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Abstract

Birth-death processes have given biologists a model-based framework to answer questions

about changes in the birth and death rates of lineages in a phylogenetic tree. Therefore

birth-death models are central to macroevolutionary as well as phylodynamic analyses.

Early approaches to studying temporal variation in birth and death rates using birth-death

models faced difficulties due to the restrictive choices of birth and death rate curves through

time. Sufficiently flexible time-varying birth-death models are still lacking. We use a piece-

wise-constant birth-death model, combined with both Gaussian Markov random field

(GMRF) and horseshoe Markov random field (HSMRF) prior distributions, to approximate

arbitrary changes in birth rate through time. We implement these models in the widely used

statistical phylogenetic software platform RevBayes, allowing us to jointly estimate birth-

death process parameters, phylogeny, and nuisance parameters in a Bayesian framework.

We test both GMRF-based and HSMRF-based models on a variety of simulated diversifica-

tion scenarios, and then apply them to both a macroevolutionary and an epidemiological

dataset. We find that both models are capable of inferring variable birth rates and correctly

rejecting variable models in favor of effectively constant models. In general the HSMRF-

based model has higher precision than its GMRF counterpart, with little to no loss of accu-

racy. Applied to a macroevolutionary dataset of the Australian gecko family Pygopodidae

(where birth rates are interpretable as speciation rates), the GMRF-based model detects a

slow decrease whereas the HSMRF-based model detects a rapid speciation-rate decrease

in the last 12 million years. Applied to an infectious disease phylodynamic dataset of

sequences from HIV subtype A in Russia and Ukraine (where birth rates are interpretable as

the rate of accumulation of new infections), our models detect a strongly elevated rate of

infection in the 1990s.
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Author summary

Both the growth of groups of species and the spread of infectious diseases through popu-

lations can be modeled as birth-death processes. Birth events correspond either to specia-

tion or infection, and death events to extinction or becoming noninfectious. The rates of

birth and death may vary over time, and by examining this variation researchers can pin-

point important events in the history of life on Earth or in the course of an outbreak.

Time-calibrated phylogenies track the relationships between a set of species (or infec-

tions) and the times of all speciation (or infection) events, and can thus be used to infer

birth and death rates. We develop two phylogenetic birth-death models with the goal of

discerning signal of rate variation from noise due to the stochastic nature of birth-death

models. Using a variety of simulated datasets, we show that one of these models can accu-

rately infer slow and rapid rate shifts without sacrificing precision. Using real data, we

demonstrate that our new methodology can be used for simultaneous inference of phy-

logeny and rates through time.

Introduction

Studying variation in the rates of speciation and extinction enables researchers to examine the

patterns and processes that shape the diversity of life on earth. Birth-death processes have

given biologists a model-based framework in which questions about the birth rate, death rate,

or net diversification (birth minus death) rate of species can be studied [1]. For example, the

question, “are nectar spurs a key innovation in plant evolution leading to a rapid radiation?”

can be rephrased as, “is the rate of diversification in plant lineages correlated with the presence

of nectar spurs?” and this hypothesized association can be tested statistically. In infectious dis-

ease phylodynamics, the question “was this intervention effective in containing disease

spread?” can be rephrased as, “after the intervention, did the birth rate (effective reproduction

number) decrease?” In general, causation is difficult to establish, but the presence of correla-

tion can lend support to hypotheses regarding causes of diversification. Questions involving

variation in diversification rates can generally be broken down into two categories. The first

class of questions, including the question about nectar spurs, concerns variation in diversifica-

tion rates across lineages. In these scenarios, models are built that allow the birth and death

rates to vary across the branches of the phylogenetic tree [2, 3]. The second class of questions,

including the question about intervention efficacy, concerns temporal variation in diversifica-

tion rates shared by all lineages [4, 5, 6]. In these scenarios, the birth and death rates are mod-

eled as functions of time, but at any instant in time all branches of the tree share a common

birth rate and a death rate. This second class of questions and models is our focus in this

paper. Our aim is to develop flexible Bayesian nonparametric methods for accurately estimat-

ing changes of birth and death rates over time without sacrificing precision.

Birth-death models [7, 8] define a probability distribution on time-calibrated phylogenies

—phylogenetic trees where branch lengths are measured in time rather than in evolutionary

distances. Early approaches to inferring variability of birth and/or death rates required the use

of a time-calibrated phylogeny as data. This involved estimating parameters of birth-death

models and then either statistically testing for violations of constant birth and death rates [9]

or choosing the best functional form (e.g., two-piece piecewise constant or exponential curves)

for birth and death rate trajectories from a set of candidate models via likelihood-ratio tests or

the AIC [10, 11]. These early methods had the downside of not accounting explicitly for miss-

ing taxa, requiring the use of Monte Carlo simulation in order to determine if the rejection of
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a constant-rate (or other) model in favor of a more complex model was an artifact of incom-

plete sampling of phylogenetic lineages [12, 13, 14]. However, the underlying theory and likeli-

hood function for arbitrary functions of birth and death rates including unsampled taxa was

already introduced by Nee et al. (1994) [8]. Later, the introduction of the piecewise-constant,

or episodic, birth-death model (EBD) [15] enabled biologists to perform likelihood-based

comparison of birth and death rates’ functional forms while accounting for incomplete taxon

sampling (see Höhna (2015) for a review of the EBD and comparison to the work by Nee et al.
(1994) [16, 8]). The EBD model was extended to work in contexts with serial samples (e.g., fos-

sils) and possibly sampled ancestors [17, 18].

The EBD model divides time into a finite number of intervals and assigns each interval its

own set of birth and death rates. The first uses of the EBD model assumed that a priori birth

and death rates in each interval are independent and identically distributed (iid) [17, 18]. This

assumption means that the number of intervals (or epochs) needs to be kept small to keep esti-

mation reasonably precise and to avoid overfitting. Further work on Bayesian modeling using

the EBD employed temporally-autocorrelated models derived from discretizing Ornstein-

Uhlenbeck and Brownian motion processes [19, 20, 21], which provides smoothing and allows

the number of episodic intervals to be larger. May et al. (2016) propose another EBD model,

where birth and death rates change at an unknown, Poisson distributed number of change-

points [22]. Wu (2014) uses a similar change-point model [23]. These random change-point

models drastically increase the dimensionality of the parameter space and make it variable,

requiring complicated reversible-jump Markov chain Monte Carlo (MCMC) [24] algorithms

to sample from the posterior distribution of the number of change-points. However, many

other Bayesian nonparametric approaches for estimating functional forms have not been

applied to EBD modeling.

Parametric and nonparametric estimation of functional forms is not unique to birth-death

processes. For example, population genetics researchers have developed a rich toolbox of Bayes-

ian nonparametric approaches to estimate changes of the effective population size in a neighbor-

ing class of coalescent models [25]. In fact, EBD models closely resemble piecewise constant

effective population size coalescent models [26, 27, 28]. However, EBD models still lack Bayes-

ian regularization approaches that control the potentially high number of model parameters.

