35.

All model fitting and analysis was performed using custom software written in Python, 

making heavy use of NumPy36, SciPy37, and pycortex38.
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Semantic principal components analysis

We used principal components analysis (PCA) to recover a low-dimensional semantic space 

from the estimated semantic model weights. We first selected only the 10,000 best predicted 

voxels in each subject according to the average bootstrap correlation (for the selected 

regularization parameter value) obtained during model estimation. This was done to avoid 

including noise from poorly modeled voxels. Then we removed temporal information from 

the voxel-wise model weights by averaging across the four delays for each feature. The 

weights for the word frequency, phoneme frequency, and phoneme features were then 

discarded, leaving only the 985 semantic model weights for each voxel. Finally, we applied 

PCA to these weights, yielding 985 principal components (PCs). Partial scree plots showing 

the amount of variance accounted for by each PC are shown in Extended Data Figure 2. See 

Supplemental Methods for details.

PrAGMATiC

The PrAGMATiC generative model22 has two components: an arrangement model and an 

emission model. The arrangement model defines a probability distribution over possible 

arrangements of the functional areas. This model assumes that the location of each area is 

defined by a single point called the area centroid. Each centroid is modeled as being joined 

to nearby centroids by springs. While exact centroid locations can vary from subject to 

subject, the equilibrium length of each spring is assumed to be consistent across subjects. 

The probability distribution over possible locations of the centroids is defined using the total 

potential energy of the spring system. This distribution assigns a high probability to low-

energy arrangements of the centroids (i.e. where the springs are not stretched much and so 

store little potential energy) and low probability to high-energy arrangements (where the 

springs are stretched a lot).

The second component is the emission model, which defines a probability distribution over 

semantic maps given an arrangement of functional areas. In the emission model each area 

centroid is assigned a particular semantic value in the 4-D common semantic space. This 

value determines what type of semantic information is represented in that area. To generate a 

semantic map from any particular arrangement, each point on the cortical surface is first 

assigned to the closest area centroid (creating a Voronoi diagram). Then the semantic value 

for each point is sampled from a spherical Gaussian distribution in semantic space, centered 

on the semantic value of the centroid.

A consequence of modeling semantic maps using a Voronoi diagram is that every point on 

the cortex must be assigned to an area, while we know that many points on the cortex are not 

semantically selective. We distinguished between semantically selective and non-selective 

areas by testing whether the mean semantic voxel-wise model in each area predicted 

responses significantly better on a held-out story than a baseline model that accounts for 

responses to phonemes and word rate.

To train the generative model we derived maximum likelihood estimation (MLE) update 

rules similar to the Boltzmann learning rule with contrastive divergence25. We used these 

learning rules to iteratively update the spring lengths and semantic values, maximizing the 
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probability of the observed maps and minimizing the probability of unobserved maps. For 

details see Supplemental Methods.

Extended Data

Extended Data Figure 1. Voxel-wise model prediction performance
Cortical flatmaps showing prediction performance of voxel-wise semantic models for all 

seven subjects, formatted similarly to Figure 1C in the main text. Models were tested using 

one 10-minute story that was not included during model estimation. Prediction performance 

was then computed as the correlation between predicted and measured BOLD responses. 

(Left column) Raw prediction performance. Note that the colormap here is scaled 0–1 rather 

than 0–0.6 as in the main text in order to match the scale of the adjusted prediction 

performance maps. (Right column) Prediction performance corrected to account for different 

amounts of noise in the BOLD responses (see Supplemental Methods for details). The 

voxel-wise semantic models predict BOLD responses in many brain areas, including 

superior and inferior prefrontal cortex (SPFC, IPFC), lateral and ventral temporal cortex 

(LTC, VTC), and lateral and medial parietal cortex (LPC, MPC). As explained in the main 

text, these same regions have been previously identified as the “semantic system” in the 

human brain.
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Extended Data Figure 2. Amount of variance explained by individual subject and group 
semantic dimensions
Principal components analysis (PCA) was used to discover the most important semantic 

dimensions from voxel-wise semantic model weights in each subject. To reduce noise, we 

used only the 10,000 best voxels in each subject, determined by cross-validation within the 

model estimation dataset. Here we show the amount of variance explained in the semantic 

model weights by each of the 20 most important PCs. Orange lines show the amount of 

variance explained each subject’s own PCs, blue lines show the variance explained by the 

PCs of combined data from the other six subjects, and gray lines show the variance 

explained by the PCs of the stories. (The Gale-Shapley stable marriage algorithm was used 

to re-order the group and stimulus PCs to maximize their correlation with the subject’s PCs.) 

Error bars indicate 99% confidence intervals. Confidence intervals for the subjects’ own PCs 

and group PCs are very small. Hollow markers indicate subject or group PCs that explain 

significantly more variance than the corresponding stimulus PCs (p<0.001, bootstrap test). 

