
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs 
grown on SiC

Permalink
https://escholarship.org/uc/item/4vw570c5

Journal
Semiconductor Science and Technology, 34(3)

ISSN
0268-1242

Authors
SaifAddin, Burhan K
Almogbel, Abdullah
Zollner, Christian J
et al.

Publication Date
2019-03-01

DOI
10.1088/1361-6641/aaf58f
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vw570c5
https://escholarship.org/uc/item/4vw570c5#author
https://escholarship.org
http://www.cdlib.org/


SST-105156.R1 (accepted in Semiconductor Science and Technology, 2018) 

1 

 

Fabrication technology for high light-extraction ultraviolet thin-film 

flip-chip (UV TFFC) LEDs grown on SiC 

Burhan K. SaifAddin1*, Abdullah Almogbel1,3, Christian J. Zollner1, Humberto Foronda1, 

Ahmed Alyamani3, Abdulrahman Albadri3, Michael Iza1, Shuji Nakamura1,2, Steven P. 

DenBaars1,2
, and James S. Speck1

 

1Materials Department, UCSB, CA 93106, USA 
2Department of Electrical and Computer Engineering, UCSB, CA 93106, USA 
3King Abdulaziz City of Science and Technology (KACST), Saudi Arabia 

*bks@ucsb.edu 

 

 

Abstract 

The light output of deep ultraviolet (UV-C) AlGaN light-emitting diodes (LEDs) is limited 

due to their poor light extraction efficiency (LEE).  To improve the LEE of AlGaN LEDs, 

we developed a fabrication technology to process AlGaN LEDs grown on SiC into thin-

film flip-chip LEDs (TFFC LEDs) with high LEE.  This process transfers the AlGaN LED 

epi onto a new substrate by wafer-to-wafer bonding, and by removing the absorbing SiC 

substrate with a highly selective SF6 plasma etch that stops at the AlN buffer layer.  We 

optimized the inductively coupled plasma (ICP) SF6 etch parameters to develop a substrate-

removal process with high reliability and precise epitaxial control, without creating 

micromasking defects or degrading the health of the plasma etching system.  The SiC etch 

rate by SF6 plasma was ~46 µm/hr at a high RF bias (400 W), and ~7 µm/hr at a low RF 

bias (49 W) with very high etch selectivity between SiC and AlN.  The high SF6 etch 

selectivity between SiC and AlN was essential for removing the SiC substrate and exposing 

a pristine, smooth AlN surface.  We demonstrated the epi-transfer process by fabricating 

high light extraction TFFC LEDs from AlGaN LEDs grown on SiC.  To further enhance 

the light extraction, the exposed N-face AlN was anisotropically etched in dilute KOH.  

The LEE of the AlGaN LED improved by ~3X after KOH roughening at room temperature.  

This AlGaN TFFC LED process establishes a viable path to high external quantum 

efficiency (EQE) and power conversion efficiency (PCE) UV-C LEDs.  

 

Keywords: epi-transfer and heterogeneous integration technology, deep ultraviolet light-

emitting diodes (UV-C LEDs), UV TFFC LEDs, light sources, light extraction efficiency, 

AlGaN, AlN, semiconductor devices. 

 
1. Introduction  

 

AlGaN ultraviolet light-emitting diodes (UV LEDs) and ultraviolet laser diodes (UV 

LDs) in the range of 265–280 nm are needed to develop novel disinfection and sterilizing 

technologies (water, air, and surfaces) to improve access to clean water [1–4], improve 

public health [5,6], and enable other biotech applications [7–10].  UV LEDs are a viable 

technology for replacing mercury gas discharge lamps in disinfection and biotechnology 

applications [11–18].  Hospitals, for example,  reduced the rates of hospital-acquired drug-

resistant infections by 25% using ultraviolet disinfection (via mercury lamps (254 nm)), as 

reported by various clinical trials [19,20].  Furthermore, the AlN or AlGaN epi-transfer 
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and heterogeneous integration technology can be employed to enhance the performance of 

photodiodes (PDs) [21], high electron mobility transistors (HEMTs) [22,23], bulk acoustic 

resonators (BARs) [24–26], and high-aspect-ratio SiC microstructures and devices [27–

30]. 