For coalescent models, such Bayesian regularization is accomplished by Gaussian Markov ran-

dom field (GMRF) prior distributions, which underly the skyride [27] and skygrid [28] meth-

ods, and by their recently developed analog, the horseshoe Markov random field (HSMRF) [29].

These models provide a rich framework for building more complicated models with covariates

[30] and are amenable to computationally efficient MCMC sampling techniques. Our goal is to

bring GMRF and HSMRF prior distributions to EBD models and to test their performance.

We implement birth-death models that use GMRF and HSMRF prior distributions for the

birth and/or death rates in the statistical phylogenetic software platform RevBayes [31]. This

implementation allows us to jointly estimate birth-death parameters, phylogeny, and other

(nuisance) parameters in a Bayesian framework. We develop an efficient, tuning-parameter-

free MCMC algorithm for sampling high dimensional parameter vectors associated with

GMRF- and HSMRF-based models. We also devise a framework for setting the global scale

parameter—the key parameter controlling the degree of parameter regularization (also called

shrinkage)—for both models in terms of the implied prior on the number of “effective” rate

shifts. We note that our GMRF-based model is closely related to the work of Duplessis (2016),

Condamine et al. (2018), and Silvestro et al. (2019), who use prior distributions that fall into

the class of GMRF distributions, but our work differs from these approaches in important

computational and statistical details [19, 20, 21]. Namely, we develop a tuning-parameter free

MCMC algorithm that enables efficient exploration of the high dimensional parameter vectors
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associated with GMRF- and HSMRF-based models and introduce a framework for setting the

key hyperprior in an interpretable manner. To the best of our knowledge, this is the first

instance of applying HSMRF prior distributions to birth-death processes. We test both

GMRF-based and HSMRF-based models on a variety of simulated diversification scenarios,

and then apply them to a species-level and an epidemiological dataset. We find that both mod-

els are capable of inferring variable diversification rates and correctly rejecting variable models

in favor of effectively constant models. In general, in line with previous analyses of HSMRF

prior distributions [32, 29], we see that the HSMRF-based model has higher precision than its

GMRF counterpart, with little to no loss of accuracy. In empirical applications, we show that

these models are useful for detecting a speciation-rate decline in the Australian gecko clade

Pygopodidae and a complex pattern of variation in the rate of infection of HIV subtype A in

Russia and Ukraine.

Methods

Our data, y, take the form of a multiple sequence alignment. We assume that the alignment y

has come from the following probabilistic model. First, a tree is generated from a time-varying

birth-death process governed by time varying birth rate λ(t), death rate μ(t), serial sampling

rate ϕ(t), conditional probability of death upon sampling r(t) (primarily for phylodynamic

applications to represent becoming noninfectious when diagnosed and/or treated), and vector

of sampling probabilities Φ (with associated sampling times tΦ, we refer to these as event sam-

pling times). Time starts at 0 at the most recent event (or serial) sampling time and increases

into the past, such that the oldest bifurcation in the tree is to, the time of origin (here also the

time of the most recent common ancestor) [8]. We call the resulting reconstructed tree T, and

it consists only of lineages whose descendants were sampled. For more details on this model,

including helpful figures and derivations, see Gavryushkina et al. (2014) [18]. On each branch

of T, evolution proceeds at a rate governed by a molecular clock model [33, 34, 35]. Columns

in the sequence alignment evolve independently under a continuous-time Markov chain

(CTMC) model, which commonly is referred to as the substitution model. We use the general-

ized time reversible substitution model [36] with discretized gamma-distributed rate variation

across sites (GTR+G) [37]. For notational simplicity we refer to the vector of substitution and

clock model parameters as θ, and we discuss the specifics of these models on a case-by-case

basis. We can write the phylogenetic likelihood—probability of the alignment under the

CTMC substitution model—as Pr(yjθ, T). All major statistical phylogenetic software platforms

can efficiently compute a phylogenetic likelihood via a dynamic programming algorithm,

known as the Felsenstein pruning algorithm [38]. We will use the RevBayes implementation

of this algorithm [31].

In Bayesian inference we need prior distributions for λ(t), μ(t), ϕ(t), r(t), Φ, and to, as well

as prior distributions on θ. We assume that tΦ is fixed a priori by the user. For our purposes

there will only be one time at which event sampling may occur: the present day, making tΦ a

scalar tF = 0. Notice that the prior on T, conditional on λ(t), μ(t), ϕ(t), r(t), Φ, and to, is already

specified by the birth-death process. The choice of Pr(to) depends on the particular group of

taxa studied, and the form of Pr(θ) on the specifics of the group and the data, so we discuss

these on a case-by-case basis. The posterior distribution takes the following form:

Prðθ;T; to; lðtÞ; mðtÞ; �ðtÞ; rðtÞ;Φ j yÞ / Prðy j θ;TÞ PrðθÞ PrðtoÞ

� PrðT j lðtÞ; mðtÞ; �ðtÞ; rðtÞ;Φ; tΦ; toÞ

� PrðlðtÞÞ PrðmðtÞÞ Prð�ðtÞÞ PrðrðtÞÞ PrðΦÞ:
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In macroevolutionary analyses including extant species, there is a single event sampling at

the present (t = 0) with known probability F0 [39]. In phylodynamic analyses, there may be no

event sampling, thus we set F0 = 0. We make the simplifying assumptions that the serial sam-

pling rate is a constant, ϕ(t) = ϕ, and that the conditional probability of becoming noninfec-

tious upon sampling is a known constant, r(t) = r. For any macroevolutionary dataset r = 0,

and in our phylodynamic application we assume r = 1. Additionally, in our macroevolutionary

example there are no serial samples, hence ϕ = 0 (in which case r is not a parameter of the sim-

plified model). In all analyses we make the additional simplifying assumption that the death

rate is a constant μ(t) = μ, and place a mean-0.1 exponential prior on μ. In phylodynamic appli-

cations, there is often prior information that enables the use of informative prior distributions

on ϕ and μ, which we discuss in a later section. The remaining piece of the puzzle, and our

contribution in this paper, is in the specification of Pr(λ(t)), for which we use Markov random

field models. (Note that our implementation and theory of the GMRF and HSMRF can be

applied to all time-varying rates; we focused on the birth rate only for simplicity.) Our simpli-

fied posterior distribution takes the following form:

Prðθ;T; to; lðtÞ; m; �; r; j yÞ / Prðy j θ;TÞ PrðθÞ

� PrðT j lðtÞ; m; �; r;F0; toÞ

� PrðlðtÞÞ PrðmÞ Prð�Þ PrðrÞ PrðtoÞ:

We note that historically F0 has been called ρ, and Φ has sometimes been called ρ. How-

ever, ρ has been used to refer to both sampling probabilities [18] and mass extinction probabil-

ities [15, 16, 22], which creates room for confusion.

