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ABSTRACT OF DISSERTATION  

Comparative Metagenomics of Coral Reef Associated Marine Biodiversity Across a Pollution 

Gradient in Western Indonesia 

  

by  

  

Aji Wahyu Anggoro 

Doctor of Philosophy in Biology  

University of California, Los Angeles, 2022  

Professor Paul Henry Barber, Chair  

  

The increasing pace of global decline of marine ecosystems requires standardized monitoring 

methods that can more effectively capture changes in biodiversity composition, facilitating 

adaptive management efforts. Current monitoring methods focus on a small number of focal 

taxa, limiting our understanding of ecosystem change. Ideal methods would capture marine 

biodiversity from microbes to metazoans, ensuring that monitoring captures taxa most impacted 

by environmental degradation at sites of interest. Such data could help conservation practitioners 

manage ecosystems to preserve taxa that are most vulnerable to environmental perturbation, 

aiding management and conservation efforts focused on preserving local ecosystems and 

ecosystem function.  

Environmental DNA (eDNA) and Autonomous Reef Monitoring Structures (ARMS) are 

increasingly used to enumerate local biodiversity as they are metabarcoding-based methods that 

allow for the sampling and reconstruction of entire communities across the tree of life from 
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microbial to metazoan communities. This study compares of eDNA and ARMS to understand 

changes in coral reef associated biodiversity in Pulau Seribu, an island chain in Western 

Indonesia where local reefs experience pronounced differences in pollution stress relative to 

their distance from Jakarta Bay. Chapter 1 compares the taxonomic range of ARMS and eDNA 

methods to capture local eukaryote marine biodiversity. Results demonstrate that these methods 

vary greatly in the total diversity and taxonomic composition of communities recovered, with 

minimal taxonomic overlap, indicating that ARMS and eDNA should be viewed as 

complementary rather than competing metabarcoding approaches for assessing marine 

biodiversity. Chapter 2 uses ARMS and eDNA to examine changes in marine communities and 

to identify indicator taxa across varied pollution levels in Kepulauan Seribu Jakarta. Results 

show a significant decrease in eDNA-ASV diversity and a slight increase in ARMS-ASV 

diversity with increasing Chlorophyll a concentration, a proxy for pollution stress, suggesting 

that eDNA may be a more effective tool for monitoring community change. Although taxa on 

ARMS appear to be impacted by pollution, both methods identified specific taxa that are 

indicators of pollution stress. Chapter 3 examines shifts in ARMS microbial communities 

relative to pollution stress across Kepulauan Seribu. Although microbial diversity was 

substantially different among the three ARMS fractions examined, there was no significant 

impact on total microbial community diversity, and a non-significant increase in bacterial 

diversity in sites with increased pollution stress. However, as with eukaryotes, there were taxa 

indicative of pollution stress.  Combined, the results of this thesis highlight the power of ARMS 

and eDNA metabarcoding to capture changes in marine biodiversity in response to 

environmental degradation, providing important new tools for the study and management of 

marine biodiversity, both in Indonesia and globally. 
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CHAPTER 1 

Community Metabarcoding Results Vary Based on Method: Comparative study of eDNA 

and ARMS to detect Marine Biodiversity in Western Indonesia 

 

Abstract 

Environmental DNA (eDNA) and Autonomous Reef Monitoring Structure (ARMS) are 

widely used to assess marine biodiversity and have expanded our ability to document rare cryptic 

taxa. However, it is unclear whether these methods provide comparable results and can be used 

interchangeably or whether they capture different components of marine biodiversity. This study 

direct compares results of ARMS and eDNA metabarcoding from coral reefs of Pulau Seribu, 

West Java, Indonesia. Results from COI metabarcoding demonstrate a substantial variation in 

both total community diversity and taxonomic composition. ARMS captured nearly twice as 

many ASVs than eDNA (2907 vs 1538), with less than 3% of ASVs being recovered by both 

methods. Although ARMS were dominated by largely benthic taxa (Annelids, Arthropods, 

Cnidaria, Mollusca, Porifera, Rhodophyta), planktonic taxa (Ascomycota, Bacillariophyta and 

Chlorophyta) dominated eDNA; both methods had high numbers of unidentified taxa. Results 

indicate that ARMS and eDNA metabarcoding should be viewed as complementary, rather than 

competing, approaches to assessing marine biodiversity. The large number of unidentified taxa 

highlight the need for more research in high biodiversity marine ecosystems like Indonesia to 

build metabarcoding databases, and fully realize the power of metabarcoding approaches.  
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Introduction  

Marine biodiversity plays a critical role in supporting the global economy (Bishop 1993, 

Jones-Walters & Mulder 2009), particularly the needs of local communities (Aylward & Barbier 

1992), where they can provide as much as 80% of daily protein intake (Moberg & Folke 1999, 

Bell et al. 2009). A healthy marine ecosystem mitigates the severity of natural disasters (e.g., 

tsunamis and typhoons) by reducing coastal erosion (Hernández-Delgado 2015, Gracia et al. 

2018) and allowing coastal communities to be more resilient (Hughes et al. 2003, Levin & 

Lubchenco 2008, Côté & Darling 2010). Marine biodiversity also plays an important role in 

regulation of global climate through carbon sequestration (Alongi 2014, Duarte & Krause-Jensen 

2017). Finally, the combined ecological goods and services provided by marine biodiversity are 

valued at US $2.5 trillion annually (UNCTAD 2021), highlighting the enormous resources that 

the ecosystem provides and the needs of conserving biodiversity against future threats. 

Despite its importance, marine biodiversity is in major decline worldwide (Sodhi et al. 2004, 

Wilson et al. 2010, 2015), with negative impacts for both humans and nature (Crain et al. 2008, 

Halpern et al. 2008). Marine ecosystems are threatened by local processes such as coastal 

development (Crain et al. 2009), pollution (Baum et al. 2015) and unsustainable fishing practices 

(Newton et al. 2007, Coll et al. 2008) as well as global processes such as ocean acidification and 

rising sea surface temperatures associated with increasing atmospheric CO2 levels (Guinotte & 

Fabry 2008, Hofmann et al. 2010). To track the impacts of these threats, and provide data 

essential for biodiversity management, it is important to develop effective monitoring 

approaches.  

Current approaches to monitoring marine biodiversity are often narrow in scope, focusing 

only on economically valuable or keystone species (Williams & Gaston 1994, Brooks et al. 
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2006, Bickford et al. 2007, Losey & Vaughan 2009). Results of such targeted monitoring efforts 

may be misleading as they ignore the majority of marine biodiversity and the role and magnitude 

of ecosystem functioning which remains unknown (Mora et al. 2011). Furthermore, the small 

number of monitored taxa may not be the most sensitive to anthropogenic stressors, potentially 

limiting an understanding of impacts and possible mitigation measures. 

In response to the need for new approaches to monitoring of marine ecosystems, scientists 

are increasingly employing molecular methods such as metabarcoding to assess community 

diversity using environmental-derived samples (Deiner et al. 2017, Aylagas et al. 2018, Ríos-

Castro et al. 2021). Metabarcoding is a method for elucidating the members of a biological 

community by combining DNA barcoding and high throughput DNA sequencing (Thomsen et 

al. 2012, Leray & Knowlton 2016b, DiBattista et al. 2020). Metabarcoding is a promising 

approach for monitoring marine ecosystems because of its ability to rapidly detect and enumerate 

local biodiversity, using specific primer sets to target large taxonomic groups such as teleost 

(Zhang et al. 2020, Madduppa et al. 2021), elasmobranchs (Bakker et al. 2017), metazoans 

(Leray & Knowlton 2015), or microbes (Ladin et al. 2021, Bairoliya et al. 2022). Due to the 

generality of these methods, which require only standard molecular lab facilities, as well as their 

sensitivity and cost-effectiveness, metabarcoding approaches are increasingly applied in various 

terrestrial (Schmidt et al. 2013, Evans et al. 2016, Valentin et al. 2020, Ladin et al. 2021) and 

aquatic environments (Leray et al. 2013, Carstensen et al. 2016, Leray & Knowlton 2016b, 

Wangensteen et al. 2018, Pearman et al. 2018, Madduppa et al. 2021), providing more detailed 

insights into local biodiversity compared to conventional methods.  

Two metabarcoding approaches increasingly used to study biodiversity of marine 

ecosystems are Environmental DNA (eDNA) and Autonomous Reef Monitoring Structures 
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(ARMS). eDNA is based on the collection of cells and DNA that organisms shed into the 

environment. By metabarcoding this dissociated DNA, eDNA metabarcoding allows for non-

destructive sampling and reconstruction of entire communities (D’Alessandro & Mariani 2021, 

Blackman et al. 2022). This method has a broad range of applications, including detection of 

rare/endangered species (Weltz et al. 2017) and invasive species (Ellis et al. 2022), assessing 

changes in community composition over time (Muha 2021, Reinholdt Jensen et al. 2021), and 

tracking ecologically important taxa (Djurhuus et al. 2020, Bonfil et al. 2021). This method is 

particularly useful in marine ecosystems where logistical, budgetary and safety concerns greatly 

limit biodiversity monitoring (Gold, Sprague, et al. 2021). In comparison to conventional 

biodiversity monitoring (e.g., visual census), eDNA captures much more biodiversity across a 

broader range of taxonomic groups (Zaiko et al. 2015, Stat et al. 2017, Holman et al. 2019, Gold, 

Sprague, et al. 2021). eDNA is particular useful when used in conjunction with conventional 

methods, by detecting taxa that are large and mobile, small and cryptic, or have activity patterns 

that make them easily missed by traditional methods of marine biodiversity monitoring (Closek 

et al. 2019, Steyaert et al. 2020, Gold, Sprague, et al. 2021, Marwayana et al. 2022, Klunder et 

al. 2022).  

In contrast, ARMS metabarcoding is based on the collection and processing of entire 

marine communities that colonize an artificial structure comprised of 23 x 23cm PVC plates that 

are designed to approximate benthic marine habitats (Leray & Knowlton 2016b, Ransome et al. 

2017, Pearman et al. 2018). Although less commonly used than eDNA, there are over 1600 

ARMS deployed globally (Ransome et al. 2017) to understand distribution and dynamics of 

global marine biodiversity. Like eDNA, ARMS are designed to capture a broad cross section of 

marine biodiversity, particularly taxa that are overlooked by traditional survey methods (Leray & 
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Knowlton 2015, 2016a, Wangensteen et al. 2018), and can record changes in biodiversity 

composition across space and time. An important advantage of ARMS is that its standardized 

structure, surface area and processing protocols enable direct comparison among samples across 

a wide variety of taxonomic groups, habitats, geographic regions, and time.  

Although ARMS and eDNA both employ DNA metabarcoding to survey marine 

biodiversity, particularly in support of marine ecosystem monitoring, each method has unique 

characteristics in terms of sampling and ability to characterize marine biodiversity. For example, 

eDNA samples freely associated cells and DNA isolated from water samples, whereas ARMS 

samples actual organisms that encrust and/or live associated with the surface of the ARMS unit.  

eDNA integrates DNA signals from vertebrates, invertebrates, and microbial communities from 

a localized but indeterminate area of marine habitat ranging from 10s of meters to kilometers 

(Port et al. 2016, Yamamoto et al. 2017, Jeunen et al. 2019), whereas ARMS specifically target 

marine invertebrates, algae and microbial communities that colonize settlement plates installed 

on a specific location on the sea floor. Conversely, because eDNA degrades over a span of hours 

to days (Collins et al. 2018, Jensen et al. 2022), it represents only a snapshot of biodiversity 

present during a relatively brief period of time, whereas ARMS were designed to capture and 

integrate marine biodiversity that accumulates over time, typically one to several years (Pearman 

et al. 2016, Wangensteen et al. 2018, Carvalho et al. 2019).  

Although there haven’t been published studies aiming to investigate succession pattern in 

ARMS, taxa accumulation across site or regions have been reported to differ substantially. 

Cahyani 2021 and author own observation for example, have reported a well-established ARMS 

plate consisting of hard coral, soft coral and other taxa (e.g., macro algae and Crustose coralline 

algae) growing in more pristine, high fish biomass and diversity, and in relatively undisturbed 
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area in ARMS deployed for three years in eastern Indonesia. In contrast, ARMS deployed in 

other areas with similar length of deployment, however with intensified anthropogenic pressure 

and poor fish biomass and diversity, have taxa coverage that were dominated by filamentous and 

macro algae with minimal hard coral growth. Composition and abundance of the colonizing 

assemblage on artificial plates have been reported to depend on local characteristic which 

includes proximity to source of disturbance, size of (e.g., reef size (Bohnsack et al. 1994), 

proximity of source populations (Burt et al. 2009), local hydrodynamics (Baynes & M. Szmant 

1989) , and local taxa composition (Brown 2005). On this context ARMS methods can 

summarize local pollution context and can act as a proxy to ongoing and past disturbance within 

the proximity of ARMS deployment sites. And therefore, ARMS methods can be used to 

summarize local pollution context and can be used as a proxy to ongoing and past disturbance in 

the areas of deployment. Whereas eDNA tends to explain community dynamic within short 

period of time. Recent results showed however, albeit presumed to only represent snapshot of 

local diversity and coming from localized DNA, that eDNA might not be different across season 

in marine environment, and hence suggesting persistence of taxa composition across time (Salter 

2018, Collins et al. 2018). 

 Although both eDNA and ARMS have been used widely and are often described as 

alternatives or complementary to traditional approaches for marine biodiversity monitoring, 

these two methods haven’t been used in parallel. As such, it is unclear whether they capture local 

marine community diversity in relatively equivalent or dissimilar ways, and if the latter, how 

these methods differ in articulating local biodiversity and whether such differences matter for 

marine monitoring efforts. Answering these questions is important, particularly for high 

biodiversity regions like the Coral Triangle, where marine ecosystems are severely threatened 
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(Bruno & Selig 2007, Burke et al. 2011, Foale et al. 2013) but human and economic resources 

for monitoring of marine ecosystems are relatively limited (Barber et al. 2014).  

The Coral Triangle is a region of Southeast Asia that is home to the world’s largest and most 

diverse marine ecosystems (Allen & Adrim 2003, Allen & Erdmann 2009a). Despite the 

nutritional, economic, and cultural importance of marine ecosystems in this region (Hoegh-

Guldberg et al. 2009, Foale et al. 2013), population growth and the need for economic 

development has resulted in pronounced environmental degradation, with 85 % of reef area 

being lost are threatened by local stressors (Burke et al. 2011). Although traditional marine 

biodiversity monitoring studies (e.g., underwater visual census) have produced important 

information, such as species conservation status and patterns of macrofauna distribution, 

supporting marine conservation in this biodiversity hot spot requires novel approaches to 

improve biodiversity monitoring and expand our knowledge of ecological processes within the 

valuable marine ecosystems of the Coral Triangle areas. 

Cahyani (2021) used ARMS to demonstrate that broad-scale patterns of marine biodiversity 

observed in macrofauna like fish and corals are also observed in cryptofauna and microbes 

across the Indonesian Archipelago. Similarly, Marwayana et al. (2021) employed eDNA across 

the Indonesian Archipelago, demonstrating that this method captured a largely non-overlapping 

ichthyofauna, compared to traditional visual survey methods. Although both studies examined 

marine diversity across the Indonesian Archipelago, they each sampled different locations, and 

Marwayana et al. (2021) excluded invertebrates, preventing direct comparisons of eDNA and 

ARMS metabarcoding results. 

Given the increasing use of eDNA and ARMS to study and monitor marine biodiversity, it is 

essential to understand how each of these methods perform, including their detection sensitivities 
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and taxonomic biases. This study examines the efficacy of eDNA and ARMS in marine 

ecosystem monitoring by comparing results from co-located samples obtained by each method 

from coral reef areas of the Seribu archipelago, Indonesia to better understand how these 

different metabarcoding approaches to environmental sampling might vary in their detection of 

marine biodiversity and to provide recommendations on how each method can best be employed 

in the monitoring of marine ecosystems 

 

Material, Methods and Environmental Data 

Study sites  

Kepulauan Seribu is an archipelago comprised of 105 islands (11 inhabited) that spans 

80km of the waters north and west of Jakarta, Indonesia. Due to its proximity to Jakarta and 

anthropogenic stressors related to terrestrial effluent, a number of studies have conducted 

biodiversity assessments using visual census and morphological identification approaches 

(Rachello-Dolmen & Cleary 2007, van der Meij et al. 2009, 2010, Madduppa et al. 2013, Cleary 

2017), revealing 216 reef fish species and 61 genera of hard corals (Rachello-Dolmen & Cleary 

2007, van der Meij et al. 2009, 2010, Madduppa et al. 2013, Cleary 2017). In this study, we use 

eDNA and ARMS metabarcoding to assess marine biodiversity across this archipelago and to 

compare how these methods vary in detecting local marine diversity. 

   

ARMS Deployment, Collection, and Sampling  

We deployed ARMS and collected eDNA samples from eight islands across the 

archipelago, with an average distance between sampling sites of 7-10 km. Our sampling sites 

encompass an area 10 km from Jakarta Bay to 60 km north direction away from bay (Table. 1).  
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In 2013, we deployed sets of three ARMS on SCUBA at a depth of 10m, 24 ARMS in a 

total for eight sites. Following standard protocols, each of these ARMS consisted of nine 23 cm x 

23 cm stacked PVC plates separated by spacers and attached to a 35 cm x 45 cm base plate to 

provide cryptic habitats for reef organisms. After being deployed on the seafloor for three years, 

we recovered the ARMS units in 2016 using SCUBA. To recover ARMS units, we first 

enveloped the entire ARMS unit in a 40 µm nitex mesh-lined container to prevent motile 

organisms from escaping during recovery. After retrieval, we transported the ARMS unit to the 

Indonesian Institute of Science field lab in Pulau Pari using large plastic container filled with 

filtered, aerated sea water. At the lab, we carefully disassembled each ARMS unit individually 

and then separated and transferred each plate to individual trays filled with filtered seawater. To 

ensure that all motile organisms were detached from the ARMS plates, we vigorously shook 

each plate in the holding tank prior to transferring it to its individual tray. We then took high 

resolution photos of the top and bottom of each plate for future visual reference.  

To obtain samples for metabarcoding, we processed each ARMS unit, following 

standardized disassembly and sampling protocols (Leray & Knowlton 2015, Ransome et al. 

2017). To ensure that we collected all motile taxa and sediment, we filtered water from the 

container used for transporting ARMS through sets of sieves (2 mm, 500 μm and 106 μm) in two 

steps. In the first step, we stacked 2 mm sieve on top of the 500 µm sieve and allowed all the 

water and organisms from the transporting container to pass through both sieves and into a new 

bin. Next, we removed the 2 mm sieve and placed a 106 μm sieve under the 500 µm sieve filled 

with sediment. We then passed the water from the initial filtering step through the 500µm and 

106 µm sieve. Through this sequential filtering, we obtained 3 fractions, >2 mm fraction that was 

saved for subsequent voucher-based DNA barcoding, as well as a 500 µm and 106 µm fraction, 



 

 10 

hereafter referred to as the 500 and 100 µm fraction, respectively. Next, we concentrated these 

two fractions using a 40 µm nitex mesh stretched between fitted PVC pipes and then rinsed with 

95% ethanol, and then transferred the resulting samples to falcon tubes preserved with 95% and 

stored at -20 °C. Lastly, to document non-motile taxa (hereafter referred to as the sessile 

fraction), we scraped all encrusting or sessile biota from ARMS plate into a tray then 

homogenized the tissues with a blender for 30 s at maximum speed. We then rinsed the 

homogenate with ethanol into a 45 μm Nitex mesh collection net. After allowing excess ethanol 

to drip away, we placed the sample in a 50 ml falcon tube filled with DMSO and stored in -20 

°C.  

 

eDNA Collection and Sampling  

To create an eDNA dataset directly comparable to ARMS, we followed standard 

sampling protocols used in temperate ecosystems (Miya et al., 2015), collecting three one-liter 

replicate seawater samples on SCUBA at depths between 11-15m at each ARMS deployment 

site to maximize species diversity and to account for fine-scale heterogeneity in local eDNA 

signatures. To maximize comparability, we sampled eDNA within 1-2 days of ARMS retrieval.  

To isolate eDNA from water samples, we filtered each replicate seawater sample through 

a 0.22-micron Sterivex™ filter (Millipore®, SIGMA MILLIPORE) following the methods of 

Miya et al. (2015) with one key modification; we collected individual water samples in sterile 1 

liter Kangaroo™ Gravity Feeding Bags (similar to intravenous drip bags) that allow for gravity 

filtration through the Sterivex™ filters. In addition to the eDNA water samples, we also filtered 

one blank at each locality as a negative control. Filters were stored in a -20 freezer until eDNA 

was extracted. 
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DNA Extraction and Library Preparation 

ARMS 

To prepare the fractions for DNA extraction, we performed decantation on the 500 µm 

and 100 µm fractions to separate calcium carbonate and terrigenous sediment from organic 

matter. During the decantation, we suspended the entire fraction in sterile water in a 1 L 

Erlenmeyer flask, allowed the sediment to settle, and then decanted the suspended content 

through a geological sieve to recover the organic contents. We used a 106 µm sieve to decant the 

500 µm fraction and a 45 µm sieve to decant the 100 µm fraction. We then used the decanted 

samples for further extraction and sequencing steps. Because of minimal inorganic content, the 

sessile fraction was not decanted; instead, the homogenized material was vigorously mixed 

before sub-sampling steps.  

DNA extractions were performed at Laboratory of Marine Molecular Genetics, Research 

Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia and sequencing 

were performed at Smithsonian Institution National Museum of Natural History in Washington 

DC, USA. We performed DNA extractions using 10 g of each ARMS sample digested overnight 

with the addition of 400 μg/ml Proteinase K in a shaking incubator at 56 oC at 200 rpm. 

Following digestion, we extracted DNA using the Powermax Soil DNA Isolation Kit (MoBio, 

Carlsbad, USA) following the manufacturer’s protocol. To remove potential PCR inhibiters from 

DNA extractions, we cleaned all DNA extracts using a PowerClean DNA Clean-Up Kit (MoBio, 

Carlsbad, USA) and then quantified DNA extractions using Qubit Fluorometer (Invitrogen, 

Carlsbad, CA, USA) and a Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, 

MA, USA). 
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We amplified mitochondrial COI from ARMS samples using seven tailed primer pairs of 

m1COIintF and jgHCO2190 (Leray et al. 2013, Geller et al. 2013). We conducted PCR 

amplifications in 20 µl reactions volumes consisting of 1 µl of 10 µM forward and reverse 

primer, 1.4 µl of 0.2 mM dNTP, 2 µl Advantage 2 DNA Buffer (Takara Bio USA, Mountain 

View, CA, USA), 0.4 µl Advantage 2 Polymerase (Takara Bio USA, Mountain View, CA, 

USA), 13.2 µl distilled water, and 1 µl of 10 ng/l DNA template. We performed a two-step 

touchdown PCR; initial denaturation was at 95°C for 10 min, proceeded by the first step for 

sixteen cycles: 95°C for 10 s, 62°C (-1°C per cycle) for 30 s, and 72°C for 60 s. The second step 

was run for twenty cycles: 95°C for 10 s, 46°C for 30s, and 72°C for 7 min, followed by a final 

extension at 72°C for 7 min. We ran PCR reactions in triplicate and verified success on 1.2% 

agarose gels, then all successful reactions were pooled into a single product.  

We quantified and pooled PCR products using a Qubit Fluorometer (Invitrogen, 

Carlsbad, CA, USA) with a Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, 

MA, USA). We pooled tailed primer pairs in equimolar concentrations, followed by bead 

cleaning at a concentration of 0.8x vol/vol with Agencourt AMPure XP beads (Beckman 

Coulter, Brea, CA, USA). We then prepared sequencing libraries with a TruSeq DNA PCR-Free 

IT Library Prep Kit (Illumina, San Diego, CA, USA) following the manufacturer’s protocols. 

Lastly, we quantified the indexed samples using a Qubit Flourometer, pooling 50 ng of each 

library, normalizing the sample to 4nM prior to sequencing on an Illumina MiSeq with a MiSeq 

using Reagent Kit v3, 600-cycle (Illumina, San Diego, CA, USA) and a 1% PhiX spike.  
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eDNA 

We extracted eDNA samples using the modified DNeasy Blood & Tissue Kit (QIAGEN, 

Germany) of Spens et al. (2017) and then PCR amplified the extracted eDNA using the same 

primer sets as above, but using the Multiplex PCR Kit (QIAGEN, Germany). To account for 

potential PCR bias associated with low eDNA concentrations, we conduced PCR in triplicate 

(Andruszkiewicz et al., 2017; Miya et al., 2015; Taberlet et al., 2012). Each PCR reaction 

consisted of 12.5 μL Qiagen 2x Master Mix, 2.5 μL (2 mM) of the primer, 6.5μL nuclease free 

water, and 1 μL the DNA extract.  Thermocycling parameters utilized a touchdown protocol, 

beginning with a 15-minute pre-denaturation step at a 95 °C, followed by a touchdown 

thermocycling profile consisting of 30 seconds denaturing at 94 °C, 30 seconds annealing at 69.5 

°C, and 30 seconds extension at 72 °C, with the annealing temperature dropping by 1.5°C per 

cycle until50 °C.  Following this initial touchdown phase, the main cycle consisted of 25 cycles 

of 94 °C for 30 seconds for denaturation, 50 °C for 30 seconds for annealing and 72 °C for 45 

seconds for extension, concluding with a 10-minute final extension at 72 °C. Final PCR product 

were then verified on 2% agarose gels. We then pooled the triplicate PCR products, representing 

a single one-liter eDNA sample, into a single tube, and purified these pooled PCR products using 

Sera-Mag™ and Sera-Mag Speed Beads Magnetic Particles (SIGMA-ALDRICH®) following 

manufacturer’s protocols. Next, we quantified the DNA concentration (ng/μL) of each pooled 

PCR sample using the Qubit™ 4 NGS Starter Kit (Thermo Fisher) following the manufacturer 

protocol and then adjusted concentrations of pooled PCRs to have equal concentrations across all 

samples. We then used the Nextera DNA Library Preparation Kit (Illumina®) to index each PCR 

amplified eDNA sample using a unique combination of Illumina Nextera i5 and i7 primers in a 

second PCR reaction, following the manufacturer protocol. The indexing PCR reaction consisted 
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of 12.5μL Kapa High Fidelity Master Mix, 0.625 μL of 1μM i5 Illumina Nextera indices, 0.625 

μL of 1μM i7 Illumina Nextera indices, and 11.25 μL of PCR product for a total of 10ng of 

DNA.  

To bioinformatically distinguish among samples, we added index barcodes to each 

sample utilizing an indexing PCR protocol that began with an initial denaturation of 95 ̊C for 5 

minutes, followed by 8 cycles of:  98 C̊ denaturation for 30 seconds, 56 ̊C annealing for 30 

seconds, and 72 ̊C extension for 3 minutes, ending with a 72 ̊C extension for 5 minutes. To 

ensure the indexing PCR was successful, we electrophoresed indexed PCR products at 120V for 

45 minutes on a 2% agarose gel prepared with 6x SYBR™ Green. We then cleaned and 

quantified indexed PCR products, as above, to creating a final sequencing library that contained 

equal DNA concentrations (10 ng/μl) of each sample and sequenced the libraries at the UC 

Berkeley sequencing core on an Illumina MiSeq platform, utilizing 300 base pair paired end 

sequencing. 

 

Sequence Processing and Taxonomic Assignments 

ARMS 

Because the resulting COI data contained mixed-oriented paired-end demultiplexed 

sequences (i.e., forward, and reverse-oriented DNA sequence reads within a single raw FASTQ 

file), we used several scripts and steps to preprocess our DNA barcodes to separate and group the 

sequences based on orientation. To split reads, we first demultiplexed all raw paired-end FASTQ 

reads using CUTADAPT 1.13 (Martin, 2011) by employing error rate of 0.15 (-e = 0.15), using -

-discard-untrimmed and --no-indels options. This step produced forward oriented and reverse 

oriented for each sample. Following this step we imported each sample from each orientation as 
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a qza file for further processing using QIIME22, ver. 2018.11 (Bolyen et al. 2019). Next, we 

used Divisive Amplicon Denoising Algorithm 2 (DADA2) (Callahan et al. 2016) implemented in 

QIIME22 to filter reads, remove poor quality base pairs from the 3' end of reads, remove 

sequencing error through denoising, combine forward and reverse reads, identify and remove 

chimeras, and cluster all reads into OTU's (amplicon sequence variants) to each orientation. We 

set --p-trunc-len for forward reads at position 240 and 210 for reverse reads, while for chimera 

removal methods we used ‘consensus’ method as implemented in QIIME22 chimera removal 

method. These steps generated representative sequences and an OTU table as qza files for each 

orientation. Next, we exported the qza representative sequences file into a FASTA file. 