Six PCs explain significantly more variance in one out of seven subjects, five PCs in two 

subjects, four PCs in three subjects, and three PCs in one subject. Thus, four PCs seem to 

comprise a semantic space that is common across most individuals.
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Extended Data Figure 3. Separate cortical projections of semantic dimensions 1-4 on subject S2 
and combined cortical projections of dimensions 1-3 for subjects S1, S3, and S4
(a) Voxel-wise semantic model weights for subject S2 were projected onto each of the 

common semantic dimensions defined by PCs 1-4. Voxels for which model generalization 

performance was not significantly greater than zero (q(FDR)>0.05) are shown in gray. 

Positive projections are shown in red, negative projections in blue and near-zero projections 

in white. Voxels with fMRI signal dropout due to field inhomogeneity are shaded with black 

hatched lines. (b) Like Figures 2B and 2C in the main text, this figure shows the result of 

projecting voxel-wise models onto the first three common semantic dimensions, and then 

coloring each voxel using an RGB colormap. The red color component corresponds to the 

projection on the first PC, the green component to the second, and the blue component to the 

third. Semantic information seems to be represented in complex patterns distributed across 

the semantic system and the patterns seem to be largely conserved across individuals.
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Extended Data Figure 4. PrAGMATiC atlas likelihood maps
Comparison of actual semantic maps (Figure 2, Extended Data Figure 3) to the maps 

generated from the PrAGMATiC atlas (Figure 3). PrAGMATiC atlases for the left and right 

hemispheres were fit using data from all seven subjects. The left hemisphere atlas has 192 

total areas and the right hemisphere has 128 (including non-semantic areas). Here we show 

(first column) the actual semantic maps for four subjects, (second column) the PrAGMATiC 

atlas on each subject’s cortical surface, (third column) the log likelihood ratio of the actual 

semantic map under the PrAGMATiC atlas versus a null model, and (fourth column) the 

fraction of variance in the semantic map that the PrAGMATiC atlas explains for each 

location on the cortical surface. The likelihood ratio maps show that most areas where there 

are large semantic model weights (i.e. the semantic system) are much better explained by 

PrAGMATiC than by a null model and thus appear red, while areas where the weights are 

small (i.e. somatomotor cortex, visual cortex, etc.) are about equally well explained by both 

PrAGMATiC and the null model and thus appear white. Variance explained was computed 

by subtracting the PrAGMATiC atlas from the actual semantic map (in the space of the four 

group semantic dimensions), squaring and summing the residuals and then dividing by the 

sum of squares in the actual map. The variance explained maps show that the PrAGMATiC 

atlas captures a large fraction of the variance in the semantic maps (37–47% in total).
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Extended Data Figure 5. Comparison of PrAGMATiC models fit with different initial conditions
As with many clustering algorithms, PrAGMATiC optimizes a non-convex objective 

function and so can find many potential locally optimal solutions. To reduce the effect of 

non-convexity on our results, we re-fit the model 10 times (each time with a different 

random initialization), and then selected the model fit that yielded the best likelihood (i.e. 

performance on the training set) as the PrAGMATiC atlas (Figure 3). Here we show (top) the 

PrAGMATiC atlas and (bottom) the second best model out of the 10 that were estimated. 

The parcellations given by these two models are very similar. However, there are a few 

differences, which illustrate uncertainty in the model. Some of these differences are due to 

statistical thresholding: a few areas that were found to be significantly semantically selective 

in the best model are missing in the alternate model (see left medial prefrontal cortex), and 

some significant areas in the alternate model are missing from the best model (left ventral 

occipital cortex). Other differences suggest alternative parcellations for a few regions, 

where, for example, the same region of cortex is parcellated into 3 areas in the best model 

and 4 areas in the alternate model. Yet it is clear that none of the differences between these 

two models are sufficient to change any of the interpretations given in the main text.
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Extended Data Figure 6. Semantic atlas for lateral parietal cortex (LPC)
The PrAGMATiC atlas divides LPC into 15 areas in the left hemisphere and 13 areas in the 

right. Here we show (top left and right) the atlas for each hemisphere, (top middle) 3-D 

brains indicating the location of LPC, (bottom middle) individual maps for two subjects in 

each hemisphere, and (bottom left and right) the average predicted response of each area to 

the 12 semantic categories identified earlier (responses consistently greater than zero across 

subjects are marked with “+”). Bars show how completely this 12 category interpretation 

captures the average semantic model in each area. LPC appears to be organized around the 

angular gyrus (AG), with a core that is selective for social, emotional, and mental concepts 

(L6, 7, 9, 11; R5, 7) and a periphery that is selective for visual, tactile, and numeric concepts 

(L2, 4, 5, 8, 10, 15; R6, 11).