Horseshoe Markov random field prior

We define the birth rate on the log scale, λ�(t) = ln(λ(t)). Following Stadler (2011), we discre-

tize time into n intervals and assume that l
�
ðtÞ ¼ l

�

i when t is in the ith time interval, using

the parameterization λ� ¼ ðl�
1
; :::; l

�

nÞ [15]. We find n = 100 works well in practice and refer

readers to S1 Text for a more detailed discussion of the grid size n. An HSMRF is a model in

which l
�

iþ1
j ðl

�

i ; gÞ � Horseshoeðl
�

i ; gÞ, where γ is a global scale parameter that controls the

smoothness of the overall field. The horseshoe is a distribution used as a shrinkage prior, a sta-

tistical tool designed to discern signal from noise [40]. In our case, the HSMRF exerts strong

prior belief that l
�

iþ1
� l

�

i ; in other words, we do not expect much change in the birth rate

between adjacent intervals. However, the horseshoe distribution also has fat (Cauchy-like) tails

that allow the HSMRF to behave like a spike-and-slab mixture model [41], giving the HSMRF

a property known as local adaptivity. The horseshoe distribution employs an auxiliary variable

σi and is represented as a scale mixture of normal distributions

si � halfCauchyð0; 1Þ;

l
�

iþ1
j si; g � Normalðl�i ; s

2
i g

2Þ:

This mixture representation helps explain the local adaptivity of the HSMRF: one or a few

(relatively) large changes can be handled by large σi without increasing γ. We place a Normal

(lnðl̂Þ; x) prior distribution on l
�

1
, where l̂ is a rough estimate of net diversification rate.

When there are extant lineages in the tree, l̂ is the maximum likelihood estimator for the net

diversification rate, d, from Magallon and Sanderson (2001) [42]. When there are no extant

lineages in the tree, we put a lower bound on the net diversification rate using the number of

births in the tree (excluding the origin or root as appropriate), Bobs. The expected net number
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of births observed in a tree by time t is given by EðBtÞ ¼ 2et�d � 2 if starting at the time of

the most recent common ancestor, and EðBtÞ ¼ et�d � 1 if starting with a single lineage. By

the method of moments, we can obtain (for the case of starting with the MRCA)

d̂ ¼ ðlnðBobs þ 2Þ � lnð2ÞÞ=t, where t is the age of the tree. As not all lineages that are born will

be sampled in our tree, the number of observed births will be an underestimate of the number

of births and our rate will be underestimated, but it will suffice. In practice, when setting the

prior for the first birth rate, we use ξ = 1.17481, producing, a priori,
Prðl̂=10 � l1 < 10l̂Þ ¼ 0:95. We use a halfCauchy(0, z) prior on γ, where z is the global

shrinkage prior, and we discuss how to set it in a later section. A list of all parameters in the

model and their prior distributions can be found in Table 1. The full posterior distribution of

our HSMRF-based model parameters is,

PrðT; to; θ; λ
�; m; g;σ j yÞ / Prðy j θ;TÞ PrðθÞ PrðT j λ�; m; to; rÞ Prðλ� j g;σÞ

� PrðσÞ PrðgÞ PrðmÞ PrðtoÞ:

We approximate the above posterior distribution using the following MCMC strategy. We

use standard Metropolis-Hastings kernels available in RevBayes to update the tree T, time of

the root to, substitution model parameters θ, and extinction rate μ, and the first log-speciation

rate, l
�

1
(see Höhna et al. (2017) for a description of the standard RevBayes Metropolis-Has-

tings kernels [43]). Since vectors λ� and σ can be high dimensional, we update the vectors in

blocks. First, we reparameterize the model to work with the first order differences Δ instead of

λ� (see Fig 1). This allows us to sample the vector Δ, where all elements are a priori indepen-

dent, instead of the vector λ where the adjacent values are highly correlated, greatly increasing

the efficiency of the MCMC. Further, under the GMRF and the hierarchical representation of

the HSMRF, all the Δ are Normal random variables, enabling us to employ an elliptical slice

Table 1. Model parameters, their prior distributions, and their role in the model. In most of our analyses, we

assume a constant death rate, μ, with an Exponential prior with rate parameter η = 10. In phylodynamic applications,

there may be more information to set η, while in macroevolutionary examples one could instead employ an empirical

Bayes approach. When there is serial sampling, we adopt an empirical Bayes approach to setting the prior on the sam-

pling rate, ϕ, using a guess at the tree age and the number of tips to obtain �̂. In practice we set ω = 1.17481. In analyses

without serial sampling, ϕ = 0. For details on computing �̂, see S1 Text. The sampling fraction at present, Φ0 and the

probability of death upon sampling, r are taken to be known a priori. The age of the tree, tor is fixed to the observed

height if the tree is data, else it is a variable with the prior determined by the user. For models with n = 100 intervals, we

set z = 0.0021 for HSMRF-based models and z = 0.0094 for GMRF-based models, while for models with other n, we

provide code for setting z. The GMRF-based model lacks local scale parameters σ. We adopt an empirical Bayes

approach to setting the prior on the first log-birth-rate using a guess at the tree age and the number of tips to obtain l̂
�

1
.

In practice we set ξ = 1.17481. In models where the death rate varies, the previously discussed prior on μ serves as the

prior on μ1, and the rest of the prior is accomplished via an MRF model exactly as with the birth rate.

Parameter Prior Role

μ Exponential(η) death rate

ϕ Lognormal(�̂, ω) serial sampling rate

Φ0 Fixed sampling fraction at present

r Fixed probability of death upon sampling

tor User choice age of tree

z Fixed global scale hyperparameter

γ halfCauchy(0, z) global scale of the MRF

σi halfCauchy(0,1) local scale of HSMRF

l
�

1 Normal(lnðl̂Þ; x) log-scale birth rate at present

l
�

i>2 Normal(l
�

i� 1
,g2s2

i ) log-scale birth rates

https://doi.org/10.1371/journal.pcbi.1007999.t001
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sampler [44] for Δ = (Δ1, . . ., Δn−1). The (conditional) normality of the Δ also allows us to

employ a Gibbs sampler for γ and σ, which allows us to adequately sample the tails of the pos-

terior distribution. Without this elliptical slice sampler and Gibbs sampler combination,

MCMC for these models fails to converge to the posterior distribution. We defer a more thor-

ough discussion of our MCMC strategy to S1 Text. We also note that there are directionless

specifications of MRF models which make it implicit that information is shared across adja-

cent intervals in both directions (that is that the full conditional distribution of l
�

i depends on

both l
�

iþ1
and l

�

i� 1
). For more on this subject, we direct readers to Rue and Held (2005) [45].

Gaussian Markov random field prior

Our GMRF-based model can be seen as a special case of an HSMRF-based model where σ1 =

� � � = σn = 1, meaning l
�

iþ1
j ðl

�

i ; gÞ � Normalðl
�

i ; g
2Þ. The lack of local scale parameters makes

the GMRF-based model a non-locally-adaptive model. For the GMRF-based model, the poste-

rior distribution is

PrðT; to; θ; λ
�; m; g; j yÞ / Prðy j θ;TÞ PrðθÞ PrðT j λ�; m; to; rÞ Prðλ� j gÞ

�PrðgÞ PrðmÞ PrðtoÞ:

The MCMC algorithm to approximate the above posterior distribution is the same as for

the HSMRF-based model, except we do not need to update the vector σ.

