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Abstract

Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts intro-
duced in the early days of genomics. What are the rules connecting gene expression levels with sequence deter-
minants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon
adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequen-
cing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, termi-
nator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency,
average translation speed. We compared computational predictions of operon topologies with the transcript bor-
ders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon
assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown
that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though
predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a
sequence with detectable coding potential but also promoters that maintain transcriptional activity.

Background
Significant efforts in the last two decades were directed
to developing methods for genomic sequence functional
interpretation, particularly, the means for predicting
exact locations of transcribed and translated regions and
levels of RNA and protein expression. At this time we
were armed with technology able to sequence a whole
prokaryotic transcriptome of a bacterial pathogen Bacil-
lus anthracis and map RNA-Seq reads to genome.
We have used RNA-Seq reads mapped to genomic

sequence as an input of an HMM based algorithm for
parsing B. anthracis genomic sequence into a sequence
of transcribed regions. Thus determined regions pro-
vided evidence for RNA transcription for majority of
annotated genes. In addition we have seen RNA tran-
scription from loci harboring mutated and presumably
dysfunctional genes, the pseudogenes, as well as from a
few regions containing genes predicted by an ab initio

gene finder, GeneMarkS [1], but not annotated yet. We
have detected that expression levels of adjacent genes
located within borders of predicted transcripts correlate
well, while adjacent genes residing in different tran-
scripts do not exhibit any correlation. We have analyzed
whether the evidence derived from RNA-Seq mapped
reads would support operon predictions made by
OperonDB [2].
Other questions we have addressed here were to find

out if a score of a promoter site identified upstream to
predicted transcription start site (TSS) correlates with
gene expression level of the downstream gene. Also, is
there a correlation of the gene expression level with the
scores of the hairpin and tail of the downstream tran-
scription terminator? Do locations of transcription end
sites (TES) predicted by TransTermHP [3] appear in
genomic sequence close to locations of the TES sites
predicted from the mapped RNA-Seq reads?
Codon adaptation index (CAI) introduced by Sharp

and Li [4] as a predictor of gene expression level has
been broadly used, evaluated and modified [5-13]. There
is an increasing evidence that evolution of genome GC
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content is the major driving force of evolution of gen-
ome wide codon usage [14-17]. Therefore, in a given
genome room for codon usage variation between genes
with lower and higher expression is narrower in gen-
omes with high as well as low GC content. However,
the synonymous codon most frequently used in its
group as defined for the genome wide gene set is not
always the same as the synonymous codons most fre-
quently used in its group in a subset of genes with high
expression. Therefore, selection of reference groups of
highly expressed genes remains a rational approach for
developing sequence dependent predictors of gene
expression. B. anthracis, a species with relatively low,
35.4%, genome GC content, has 95 tRNA genes, and
undergoes a strong selection for codon usage bias as
indicated by the S index value 2.045 [11]. We have
introduced a new measure of efficiency of translation,
the average translation speed of a gene, an ATS index.
We have shown values of both CAI and ATS correlate
with gene expression levels. Finally, an existence of cor-
relation between the score of ribosomal binding site
(RBS) and gene expression level was not demonstrated
so far. We have revisited this issue focusing our atten-
tion on the genes that are supposed to be the first genes
in operons.

Materials and methods
Preparation of RNA-Seq data
In order to investigate the transcriptional landscapes of
B. anthracis under a variety of stress conditions, B.
anthracis str. ‘Ames Ancestor’ was subjected to the fol-
lowing growth stresses: (i) cold shock; (ii) osmotic shock
as imposed by 0.75 M sodium chloride (NaCl); and (iii)
6% ethanol shock. For all experiments, the ‘Ames
Ancestor’ strain was grown from a fresh colony on a
blood agar plate in rich medium (LB broth) at 37°C to
mid-exponential phase (optical density 600 nm (OD600)
of 0.4-0.5), subjected to the aforementioned stresses,
and then RNA was harvested by phenol:chloroform
extraction as reported previously [18]. A control sample
with no treatment was collected for baseline transcrip-
tional activity. All experiments were performed in four
biological replicates. For cold stress, cells were grown as
above, and an equal volume of fresh medium that had
been chilled overnight at 4°C was added. The cells were
incubated with shaking at 17°C for 10 minutes followed
by immediate RNA extraction. For NaCl stress, cells
were grown as above, and an equal volume of 1.5 M
NaCl LB medium was added for a final NaCl concentra-
tion of 0.75 M. RNA was harvested after 10 minutes of
growth at 37°C with shaking. For ethanol stress, bacteria
were grown as above, and an equal volume of pre-
warmed (37°C) medium with 12% ethanol was added to
the growing cells for a final concentration of 6% ethanol.