 

Researchers developing AlGaN LEDs have made significant progress in the last 30 

years [11,18,31–44]; however, the technology is limited by light extraction efficiency 

(LEE) [45–54].  The LEE of AlGaN LEDs is less than that of InGaN blue LEDs for five 

main reasons.  First, the absence of a transparent current spreading layer over p-GaN, such 

as indium tin oxide (ITO) for blue LEDs, requires the use of flip-chip (FC) LEDs 

architecture with a highly-reflective p-side down.  Second, the poor conductivity of Mg-

doped AlGaN necessitates the use of an optically absorbing p+-GaN layer for hole injection 

into the Mg-doped AlGaN and the formation of an ohmic p-contact; GaN has an absorption 

coefficient of 1.5x105 cm-1 at 275 nm [55].  Third, the reflectivity of ohmic p-contacts, is 

limited to ~70-80% , in the 265-280 nm range.  Fourth, the light from the AlGaN MQW 

emitters at these wavelengths is ~40% transverse magnetic (TM) polarized [47,48,56–58], 

which propagates laterally; finite-difference time-domain (FDTD) calculations estimate 

that the extraction of TM emission is >10X less efficient than transverse electric (TE) 

polarization in typical volumetric FC LEDs [48] (in volumetric FC LEDs light has to travel 

through the transparent growth substrate) [48].  Lastly, the encapsulants used to enhance 

LEE in blue LEDs suffer low transparency, poor stability, and a low refractive index in 

deep ultraviolet LEDs [59–63]. 

 

The most commonly employed substrates for AlGaN UV-C LEDs are sapphire and 

AlN but they yield LEDs with low LEE.  Although sapphire substrates are transparent, 

their thermal conductivity is limited, and they lack efficient ways to extract TM 

polarization because roughening the sidewalls of sapphire LEDs dies is challenging [46].  

AlN substrates grown by physical vapor transport (PVT) are limited by an absorption 

around 264 nm (4.7 eV) with an absorption coefficient of about ~35 cm-1 [64] whereas 

hydride vapor phase epitaxy (HVPE) grown AlN substrates have less absorption (~10 cm-

1) [65].  Researchers have largely overlooked AlGaN LEDs grown on SiC substrates [66–

74] because SiC absorbs strongly below its optical bandgap (3.2 eV and 3.0 eV for 4H-SiC 

and 6H-SiC, respectively), but this disadvantage can be overcome with a novel thin-film 

flip-chip (TFFC) LED architecture in which the SiC is removed with a highly selective SF6 

chemical plasma etch between SiC and AlN.  

  

Growing AlN on SiC substrates is promising due to their similar crystallographic 

structure, polarity, chemical stability, and low lattice mismatch (0.8%) [75–80].  AlN 

grown on SiC with low threading dislocations has been demonstrated with MOCVD 

[78,81] and plasma-assisted MBE [71,76].  Furthermore, we demonstrate in this paper that 

AlGaN LEDs grown on SiC can be processed into thin-film LEDs with high LEE [82–85]; 

for example, FDTD simulations by Ryu et al. show that TM emission’s LEE in textured 

thin-film LEDs is significantly higher (>6X) than in volumetric AlGaN FC-LEDs [48].  