Setting the prior on the global scale parameter

In both HSMRF- and GMRF-based models, the global scale parameter, γ, controls the smooth-

ness of the overall field, with smaller values favoring less variability. Following Faulkner et al.,
we take a hierarchical approach and place a prior distribution on the global scale parameter,

such that γ* halfCauchy(0, z) [29]. We choose z in terms of se —the number of “effective

Fig 1. Simplified versions of our MRF-based models, shown as a grid of size 4. To highlight the structural similarities between the

GMRF- and HSMRF-based models, we draw the directed acyclic graph (DAG) as if we had an analytical form of the horseshoe distribution

(that is, we omit the local scale parameters of the HSMRF). In (a), we show the idealized general MRF model, while in (b), we show how we

can reparameterize the model in terms of a vector Δ of independent random variables. From Δ, we can recover λ� as l
�

iþ1
¼ l

�

i þ Di, i = 1,

. . ., n − 1. This reparameterization greatly improves the efficiency of MCMC sampling. When drawing the model as a DAG, squares

represent constant values, closed circles stochastic values, and open circles deterministic transformations of other nodes.

https://doi.org/10.1371/journal.pcbi.1007999.g001
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shifts” in the birth rate and we define an effective shift to be an event {λi+1/λi < 1/� or λi+1/λi�

�}. That is, an effective shift is the event where two adjacent birth rates are different by more

than �-fold. We set � = 2, reflecting that a 2-fold change in the birth rate is biologically mean-

ingful and statistically detectable. Setting z is then accomplished implicitly by setting the prior

expected number of effective shifts, E½se�, which is more interpretable than z. In this setup,

E½se� is the expectation of a binomial random variable with probability p that there is an effec-

tive shift between λi+1 and λi. Since we can compute p given a particular value of z, and since

there is no obvious closed form solution, we use numerical methods to solve for z. Code to cal-

culate z from E½se� is available at github.com/afmagee/hsmrfbdp.

We find that in practice E½se� ¼ lnð2Þ produces a prior that is reasonably conservative yet

flexible. This yields zHSMRF� 0.0021 for HSMRF-based models and zGMRF� 0.0094 for

GMRF-based models. An alternative approach to specify z examines the implied prior distri-

bution on λn/λ1, i.e., the prior distribution on the fold change across the entire process. A pri-
ori, for the HSMRF on a grid size n = 100, E½se� ¼ lnð2Þ leads to Pr(0.5� λn/λ1 < 2)� 0.76

and Pr(0.1� λn/λ1 < 10)� 0.9. While we do not use this approach to set z, it shows that our

chosen value for z focuses the prior mass on reasonable regimes while leaving room for rather

substantial amounts of change. For completion, in S1 Text we provide more context for these

choices of prior, including an alternative choice of E½se� following Drummond and Suchard

(2010), and examine two additional frameworks, bounding the marginal variance of the

GMRF and HSMRF (explored by Sørbye and Rue (2014) and Faulkner et al. (2018)), and

bounding the effective number of parameters in the model (explored by Piironen and Vehtari

(2017)) [46, 47, 29, 48].

Results

Simulation study

To understand statistical properties of both random field birth-death models, we perform a

(nonexhaustive) simulation study. Some of the most debated questions in species diversifica-

tion concern diversification-rate decreases [49, 50, 9, 51, 52, 53, 54], and the ability to detect

effective epidemiological interventions hinges on the ability to accurately estimate decreases in

the rate of infection, so we consider simulation scenarios where the birth-rate declines through

time. We devise a series of piecewise-linear functions λ(t) in which the birth rate decreases

through time. For each model, we use the R package TESS [55] to simulate 100 trees condi-

tioned on the tree age (to = 100), with complete species sampling (Φ0 = 1), and choosing values

for λ(t) and μ to give an expectation of 200 species/tips at the present. Given the underdevel-

oped infrastructure for simulating serially-sampled trees, we focus on trees where all samples

are at the present day (ϕ = 0), but see Barido-Sottani et al. (2019) for recent developments [56].

When analyzing these simulations, we take the tree and sampling fraction to be known. Treat-

ing the tree as data allows us to focus on the performance of the random field birth-death mod-

els without worrying about potential sources of bias during time-calibrated tree estimation

[57]. Taking the tree as data also mirrors the predominant historical usage of models of rate

variation, detecting variation in trees previously inferred [11, 2, 3, 15].

We assess model performance by looking at four summaries of the inferred birth-rate tra-

jectories. We take as our estimate of λ(t) the birth-rate trajectory defined by the median poste-

rior of each birth rate λi. First, to quantify bias we use the Mean Absolute Deviation (MAD) of

the estimated birth-rate trajectory, given by ð1=nÞ
Pn

i¼1
jl̂i � lij. Second, we look at the Mean

Absolute Sequential Variation (MASV) of the estimated trajectory, the gross change inferred,

given by ð1=ðn � 1ÞÞ
Pn� 1

i¼1
jl̂iþ1 � l̂ij. Where the simulated trajectory is variable, it is more
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useful to consider the relative MASV (RMASV), MASVðl̂Þ=MASVðlÞ. If RMASV > 1, the

inferred trajectory is more variable than the true trajectory, and if RMASV < 1, it is less vari-

able. Third, we look at the fold change (FC) of the estimated trajectory, l̂n=l̂1. This will show

us if we capture the presence of an overall change in the birth rate, even if we fail to capture the

specific pattern. Finally, we look at the average width (across all estimated birth rates, λi) of the

90% posterior credible interval as a measure of precision, ð1=nÞ
Pn

1
ðl̂0:95

i � l̂0:05
i Þ=l̂i. This

measure, which we call relative precision (RP), is both more interpretable than the raw credible

interval and more comparable across simulations.