Cells were grown with shaking at 37°C for 10 minutes
and then RNA was harvested. Stress parameters were
chosen such that the imposed stress was not entirely
lethal to the bacteria in pilot experiments, but which
would be strong enough to impose a fast and robust
transcriptional survival response. RNA samples were
subjected to rRNA depletion and SOLiD sequencing as
described in [18]. ]. Library creation for SOLiD sequen-
cing was done using the Applied Biosystems Whole
Transcriptome Library Preparation Protocol and
reagents. SOLiD sequencing was performed at EDGE
Biosystems, Gaithersburg, MD (http://www.edgebio.
com). SOLiD data were mapped to the B. anthracis
Ames Ancestor genome using SOCS [19], with a maxi-
mum tolerance of 5 color mismatches between each 50-
color sequence read and the reference genome. A full
description of these experiments and their biological
implications is in preparation (KDP and NB, in
progress).

HMM model and the Viterbi algorithm for inferring
transcripts from RNA-Seq
Determination of precise transcript boundaries and
expression levels from mapped RNA-Seq reads is not a
trivial task [18,20]. There are many confounding factors
that make it difficult to pinpoint the borders between
transcribed and non-transcribed regions. We use the
term ‘coverage’ to designate a number of reads mapped
to a particular genomic position. Since reads are gener-
ated at random significant deviations from uniformity in
coverage are commonly observed. Also, transcripts are
subject to degradation, which further contributes to noise
in coverage data. Notably, a gene expression level is spe-
cific to the cell growth condition. Many genes exhibit low
average coverage; the average gene coverage distribution
(Figure 1) shows that 15-18% of the 5,661 genes have an
average coverage ≤ 2 depending on the growth condition.
To infer transcript boundaries and expression levels

from the noisy coverage data we have developed a Hid-
den Markov model (HMM) based algorithm (Figure 2).
The coverage data were divided into bins corresponding
to the observable states. The HMM hidden states
include a zero state, C0, emitting zero coverage and M
expression states, C1... CM, emitting positive coverage
values ranging from C1 the lowest to CM the highest.
The number of expression states, M, was chosen by
increasing the number of expression states until the
break point for the C1 bin decreased to a coverage ≤ 2;
for analysis of the current set of RNA-Seq data we had
M = 9. Notably, in this HMM an emission for a given
position depends on the coverage count emitted in the
previous position (Figure 3). Emission probabilities as
well as transition probabilities were estimated during
the model training stage (see below).
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With HMM model and parameters in place we imple-
mented an algorithm for inferring the most likely parse
of the sequence into transcribed regions with constant
expression levels (C0-C9). This algorithm was the
Viterbi type algorithm for an HMM with the first order
dependence between observed variables. Since the input
mapped reads contained an assignment to a particular
DNA strand, the algorithm was run twice (once for each
strand) on the mapped RNA-Seq reads from RNA gen-
erated in the four cell growth conditions. The output of
the algorithm was the predicted positions of transcrip-
tion start sites (TSS) and transcription end sites (TES)
as well as the expression levels for each predicted
transcript.

HMM Training
We used the NCBI curated gene annotation of B.
anthracis str. ‘Ames Ancestor’ provided in the RefSeq
record NC_007530 as well as the complement of genes
predicted by GeneMarkS [1]. These two gene sets have
a significant overlap.
We assumed that confidently identified protein-coding

regions are bona fide transcribed regions. Thus we used
these regions along with the mapped RNA-Seq reads as
a training set for estimation the HMM parameters. To
determine the probability of remaining in the zero
expression state C0, aC0-C0, the length distribution of
regions with zero expression was determined directly
from the raw coverage data. The mean of the distribu-
tion μzero was 56 nt. Then, assuming the geometric
length distribution for non-transcribed regions,

aC C
zero

zero0 0 1  


 . Similarly, to assign transition prob-

abilities for each of the expression states we used the
estimated average length of an operon, μoperon = 5 kb.
We then set the self-transition probabilities of these

states to: aCX CX
operon

operon  


 1 . Finally, the probability of

transition back to the zero state was:

aCX C
operon

operon   0 1 1


 .