Extended Data Figure 7. Semantic atlas for medial parietal cortex (MPC)
The PrAGMATiC atlas divides MPC into 14 areas in the left hemisphere and 10 areas in the 

right. Here we show (top left and right) the atlas for each hemisphere, (top middle) 3-D 

brains indicating the location of MPC, (bottom middle) individual maps for two subjects in 

each hemisphere, and (bottom left and right) the average predicted response of each area to 

the 12 semantic categories identified earlier (responses consistently greater than zero across 

subjects are marked with “+”). Bars show how completely the 12 category interpretation 
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captures the average semantic model in each area. Like LPC, MPC appears to be organized 

around a core group of areas that are selective for social and mental concepts (L6, 8, 10; R6, 

7). Dorsolateral MPC areas (L2, 4; R1) are selective for visual and tactile concepts. Anterior 

dorsal areas (L5, 9; R4, 9) are selective for temporal concepts. Ventral areas (L11, 12, 14; 

R8) are selective for professional, temporal, and locational concepts. Just above retrosplenial 

cortex one distinct area in each hemisphere is selective for mental, professional and temporal 
concepts (L7; R3). Overall, right MPC responds more than left MPC to mental concepts.

Extended Data Figure 8. Semantic atlas for superior prefrontal cortex (SPFC)
The PrAGMATiC atlas divides SPFC into 18 areas in the left hemisphere and 19 areas in the 

right. Here we show (top left and right) the atlas for each hemisphere, (top middle) 3-D 

brains indicating the location of SPFC, (bottom middle) individual maps for two subjects in 

each hemisphere, and (bottom left and right) the average response of each area in the atlas to 

the 12 semantic categories identified earlier (responses consistently greater than zero across 

subjects are marked with “+”). Bars show how completely the 12 category interpretation 

captures the average semantic model in each area. The organization in SPFC seems to follow 

the long rostro-caudal sulci and gyri of the dorsal frontal lobe. Posterior-lateral SPFC areas 

(L4, 6; R6, 9, 11) are selective for social, emotional, communal, and violent concepts. 

Posterior superior frontal sulcus areas (L2, 3, 7, 8; R1, 5, 7) are selective for visual, tactile, 

and numeric concepts. Superior frontal gyrus contains a long strip of areas (L1, 5, 10, 12–

15; R8, 12, 14–16) selective for social, emotional, communal, and violent concepts.
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Extended Data Figure 9. Semantic atlas for lateral temporal cortex (LTC)
The PrAGMATiC atlas divides LTC into 8 areas in both the left and right hemispheres. Here 

we show (top left and right) the atlas for each hemisphere, (top middle) 3-D brains 

indicating the location of LTC, (bottom middle) individual maps for two subjects in each 

hemisphere, and (bottom left and right) the average response of each area in the atlas to the 

12 semantic categories identified earlier (responses consistently greater than zero across 

subjects are marked with “+”). Bars show how completely the 12 category interpretation 

captures the average semantic model in each area. Anterior LTC areas (L4-8; R3-8) are 

selective for social, emotional, mental, and violent concepts. Posterior LTC areas (L1-3; 

R1-2) are selective for numeric, tactile, and visual concepts.

Extended Data Figure 10. Semantic atlas for ventral temporal cortex (VTC)
The PrAGMATiC atlas divides VTC into 6 areas in the left hemisphere and 1 area in the 

right. Here we show (top left and right) the atlas for each hemisphere, (top middle) 3-D 

brains indicating the location of VTC, (bottom middle) individual maps for two subjects in 

each hemisphere, and (bottom left and right) the average response of each area in the atlas to 

the 12 semantic categories identified earlier (responses consistently greater than zero across 

subjects are marked with “+”). Bars show how completely the 12 category interpretation 

captures the average semantic model in each area. VTC is relatively homogeneous: all areas 
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are selective for numeric, tactile, and visual concepts. In left VTC areas close to the 

parahippocampal place area (PPA) are also selective for locational concepts (L5-6).

Extended Data Figure 11. Semantic atlas for inferior prefrontal cortex (IPFC)
The PrAGMATiC atlas divides IPFC into 12 areas in the left hemisphere and 9 areas in the 

right. Here we show (top left and right) the atlas for each hemisphere, (top middle) 3-D 

brains indicating the location of IPFC, (bottom middle) individual maps for two subjects in 

each hemisphere, and (bottom left and right) the average response of each area in the atlas to 

the 12 semantic categories identified earlier (responses consistently greater than zero across 

subjects are marked with “+”). Bars show how completely the 12 category interpretation 

captures the average semantic model in each area. Posterior IPFC areas in the precentral 

sulcus (L1-3; R1, 2) are selective for visual, tactile, and numeric concepts. Areas on the 

inferior frontal gyrus (L8; R4, 7) are selective for social and violent concepts. Areas in the 

inferior frontal sulcus and anterior middle frontal gyrus (L4-7; R5-6) are selective for visual, 
tactile, and numeric concepts. Areas in the orbitofrontal sulci (L10; R9) are also selective for 

visual, tactile, numeric, and locational concepts.