Constant-rate simulations. Our first simulations are from a constant-rate diversification

model, such that λ(t) = λ (e.g., the first column in Fig 2). This allows us to test the tendency

towards what could be termed “false positives,” the detection of spurious rate variation. Both

the GMRF and HSMRF birth-death models can produce effectively constant-rate trajectories,

though their flexibility is not without minor drawbacks. Ridge plots of performance measure

histograms across all simulations are shown in Fig 3. The trajectories estimated by both models

have low MAD performance measure, FC� 1, and small RP performance measure, indicating

generally good performance. Further, compared to fitting constant-rate models, the increase

in the MAD performance measure from inferring the variable-rate models is negligible, and

the decrease in precision is small (S1 Text Figure A). Thus, the primary drawback to using

these models to fit constant-rate trajectories is that there are false positives. In other words, the

models occasionally fit trajectories where the inferred change between the beginning and end

of the process does not appear negligible. However, comparisons to the prior make it quite

clear that both the GMRF and HSMRF are fitting effectively constant-rate trajectories. For

Fig 2. Inferred birth-rate trajectories from four individual simulations. The dashed line is the true simulating birth rate, the dark colored line is the posterior median

trajectory (the median is taken separately for each grid cell), and the shaded region shows the 90% Credible Interval (CI) for the rate. The leftmost column is from the

constant-rate simulations, and the right three columns demonstrate the effect of changing the shift duration (the length of the tree over which the birth rate changes),

from an instantaneous shift to a constant change model. When we focus instead on the location of the shift, all simulations are piecewise-constant as in the second

column. In each column, we show the simulation with the most average performance measured in terms of the Mean Absolute Deviation of both the GMRF and HSMRF.

https://doi.org/10.1371/journal.pcbi.1007999.g002
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both models roughly 99% of the prior MASV is greater than 0.01, while roughly 5% of the pos-

terior MASV is greater than 0.01, further indicating that the models are producing effectively

constant trajectories. Computing such a significance threshold to reject a constant rate model

can be computed using Monte Carlo simulation [58]. The HSMRF and GMRF produce very

similar average error and fold change, though the distributions of these metrics for the GMRF

are more tightly focused around the target values (MAD of 0, FC of 1), and the GMRF has

slightly tighter credible intervals. The GMRF generally estimates narrower credible intervals,

while the HSMRF generally estimates trajectories with lower MASV.

Piecewise linear simulations. Our primary time-variable simulations examine the impact

of the shift duration, i.e., the amount of time over which the birth-rate changes. To examine

this, we build a piecewise-linear birth-rate function, where the birth rate is λ1 for 100� t> t1,

λ2 for t� t2, and a linear interpolation for t1� t> t2. We center the shift at 50 ((t1 + t2)/

2 = 50), and simulate shift durations (t2 − t1) of 0%, 25%, 50%, 75%, and 100% of the age of the

tree. All simulation parameters are recorded in S1 Text Table A. The HSMRF-based model

performs better when the shift is fast (when t2 − t1 is small), and the GMRF-based model per-

forms better when the shift is slow (when t2−t1 is large, Fig 4a). For the HSMRF-based model,

the MAD performance measure is lower and both the MASV and FC performance measures

are closer to the truth when the true shift is shorter. In contrast, for the GMRF-based model,

the MASV performance measure gets closer to the truth, i.e., the error decreases, and the RP

performance measure gets narrower as the shift duration increases. In some simulations, both

models effectively fit constant-rate trajectories. The HSMRF-based model also has a tendency

towards fitting steep shifts even in cases where the true shift is slow (Fig 2). Both models

Fig 3. Performance of the models on simulated constant-rate datasets. MAD (Mean Absolute Deviation) measures

the error in the estimated trajectory. MASV (Mean Absolute Sequential Variation) measures the total amount of

change in the trajectory, horizontal line at true value for reference. FC (Fold Change) measures the fold change from

present to past, dashed line at true value for reference. RP (Relative Precision) is a measure of precision, the average

width of the 90% Credible Interval relative to the birth rate.

https://doi.org/10.1371/journal.pcbi.1007999.g003
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Fig 4. The effect on parameter inference of (a) changing the (four-fold) rate shift from instantaneous to the entire length of

the trajectory and (b) changing the center of an instantaneous (four-fold) rate shift. MAD measures the error in the estimated

trajectory. RMASV (Relative MASV) measures the total amount of change relative to the true MASV, horizontal line at 1 for

reference. FC measures the fold change from present to past, dotted line at true value for reference. RP is a measure of precision, the

average width of the 90% Credible Interval relative to the birth rate.

https://doi.org/10.1371/journal.pcbi.1007999.g004
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though have difficulty with continuous, slow declines where they have a tendency to underesti-

mate the total change. However, comparisons to the prior show that both models tend to

detect some change. For both the HSMRF- and GMRF-based models, the median FC is

approximately 2 for the continuous decline simulations (52% and 54% of FC are greater than

2, respectively). Simulations from the prior of the HSMRF-based model show that 12% of tra-

jectories are expected to have a larger fold change than 2, while for the GMRF-based model 3%

are expected to be greater than 2. Thus, compared to the prior, the posterior median trajecto-

ries have shifted to larger fold changes. Further, while the prior median fold change is 1, only

3% and 2% of FC inferred by the HSMRF- and GMRF-based models are below 1. All of this

indicates evidence for rate variation.

Piecewise constant simulation. We also examine the effect of varying the location of the

instantaneous birth-rate shift. To do this, we build a piecewise-constant birth-rate function,

where the birth rate is λ1 for 100� t< tshift, λ2 for t� tshift; we simulate tshift = 90, 80, . . ., 40

(e.g., Fig 2 second panel). The location of the rate shift should influence the capacity for detec-

tion by altering the expected number of births in the pre-shift portion of the tree. As the shift

moves from past to present, for the HSMRF-based model the MAD performance measure

decreases and the RP performance measure gets smaller (Fig 4b). However, for the GMRF-

based model, as the shift becomes more recent, the RMASV performance measure becomes

increasingly inflated, indicating trajectories that are too variable. This is due to the GMRF-

based model estimating rather substantial variation in the more ancient portions of the tree.

The HSMRF-based model outperforms the GMRF-based model in most performance mea-

sures and for most shift locations.

Shift magnitude. The magnitude of the birth-rate shift should also impact the capacity for

detection, so we simulate shifts of two magnitudes for all scenarios outlined above. For our low

magnitude shift, we simulate a two-fold change, and for our larger shift, we simulate a four-

fold change. Unsurprisingly, it is harder to detect smaller shifts. Results for different functional

forms are qualitatively similar between shift magnitudes, so we present only the results for the

four-fold shifts in Fig 4. In many cases with two-fold shifts, the inferred trajectory is effectively

constant. Thus in general the MAD performance measure is higher, the RMASV, FC, and RP

performance measures are lower. S1 Text Figures D and E give full simulation results for the

two-fold case comparable to Fig 4.

Time-varying death rates

We also investigated the ability of our models to simultaneously infer both time-varying birth

and death rates. We devised a piecewise-constant simulation scenario loosely based on a data-

set of Hepatitis C infections in Egypt, which is often used as a benchmark for assessing phylo-

dynamic methods [17, 29]. While the rate of recovery/removal can be relatively constant over

time during spread of an infectious disease agent, this rate will vary if interventions are imple-

mented (e.g., isolation of identified infectious individuals). Since recoveries/removals are rep-

resented by deaths in the phylodynamic birth-death models, it is of interest to be able to infer

changes in the death rate over time. In the first applications of the birth-death skyline model to

real data, the total death rate (μ(t)+ r(t)ϕ(t)) was observed to vary by roughly three-fold in two

different datasets [17]. In our scenario, the death rate experiences an approximately five-fold

increase, while the birth rate first undergoes a five-fold increase and then a ten-fold decrease.