Emission probabilities for each hidden state were cal-
culated from the coverage data as follows: i/ the whole
range of possible coverage values was divided into 12
bins with break points chosen to have an equal number
of genome positions fall into each bin; ii/ the average
coverage of each annotated gene was calculated (with
exclusion of 50 nt downstream from the 5’ end); iii/ the
range of values of the averaged coverage was divided
into M bins (C1, ..., CM) with break points chosen to
have an equal number of genes with non-zero expres-
sion in each bin; iv/ the emission counts were initialized
with Laplace’s pseudocounts; v/ for each position, the

Figure 2 Topology of HMM used in the algorithm for
determining transcript boundaries and relative expression
levels.

Figure 3 Emission of an observed state in a current position
depends on emission of the observed state in previous
position.

Figure 1 Distributions of read coverage values (averaged
within a gene) for four growth conditions.
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first-order dependence of the emission counts from the
emission in the previous position was determined; vi)
the emission counts were converted into emission
probabilities.

Finding a promoter motif in sequences upstream to TSS
To identify promoter-containing sequences, we first
extracted 60 nt upstream of the predicted TSSs. It was
required that each sequence meets the criteria: i/ the 5’
UTR is between 10 and 200 nt in length; ii/ the 5’ UTR is
not part of any other predicted transcript; iii/ the most
5’ gene in the transcript has a median coverage ≥ 5.
To identify the -10 motifs we used a two step approach.

First, we ran a standard Gibbs sampler algorithm [21] to
determine the initial “-10” motif. Thus identified sequence
fragments, the instances of the motif, were then used as a
starting point for a modified Gibbs sampler with the scor-
ing function S  


 1 2

1

6 log( )
log( ( ))

Pxi
i

Qxi
P d

i
that takes into account the

length distribution of spacers (sequences from -10 motif
to the predicted TSS). Here ω1 and ω2 designate the
weights of (i) the positional frequency term that depends
on the -10 motif model Pi(a) and the background model
Qa as well as (ii) probability P(d) of the spacer length. A
diagram of the iterative motif finding algorithm is shown
in Figure 4. The algorithm runs until no motif sequences
shift position from previous iteration to the next.
Interestingly, both the relative entropy of the motif

model and the variance of the length distribution P(d)
have shown a Hill-function type dependence on the
value of ω1(Figure 5). Here the sharp rise in relative
entropy at ω1 = 0.3 indicates a percolation effect of
instant accumulation of motif instances with similar
(conserved) sequences due to the activation of positive
feedback link formed by the multiple sequence align-
ment. At this point ω1 = 0.3 the balance in the score
function S starts to shift to the first term of the equa-
tion that controls the quality of alignment. The growth
of the variance at ω1= 0.6 indicates the point where the

motif information part of the score becomes ultimately
dominant in comparison with the spacer length distribu-
tion term. At this point the motif instances identified by
the algorithm start to spread around and the preference
to concentrate at an “optimal” distance from TSS is fad-
ing away. Value ω1= 0.6 was chosen to generate a
model with high information (relative entropy) and a
compact (low variance) length distribution of spacers.

Transcription terminator sequences
For identification of transcription terminator sequences
we used the TransTermHP program [3]. This algorithm
locates rho independent terminator sequences by
searching for specific secondary stem-loop structures.
The software is available along with pre-computed pre-
dictions for a number of bacterial species, including
B. anthracis str. ‘Ames Ancestor’. We used transcription
terminator predictions made by TransTermHP version
2.07; specifically 3407 “best after gene” predictions were

Figure 5 Relative entropy of the promoter motif model and
variance of the spacer length distribution are shown as
functions of the combined score weight parameter ω1.

Figure 4 A diagram for the iterative algorithm used for promoter motif finding. Dark yellow boxes represent input/output.
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used. TransTermHP provides scores for hairpin and tail
structures that are related to efficiency of termination.
For genes with 3’ UTRs longer than 200 nt we have
compared locations of transcription end sites (TES) pre-
dicted by the Viterbi algorithm with the locations of
transcription terminators predicted by TransTermHP.