InGaN thin-film blue LEDs were developed with very high LEE using laser lift-off for 

substrate removal, N-face GaN KOH photoelectrochemical (PEC) roughening, and a p-

side reflective mirror [86–88].  Several methods for laser lift-off of AlGaN UV-C LEDs 
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have been developed [89–94]; however, laser-induced melting of the Al in the dislocated 

interface of the AlN buffer layer in AlGaN LEDs causes more cracks than laser lift-off of 

the GaN buffer layer in InGaN LEDs [95] because the Al melts at 660 °C, whereas Ga 

melts at 30 °C [91].  Employing PEC etching to lift-off thin-film LEDs from their growth 

substrates [70,71] is more difficult with AlN than with GaN because N-face AlN etches 

anisotropically in KOH (without above-bandgap light assistance) considerably faster 

(~20x) than N-face GaN does [98].  Thus, KOH roughening can damage the active region 

before the lateral lift-off etch is completed.  

 

In this paper, we demonstrate a process to fabricate high extraction efficiency TFFC 

LEDs grown on SiC.  We characterize SiC and AlN etching using inductively coupled 

plasma (ICP) SF6 plasma.  The SF6 gas flow, process pressure, and sample RF bias power 

were investigated to determine first-order trends between the etch parameters and the etch 

rates of SiC and AlN.  Next, the etch parameters were optimized to develop a highly reliable 

SiC substrate-removal process with no micromasking defects and precise epitaxial control, 

without degrading the plasma etching system health.  A highly selective SF6 etch between 

SiC and AlN (90:1) was achieved which was essential for removing the SiC substrate and 

exposing a smooth AlN surface (roughness ~0.6 nm).  We demonstrate high LEE thin-film 

flip chip (TFFC) AlGaN LEDs grown on SiC.  We compare the power output of TFFC 

AlGaN LEDs before and after KOH roughening of the exposed AlN surface.  The AlGaN 

LED’s LEE improved by ~3X after roughening in KOH [0.25 M] for 70 sec at room 

temperature.  

 

2. SiC substrate thinning characteristics 

 

AlN was grown on quartered 2-inch 6H-SiC substrates (SiCrystal AG) by MOCVD as 

described elsewhere [81].  A one-step lapping process was used to thin the SiC substrates 

after bonding them to a carrier with high thermal conductivity (4.9 W/cm a-plane, 3.9 

W/cm c-plane) with n- and p- bonding pads using Au/Au thermocompression bonding 

[73,74].  The SiC based samples were mounted episide-down on a 2-inch  stainless-steel 

chuck using a wax (that melts at 120 °C), which provides mechanical adhesion during 

lapping.  The lapping process was performed using South Bay Technologies multipurpose 

lapping system (Model 920).  The SiC growth substrates were thinned from 250 µm to 75 

µm by lapping with a 9 µm Dia-Grid Diamond Disc (Allied High Tech Products, Inc.).  

The water-cooled lapping tool had a lapping rate of 29 µm/hr using 9 µm grit diamond 

discs.  A summary of the thinning parameters is shown in Table 1.  The lapping damage 

generated by lapping with a 9 µm grit was approximately 3 x 9 µm = 27 µm, which avoids 

damage to the active region.  The mechanical lapping yields a total thickness variation 

(TTV) of about 15–20 µm across a quartered 2-inch wafer.   

 

3. SF6 etch chemistry characteristics 

 

The SiC substrates  were plasma etched in a Panasonic ICP etching system (E6261) 

using SF6 plasma [67,68,101–103].  ICP etching systems have independent ICP and RF 

bias sources.  The ICP plasma (generated by a current flowing in a planner coil above the 

etch chamber) power controls the ions and radicals densities.  The RF bias power controls 
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the ions bombardment energy and thus is proportional to sputter (physical) etching.  The 

samples were mounted episide-down on a 6-inch carrier wafer using a vacuum diffusion 

pump fluid, which provides thermal conduction between the sample and the carrier wafer.  