Changes in birth and death rates are asynchronous. We simulate 100 trees with isochronous

sampling (Φ0 = 1), targeting an expectation of 200 tips as in the main simulation study. We

additionally simulate 100 trees with heterochronous sampling (ϕ = 0.009, r = 1) using Tree-
Par [15], producing trees with an average of 175 tips. For comparability (in terms of the
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expected number of extant taxa at any time in the tree), in the heterochronous simulations we

adjust μ(t) such that the total death rate (μ(t)+ ϕr) is the same as the death rate (μ(t)) in the iso-

chronous simulations.

We analyze both tree sets with our GMRF-based and HSMRF-based models in two differ-

ent analysis setups. First, we attempt to infer both λ(t) and μ(t). Second, we misspecify the true

model by inferring λ(t) while inferring a constant μ. In Fig 5 we show representative estimates

of birth and death rates for both models and both analysis setups. We also summarize our

results using the MAD, RP, and RMASV performance measures in Fig 6. We do not report

fold change here as it is not a useful measure here. This is because the birth-rate trajectory has

more than one shift, and in some intervals μ(t) = 0, making the fold change infinite (this choice

of μ(t) allows us to keep the total death rate the same between the heterochronously sampled

and isochronously sampled simulations).

First, we examine the ability of our models to infer time-varying death rates. Our simula-

tions reveal that estimating time-varying death rates can be quite difficult, especially without

serial samples. Without heterochronous sampling, there is very little signal in any analysis for

time-varying death rates; the performance is essentially equivalent to fitting a constant death

rate. When heterochronous samples are present, it is possible to detect time-varying death

rates and estimates become more accurate. However, even with heterochronous samples both

models frequently underestimate the variability of the death-rate trajectory as measured by the

RMASV performance measure. The RMASV performance measure also shows that the

HSMRF-based model is much better at detecting appropriate amounts of variation than the

GMRF-based model.

We additionally investigate the ability of our models to infer time-varying birth rates in the

presence of a varying death rate, and find that estimating time-varying birth rates is more diffi-

cult when the death rate varies. The MAD performance measure is higher in the time-varying

death simulations than in the main simulation study and the RP performance measure is

larger. In the absence of serial samples, the RMASV performance measure shows that the

amount of variability is generally underestimated, though there is still clear evidence for varia-

tion. As the trajectories have similar birth rates to the constant-death simulations, the MAD

performance measures should be largely comparable, despite not being relative measures like

the RP and RMASV performance measures. The presence of serial samples greatly improves

estimation of the total variability of the trajectory as measured by the RMASV performance

measure, and greatly improves accuracy and precision. Fitting a model with a constant death

rate generally has little effect on how well the birth rate trajectory is estimated.

Empirical analysis of Pygopodidae

Pygopodidae is a clade of approximately 46 legless geckos [6]. Recently, Brennan et al. (2017)

used several birth-death models to investigate the history of diversification in this group,

examining trends in speciation over time using a posterior sample of 100 phylogenies esti-

mated via BEAST 1.8.3 [6, 59]. The majority of their analyses revealed a drastic speciation-rate

decrease in the recent (2–5 million years) past, though there was some disagreement between

methods over the significance and timing of the shift. Here we revisit the question of signifi-

cance and timing of the birth-rate shift in full joint analyses of phylogeny and both our GMRF

and HSMRF birth-death models from molecular sequence data. In these analyses, we assume a

constant death rate, μ. Details of the substitution and clock models are available in S1 Text, as

are details of MCMC convergence diagnostics performed.

Our dataset includes 41 out of 46 representatives of Pygopodidae, which we use to set the

species sampling fraction, F0 = 0.89. We employ calibrations on the same nodes as Brennan
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et al. (2017), resulting in a calibration for the root node and one each on the genera Delma and

Apprasia [6]. Following Brennan et al. (2017), we place a Uniform(19.5, 29.0) prior on the root

age [6]. To set up our grid, we thus choose to divide the interval [0, 29] into 100 intervals/

epochs of equal length.

GMRF- and HSMRF-based models produce a clear visual signature of a diversification-rate

decrease (Fig 7), with a higher rate from the origin of the clade up until at least 12 Ma, and a

Fig 5. Inferred (a) birth-rate trajectories and (b) death-rate trajectories from four individual simulations with time-

varying birth and death rates. The dashed line is the true simulating rate, the dark colored line is the posterior median

trajectory (the median is taken separately for each grid cell), and the shaded region shows the 90% Credible Intervals (CIs) for

the rate. In each column, we show the simulation with the most average performance measured in terms of the Mean Absolute

Deviation of the birth- and death-rate trajectories from both the GMRF and HSMRF (columns are shared across birth-rate and

death-rate subfigures). The column labels A, B, C, and D identify the different combinations of tree simulations and analysis

setup. A and B are analyses of trees with isochronous sampling, C and D heterochronous sampling. A and C are analyses where

time-varying death rate, μ(t) is inferred, B and D where a constant death rate, μ, is inferred.

https://doi.org/10.1371/journal.pcbi.1007999.g005
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lower rate afterwards. The HSMRF-based model favors a steeper decrease ending approxi-

mately 6 Ma, while the GMRF-based model favors a much slower decline that starts approxi-

mately 14 Ma and lasts until approximately 2 Ma. Over the range [2 Ma, 12 Ma], the HSMRF

estimates a 3.43-fold decrease (90% Credible Interval (CI) [1.12, 8.49]), while the GMRF

Fig 6. Performance of the models on simulated datasets where both the birth- and death-rate trajectories vary.

MAD measures the error in the estimated rate. RP is a measure of precision, the width of the 90% Credible Interval

relative to the true rate. RMASV measures the total amount of change relative to the true MASV, horizontal line at 1 for

reference. The column labels A, B, C, and D identify the different combinations of tree simulations and analysis setup. A

and B are analyses of trees with isochronous sampling, C and D heterochronous sampling. A and C are analyses where

time-varying death rate, μ(t) is inferred, B and D where a constant death rate, μ, is inferred.

https://doi.org/10.1371/journal.pcbi.1007999.g006

Fig 7. Analyses of the Pygopodidae dataset. Plotted are posterior median trajectories (dark lines) and 90% credible intervals (shaded

regions). Time is in millions of years before the present day. In grey is a heatmap of the inferred divergence times.

https://doi.org/10.1371/journal.pcbi.1007999.g007
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estimates a 2.41-fold decrease (90% CI [1.00, 7.58]). The HSMRF produces 90% credible inter-

vals for the speciation rate that are generally narrower than the GMRF-based model’s intervals.

The behavior of both models is in line with the simulation results for fast to intermediate shifts,

with the HSMRF inferring a faster shift of larger magnitude with tighter credible intervals than

the GMRF-based model.