Measures of translational efficiency
As a predictor of translational efficiency for an mRNA
we introduced an average translation speed (ATS)
defined as follows. Let frequencies of 61 codons in a
reference gene set be si, i = 1,2, ..., 61. Since evolution-
ary adaptation of the codon and anticodon (tRNA)
populations is supposed to eliminate disproportions at a
time of fast growth, we assume that the frequencies of
tRNA in a cell are proportional to si values. Before a
cognate tRNA is admitted to the A site at a ribosome, a
number of candidate tRNA are tried and rejected. We
assume a Poisson process for interactions between a
cognate tRNAs and the ribosome A site; thus, the aver-
age time needed for recruiting a cognate tRNA is pro-
portional to 1/si. For a gene with N codons and ki
codons of each kind the average time of mRNA transla-
tion is T = ∑ki/si. Then, for a given gene the average
time of a codon translation is t = T/N = ∑(ki/N)/si.
Finally, with ki/N being a frequency of a codon i in the
gene, designated as fi, we have t = ∑fi/si and the average
speed of translation of the gene is V = (∑fi/si)

-1. More
accurate computation of the average speed of codon
translation requires data on concentration of each
mRNA, knowledge that has not been available until
recently. In this study we use the RNA-Seq derived
information on gene expression levels observed in B.
anthracis (see below) to make correction in the si
values. Instead of si defined as ∑μji/∑∑μ

j
i for each codon

type i among the genes in the reference set, with μji
being a count of codons of type i in gene j, we used the
formula, Si = ∑wj μ

j
i/∑∑wj μ

j
i where wj is the expression

level of gene j. Now the formula for V can be modified
and we defined the value of ATS index, the average
translation speed of a gene, ATS = (∑fi/Si)

-1. For com-
parison, we also used the classic CAI measure defined
by Sharp and Li [4].

RBS scores
The GeneMarkS program as a part of gene prediction
algorithm determines parameters of the RBS positional
frequency model and the RBS spacer, a sequence
between RBS and translation start site, length distribu-
tion. The program also computes a score of the RBS
related to a predicted gene. The score is defined by the
formula S  


 1 2

1

6 log( )
log( ( ))

Pxi
i

Qxi
P d

i
similar in structure to the

promoter score discussed above. Here s1 and s2 are the
weights of the positional frequency term and spacer

distribution terms (in computations we had s1 = s2 =
1); Px

i is the set of positional nucleotide frequencies in
the RBS model and Qx is the set of nucleotide frequen-
cies in the background model.

Results and discussion
Comparison of annotated and predicted protein-coding
genes with transcripts inferred from RNA-Seq mapped
reads
We compiled a set of B. anthracis “candidate genes”, by
augmenting a set of genes annotated in RefSeq
(NC_007530) by a few additional genes predicted by
GeneMarkS. Each of the candidate genes could be veri-
fied by the RNA-Seq data. We have inferred the set of
transcripts by running the HMM based algorithm twice
(once for each strand) on the RNA-Seq coverage data
obtained for the four cell growth conditions (see Meth-
ods). Each candidate gene was assigned to a transcript
with which the gene shared the largest overlap. If there
was at least one condition where the gene was predicted
to be expressed to at least C2 level, then the gene was
designated as an expressed one.
The predicted transcripts were used for assessment of

the candidate gene calling accuracy. Each gene was clas-
sified as: i/ a gene both predicted by GeneMarkS and
annotated in RefSeq (if predicted and annotated genes
had the same 3’ ends); ii/ a gene predicted but not
annotated; iii/ a gene annotated but not predicted. Each
gene in the three groups of candidate genes (Table 1)
was counted as confirmed if it was covered by a tran-
script derived from the RNA-Seq data.

RNA expression as a necessary condition for the
presence of a protein coding gene
It is quite straightforward to state that a gene is
expressed based on observed RNA-Seq coverage, espe-
cially if the coverage level is high; however, there is less
confidence in questioning an existence of a predicted/
annotated gene based on observed low transcription
levels (due to a noise in experiments and possibility of
missing condition-specific gene expression).

Table 1 Fraction of expressed genes among different
categories. The fact of expression was inferred from the
RNA-Seq data. *Predicted genes include pseudogenes.

Total Expressed Fraction

Genes predicted and annotated 5144 4591 89.2%

Genes predicted but not annotated
as genes*

517 421 81.4%

Genes annotated but not predicted 164 119 72.6%
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For genes both annotated and predicted (Figure 6a)
the distribution of the number of confirmed genes with
respect to their length repeats the shape of the anno-
tated gene length distribution. The RNA-Seq supporting
evidence is quite uniform, though the genes of shorter
length (≤ 350 nt) lack the transcript evidence more
frequently.
Next, there are 517 genes predicted by GeneMarkS

but not annotated in RefSeq. Interestingly, 421 out of
517 predicted genes appear to be transcribed. To give
an example we placed the RefSeq annotation and tran-
script coverage data together into the Gbrowse genome
browser [22]. Figure 7 shows a segment of the
B. anthracis genome between positions 1,639,540 -
1,641,400; one can see a gene with a length of about
800 nt in the forward strand predicted by GeneMarkS
(with expression level C3 in the log-air, control growth
conditions). This gene was predicted but not annotated.
Similar to the aforementioned pattern, the shorter