Following this step, we reverse-complemented the reverse oriented FASTA file using 

fastx_reverse_complement command from FASTX Toolkit 0.0.14 

(http://hannonlab.cshl/fastx_toolkit/) and rehashed it using FASTA-names-to-md5.py command 

from (https://gist.github.com/mkweskin). We then renamed reverse oriented ASV tables, using 

batch-find-replace.py from (https://gist.github.com/mkweskin). Following these steps, we 

imported the rehashed and renamed ASV and FASTA file into the QIIME22 qza format and 

merged with existing forward oriented file using QIIME2 feature-table merge-seqs and QIIME2 

feature-table merge commands. Lastly, we applied LULU (Frøslev et al. 2017) to remove 

erroneous ASVs (minimum_match = 84 for COI, minimum_relative cooccurence = 0.90 for both 

markers) to the representative sequence  and then clustered all FASTA sequences using vsearch 

(Rognes et al. 2016) at 97%  
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eDNA 

We analyzed all eDNA sequences using the Anacapa pipeline (Curd et al., 2018). Briefly, 

Anacapa begins by creating a de novo sequence reference library by combining records from 

publicly accessible databases, such as European Molecular Biology Laboratory (EMBL) and 

National Center for Biotechnology Information (NCBI) using the CRUX package (Creating 

Reference   libraries   Using   existing   tools; https://github.com/limey-bean/Anacapa/tree/New-

Master/Anacapa_db). Anacapa then de-multiplexes the amplicon reads based on the primer 

sequences and primers are trimmed from the reads. Next, the DADA2 algorithm (Callahan et 

al.2016) performs denoising and error correction on the raw sequence data, merges paired end 

reads, and assigns high quality reads to Amplicon Sequence Variants (ASVs) through ASV 

Parsing. Results were then assigned to taxa using both Bowtie 2 and the Bayesian Least 

Common Ancestor algorithm (BLCA; Gao et al.2017.). Following these steps, the resulting 

FASTA file, list of assigned ASV and number of reads per samples were then processed through 

LULU as detailed in ARMS method. 

 

Merging eDNA and ARMS Data  

To ensure consistency in taxonomic assignment and comparability across data sets, we 

merged FASTA files from both ARMS and eDNA prior to taxonomic assignment. We combined 

the FASTA files using cat command in UNIX, conducted alignment using MAfft software 

(MAFFT v7.481) and then clustered aligned sequences using mothur (at 97% similarity.  We 

then conducted taxonomic assignment of the combined sequence files using BLASTN (Camacho 

et al. 2009) employing a 85% identity threshold. For assignment, we used custom database that 

combined NCBI database (downloaded on June 2020) and a local BIOCODE database (Meyer, 
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C. P. 2016) generated using ANACAPA toolkit (Curd et al. 2019). This resulted in an OTU table 

consisting of representative sequences and a taxonomic table that included assigned taxonomic 

names for each of these representative sequences. These files were then arranged as a single 

phyloseq object (phyloseq package version 1.26.1) (McMurdie & Holmes, 2013) to allow 

visualization and further analysis.  

 

Data Analysis 

We used phyloseq package (version 1.26.1) (McMurdie & Holmes, 2013) to wrangle data 

prior visualization steps, combining the taxonomic file, representative sequence and OTU table 

as a single phyloseq object/file. We also used the package to count alpha diversity (Observed 

OTUs, and Shannon), group samples based on fraction and sites and transformed from reads 

counts to relative read abundance (RRA). In order to visualize all plots we used ggplot2 (version 

3.3.2) (Wickham, 2016). To produce rarefaction curves and visualize sampling effort and OTU 

richness across sites and fractions we use GGRARE package (version 0.1.0.) (Kandlikar, 2020). 

To visualize taxonomic overlap among methods, we produced Venn diagrams using VENN 

package (version 1.10.) 

To test for significant differences among alpha diversity in different sites and fractions, 

we first tested for normality in all alpha diversity values across sites ,using Shapiro test as 

employed in stats package (version 4.0.2) (R Core Team,  2020) and homogeneity of variances 

using using bartlett.test function from the same package. For data that have normal distribution 

and equal homogeneity we implemented one-way ANOVA and for non-normally distributed 

data we used Kruskal-Wallis test as implemented in stats package. To test if there was a 

significant difference between the number of OTUs generated by eDNA and ARMS, we used 
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individual non-summed replicate sample data to build a two-way ANOVA model with the 

formula number_of_OTUs~eDNA or ARMS*site (number of OTUs reflects number of OTUs at 

each sites, while eDNA/ARMS reflect the method used, and site reflect the deployment sites) 

implemented in R using the function aov. For the phylodiversity analysis we built a phylogenetic 

tree using Neighbor-Joining method as implemented in PHANGHORN 2.7.1 package. Following 

this step, we used pml and optim.pml to compute the likelihood of a phylogenetic tree and to 

optimize the different model parameters given a sequence alignment and a model and calculated 

phylogenetic diversity (PD) using the estimate_pd command from BTOOLS 0.0.1 (Battaglia, 

2018). We then used Shapiro test again to check the normality in PD values and bartlett test for 

homogeneity detection. For data that have normal distribution and equal homogeneity we 

implemented one-way ANOVA and for non-normally distributed data we used Kruskal-Wallis 

test as previously stated  
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Results 

General Reads and Sequence Results 

ARMS 

We recovered 18 of the 24 deployed ARMS; the remaining six either accidentally 

detached from the substrate or were stolen. We processed the 100um, 500um, and sessile 

fractions from the remaining ARMS, for a total of 54 samples for subsequent lab work and down 

streaming data analysis (a list of sample name is available in a Supplemental Table S1-1).  

From the 54 samples, we generated a total of 2,049,305 sequencing reads after post  

quality filtering and the exclusion of chimeras, representing a total of 3385 OTUs with a mean 

read length of 312.3bp. Rarefaction curves plotting OTU discovery vs sequencing depth showed 

that most of the samples saturated for OTU discovery (Fig. 1-1). After creating the OTU tables 

and performing the final filtering step, we rarefied the dataset to even sequencing depths of 

11,000 reads/sample to ensure results weren’t impacted by uneven sequencing depth. Three 

samples (Pari-100 μm, Sepa-500 μm and Kotok-100 μm) were discarded as the sample had fewer 

than 11,000 reads individually. This process resulted in a final dataset of 561,000 high quality 

reads representing 2907 OTUs that was used for all subsequent analysis, including calculation of 

alpha and beta diversity and all statistical analysis. 
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Figure 1-1. Rarefaction plots showing numbers of OTUs as a function of sequencing depth for 

each individual ARMS unit across sampling sites. Plot was truncated at 20.000 reads to show 

that each individual ARMS collected species at a saturation point.  

 

eDNA 

 Following the removal of blanks and control samples, we collected 24 eDNA samples 

from across eight sites, from which we generated a total of 1,139,602 sequencing reads and 

1,719 OTUs (a list of sample name is available in a Supplemental Table S1-2). Rarefaction 

curves show sequencing depth approached saturation for OTUs discovery for all of the samples 

(Fig. 1-2). To ensure comparisons of ARMS and eDNA were not impacted by sequencing depth, 
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we applied the same rarefaction threshold of 11,000 reads for each eDNA sample, resulting in a 

total of 231,000 reads and 1538 OTUs. We then use the resulting taxon table for all downstream 

biodiversity analysis and comparisons with ARMS data. 

 

Figure 1-2. Rarefaction plots showing numbers of OTUs as a function of sequencing depth for 

each eDNA sample. Plot was truncated at 20.000 reads to show that each samples collected 

species at a saturation point.  

 

Alpha Diversity  

Across all sampling sites, ARMS had higher total OTU diversity (2907) than eDNA 

(1538) when combining data across the 100 μm, 500 μm and sessile fractions. Comparing 

individual ARMS fractions to eDNA revealed that the 100 μm fraction had similar total diversity 



 

 22 

to eDNA (1550 vs 1538 OTUs, respectively), but that eDNA had more OTUs than the 500um 

(1052 OTUs) and Sessile (1159 OTUs) ARMS fraction.  

Examining total OTU diversity on a site-by-site basis, ARMS recovered an average of 

300.61 OTUs per site (Table 1; max= 531 at Lancang Besar, min=142 at Kotok). The 100 

fractions recovered an average of 166.43 OTUs per site (max= 241 at Tidung, min=78 at Kotok), 

the 500 fraction recovered an average of 94.58 OTUs per site (max= 133 at Lancang Besar, min= 

62 at Pramuka), and the sessile fraction an average of 111.28 OTUs per site (max= 347 at 

Karang Beras, min=45 at Sepa). In contrast, eDNA yielded an average of 255.14 OTUs per site 

(max= 322 at Sepa, min=151 at Lancang Besar). (Tab. 1-1.) (Fig. 1-3). 

Table 1-1. Maximum and minimum number of OTUs across sites in both eDNA and ARMS. 

Kruskal-Wallis test demonstrated that only OTUs from eDNA samples were significantly 

different across sites.  

 

 

Wilcoxon signed-rank test showed that ARMS recovered significantly more OTUs than eDNA, 

when data is examined collectively, however when the data is split by individual fractions, we 

failed to reject the null hypothesis that both eDNA and ARMS have equal means of OTUs and 

the analysis suggest that eDNA has significantly more OTU than ARMS (paired Wilcoxon test, p 

Fractions Site with 
highest OTUs 
(No. of OTUs) 

Site with lowest 
OTUs 
(No. of OTUs) 

Mean Standard  
deviation 

Kruskal-Wallis 
test 

 
eDNA Sepa (355) Lancang Besar 

(123) 
255.14  71.35 p < 0.05 

Total 
ARMS 

Lancang Besar 
(531) 

Kotok (142) 300.61 97.26 p > 0.05 

100 Tidung (241) Kotok (78) 166.43 43.51 p > 0.05 
500 Lancang Besar 

(133) 
Pramuka (62) 94.58 18.58 p > 0.05 

Sessile Karang Beras 
(347) 

Sepa (45) 111.27 83.97 p > 0.05 
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< 0.05). Further, a two-way ANOVA, testing the effects of sample types (eDNA or ARMS), site 

and their interaction on the number of OTUs, indicated a significant effect of the interaction 

between ARMS’s location deployment – type of sampling methods used (p < 0.001) for 500 and 

Sessile fractions but not for 100 fraction and total ARMS (Table 1-2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3. Boxplots of alpha diversity inferred by total number of OTUs generated using eDNA 

(Green) and ARMS (orange), showing that eDNA captures significantly more OTUs than ARMS 

(paired Wilcoxon test, p < 0.05). 
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e 

500
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Table 1-2. Model output for linear model with formula number_of_OTUs~eDNAorARMS*Site  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 Fraction 
Vs eDNA 

     

 
Df Sum Sq Mean Sq F Value Pr(>F) 

Sample 1 71456 71456 26.37 3.06e-05 
Site 2 44509 114668 4.582 0.0352 

Sample:Site 2 1322855 661428 26.431 4.01E-05 
Residuals 12 300299 25025 

  
      

500 Fraction 
Vs eDNA 

     

 
Df Sum Sq Mean Sq F Value Pr(>F) 

Sample 1 393089 393089 98.29 3.93E-07 
Site 2 89435 44717 11.18 0.001813 

Sample:Site 2 118605 59303 14.83 0.000571 
Residuals 12 47989 3999 

  

Total ARMS 
Vs eDNA      

 Df Sum Sq Mean Sq F Value Pr(>F) 
Sample 1 20038 20038 5.179 0.031687 

Site 6 37832 6305 1.630 0.180484 
Sample:Site 6 128100 21350 5.519 0.000936 
Residuals 25 96719 3869   

 
 
 
 
 
 
 
      

Sessile 
Fraction Vs 

eDNA      

 Df Sum Sq Mean Sq F Value Pr(>F) 
Sample 1 4285616 4285616 171.254 1.83E-08 

Site 2 229337 114668 4.582 0.0332 
Sample:Site 2 1322855 661428 26.431 4.01E-05 
Residuals 12 300299 25025   
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General Taxa Composition  

The number of unassigned taxa varied both by site and by methods; however, on average 

36.83 % of ARMS OTUs were unassigned (max= 54.44 % at Pari, min=23% at Tidung, sd = 

10%). In contrast, unassigned OTUs were higher with eDNA; on average 56.32 % of OTUs 

could not be assigned to taxa (max= 73.78 % at Lancang Besar, min= 46.42 % at Sepa, sd = 

9.37%). At thephylum level, the vast majority of ARMS reads across all sampling sites were 

dominated by Annelids, Arthropods, Cnidaria, Mollusca, Porifera, Rhodophyta. In contrast, 

Ascomycota, Bacillariophyta and Chlorophyta dominated eDNA reads. Overall, eDNA captured 

more taxonomic diversity associated with planktonic habitats while ARMS captured diversity 

largely associated with benthic habitats. For example, 3.4 % of eDNA reads were associated with 

planktonic diatoms in the order Bacillariophyta, while only 0.3 % reads from ARMS were from 

this same group. Similarly, red algae (Rhodophyta) were among the most common sequences 

recovered from ARMS, representing almost 13.92 % of total reads, whereas Rhodophyta was 

only 0.4 % to total reads in eDNA. 

Examining taxonomic composition of individual ARMS fractions yielded similar results 

but varied by fraction. Taxonomic composition was relatively similar in the 100 and 500 

fractions, with the sessile fraction having substantially higher reads of Rhodophyta and Porifera 

(± 16.79 % of Poriferan reads contributed to overall taxa composition in ARMS sample). 

Ascomycota, Bacilioryphyta and Chlorophyta have relatively zero to small reads contribution to 

overall taxa composition in 100µm and 500 µm ARMS fractions (only ± 0.007 and 0.004 % 

reads for Ascomycota and Chlorophyta respectively) however in contrast contributed 2.15 % 

(Ascomycota) and 25.75 % (Chlorophyta) being recovered in eDNA samples (Fig. 1-4).  
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Figure 1-4.  Contrasting differences in community composition between eDNA and ARMS 

method. Reads using ARMS were dominated by Porifera and Rhodophyta while in contrast 

Ascomycota and Bacillariophyta dominated reads collected using eDNA method. (A.) eDNA Vs 

ARMS total, (B.) eDNA Vs different fractions 

 

A. 

B. 
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Community Comparisons  

Shared taxa 

Despite sampling ARMS and eDNA from the same locations, comparison of total OTU 

diversity showed that only 132 (2.9%) of a combined 4313 OTUs were shared between the two 

datasets; 2775 OTUs (64.3%) were unique to ARMS and 1406 OTUs (32.6%) were unique to 

eDNA (Fig. 1-5A.). These shared taxa represented 9.65 % of total sequencing reads, and were 

largely comprised of taxa from marine sponges (family Tedaniidae), polychaete worms (family  

Terebellidae) and “unassigned” taxa. The 2775 OTUs unique to ARMS represented 63.15 % of 

sequencing reads and were numerically dominated by red algae (family Peyssonneliaceae), 

marine sponges (family Microcionidae) and unassigned taxa. The 1406 OTUs unique to eDNA 

represented 27.19 % of sequencing reads and were numerically dominated by green algae 

(family Mamiellaceae), copepods (family Calanidae) and unassigned taxa. 

Comparing eDNA to individual ARMS fractions showed that only 82 of 2615 (3.1%) 

taxa occurred in both the sessile fraction and eDNA (Fig. 1-5B.) and in general total OTU from 

each site is larger when eDNA method is used (Fig. 1-6). Sponges (family Pseudoceratinidae and 

Tedaniidae) and soft corals (family Nephtheidae) dominated the taxa shared among eDNA and 

the sessile ARMS fraction. Only 57 of 3031 (1.9%) of total OTUs were shared between eDNA 

and the 100 µm ARMS fraction shared (Fig. 1-5D.). The most common shared taxa were 

diatoms (family Chaetocerotaceae), soft coral (family Nephtheidae) and polychaetes (framily 

Terebellidae). Lastly, only 52 taxa were shared between eDNA and the 500 µm ARMS fraction 

(Fig. 1-5C.). Shared taxa included diatoms (family Chaetocerotaceae), snails (family 

Haminoeidae) and polychaetes (family Terebellidae). 
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Figure 1-5. Venn diagram detailing number of shared and unique OTUs between fractions and 

eDNA. Samples from eDNA method have relatively more OTUs compared to ARMS especially 

when the samples are split by individual fractions. (A.) eDNA Vs ARMS total, (B.) eDNA Vs 

Sessile Fraction, (C.) eDNA Vs 500 Fraction, (D.) eDNA Vs 100 Fraction. 

 

Phylogenetic Diversity Comparison Among Sites  

Phylogenetic diversity (PD) varied across sampling sites. For eDNA, PD values ranged from a 

low of 34.54 in Lancang Besar to a high of 74.71 in Pramuka, with a mean of 55.42; however, 

the variation in PD among sites was marginally significant (Kruskal-Wallis test, p = 0.06  

(Fig. 1-7.). For ARMS, PD values ranged from a low of 12.94 in Tidung to a high of 96.24 in 

Karang Beras, with a mean of 35.17; as with eDNA, no significant differences in PD were 

A. 

D. C. 

B. 

Sessile Fraction Vs eDNA ARMS Total Vs eDNA 

500 Fraction Vs eDNA 100 Fraction Vs eDNA 
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observed across sample sites for the combined ARMS data or the 100 µm, 500 µm and sessile 

fractions (Kruskal-Wallis test, p = 0.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6. Venn diagram detailing number of shared and unique OTUs between ARMS-100 

fraction and eDNA. Samples from eDNA across sites have relatively more OTUs compared to 

ARMS (A.) Lancang Besar, (B.) Pari, (C.) Tidung, (D.) Karang Beras, (E.) Pramuka, (F.) Kotok, 

(G.) Sepa 

 

A. Lancang Besar B. Pari 

C. Tidung  D. Karang Beras 

E. Pramuka F. Kotok

G. Sepa
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Although results showed no significant differences in PD across sites, PD was significantly 

higher in eDNA samples compared to ARMS when all fractions data were combined (Wilcoxon 

signed rank exact test, p < 0.009). This pattern was particularly pronounced when comparing 

eDNA to the 500 µm and sessile fractions (Wilcoxon signed rank exact test, p = 0.0015, green 

versus aqua color dots in Fig 6), but results were not significant when comparing eDNA and the 

100 µm ARMS fraction (Wilcoxon signed rank exact test, p > 0.05, orange dots versus aqua 

color dots in Fig 6). Interestingly, the ARMS sample from Lancang Besar, the most polluted site, 

had significantly higher PD value compared to PD from eDNA sample from the same site (Fig. 

1-6).  

 

Figure 1-7.  Differences in phylogenetic diversity between eDNA and ARMS method using 

collectively combined ARMS fraction data and eDNA. Taxa within a site collected with ARMS 

were generally more clustered compared to eDNA (i.e., lower value of phylogenetic diversity). 

Nonetheless, exception was occurred in Lancang Besar, site closest to Jakarta Bay with high 

pollution level. 
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Discussion   

Metabarcoding approaches such as ARMS (Plaisance et al. 2011, Leray & Knowlton 

2015, Pearman et al. 2019, Casey et al. 2021) and eDNA (Bohmann et al. 2014, Thomsen & 

Willerslev 2015, Madduppa et al. 2021, Ríos-Castro et al. 2021) are rapidly becoming important 

tools for ecosystem-based biodiversity monitoring in response to local and global threats to 

marine ecosystems (Plaisance et al. 2011, Bohmann et al. 2014, Aylagas et al. 2018), but are 

rarely used in concert. Direct comparison of ARMS and eDNA data demonstrates substantial 

variation in the total diversity and taxonomic composition of communities recovered from these 

two methods, with less than 3% of total taxonomic diversity being recovered by both methods. 

Variation in taxonomic diversity among metabarcoding primer sets is well-documented 

(Thomsen et al. 2012, Borrell et al. 2017, Aylagas et al. 2018, Valentin et al. 2020, Ellis et al. 

2022), and ARMS were designed to capture benthic biodiversity (Leray & Knowlton 2015, 

Carvalho et al. 2019, Pearman et al. 2019, Casey et al. 2021), while marine eDNA studies 

disproportionately focus on fishes (e.g.,(Andruszkiewicz et al. 2017, Nakagawa et al. 2018, 

Jeunen et al. 2019, Closek et al. 2019, Madduppa et al. 2021, Gold, Sprague, et al. 2021, 

Marwayana et al. 2022). However, the minimal taxonomic overlap recovered by the COI 

metabarcoding primers from co-located sampling sites in this study is striking and suggests that 

ARMS and eDNA should be viewed as complementary rather than competing metabarcoding 

approaches to assessing marine biodiversity. 

Despite both methods recovering a large number of OTUs, a large percentage of these 

were unidentified. Central to the effectiveness of metabarcoding approaches are reference 

databases (Mora et al. 2011, Hestetun et al. 2020, Bik 2021, De Santiago et al. 2022). Although 

shortcomings of reference databases are noted from eDNA studies on fishes in Indonesia 
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(Madduppa et al. 2021, Marques et al. 2021, Marwayana et al. 2022), the number of identified 

invertebrate metazoans identified in this study was substantially lower, with less than 80% of 

total OTUs identified even to phyla, compared to ~80% of OTUs being identified to species for 

fishes (Marwayana et al 2021). The inability to assign OTUs in this study, even to phyla, 

highlights the poor taxonomic representation of Indo-Pacific marine invertebrates in global 

references databases. This pattern is both a function of the exceptional diversity of the Coral 

Triangle (Allen 2008, Allen & Erdmann 2009b, Barber 2009, Froufe et al. 2016, Madduppa et al. 

2021, Marwayana et al. 2022), particularly Indonesia, and biases in research effort that focus on 

less diverse temperate and tropical ecosystems (Donaldson et al. 2016, Bryan-Brown et al. 

2017), highlighting a critical need for more biodiversity research in the global epicenter of 

marine biodiversity to support monitoring and conservation of marine biodiversity. 

 

Total Diversity 

Studies comparing metagenomic approaches to traditional measures of marine 

biodiversity are largely limited to comparisons of eDNA fish diversity to visual census 

techniques. These comparisons almost universally show that eDNA captures more local 

diversity, even when employing methods like site occupancy modelling that reduce total 

diversity by excluding taxa observed at low frequencies or in few replicates (Schmelzle & 

Kinziger 2016, Djurhuus et al. 2020, Gold, Sprague, et al. 2021). However, such comparisons of 

invertebrate metazoan communities are more challenging, because of challenges in sampling and 

identifying the diversity of marine invertebrates, particularly in biodiversity hotspots like the 

Coral Triangle.  



 

 33 

Results of this study show that ARMS recovered more marine biodiversity as measured 

by total number of OTUs vs. eDNA across all sampling sites, with total OTU’s from eDNA 

being similar to total OTU’s from the 100 um ARMS fraction. However, in a site-by-site 

comparison, eDNA recovered significantly more OTUs at every site. Higher total diversity from 

ARMS while having less diversity on a site-by-site basis could be a function of the very different 

communities these two methods capture and the greater spatial heterogeneity in the benthic 

communities that encrust ARMS units. However, the ARMS processing protocol could also 

contribute to elevated numbers of OTUs as samples fractions are processed and sequenced 

individually (Ransome et al. 2017, Casey et al. 2021). As such, there is greater total sequencing 

depth for each ARMS unit, although rarefaction curves indicated that both ARMS and eDNA 

sequencing effort saturated.  Whatever the cause, ARMS appear to capture more regional 

diversity than eDNA, viewed from the perspective of alpha diversity (e.g., OTUs). 

Interestingly, in site-by-site comparisons, eDNA recovered significantly higher numbers 

of OTUs than ARMS. Because eDNA is mobile (Evans et al. 2017, Jeunen et al. 2019, Ely et al. 

2021, Holman et al. 2022), it may be more effective in integrating biodiversity over a larger area. 

In contrast, ARMS samples represent the deposition and growth of encrusting taxa on a 

relatively small surface area over time, and the difference in spatial scale sampled by these 

methods may explain the higher diversity estimates from eDNA.  Differences in diversity may 

also results from differences in DNA concentrations represented in these communities. Because 

ARMS samples are comprised of whole organisms, some taxa might have much higher DNA 

concentrations and dominate in the PCR and/or sequencing steps, reducing sensitivity to lower 

concentration DNA signatures. In contrast, genetic material in water samples are remnants of 

intracellular cell of the taxa from surrounding marine ecosystems and may be less prone to the 
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same magnitude of DNA concentration bias, potentially reducing competition in PCR and/or 

DNA sequencing phases, capturing more biodiversity. 

 

Communities Vary by Method 

Although ARMS recovered more total diversity across Kepulauan Seribu, and eDNA 

recovered more diversity at each sampling location, both methods recovered completely different 

taxa, indicating a high specificity of each method. As expected, ARMS were dominated by 

common benthic and cryptofauna such as annelids, arthropods, cnidaria, mollusca, porifera, as 

well as algae such as rhodophyta. In contrast, eDNA was more specific in capturing planktonic 

communities including marine fungi (Ascomycota), diatoms (Bacilioryphyta) and green algae 

(chlorophyta), which were likely phytoplankton. Although results showed significant variation 

among sites, as evidence by two-way ANOVA results, this taxonomic specificity by method was 

highly consistent across sites.  

That COI metabarcoding of eDNA captured largely planktonic forms is unsurprising; 

previous marine eDNA studies indicate the predominance of planktonic organisms relative to 

benthic taxa (Pitz et al. 2020, Gallego et al. 2020). The taxa with highest read abundances, 

marine fungi (Ascomycota) and diatoms (Bacilioryphyta) are extremely common in planktonic 

communities and likely contribute represent a substantial amount of genetic material recovered 

from the water column. This is both because of their numerical abundance in the plankton where 

cell densities can achieve 3x108 cells/L  (Caputi et al. 2019), as well as because their DNA signal 

captured by eDNA sampling protocols would come largely from live organisms. In contrast, 

larger metazoans would be present in eDNA samples only as freely associated DNA so are more 

likely to have lower concentrations.  
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Similarly, the taxa recovered from ARMS and the high abundance of sponges (Porifera) 

and red algae (Rhodophyta) is unsurprising. Although we did not quantify the percent area 

covered, sponges and red algae were clearly the dominant encrusting taxa on ARMS plate 

surfaces, in some cases occupying easily > 50% ARMS plate surface area. Similar results have 

also been reported in an ARMS study located in Red Sea; Pearman et al. (2016) for example, 

found that Porifera, Bryozoa and Rhodophyta were the most abundant groups on the ARMS 

plates while Al-Rshaidat et al. (2016) suggested that Porifera drove clustering patterns in the 

PCoA results they produced. Other ARMS studies in Indonesia and French Polynesia show 

similar results (Ransome et al. 2017, Casey et al. 2021), suggesting that ARMS may favor 

colonization of specific taxa, regardless of the region where they are deployed. However, 

consistent detection of these three dominant taxa across multiple studies is likely a function of 

these taxa representing more biomass and higher DNA concentrations than other mobile taxa 

such as annelids, arthropods, and mollusks, leading to greater amplification and sequencing 

success. Combined, these results indicate that ARMS and eDNA methods capture different 

communities and that the choice of one method or another will depend greatly on the goals of a 

study, and that using both methods are needed to understand widest spectrum of diversity, 

especially in high biodiversity spots like Indonesia.  

 

Community Similarities 

Although taxonomic composition recovered by each method was highly specific, 

approximately 3% of the taxa were recovered in both ARMS and eDNA datasets, representing 

~9.65 % of total sequence reads. The most common shared taxa included sponges (Tedaniidae), 

polychaetes (Terebellidae) and an unassigned group. Marine sponges are a versatile and 
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adaptable group that can survive a wide range of environmental conditions including highly 

polluted water (Done 1999, Bell & Barnes 2003, Venkateswara Rao et al. 2009). The proximity 

of Kepulauan Seribu to Jakarta results in the southern part of this archipelago having poor water 

quality (Uneputty & Evans 1997, Rees et al. 1999, Estradivari et al. 2009, van der Meij et al. 

2010), and thus sponges are expected to be a prominent member of benthic communities. 

Moreover, the high volume of water filtering done by sponges may result in sloughing of cells or 

DNA into the water column, increasing the likelihood of detection through eDNA. Polychaetas 

are also an indicator of marine pollution (Hutchings 1998, Harlan K. Dean 2008). As such, 

recovery of sponges by both methods is unsurprising. 

Although Polychaeta have not been studied in this region, polychaetes are also 

bioindicators of pollution in marine environments (REFS), so abundances are expected to be 

high. High abundance should increase signal in eDNA samples, increasing the likelihood of 

detecting polychaetes in both ARMS and eDNA samples. An alternative, but not mutually 

exclusive explanation is that high polychaetae sequence abundance in the eDNA dataset could 

represent the capture of larval forms during eDNA sampling. Although there are planktonic 

polychaetas, the family Terebellid is strictly benthic but has a meroplanktonic dispersive phase 

(Seitz & Schaffner 1995, Duchêne 2004, 2010). As with the fungi and diatoms, capture of the 

larval forms in eDNA could increase the probability of detecting Polychaetas, contributing to 

observation of shared taxa across both methods.  

 

Phylogenetic Diversity 

In addition to differences in total diversity and taxonomic composition, communities 

elucidated through ARMS and eDNA metabarcoding also varied greatly in taxonomic breadth. 
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Although ARMS recovered more total OTU diversity, phylogenetic diversity was significantly 

higher in eDNA samples in all but one site.  Phylogenetic information derived from eDNA can 

inform the magnitude of local diversity and the levels of genetic clustering and dispersion in the 

sites of interests while also detecting species that are missed when visual census is implemented 

(Aylagas et al. 2018, Closek et al. 2019, Steyaert et al. 2020, DiBattista et al. 2020, Gold, 

Sprague, et al. 2021, Marwayana et al. 2022). In marine ecosystems, eDNA has captured taxa as 

diverse as plantae, chromists and animalia just from one single sample demonstrating its ability 

to detect a wide range of biodiversity, and the magnitude of diversity within eDNA samples 

seems to be only limited by local level of biodiversity, shedding and decay of genetic materials 

from each species and local transport processes (Weltz et al. 2017, Aylagas et al. 2018, Frühe et 

al. 2020).  

In contrast, although ARMS capture a large number of species, suggested by the high 

number of OTUs in this study, taxa composition has less phylogenetic breadth because these 

structures represent a specialized niche that likely favors some taxa over others. ARMS were 

designed to provide habitat suitable for cryptofauna that live within the matrix of coral reefs 

(Plaisance et al. 2009, Leray & Knowlton 2015, Ransome et al. 2017, Wangensteen et al. 2018). 