Given that the posterior distributions of adjacent birth rates are highly correlated, testing

for a shift in a specific interval from λi to λi+1 could suggest there is no shift even when there is

clearly a shift present in the overall trajectory. However, we can avoid this issue by testing

hypotheses over longer timespans. The Bayes factor [60] in support of an s-fold decrease

between tstart and tend is given by,

PrðlðtstartÞ=lðtendÞ < s j yÞ
PrðlðtstartÞ=lðtendÞ � s j yÞ

=
PrðlðtstartÞ=lðtendÞ < sÞ
PrðlðtstartÞ=lðtendÞ � sÞ

:

For an s-fold increase, the inequalities are reversed. If we are interested in the evidence of a

shift over the range [2 Ma, 12 Ma], we can compare the speciation rates in the appropriate

intervals for a given shift size s. For our grid, the 7th interval ends at 2.03 Ma, while the 43rd

starts at 12.18 Ma, and we would test hypotheses regarding λ7/λ43. Then all we need to know

are the posterior and prior probabilities of observing a shift of at least s (or less than s if testing

a decrease). If we were instead interested in testing simply for the presence of a shift, then we

choose s = 1. Under both our HSMRF- and GMRF-based models, the prior probability Pr(λi/λj

< 1 j HSMRF) = 0.5 (for any i 6¼ j), making the denominator (the prior odds) 1 and only

requiring us to compute the numerator (the posterior odds). For the HSMRF-based model, Pr

(λ7/λ43 < 1.0 j y, HSMRF) = 0.98, and the 2ln(BF) in favor of a birth-rate shift over this interval

is 7.73 (using the nomenclature of Kass and Raftery (1995), “strong” support [60]). For the

GMRF-based model, equivalent calculations produce a 2ln(BF) in favor of a birth-rate shift of

5.53 (“positive” support). If we had instead been interested in testing for a shift of a particular

magnitude, we could simulate under the prior to estimate the prior odds.

HIV dynamics in Russia and Ukraine

In Eastern Europe and Asia, the use of injected drugs was a driving force in HIV epidemics for

many years and continues to be an important factor in the spread of HIV [61]. Russia and

Ukraine have a particularly high number of people who inject drugs, 2 million individuals

combined, and a total of 1 million HIV-infected individuals [62]. These factors, plus a limited

effort to reduce the scope of the problem in the beginning of the epidemic, make Russia and

Ukraine a good source of data for estimating how HIV spreads among those who inject drugs.

Vasylyeva et al. (2016) used a number of approaches, including phylodynamic methods, to

study the course of the epidemic from the 1980s through 2011 [62]. They estimated that half of

all secondary infections take place during the first month post-infection. They further identi-

fied a massive increase in the size of the infected population during the 1990s, and estimated

that during this period each newly infected individual transmitted to at least 5 others.

When using birth-death models for infectious disease phylodynamics, the primary parame-

ter of interest is the effective reproductive number at time t, Re(t). This is defined as the average

number of individuals who will be infected by a single infectious individual introduced into a

population with the same numbers of susceptible and removed individuals as are present in

the population of interest at time t [63]. In a constant-rate birth-death-sampling-treatment

process, the average duration of an infection is the inverse of the total rate of becoming nonin-

fectious, or (μ + rϕ)−1. The expected number of infections an individual will cause over a time-

span t is given by λ � t, approximately for small t. Thus, in the constant-rate case, the expected
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number of secondary infections caused by an individual is Re = λ/(μ + rϕ). In the time-varying

case, if an individual becomes infected at time t, we use the rates at that time to compute the

expectation and obtain Re(t) = λ(t)/(μ(t) + r(t)ϕ(t)).
To understand the dynamics of HIV in Russia and Ukraine in the time period of interest,

we use the sequence alignment for the env region from Vasylyeva et al. (2016) [62]. We analyze

this dataset (457 sites for 92 sequences) under both the HSMRF-based and GMRF-based mod-

els, defining 2011 (the time of the most recent sample) to be the present day and dividing the

range [0,29.1] into 100 evenly-sized intervals. We employ a Normal(29.1,5.0) root age prior,

truncated to be older than the oldest sample age of 18. We fix r = 1, corresponding to the

assumption that an individual, once sequenced and diagnosed, will not cause any further infec-

tions because they will be provided treatment and will have undetectable viral load. As there is

information about the duration of infection in HIV, and thus the death rate, we replace our

usual Exponential(10) prior with a Lognormal(-2.272,0.073) prior on the death rate, μ (the rate

of becoming noninfectious in the absence of sampling and treatment). This corresponds to an

a priori 95% probability that an untreated individual will be infectious for between 8.4 and

11.2 years [62, 64]. Details of the substitution and clock models are available in S1 Text, as are

details of MCMC convergence diagnostics performed.

While the model we fit only has a time-varying birth rate, we plot the more informative

Re(t) instead in Fig 8. Both the HSMRF-based and GMRF-based models show evidence for a

spike in Re(t) in the early 1990s and a sharp decrease at the end of the 1990s. We quantify sup-

port for shifts in λ(t) instead of Re(t), as we do not directly parameterize the effective reproduc-

tive number. The 2ln(BF) in favor of an increase between 1992 and mid-1994 (of any

magnitude) are 6.20 (strong support) for the HSMRF-based model and 8.06 (strong support)

for the GMRF-based model. Similarly, the 2ln(BF) in favor of a decrease between 1999 and

2001 are 7.63 (strong support) for the HSMRF-based model and 9.91 (strong support) for the

GRMF-based model. However, where the HSMRF-based model largely shows evidence for a

consistently elevated rate in this period, the GMRF-based model shows a sharp dip midway

through the decade, with the 90% CI including Re(t) = 1. The HSMRF-based model estimates

an average rate in this interval of 3.99, with rates that may be as low as 1.83 or as high as 7.88,

and the GMRF-based model estimates an average rate of 3.61 with rates possibly as low as 0.55

or as high as 11.65.

Fig 8. Analyses of the HIV dataset. Plotted are posterior median trajectories (dark lines) and 90% credible intervals (shaded regions).

The upper CI for the GMRF-based analysis extends to�26, we have truncated the figure for a clearer view of the rest of the trajectory.

Time is plotted as calendar time. A line at Re = 1 is provided for convenience, as below this threshold the epidemic cannot be sustained.

In grey is a heatmap of the inferred divergence times.

https://doi.org/10.1371/journal.pcbi.1007999.g008
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The results of our HSMRF-based model analysis are largely consistent with those of Vasy-

lyeva et al. (2016), who also observed an increased rate of infection from 1995 to 2000 [62].

Our GMRF-based analysis, with its large decrease in Re(t), does not align with either the preva-

lence data or any analysis performed by Vasylyeva et al. (2016) [62]. While both our HSMRF-

based and GMRF-based models estimated Re(t)< 1 throughout the 2000s, there is no evidence

from HIV prevalence that the epidemic is decreasing [65, 66]. Examining the posterior distri-

bution on phylogenies provides some insight into this apparent conflict: there are few infec-

tions inferred to have happened post-2000, and thus there is no information suggesting that

Re(t)> 1 in this period. Previous coalescent analyses have favored a higher Re(t) persisting

with no sign of a decrease, however such models can have difficulty inferring decreases in the

absence of coalescent events [26]. This highlights the fact that while birth-death process and

coalescent models are good at peering into the past, without birth (coalescent) events there is

little to no information from which to infer birth (coalescent) rates and thus the posterior dis-

tribution is largely determined by the prior distribution. On the other hand, there is outside

evidence that the epidemic has slowed since 2005 [67], so it is possible that our models are

picking up on a real signal and simply exaggerating it.