The sample surface temperature depends on the lower electrode temperature and on the 

plasma ions’ energies and densities.  The lower electrode of the ICP system was backside 

cooled by pressurized He, and the carrier wafer temperature was kept at 11 °C during all 

etches.  The 6-inch carrier wafer was a 1.5 mm thick fused silica wafer with a 100 nm Al 

backside coating to hold the fused silica carrier wafer to the electrostatic chuck.  The 

chamber and carrier wafer were cleaned in O2 plasma and then seasoned with a 2 min SF6 

etch at 1000 W ICP power and low RF bias (49 W).  We found that chamber and carrier 

wafer seasoning suppressed the formation of SiC pillars.  The SiC etch rates were 

determined by profilometry (Dektak) and scanning electron microscopy (SEM).  

 

Etching SiC with SF6 plasma produces the volatile products SiF4, SiF2, CF2 and CF4 

[104]; the absence of etch-induced polymer generation renders the long etching (for several 

hours, if needed) consistent and reliable.  Thus, long SF6 etching does not need to be 

interrupted to clean the etch chamber because the etch chemistry does not cause polymer 

accumulation.  However, the carrier wafer’s temperature in the ICP etch chamber should 

be controlled during long etches because elevated temperatures can increase the SiC etch 

rate.  

 

We developed a two step SF6 ICP etch process to remove SiC: (1) high SiC etch 

rate process; (2) high selectivity SiC:AlN etch process.  The two-step etch parameters are 

summarized in Table 2.   

 

To achieve the highest etch rates of bulk SiC, we observed SiC etch rate as a 

function of SF6 flow and process pressure.  Figure 1(a) shows that the SiC etch rate 

increased as SF6 flow increased, with improved etch uniformity.  Figure 1(b) shows that 

the etch rate was sensitive to the process pressure.  Increasing the process pressure, 

increases the ions’ densities but decreases the ions’ energies, by decreasing its mean free 

path.  The SiC etch rate data in figure 2(b) shows that a chamber pressure of 1.33 Pa 

resulted in the highest SiC etch rate at the following process parameters: 1000 W ICP 

power, 400 W RF bias power, and 50 sccm SF6 flow. 

 

To achieve high etch selectivity, we utilized the fact that SiC etches chemically in 

SF6, whereas AlN does not etch chemically in SF6 and is only etched at a low rate by SF6 

sputter etching (at low RF bias).  Figure 2(a) shows that the SiC etch rate increased as the 

RF bias power increased.  At high RF bias power, SF6 sputter etch dominates whereas at 

low RF bias (below 60 W), SF6 chemical etch dominates and the sputter etch rate for SiC 

and AlN is very low.  The etch rate at 400 W was about ~40 µm/hr when measured over 

40 min and 46 µm/hr when measured over 2 hr.  The SiC substrate was etched first at ~46 

µm/hr over 1.2 hr to remove about 60 µm of SiC; the temperature of the He-cooled carrier 

wafer increased slightly from 11 °C  to 15 °C.  Achieving higher SiC etch rate is possible 

in plasma etch systems that have higher ICP power and RF bias power. 
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Figure 2(b) shows that the SiC:AlN etch selectivity was very sensitive to RF bias, 

especially below 60 W. .  At high RF bias, the etch selectivity was low (10:1 at 400 W) 

because at this regime, sputter etching has low selectivity between SiC and AlN.  On the 

other hand, the SiC:AlN etch selectivity increased significantly as the RF bias decreased 

below 60 W, where the SF6 chemically etches SiC but does not etch AlN due to the 

formation of the low-volatility species AlF3, which was demonstrated previously in studies 

of selective reactive ion etching of GaAs on AlGaAs and GaP on AlGaP in fluorine 

containing plasma [105–108].  However, the strong dependence of the SiC:AlN etch 

selectivity on the RF bias power decreased when the RF bias power was less than 47 W, 

as the SiC etch rate decreased more than the AlN etch rate did.  

 

SiC:AlN etch selectivity is essential for removing the SiC substrate without 

damaging the active layer by stopping at the AlN buffer layer with precise epitaxial control.  