As such, they will not capture the same range of biodiversity as eDNA that can theoretically 

capture all organisms within an ecosystem, although this method does have biases (Nichols et al. 

2018, Ruppert et al. 2019, Mathieu et al. 2020). Moreover, because ARMS are a living 

community, the composition of that community is dependent on the biological interactions 

among taxa on each plate (Roman 2006, Vieira et al. 2018). As such, high abundance of some 

taxa might preclude settlement and growth of other taxa, potentially limiting total diversity on 

ARMS plates and promoting phylogenetic clustering that lowers overall phylogenetic diversity. 
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These differences likely explain why eDNA samples from all sites have, on average, twice the 

phylogenetic diversity of ARMS.  

 

Conclusions 

Given the diversity of challenges impacting marine biodiversity worldwide and the 

challenges associated with monitoring marine ecosystems (Brooks et al. 2006, Hoegh-Guldberg 

2011, Taberlet et al. 2012, Bohmann et al. 2014, Hernández-Delgado 2015, Aylagas et al. 2018), 

metabarcoding approaches like ARMS and eDNA will continue to grow in popularity, 

particularly in global biodiversity hotspots like Indonesia where science capacity doesn’t match 

local diversity (Barber et al. 2014). As the cost of sequencing continues to decrease and methods, 

bioinformatic pipelines, and reference databases improve, metabarcoding approaches such as 

ARMS and eDNA will likely become a staple of marine biodiversity researchers and resource 

managers, given the greater scope and resolution compared to visual methods (Bohmann et al. 

2014, Yamamoto et al. 2017, Andújar et al. 2018, Ríos-Castro et al. 2021). However, the results 

of this study show that which methods used will depend on the goals of the study.  

The advantage of eDNA is that it can capture the widest range of marine biodiversity and 

integrates signal over a larger area. Moreover, although we only employed COI to create directly 

comparable datasets, the use of different barcoding markers such as 12S, 18S (Casey et al. 2021), 

and 16S (Pearman et al. 2019) can allow researchers to focus on specific taxa such as fishes, 

metazoans, and microbes, respectively. In contrast, ARMS provide biodiversity information that 

are particularly aimed at understanding taxa composition aggregated in specific areas. Although 

costs and resources in implementing sampling efforts might be limiting factors, both methods 

should be considered if observation is aimed to get most comprehensive biodiversity information 
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possible. Further, as these two methods are increasingly utilized as a routine monitoring tool, it is 

critical to conduct more comparative studies to explore how these two methods vary in the 

detection of marine species.  

Although our study demonstrates that both ARMS and eDNA metabarcoding are 

powerful tools to catalogue marine biodiversity in biodiversity hotspots like the Coral Triangle, 

maximizing the information obtained from these approaches requires more complete species 

databases. Although changes in marine communities can be documented focused only on OTUs, 

from a conservation perspective, it is important to identify OTUs to species. Incomplete 

databases lead to poor species assignment, impacting our understanding of local diversity 

(Deiner et al. 2017, Machida et al. 2017). Advancing metabarcoding as a tool for marine 

conservation will require focused efforts to develop well curated and accurate reference 

databases (Schenekar et al. 2020), particularly in mega diverse region like Indonesia and Coral 

Triangle (Veron et al. 2009, Foale et al. 2013, Bowen et al. 2013). Moreover, these databases 

should target regional fauna  to produce the best species assignments (Gold, Curd, et al. 2021). 

Examples of such efforts include the Moorea Biocode Project 

(https://ocean.si.edu/ecosystems/coral-reefs/moorea-biocode-project) that catalogued all marine 

biodiversity on the island of Moorea, French Polynesia. The outcome of the project and the 

database it produces have provided a crucial biodiversity information for numerous research 

endeavors both locally and globally (Plaisance et al. 2009, Beaman & Cellinese 2012, Leray et 

al. 2013, 2015, Geller et al. 2013, Andersen et al. 2019), allowing local and international  

researchers to work together to monitor and advance biodiversity conservation in marine 

ecosystems across the globe.  
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Supplemental Tables and Figures 

Supplemental Table S1-1. Deployment location and status following recovery for COI-ARMS 

samples.  

Sample ID Site Name 
ARMS 
Name Fraction_Size Recovery Status 

SBDI1ADMSO Bidadari SLCB1A Sessile Lost 
SBDI1A500 Bidadari SLCB1A 500 Lost 
SBDI1A100 Bidadari SLCB1A 100 Lost 

SBDI1BDMSO Bidadari SLCB1B Sessile Lost 
SBDI1B500 Bidadari SLCB1B 500 Lost 
SBDI1B100 Bidadari SLCB1B 100 Lost 

SBDI1CDMSO Bidadari SLCB1C Sessile Lost 
SBDI1C500 Bidadari SLCB1C 500 Lost 
SBDI1C100 Bidadari SLCB1C 100 Lost 

SKBS1ADMSO Karang Beras SKBS1A Sessile Recovered 
SKBS1BDMSO Karang Beras SKBS1B Sessile Recovered 

SKBS1A100 Karang Beras SKBS1A 100 Recovered 
SKBS1B100 Karang Beras SKBS1B 100 Recovered 
SKBS1B500 Karang Beras SKBS1B 500 Recovered 
SKBS1C500 Karang Beras SKBS1C 500 Recovered 
SKBS1A500 Karang Beras SKBS1A 500 Recovered 
SKBS1C100 Karang Beras SKBS1C 100 Recovered 

SKBS1CDMSO Karang Beras SKBS1C Sessile Recovered 
SKOT1A500 Kotok SKOT1A 500 Recovered 

SKOT1BDMSO Kotok SKOT1B Sessile Recovered 
SKOT1ADMSO Kotok SKOT1A Sessile Recovered 
SKOT1CDMSO Kotok SKOT1C Sessile Recovered 

SKOT1A100 Kotok SKOT1A 100 Recovered 
SKOT1B500 Kotok SKOT1B 500 Recovered 
SKOT1C500 Kotok SKOT1C 500 Recovered 
SKOT1C100 Kotok SKOT1C 100 Recovered 
SKOT1B100 Kotok SKOT1B 100 Recovered 

SLCB1ADMSO Lancang Besar SLCB1A Sessile Recovered 
SLCB1A500 Lancang Besar SLCB1A 500 Recovered 
SLCB1A100 Lancang Besar SLCB1A 100 Recovered 

SLCB1BDMSO Lancang Besar SLCB1B Sessile Lost 
SLCB1B500 Lancang Besar SLCB1B 500 Lost 



 

 41 

Supplemental Table S1-1 (continued) 

SampleID Site Name 
ARMS 
Name Fraction Size Recovery Status 

SLCB1CDMSO Lancang Besar SLCB1C Sessile Lost 
SLCB1C500 Lancang Besar SLCB1C 500 Lost 
SLCB1C100 Lancang Besar SLCB1C 100 Lost 

SPAR1CDMSO Pari SPAR1C Sessile Lost 
SPAR1C500 Pari SPAR1C 500 Lost 
SPAR1C100 Pari SPAR1C 100 Lost 

SPAR1ADMSO Pari SPAR1A Sessile Recovered 
SPAR1BDMSO Pari SPAR1B Sessile Recovered 

SPAR1A100 Pari SPAR1A 100 Recovered 
SPAR1B100 Pari SPAR1B 100 Recovered 
SPAR1B500 Pari SPAR1B 500 Recovered 
SPAR1A500 Pari SPAR1A 500 Recovered 
STDN1C100 Pramuka STDN1C 100 Recovered 

SPRM1CDMSO Pramuka SPRM1C Sessile Recovered 
SPRM1C500 Pramuka SPRM1C 500 Recovered 

SPRM1ADMSO Pramuka SPRM1A Sessile Recovered 
SPRM1BDMSO Pramuka SPRM1B Sessile Recovered 

SPRM1B100 Pramuka SPRM1B 100 Recovered 
SPRM1A500 Pramuka SPRM1A 500 Recovered 
SPRM1B500 Pramuka SPRM1B 500 Recovered 
SPRM1A100 Pramuka SPRM1A 100 Recovered 
SSEP1C100 Sepa SSEP1C 100 Recovered 

SSEP1CDMSO Sepa SSEP1C Sessile Recovered 
SSEP1ADMSO Sepa SSEP1A Sessile Recovered 
SSEP1BDMSO Sepa SSEP1B Sessile Recovered 

SSEP1C500 Sepa SSEP1C 500 Recovered 
SSEP1A500 Sepa SSEP1A 500 Recovered 
SSEP1B100 Sepa SSEP1B 100 Recovered 
SSEP1A100 Sepa SSEP1A 100 Recovered 
SSEP1B500 Sepa SSEP1B 500 Recovered 
STDN1B100 Tidung STDN1B 100 Recovered 
STDN1C500 Tidung STDN1C 500 Recovered 
STDN1B500 Tidung STDN1B 500 Recovered 

STDN1CDMSO Tidung STDN1C Sessile Recovered 
SPRM1C100 Tidung SPRM1C 100 Recovered 
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STDN1A100 Tidung STDN1A 100 Recovered 
STDN1ADMSO Tidung STDN1A Sessile Recovered 
STDN1BDMSO Tidung STDN1B Sessile Recovered 

STDN1A500 Tidung STDN1A 500 Recovered 
SLCB1B100 Lancang Besar SLCB1B 100 Lost 

 

Supplemental Table S1-2. Sampling location for COI-eDNA samples.  

Sample Name Sampling Location 
CO1_BDR.1.S1.L001 Bidadari 
CO1_BDR.2.S2.L001 Bidadari 
CO1_BDR.3.S3.L001 Bidadari 
CO1_KBS.1.S4.L001 KarangBeras 
CO1_KBS.2.S5.L001 KarangBeras 
CO1_KBS.3.S6.L001 KarangBeras 
CO1_KOT.1.S7.L001 Kotok 
CO1_KOT.2.S8.L001 Kotok 
CO1_KOT.3.S9.L001 Kotok 
CO1_LCB.1.S10.L001 LancangBesar 
CO1_LCB.2.S11.L001 LancangBesar 
CO1_LCB.3.S12.L001 LancangBesar 
CO1_PAR.1.S13.L001 Pari 
CO1_PAR.2.S14.L001 Pari 
CO1_PAR.3.S15.L001 Pari 
CO1_PRM.1.S16.L001 Pramuka 
CO1_PRM.2.S17.L001 Pramuka 
CO1_PRM.3.S18.L001 Pramuka 
CO1_SEP.1.S19.L001 Sepa 
CO1_SEP.2.S20.L001 Sepa 
CO1_SEP.3.S21.L001 Sepa 
CO1_TDN.1.S22.L001 Tidung 
CO1_TDN.2.S23.L001 Tidung 
CO1_TDN.3.S24.L001 Tidung 
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CHAPTER 2 

Shifts in Eukaryotic Communities and Identification of Indicator Taxa Across a Marine 

Pollution Gradient 

 

Abstract 

Anthropogenic stressors are impacting marine ecosystems, but fully understanding these 

impacts requires methods of assessing changes in marine community diversity that is 

standardized and can detect changes across a broad range of taxonomic diversity. This study 

employs autonomous reef monitoring structures (ARMS) and environmental DNA (eDNA) with 

standardized metabarcoding approaches to examine changes in marine biodiversity across Pulau 

Seribu, an archipelago heavily impacted by pollution from Jakarta, Indonesia. Despite an eight 

fold difference in pollution stress as inferred from Chlorophyll-a concentrations, results from 

ARMS showed no significant impact on diversity, based on amplified sequence variants (ASVs) 

of cytochrome c oxidase subunit I (COI) and 18S rDNA (18S). However, eDNA data based on 

COI showed a significant decrease in ASV diversity on reefs with higher levels of pollution. 

Both methods captured indicator taxa that experienced significant increases or decreases 

associated with pollution stress. Chlorodendrophyceae (marine green algae) increased with 

pollution stress while Phaeophyceae (Brown algae) and Entoprocta decreased. Results indicate 

that marine communities captured by eDNA are more sensitive to pollution stress than benthic 

marine communities that colonize ARMS and could provide an important tool monitoring 

changes in marine ecosystems in our rapidly changing world.   
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Introduction 
 

Marine ecosystems are vital to planetary health; they are home to almost one third of 

global biodiversity (Grosberg et al. 2012, Steele et al. 2019), produce nearly 70% of the global 

oxygen supply (Beaumont et al. 2007, Boeuf 2011, Gamfeldt et al. 2015) and contribute to 

global climate stability by sequestering nearly 50% of fixed global carbon (Beaumont et al. 2007, 

Howard et al. 2017, Armstrong McKay et al. 2021). Marine resources are similarly critical for 

human health and economic development, supporting food security (Duarte 2000, Worm et al. 

2006, Foale et al. 2013), generating billions of dollars in economic activity globally (Moberg & 

Folke 1999, Jones-Walters & Mulder 2009), and are particularly important in countries with 

large coastal territories (Barber 2009, Foale et al. 2013, Jenkins & Van Houtan 2016).  

Key to maintaining these important ecosystem goods and services is maintaining 

complexity and biodiversity in marine environments. More diverse marine ecosystems retain 

important functional diversity that promotes ecosystem resilience and recovery following 

disturbances (Costanza & Mageau 1999, Hughes et al. 2003, Anthony et al. 2015). The 

ecosystem also mitigate disturbance, with intact coral reef ecosystems serving as an important 

barrier to strong wave action resulting from typhoons and tsunamis (Narayan et al. 2016, 

Guannel et al. 2016). Marine biodiversity is also essential for economic and food security, 

particularly in developing maritime nations (Wilkinson 1996, Dixon 1998, Beaumont et al. 

2008). For example, Indonesia derives 12.88 % of its national GDP from marine tourism and 

fisheries-related industries (setkab 2018) and 70% of its population are dependent on marine 

fisheries for their daily protein source (World Bank Group 2022). Given this importance, 

effective management of marine biodiversity is essential; foundational to advancing management 

efforts is effective biodiversity monitoring. 
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Marine resource managers employ a variety of monitoring methods to enumerate and 

quantify marine biodiversity in support of conservation of marine resources and habitats. 

Traditional methods include visual census, sediment grabs, plankton pumps, and suction 

samplers (reviewed in Costello et al. 2017). Although these methods provide important data to 

understand local ecosystem health, they typically require extensive taxonomic expertise, and are 

unreliable when performed by non-experts (Bernard et al. 2013, Mora 2015). Even when 

performed by experts these methods are prone to taxonomic biases and can be difficult to 

standardize (Bernard et al. 2013, Lindfield et al. 2014); they are also costly and time consuming. 

As such, many monitoring programs focus only on small areas, and/or with limited frequency, 

limiting their overall effectiveness (Sprague 2020) and our ability to monitor marine biodiversity 

on scales required to ensure sustained ecosystem function. 

Another major shortcoming of current marine ecosystem monitoring is that, for 

efficiency, these methods frequently focus only on a narrow range of economically valuable taxa 

and important keystone species (Williams & Gaston 1994, Brooks et al. 2006, Bickford et al. 

2007, Losey & Vaughan 2009). This focus on selective taxa is problematic in two key ways. 

First, resilience of marine ecosystems depends on ecosystem diversity (Hughes et al. 2003) and 

monitoring focal taxa does not permit assessment of overall ecosystem diversity and health. 

Second, the most commonly monitored taxa, particularly in coral reef ecosystems, are larger 

fishes and corals (Bouchet et al. 2002, Appeltans et al. 2012); these long-lived taxa may not be 

the most sensitive taxa to detect changes in ecosystem health. Combined, these monitoring 

approaches limit managers’ understanding of overall ecosystem health and resilience and may 

limit their ability to respond proactively to threats before they lead to large-scale changes that 

could destabilize local marine communities.   
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An alternative approach to monitoring marine ecosystems is DNA metabarcoding. 

Metabarcoding generates 100s of thousands to millions of DNA barcode sequences (e.g. 

mitochondrial cytochrome c oxidase subunit I, 12S and 16S ribosomal DNA) from an unknown 

environmental sample and then identifies these barcodes to species by comparing them to a 

dataset of DNA barcode sequences with known taxonomy (e.g. BOLD 

(https://boldsystems.org/index.php) and NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi)).  

Metabarcoding has been used across a broad range of questions ranging from understanding 

microbial composition in both terrestrial and marine ecosystem (Pearman et al. 2019, Joos et al. 

2020), elucidating fish diets (Leray et al. 2015), testing for the presence of invasive species 

(Andersen et al. 2019) to understanding how biodiversity changes with changes in land use 

(Beng et al. 2016) or fishing pressure (Madduppa et al. 2021), and examining the diversity of 

known vs. cryptic species (Leray & Knowlton 2016). A key advantage of metabarcoding is that, 

with a relatively small amount of laboratory training, non-experts can conduct taxonomic 

identification across the tree of life at a scale impossible through traditional taxonomy.  

 Two common applications of metabarcoding in marine ecosystems are Autonomous Reef 

Monitoring Structures (ARMS) and environmental DNA (eDNA). ARMS are a highly 

standardized approach where a stack of 25x25 cm PCV plates is deployed on the benthos, and 

after a specified period of time (e.g., 3 years) the entire community is metabarcoded (Plaisance et 

al. 2011, Leray & Knowlton 2015, Ransome et al. 2017). In contrast, eDNA is based on the 

collection of freely associated DNA and/or cells that organisms shed into the environment, 

representing a snapshot of a local community at a given period of time (Thomsen & Willerslev 

2015, Deiner et al. 2017, Stat et al. 2017, Marwayana et al. 2022). Although both of these 

methods capture unique communities (Chapter 1), they both capture a broad range of marine 
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biodiversity, making them ideal techniques for monitoring marine biodiversity, particularly in 

response to anthropogenic stressors. 

Although a wide variety of anthropogenic stressors such as overfishing (Jackson et al. 2001, 

Coleman & Williams 2002, Coll et al. 2008), destructive fishing practices (Mcmanus et al. 1997, 

Pet-Soede et al. 1999, Cesar et al. 2003), climate change (Knowlton 2001, Jenkins 2003, 

Bellwood et al. 2004) and ocean acidification (Orr et al. 2005, Guinotte & Fabry 2008, Hofmann 

et al. 2010) impact marine communities, local point sources of pollution remain a significant 

concern. Research examining the impacts of pollution on marine biodiversity have largely 

focused on specific species of high economic value or keystone species that play important roles 

in supporting ecosystem function (Wilkinson 1996, Cleary et al. 2006, Cebrian et al. 2007, 

Cleary 2017). Although such studies provide important insights, economically important species 

are often long-lived, and may not be the most sensitive species to pollution. Similarly, some 

keystone species can adapt to changing conditions and are relatively unaffected by pollution 

stress (Pocklington & Wells 1992, Cleary et al. 2006, Cebrian et al. 2007, Kiruba-Sankar et al. 

2016, Béguinot 2018). As such, monitoring efforts that are limited to economically valuable or 

keystone species may not provide an accurate gauge of the impact of pollution on local 

biodiversity.  

Kepulauan Seribu is an archipelago north of Jakarta Indonesia. Comprised of 105 islands, 11 

inhabited, this archipelago spans over 80 km, including areas heavily impacted by industrial 

activities and broad-scale riverine discharge into Jakarta Bay, highly populated islands that 

create localized pollution stress, and distant uninhabited islands with relatively low pollution 

stress. Previous studies show that pollution stress shapes the distribution of marine life across 

Kepulauan Seribu, with coral reefs closer to Jakarta Bay characterized by species that are more 
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tolerant to disturbance, while more sensitive species only survive in more distant islands with 

cleaner waters (van der Meij et al. 2009, 2010, Madduppa et al. 2013). Moreover, individual taxa 

respond differently, with abundance and diversity of fish being highest on the least polluted 

reefs, while diversity and abundance of urchins increases with pollution stress (Cleary et al. 

2008, van der Meij et al. 2009, Madduppa et al. 2013). However, these studies, like most 

monitoring programs, focus only on a small amount of taxonomic diversity; it remains unclear 

whether these patterns are representative of eukaryotic diversity more broadly.  

To improve the ability of resource managers to monitor marine ecosystems and promote the 

sustainability of these vital ecosystems, this study employs ARMS and eDNA metabarcoding 

across the anthropogenic stress gradients of Kepulauan Seribu. Given that ARMS and eDNA 

capture different, largely non-overlapping communities, we specifically test whether 

communities captured by these two methods provide comparable results in response to pollution 

stress. We then identify and compare taxa that are most sensitive to pollution stress and identify 

sites within the archipelago that are most unique in terms of biodiversity.  

 

Material, Methods and Environmental Data 

Deployment Design 

In 2013, we deployed sets of three ARMS in eight islands across the archipelago with 

distance between sites of 7-10 km, for a total of 24 ARMS. The deployment sites were 

standardized to a depth of 10m and encompass sites with the most polluted level in Pulau 

Bidadari (10 km from Jakarta Bay) to gradually less polluted site in Pulau Sepa (60 km from 

Jakarta Bay) (Table 2-1.) (DeVantier L, Suharsono, Budiyanto A, Tuti Y, Imanto P 1998, van 
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der Meij et al. 2009, 2010, Polónia et al. 2014). ARMS remained in situ for three years, and were 

recovered in 2016 

 

Table 2-1. ARMS deployment site and distance from the coast. 
 

 

 

 

 

 

 

 

Environmental Data 

Because direct measurement of water quality was not possible, we instead inferred 

pollution stress using Chlorophyll a concentration as a proxy. We obtained annual average 

Chlorophyll a concentrations and sea surface temperatures (SST) from MODIS A satellite 

imaging data archived on the NASA Ocean color website (https://ocean- color.gsfc.nasa.gov/). 

We downloaded data at a 4 km resolution from 2014-2016, corresponding to the dates of the 

ARMS deployment. We visualized this environmental data using Ocean Data View (version 

5.0.0) based on the value associated with the nearest grid point to our sampling locations. Due to 

the spatial resolution of the data, some sites were assigned to the same grid point and thus had 

the same environmental data. 

 

 

Site Distance from Jakarta Bay 
Pulau Bidadari 10.08 

Pulau Lancang Besar 20.28 
Pulau Pari 31.4 

Pulau Tidung 33.81 
Pulau Karang Beras 37.57 

Pulau Pramuka 39.94 
Pulau Kotok 46.45 
Pulau Sepa 60.64 
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ARMS Collection and Sampling  

To prevent motile organisms from escaping during underwater recovery, we covered 

ARMS units with 40um Nitex mesh-lined containers, brought them to the surface, and then 

transported them to an Indonesian Institute of Science field lab in Pulau Pari, using large plastic 

container filled with filtered, aerated sea water.  

We processed ARMS following standardized disassembly and sampling protocol (Leray 

& Knowlton 2015, Ransome et al. 2017), using series of geologic sieves to separate all motile 

organisms into size fractions for downstream metabarcoding analysis: 1) a 2 mm to 500 μm 

sample or “500 μm fraction”; and 2) a 500 μm to 106 μm sample or “100 μm fraction”. Each of 

these fraction samples were stored in 50mL falcon tubes, preserved with 95% ethanol, and stored 

at -20 °C until further processing. All organisms encrusting the ARMS plates were scraped off 

and homogenized in a blender and is subsequently referred to as the “sessile fraction”. The 

processed homogenate was washed initially with 95% ethanol and preserved with DMSO in a 

50mL stored in -20 °C.  

 

Edna Collection and Sampling  

We collected eDNA from each ARMS deployment site. Following standard sampling 

protocols (Miya et al., 2015), we collected three one-liter water samples on SCUBA at depths of 

10-12m at each site to maximize species diversity and to account for fine-scale heterogeneity in 

local eDNA signatures. To isolate eDNA, we filtered individual seawater samples through a 

0.22-micron Sterivex™ filter (Millipore®, SIGMA MILLIPORE) using the methods of Miya et 

al.  (2015) with one key modification; we collected individual water samples in sterile 1 liter 

Kangaroo™ Gravity Feeding Bags (similar to intravenous drip bags) that allow for gravity 
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filtration through the Sterivex™ filters.  In addition to the eDNA water samples, we also filtered 

one blank at each locality as a negative control. Filters were stored in a -20 freezer until eDNA 

was extracted. 

 

ARMS Extraction and Library Preparation 

To prepare the ARMS fractions for DNA extraction, we decanted both 500 µm and 100 

µm fractions to separate calcium carbonate and terrigenous sediment. We performed decantation 

by resuspending samples with sterile water in 1 L Erlenmeyer flasks, allowing the sediment to 

settle, and then decanting the suspended sample contents through a geological sieve to recover 

the organic contents. We used a 106 µm sieve to decant the 500 µm fraction and a 45 µm sieve 

to decant the 100 µm fraction. We then used the decanted samples for further extraction and 

sequencing steps. For the sessile fraction, no decantation was necessary. 

DNA extractions were performed at Laboratory of Marine Molecular Genetics, Research 

Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia. We performed 

DNA extractions by digesting 10 g of each sample using 400 μg/ml Proteinase K and an 

overnight incubation at 56 oC at 200 rpm. We processed digested samples using Powermax Soil 

DNA Isolation Kit (MoBio, Carlsbad, USA), following manufacturer’s protocol. To remove 

potential PCR inhibiters from DNA extractions, we cleaned all DNA extracts using a 

PowerClean DNA Clean-Up Kit (MoBio, Carlsbad, USA) following the manufacturer’s 

protocols, and then quantified the final DNA extracts using Qubit Fluorometer (Invitrogen, 

Carlsbad, CA, USA) and a Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, 

MA, USA). 
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We amplified mitochondrial Cytochrome Oxidase C, subunit 1 (COI) using seven tailed 

primer pairs of m1COIintF and jgHCO2190. We conducted PCR reactions in a total volume of 

20 µl consisting of 1 µl of 10 µM forward and reverse primer, 1.4 µl dNTP, 2 µl Advantage 2 

DNA Buffer (Takara Bio USA, Mountain View, CA, USA), 0.4 µl Advantage 2 Polymerase 

(Takara Bio USA, Mountain View, CA, USA), 13.2 µl of distilled water, and 10 ng DNA of 

extracted DNA. We performed PCR using a two-step touchdown profile; initial denaturation was 

at 95°C for 10 min, followed by sixteen cycles: 95°C for 10 s, 62°C (-1°C per cycle) for 30 s, 

and 72°C for 60 s, and then twenty cycles: 95°C for 10 s, 46°C for 30s, and 72°C for 7 min, 

followed by a final extension at 72°C for 7 min. We ran PCR reactions in triplicate and verified 

success on 1.2% agarose gels. All successful reactions were then pooled into a single product.  

We quantified and pooled PCR products using a Qubit Fluorometer (Invitrogen, 

Carlsbad, CA, USA) with a Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, 

MA, USA). We pooled tailed primer pairs in equimolar concentrations, then used bead cleaning 

at a concentration of 0.8x vol/vol with Agencourt AMPure XP beads (Beckman Coulter, Brea, 

CA, USA). Library preparation was performed with a TruSeq DNA PCR-Free IT Library Prep 

Kit (Illumina, San Diego, CA, USA) following the manufacturer’s protocols. Prior to 

sequencing, we quantified the indexed samples using a Qubit Flourometer, pooling 50 ng of each 

library, then normalizing the sample to 4nM. Sequencing was conducted on an Illumina MiSeq 

with a MiSeq Reagent Kit v3, 600-cycle (Illumina, San Diego, CA, USA), using a 1% PhiX 

spike at the Smithsonian Institution National Museum of Natural History in Washington DC, 

USA 

 For 18S, we amplified and sequenced the V4 region using the V4_18SNext.For and 

V4_18SNext.Rev primers following the 2015 Ocean Sampling Day Protocol (Kopf et al. 2015). 
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Briefly, we ran each PCR reaction in a volume of 20 µl: 1.25 µl of 0.5 µM forward and reverse 

primer, 0.5 µl dNTP, 5 µl 5x High-Fidelity DNA Buffer (Thermo Fisher Scientific, Waltham, 

MA, USA), 0.5 µl of 1 U Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific, 

Waltham, MA, USA), 16.0 µl distilled water, and 20 ng of extracted DNA. Thermocycling 

employed a two-step PCR protocol with an initial denaturation at 98°C for 30 s, then ten cycles 

of 98°C for 10 s, 44°C for 30 s, and 72°C for 15 s followed by fifteen cycles of 98°C for 10 s, 

62°C for 30 s, and 72°C for 15 s, ending with a final extension at 72°C for 7 min. We verified 

amplification success on 1.2% agarose gels, and then bead cleaned PCR products with 

Agencourt AMPure XP Beads (Beckman Coulter, Brea, CA, USA) at a concentration of 1.2x 

vol/vol. We then quantified PCR concentrations using a Qubit Fluorometer (Invitrogen, 

Carlsbad, CA, USA) to measure all PCR products with a Qubit dsDNA HS Assay Kit (Thermo 

Fisher Scientific, Waltham, MA, USA) to calculate the appropriate DNA concentration for the 

second round of PCR.  

For library preparation, we used the dual index approach with the Nextera DNA Library 

Prep Kit (Illumina, San Diego, CA, USA) and the Nextera Index Kit (Illumina, San Diego, CA, 

USA). We ran each indexing PCR reaction in a volume of 50 µl: 5 µl of Index 1 (i7), 5 µl of 

Index 2 (i5), 1 µl dNTP, 10 µl 5x High-Fidelity DNA Buffer (Thermo Fisher Scientific, 

Waltham, MA, USA), 0.5 µl of 1 U Phusion High-Fidelity DNA Polymerase (Thermo Fisher 

Scientific, Waltham, MA, USA), a volume of DNA template required to yield 40 ng, and the 

remaining volume of distilled water. The PCR amplification included an initial denaturation at 

98°C for 30 s, followed by five cycles as follows: 98°C for 10 s, 65°C for 30 s, and 72°C for 3 

min. We used Agencourt AMPure XP Beads (Beckman Coulter, Brea, CA, USA) at a 

concentration of 0.6x vol/vol to clean the PCR products. Prior to sequencing, we quantified 
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indexed samples using a Qubit Fluorometer, then we pooled samples in equimolar ratios prior to 

normalizing libraries to 2nM and sequencing them on an Illumina MiSeq with a MiSeq Reagent 

Kit v2, 500-cycle (Illumina, San Diego, CA, USA).  