Discussion and conclusion

In this paper, we use a piecewise-constant birth-death model, combined with both GMRF and

HSMRF prior distributions, to approximate arbitrary changes in both the birth and death rates

through time. We implement these models in the statistical phylogenetic software platform

RevBayes, allowing for both inference of birth-death process parameters using a phylogeny

as data and for joint inference of BDP parameters, phylogeny, and nuisance parameters

directly from molecular sequence data. Additionally, we present an intuitive scheme for setting

the key hyperparameter for these models, the global shrinkage parameter, and provide an effi-

cient and tuning-parameter free inference framework that enables inference for these high-

dimensional models. We find that both GMRF- and HSMRF-based models are capable of

inferring variable birth rates and correctly rejecting variable models in favor of effectively con-

stant models. When estimating birth rates, we see that in general the HSMRF-based model has

higher precision than its GMRF counterpart, with little to no loss of accuracy. Applied to a

macroevolutionary dataset of the Australian gecko family Pygopodidae (where birth rates are

interpretable as speciation rates), our models detect a speciation-rate decrease in the last 12

million years. Applied to an infectious disease phylodynamic dataset of sequences from HIV

subtype A in Russia and Ukraine, our models detect a complex pattern of variation in the rate

of infection.

Through simulations we find that different functional forms of birth-rate variation produce

unique challenges in estimating these forms, even if they share the same magnitude of change.

Slow changes are easy to miss, intermediate shifts are largely detectable, and fast shifts are gen-

erally hard for the GMRF-based model but easy for the HSMRF-based model to estimate. It is

likely that slow changes are difficult to detect because both priors prefer piecewise-constant

trajectories to continuous variation. As there are relatively fewer births in the older part of the

tree, the prior can more easily overwhelm the likelihood, leading to an effectively constant

model being fit. This also likely contributes to the increase in uncertainty through time in the

estimated rate. Fast shifts cause issues for the GMRF-based model because they require the

global scale parameter γ to be large, which results in noisy and imprecise inference of slowly

changing parts of the birth trajectory. At the same time, the GMRF-based model has a ten-

dency to over-smooth the rapid changes. More recent changes are generally easier to detect

than older changes, although very recent changes are often missed. Larger magnitude shifts are
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easier to detect than smaller magnitude shifts for both models, regardless of the functional

form. In general, factors that make detecting shifts easier also exacerbate the poor behavior of

the GMRF-based model. The HSMRF-based model often favors a trajectory with one or a few

steeper shifts, even when the truth is a more gradual change. However, even if the duration of

the shift is not accurately estimated, the HSMRF can recover the presence of rate variation

even when the GMRF fails. Overall, we find that the performance of the HSMRF is quite good,

and it is only clearly outperformed by the GMRF on a few types of birth rate trajectories.

Our simulations with time-varying death rates show that birth rates can be estimated quite

well even in the face of difficulties inferring death rates. Serial sampling greatly improves the

precision of the estimated birth rates and seems to mitigate the tendency of uncertainty to

increase farther into the past. The increasing variability in the estimated rate is likely a function

of both the increase in prior variability (due to the directional nature of our prior) and the

reduced number of birth events in the past. The presence of serial samples can increase the

number of observed birth events early in the process and thus improve both accuracy and pre-

cision in the estimated rate in older intervals. One theme that becomes even more evident in

these simulations is that when the true birth-rate trajectory includes large jumps, the GMRF-

based model will tend to infer spurious variability in the trajectory in regions where the birth

rate should be small. When the death rate varies, the GMRF-based model is no more accurate

than the HSMRF-based model in inferring the birth rate, but it infers substantially more vari-

ability than the HSMRF-based model, suggesting that much of this variability is in fact spuri-

ous. On the whole, though, we find that birth rates are generally well-estimated and that when

there is serial sampling, the HSMRF-based model can capture the presence of variability in the

death rate. This may at first seem contradictory with the findings of Louca and Pennell (2020)

[68], who have shown that a fully-variable λ(t) and μ(t) cannot fully be identified from an

extant phylogeny. For any tree there is an infinitely large “congruence class” of diversification-

rate histories that are equally likely. We think that our results show the potential that priors

provide for mitigating this problem. Bayesian inference introduces regularization to this prob-

lem in the form of prior distributions, which in general should reduce the size of the congru-

ence class. Our results suggest that, at least in some instances, our priors are strong enough to

ensure that there is only one set of birth- and death-rate trajectories that are plausible in light

of observed data and imposed priors.

There are several avenues by which random field birth-death processes might be extended.

It would be useful to devise models that can accurately infer slower declines, situations where

the models we have put forth here have difficulty. One option for this would be to build second

order Markov random field models, which can more easily collapse to linear models. These

models have shown promise in coalescent modeling [29], but they have a higher risk of over-

smoothing than first order models. Extending the models to include time-varying sampling

rates may prove useful. Covariates may be added to time-varying birth-death models; previous

work on birth-death models for macroevolution allowed for climate-dependent rates [20],

while previous coalescent-based models considered the size of the region in which infections

were found [30]. Adding covariates to the HSMRF-based model may allow for better success

in inferring time-varying death rates by providing additional information. Models that allow

for the serial sampling rate to vary may have better success (with or without covariates), as

there is more direct information about this rate. However, cases where a number of samples

have the same recorded age but there is not a sampling event (such as when some epidemiolog-

ical sampling dates are available only to the year), may prove difficult. In such a case, the

apparent variation in the sampling rate will likely overwhelm any signal of true variation in the

sampling rate and may lead to erroneous estimates of the birth rate. Finally, for phylodynamic

applications like HIV, it is clear that GMRF-based and HMRF-based birth-death models
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would benefit strongly from the inclusion of epidemiological data, which has been incorpo-

rated into time-homogenous birth-death-sampling-treatment process by Gupta et al. (2019)

[69].

In this work, we have developed and explored the performance of an HSMRF-based birth-

death model for time-varying birth and death rates. This model is capable of detecting slow or

rapid shifts in birth rates, and can infer the timing of rapid shifts quite accurately. Detecting

variability in birth and death rates simultaneously is problematic, but possible. The HSMRF-

based models are is extensible, and incorporating covariates or variable sampling rates will

widen the range of potential applications of these models. The GMRF-based models may also

prove useful, but they have issues with both spurious inference of variability in birth rates and

under-detection of variability in death rates. Therefore, we recommend using the HSMRF as

Bayesian nonparametric priors for birth-death models.

Supporting information

S1 Text. Appendices with additional simulation and real data analysis details.

(PDF)
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