genes are lacking the expression evidence more fre-
quently than the longer genes (Figure 6b). Notably, the
support by expression data of 421 newly predicted B.
anthracis genes indicates that predicted protein coding
regions are not likely to be artifacts of gene prediction.
This discrepancy was largely resolved by taking into
account not only annotated genes but also pseudogenes.
Notably, in 332 out of 517 loci where new genes were

predicted by GeneMarkS the RefSeq annotates various
classes of pseudogenes (Table 2, Figure 7). Still, RefSeq
annotates neither gene nor a pseudogene in yet another
163 loci where GeneMarkS predicts other new genes
(Table 2).
We found that 118 of the 163 new genes (72.4%) are

expressed at RNA level using the same set of criteria as
above. Most of these non-annotated genes are relatively
short (Figure 6d).
Further, we have considered 164 genes annotated but

not predicted by GeneMarkS (Figure 6c). Almost all of
these genes were ≤ 350 nt in length; many were sup-
ported by the transcriptome evidence (72.6%). Overall,
the graphs for both “new” and “missing” genes (Figure
6bc) suggest that most of the likely erroneously pre-
dicted or annotated genes occur in the range of gene
length ≤ 350 nt.
Does GeneMarkS identify all of the pseudogenes

annotated by RefSeq? Only 11 loci in B. anthracis gen-
ome where RefSeq record annotates genes with frame-
shifts, premature stops, and/or pseudogene are lacking
GeneMarkS predictions of protein-coding regions. This
statistics of pseudogene recognition indicates that a pro-
tein-coding type of nucleotide ordering remains in a
sequence (and is detected by GeneMarkS) for a long
time since mutations made a gene to lose its function.
Amazingly, the promoters frequently seem to remain

Figure 6 Length distributions for four categories of B. anthracis
genes. Genes are classified as confirmed or unconfirmed with
regard to the inferred expression level.
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active, thus recruiting RNA polymerase to generate tran-
scripts for pseudogene regions.

Identification of promoter sequences
We have chosen 566 B. anthracis genes whose 5'
untranslated upstream regions satisfied the selection cri-
teria (see Methods). The length distribution of the 5'
UTRs for this set of 566 transcripts is shown in Figure
8a. The length of 5’ UTRs is well conserved, with mean
length 58 nt and 67% of the UTRs being ≤ 60 nt in
length. Next, we selected 60 nt fragments upstream to
RNA-Seq defined TSS locations. These fragments were
expected to contain core RNA polymerase binding sites.
The iterative promoter motif refinement algorithm

(see Methods) was applied to the set of 566 sequences.
This multiple sequence alignment algorithm converged
after 13 iterations and produced -10 region motif with a
well-known TATAAT consensus (Figure 9a). The

conservation of the hexamer motif is relatively high,
having average information content (relative entropy) of
1.3 per position. Notably, almost all aligned fragments
use consensus nucleotides T and A in positions one and
two of the motif, respectively.
It is thought that in addition to the conservation of

the -10 promoter motif, the distance from the -10 motif
instances to starts of transcription is also well conserved.
We found that on average in B. anthracis the start of
the conserved hexamer is 22 nt upstream to a transcrip-
tion start site (Figure 9b); with an average 16 nt long
spacer between the end of the Pribnow box and TSS.

Promoter score correlation with expression level of
regulated genes
It is interesting to determine a relation between promoter
strength and expression level of the downstream gene.
Here we used a combined promoter score, which accounts

Figure 7 An example of the genome browser view. Positions 1639540-1641400 of the B. anthracis genomic sequence are displayed. Gene
1742 is predicted by GeneMarkS but not annotated, while genes 1740 and 1741 are predicted but annotated in RefSeq as a frameshift region;
genes 1739 and 1743 are both predicted and annotated.
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for both the promoter motif sequence and the distance
from motif to TSS. It is expected that strong promoters
attract RNA polymerase more efficiently, initiate transcrip-
tion more frequently and, thus, contribute to high gene
expression. To check this hypothesis we plotted the med-
ian expression of 566 genes determined in the control
growth condition against the score of upstream promoter
(Figure 10). We found that there is indeed a positive corre-
lation between gene expression level and the promoter
score. The correlation coefficient is rather small 0.14.
However, this score reflecting the sequence of the Pribnow
box is arguably related to a basal gene expression; also,
there are other important factors that influence gene
expression, such as regulatory proteins.