 

eDNA Extraction and Library Preparation 

We extracted eDNA samples and blanks using the DNeasy Blood & Tissue Kit 

(QIAGEN) following the modified extraction protocol of (Spens et al. 2017), adding 720 µl of 

ATL buffer and 80 µl of proteinase K directly into the filter cartridge. We amplified extracted 

eDNA using the Multiplex PCR Kit (QIAGEN, Germany), targeting only CO1, using the same 

primer set for ARMS. To minimize the impacts PCR bias, we performed PCRs in triplicate 

(Andruszkiewicz et al., 2017; Miya et al., 2015; Taberlet et al., 2012). Each PCR reaction 

consisted of 12.5 μL Qiagen 2x Master Mix, 2.5 μL (2 mM) of the primer, 6.5μL nuclease free 

water, and 1 μL the DNA extract.  Thermocycling parameters utilized a touchdown protocol, 

beginning with a 15-minute pre-denaturation step at a 95 °C, followed by a touchdown 

thermocycling profile consisting of 30 seconds denaturing at 94 °C, 30 seconds annealing at 69.5 

°C, and 30 seconds extension at 72 °C, with the annealing temperature dropping by 1.5°C per 

cycle until50 °C.  Following this initial touchdown phase, the main cycle consisted of 25 cycles 

of 94 °C for 30 seconds for denaturation, 50 °C for 30 seconds for annealing and 72 °C for 45 

seconds for extension, concluding with a 10-minute final extension at 72 °C. To visualize 

successful PCR reactions, we electrophoresed 5μL of all PCR products for 30 minutes at 150 

volts on 2% agarose gels prepared with 6x SYBR™ Green (Invitrogen™, Thermo Fisher 

Scientific).  
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To prepare sequencing libraries, we pooled triplicate PCR products, representing each 

one-liter eDNA sample, into a single tube, and purified these pooled PCR products using Sera-

Mag™ and Sera-Mag Speed Beads Magnetic Particles (SIGMA-ALDRICH®) following 

manufacturer’s protocols. Next, we quantified the DNA concentration (ng/μL) of each pooled 

PCR sample using the Qubit™ 4 NGS Starter Kit (Thermo Fisher) following manufacturer 

protocols and adjusted concentrations of pooled PCRs to be equal. We then used the Nextera 

DNA Library Preparation Kit (illumine®) to index each PCR amplified eDNA sample using a 

unique combination of Illumina Nextera i5 and i7 primers in a second PCR reaction, following 

the manufacturer protocol. The indexing PCR reaction consisted of 12.5μL Kapa High Fidelity 

Master Mix, 0.625 μL of 1μM i5 Illumina Nextera indices, 0.625 μL of 1μM i7 Illumina Nextera 

indices, and 11.25 μL of PCR product for a total of 10ng of DNA. To bioinformatically 

distinguish among samples, we also added index barcodes to each sample utilizing an indexing 

PCR protocol that began with an initial denaturation of 95 ̊C for 5 minutes, followed by 8 cycles 

of:  98 ̊C denaturation for 30 seconds, 56 ̊C annealing for 30 seconds, and 72 ̊C extension for 3 

minutes, ending with a 72 ̊C extension for 5 minutes. To ensure the indexing PCR was 

successful, we electrophoresed indexed PCR products at 120V for 45 minutes on a 2% agarose 

gel prepared with 6x SYBR™ Green. Indexed PCR products were then cleaned and quantified, 

as above, to creating a final sequencing library that contained equal DNA concentrations (10 

ng/μl) of each sample. The final libraries were sequenced at the UC Berkeley sequencing core on 

an Illumina MiSeq platform utilizing 300 base pair paired end sequencing. 
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Sequence Processing and Taxonomic Assignments 

ARMS 

Because some of the COI sequence data was mixed-oriented (there are forward-oriented 

and reverse-oriented reads within one single raw FASTQ file) paired-end demultiplexed 

sequences, we included several scripts and steps to separate and group the sequences (i.e., 

forward and reverse oriented) for each sample. To split reads, we first demultiplexed all raw 

paired-end FASTQ reads using Cutadapt 1.13 (Martin, 2011) by employing error rate of 0.15 (-e 

= 0.15), --discard-untrimmed and --no-indels options. This step produced forward oriented and 

reverse oriented sequences for each sample. Following this step we imported each sample from 

each orientation as a qza file for further processing using QIIME2, ver. 2018.11 (Bolyen et al. 

2019). Next, we used Divisive Amplicon Denoising Algorithm 2 (DADA2) (Callahan et al. 

2016) implemented in QIIME2 to filter reads, remove poor quality base pairs from the 3' end of 

reads, remove sequencing error through denoising, combine forward and reverse reads, search 

for and removes chimeras, and cluster all reads into ASV's (amplicon sequence variants). We set 

--p-trunc-len for forward reads at position 240 and 210 for reverse reads, while for chimera 

removal methods we used ‘consensus’ method as implemented in QIIME2 chimera removal 

method. These steps generated representative sequences and an ASV table (a table that 

summarizes the distribution of ASV through all samples) as qza files for each orientation. Next, 

we exported the qza representative sequences file into a FASTA file. Following this step, we 

reverse-complemented the reverse oriented FASTA file using fastx_reverse_complement 

command from FASTX Toolkit 0.0.14 (http://hannonlab.cshl/fastx_toolkit/) and rehashed it 

using FASTA-names-to-md5.py command from (https://gist.github.com/mkweskin). We also 

renamed reverse oriented ASV table, using batch-find-replace.py from 
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(https://gist.github.com/mkweskin). Following these steps, we finally imported the renamed and 

rehashed ASV and FASTA file to QIIME2 qza format and merged these with existing forward 

oriented file using QIIME feature-table merge-seqs and QIIME feature-table merge commands.  

For 18S sequences, we used Cutadapt 1.13 (Martin 2011) to remove primers by cutting 

the first 21 bases from each forward and reverse FASTQ file. We then merged both reads using 

merged paired-end reads using PEAR (Zhang et al. 2014). Next, we imported the merged reads 

as a single end FASTQ file to QIIME2 and performed denoising using DADA2 (this step filtered 

reads, removed poor quality base pairs from the 3' end of reads, removed sequencing error 

through denoising, searched for and removed chimeras, and clustered all reads into ASVs). The 

result was a table of representative sequences and ASVs. 

Prior taxonomic assignment, we applied LULU (Frøslev et al. 2017) to remove erroneous 

ASVs (minimum_match = 84 for COI and 90 for 18S, minimum_relative_cooccurence = 0.90 

for both markers) to the representative sequence. We then clustered the LULU outputs using 

vsearch (Rognes et al. 2016) (at 99% for 18S and 97% for COI) and assigned the sequences 

using BLASTN (Camacho et al. 2009) at 85% identity for both markers. For 18S taxonomic 

assignment we used SILVA SSU non-redundant database (132 release) 

(https://github.com/qiime2/q2-feature-classifier) for and for COI we used custom database that 

combined NCBI database (downloaded on June 2020)  and a local BIOCODE database (Meyer, 

C. P. 2016) generated using ANACAPA toolkit (Curd et al. 2019) . This resulted in an ASV 

table, a table of representative sequences and a taxonomic table (assigned taxonomic name for 

each representative sequence). 
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eDNA 

We analyzed all eDNA sequences using the Anacapa pipeline (Curd et al., 2018). 

Anacapa begins by creating a de novo sequence reference library by combining records from 

publicly accessible databases, such as European Molecular Biology Laboratory (EMBL) and 

National Center for Biotechnology Information (NCBI) using the CRUX package (Creating 

Reference   libraries   Using   existing   tools; https://github.com/limey-bean/Anacapa/tree/New-

Master/Anacapa_db).  Anacapa then de-multiplexes the amplicon reads based on the primer 

sequences, and then trims the primers from the reads.  Next, the DADA2 algorithm (Callahan et 

al.2016) performs denoising and error correction on the raw sequence data, merges paired-end 

reads, and assigns high quality reads to Amplicon Sequence Variants (ASVs) through ASV 

Parsing. Finally, ASVs are assigned to taxa by Bowtie 2 and the Bayesian Least Common 

Ancestor algorithm using a 60% likelihood threshold (BLCA; Gao et al.2017.). Following this 

step, all generated FASTA file and ASV table will then also be feed into LULU using details 

explained in ARMS chapter. 

 

Merging eDNA and ARMS Data of CO1 Marker 

Next, FASTA files from ARMS and eDNA CO1 data were merged using the cat 

command in UNIX, aligned using MAfft software and then clustered using mothur at 97% 

similarity. We then conducted taxonomic assignment using BLASTN (Camacho et al. 2009) at 

85% identity, using a custom database that combined NCBI database (downloaded on June 2020) 

and a local BIOCODE database (Meyer, C. P. 2016) generated using the ANACAPA toolkit 

(Curd et al. 2019). The resulting ASV table with representative sequences and a taxonomic 
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assignment was then arranged as a single phyloseq object (phyloseq package (version 1.26.1) 

(McMurdie & Holmes, 2013) to allow further analysis and visualization.  

 

Data Analysis 

We used the PHYLOSEQ package (version 1.26.1) (McMurdie & Holmes, 2013) to 

combine the representative sequences and ASV tables into a single phyloseq object/file, calculate 

alpha diversity (Observed ASVs, and Shannon), group samples based on fraction size and 

location, and transform sequence data from total reads counts to relative read abundance (RRA). 

We then visualized these data in ggplot2 (version 3.3.2) (Wickham, 2016). To produce 

rarefaction curves and visualize sampling effort and ASV richness across sites and fractions, we 

use ggrare package (version 0.1.0.) (Kandlikar, 2020).  

To test for significant differences among diversity metrics, we used one-way ANOVA 

(for non-normally distributed value) and Kruskal-Wallis test (for normally distributed value) as 

implemented in STATS package (version 4.0.2) (R Core Team,  2020). This step was done after 

checking for normality in all alpha diversity values across sites using Saphiro.test and 

homoscedasticity using bartlett.test function from the same package.  

To test the effect of environmental variables, including distance from Jakarta Bay and 

deployment location against number of total OTUs from each site, we ran linear mixed model 

analysis using the LME4 package (version 1.1-23) (Bates et al. 2015). We used chlorophyll a, 

temperature, and distance as fixed effects, site name as a random effect and ASV abundances as 

the dependent variable. Following models were tested for the analysis 

a. Total_OTUs ~ Distance + Temperature + (1|Site_Name) 
b. Total_OTUs ~ Distance + Chlorophyll + (1|Site_Name) 
c. Total_OTUs ~ Distance + (1|Site_Name) 
d. Total_OTUs ~ Chlorophyll + (1|Site_Name) 
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e. Total_OTUs ~ 1 + (1|Site_Name) 
 

Significance was calculated using the AFEX package (version 0.27-2) (Singmann et al. 2020) 

and to generate p-values for the mixed models. To compare the performance of different 

parameter combinations, we used AIC (Akike’s information criterion) implemented in sjPLOT 

package (version 2.8.4) (Lüdecke 2020), and checked for collinearity between parameters using 

the CAR package (version 3.0.8) (Fox & Weisberg 2019). Lastly, we also performed linear 

regressions to test for correlations between taxa richness and chlorophyll a concentration. We 

then plotted data that were normally distributed and free of homoscedasticity. 

To further compare community composition across sites, we conducted multivariate 

analyses (PERMANOVA) based on Jaccard distances in the vegan package (Ogle, 2017) in R (R 

development core team) and tested the statistical significance using 9999 permutations and a 

significance level of α = 0.05. We then calculated the compositional dissimilarity using 

‘ADONIS’ command and the homogeneity of group dispersion using ‘betadisper’ command in 

vegan package (Oksanen, 2017). We conducted Principles Coordinates Analyses (PCoA) using 

the Ampvis2 package (Andersen et al., 2018) with the ordination function of phyloseq using 

Jaccard dissimilarity matrices, generating an ordination plot using ggplot2 (Oksanen, 2017).  

Next, we tested whether individual sites were significantly different from each other, using 

pairwise.ADONIS from R pairwiseADONIS (version 4.0) package (Martinez Arbizu P, 2020). 

We then examined individual taxa that contributed sites differences using similarity percentage 

(SIMPER) based on the Jaccard dissimilarities, testing for statistical significance using the non-

parametric Kruskal–Wallis rank-sum test based on simper.pretty and kruskal.pretty functions in 

R scripts simper_pretty.R and R_krusk.R. as explained in (Steinberger 2018). Only taxa that 

contributing more than 1% of the variance (p<0.05) are presented.  
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Results 

Variability in Chlorophyll Content and Sea Surface Temperature 

Annual averages of chlorophyll a concentration from 2014 – 2016 varied from 0.3 – 15 

mg m-3 across the 8 ARMS deployment locations; the highest concentrations occurred near Pulau 

Bidadari (15.69 mg m-3), the site closest to Jakarta Bay. Northern regions of Pulau Seribu 

generally had the lowest chlorophyll concentrations, although waters near Pulau Kotok also had 

relatively low chlorophyll concentration (0.6 – 1.5 mg m-3) (Fig. 2-1). Variation in SST was 

smaller, ranging between 29°C and 31°C. Highest temperatures were observed closest to Jakarta 

Bay, near Bidadari and lowest temperatures were observed near the northern islands of the 

archipelago.  

 

General Reads and Sequence Results 

CO1-ARMS 

We recovered only 18 of the 24 ARMS, resulting in 54 samples for subsequent lab work 

and downstream data analysis (Supplemental Table S2-1); the remainder were either lost or 

stolen. Following post quality filtering and the exclusion of chimeras, we generated 2,049,305 

reads, yielding 3385 ASVs with a mean length of 312.3. Rarefaction curves indicate that ASV 

discovery largely saturated across all samples. The resulting ASV table was then rarefied to even 

sequencing depth to 11,000 reads per sample; 3 samples were discarded due to low read numbers 

(3351 reads from Pari 100 μm fraction, 6444 reads from Sepa 500 μm fraction and 5888 reads 

from Kotok 100 μm fraction). Following rarefaction (Fig. 2-2), a total of 561,000 reads 

representing 2907 ASVs remained, all of which were used for downstream analysis. 
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Figure 2-1.  Annual average from three years Chlorophyll a concentration (a.) and Sea Surface 

Temperatures data (b.) (2014-2016) across Kepulauan Seribu from NASA’s Oceancolor website 

(https://oceancolor.gsfc.nasa.gov/) derived from the MODIS A satellites at a 4 km resolution. 

Dots in the image indicate sites of deployment  
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Figure 2-2. Rarefaction curves showing ASV richness vs. sequencing effort for COI-ARMS 

data. 

 
18S-ARMS 

Sequencing of 18S produced 1,048,552 reads and 5149 ASVs with a mean length of 

303.2 bases per read and 19,784 reads per sample. Rarefaction curves indicate that sequencing 

effort largely saturated except for some samples from Pari, Pramuka and Sepa (Fig. 2-3). The 

resulting ASV table was then rarefied to 19,784 reads per sample. One sample was discarded due 

to potential mislabeling and therefore only total 53 samples used for downstream analysis 

(Supplemental Table S2-2).  
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Figure 2-3. Rarefaction curves showing ASV richness vs. sequencing effort for 18S-ARMS 

data.  

 
CO1-eDNA 

 Following the removal of blanks and control samples, we collected 24 samples from eight 

sites (Supplemental Table S2-3). Following post quality filtering and the exclusion of chimeras, 

we generated 1,260,826 reads and 1837 ASVs. Rarefaction curves show sequencing depth was 

sufficient to saturate for ASV discovery (Fig. 2-4). Following rarefaction to 11,000 reads per 

sample, the final data set included 264,000 reads and 1652 ASVs for downstream analysis. 
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Figure 2-4. Rarefaction curves showing ASV richness vs. sequencing effort for COI-eDNA data. 
 

Number of ASVs  

Total ASVs Diversity across Pollution Gradient  

For COI ARMS data, total ASV diversity ranged from a high of 531 ASVs at Lancang 

Besar and a low of 147 ASVs at Kotok, with an average of 319.9 ASVs per locality across all 

sites (Table 2-2). For 18S ARMS data, total ASV diversity ranged from a high of 710 ASVs at 

Pari and a low of 247 ASVs at Karang Beras, with an average of 465.9ASVs per locality across 

all sites (Table 2-2). For COI eDNA data, total ASV diversity ranged from a high of 355 ASVs at 

Sepa and a low of 92 ASVs at Bidadari, with an average of 236.6 ASVs per locality across all 

sites.  
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 Following tests of normality and homoscedasticity, ANOVA only found significant 

differences in ASV diversity in the eDNA-COI dataset; no significant differences were observed 

in either ARMS data set (Table 2-3).  

 

Table 2-2. Maximum and minimum number ASVs across sites in both eDNA and ARMS. No 

ARMS can be recovered Bidadari and we lost two ARMS in Lancang Besar, therefore no data 

were available for the sites 

 

Locality Chlorophyll 
(mg/l) 

Temp. 
(oC) 

COI-eDNA ASV 18S-ARMS ASV COI-ARMS ASV 

   Mean Max Min Mean Max Min Mean Max Min 

Bidadari 8.53 30.40 110 126 92       

Lancang 
Besar  

3.33 30.15 145 162 123 478 - - 531 - - 

Pari 0.82 29.98 281 322 204 609 710 509 250 285 216 

Tidung 0.43 29.97 244 276 191 361 366 358 297 382 223 

Karang 
Beras 

0.44 29.95 256 291 199 405 526 247 364 470 283 

Pramuka 0.66 29.96 304 352 209 489 600 433 328 390 288 

Kotok 0.45 29.91 222 256 201 459 603 327 221 331 142 

Sepa 0.47 29.85 331 355 317 460 695 328 248 271 207 

Mean 1.89 30.02 236.6 267.5 192 465.9 583.3 367 319.9 354.8 265.5 

 

Linear Regression between Chlorophyll a Concentration and Total Taxonomic Richness  

Linear regression showed that Chlorophyll a concentration, a proxy for pollution stress, 

was not a significant predictor for ARMS COI (R2= 0.15, p-value = 0.05798) or ARMS 18S (R2= 

0.013, p-value = 0.283) diversity (Fig. 2-5A). However, Chlorophyll a concentration was a 
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significant predictor for total ASVs for COI-eDNA data (R2= 0.67, p-value = 0.000595) (Figure 

2-5B).  

 

Table 2-3. Normality and Homoscedasticity test based on marker and sampling methods. All 

markers in all sampling method fulfill the homoscedasticity requirement hence can undergo 

linear regression analysis  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-5. Plot of total ASVs as a function of Chlorophyll a concentration on A) ARMS-COI 

ARMS-18S B) COI-eDNA including best fit line and R2 values. Only plot from COI-eDNA 

data is significant.              

 Normality 
(Shapiro Test) 

Homoscedasticity 
(Bartlett Test) 

One-Way  
Anova Test 

COI eDNA ASV 0.3967 0.3748 0.000375 

18S ARMS ASV 0.3316 0.05574 0.601 

COI ARMS ASV 0.3967 0.8241 0.0559 

R2= 0.013, P-Val= 0.601 

R2= 0.15, P-Val=0.06 

A. ARMS-COI B. eDNA-COI 

R2= 0.67, P-Val=0.0003 
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In addition to linear regression of ASV diversity and Chlorophyll a concentration, we also ran 

linear mixed models that incorporated both distance and temperature. However, upon testing we 

found collinearity between distance and temperature (model a); as such, we discarded the model 

and used only model b that included distance and chlorophyll. We found that Distance + 

Chlorophyll (model b.) was the best model with the lowest AIC value (195.179). This model 

found a significant main effect of Chlorophyll a (beta = 78.67, t = 2.65, p = .04) but not with the 

distance (beta = -1.917, t = -0.891, p = 0.4) indicating that ASVs abundance on ARMS as 

inferred by COI changed in response to chlorophyll concentrations, a proxy for pollution. For the 

18S data, the same model also has the best AIC value (603.90), but unlike COI, there was no 

significant effects of Chlorophyll (beta = -6.41, t = -0.32, p = .75) or Distance (beta = -0.22, t = -

1.88, p = .86) on ASV diversity across sites. 

          For eDNA data, models a and b had a rank deficiency, suggesting insufficient variation or 

not enough sampling points to estimate the desired model. Therefore, we only tested the 

remaining three models. Unlike ARMS, AIC scores for eDNA model c were the lowest 

(166.0733) compared to model d (175.11) and e (231.37), but there were no significant effects of 

distance to number of ASVs across sites (beta = 186.00, t = 1.75, p = .1).    

 
 
Taxonomic Richness of Phyla across Pollution Gradient  
 

Linear Regression between Taxa Richness and Chlorophyl A. Concentration 

 

For common phyla that passed tests of normality (Saphiro-Wilk test) and homogeneity (Breusch-

Pagan test), we conducted linear regression of ASV richness and chlorophyl concentration. 

Results showed that Chlorophyll a concentration is a not significant predictor of ASV diversity 

for most of the phyla detected with COI, for either the ARMS or eDNA data sets (except for 
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* 

Ascomycota in COI-eDNA). Although with no significant correlation (Table 2-4.), exceptions 

were a positive relationship between Chlorophyll a concentrations and Platyhelminthes diversity 

and in both COI-ARMS and COI-eDNA datasets. Results also show similar pattern for Annelid 

diversity from the COI-ARMS data and Chaetognatha from COI-eDNA data (Fig. 2-6A and B). 

 

A.                                                                                       B. 

 
C. 

 

 

 

 

 

 

 

 

 

Figure 2-6. Plot of total ASVs per taxa as a function of Chlorophyll a concentration on A). 

ARMS-COI B). ARMS-18S and C). COI-eDNA. Only data that pass normality and 

heteroscedasticity test are presented. Taxa that are present in less than ten data point were also 

not presented. Asterixis indicate taxa with significant p-values.  

* * 

* 
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Table 2-4. P-value calculated from linear regression modelling between ASV richness per taxa versus Chlorophyll a concentration. 

Taxa with significant p-value were highlighted in bold 

 

 

 

 

 

 

 

 

 

Variable r.squared 
adj.r. 

squared sigma statistic 
p. 

value df logLik AIC BIC deviance 
df. 

residual nobs 

Annelida 0.073 0.015 0.461 1.254 0.279 1 
-

10.542 27.083 29.754 3.4 16 18 
Arthropoda 0.0000433 -0.062 0.479 0.001 0.979 1 -11.22 28.441 31.112 3.666 16 18 
Platyhel- 
minthes 0.059 -0.098 0.704 0.373 0.564 1 -7.392 20.785 21.023 2.973 6 8 

Porifera 0.0000182 -0.062 0.479 0 0.987 1 
-

11.221 28.441 31.113 3.667 16 18 

Rhodophyta 0.045 -0.015 0.468 0.754 0.398 1 
-

10.806 27.612 30.283 3.501 16 18 

Variable r.squared 
adj.r. 

squared sigma statistic 
p. 

value df logLik AIC BIC deviance 
df. 

residual nobs 
Chloroden 
drophyceae 0.594 0.513 0.148 7.313 0.043 1 4.614 -3.228 -3.391 0.11 5 7 
Entoprocta 0.576 0.491 0.499 6.799 0.048 1 -3.886 13.771 13.609 1.244 5 7 

Filosa- 
Thecofilosea 0.222 0.092 0.607 1.709 0.239 1 -6.205 18.411 18.649 2.21 6 8 
Parabasalia 0.353 0.281 0.188 4.908 0.054 1 3.906 -1.811 -0.618 0.317 9 11 

Phaeophyceae 0.525 0.491 0.345 15.463 0.002 1 -4.587 15.173 17.491 1.662 14 16 
Prostomatea 0.232 0.122 0.606 2.109 0.19 1 -7.136 20.272 20.864 2.573 7 9 

B. 18S-ARMS 

A. COI-ARMS 
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Variable r.squared 
adj.r. 

squared sigma statistic 
p. 

value df logLik AIC BIC deviance 
df. 

residual nobs 

Ascomycota 0.29 0.253 0.576 7.761 0.012 1 
-

17.146 40.292 43.426 6.294 19 21 
Chaetognatha 0.606 0.409 1.103 3.078 0.221 1 -4.68 15.36 13.519 2.431 2 4 
Ctenophora 0.058 -0.255 0.965 0.186 0.695 1 -5.638 17.276 16.104 2.792 3 5 

Platyhel- 
minthes 0.511 0.347 1.007 3.13 0.175 1 -5.852 17.704 16.532 3.041 3 5 

Unidentified 0 -0.045 1.063 0.01 0.919 1 
-

34.478 74.957 78.491 24.863 22 24 

C. COI-eDNA 
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In contrast, three phyla showed strong relationships between Chlorophyll a concentration and 

ASV diversity as inferred from 18S ARMS data. Diversity of Chlorodendrophyceae (marine 

green algae) and increased with higher Chlorophyll a concentration (R2=0.594, p = 0.043). 

Parabasalia (protist) also increased and had a strong R2=0.353 but this value was just short of 

significant, p = 0.54.  In contrast, Phaeophyceae (Brown algae) and Entoprocta richness all 

significantly decreased with increasing Chlorophyll concentration (R2. = 0.535, p = 0.002; R2. = 

0.576, p = 0.048, respectively, Fig. 2-6C). Although Protosmatea (ciliates) and 

Filosathecofilosea (protist) also decreased, their R2values were not significant.  

 

Taxa Contributing to Dissimilarities Among Sites 

 

Simper analysis of COI-ARMS data showed 15 unique taxa (e.g., Scaphandridae, 

Coelosphaeridae, Microcionidae and Rhodomelaceae etc.) that significantly contributed to the 

dissimilarities among sites (Supplemental Table S2-4); For example, ASV2475 (Demospongidae) 

has a significantly higher relative abundance in Kotok (~28%) where Chlorophyll a 

concentrations are lower and low abundance in Lancang Besar and Pari (~ 0.1%) (Fig. 2-7) 

where Chlorophyll a concentrations are higher.   
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For 18S-ARMS data, Simper analysis identified, 47 ASVs that contributed to dissimilarities 

across sites, although none were statistically significant following Kruskal-Wallis rank-sum test. 

Taxa that exhibited large changes in relative abundance include ASV16946 (Florideophyceae), 

which was approximately 20% of sequence reads from Lancang Besar where Chlorophyll A 

concentrations are relatively high, and lower abundance in other sites (~ 0.1%) where 

Chlorophyll concentrations are lower. Similarly, the crustacean ASV14015 had higher 

abundances in Lancang Besar (~ 3%) where Chlorophyll a concentrations are relatively high but 

lower relative abundance in Kotok, Pramuka and Tidung (~ 0.1%) (Fig. 2-7) where Chlorophyll 

concentrations are lower.  A full list of taxa identified by SIMPER is available in supplemental 

Table S2-5. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-7. A box plot describing relative abundance of Demospongiae across sites. Kotok has 

significantly higher abundance compared to the remaining site 

Higher chlorophyll  
concentration 

Lower chlorophyll  
concentration 
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Figure 2-8. A box plot describing relative abundance of Crustaceans across sites. Lancang Besar 

has significantly higher abundance compared to the remaining sites 

Sites 
Higher chlorophyll  
concentration 

Lower chlorophyll  
concentration 
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eDNA data from COI showed 30 taxa (e.g., Micromonas, Ilyonectria, Undinula and 

parvocalanus etc.) that significantly contributed to the dissimilarities among sites. For example, 

ASV1329 (Micromonas) has a significantly higher relative abundance in all sites (~ 13 – 35 %) 

where Chlorophyll a concentrations are lower than in Bidadari and Lancang Besar (~ 0.1 – 5 %) 

(Fig. 2-9) where Chlorophyll a concentrations are higher. A full list of taxa identified by 

SIMPER is available in supplemental Table S2-6. 

 
 

 
 
  
 
Figure 2-9. A box plot describing relative abundance of Micromonas across sites. Kotok and 

Sepa has significantly higher abundance compared to the remaining sites. 

 
 

Higher chlorophyll  
concentration 

Lower chlorophyll  
concentration 
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Beta Diversity Across Deployment Sites  

 

Analysis of COI-ARMS data with both ADONIS and PERMANOVA of Jaccard distances showed 

significant differences in species composition and heterogeneity based on location (p < 0.05 and 

ADONIS has R2 = 0.44). In total, deployment sites contributed 44 % of the variance in species 

composition. Differentiation among sites is particularly noticeable among ARMS deployed 

furthest from pollution sources relatively to those deployed closer to polluted sites  

(Fig. 2-10). Although pairwise ADONIS of ARMS-COI data shows that many of the sites are 

different in their species composition, all are non-significant (p > 0.05) (Table 5).  