Extended Data Figure 12. Semantic atlas for opercular and insular cortex (OIC)
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The PrAGMATiC atlas divides OIC into 4 areas in the left hemisphere and 3 areas in the 

right. Here we show (top left and right) the atlas for each hemisphere, (top middle) 3-D 

brains indicating the location of OIC, (bottom middle) individual maps for two subjects in 

each hemisphere, and (bottom left and right) the average response of each area in the atlas to 

the 12 semantic categories identified earlier (responses consistently greater than zero across 

subjects are marked with “+”). Bars show how completely the 12 category interpretation 

captures the average semantic model in each area. These areas are homogeneously selective 

for abstract concepts, with more posterior and superior areas also responding to emotional, 
communal, and mental concepts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Voxel-wise modeling
(a) Seven subjects listened to over two hours of naturally spoken narrative stories while 

BOLD responses were measured using fMRI. Each word in the stories was projected into a 

985-dimensional word embedding space constructed using word co-occurrence statistics 

from a large corpus of text. A finite impulse response (FIR) regression model was estimated 

individually for every voxel. The voxel-wise model weights describe how words appearing 

in the stories influence BOLD signals. (b) Models were tested using one 10-minute story 

that was not included during model estimation. Model prediction performance was 

computed as the correlation between predicted responses to this story and actual BOLD 

responses. (c) Prediction performance of voxel-wise models for one subject. Semantic 

models accurately predict BOLD responses in many brain areas, including the lateral and 

ventral temporal cortex (LTC, VTC), lateral and medial parietal cortex (LPC, MPC), and 

superior and inferior prefrontal cortex (SPFC, IPFC). These regions have previously been 

identified as the “semantic system” in the human brain.
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Figure 2. Principal components of voxel-wise semantic models
Principal components analysis (PCA) of voxel-wise model weights reveals four important 

semantic dimensions in the brain (Extended Data Fig. 2). (a) An RGB colormap was used to 

color both words and voxels based on the first three dimensions of the semantic space. 

Words that best match the four semantic dimensions were found and then collapsed into 12 

categories using k-means clustering. Each category (Supplementary Table 2) was manually 

assigned a label. The 12 category labels (large words) and a selection of the 458 best words 

(small words) are plotted here along four pairs of semantic dimensions. The largest axis of 

variation lies roughly along the first dimension, and separates perceptual and physical 

categories (tactile, locational) from human-related categories (social, emotional, violent). (b) 

Voxel-wise model weights were projected onto the semantic dimensions and then colored 

using the same RGB colormap (see Extended Data Fig. 3 for separate dimensions). 

Projections for one subject (S2) are shown on that subject’s cortical surface. Semantic 

information seems to be represented in intricate patterns across much of the semantic 

system. (c) Semantic PC flatmaps for three other subjects. Comparing these flatmaps, many 

patterns appear to be shared across individuals. (See Extended Data Fig. 3 for other 

subjects.)
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Figure 3. PrAGMATiC: a generative model for cortical maps
To create an atlas that describes the distribution of semantically selective functional areas in 

the human cerebral cortex we developed PrAGMATiC, a probabilistic and generative model 

of areas tiling the cortex. (a) PrAGMATiC has two parts: an arrangement model and an 

emission model. The arrangement model is analogous to a physical system of springs 

joining neighboring area centroids. To enforce similarity across subjects, springs also join 

areas to 19 regions-of-interest that were localized separately. The emission model assigns 

the functional mean of the closest area centroid to each point on the cortex, forming a 

Voronoi tessellation. Spring lengths and area means are shared across subjects while exact 

area locations are unique to each subject. These parameters are fit using maximum 

likelihood estimation. (b) A leave-one-out procedure was used to choose the number of 

areas in each hemisphere. PrAGMATiC models were estimated on six subjects and then used 

to predict BOLD responses for the seventh. Prediction performance improved significantly 

up to 192 total areas in the left hemisphere and 128 areas in the right. (c) A semantic atlas 

was estimated using data from all seven subjects. Areas where the semantic model did not 

predict better than models based on low-level features (i.e. word rate, phonemes) were 

removed. The remaining areas were plotted on one subject’s cortical surface using the same 

RGB colormap as Figure 2. Areas dominated by signal dropout are shown in black hatching, 

and areas where the low-level models performed well are shown in white hatching. This 

atlas shows the functional organization of the semantic system that is common across 

subjects.
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