Characterization of terminator sequence elements
In order to elucidate yet another detail of the B. anthra-
cis genome organization we analyzed the 3' UTR and
terminator sequences. We considered 5334 B. anthracis
genes with stop codons situated in the regions identified
as transcribed by the Viterbi algorithm. In order to
obtain reliable 3' UTRs and positions of transcription
end sites (TESs), this set was further filtered (see Meth-
ods) to result in a set of 1494 3' UTR sequences. The 3'
UTR length distribution (Figure 8b) has a mean of 43
nt; 54% of the 3' UTRs are ≤ 25 nt in length. The
shorter average length of 3' UTR in comparison with 5'
UTR, indicates that 5' UTRs provide a larger room for
regulatory sequences at translation level including the
RBS site.

We compared the TES locations inferred from the
mapped RNA-Seq reads with locations of transcription
terminators (“middle” positions) predicted by the Trans-
TermHP program [3]; it was done for 1317 genes pos-
sessing both types of predictions. We have shown that
65% of the TESs reside in -25 to +5 vicinity from the
predicted terminators (Figure 11). This result indicated
that the TransTermHP ‘best after gene” predictions are
quite accurate.

Transcription terminator score correlation patterns
Similar to the analysis of promoter scores, we attempted
to find a correlation between the hairpin and tail scores
computed by TransTermHP with the level of gene
expression of the upstream gene (Figures 12ab). We
have observed weak positive correlation between gene
expression level and both types of scores with correla-
tion coefficient of 0.16 for the tail score and 0.12 for the
hairpin score. This finding suggests a trend towards
“stronger” terminators for more highly expressed genes,

Table 2 Detailed categorization of new genes predicted
by GeneMarkS. Note that the first five rows correspond
to cases of frameshift or premature stop annotations and
subtotal to 332 gene predictions.

The region contains an authentic frameshift and is not the result
of a sequencing artifact

210

The region contains an authentic point mutation causing a
premature stop and is not the result of a sequencing artifact

56

The region contains a gene with one or more premature stops or
frameshifts and is not the result of a sequencing artifact

51

The region contains a pseudo gene one or more premature stops
and is not the result of a sequencing artifact

10

The region contains a match to at least one other gene that is
not full length and is not the result of a sequencing artifact

5

The region is annotated as rRNA 22

Not annotated 163

Total 517

Figure 8 Length distributions of 5’ and 3’ UTR. a. TSSs were
defined as 5’ boundaries of transcripts identified by the Viterbi
algorithm. b. Length distribution of predicted 3’ UTR. TESs were
defined as 3’ boundaries of transcripts identified by the Viterbi
algorithm.
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perhaps because the production of such important genes
should be more tightly regulated.
Having a set of both promoter and terminator scores, we

checked for correlation between them for a set of genes
that have both promoters and terminators, the set of single
gene operons (Figure 12c). With a correlation coefficient

of -0.05 we conclude that promoter and terminator scores
in single gene operons are essentially not correlated.

Comparison of RNA-Seq operon mapping with
OperonDB predictions
Transcripts inferred from mapped RNA-Seq reads deter-
mined extents of B. anthracis operons and delineate
pairs of adjacent genes residing in the same operon.
A computational tool for predicting operons in prokar-
yotic genomes, OperonDB, was developed earlier [2].
OperonDB defines a confidence level (%) for a pair of
adjacent genes (located in the same strand) that the pair
belongs to the same operon. To elucidate relationship
between the OperonDB analysis and the transcript map
predicted from raw RNA-Seq reads we determined for
all gene pairs with given OperonDB defined confidence
to belong to one operon the frequencies of two comple-
mentary events when RNA-Seq inferred TSS is present
or absent between the two genes (Figure 13). Here we
see that for the confidence level 75% and higher, the fre-
quency of gene pairs with TSS between them (predicted
from RNA-Seq) consistently goes down while the fre-
quency of gene pairs with an evidence of TSS absence is
steadily increasing. On the other hand, the Operon DB
predictions with confidence from 50% to 75% are much
less conclusive as could be expected.

Relations of sequence determinants of translation
efficiency with gene expression levels
The values of codon adaptation index and average trans-
lation speed for a given gene depend on the model para-
meters derived from codon frequencies in a selected
reference set of genes. In the original paper Sharp and

Figure 11 Comparison of TES positions predicted by
TransTermHP with ones defined from RNA-Seq data. Negative
values correspond to experimental TES locating upstream of the
TransTermHP prediction. The relative positions were calculated for
1317 genes.