 
 

 
 
Figure 2-10. Principal Coordinates Analysis (PCoA) analysis illustrating dissimilarities in 

community composition using COI in 18 ARMS. Pollution levels are commensurate to distance 

(km) from Capital city, Jakarta which are reflected by the point size. Lancang Besar is the most 

polluted site while Kotok is least polluted. 
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Similarly, analysis of 18S on ARMS data with ADONIS and PERMANOVA tests using Jaccard 

distances showed significant differences based on location (Fig. 2-11. 18S total, p < 0.05 and 

ADONIS has R2 of 0.43), indicating significant differences in overall species composition and 

species heterogeneity among sites. Deployment sites contributed ~43 % of the variation in 

species composition among sites. The signal of separation between sites is particularly noticeable 

among the sites closest and furthest from pollution sources as inferred by Chlorophyll a 

concentration (Fig. 10). However, site’s position within PCoA plot doesn’t represent clear 

pollution gradient (i.e., one ARMS from Tidung was within the proximity of ARMS from 

Lancang Besar) 

 

 
Figure 2-11. Principal Coordinates Analysis (PCoA) analysis illustrating dissimilarities in 

community composition from 18 ARMS deployed across Kepulauan Seribu. Analysis was 

undertaken using Bray-Curtis similarities on the full dataset across sampling locations. Pollution 

levels are commensurate to distance (km) from Capital city, Jakarta which are reflected by the 

point size. Lancang Besar is the most polluted site while Kotok is least polluted. 
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Pairwise ADONIS showed that Kotok, the second furthest site from pollution source in Jakarta, 

was significantly different from Karang Beras, Pari, Pramuka, Tidung and Sepa (Table 6, row 2-

6). In contrast, Lancang Besar, the most polluted site was significantly different only from 

Tidung (Table 6, row 11). Similarly, Sepa, the furthest site from pollution source in Jakarta, was 

significantly different than Tidung and Pari (Table 6, row 17 and 21).  

 
Table 2-5.  P-values from pairwise ADONIS test on the Jaccard diversity metric using COI-

ARMS data. P-values within a given pair were all non-significant. 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
As with ARMS data, ADONIS analysis of COI-eDNA data showed significant variation in ASV 

composition among sites (p < 0.05, R2 = 0.62); however, PERMANOVA results were non-
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significant (p > 0.05). Deployment sites contributed 62 % to the differences in species 

composition. Lancang Besar and Bidadari, the most polluted sites, clustered away from the 

remaining sites, while Karang Beras, also clustered separately (Fig. 2-12).   

 
Table 2-6. P-values from pairwise ADONIS test on the Jaccard diversity metric using 18S-

ARMS data. Significant P-values were coded with asterisk in the table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pairwise ADONIS using eDNA-COI showed that many of the sites differed in their species 

composition, however none of the pairwise were significant (Table 2-6). For example, Karang 

Beras and Lancang Besar are different in their species composition with Kotok, Pari, Pramuka 

and Sepa. 

* 
* 

* 
* 

* 

* 

* 

* 
* 

* 

* 

* 

* 
* 
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Figure 2-12. Principal Coordinates Analysis (PCoA) analysis illustrating dissimilarities in 

community composition using COI-eDNA in 18 ARMS. Pollution levels are commensurate to 

distance (km) from Capital city, Jakarta which are reflected by the point size. Lancang Besar is 

the most polluted site while Kotok is least polluted. 
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Table 2-7. P-values from pairwise ADONIS test on the Jaccard diversity metric using COI-

eDNA data. No significant P-value were found among the pairs   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Discussion 

ARMS and eDNA metabarcoding on the coral reefs of Pulau Seribu captured a wide 

variety of marine biodiversity, and this community diversity changed as a function of pollution 

stress. Specifically, ASV diversity inferred from eDNA demonstrated a significant, sharp 

decrease with increasing Chlorophyll a concentration, a pattern previously reported in multiple 

taxa including coral (Smith et al. 2008, Estradivari et al. 2009, van der Meij et al. 2010, Baum et 

al. 2015), reef fish (Manikandan et al. 2014, Brown et al. 2017, Ling et al. 2018) and many 
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benthic macro invertebrates (Rees et al. 1999, Cebrian et al. 2007, van der Meij et al. 2009, 

Johnston & Roberts 2009). In contrast, ASV diversity from ARMS showed a slight, but not 

significant, increase. Given that ARMS and eDNA capture largely non-overlapping taxa 

(Chapter 1), these results suggest that the taxa that colonize ARMS may not be as sensitive to 

pollution stress as those recovered by eDNA. As such, eDNA may be a more effective tool for 

monitoring community change.  

Despite the differences in ARMS and eDNA to detect overall community change, both 

methods captured specific taxa that increased or decreased in relation to pollution stress. 

Previous studies indicate taxonomic differences in sensitivity to pollution stress (Johnston & 

Roberts 2009, Pelletier et al. 2010, Ivanina & Sokolova 2015, Gissi et al. 2016). As such, 

monitoring for these specific taxa—either using ARMS or eDNA—could provide insights into 

changing environmental conditions. Given the limited overlap between methods, application of 

both methods would maximize pollution monitoring sensitivity, providing conservation 

managers the greatest ability to detect environmental changed through regular monitoring 

activities. 

 

Sensitivity of Monitoring Methods to detect Species impacted by Pollution gradient  

Previous studies examining the impact of pollution on marine communities have relied 

primarily on visual census and species-specific observation data (Sale & Douglas 1981, 

Nagelkerken et al. 2000, Willis 2001, Cleary et al. 2005, Campbell et al. 2011). Results from 

these studies suggested that taxa have different sensitivities depending on the severity of the 

pollution and the structural and habitat complexity of where the taxa are settled. For example, the  

majority of branching coral in Kaneohe Bay exhibited reduced growth rates and smaller colony 
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size in response to pollution stress, but massive and non-branching corals did not (Pastorok & 

Bilyard 1985). Similarly, benthic macroinvertebrate diversity and richness can decline in 

response to pollution (Widbornl & Elmgren 1988, Pinedo et al. 2015, Ellis et al. 2017, Piroddi et 

al. 2021), some taxa can adapt to tolerate elevated pollution levels (reviewed by Sanford & Kelly 

2011).  

 Many studies have examined the impact of pollution stress on reef ecosystems of 

Kepulauan Seribu, (Rees et al. 1999, Rachello-Dolmen & Cleary 2007, van der Meij et al. 2009, 

Hadi 2011, Polónia et al. 2014, Baum et al. 2015, Cleary 2017). These studies focus on taxa with 

significant ecological roles or that are important for economic and tourism activities (e.g., coral, 

reef fish, many taxa from Echinodermata, although one examines responses of microbial 

communities (Polónia et al. 2014). In general, results indicate shifts in community composition 

relative to pollution stress as measured by distance from Jakarta. For example, Maduppa et al. 

2013, showed that the diversity, richness and abundance of reef fish declined substantially on 

reefs closer to pollution sources. Polluted areas also had more herbivorous fishes, potentially a 

response to increased algae coverage on eutrophied reefs. Similarly, pollution decreased richness 

and percent coral cover on reefs closer to pollution source, with massive coral species (Oulastrea 

crispate and Favia maxima) dominating sites with higher sedimentation and nutrient enrichment 

(Cleary et al. 2005, 2008). Studies that examine a larger diversity of taxa, including mollusc, 

sponge, echinoderms, coral, fish, large benthic foraminifera report lower diversity on reefs closer 

to Jakarta Bay (Cleary et al. 2016). The broad similarity of metabarcoding results to the above 

visual monitoring studies suggests that metabarcoding can be a useful tool for monitoring 

changes in marine communities in response to anthropogenic stressors.   
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ARMS vs eDNA for Marine Ecosystem Monitoring 

Because both ARMS and eDNA employ community based metabarcoding and our 

samples were co-located, we expected these two methods to provide similar results. However, 

community diversity on ARMS did not significantly change with respect to chlorophyll-a 

concentrations, although some taxonomic groups had significant increases or decreases. In 

contrast, eDNA captured a sharp decrease in total community diversity with increasing 

Chlorophyll-a concentrations.  

Although ours is the first study to directly compare ARMS and eDNA, the different 

results from ARMS and eDNA communities align with previous studies. For example, Pearman 

et al (2019) show that microbial communities on ARMS shifted in response to pollution stress 

(Pearman et al. 2019), but other ARMS studies examining macrobiota report equivocal results 

(David et al. 2019). In contrast, eDNA studies more consistently detect the impacts of 

anthropogenic stress on coastal ecosystems (Bakker et al. 2017, Polanco et al. 2022), although in 

some cases in unexpected ways. For example, DiBattista et al. (2020) showed higher marine 

biodiversity in regions of Japan characterized by medium to high anthropogenic pollution stress, 

suggesting  that “intermediate disturbance theory”, could elevate total biodiversity (Reynolds et 

al. 1993, Townsend et al. 1997). 

Given that samples were co-located and chlorophyll a concentration differed by an order 

of magnitude among sites, it is unclear why ARMS and eDNA data showed such different 

patterns. One potential explanation is that chlorophyll-a concentration, as a proxy for pollution 

stress, is among many factors that can impact coral reefs communities (Dubinksy & Stambler 

1996, Bachoon et al. 2010, Jessen et al. 2014, Baum et al. 2015, Guo et al. 2019). Sediments, and 

toxic substances are also important pollutants that drive changes in marine community 
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composition (Pastorok & Bilyard 1985). Pollution from Jakarta and surrounding communities 

almost certainly contains all three components, yet sediment and toxins cannot be inferred from 

Chlorophyll-a concentrations. Given significant interactions between anthropogenic stressors 

(Fong et al. 2018), by focusing only on Chlorophyll-a, our study likely provides an incomplete 

picture of how pollution stress in Jakarta Bay is impacting these marine ecosystems.  

Additionally, ARMS and eDNA capture very different communities with limited overlap 

(chapter 1). Moreover, these communities are very different in their ecologies. Communities 

from eDNA analysis captured a community comprised largely of small, planktonic taxa. In 

contrast, ARMS communities include a number of large, encrusting organisms, particularly 

within the sessile fraction. As such, accumulation of biodiversity on ARMS can be influenced by 

priority effects (Benedetti-Cecchi 2000, Adam et al. 2022), whereby an established resident 

influences/inhibits the colonization of newer individuals entering the plate, influencing 

community composition. For example, many ARMS plates include marine sponges (genus 

Cinachyrella) that can inhibit other taxa (Singh & Thakur 2017), potentially limiting settlement 

and accumulation of other benthic taxa. Moreover, because ARMS are deployed for three years 

the community is likely influenced by many factors beyond pollution stress, including dynamics 

of top-down consumers, climate variability (Rasher et al., 2020), disturbance history (Reed et 

al., 2011), and community diversity (Nell et al., 2018).  

Lastly, the inability of ARMS to detect significant differences in community composition 

may result from sampling design. Pearman et al (2019) deployed 3 x 3 ARMS in each site to get. 

This increased sampling could contribute to greater ability to detect differences. Perhaps more 

importantly, although we deployed three ARMS per sites across 8 sites spanning varied pollution 

stress levels, we lost five ARMS, all from the two most polluted sites. Loss of ARMS from sites 
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likely to be most impacted by heavy pollution stress likely reduced our power to capture 

significant biodiversity changes, although what changes were observed appeared to be increases 

in diversity, rather than decreases, as observed in eDNA.   

 

Beta Diversity Across Pollution Gradient 

 Although the impacts of pollution stress on alpha diversity differed between ARMS and 

eDNA, beta diversity analysis confirms that sites are strongly structured based on chlorophyll a 

concentrations. Both ARMS and eDNA data sets showed significant differences in beta diversity 

among reefs with different levels of pollution stress.  Species composition and species 

heterogeneity among sites were different, with the greatest difference observed among sites 

closest and furthest from mainland pollution sources. However, these patterns were most 

pronounced for the eDNA-COI dataset.  

Given the strong differences in alpha diversity in the eDNA dataset, differences in beta 

diversity are not unexpected. One explanation for the observation of significant differences in 

beta diversity in ARMS despite no differences in alpha diversity is that there is species 

replacement across our sites based on pollution stress, as suggested in other studies (Baselga 

2010, Carvalho et al. 2012, Legendre 2014). The rationale behind this hypothesis is that 

interactions between pollution levels and the physical complexity of the reefs produces a wide 

variety of microhabitats. If these microhabitats are colonized by different groups of organisms, 

differences in taxa composition could result, increasing beta diversity.  Further, the variability in 

niches could also promote specific co-occurrences, particularly from species that have similar 

ecological functions, hence creating site specific taxa composition. Hoeksema et al. (2019) report 

that variation in structural complexity impacts biodiversity distribution, suggesting niche 
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variation across Kepulauan Seribu. In addition, other factors such as wave energy, substrate 

stability, and sediment could interact to shape microhabitats (Trapon et al. 2013, Hamilton et al. 

2017, Waltham & Sheaves 2018), resulting in greater beta diversity. 

 

Sensitivity of Marine Phyla to Pollution Gradient 

 From a monitoring perspective, an important advantage of AMRS and eDNA 

metabarcoding is the ability to expand taxonomic coverage (Thomsen et al. 2012, Thomsen & 

Willerslev 2015, Valentini et al. 2016, Bakker et al. 2017, Valentin et al. 2020, Gold et al. 2021). 

By expanding taxonomic coverage, it is possible to identify species that are sensitive to pollution 

stress. Our results showed that many taxa groups increased or decreased as a function of 

pollution stress. Although coral reef monitoring typically focuses on fish and corals (REFS), our 

results indicate that smaller taxa are also good indicators of environmental stressors. Previous 

studies indicate Platyhelminthes are indicators for degraded marine environments (Sluys 1999, 

Bayoumy et al. 2008, Gilbert & Avenant-Oldewage 2021), as are Annelids due to their plasticity 

in using an array of organic material to survive (Reish 1970, Dauer & Simon 1976, Pocklington 

& Wells 1992, Giangrande et al. 2005). Although our data showed both Platyhelminthes and 

Annelids increasing with Chlorophyll-a concentrations, these increases were not significant. 

However, many other taxa (e.g., Chlorodendrophycea, Entroprocta, Phaeophyceae) did exhibit 

significant changes with pollution stress, suggesting that they could be excellent taxa to use for 

monitoring changes in local ecosystems.  
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Primer and Database Contribution to Gradient in Biodiversity 

Metabarcoding markers have tradeoffs between taxonomic resolution and amplification 

efficiency (Drummond et al. 2015, Piñol et al. 2019, Macheriotou et al. 2019, Cordier et al. 2019, 

Bik 2021). As such, we used the slower evolving 18S rRNA marker to provide a broader 

overview of the eukaryotic domain and the faster evolving COI gent to provide higher taxonomic 

resolution across metazoans (Baird & Hajibabaei 2012, Deagle et al. 2014, Clarke et al. 2017, 

Andújar et al. 2018). Comparison of these two markers in the ARMS dataset showed similar 

patterns with respect to biodiversity changes across pollution levels. Despite similar patterns, 

these markers detected different suites of taxa responding to pollution stress.  

Different primer sets bias metabarcoding results (Casey et al. 2021), likely due to 

differences in amplification efficiency. Although previous studies suggest that 18S is better than 

COI for capture diversity gradients (Tytgat et al. 2019) or these markers have equivalent 

performance (Pearman et al. 2018), our results indicated that COI on eDNA had the greatest 

power to detect community changes associated with pollution stress. However, this result is 

likely more a function of the communities captured by eDNA than the performance of COI, 

given the inability of the COI-ARMS dataset to detect significant changes in diversity with 

pollution stress.  

Rather than indicating one marker outperformed another, our study highlights the value 

of both markers, depending on the question being asked. COI was a powerful marker for 

detecting shifts in alpha diversity related to pollution stress in the eDNA dataset. 18S performed 

best in identifying specific taxa in the ARMS data set responding to changes in pollution stress. 

[It is possible that 18S could have performed similarly well in the eDNA dataset, but our study 

did not collect 18S eDNA data, as COI (for metazoans) and 12S (for fishes) are more commonly 
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used].  As such, these markers should be viewed as complementary, each providing data and 

insights that the other cannot. Given that doubling markers doubles the costs, studies using single 

markers should choose carefully, contingent upon the study system, question, and the type of 

samples being analyzed.   

 

Conservation Implications 

Although Kepulauan Seribu is not the center of marine biodiversity in Indonesia, the 

archipelago has relatively rich coral and fish diversity, with 60 coral genera, 174 reef fish 

species, and 216 macro-benthic species (Estradivari et al. 2009, Madduppa et al. 2013), 

contributing to ~ 20% percent of total Indonesian marine species richness. Results from our 

documenting over 5000 COI ASVs, and nearly 9000 18S ASVs for 18S marker suggests that 

biodiversity of Kepulauan Seribu is an order of magnitude higher. 

With escalating local and global anthropogenic stressors, it is essential to better 

understand how marine communities in this archipelago are affected by anthropogenic 

disturbances, primarily from the capital city Jakarta. Application of  standardized metabarcoding 

monitoring protocols could greatly increase the number of taxa observed and identify taxa most 

sensitive to environmental changes for local resource managers to monitor.  Expanding 

taxonomic coverage of monitoring efforts beyond fishes and coral could identify indicator 

species that can be used for early detection of degrading environmental conditions. With marine 

habitats under severe pressure, it is vitally important for conservation programs to detect changes 

as early as possible, allowing for early interventions to promote the sustainability of these 

important marine ecosystems, and the local populations who are dependent on them.  
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Supplemental Tables and Figures 

Supplemental Table S2-1. Deployment location and status following recovery for COI-ARMS 

samples.  

Sample ID Site Name ARMS 
Name Fraction Size Recovery 

Status Remarks 

SBDI1ADMSO Bidadari SLCB1A Sessile Lost   
SBDI1A500 Bidadari SLCB1A 500 Lost   
SBDI1A100 Bidadari SLCB1A 100 Lost   

SBDI1BDMSO Bidadari SLCB1B Sessile Lost   
SBDI1B500 Bidadari SLCB1B 500 Lost   
SBDI1B100 Bidadari SLCB1B 100 Lost   

SBDI1CDMSO Bidadari SLCB1C Sessile Lost   
SBDI1C500 Bidadari SLCB1C 500 Lost   
SBDI1C100 Bidadari SLCB1C 100 Lost   

SKBS1ADMSO Karang Beras SKBS1A Sessile Recovered   
SKBS1BDMSO Karang Beras SKBS1B Sessile Recovered   

SKBS1A100 Karang Beras SKBS1A 100 Recovered   
SKBS1B100 Karang Beras SKBS1B 100 Recovered   
SKBS1B500 Karang Beras SKBS1B 500 Recovered   
SKBS1C500 Karang Beras SKBS1C 500 Recovered   
SKBS1A500 Karang Beras SKBS1A 500 Recovered   
SKBS1C100 Karang Beras SKBS1C 100 Recovered   

SKBS1CDMSO Karang Beras SKBS1C Sessile Recovered   
SKOT1A500 Kotok SKOT1A 500 Recovered   

SKOT1BDMSO Kotok SKOT1B Sessile Recovered   
SKOT1ADMSO Kotok SKOT1A Sessile Recovered   
SKOT1CDMSO Kotok SKOT1C Sessile Recovered   

SKOT1A100 Kotok SKOT1A 100 Recovered   
SKOT1B500 Kotok SKOT1B 500 Recovered   
SKOT1C500 Kotok SKOT1C 500 Recovered   
SKOT1C100 Kotok SKOT1C 100 Recovered   
SKOT1B100 Kotok SKOT1B 100 Recovered Low Reads 

SLCB1ADMSO Lancang Besar SLCB1A Sessile Recovered   
SLCB1A500 Lancang Besar SLCB1A 500 Recovered   
SLCB1A100 Lancang Besar SLCB1A 100 Recovered   

SLCB1BDMSO Lancang Besar SLCB1B Sessile Lost   
SLCB1B500 Lancang Besar SLCB1B 500 Lost   
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SLCB1CDMSO Lancang Besar SLCB1C Sessile Lost   
SLCB1C500 Lancang Besar SLCB1C 500 Lost   
SLCB1C100 Lancang Besar SLCB1C 100 Lost   

SPAR1CDMSO Pari SPAR1C Sessile Lost   
SPAR1C500 Pari SPAR1C 500 Lost   
SPAR1C100 Pari SPAR1C 100 Lost   

SPAR1ADMSO Pari SPAR1A Sessile Recovered   
SPAR1BDMSO Pari SPAR1B Sessile Recovered   

SPAR1A100 Pari SPAR1A 100 Recovered   
SPAR1B100 Pari SPAR1B 100 Recovered Low Reads 
SPAR1B500 Pari SPAR1B 500 Recovered   
SPAR1A500 Pari SPAR1A 500 Recovered   
STDN1C100 Pramuka STDN1C 100 Recovered   

SPRM1CDMSO Pramuka SPRM1C Sessile Recovered   
SPRM1C500 Pramuka SPRM1C 500 Recovered   

SPRM1ADMSO Pramuka SPRM1A Sessile Recovered   
SPRM1BDMSO Pramuka SPRM1B Sessile Recovered   

SPRM1B100 Pramuka SPRM1B 100 Recovered   
SPRM1A500 Pramuka SPRM1A 500 Recovered   
SPRM1B500 Pramuka SPRM1B 500 Recovered   
SPRM1A100 Pramuka SPRM1A 100 Recovered   
SSEP1C100 Sepa SSEP1C 100 Recovered   

SSEP1CDMSO Sepa SSEP1C Sessile Recovered   
SSEP1ADMSO Sepa SSEP1A Sessile Recovered   
SSEP1BDMSO Sepa SSEP1B Sessile Recovered   

SSEP1C500 Sepa SSEP1C 500 Recovered   
SSEP1A500 Sepa SSEP1A 500 Recovered Low Reads 
SSEP1B100 Sepa SSEP1B 100 Recovered   
SSEP1A100 Sepa SSEP1A 100 Recovered   
SSEP1B500 Sepa SSEP1B 500 Recovered   
STDN1B100 Tidung STDN1B 100 Recovered   
STDN1C500 Tidung STDN1C 500 Recovered   
STDN1B500 Tidung STDN1B 500 Recovered   

STDN1CDMSO Tidung STDN1C Sessile Recovered   
SPRM1C100 Tidung SPRM1C 100 Recovered   
STDN1A100 Tidung STDN1A 100 Recovered   

STDN1ADMSO Tidung STDN1A Sessile Recovered   
STDN1BDMSO Tidung STDN1B Sessile Recovered   

STDN1A500 Tidung STDN1A 500 Recovered   
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SLCB1B100 Lancang Besar SLCB1B 100 Lost   
 

 

Supplemental Table S2-2. Deployment location and samples used for 18S-ARMS analysis.  

 

SampleID Site_Name ARMS Fraction_Size 
SKOT1BDMSO Kotok 1B Sessile 
SLCB1ADMSO LancangBesar 1A Sessile 
SKBS1A100 KarangBeras 1A 100 
SKBS1A500 KarangBeras 1A 500 
SKBS1B100 KarangBeras 1B 100 
SKBS1B500 KarangBeras 1B 500 
SKBS1BDMSO KarangBeras 1B Sessile 
SKBS1C100 KarangBeras 1C 100 
SKBS1C500 KarangBeras 1C 500 
SKBS1CDMSO KarangBeras 1C Sessile 
SKOT1A100 Kotok 1A 100 
SKOT1A500 Kotok 1A 500 
SKOT1ADMSO Kotok 1A Sessile 
SKOT1B100 Kotok 1B 100 
SKOT1B500 Kotok 1B 500 
SKOT1C100 Kotok 1C 100 
SKOT1C500 Kotok 1C 500 
SKOT1CDMSO Kotok 1C Sessile 
SLCB1A100 LancangBesar 1A 100 
SLCB1A500 LancangBesar 1A 500 
SPAR1A100 Pari 1A 100 
SPAR1A500 Pari 1A 500 
SPAR1ADMSO Pari 1A Sessile 
SPAR1B100 Pari 1B 100 
SPAR1B500 Pari 1B 500 
SPAR1BDMSO Pari 1B Sessile 
SPRM1A100 Pramuka 1A 100 
SPRM1A500 Pramuka 1A 500 
SPRM1ADMSO_202 Pramuka 1A Sessile 
SPRM1B100 Pramuka 1B 100 
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SPRM1B500 Pramuka 1B 500 
SPRM1BDMSO Pramuka 1B Sessile 
SPRM1C100 Pramuka 1C 100 
SPRM1C500 Pramuka 1C 500 
SPRM1CDMSO Pramuka 1C Sessile 
SSEP1A100 Sepa 1A 100 
SSEP1A500 Sepa 1A 500 
SSEP1ADMSO Sepa 1A Sessile 
SSEP1B100 Sepa 1B 100 
SSEP1B500 Sepa 1B 500 
SSEP1BDMSO Sepa 1B Sessile 
SSEP1C100 Sepa 1C 100 
SSEP1C500 Sepa 1C 500 
SSEP1CDMSO Sepa 1C Sessile 
STDN1A100 Tidung 1A 100 
STDN1A500 Tidung 1A 500 
STDN1ADMSO Tidung 1A Sessile 
STDN1B100 Tidung 1B 100 
STDN1B500 Tidung 1B 500 
STDN1BDMSO Tidung 1B Sessile 
STDN1C100 Tidung 1C 100 
STDN1C500 Tidung 1C 500 
STDN1CDMSO Tidung 1C Sessile 

 

Supplemental Table S2-3. Deployment location and samples used for down streaming analysis 

in CO1-eDNA samples.  

 

Sample Name Sampling Location 
CO1_BDR.1.S1.L001 Bidadari 
CO1_BDR.2.S2.L001 Bidadari 
CO1_BDR.3.S3.L001 Bidadari 
CO1_KBS.1.S4.L001 KarangBeras 
CO1_KBS.2.S5.L001 KarangBeras 
CO1_KBS.3.S6.L001 KarangBeras 
CO1_KOT.1.S7.L001 Kotok 
CO1_KOT.2.S8.L001 Kotok 
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CO1_KOT.3.S9.L001 Kotok 
CO1_LCB.1.S10.L001 LancangBesar 
CO1_LCB.2.S11.L001 LancangBesar 
CO1_LCB.3.S12.L001 LancangBesar 
CO1_PAR.1.S13.L001 Pari 
CO1_PAR.2.S14.L001 Pari 
CO1_PAR.3.S15.L001 Pari 
CO1_PRM.1.S16.L001 Pramuka 
CO1_PRM.2.S17.L001 Pramuka 
CO1_PRM.3.S18.L001 Pramuka 
CO1_SEP.1.S19.L001 Sepa 
CO1_SEP.2.S20.L001 Sepa 
CO1_SEP.3.S21.L001 Sepa 
CO1_TDN.1.S22.L001 Tidung 
CO1_TDN.2.S23.L001 Tidung 
CO1_TDN.3.S24.L001 Tidung 

 

Supplemental Table S2-4. Results of SIMPER analysis for studies using CO1-ARMS data 

 

No OTU Family Genus Species 
1 OTU4574 Peyssonneliaceae Ramicrusta Ramicrusta appressa 
2 OTU2475 Microcionidae Clathria Clathria abietina 
3 OTU365 Unidentified Unidentified Unidentified 
4 OTU2364 Unidentified Unidentified Unidentified 
5 OTU677 Hesionidae Gyptis Gyptis sp. 1 AN-2008 
6 OTU2998 Rhodomelaceae Palisada Palisada sp. 
7 OTU1186 Terebellidae Polycirrus Unidentified 

8 OTU5851 Nephtheidae Stereonephthya 
Stereonephthya sp. A CSM-
2013 

9 OTU2458 Unidentified Unidentified Unidentified 
10 OTU5249 Peyssonneliaceae Ramicrusta Ramicrusta bonairenesis 
11 OTU1238 Coelosphaeridae Lissodendoryx Lissodendoryx flabellata 
12 OTU5320 Stenothoidae Unidentified Stenothoidae sp. 31 
13 OTU5975 Unidentified Unidentified Unidentified 
14 OTU1163 Scaphandridae Scaphander Scaphander lignarius 
15 OTU2801 Unidentified Unidentified Unidentified 
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Supplemental Table S2-5. Results of SIMPER analysis for studies using 18S-ARMS data. 

 

No OTU Family Genus Species 
1 ASV10986 Maxillopoda Maxillopoda_X Maxillopoda_X_sp. 
2 ASV25194 Malacostraca Ogyrides Ogyrides_sp. 
3 ASV1093 Gigartinales_X Ramicrusta Ramicrusta_sp. 
4 ASV1162 Unidentified Unidentified Unidentified 
5 ASV10738 Demospongiae Clathria Clathria_venosa 
6 ASV16946 Corallinales_X Corallinales_XX Corallinales_XX_sp. 
7 ASV11867 Demospongiae Tedania Tedania_strongylostyla 
8 ASV18755 Demospongiae Antho Antho_prima 
9 ASV18399 Ostracoda Xestoleberis Xestoleberis_hanaii 

10 ASV12978 Annelida_XX Terebellidae Lysilla_sp. 
11 ASV19220 Polyplacophora_X Plaxiphora Plaxiphora_albida 
12 ASV17383 Ascidiacea Botryllus Botryllus_schlosseri 

13 ASV19260 Echinodermata_XX 
Echinodermata_XX
X Echinodermata_XXX_sp. 

14 ASV9361 Annelida_XX Prosphaerosyllis 
Prosphaerosyllis_longipapillat
a 

15 ASV10706 Malacostraca Eriphia Eriphia_scabricula 
16 ASV2321 Limoida Limaria Limaria_hians 
17 ASV1954 Anthozoa Porites Porites_cylindrica 
18 ASV14015 Maxillopoda Lucicutia Lucicutia_ovaliformis 
19 ASV10746 Annelida_XX Cirriformia Cirriformia_tentaculata 
20 ASV13390 Annelida_XX Exogone Exogone_fustifera 
21 ASV17928 Insecta Strepsylla Strepsylla_villai 
22 ASV13531 Malacostraca Coralliocaris Coralliocaris_superba 
23 ASV13254 Mytiloida Musculus Musculus_lateralis 
24 ASV12962 Demospongiae Demospongiae_X Demospongiae_X_sp. 
25 ASV11401 Anthozoa Pocillopora Pocillopora_meandrina 
26 ASV13186 Annelida_XX Syllis Syllis_ferrani 
27 ASV21998 Malacostraca Pagurus Pagurus_longicarpus 
28 ASV9884 Annelida_XX Armandia Armandia_sp. 
29 ASV9486 Polyplacophora_X Acanthopleura Acanthopleura_granulata 
30 ASV16970 Anthozoa Pavona Pavona_varians 
31 ASV2195 Annelida_XX Notomastus Notomastus_latericeus 
32 ASV10944 Annelida_XX Cirriformia Cirriformia_tentaculata 
33 ASV22637 Ascidiacea Polycarpa Polycarpa_mytiligera 
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34 ASV14326 Annelida_XX Thelepus Thelepus_crispus 
35 ASV12686 Gigartinales_X Ramicrusta Ramicrusta_sp. 
36 ASV15699 Suessiaceae Symbiodinium Symbiodinium_sp._Clade_D 
37 ASV11565 Rhodomelaceae Acanthophora Acanthophora_spicifera 
38 ASV1361 Ostracoda Vargula Vargula_hilgendorfii 
39 ASV21643 Echinodermata_XX Ophioderma Ophioderma_cenereum 
40 ASV8373 Pterioida-Pinnidae Pinna Pinna_nobilis 
41 ASV20715 Chromadorea_X Tarvaia Tarvaia_sp. 
42 ASV6969 Maxillopoda Typhlamphiascus Typhlamphiascus_typhlops 
43 ASV16520 Pirsonia_Clade_XX Pirsonia Pirsonia_guinardiae 
44 ASV10183 Demospongiae Neofibularia Neofibularia_hartmani 
45 ASV11412 Annelida_XX Lysidice Lysidice_sp. 
46 ASV12282 Ascidiacea Perophora Perophora_japonica 
47 ASV15434 Annelida_XX Exogone Exogone_heterosetosa 

 

Supplemental Table S2-6. Results of SIMPER analysis for studies using CO1-eDNA data. 