The etch selectivity was dependent on the substrate temperature (maintained at 11 °C), 

process pressure, and the RF bias power, especially in the 47–49 W region.  For a thinned, 

quartered 2-inch SiC substrate with ~15–20 µm in TTV, a SiC:AlN etch selectivity of 90:1 

at 49 W RF bias and 1.33 Pa was sufficient to reliably and selectively etch SiC and expose 

a pristine surface of N-face AlN.  At a lower process pressure of 0.8 Pa, the SiC:AlN etch 

selectivity increased to 150:1.  This indicates that the selectivity can be increased further 

by optimizing the process pressure.  Senesky et al. [27] reported an SF6 etch selectivity (at 

a low RF bias) of 16:1 (SiC:AlN) using AlN deposited with reactive sputtering; the higher 

bulk SiC etch selectivities obtained with MOCVD-grown AlN (at a low RF bias) indicate 

that AlN grown by MOCVD could replace Ni as a hard mask in fabricating high-aspect-

ratio SiC microstructures and devices [28,29]. 

 

We optimized the SF6 ICP etch to ensure that it removed the thick SiC substrate 

without producing micromasking defects on the thin-film LEDs surface and without 

degrading the plasma etching system health.  First, we avoided the use of commonly used 

metal carriers inside the etch chamber (refer to Table 3).  In ICP plasma etch systems, SF6 

etching is typically performed using a 6-inch Ni or Al carrier wafer because: both have low 

etch rates in SF6 [101,109], as shown in Table 3.  However, the use of metal carrier wafers 

increases micro-masking defects (which produces 40+ µm SiC pillars, as shown in figure 

3(a)) that will not etch completely, even with the selective etch.  Furthermore, sputtered 

metal from metal carriers can affect subsequent etches or cause electrical shorting [27], and 

require manual cleaning of the etch chamber after every etch.  The use of fused silica (SiO2) 

or sapphire carrier wafers minimized the micro-masking defects (SiC pillars) on the etched 

surface and did not affect the ICP etch chamber walls.  The suppression of SiC pillars is 

shown in SEM images in figure 3(b).  Selective etching of a SiC surface with suppressed 

micromasking defects exposed a smooth AlN surface (refer to figure 4(e) for an AFM scan 

of the exposed AlN surface with RMS roughness < 1 nm) that was free of SiC pillars, as 

shown in the optical and SEM micrographs of the TFFC LEDs in figure 5.  Some literature 

indicates that the etch pressure requires optimization to remove SiC pillars; however, we 

found that pillar formation can be suppressed with appropriate selection of the carrier wafer, 

combined with the seasoning of both the carrier wafer and the etch chamber. 
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4. TFFC UV-C LED (278 nm) demonstration  

 

The thin-film transfer technology was demonstrated on a high LEE TFFC UV-C 

LED, as shown in figures 4-6. 

 

Figure 4 shows the process flow to fabricate TFFC LEDs from LED grown on SiC.  

The AlGaN LED structure was first grown on a quartered 2-inch 6H-SiC substrate 

(SiCrystal AG) by MOCVD as reported elsewhere [85].  The LED structure is shown in 

figure 6(a) and consisted of AlN (3.2 μm), Al0.8Ga0.2N (180 nm), n-Al0.6Ga0.4N (1.1 μm), 

278 nm MQWs 4x(Al0.39Ga0.61N/ Al0.6Ga0.4N), p-Al0.53Ga0.47N (50 nm), and p-GaN (5 nm).  