Figure 9 Logo of the Pribnow box motif. a) Logo of Pribnow
box motif detected within 60 nt upstream of predicted TSSs. b)
Distribution of Pribnow box start positions relatively to predicted
TSSs.

Figure 10 Joint distribution of promoter scores and
downstream gene expression levels. Correlation coefficient is 0.14.
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Li [4] used 27 Escherichia coli genes with experimentally
demonstrated high expression. Obviously, orthologs of
these genes in B. anthracis could make a reference set
for computing CAI values for B. anthracis genes. How-
ever, several genes in the 27 strong set of E. coli genes
do not have orthologs in B. anthracis. Therefore,
we have added several ribosomal protein genes with

the same total length, 1555 codons, to make up for
the missing genes (Additional file 1, Supplementary
Table 1). Interestingly, codons with highest frequencies
(optimal codons) in the groups of synonymous codons,
are not the same in the reference set of highly expressed
genes and in the whole complement of B. anthracis
genes (Additional file 2).
Gene expression data delivered by mapped RNA-Seq

reads allows for ranking genes by expression levels. For
the sake of comparison, we have increased the size of the
reference set to 100 genes, with 48 of these genes coding
for ribosomal proteins (Additional file 1 Supplementary
Table 2). A comparison of codon frequencies in the
whole complement of genes and in the 100 most highly
expressed genes (under Control condition) shows (Addi-
tional file 2) that seven synonymous groups have differ-
ent optimal codons. The list of optimal codons is
interesting to compare with the list of tRNA genes (Addi-
tional file 2). The anti-codon identities of the B. anthracis
tRNA genes could be inferred either from the RefSeq
annotation (NC_007530) or by using the tRNA gene find-
ing program, tRNASCAN-SE [23]. Notably, 34 out of 61
codons do not have tRNAs with exactly matching anti-
codon, which is in agreement with the “wobble hypoth-
esis” [24], suggesting that some tRNA species could pair
with more than one codon. In 6 out of 18 cases the opti-
mal codon in 100 highly expressed genes does not match
the exact tRNA species present in the B. anthracis cell;
the optimal codon in the whole gene complement does
not match the exact tRNA species in 9 out of 18 cases.

Relation of average translation speed and RBS score
with gene expression level
It was inferred from the mapped RNA-Seq reads that
under control growth condition 2,375 B. anthracis genes
are expressed and have an average coverage by tran-
script reads larger than 1 (each gene position is covered
by a RNA-Seq read more than once on average). We
have determined the weighted ATS value for each gene
using the 100 most highly expressed genes as a refer-
ence set for computation (see Methods) and plotted
ATS as function of (log2) gene expression level
(Figure 14a). We found that ATS correlates with gene
expression level with correlation coefficient equal to
0.525. Also we determined the values of codon adapta-
tion index, CAI, for each gene using either 37 or 100
highly expressed genes as a reference set. Similarly, we
plotted CAI values, as a function of gene expression
level. (Additional file 3, Supplementary Figures 1a,b).
These figures show almost identical behavior of CAI
with respect to a choice of the reference set. We com-
pared the values of CAI and ATS for sets of ribosomal
protein genes and genes of transcription factors (Addi-
tional file 1, Supplementary Tables 3, 4) for two

Figure 12 Joint distributions of gene expression level and a)
terminator hairpin and b) tail scores determined by
TransTermHP. Hairpin scores are multiplied by (-1). Correlation
coefficients are 0.12 and 0.16, respectively. Joint distribution of
hairpin and tail score c) has correlation coefficient 0.05.
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reference sets: 37 and 100 highly expressed genes
(Figure 15a,b). One can see that computation of CAI
and weighted ATS based on the smaller set of 37 genes
provides better separation of the two groups of genes
with high and low expression levels.
We have also revisited the issue of relations of RBS scores
and expression levels of downstream genes. To avoid
genes whose translation might start by a ribosome that
just finished translation of the upstream gene situated in
close proximity and, was not fully disassembled, we
selected genes preceded by non-coding regions longer
than 100 nt. From this set we further selected a subset
with average coverage by RNA-Seq reads larger than 1, a

total of 748 genes. In contrast with earlier observation of
no correlation between the RBS score and gene expression
level [7] we did observe a weak but significant correlation
(Figure 14b) with correlation coefficient 0.158. This result
means that there is a trend for genes with higher expres-
sion to have stronger RBS sites. This trend could be
expected as genes expressed at high level need to be tightly
regulated at all levels including the translation level. We
zoom in on genes with likely de novo ribosome binding
and assembling and filter out genes where RBS may not
play a decisive role in the process of translation initiation.