 

No OTU Family Genus Species 
1 Otu1329 Mamiellaceae Micromonas Micromonas pusilla 
2 Otu0407 Unidentified Unidentified Unidentified 
3 Otu1405 Unidentified Unidentified Unidentified 
4 Otu0249 Unidentified Unidentified Unidentified 
5 Otu5264 Unidentified Unidentified Unidentified 
6 Otu5088 Nectriaceae Ilyonectria Ilyonectria destructans 
7 Otu0375 Calanidae Undinula Undinula vulgaris 
8 Otu5248 Unidentified Unidentified Unidentified 
9 Otu0822 Unidentified Unidentified Unidentified 
10 Otu5223 Unidentified Unidentified Unidentified 
11 Otu5273 Unidentified Cymbomonas Cymbomonas tetramitiformis 
12 Otu0100 Chaetocerotaceae Chaetoceros Chaetoceros socialis 
13 Otu5207 Paracalanidae Parvocalanus Parvocalanus crassirostris 
14 Otu1910 Unidentified Unidentified Unidentified 
15 Otu0209 Chloropicaceae Chloropicon Chloropicon primus 
16 Otu5093 Unidentified Unidentified Unidentified 
17 Otu0404 Unidentified Unidentified Unidentified 
18 Otu1433 Unidentified Unidentified Unidentified 
19 Otu5190 Unidentified Unidentified Unidentified 
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20 Otu0743 Unidentified Unidentified Unidentified 
21 Otu5157 Aequoreidae Aequorea Aequorea sp. USHIKKK 
22 Otu0471 Unidentified Haptoglossa Haptoglossa sp. DM2 4/12 

23 Otu0656 Halictidae Lasioglossum 
Lasioglossum (Dialictus) sp. 1 PLG-
2016 

24 Otu0616 Unidentified Unidentified Amphipoda sp. LPdivOTU79 
25 Otu5169 Unidentified Unidentified Unidentified 
26 Otu1240 Dinobryaceae Dinobryon Dinobryon sp. 
27 Otu0566 Acartiidae Acartia Acartia spinicauda 
28 Otu0962 Unidentified Unidentified Unidentified 
29 Otu0453 Campanulariidae Clytia Clytia folleata 
30 Otu1794 Zerconidae Unidentified Zerconidae sp. BIOUG26189-D02 
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CHAPTER 3 
 

Marine Microbial Communities Across a Pollution Gradient in Kepulauan, Seribu, 

Jakarta Indonesia 

 
 
Abstract 
 
 Autonomous Reef Monitoring Structure (ARMS) are widely used for assessing cryptic 

marine biodiversity on coral reefs, but few ARMS studies examine microbial diversity. In this 

study, we use ARMS and DNA metabarcoding to examine shifts in microbial communities 

across Pulau Seribu, an island chain north of Jakarta, Indonesia that is heavily impacted by 

pollution stress. Results from 16S rRNA metabarcoding indicate substantial differentiation 

among microbial communities associated with the 100 µm, 500 µm, and sessile ARMS fractions. 

Although microbial diversity on ARMS did not varying significantly with pollution intensity as 

measured by annual chlorophyll-a concentrations, results show a clear separation of bacterial 

community composition between sites with higher and lower pollution stress. Abundance of 

Alpha and Gammaproteobacteria varied considerably across sites associated with pollution 

stress. Sulfate-reducing bacteria Desulfovibrionaceae and Clostridiaceae were taxa most 

sensitive to pollution stress, potentially serving as indicators for higher pollution levels, while 

alphaproteobacteria were indicative of less polluted environments. As environmental pressures 

on global coral reef ecosystems intensify, monitoring these ecosystems becomes increasingly 

important. Results of this study suggests that microbial diversity associated with ARMS can 

provide important insights into environmental differences, offering an additional tool to monitor 

micro to macrobial marine biodiversity in our rapidly changing world.   
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I. Introduction 
 

Coral reefs are among the most biologically and economically valuable ecosystems on 

Earth (Pendleton 1995, Cesar et al. 2003, Spalding et al. 2017). Despite occupying highly 

oligotrophic waters and being only a small part of the world’s oceans, coral reefs support a 

disproportionately high amount of marine biodiversity (Allen & Adrim 2003, Allen 2008a, Allen 

& Erdmann 2009). In turn, this biodiversity provides critical ecosystem goods and services, such 

as coastal protection and fisheries, as well as tourism and recreational activities with a combined 

global value estimated at almost $ 125-140 trillion per year globally (OECD 2019)  

Unfortunately, coral reef ecosystems are undergoing rapid degradation, resulting in 

significant global loss of reef ecosystems. Anthropogenic stressors such as habitat destruction 

(van der Meij et al. 2009, Baum et al. 2015), overfishing (Jackson et al. 2001, Newton et al. 

2007, Warren & Steenbergen 2021), increased sedimentation (Dubinksy & Stambler 1996, 

Fabricius et al. 2005), and eutrophication (Jessen et al. 2013, Vega Thurber et al. 2014), among 

others, are compounded by the increasingly severe effects of climate change (e.g., sea surface 

warming and ocean acidification) (Pandolfi et al. 2003, Hughes et al. 2003). Combined, these 

stressors threaten the ability of coral reefs to provide the essential ecological and economic 

services on which our civilization relies (Knowlton 2001).  

The vast majority of research focused on human impacts on coral reefs and reef resilience 

examines macrofauna such corals (Done 1992, DeVantier L, Suharsono, Budiyanto A, Tuti Y, 

Imanto P 1998, White et al. 2000, Bouchet et al. 2002, Bruno & Selig 2007, Allen & Erdmann 

2009) and fishes (Green & Bellwood, Allen 2008b, Hubert et al. 2011, Selig et al. 2014). 

However, there is a growing body of literature focused on the importance of microorganisms 

(e.g. bacteria, archaea, and viruses) on coral reefs and their essential role in promoting the health 
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of coral reef ecosystems (Webster & Reusch 2017, Glasl et al. 2018). Microbes perform a 

multitude of ecological and physiological roles, often through symbioses, that benefit their hosts 

,among others, by facilitating nitrogen fixation in oligotrophic waters (Lesser et al. 2004, Lema 

et al. 2012), aiding the cycling process of sulfur compounds (González et al. 2003) and providing 

protection against pathogens (Rohwer et al. 2002, Shnit-Orland & Kushmaro 2009). Microbes 

can also play a crucial role in supporting the acclimatization and maintenance of homeostasis 

under changing environmental conditions (Mortzfeld et al. 2016), a function of growing 

significance given the increasing environmental threats to the coral reefs ecosystem. 

Although coral reef management typically focuses on corals or fishes (Carpenter et al. 

2008, Pen et al. 2009, Foale et al. 2013, Selig et al. 2014, Jenkins & Van Houtan 2016), microbes 

can play an important role in coral reef sustainability by facilitating rapid responses to changes in 

environmental conditions (Bruno et al. 2003, Vega Thurber et al. 2014, Webster et al. 2016). 

Such responses might include alterations in microbial community composition, taxonomic 

diversity, changes in relative abundance of taxa, and proliferation of pathogenic and 

opportunistic bacterial groups (Rohwer et al. 2001, Horner-Devine et al. 2003, Mao-Jones et al. 

2010, Barott & Rohwer 2012, Walsh et al. 2015, Hernandez-Agreda et al. 2018). Environmental 

stressors driving these changes are numerous (reviewed in Nogales et al. 2011, Logue et al. 

2015); however, a combination of sedimentation from coastal development, nutrient enrichment 

from domestic waste, and hydrocarbon discharge from industrial activities are some of the 

primary sources of pollution on coral reef ecosystems (Cho & Kim 2000, Abed et al. 2002, 

Jessen et al. 2013, Ziegler et al. 2016).  

Field studies on the response of microbial communities to changing environments 

indicate changes that are either irregular (i.e. haphazard in pattern despite the known source of 
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pollutants; (Rohwer et al. 2001, Lozupone & Knight 2007, Quero et al. 2015, Hernandez-Agreda 

et al. 2018)) or that produce gradients in community composition, where microbial communities 

closer to pollution sources have marked changes in taxonomic compositions, relative to 

populations further from the pollution source (Fuhrman et al. 2008, Brakstad & Lødeng 2013, 

Yu et al. 2018). Two primary factors typically influence these patterns; 1) the type of pollution 

impacting local ecosystems (i.e., whether it is a point source like sewage treatment 

disposal/outflows or  river discharges and runoff from land), and 2) the strength of local 

oceanographic/hydrological processes influencing the dispersion of the pollutants (Fuhrman et 

al. 2006, Bachoon et al. 2010, Sinigalliano et al. 2010, Lindström & Langenheder 2012). The 

type of pollution can influence the bacteria proliferating during and after pollution exposure. For 

example, non-point or diffuse sources of pollution tend to favor specific fecal indicator bacteria 

such as Escherichia coli, enterococci, and Clostridium sp. (Abdelzaher et al. 2010). In contrast, 

point source pollution tends to heighten specific taxa that are related to the kind of pollution 

being discharged (e.g., hydrocarbon, phosphorus, and nitrogen) (Bachoon et al. 2010, Mukherjee 

et al. 2016). Oceanic factors, such as the pattern and strength of ocean currents and/or wind 

direction, can influence the magnitude of pollution in local areas. In some cases, pollutants can 

be pushed away from the pollution source, lessening the impact of pollution proximal to the 

source, while elevating pollution in areas more distant from the source (Zhang et al. 2009).  

There is growing interest in characterizing changes in bacterial community composition 

with respect to pollution stress, including the identification of indicator taxa most sensitive to 

pollution (Zhang et al., 2014, Quero et al. 2015, Chen et al. 2019). Although molecular 

techniques have greatly advanced our understanding of how microbial communities respond to 

pollution (Hugerth & Andersson 2017, Mukherjee et al. 2018), there is a wide range of variation 
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how these microbial communities are sampled. Sampling approaches vary from collecting water 

(Shibata et al. 2004, Enns et al. 2012, Ponsero et al. 2021) and sea floor sediment (Gillan et al. 

2005, Enns et al. 2012, Yu et al. 2018, Chen et al. 2019) to targeted sampling of microbe-bearing 

host taxa such as corals and sponges, among others (Harder et al. 2003, Selvin et al. 2009, Barott 

& Rohwer 2012). In the case of targeted sampling, microbial communities are typically sampled 

from a particular host body part, and then compared across areas with varying pollution levels 

(Glasl et al. 2016). Although such studies can document changes in microbial diversity across 

varied environmental conditions (Blackall et al. 2015, Hester et al. 2016), the non-standardized 

sampling approach limits our ability to compare results broadly across studies, as bacterial 

communities can vary greatly across sampled habitats or parts a hosts body (Enomoto et al. 

2012, Chiarello et al. 2015, Kramar et al. 2019). Moreover, the physiological and biological 

characteristics of hosts (e.g., size, age, etc.) in these studies are often unknown, even though 

hosts of different sizes and age can host different bacterial communities (Krediet et al. 2013, 

Ainsworth et al. 2015, Weiler et al. 2018). Furthermore, variation in sample processing and 

preservation can also introduce variation in the results (Bahl et al. 2012, Araújo-Pérez et al. 

2012). Advancing our understanding of how pollution stress impacts microbial communities on 

coral reefs requires sampling methods that are standardized, allowing for direct comparisons of 

results across studies. 

Comprised of 10 25x25cm PVC plates, Autonomous Reef Monitoring Structures 

(ARMS; Fig. 3-1) are a highly standardized way of sampling and comparing biodiversity in 

marine ecosystems using DNA metabarcoding (Leray & Knowlton 2016, Ransome et al. 2017, 

Pearman et al. 2018). ARMS are deployed, processed, and document marine biodiversity using 

highly standardized protocols, making them ideal for comparative studies (Leray & Knowlton 



 

 148 

2015). However, despite being widely used to examine marine metazoans (Leray & Knowlton 

2016, Ransome et al. 2017, Casey et al. 2021), only one study has used this method to investigate 

bacterial diversity (Pearman et al. 2019), documenting how microbial communities changed 

along an environmental gradient in the Red Sea.    

Kepulauan Seribu is an archipelago of 110 islands north of Indonesia’s capital, Jakarta 

(Fig. 3-2), where discharges of pollutants from Jakarta (Willoughby 1986, Rees et al. 1999, 

Cleary et al. 2006, Rachello-Dolmen & Cleary 2007) combine with domestic waste from local 

island populations (Uneputty & Evans 1997, Hutomo & Moosa 2005) to create pronounced 

differences in local pollution stress (Williams et al. 2000). Previous studies show that increased 

pollution stress in Kepulauan Seribu drives changes in coral and fish communities and lowers 

alpha diversity (Rees et al. 1999, Cleary et al. 2006, van der Meij et al. 2009, Cleary 2017). 

However, using ARMS and DNA metabarcoding, Anggoro et al. (chapter 2) showed no changes 

in alpha diversity of metazoan communities across a 10-fold difference in pollution stress but 

found significant decrease in beta diversity and significant changes in particular indicator taxa 

with increasing pollution stress.  

In this study, we examine bacterial diversity on ARMS to understand the impact of 

pollution stress on reef-associated microbial communities. Specifically, we examine bacterial 

diversity to test how microbial communities shift in response to pollution stress, and whether 

there are microbial taxa that are indicative of pollution stress that could be used to aid the 

monitoring of marine ecosystems.  
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Material and Methods 
 
 
Study site 

Industrial activities and riverine discharge into Jakarta Bay combined with point source 

pollution from the 11 inhabited islands of Pulau Seribu are major contributors to pollution across 

the archipelago (Willoughby 1986, Tomascik et al. 1994, Uneputty & Evans 1997). These local 

stressors are then acted upon by seasonal changes in wind and current directions (Lubis & Yosi 

2012), shaping the distribution of marine life in Kepulauan Seribu. For example, coral reefs 

closer to Jakarta Bay include species that are more tolerant to disturbance, while more sensitive 

species are only found on the islands furthest from pollution sources (Rees et al. 1999, Cleary et 

al. 2006, van der Meij et al. 2009). Community composition patterns also shift as a function of 

pollution levels, with higher fish abundance and richness in less polluted regions, while sea 

urchin abundance and richness peaks in more polluted regions (Cleary et al. 2008, van der Meij 

et al. 2009, Madduppa et al. 2013).  

 

ARMS Deployment, Collection, and Sampling  

To capture differences in local pollution stress levels, in 2013 we deployed ARMS units 

in eight islands spanning Pulau Seribu with an distance range between sites of 7-10 km. The 

deployments encompass highly polluted sites close to Jakarta (e.g., Pulau Bidadari 10 km from 

Jakarta Bay) to less polluted sites that are more distant (e.g., Pulau Sepa 60 km from Jakarta 

Bay) (Table. 3-1). Following standard deployment protocols, we deployed three ARMS per 

location at a depth of 10m, for a total of 24 ARMS. After three years on the sea floor, ARMS 

were recovered in summer 2016.  
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Figure. 3-1. ARMS prior to underwater deployment (a.) and fully covered surface following 

three years deployment in Raja Ampat, Eastern Indonesia (b.) 

 

We recovered ARMS using standard protocols. First, we enveloped ARMS in mesh-lined 

crates to prevent motile organisms from escaping during recovery. We then brought the ARMS 

to the surface and transported them in large plastic containers filled with filtered aerated sea 

water to the Indonesian Institute of Science field lab in Pulau Pari. Next, we disassembled the 

ARMS,  
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Figure 3-2. Location of ARMS deployment in Pulau Seribu, with representative water 

conditions  

 

carefully separating each plate and then transferring each plate to individual containers filled 

with filtered seawater. We then processed the ARMS following a standard protocol (Leray & 

Knowlton 2015, Ransome et al. 2017), shaking plates vigorously to ensure that all motile 

organisms detached from the plates. Next, to ensure that higher biomass animals didn’t swamp 

out sequencing signals from smaller organisms, we size fractionated ARMS samples by passing 

all mobile taxa and associated sediment through a set of geological sieves (2 mm, 500 μm and 

106 μm) in two steps. In the first step, we stacked 2 mm sieve on top of the 500 µm sieve and 

allowed all the water and organisms from the transporting container to pass through both sieves 

and into a new bin. This step isolated motile taxa >2 mm in size for voucher-based DNA 

barcoding. We then passed the water and associated sediment through the 500 µm sieve stacked 

above the 106 μm sieve. The result was two size fractioned samples: a 2mm to 500 µm sample 
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(hereafter referred to as the 500 µm fraction) and a 500 - 106 µm sample (hereafter referred to as 

the 100 µm fraction). For preservation and storage, we concentrated each of these fractions using 

a 40 µm nitex mesh and then rinsed the sample with 95% ethanol before preserving each fraction 

in separate falcon tubes with 95% ethanol that we stored at -20 °C until further processing. 

Lastly, we scraped all encrusting sessile biota from ARMS plates into a tray (hereafter referred to 

as the sessile fraction), and then homogenized the sample with a blender for 30 s at maximum 

speed. We then rinsed the homogenate with 95% ethanol in a 40 μm Nitex mesh and placed the 

sample in a 50 ml falcon tube filled with DMSO and stored the sample at -20 °C.  

 
 
DNA extraction and library preparation 

To prepare the fractions for DNA extraction, we performed a decantation step on both 

500 µm and 100 µm fractions to separate organic contents from inorganic calcium carbonate and 

terrigenous sediment. Decantation consisted of adding individual samples to a 1 L Erlenmeyer 

flask with sterile water, agitating the slurry to suspend the entire fraction, allowing the inorganic 

sediment to settle, and then decanting the suspended organic content into a geological sieve to 

recover the organic contents. We used a 106 µm sieve to decant the 500 µm fraction and a 45 µm 

sieve to decant the 100 µm fraction. No decantation was necessary for the sessile fraction. 

We performed DNA extractions using 1 g of the decanted 500 µm and 106 µm fractions, 

and 10g homogenized sessile sample. To break down organic tissue, we incubated samples with 

80 μl of 400 μg/ml Proteinase K overnight in a shaker-incubator at 56 oC and 200 rpm, and then 

extracted the DNA using the Powermax Soil DNA Isolation Kit (MoBio, Carlsbad, USA) 

following the manufacturer protocols. To remove potential PCR inhibitors, we further cleaned all 

DNA extracts using a Power Clean DNA Clean-Up Kit (MoBio, Carlsbad, USA) following the 
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manufacturer protocols, eluting the DNA into nuclease free water instead of buffer. We then 

quantified each DNA extraction using a Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA) and 

the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). 

To assess microbial diversity, we followed Earth Microbiome Project protocols to 

amplify the V4 region of the 16SrRNA gene region using primers 515f and 806r (Caporaso et al. 

2012) (Walters et al. 2015). Library preparation followed a single indexing approach where 

barcodes incorporated into the forward primer of the 515f-806r primers pair to facilitate 

multiplexing of up to 96 samples per run. PCR were performed in triplicate, using 5 ng of DNA 

from each sample. The following PCR conditions were used: initial denaturing at 94 °C for 3 

min, 35 cycles each at 94°C for 45 s, 50°C for 60 s, and 72 °C for 90 s, followed by a final 

extension step at 72 °C for 10 min. Triplicate PCR products were visualized individually on 

1.2% agarose gel to confirm correct product size and then pooled and sequenced on MiSeq 

Illumina using V2 300-cycles kit with 20% PhiX DNA added to improve data quality. 

Sequencing of final libraries was performed at Smithsonian Institution National Museum of 

Natural History, Washington DC. 

 

Operational Taxonomic Unit (OTU) and Taxonomic Assignments 

We performed quality control on all raw paired-end FASTQ reads using the Quantitative 

Insights Into Microbial Ecology 2 program (QIIME2, ver. 2018.11 Caporaso et al., 2010) and 

then demultiplexed sequences using QIIME’s native plugin. Next, we used Divisive Amplicon 

Denoising Algorithm 2 (DADA2) (Callahan et al., 2016) to quality filter, trim, denoise, and 

merge pairs the data. The completion of these steps resulted a feature table that included 

representative sequences in FASTA format and the abundance of each of these sequences in the 
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dataset. We then merged sequences into operational taxonomic units (OTUs), clustering 

representative sequences at 97% sequence similarity and performing de novo taxonomic 

assignment using QIIME vsearch cluster-features-de-novo command from QIIME2 and SILVA 

SSU non-redundant database (132 release). The result was a new feature/OTU table, taxonomy 

table and representative sequences, that were then used for subsequent analysis.  

Prior to taxonomic assignment, we used LULU (Frøslev et al. 2017) to remove erroneous 

OTUs (minimum_match = 84, minimum_relative_cooccurence = 0.90 for both markers). We 

then clustered the LULU outputs using vsearch (Rognes et al. 2016) using a 97% clustering 

level, and assigned the sequences using BLASTN (Camacho et al. 2009) at 85% identity using 

the 132 release version of the SILVA SSU non-redundant database (https://www.arb-

silva.de/download/archive/qiime/), resulting in an OTU table, a table of representative 

sequences and a taxonomic table (assigned taxonomic name for each representative sequence).  

 

Data Analysis 

To evaluate whether sequencing depth was sufficient to capture local microbial diversity, 

we generated rarefaction curves, plotting OTU richness vs. sequencing depth, using ggrare R 

package (version 0.1.0.) (Kandlikar, 2020). We then rarefied samples of each fraction to even 

sequencing depths to ensure that diversity metrics were not impacted by variation in sequencing 

effort. Next, we used the phyloseq package (version 1.26.1) (McMurdie & Holmes, 2013) to 

combine the representative sequences and OTU tables into a single phyloseq object/file, calculate 

alpha diversity (Observed, Inverse Simpson, Shannon, Simpson), group samples based on 

fraction size and location, and transform sequence data from total reads counts to relative read 

abundance (RRA). We then visualized these data in ggplot2 (version 3.3.2) (Wickham, 2016).  
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To test for significant differences among biodiversity metrics, we first tested the data for 

normality using the Shapiro.test and for homoscedasticity using the bartlett.test function in Stats 

package (version 4.0.2) (R Core Team,  2020). For normally distributed data, we tested for 

differences in diversity statistics using a one-way ANOVA and for data that were not normally  

distributed, we used a Kruskal-Wallis test as implemented in Stats package (version 4.0.2) (R 

Core Team,  2020). We then plotted data that were normally distributed and free of 

homoscedasticity.  

To examine similarities and differences of samples based on fraction size, we constructed 

a venn diagram using  Venn Diagram R package (Chen & Boutros, 2011) in R. To examine 

similarities and differences based on fraction size and location, we performed hierarchical 

clustering using the count zero multiplicative (CZM) method as implemented in cmultRepl 

command in zComposition package (1.3.4), and then visualized the results using hclust from 

stats package (4.0.2). To visualize microbial community composition by fraction, we constructed 

a box plot using amp_boxplot command from Ampvis2 R package (2.6.4), with only the eight 

most abundance taxa visualized, and to visually discern variation of microbial community 

composition across sites and fractions we constructed bar plots using ggplot2 (version 3.3.2) 

(Wickham, 2016), visualizing the 16 most abundant taxa. 

 To further compare differences in community composition among sites and 

fractions, we conducted multivariate analyses (PERMANOVA) based on Jaccard distances in the 

vegan package (Ogle, 2017) in R (R development core team), using 9999 permutations to test for 

statistical significance. We then calculated the compositional dissimilarity using ‘ADONIS’ 

command and the homogeneity of group dispersion using ‘betadisper’ command in vegan 

package (Oksanen, 2017). To visualize potential differences, we conducted Principles 
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Coordinates Analyses (PCoA) using the Ampvis2 package (Andersen et al., 2018) with the 

ordination function of phyloseq, using Jaccard dissimilarity matrices, and then generated an 

ordination plot using ggplot2 (Oksanen, 2017). To compute compositional turnover and the 

number of OTUs shared by multiple ARMS deployment sites we used Zeta.decline.mc function 

as implemented in zetadiv R package (1.2.0).  

To identify bacterial taxa indicative of local pollution stress, we conducted two analyses. 

First, we performed linear discriminant analysis (LDA) and effect size (LEfSe) analyses (Segata 

et al., 2011), employing a threshold of >2.0 for the logarithmic LDA score in order to take into 

account discriminant features, using the online Huttenhower Galaxy server 

(hutternhower.sph.harvard.edu/galaxy). Second, we performed a random forest analysis on the 

161 OTUs that have more than 0.05% relative abundance in the dataset, using the R 

randomForest (version 4.6-14) and rfPermute package (R 3.5.1) using ntree = 10,000. To 

identify indicator species from each site we also performed indicator species analysis using R 

package indicspeceis (version 1.7.6) using multipatt and nperm function with 1000 random 

permutations to identify taxa most strongly associated with each site. The method calculates the 

IndVal index between the OTUs and each site group and then looks for the group corresponding 

to the highest association value (Dufrˆene and Legendre 1997). The maximum value of 1 

indicates that the species have high associations with their site groups. In this analysis we 

considered each ARMS deployment site as an individual group. Random forest analyses did not 

employ perform cross-validation (splitting the data into training and test sets) as this approach is 

not recommended for relatively small sample sizes as is common in microbial study (Wainberg 

et al. 2016). Instead, we examined out-of-bag error (OOB), the calculated error from each 

model/tree produced during the calculation. OOB error can be calculated by inspecting the 
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performance of each tree on data they have not been trained on, providing a form of internal 

cross-validation (Ramosaj & Pauly 2019).  

 To test for associations between pollution and microbial communities, we plotted 

microbial diversity against Chlorophyll a concentrations derived from remote sensing data. We 

used Chlorophyll a as a proxy for pollution stress because it was not practical to monitor water 

quality at each site over the three-year deployment period, and productivity can be used as an 

indicator of integrated aspects of water quality (Boyer et al. 2009). To obtain Chlorophyll a 

concentrations, we downloaded annual average Chlorophyll a concentrations and (MODIS A) at 

a 4 km resolution across three years (2014-2016) from the NASA Ocean color website 

(https://ocean- color.gsfc.nasa.gov/). These data were cleaned to remove unnecessary commas 

and other punctuation using Microsoft excel (Version 16.3) and imported to Ocean Data View 

(version 5.0.0) for visualization. We then determined Chlorophyll a concentrations for each 

ARMS deployment site was based on satellite data values from the nearest grid point. Due to the 

spatial resolution of the data, some sites were assigned to the same grid point and thus had the 

same environmental data. We then performed linear regressions to test for correlations between 

taxa richness and chlorophyll a concentration using lm function from stats r package (4.0.2) and 

visualized it using r package ggplot2 (3.3.6)  
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Results 

Sequencing and Rarefaction 

We recovered only 18 of the 24 deployed ARMS; the remaining 6 could not be located.  

 

From the recovered ARMS, we collected 100um, 500um and sessile fractions, resulting 

in 54 total samples (Supplemental Table S3-1). After post quality filtering and the exclusion of 

chimeras, these samples generated 4,074,730 sequence reads with a mean length of 250.92 base 

pairs. After removing all eukaryotes, archaea, mitochondria, and chloroplast sequences, 

3,108,439 sequences remained, representing 8,470 Operational Taxonomic Units (OTUs). 

Rarefaction plots indicated that this sequencing depth was sufficient to saturate OTU discovery 

Figure 3-3. Alpha diversity rarefaction plot generated with ggrare (Kandlikar et al., 2018) in R 

environment. Number of amplified sequence variants (OTUs) (left axis) plotted against sequencing 

depth (bottom axis) each individual ARMS unit. 
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for nearly all samples (Fig. 3-3). After rarefying our data to a uniform 16,069 sequences per 

sample, a total of 7,190 OTUs remained. 