The samples were cleaved into 1.1 x 1.1 cm2 samples and were processed into LEDs.  The 

n-contact was V/Al/V/Au (20/80/20/200 nm); the p-contact was unannealed Ni/Al/Ni/Au 

(1/150/100/1000 nm) (refer to [85] for details).  After a 3 min solvent clean and 30 sec O2 

plasma clean (100 W), the LEDs were bonded to a thermally conductive substrate (semi-

insulating 4H-SiC, Cree, Inc.) with n- and p- bonding pads (20/1500 nm Ti/Au were 

deposited by e-beam).  The samples were bonded using low-temperature Au/Au 

thermocompression bonding.  A Finetech flip-chip bonder (FINEPLACER lambda) was 

employed for aligned wafer-to-wafer bonding.  The bond was performed at 30 N/cm2 for 

5 min at 275 °C in air.  Then, the samples were bonded further in custom-designed graphite 

fixtures that applied ~300 N/cm2 pressure while the sample was annealed at 200 °C for 2 

hr in air (the pressure was maintained during a 5 min cooldown); refer to Table 4 for a 

summary of the low-temperature Au/Au thermocompression bonding parameters. The 6H-

SiC growth substrate was lapped mechanically to 75 µm and removed by a two-step SF6 

plasma etch, as previously described.  Figure 5(a) shows plain-view optical micrograph 

images of processed UV LEDs with partially exposed AlN during an etch interrupt.  The 

exposed TFFC LEDs had no visible cracks or chipping.  The complete removal of SiC and 

exposure of pristine AlN surface was visible to the eye — a colorful interference pattern 

was observed as the light incident, and reflected from different surfaces in the TFFC LED 

interferes [110].  Also, the wettability of the surface changed as the N-face AlN was 

exposed.  Namely, the surface of the etched carbon-face SiC was hydrophilic, and the 

surface of the exposed AlN was hydrophobic, as shown in figure 5(a).  The TFFC LED 

contacts design is shown in figure 5(b) which shows a 5-finger topology for p-contact, 

surrounded by n-contact, with p-contact area of 0.093 mm2.  The 5-finger p-contact 

topology was adopted to avoid current crowding in the n-AlGaN layer [111], which had a 

relatively high resistivity (~60 mΩ-cm2). 

 

After complete removal of the SiC growth substrate, the suspended AlN/AlGaN/n-

AlGaN thin-film in-between the TFFC LEDs, which is above the n- and p-pads (as shown 

in figure 5(b)), can be removed via a patterned hard mask (SiO2) and KOH, or by etching 

a wider and deeper mesa around the LEDs mesa (into 80% of the AlN thickness) — before 

FC bonding.  However, we relied on the residual tensile stress in the AlN/AlGaN/n-AlGaN 

film, which caused it to slightly concave upward [98].  Thus, after the TFFC LEDs were 

singulated, the n- and p- pads becomes accessible to wire bonding, as shown in figure 5(c).  

The TFFC LEDs were singulated by mechanical sawing using an ADT 7100 Dicing Saw.  

The TFFC LEDs were covered by photoresist for protection from the cooling/cleaning 

water jets that are needed during mechanical sawing.  Subsequently, the TFFC LEDs were 
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mounted on TO headers using a Ni-Au epoxy from Dexerials Corp., and the light output 

of the LEDs was measured in a 75 mm integrating sphere (Digital Instruments, Inc.).  

 

Figure 6(b) compares the dependence a TFFC LED’s light output power (L) on the 

injected DC current (I) before and after optimized KOH roughening of the exposed AlN 

surface [85].  The slope of the power versus current increased by ~3X after KOH 

roughening of the exposed AlN layer in dilute KOH (0.25 M) for 70 sec (refer to the bird’s-

eye-view SEM image of the resulting hexagonal pyramids in figure 6(c)).  The LEE 

enhancement after KOH roughening was limited to ~3X  (as estimated from the 

enhancement in the L-I slope) due to the limited p-contact reflectivity and the use of a 5 

nm p+-GaN layer (a strongly absorbing layer) to inject holes into the LED active region.  