Correlation of gene expression levels for adjacent genes
Finally, correlation of gene expression levels of adjacent
genes is expected if two genes belong to the same operon.
Predicted TSS and TES positions delineate the B. anthracis
operons, however, we anticipate that there will be a certain
fraction of false positive TSSs and TESs due to the pre-
sence of errors in obtaining transcript reads and in their
mapping. Also, some true TSS and TES could be missed.
Figure 16a shows the gene expression levels for gene pairs
that are presumably situated in one operon, i.e. in between
a pair of TSS and TES predicted by the algorithm.
Figure 16b shows gene expression levels for pairs of genes
divided by transcript borders, a pair of TES and TSS.
These two figures clearly illustrate correlation of gene
expression levels for the gene pairs situated in the same
transcript (r = 0.85) and absence of correlation for gene
pairs divided between two adjacent transcripts (r = -0.03).

Concluding remarks
Overall, the findings reported in this paper are as fol-
lows. We have shown, in the case of bacteria B. anthra-
cis, that noisy data on mapped RNA-Seq reads can be
used in an HMM based algorithm inferring transcribed

Figure 13 Analysis of compatibility of the OperonDB predicted
operon topology with locations of RNA-Seq inferred TSS site.
Confidence levels for adjacent genes to belong to the same operon
were generated by OperonDB. For each confidence level the
percent of cases when a TSS was predicted or not predicted
between the two genes was calculated (for control growth data).

Figure 14 a) Joint distribution of 100 gene expression-weighted ATS index and gene expression level; b) joint distribution of RBS
score and gene expression level.
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and non-transcribed regions. We have shown that thus
determined transcribed regions provide evidence for
transcription for majority of already annotated active
genes, for some mutated dysfunctional genes, pseudo-
genes, as well as for some genes predicted by an ab
initio gene finder but not annotated yet. It was shown
that adjacent genes located inside predicted transcripts
have strong correlation in expression levels, while adja-
cent genes residing in different transcripts do not exhi-
bit a correlation at all. We have shown that the
OperonDB predictions of pairs of genes situated in the
same operon are in agreement with the evidence derived
from mapped RNA-Seq reads.
It was shown that promoter sites identified upstream

to the predicted TSS have scores that correlate with
gene expression level of downstream genes. Also, we
found a weak correlation of the gene expression level

with the scores of hairpin and tail of the downstream
transcription terminator. We have shown that the loca-
tions of sites of transcription termination predicted by
TransTermHP are in good agreement with the TES sites
inferred from RNA-Seq data. We have shown that the
new ATS index, the average translation speed of a gene,
as well as CAI correlate with gene expression level.
Also, contrary to what was thought before, we found a
correlation of the score of an RBS site with gene expres-
sion level of the downstream gene for genes that appear
to be the first genes in operons.

Additional file 1: Joint distribution of gene expression levels and
CAI values. CAI was calculated using a) 37 proteins homologous to
highly expressed E. coli proteins (including those selected by Sharp
1987); b) 100 most highly expressed genes inferred from the RNA-Seq
data. There is no obvious advantage in using a larger set of genes with
high expression.

Figure 15 Joint distribution of ATS (weighted) and CAI values for genes of ribosomal proteins and transcription factors. ATS and CAI
were defined based on the reference set of a) B. anthracis genes of 37 proteins homologous to highly expressed E. coli proteins (including
those selected by Sharp 1986); b) 100 most highly expressed B. anthracis genes as inferred from the RNA-Seq data.

Figure 16 Joint distributions of expression levels of pairs of adjacent genes located in the same strand a) with no TSS predicted
between the pair of genes, and b) with TSS predicted between the pair of genes. Correlation coefficients were 0.85 and -0.03, respectively.
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Additional file 2: Codon frequencies in the genome wide set of
genes and its subsets along with frequencies of cognate tRNA
genes for each codon. The codon frequencies were calculated from the
three sets of coding sequences, namely the whole genome, the 100
most highly expressed genes as observed from the read coverage data
and the 37 homologs to the proteins used by Sharp et. al (1987). The
“Weighted 100 genes” column shows the frequencies of codons adjusted
by weights, expression levels of the 100 genes as determined from read
coverage data. The 95 tRNA genes shown in “tRNA genes” column were
assigned to codons by tRNAscan-SE. Codon frequencies are normalized
to 1000. Numbers in bold font indicate the maximum frequencies/counts
in a synonymous group.

Additional file 3: Supplementary tables.
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