 
 
Composition of Microbial Communities by Fraction 
 

Total microbial communities from ARMS were primarily dominated by Proteobacteria 

followed by Bacteroidetes and Chloroflexi, with mean relative abundances of 48.82 %, 10.44 % 

and 8.24 % respectively (Fig. 3-4A). However, when parsed at Class level, differences among 

the fractions emerged. Excluding the dominant proteobacteria classes, the 100um fraction was 

dominated by Bacteroidia, Oxyproteobacteria and Plancomycetecia with relative read 

abundances of 16.29 %, 6.59 % and 3.73 %, respectively (Fig. 3-4B), in addition to unknown or 

uncultured microbes. The 500 µm fractions had the same dominant bacterial classes with relative 

abundance of 11.64 %, 9.24 % and 3.47 % (Fig. 3-4C), respectively, in addition to unidentified 

taxa. In contrast, excluding proteobacteria, the sessile fraction was dominated by 

Dehalococcoidia, Acidimicrobia, Anaerolineae, and Oxyproteobacteria with relative read 

abundances of 13.89%, 6.96 %, 4.5 %, and 3.55%, respectively (Fig. 3-4D). Unlike the 100 µm 

and 500 µm fractions, the sessile fraction did not have a substantial number of unidentified taxa. 
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Figure 3-4. A box plot showing taxonomic composition microbial communities at Phylum level 

for A) and at Class level for B, C and D) for each of the three size fractions. Plot is showing taxa 

relative abundance of the sample across eight sites in the archipelago. The box plot constructed 

based on phyla contribute more than 2% of the relative abundance of each sample.   

 

Comparison of Microbial Communities Across Size Fractions   

Comparison of microbial community composition across the three fractions demonstrates 

some overlap, but also substantial differences in OTU composition. Venn diagrams (Fig. 3-5) 

show that of a total of 7,190 OTUs, only 1,190 (16.6%) were present in all three fractions. The 

most commonly shared taxa among the three fractions were OTUs in the phylum Proteobacteria, 

Chloroflexi and Cyanobacteria. Of 4,456 OTUs from the 100um fraction, 1,814 (40.7%) were 
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unique to this fraction. Similarly, 1,814 of 4,380 OTUs from the 500um fraction (40.0%) were 

unique to this fraction and 799 of 2,502 OTUs from the sessile fraction (31.9%) were unique to 

this fraction.  

 

Figure 3-5. Number and distribution of microbial OTUs revealed from16S rRNA metabarcoding 

of 100 µm, 500 µm, and sessile size fractions. Plot represents data rarefied to an even depth of 

16.069 reads per ARMS unit.  

 
 
Of the 6,391 combined OTUs from the 100 µm and 500 µm fractions, 2,455 (38.3%) were found 

in both fractions. In contrast, of 5,571 combined OTUs from the 100 µm and sessile fraction, 

only 1,387 (24.9%) were observed in both fractions, and of 5,376 OTUs combined from the 

500um and sessile fraction, only 1,506 (28.0%) were shared among these fractions.  

Hierarchical clustering showed that the microbial communities from ARMS samples 

grouped in two major clades, one comprised largely of all sessile samples and a second 

comprised of 100 µm and 500 µm fractions, (Fig. 3-6). Although some communities clustered by 

location (e.g., Tidung and Kotok), others did not, with no clear geographic pattern.  



 

 162 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3-6. Individual sample clustering explaining sample grouping based on fraction sizes. 

Samples were grouped based on fraction sizes; a sessile fraction created separated clade (A.)  

while 500 and 100 fractions were lumped as a single clade (B.) Plot was developed using count 

zero multiplicative (CZM) method implemented in Zcomposition package (Version 1.3.4) in R 

environment 
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Figure 3-7.  Boxplots showing the microbial diversity indices (Inverse Simpson, Shannon 

Observed and Simpson) across Sites based on fraction size. 

 
Microbial Diversity Across Size Fractions 
 

Normality tests of Observed, Shannon, Simpson, Inverse Simpson, measures of alpha 

diversity showed that only Observed OTUs conformed to assumptions of a normal distribution 

(W = 0.97, p-value = 0.3118; Bartlet K-squared = 2.35, df = 2, p-value = 0.3096). ANOVA 

results from Observed OTU diversity indicate significant differences among microbial OTU 

diversity among fractions (F-value = 33.49, df = 2, p-value < 0.05) (Fig. 3-7).  Similarly, results 

of Kruskal-Wallis tests show that the Shannon diversity index (Chi square = 26.98, p = < 0.0005, 

df = 2), Simpson diversity index (Chi square = 19.86, p = < 0.0005, df = 2), and InvSimpson 

diversity index (Chi square = 19.86, p = < 0.0005, df = 2)  are also significantly different. 
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Figure 3-8. Non-metric multidimensional scaling (NMDS) analysis illustrating dissimilarities 

in bacterial community composition in different fraction sizes deployed across the archipelago 

using Jaccard index similarities.  

 

In addition to difference in alpha diversity, non-metric multi-dimensional scaling indicated that 

beta diversity was significantly different among all three fractions (Fig. 3-8) (p < 0.05 and 

ADONIS has R2 = 0.07). Similar to the alpha diversity metrics, beta diversity of the sessile 

fraction was the most dissimilar to the 100 µm and 500 µm fractions. 
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Analysis of zeta diversity showed a steep decline in the first orders, especially from (ζ1) to (ζ2) 

across all fraction sizes, with the steepest declines in the 100 µm and 500 µm fractions (1 to 

0.24) (Fig. 3-9B); the slowest declines were in the combined fractions (1 to – 0.28). Following 

zeta order 2 (ζ2), declines are still observed but are not as steep.  For example, a decline of zeta 

diversity in all fractions from zeta order 5 (ζ5) to zeta order 6 (ζ6) is from (0.08– 0.07) and in 100 

fraction the value is from (0.05– 0.04). Across all fractions, no zeta diversity values reached 

zero.   

 

 
Figure 3-9. Normalized zeta diversity decline for all fractions showing how the number of 

shared OTUs decreases with the zeta order (a) and The species retention rate using the zeta ratio, 

which shows the degree to which common OTUs are more likely to be retained in additional 

cases or samples than rare ones with an increase in zeta order across sites in all fraction and 

combined fraction (b).  
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Microbial Community Across Sites Based on Proximities to Source of Pollution 
 

Total microbial diversity and community composition varied across sites. Kotok, the 

second site furthest from Jakarta, had the highest number of OTUs (1789) and Sepa had the 

lowest (781); the remaining sites (Pari, Karang Beras, Pramuka) have OTUs between 800 and 

1720 

Table 3-1. Summary of number of OTUs across sites using 16S rRNA 
 

Site Name Mean Max Min 
Lancang Besar 1569 1569 1569 

Pari 1533.5 1580 1487 
Tidung 1052.6 1246 901 

Karang Beras 1186.3 1389 868 
Pramuka 1454.3 1715 1311 

Kotok 1617.6 1789 1511 
Sepa 1109.6 1553 781 

 

Measures of alpha diversity varied across sites (Fig. 3-10). Examining total observed 

OTUs alpha diversity peaked in Kotok, the second site furthest from Jakarta, and was lowest in 

Sepa and Karang Beras (Fig. 3-10 A). Similar patterns were also observed in other indices where 

diversity also peaked at Kotok (Fig. 3-10 B, C, and D). Although Lancang Besar has only one 

ARMS unit recovered, it had the most diversity based on Simpson’s, inverse Simpson’s and 

Shannon indices and total observed OTUs. However, despite these absolute differences, none 

were significantly different (Shannon index; F value = 1.39 and P value > 0.05 and Bartlett's K-

squared = 5.242, df = 4, P value > 0.05: Observed OTUs; F value = 2.32 and P value > 0.05, 

Bartlett's K-squared = 2.02, df = 4, P value > 0.05: Simpson index; Kruskal-Wallis chi-squared = 

9.32, df = 6, P value > 0.05: InvSimpson index; Kruskal-Wallis chi-squared = 9.32, df = 6, P 

value > 0.05) 
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Figure 3-10. Total Operational Taxonomic Units (OTUs) diversity captured in across sites 

measured with different diversity indices. Highest mean observed number of OTUs was found 

in Tidung, however using three other indices we found that Karang Beras has relatively higher 

diversity compared to other sites 

 

Plots of microbial community composition varied across both sites and fractions (Fig. 3-

11). Although composition was generally similar across sites in the 100 µm and 500 µm, both 

Oxyphotobacteria and Deltaproteobacteria had elevated representation in sites with intermediate 

(e.g., Karang Beras) and short distances to pollution source (e.g., Lancang Besar) (Fig. 3-11 A). 

Changes in composition, however, were much more pronounced in the sessile fraction. 

Alphaproteobacteria, Gammaproteobacteria and Dehalococcoidia were generally lowest in 
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Lancang Besar and higher in sites further from Jakarta. In contrast Acidiomicrobiia and 

Anaerolineae were highest in Lancang Besar, and lower in sites further from Jakarta. Taxa 

categorized into ‘other’, were also generally higher in sites that were closer and further from 

Jakarta (Fig. 3-11 A), as were unidentified taxa (e.g., Pari).  

Sepa, the site furthest from Jakarta, has the highest number of unique OTUs (759) 

consisting mainly of Patescibacteria, Cyanobacteria, Chloroflexi and Protebacteria. The lowest 

number of unique OTUs (183) were in Lancang Besar, the site closest to Jakarta, and was 

dominated by Cyanobacteria and Proteobacteria, whereas sites located in the center of 

Kepulauan Seribu (Tidung and Pramuka) were primarily dominated by Proteobacteria from class 

Gammaproteobacteria and Dehalococcoidia. Further, as many as 435 OTUs were shared across 

sites. This shared OTUs were dominated by Alphaproteobacteria, Gammaproteobacteria and 

Dehalococcoidia mostly from species Photobacterium rosenbergii. 

Although there was variation in taxonomic composition among sites based on relative 

read abundance (Fig. 3-11 A), examining microbial communities based on OTU relative 

abundance were more subtle (Fig. 3-11 B.). In general, there was a decrease in OTU abundance 

of Bacteroidia and Unidentified taxa in the sessile fraction and an increase in 

Alphaproteobacteria and Dehalococcoidia.  
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Figure 3-11. Taxonomic composition microbial communities at Class level based on read 

abundance A) and based on OTU abundance B) for each of the three size fractions at Class 

level. Bar plot is showing abundance across eight sites in the archipelago. The bar plot 

constructed based on phyla contribute more than 2% of the relative abundance of each sample.   
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Figure 3-12. Nonmetric multidimensional analysis illustrating dissimilarities in microbial 

community composition across sites. Analyses using Jaccard similarity were undertaken on 

individual fractions (106–500 µm, 500 µm -2mm, and sessile) and on all fractions combined 

across the seven sampling sites.    

 

Results of non-metric multidimensional scaling, merging read abundance from each 

fraction into a single data point, showed significant differences in the microbial composition 

Jakarta 
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across sites. Betadisper showed confirmed homogeneity in group dispersions (F= 0.36, p > 

0.05), with Adonis returning significant differences among sites based on total microbial 

diversity (PERMANOVA, R2 = 0.14, p < 0.005; Fig. 3-12). Similar results were obtained 

examining all fractions combined or independently. Both adonis and betadisper revealed 

significant differences among locations for all three fractions, with p < 0.005 and R2 ~ 0.43 

(Adonis) and F value ranges 5 – 10, p value < 0.005 (betadisper) respectively (Table 3-2). 

Separation among sites located closest and furthest to pollution is apparent in all fractions.  

 
Table 3-2. Beta diversity summary (PERMANOVA) of microbial diversity across sites based on 

fraction size using 16S rRNA 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

100 μm Fraction  500 μm Fraction  
Adonis  Betadisper  Adonis  Betadisper  

R2  p-val  F  p-val  R2  p-val.  F  p-
val.  

0.43228 1.00E-
03 
 

6.038 0.005 0.428 1.00E-
04 
 

10.749 0.001 
 

                        

Sessile  
Adonis  Betadisper  

R2  p-val.  F  p-
val.  

0.430 0.0016 5.6087 0.004 
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Linear Regression between Chlorophyll a Concentration and Total Taxonomic Richness  

Three-year averages of Chlorophyll a ranged between 0.50 – 8.59 mg m-3, with the 

highest concentration observed around Pulau Bidadari (8.59 mg m-3), the site closest to Jakarta. 

The lowest chlorophyll concentrations were observed in Pramuka and two other sites furthest 

from Jakarta (Table 3-3).  

 Linear regression showed that although there was a small increase in total OTU diversity 

on ARMS with increasing Chlorophyll a concentration (R2= 0.12), this relationship was not 

significant (p = 0.1507) (Fig. 3-13). Expanding this approach to examine the relationship 

between Chlorophyll a concentration and relative abundance of specific microbial taxa that 

passed tests of normality (Saphiro-Wilk test) and homogeneity (Bartlett test) showed that 

Chlorophyll a concentration is a not significant predictor of OTU diversity for most phyla 

detected. The one exception was a significant positive relationship between Chlorophyll a 

concentration and Margulisbacteria (Cyanobacteria group) (Table 3-4).  

 

 

 

 

 

 

 

 

 

Figure 3-13. Plot of total OTUs as a function of Chlorophyll a concentration on including best 

fit line and R2 value 

 



 

 173 

Table 3-3. Annual average Chlorophyll Chlorophyll a concentrations and (MODIS A) at a 4 km 

resolution across three years (2014-2016) 

Site Name 
2014 2015 2016 Three years 

Average 
Bidadari 9.38 7.57 8.66 8.54 

Lancang Besar 3.20 2.01 4.80 3.34 
Pari 0.64 0.82 0.94 0.80 

Tidung 0.44 0.67 0.47 0.53 
Karang Beras 0.65 0.65 0.68 0.66 

Pramuka 0.50 0.48 0.54 0.50 
Kotok 0.52 0.56 0.47 0.52 
Sepa 0.52 0.56 0.47 0.52 
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Table 3-4. P-value calculated from linear regression modelling between OTU richness per taxa versus Chlorophyll a concentration. 
Taxa with significant p-value were highlighted in bold 

 
 No. Variable 

r. 
Squ. 

adj.r. 
squ Sigma Stat. p. Val. df logLik AIC BIC Dev. 

df. 
Res. nobs 

1 Acetothermia 0.16 0.08 0.54 1.91 0.20 1 -8.58 23.15 24.61 2.93 10 12 
2 Acidobacteria 0.01 -0.05 0.48 0.24 0.63 1 -11.09 28.18 30.85 3.61 16 18 
3 Bacteroidetes 0.04 -0.02 0.47 0.74 0.40 1 -10.81 27.63 30.30 3.50 16 18 
4 BRC1 0.01 -0.06 0.48 0.10 0.75 1 -11.16 28.33 31.00 3.64 16 18 
5 Chlamydiae 0.01 -0.06 0.48 0.09 0.77 1 -11.17 28.34 31.01 3.65 16 18 
6 Chloroflexi 0.04 -0.02 0.47 0.62 0.44 1 -10.88 27.76 30.43 3.53 16 18 
7 Deferribacteres 0.27 0.09 0.19 1.49 0.29 1 2.69 0.62 -0.01 0.14 4 6 
8 Dependentiae 0.00 -0.06 0.48 0.08 0.79 1 -11.18 28.36 31.03 3.65 16 18 
9 Gemmatimonadetes 0.01 -0.05 0.48 0.18 0.68 1 -11.12 28.24 30.92 3.63 16 18 

10 Kiritimatiellaeota 0.02 -0.04 0.47 0.35 0.56 1 -11.03 28.05 30.72 3.59 16 18 
11 Latescibacteria 0.03 -0.03 0.47 0.43 0.52 1 -10.98 27.97 30.64 3.57 16 18 
12 Lentisphaerae 0.03 -0.03 0.47 0.49 0.49 1 -10.95 27.89 30.57 3.56 16 18 
13 Margulisbacteria 0.39 0.33 0.42 7.02 0.02 1 -6.20 18.41 20.10 1.98 11 13 

14 
Marinimicrobia  
(SAR406 clade) 0.01 -0.19 0.77 0.03 0.88 1 -6.89 19.77 19.61 2.93 5 7 

15 Modulibacteria 0.29 0.20 0.19 3.21 0.11 1 3.46 -0.92 -0.01 0.29 8 10 
16 Nitrospinae 0.10 0.04 0.45 1.75 0.20 1 -10.29 26.57 29.24 3.30 16 18 
17 Nitrospirae 0.00 -0.06 0.48 0.00 0.97 1 -11.22 28.44 31.11 3.67 16 18 
18 PAUC34f 0.02 -0.04 0.47 0.31 0.59 1 -11.05 28.10 30.77 3.60 16 18 
19 Planctomycetes 0.01 -0.06 0.48 0.10 0.76 1 -11.16 28.33 31.00 3.64 16 18 
20 Proteobacteria 0.01 -0.05 0.48 0.24 0.63 1 -11.09 28.17 30.84 3.61 16 18 
21 Schekmanbacteria 0.21 0.08 0.15 1.60 0.25 1 5.19 -4.39 -4.15 0.13 6 8 
22 Spirochaetes 0.08 0.02 0.46 1.34 0.26 1 -10.50 26.99 29.66 3.38 16 18 
23 Verrucomicrobia 0.04 -0.02 0.47 0.64 0.43 1 -10.87 27.73 30.40 3.52 16 18 
24 WPS-2 0.01 -0.09 0.57 0.10 0.76 1 -9.15 24.30 25.75 3.23 10 12 
25 WS2 0.03 -0.07 0.60 0.32 0.59 1 -8.92 23.85 25.04 3.26 9 11 
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Bacteria Taxa indicative of Pollution impact on ARMS 

 

Lineal discriminant analysis (LDA) and the effect size (LEfSe) revealed bacterial 

bioindicators significantly associated with deployment sites. In total, 50 taxa with LDA score 

higher than 2.0 were identified (Supplemental Figure S3-1). The most polluted sites, Lancang 

Besar and Pari had 17 indicator taxa each, greatly exceeding the five from Tidung, two for 

Pramuka, six for Kotok, one for Karang Beras and two for Sepa. 

Results from random forest analyses shows an OOB error of 24.53% with the lowest 

class of error observed in Karang Beras and Sepa (Supplemental Table S3-2). Analyses showed 

that different taxa were most important in differentiating among sites. In the site closest to 

Jakarta, Lancang Besar, Desulfovibrionaceae has the highest importance value (0.011) followed 

by bacteria from family A4B (0.0078), unidentified uncultured bacterium (0.0061) and 

Clostridiaceae (0.0056). In the sites intermediate distance from Jakarta (Karang Beras and 

Pramuka), Unassigned taxa from OTU 22408 (0.0041) and Phormidesmiaceae (0.0039) are two 

bacteria family with highest value of importance respectively. Finally, sites furthest from Jakarta 

(Kotok and Sepa) Kordiimonadaceae from OTU11384 (0.0053) and Unidentified taxa from class 

Acidobacteria OTU1237 (0.0025) are taxa with the highest importance values respectively 

(Supplemental Figure S3-2). 

Indicator species analysis showed that each site has varying number of indicator taxa. 

The most polluted site, Lancang Besar, had the highest number of indicator taxa (95 total), while 

Pramuka had the lowest (15 taxa). Taxa with the highest association values in Lancang Besar 

were Oxyphotobacteria and Gammaproteobacteria with association value of 0.816 respectively 

(p-value < 0.05). Meanwhile at Pramuka the highest association value were unidentified taxa and 

Gammaproteobacteria with association value of 0.745 and 0.715 respectively (p-value < 0.05) 
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Intermediate sites, Pari, Tidung and Karang beras have 68, 32 and 45 taxa indicative of the site 

respectively, with Spirochaetia  and Gammaproteobacteria having the highest association value 

with in Tidung (0.852 and 0.828 respectively and p-value < 0.05). In contrast, the site furthest 

from Jakarta Bay, Sepa, has 47 indicative taxa with the highest association value of 0.866 and 

0.766 (p-value < 0.05) owned by Verrucomicrobiae and and Kotok has 28 indicator taxa with the 

highest association value of 0.882 owned by Alphaproteobacteria. Full list of indicator taxa and 

their associated sites are presented in supplemental table S3-3 
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Discussion 

 

Studies examining the impacts of pollution on marine ecosystems largely focus on 

macrofauna, particularly corals and fishes (Waldichuk 1974, Pastorok & Bilyard 1985, Dubinksy 

& Stambler 1996, Ward-Paige et al. 2005, Cebrian et al. 2007, van der Meij et al. 2009, 

Rochman et al. 2014, Butnariu 2022), but studies increasingly show that microbes play an 

essential role in the health of coral reef ecosystems (Mao-Jones et al. 2010, Hester et al. 2016, 

Webster & Reusch 2017, Glasl et al. 2018). Despite substantial variation in local pollution stress 

across Pulau Seribu, there was no significant impact on total microbial community diversity from 

ARMS. Like metazoan diversity from ARMS across these pollution gradients (Chapter 2), there 

was a small, but non-significant increase in bacterial diversity in sites with increased pollution 

stress. This result stands in contrast to previous studies showing increased (Montenegro et al. 

2020) or decreased (Ding et al. 2017, Xiong et al. 2018) richness and diversity of marine 

microbial communities in more polluted sites, and to previous metazoan studies from Pulau 

Seribu reporting decreased fish abundance and richness (Madduppa 2013), and increased sea 

urchin abundance and richness increased (Cleary et al. 2008) with increased pollution levels. 

Combined these results highlight taxonomic specific responses to pollution.  

Although there were no clear shifts in overall diversity with pollution stress, there were 

significant differences in microbial community composition among the three fractions, with 

surprisingly limited taxonomic overlap, suggesting that the microbial communities are strongly 

associated with the metazoan communities recovered in each fraction. Previous studies report 

differences in microbial composition as results of habitat partitioning (Sawall et al. 2012, Tout et 

al. 2014, Glasl et al. 2019, Frade et al. 2020) . For example, Tout et al. (2014) demonstrated clear 
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shifts in microbial communities between the water column and sandy substrates on coral reefs. 

There were also pronounced differences in beta diversity among sampling sites, a result observed 

in plant communities in response to pollution stress (Trubina & Vorobeichik 2012, Montenegro 

et al. 2020). In addition, specific microbial taxa responded differently to pollution stress, 

indicating that although total microbial community diversity may not shift in response to 

pollution stress, communities change in important ways in response to the pollution across Pulau 

Seribu.  

 

Distinct but Overlapping Microbial Communities 

Despite the growing application of ARMS to studies of marine biodiversity, the majority 

of these studies focus on eukaryotic, rather than microbial communities (Plaisance et al. 2011, 

Leray & Knowlton 2015, Al-Rshaidat et al. 2016, Pearman et al. 2016, Ransome et al. 2017). Of 

the few studies that examine microbial communities, they either only examine the sessile ARMS 

fraction (Pearman et al, 2019) or don’t directly compare diversity in the three fractions (Ip et al. 

2022). Detailed examination of microbial communities on each of the three ARMS fractions 

revealed that the metazoans captured in each of the size fractions host unique microbial 

communities, with surprisingly little overlap. 

Across all biodiversity indices, results showed that the 100 µm and 500 µm fractions had 

substantially higher community diversity than the sessile fraction; although the 100 µm fraction 

had higher diversity than the 500 µm fraction, these differences were not significant. Elevated 

microbial diversity in the 100 µm fraction could result from carry over of small fragments of 

organisms captured by the 500 µm sieve, resulting in the accumulation of bacterial taxa. 

Although both the Venn diagram and clustering analyses show the greatest similarities in the 100  
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µm and 500 µm microbial communities, the 100 µm fraction also had the highest number of 

unique microbial ASVs suggesting that elevated diversity in this fraction is likely not the result 

of sample carryover. Given that the 100 µm fraction traps sediment, it is possible that the 

elevated microbial diversity is a function of microbes associated with silt and sediment 

trapped in 100 µm fraction. However, silt and sediment are removed via the decantation steps. 

Rather, elevated microbial diversity in the 100 µm fraction is likely a function of higher 

metazoan diversity in the 100 µm fraction, as shown in chapter 2 and Cahyani (2021).  

The low diversity of bacterial communities in the sessile fraction is likely a function of 

lower diversity of metazoans in this fraction. Our sample design captures bacteria associated 

with metazoans; as metazoan diversity decreases, so too, should bacterial diversity. The sessile 

metazoan community on ARMS plates can be dominated by particular taxa, and these taxa can 

prevent other taxa from settling and flourishing (Kuffner et al. 2006). For example, although 

marine sponges harbor a large number of  bacteria (Taylor et al. 2004, Schmitt et al. 2012), they 

also have chemical defenses that can prevent other bacteria and marine pathogens from thriving 

(Helber et al. 2018), potentially reducing overall bacterial diversity within the sessile community 

encrusting ARMS plates. Although we cannot test this hypothesis because we didn’t sample 

sponges separately, photographs of the ARMS plates confirm high sponge coverage on 

individual ARMS plates, suggesting that sponges could reduce total diversity through inhibition 

of other taxa.  

In addition to sponges, micro and macroalgae can also reduce bacterial community 

diversity in the sessile fraction. Many ARMS units had higher sediment loads and more 

microalgae coverage in Pulau Seribu than ARMS from other regions of Indonesia (pers, obs). As 

with sponges, marine algae can exert an antifouling effect that prevents settlement and growth of 
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other marine species (Paul & Fenical 1986), potentially reducing the diversity associated 

microbial taxa.  

 

Community Diversity Across Sites 

Comparison of total bacterial community diversity to pollution levels, as inferred by 

Chlorophyll-a concentration, showed a positive relationship between pollution and bacterial 

diversity, although this relationship was not significant. Previous studies examining bacterial 

diversity and pollution stress show contrasting results. Montenegro et al. (2020) found that the 

mucus coating of fish skin had higher richness and diversity of microbes in more contaminated 

areas and Cho & Kim (2000)  showed that bacterial communities in the livestock wastewater and 

the contaminated aquifer were much more diverse than those in the uncontaminated aquifer. 

However, studies of marine (Ding et al 2017), terrestrial (Xiong et al 2018), and estuarine (Jose 

et al. 2011) sediments report decreased bacterial diversity with increased contamination. 

Similarly, Cao et al. 2012 report that the alpha diversity of pathogenic microbes is decreased in 

healthy coral ecosystems and higher at more polluted sites. 

Similarly, although PCA plots indicate clear and significant differences in microbial 

communities across Pulau Seribu, there is no clear pattern related to pollution stress or proximity 

to Jakarta Bay. Microbial communities from Lancang Besar and Pari, the two sites closest to 

Jakarta cluster together suggesting that bacterial taxa composition within ARMS are affected by 

pollution from Jakarta Bay. However, Sepa and Kotok do not cluster together despite these sites 

being the most distant from Jakarta. This lack of a clear pattern could result if microbial 

communities respond in inconsistent ways to pollution stress, or if pollution stress must exceed a 

threshold before microbial communities change(Nogales et al. 2007, Nogales, Lanfranconi, Piña, 
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et al. 2011) . However, the most likely explanation for this clustering pattern is that while sites 

closest to Jakarta Bay are dominated by pollution originating from Jakarta and surrounding 

communities, sites more distant from Jakarta Bay are influenced more by local anthropogenic 

activities. For example, during ARMS deployment, domestic tourist visits to the archipelago, 

particularly Tidung, increased by 200% (Annual report 2017 on Pulau Tidung); with nonexistent 

local wastewater treatment, all this domestic waste is dumped into the ocean. Because our 

Chlorophyll a data is derived from 4km grids, such local pollution sources could shape local 

marine biodiversity without being captured in remote sensing data, contributing to our 

anomalous results.  

The lack of clear patterns in microbial diversity relative to distance from Jakarta Bay is 

surprising given previous studies examining higher taxa (e.g., coral, fish, sponge) Kepulauan 

Seribu. For example, Madduppa et al. (2013) shows clear shifts in fish abundance and diversity 

across the archipelago, with populations grouped into three distinct clusters representing sites 

closest, intermediate, and furthest from pollution originating from Jakarta. Similarly, coral 

community composition also changes with pollution levels across the archipelago (Rachello-

Dolmen & Cleary 2007), with large/massive stress-tolerant species dominating polluted areas 

and smaller/branching species in areas with less pollution.  

Multiple factors may contribute to our inability to detect a significant relationship, 

positive or negative, between pollution stress and microbial diversity in our study. First, ARMS 

processing protocols result in the recovery of microbial communities associated with eukaryotes. 

As such, the overall communities may be more reflective of metazoan diversity, and how 

metazoans respond to pollution. In contrast, sediments include freely-associated bacterial 

communities (decomposers, chemophiles, etc), and sediments can accumulate pollution 
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contaminants (Olsen et al. 1982, Weng et al. 2008, Sharifuzzaman et al. 2015), supporting 

elevated bacterial diversity and abundance (Wang et al. 2012, McDevitt-Irwin et al. 2017, 

Catania et al. 2018). Moreover, many of the microbes in contaminated sediment are taxa that 

degrade pollution contaminants under aerobic, microaerophilic, and anaerobic conditions (Xue et 

al. 2015), which likely would not be present on, or inside of, living organisms. Lastly, and 

perhaps most importantly, the loss of ARMS from our most polluted sites likely reduced our 

ability to detect differences, as the remaining sites were so similar in Chlorophyll-a 

concentrations. Inclusion of replicate samples from Bididari and Lancang Besar were important 

in elucidating a pattern of reduced diversity with increased pollution in eDNA analyses of 

metazoans (Chapter 2); their absence in the microbial datasets likely reduces our power to detect 

patterns. Additionally, pollution originating from Jakarta Bay might impact reefs closest to this 

pollution source, but that distant reefs are more impacted by local pollution stress or that 

pollution impacts may be more consistent on reefs close to Jakarta, and that seasonal ocean 

currents in this region (Tomascik et al. 1995) may result in more variable pollution impacts on 

more distant reefs.  