Further LEE enhancement is possible without using p-GaN and by using a more reflective 

p-contacts.  For example, the photoluminescence (PL) of MQW wells in an n-i-n structure 

(n-Al0.6Ga0.4N/286-nm-MQWs/n-Al0.6Ga0.4N/Al0.6GaN/AlN) could be enhanced by ~3.9X 

[112] after KOH roughening by using a highly reflective p-contact (a Pt/Al/Ni/Au p-contact 

with a Pt thickness of 0.26 nm and reflectivity of 90% at 286 nm was used to produce a 

~3.9X intensity enhancement in PL after KOH roughening).  

 

The LEE of TM emissions in KOH-roughened TFFC LEDs are expected to be 

higher than in bulk FC LEDs.  For example, Lee et al. studies on LEE in AlGaN UV LEDs 

[113] showed that LEE from a PSS sapphire AlGaN LED die was limited by sidewall 

roughness, more so than in InGaN-based bulk FC LEDs, and that LEE from sidewalls is 

significant in thick (e.g., 300 m thick sapphire) bulk FC AlGaN LED but becomes 

negligible in relatively thin bulk FC AlGaN LEDs (e.g., 90 m thick sapphire).  However, 

in TFFC LEDs, the contribution of sidewall emissions is negligible because the thin-film 

LED widths are much larger than its thickness, which is only 2–3 µm, and both TE and 

TM light emission couple into the roughened AlN surface; for example, FDTD simulations 

by Ryu et al. showed that the LEE of TM emission in roughened AlGaN thin-film LEDs is 

significantly higher (>6X) than in bulk AlGaN FC-LEDs [48].  The TE/TM emissions ratio 

depends on the MQWs strain and the Al composition in the wells and barriers [114–116].  

We speculate that the strain state of the MQWs grown on SiC will be similar to MQWs 

grown on sapphire because (1) the AlN buffer layer is normally relaxed in both sapphire 

and SiC substrates, and therefore the AlGaN MQWs are similarly compressively strained 

by the AlN lattice; and (2) the piezoelectric component due to thermal coefficient of 

expansion (TCE) mismatch (compressive in sapphire, and slightly tensile in SiC) between 

the AlN and AlGaN layers is negated because it affects them similarly.   

 

Estimating the LEE in unroughened thin-film LEDs could be challenging.  For 

example, thin-film blue LEDs with KOH-roughened GaN buffer layers, ray tracing 

simulations estimate 13 % LEE for each single-pass extraction (6 bounces for full 

extraction) [117], whereas wave optics simulations estimate 31% LEE for each single-pass 

extraction (3 bounces for full extraction) [118]. We will discuss our estimates for the LEE 

of TFFC LEDs in a future publication. 

 

After the optimized KOH roughening, the LED CW power was 7.8 mW at 95 mA, emitting 

at 278.5 nm, which yielded an EQE of 2%.  Stable encapsulation [61] can further enhance 
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the LEE from TFFC LEDs; however, most resins absorb strongly below 330 nm and 

decompose over time, which renders them commercially unviable.  A higher LEE for 

AlGaN TFFC LEDs is also achievable if the p-GaN layer is replaced with a transparent 

hole injector [119–121] or if the reflectivity of the p- and n-metal contacts is increased 

[48,117,122,123].  The IV characteristics do not change with KOH etching as discussed in 

details elsewhere [98] (refer to Figure 6c); however, in the device discussed here the 

voltage increased by ~ 1V after 50 sec KOH etching (refer to Figure 6d) which was 

probably due to a crack in the TFFC LED; however, further KOH etching did not affect 

the IV.  