 

Indicators of Pollution Stress 

Despite broad similarities in bacterial taxa composition across sites, both composition 

and reads abundance varied greatly across sites, particularly in the sessile fraction. For example, 

both Alpha- and Gamma-proteobacteria abundance decreased markedly at Lancang Besar and 

Pari, the two sites closest to Jakarta and with highest Chlorophyll-a levels and increased with 

increasing distance from Jakarta. Both Anaerolineae and Acidimircrobiia had higher abundances 

in Lancang Besar than in sites with lower pollution stress. These results agree with previous 
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studies showing higher alphaproteobacteria (e.g., SAR11 or SAR86) abundance in sites with 

higher abundance of gammaproteobacteria (e.g., Oceanospirillales, Alteromonadales, 

Enterobacteriales, and Vibrionales) in more polluted ecosystems  (Zhang et al. 2007, 2009, 

Nogales et al. 2007, Nogales, Lanfranconi, Pi??a-Villalonga, et al. 2011). Similarly, 

Acidimircrobiia, which peaked in abundance in Lancang Besar and Pari, is associated with 

chemical pollution (Huang & Jaffé 2019). In particular, Acidimicrobium bacterium A6, 

metabolizes chemicals such as perfluorooctanoic acid and perfluorooctane sulfonate, chemicals 

abundant in Jakarta Bay as a result of increasing chemical and boating activities (Hosono et al. 

2011, Irnidayanti 2015, Riani et al. 2018).  

 Many other bacterial taxa found in Lancang Besar (e.g., Rhodobacterales, Microtrichales, 

Caldilineales, and Cellvibrionales) are taxa commonly found in areas with high pollution levels.  

For example, Candidatus microthrix (family Microthricaceae) is known to inhabit sludge water 

(Blackall et al. 199,6), and the Cellvibrionales group is known to utilize xylene (Iwaki et al. 

2018), which originates from various industrial activities and gasoline residue from boating 

activities (Fay et al. 2007). Sludge water, including xylene, is commonly found in Jakarta Bay, as 

a result of effluent from industrial activities around Jakarta and from shipping originating from 

the port of Tanjung Priok (Gilbert & James 1994, Undap et al. 2013).  

Further evidence of pollution impacts in Lancang Besar and Pari come from 

linear discriminant analysis (LDA) and the effect size (LEfSe) that reveal a 3- 8-fold increase in 

bacterial bioindicators associated with pollution stress. Microbes in the family Burkholdeceae 

had the largest response in the most polluted site (Lancang Besar), including species such as 

Burkholderia pseudomallei and B. mallei, which are animals and human pathogens (Ribot & 

Ulrich 2006, Kaewpan et al. 2022), B. caryophylli, B. gladioli, and B. solanacearum, which are 
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plant pathogens (Maeda et al. 2006, Elshafie & Camele 2021) and B. pickettii, an opportunistic 

bacterium (Ryan & Adley 2014). Although not common in marine environments, Burkholdeceae 

are known to utilize ammonium and nitrite via ammonia oxidation and nitrification in various 

aquatic environments (Salcher et al., 2019). The presence of nitrites in surface waters in 

conjunction with high ammonia levels can be indicative of sewage effluent, which is commonly 

discharged into Jakarta Bay (Uneputty & Evans 1997, Willoughby et al. 1997, Undap et al. 2013, 

Simanjuntak et al. 2018). Lactobacilliceae was also a significant indicator in Lancang Besar, a 

group of fermenting bacteria associated with nutrient rich environments. In contrast, although 

Pari had many more indicator taxa than other sites with less pollution stress, Burkholdeceae and 

Lactobacilliceae were not among them, suggesting these are indicative of particularly high 

pollution stress. 

Random forest analyses is commonly used in microbial studies to detect associations 

between bacterial taxa and environmental conditions (Delgado-Baquerizo et al. 2016, Moitinho-

Silva et al. 2017, Corrigan et al. 2018). Random forest analyses indicate that Clostridiales and 

Desulfovibrionaceae are strongly associated with polluted sites like Lancang Besar, and 

Kordiimonadales and Synechococcales are taxa associated with less polluted sites like Kotok. 

Clostridiales is a common fecal pollution indicator in coastal environments (Halliday et al. 

2014), and Desulfovibrionaceae is a sulfate-reducing bacteria linked to pollution that is used in 

bioremediation (Zhang et al. 2008, Kondo et al. 2012, Zouch et al. 2017) and abundant in site 

closest to the pollution level. In contrast, Kordiimonadales is from a class of alphaproteobacteria 

that is associated with oligotrophic water (Nogales et al. 2007, Aguiló-Ferretjans et al. 2008).  
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Conclusions 

Although ARMS were designed to study invertebrate cryptofauna in marine ecosystems, 

our results show their utility in the study of microbial diversity. ARMS provide the ability to 

sample both marine invertebrates and associated microbial communities in a highly standardized 

manner. The results of this study, however, indicate that even the microbial communities 

recovered from ARMS are highly dependent the fractions analyzed, as well as the local 

characteristics where ARMS are deployed. Although microbial communities from ARMS 

deployed closest to Jakarta Bay showed strong indications of pollution stress, there were no clear 

gradients with increasing distance from this pollution source. Other factors such as local 

pollution stress, current patterns and strength, water circulation, bottom slope, rugosity, etc. may 

also be impacting local communities. Studies using ARMS need to consider these details and, as 

much as possible, ensure comparable deployment locations to reduce variation and get 

comparable results.  

To date, conservation planning has primarily focused on macro-organisms, particularly 

keystone species and those of high economic value (Mcmanus et al. 1997, Hughes et al. 2003, 

Hoegh-Guldberg et al. 2007). Although changes in coral cover and fish biomass over time are 

important metrics of ecosystem health and resilience, these taxa are long-lived and may not 

respond quickly to environmental conditions. Results of this study shows how studies of 

microbial communities using a standardize platform like ARMS can provide insights into 

pollution stress on coral reef ecosystem, potentially allowing for more rapid detection of changes 

in environmental than larger macrofauna. Given that ARMS data is being collected on a global 

scale, data from microbial communities could provide important information on environmental 

conditions to include in integrative conservation management decisions.  
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Supplemental Tables and Figures 

 

Supplemental Table S3-1. Location and number of metabarcoding samples used on this study. 

 

SampleID Site Name ARMS Name Fraction_Size 
SKBS1A100 Karang Beras SKBS1A 100 
SKBS1A500 Karang Beras SKBS1A 500 
SKBS1ADMSO Karang Beras SKBS1A Sessile 
SKBS1B100 Karang Beras SKBS1B 100 
SKBS1B500 Karang Beras SKBS1B 500 
SKBS1BDMSO Karang Beras SKBS1B Sessile 
SKBS1C100 Karang Beras SKBS1C 100 
SKBS1C500 Karang Beras SKBS1C 500 
SKBS1CDMSO Karang Beras SKBS1C Sessile 
SKOT1A100 Kotok SKOT1A 100 
SKOT1A500 Kotok SKOT1A 500 
SKOT1ADMSO Kotok SKOT1A Sessile 
SKOT1B100 Kotok SKOT1B 100 
SKOT1B500 Kotok SKOT1B 500 
SKOT1BDMSO Kotok SKOT1B Sessile 
SKOT1C100 Kotok SKOT1C 100 
SKOT1C500 Kotok SKOT1C 500 
SKOT1CDMSO Kotok SKOT1C Sessile 
SLCB1A100 Lancang Besar SLCB1A 100 
SLCB1A500 Lancang Besar SLCB1A 500 
SLCB1ADMSO Lancang Besar SLCB1A Sessile 
SPAR1A100 Pari SPAR1A 100 
SPAR1A500 Pari SPAR1A 500 
SPAR1ADMSO Pari SPAR1A Sessile 
SPAR1B100 Pari SPAR1B 100 
SPAR1B500 Pari SPAR1B 500 
SPAR1BDMSO Pari SPAR1B Sessile 
SPRM1A100 Pramuka SPRM1A 100 
SPRM1A500 Pramuka SPRM1A 500 
SPRM1ADMSOA Pramuka SPRM1A Sessile 
SPRM1B100 Pramuka SPRM1B 100 



 

 187 

SPRM1B500 Pramuka SPRM1B 500 
SPRM1BDMSO Pramuka SPRM1B Sessile 
SPRM1C100 Pramuka SPRM1C 100 
SPRM1C500 Pramuka SPRM1C 500 
SPRM1CDMSO Pramuka SPRM1C Sessile 
SSEP1A100 Sepa SSEP1A 100 
SSEP1A500 Sepa SSEP1A 500 
SSEP1ADMSO Sepa SSEP1A Sessile 
SSEP1B100 Sepa SSEP1B 100 
SSEP1B500 Sepa SSEP1B 500 
SSEP1BDMSO Sepa SSEP1B Sessile 
SSEP1C100 Sepa SSEP1C 100 
SSEP1CDMSO Sepa SSEP1C Sessile 
STDN1A100 Tidung STDN1A 100 
STDN1A500 Tidung STDN1A 500 
STDN1ADMSO Tidung STDN1A Sessile 
STDN1B100 Tidung STDN1B 100 
STDN1B500 Tidung STDN1B 500 
STDN1BDMSO Tidung STDN1B Sessile 
STDN1C100 Tidung SPRM1C 100 
STDN1C500 Tidung STDN1C 500 
STDN1CDMSO Tidung STDN1C Sessile 
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Supplemental Table S3-2. Results from random forest analysis and Out of the Bag (OOB) error 

form seven sites observed in this study  

 
Type of random forest: classification 
Number of trees: 10000 
No. of variables tried at each split: 84 
OOB estimate of error rate: 24.5% 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Karang 
Beras Kotok  

Lancang 
Besar Pari  Pramuka Sepa Tidung 

Class of 
Error 

Karang  
Beras 8 0 1 0 0 0 0 0.111 
Kotok 0 7 2 0 0 0 0 0.222 

Lancang 
Besar 0 1 2 0 0 0 0 0.333 
Pari 0 0 2 3 1 0 0 0.5 

Pramuka 0 0 2 0 6 0 1 0.333 
Sepa 0 1 0 0 0 7 0 0.125 

Tidung 0 1 0 0 1 0 7 0.222 
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Supplemental Table S3-3 Summary of significant bacterial taxa associated with sites based on 

indicspecies analysis. The association value indicates the strength of the association for the 

respective OTU with the tested sample group 

 
Group Karang Beras 45   
 stat  p.value 
OTU22408_Unidentified 0.903 0.003 
OTU45735_Bacteroidia 0.873 0.001 
OTU538_Gammaproteobacteria 0.821 0.001 
OTU35950_Bacteroidia 0.816 0.003 
OTU44015_Oxyphotobacteria 0.816 0.002 
OTU49651_Gammaproteobacteria 0.776 0.011 
OTU2487_Oxyphotobacteria 0.747 0.003 
OTU5146_Bacteroidia 0.745 0.011 
OTU19601_Alphaproteobacteria 0.745 0.005 
OTU27943_Deltaproteobacteria 0.745 0.001 
OTU18017_Bacteroidia 0.728 0.006 
OTU28541_Planctomycetacia 0.697 0.006 
OTU12740_Alphaproteobacteria 0.691 0.011 
OTU22704_Bacteroidia 0.685 0.018 
OTU10292_Unidentified 0.671 0.012 
OTU5409_Unidentified 0.667 0.011 
OTU31474_BD2-11 terrestrial 0.655 0.015 
OTU33037_Bacteroidia 0.652 0.017 
OTU6495_Gammaproteobacteria 0.637 0.021 
OTU25708_WCHB1-81 0.633 0.025 
OTU14359_Anaerolineae 0.626 0.022 
OTU20997_Bacteroidia 0.584 0.038 
OTU15879_Mollicutes 0.577 0.029 
OTU17300_Unidentified 0.577 0.022 
OTU19196_Deltaproteobacteria 0.577 0.032 
OTU16260_Campylobacteria 0.577 0.028 
OTU35016_Spirochaetia 0.577 0.032 
OTU44607_Fibrobacteria 0.577 0.022 
OTU47902_Unidentified 0.577 0.018 
OTU28667_Anaerolineae 0.577 0.04 
OTU41838_Unidentified 0.577 0.026 
OTU4851_Clostridia 0.577 0.023 
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OTU21195_Unidentified 0.577 0.032 
OTU40841_Pla4 lineage 0.577 0.043 
OTU10450_Babeliae 0.577 0.013 
OTU22219_Omnitrophia 0.577 0.025 
OTU31470_Subgroup 5 0.577 0.03 
OTU43878_OM190 0.577 0.023 
OTU28940_Phycisphaerae 0.577 0.032 
OTU35408_Unidentified 0.577 0.013 
OTU17754_Gammaproteobacteria 0.577 0.03 
OTU17201_Gammaproteobacteria 0.57 0.04 
OTU10224_Bacteroidia 0.551 0.044 
OTU21208_Unidentified 0.55 0.041 
OTU45465_Unidentified 0.55 0.036 

   
Group Kotok  #sps.  28   
   
OTU11384_Alphaproteobacteria 0.882 0.001 
OTU18361_Unidentified 0.869 0.004 
OTU1237_Unidentified 0.816 0.001 
OTU5767_Gammaproteobacteria 0.736 0.004 
OTU15288_Unidentified 0.728 0.014 
OTU2189_Unidentified 0.714 0.009 
OTU21556_Bacteroidia 0.667 0.012 
OTU26162_Oxyphotobacteria 0.661 0.012 
OTU7022_Unidentified 0.657 0.05 
OTU38044_Deltaproteobacteria 0.656 0.008 
OTU28138_Unidentified 0.641 0.018 
OTU13185_Deltaproteobacteria 0.623 0.025 
OTU12536_Planctomycetacia 0.616 0.022 
OTU18030_Verrucomicrobiae 0.606 0.038 
OTU9325_Bacteroidia 0.577 0.02 
OTU15976_Alphaproteobacteria 0.577 0.033 
OTU33889_Mollicutes 0.577 0.021 
OTU28195_Bacteroidia 0.577 0.023 
OTU32973_Mollicutes 0.577 0.035 
OTU12899_Bacteroidia 0.577 0.024 
OTU17667_Unidentified 0.577 0.029 
OTU18376_Deltaproteobacteria 0.577 0.03 
OTU10643_Gammaproteobacteria 0.576 0.035 
OTU18437_Gammaproteobacteria 0.568 0.03 
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OTU20848_Gammaproteobacteria 0.565 0.042 
OTU15897_Unidentified 0.56 0.039 
OTU35065_Unidentified 0.549 0.029 
OTU15208_uncultured organism 0.542 0.041 

   
 
Group LancangBesar  #sps. 95   

 stat p .value 
OTU17491_Gammaproteobacteria 0.816 0.002 
OTU15169_Oxyphotobacteria 0.816 0.002 
OTU33000_Phycisphaerae 0.816 0.002 
OTU45655_Bacteroidia 0.816 0.002 
OTU6736_Unidentified 0.816 0.002 
OTU44196_Bacteroidia 0.816 0.002 
OTU11431_Bacteroidia 0.816 0.002 
OTU52948_Clostridia 0.816 0.002 
OTU26616_Spirochaetia 0.816 0.002 
OTU15762_Deltaproteobacteria 0.816 0.002 
OTU53003_Unidentified 0.816 0.002 
OTU47417_Unidentified 0.816 0.002 
OTU5369_Kiritimatiellae 0.816 0.002 
OTU27849_Campylobacteria 0.816 0.002 
OTU50539_Bacteroidia 0.816 0.002 
OTU26106_Clostridia 0.816 0.002 
OTU20120_Clostridia 0.816 0.002 
OTU35104_Anaerolineae 0.816 0.002 
OTU52412_Bacteroidia 0.816 0.002 
OTU23892_Unidentified 0.816 0.002 
OTU38208_Clostridia 0.816 0.001 
OTU12072_Deltaproteobacteria 0.814 0.002 
OTU21955_Bacteroidia 0.813 0.002 
OTU12862_OM190 0.813 0.004 
OTU22402_Alphaproteobacteria 0.811 0.002 
OTU47316_Bacteroidia 0.81 0.002 
OTU11164_Fusobacteriia 0.804 0.002 
OTU12803_Gammaproteobacteria 0.768 0.002 
OTU34776_Gammaproteobacteria 0.765 0.004 
OTU35946_Phycisphaerae 0.761 0.002 
OTU32109_Deltaproteobacteria 0.761 0.002 
OTU45710_Bacteroidia 0.756 0.005 
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OTU24237_Lentisphaeria 0.749 0.009 
OTU25948_Kiritimatiellae 0.747 0.003 
OTU13371_Anaerolineae 0.745 0.004 
OTU32951_Anaerolineae 0.741 0.013 
OTU42535_Unidentified 0.733 0.015 
OTU44318_PAUC43f marine   0.7 
OTU35621_Alphaproteobacteria 0.723 0.009 
OTU46250_Alphaproteobacteria 0.72 0.011 
OTU13373_Babeliae 0.707 0.002 
OTU30239_Bacteroidia 0.695 0.004 
OTU18487_Clostridia 0.694 0.004 
OTU40007_Anaerolineae 0.694 0.005 
OTU11756_Verrucomicrobiae 0.686 0.005 
OTU12336_Bacteroidia 0.686 0.008 
OTU47456_Verrucomicrobiae 0.68 0.012 
OTU5041_Entotheonellia 0.667 0.011 
OTU16817_Gammaproteobacteria 0.662 0.013 
OTU2679_Bacteroidia 0.659 0.013 
OTU51294_Verrucomicrobiae 0.657 0.007 
OTU27447_Gammaproteobacteria 0.655 0.006 
OTU11514_Verrucomicrobiae 0.645 0.01 
OTU23160_vadinHA49 0.641 0.015 
OTU18495_Bacteroidia 0.632 0.016 
OTU25540_Planctomycetacia 0.631 0.031 
OTU32622_Bacteroidia 0.627 0.021 
OTU4669_Anaerolineae 0.626 0.019 
OTU20981_Phycisphaerae 0.577 0.05 
OTU5985_Planctomycetacia 0.577 0.05 
OTU15102_Bacteroidia 0.577 0.05 
OTU12083_Deltaproteobacteria 0.577 0.05 
OTU19887_Bacteroidia 0.577 0.05 
OTU47468_Babeliae 0.577 0.05 
OTU11074_Deltaproteobacteria 0.577 0.05 
OTU12931_Alphaproteobacteria 0.577 0.05 
OTU21686_Parcubacteria 0.577 0.05 
OTU23256_Deltaproteobacteria 0.577 0.05 
OTU32856_Chlamydiae 0.577 0.05 
OTU19738_uncultured bacteriu  0.5 
OTU20591_Leptospirae 0.577 0.05 
OTU2931_OM190 0.577 0.05 
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OTU4160_Deltaproteobacteria 0.577 0.05 
OTU47339_Deltaproteobacteria 0.577 0.05 
OTU10538_Unidentified 0.577 0.05 
OTU13700_Unidentified 0.577 0.05 
OTU18700_ABY1 0.577 0.05 
OTU31015_Unidentified 0.577 0.05 
OTU35582_Unidentified 0.577 0.05 
OTU45993_Lentisphaeria 0.577 0.05 
OTU15264_Deltaproteobacteria 0.577 0.05 
OTU20658_Unidentified 0.577 0.05 
OTU40693_Gammaproteobacteria 0.577 0.05 
OTU4498_uncultured bacterium 0.577 0.05 
OTU2020_Alphaproteobacteria 0.574 0.05 
OTU39928_Gracilibacteria 0.566 0.043 
OTU13410_Chlamydiae 0.559 0.05 
OTU46558_Phycisphaerae 0.555 0.042 
OTU12411_Anaerolineae 0.554 0.047 
OTU33373_Deltaproteobacteria 0.548 0.046 
OTU33388_Anaerolineae 0.535 0.048 
OTU19566_Spirochaetia 0.535 0.048 
OTU18711_Lineage IIb 0.535 0.05 
OTU6316_Mollicutes 0.53 0.05 
OTU33980_Deltaproteobacteria 0.514 0.049 

   
Group Pari  #sps.  68   
 stat p .value 
OTU22542_Gammaproteobacteria 0.855 0.001 
OTU48956_Gammaproteobacteria 0.816 0.001 
OTU27087_Gammaproteobacteria 0.816 0.001 
OTU44626_Gammaproteobacteria 0.812 0.001 
OTU31170_Deltaproteobacteria 0.798 0.001 
OTU26071_Gammaproteobacteria 0.77 0.003 
OTU5777_BD2-11 terrestrial g  0 0.707 
OTU35726_Alphaproteobacteria 0.707 0.004 
OTU33063_Dehalococcoidia 0.707 0.005 
OTU13090_TK17 0.707 0.005 
OTU30311_Verrucomicrobiae 0.707 0.005 
OTU8492_Deltaproteobacteria 0.707 0.005 
OTU44779_Deltaproteobacteria 0.707 0.005 
OTU16238_Verrucomicrobiae 0.706 0.006 
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OTU1632_Bacteroidia 0.697 0.034 
OTU38393_Phycisphaerae 0.691 0.004 
OTU24459_Unidentified 0.688 0.01 
OTU17574_Bacteroidia 0.673 0.007 
OTU30781_Gammaproteobacteria 0.657 0.01 
OTU46027_Clostridia 0.656 0.016 
OTU29018_Gammaproteobacteria 0.653 0.029 
OTU45327_Phycisphaerae 0.65 0.017 
OTU41381_Alphaproteobacteria 0.647 0.016 
OTU21452_Bacteroidia 0.623 0.014 
OTU2277_Unidentified 0.577 0.011 
OTU14168_Bacteroidia 0.577 0.011 
OTU545_Alphaproteobacteria 0.577 0.012 
OTU10208_Deltaproteobacteria 0.577 0.011 
OTU26345_Unidentified 0.577 0.011 
OTU13549_Unidentified 0.577 0.011 
OTU17040_Unidentified 0.577 0.011 
OTU20010_Campylobacteria 0.577 0.011 
OTU15370_Spirochaetia 0.577 0.012 
OTU22318_Thermoleophilia 0.577 0.012 
OTU44972_Unidentified 0.577 0.011 
OTU11406_Anaerolineae 0.577 0.012 
OTU26504_Anaerolineae 0.577 0.012 
OTU23216_Mollicutes 0.577 0.012 
OTU4517_Anaerolineae 0.577 0.011 
OTU9917_Deltaproteobacteria 0.577 0.011 
OTU28857_Unidentified 0.577 0.012 
OTU32932_Deltaproteobacteria 0.577 0.012 
OTU37938_Unidentified 0.577 0.012 
OTU46404_Unidentified 0.577 0.012 
OTU47638_Leptospirae 0.577 0.013 
OTU10884_Unidentified 0.577 0.011 
OTU23167_Bacteroidia 0.577 0.011 
OTU270_uncultured bacterium 0.577 0.011 
OTU3567_Unidentified 0.577 0.02 
OTU35571_Unidentified 0.577 0.012 
OTU9145_LD1-PA32 0.577 0.012 
OTU11774_Melainabacteria 0.577 0.012 
OTU23729_uncultured organism 0.577 0.021 
OTU24799_Alphaproteobacteria 0.577 0.011 



 

 195 

OTU11829_Deltaproteobacteria 0.577 0.012 
OTU14073_Deltaproteobacteria 0.577 0.012 
OTU22239_Deltaproteobacteria 0.577 0.011 
OTU48369_Spirochaetia 0.568 0.034 
OTU2600_Fibrobacteria 0.567 0.041 
OTU33158_Unidentified 0.567 0.032 
OTU3776_Unidentified 0.564 0.034 
OTU38900_Clostridia 0.557 0.033 
OTU1205_Unidentified 0.533 0.03 
OTU33045_Anaerolineae 0.524 0.026 
OTU43057_vadinHA49 0.522 0.043 
OTU28095_vadinHA49 0.521 0.049 
OTU39781_Unidentified 0.52 0.046 
OTU23987_Mollicutes 0.518 0.049 

   
Group Pramuka  #sps.  15   
 stat p .value 
OTU9991_Unidentified 0.745 0.01 
OTU34901_Gammaproteobacteria 0.715 0.021 
OTU12132_Unidentified 0.667 0.016 
OTU37259_Unidentified 0.667 0.016 
OTU44401_Chitinivibrionia 0.667 0.013 
OTU46838_Unidentified 0.636 0.015 
OTU5689_Phycisphaerae 0.635 0.02 
OTU31105_Deltaproteobacteria 0.577 0.024 
OTU4043_Planctomycetacia 0.577 0.02 
OTU10429_vadinHA49 0.577 0.02 
OTU10263_Unidentified 0.577 0.018 
OTU45164_OM190 0.577 0.027 
OTU10424_Unidentified 0.576 0.047 
OTU12727_Spirochaetia 0.56 0.036 
OTU7190_Unidentified 0.555 0.049 

   
Group Sepa  #sps.  47   
 stat  p.value 
OTU20047_uncultured bacterium 0.86 0.0 
OTU49036_Unidentified 0.796 0.002 
OTU1097_Verrucomicrobiae 0.766 0.003 
OTU42950_Spirochaetia 0.755 0.003 
OTU1318_Oxyphotobacteria 0.707 0.008 
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OTU42633_Deltaproteobacteria 0.707 0.008 
OTU43401_Deltaproteobacteria 0.707 0.005 
OTU44736_Bacteroidia 0.707 0.007 
OTU1053_Phycisphaerae 0.707 0.007 
OTU23079_Unidentified 0.707 0.004 
OTU30611_Deltaproteobacteria 0.693 0.002 
OTU23485_Subgroup 17 0.681 0.018 
OTU10714_Oxyphotobacteria 0.68 0.016 
OTU25220_Unidentified 0.671 0.03 
OTU3681_Bacteroidia 0.669 0.013 
OTU16970_Oxyphotobacteria 0.631 0.015 
OTU34997_TK17 0.612 0.006 
OTU24110_Deltaproteobacteria 0.612 0.008 
OTU10383_Gammaproteobacteria 0.612 0.011 
OTU18732_Bacteroidia 0.612 0.003 
OTU23380_Bacteroidia 0.612 0.01 
OTU36365_Spirochaetia 0.612 0.015 
OTU14790_Deltaproteobacteria 0.612 0.006 
OTU16967_Deltaproteobacteria 0.612 0.008 
OTU47823_Anaerolineae 0.612 0.016 
OTU42363_Ignavibacteria 0.612 0.01 
OTU15219_uncultured bacterium 0.61 2   0.0 
OTU52474_Anaerolineae 0.612 0.007 
OTU51215_OM190 0.612 0.011 
OTU21793_Unidentified 0.612 0.011 
OTU36322_Anaerolineae 0.598 0.018 
OTU51989_Gammaproteobacteria 0.595 0.05 
OTU24056_Phycisphaerae 0.593 0.016 
OTU18934_Deltaproteobacteria 0.591 0.019 
OTU14876_Microgenomatia 0.588 0.035 
OTU24727_Alphaproteobacteria 0.587 0.019 
OTU44081_Anaerolineae 0.582 0.017 
OTU1909_Clostridia 0.577 0.022 
OTU3159_Phycisphaerae 0.577 0.021 
OTU26910_Fibrobacteria 0.569 0.03 
OTU41413_Actinobacteria 0.568 0.032 
OTU15740_Gammaproteobacteria 0.557 0.017 
OTU41852_Spirochaetia 0.548 0.033 
OTU17114_Unidentified 0.547 0.047 
OTU48170_BD7-11 0.538 0.04 
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OTU6987_OM190 0.536 0.033 
OTU12526_Thermoanaerobaculia 0.529 0.045 

   
Group Tidung  #sps.  32   
 stat p .value 
OTU35774_Spirochaetia 0.852 0.001 
OTU31025_Gammaproteobacteria 0.828 0.001 
OTU33614_Bacteroidia 0.808 0.003 
OTU37853_Gammaproteobacteria 0.731 0.031 
OTU16435_Unidentified 0.729 0.018 
OTU51004_Acidimicrobiia 0.726 0.014 
OTU41080_Unidentified 0.705 0.009 
OTU26555_Deltaproteobacteria 0.68 0.005 
OTU26671_Gammaproteobacteria 0.667 0.021 
OTU25900_Alphaproteobacteria 0.667 0.01 
OTU20402_Deltaproteobacteria 0.667 0.011 
OTU12257_Phycisphaerae 0.667 0.015 
OTU27747_Alphaproteobacteria 0.663 0.029 
OTU39731_Deltaproteobacteria 0.65 0.011 
OTU34959_Subgroup 22 0.645 0.034 
OTU44849_OM190 0.638 0.02 
OTU19517_Verrucomicrobiae 0.626 0.028 
OTU46070_Gammaproteobacteria 0.603 0.033 
OTU43860_Bacteroidia 0.577 0.029 
OTU18717_Bacteroidia 0.577 0.026 
OTU2364_Phycisphaerae 0.577 0.033 
OTU43318_Spirochaetia 0.575 0.041 
OTU23553_Unidentified 0.567 0.023 
OTU2092_Verrucomicrobiae 0.564 0.037 
OTU30005_Blastocatellia   0.56 
OTU44576_Bacteroidia 0.559 0.047 
OTU19688_Deltaproteobacteria 0.558 0.033 
OTU16873_Deltaproteobacteria 0.556 0.037 
OTU17962_Elusimicrobia 0.555 0.049 
OTU17863_Phycisphaerae 0.554 0.036 
OTU51686_Gammaproteobacteria 0.553 0.025 
OTU47995_Unidentified 0.545 0.049 
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Supplementary Figure S3-1. Histogram of the linear discriminant analysis (LDA) scores for 

differentially abundant bacterial taxa across sites. Both Pari and Lancang Besar has the highest 

number of bacterial taxa associated with the sites 
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Supplementary Figure S3-2. Random forest predictions for taxa that were associated with 

deployments site. Only maximum six taxa that have maximum importance value were presented 

in the plot. (A. Lancang Besar, B. Pari, C. Tidung, D. Karang Beras, E. Pramuka, F. Kotok, G. 

Sepa) 
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Supplementary Figure S3-2. (continued) 
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