 

5. Conclusions 
 

We developed a highly selective SF6 plasma etch of SiC over AlN and a viable 

manufacturing method for epitaxial transfer from SiC to another substrate via wafer 

bonding and SiC substrate-removal by SF6 etching.  Then, we demonstrated it on UV-C 

LEDs that were grown on SiC to fabricate high LEE TFFC LEDs.  The SiC substrate was 

bonded via Au-Au thermocompression bonding to another n- and p-patterned thermally 

conductive substrate.  The growth substrate was removed by a two-step ICP etching 

without micromasking defects on the etched surface.  The first step was a high SiC etch 

rate (~46 μm/hr) at a high RF bias power (400 W).  The second step was a selective SiC 

etch rate (~7 μm/hr) at a low RF bias power ( 49 W), with an etch selectivity of SiC:AlN 

~90:1 at a process pressure of 1.33 Pa; higher SiC:AlN etch selectivity of ~150:1 was also 

achieved at a lower process pressure.  The highly selective SF6 etch at low bias was 

essential for removing all SiC by reliably stopping at the LEDs’ AlN buffer layer, which 

acts as an etch stop layer.  We demonstrated a TFFC manufacturing method for UV-C 

LEDs that were grown on SiC.  The LEE was significantly enhanced via KOH roughening 

of the exposed N-face AlN.  KOH roughening enhanced the LEE by ~3X for UV LEDs 

without encapsulation and despite the use of 5 nm p-GaN as a p-contact layer. 
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List of Figures 

  

(a) Bulk SiC etch rate (µm/hr) vs SF6 flow rate (sccm).  

Higher flow rate increases the etch rate and improves the 

lateral etch uniformity. 

(b) Bulk SiC etch rate (µm/hr) vs pressure (Pa).  The etch rate 

peaks at 1.33 Pa when the product of the ions’ energies and 

the ion densities is maximum. 

Figure 1. The SF6 flow and process pressure, were examined to determine the trends between the etch parameters to optimize for 

a high SiC etch rate.  The process parameters were fixed at 1000 W ICP, 400 RF bias, and SF6 50 sccm flow.  The etch rates were 

measured for bulk SiC over a period of ~40 min – on a fused silica carrier wafer.  

 

  

(a) Bulk SiC etch rate (µm/hr) vs RF bias (W).   (b) SiC:AlN etch selectivity as function of RF bias power 

(W).   

Figure 2. In figure 2(a), at high RF bias, the SiC etch rate was dominated by sputter etching, however, at low RF bias sputter etch 

rate is minimal, and SiC is primarily chemically etched.  Figure 2(b) shows that SiC:AlN etch selectivity has a strong dependence 

on RF bias below 60 W.  The SiC:AlN etch selectivity at 49 W RT bias was 90:1 during a 2 hr etch, however, the selectivity 

decreased below 47 W.  A higher SiC:AlN etch selectivity 150:1 (shown in red) was measured at a lower process pressure (0.8 Pa). 
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Table 1. Summary of lapping parameters used to mechanically thin SiC substrate with 9 µm diamond grid disc. 

Lapping settings   Lapping etch rate 

 

CCW 

5 wafer rotation/ min 

6 pad rotation /min 

 

 25-30 µm/min 

 

Table 2. Summary of etch parameters for the two-steps ICP SF6 etch to selectively remove SiC (using fused silica as a carrier). 

Process parameter Fast SiC etch Selective SiC etch (slow) 

Pressure   1.33 Pa 1.33 Pa 

ICP power  1000 W 1000 W 

SF6 Flow  50 sccm 50 sccm 

ICP bias   400 W 49 W 

Etch rate  

40 µm/hr (40 min) 

46 µm/hr (90 min) 

47 µm/hr (2 hr) 

 

~7 µm/hr  

(2 hr) 

SiC:AlN Selectivity 10:1 

~90:1 

(~150:1 at 0.8 Pa) 

 

Impact on  

SiC surface  

Rough hydrophilic 

SiC surface  

After SiC is completely etched, the surface 

changes from hydrophilic to hydrophobic; smooth 

N-face AlN surface (RMS roughness < 1 nm) is 

exposed.  

 
 

Table 3. Summary of the etch rate, and selectivity of SiC and various 6-inch carrier wafers used in the ICP system (at 1000 W 

ICP, 400 W RF bias, 1.33 Pa).  

6” Carrier 

wafer  

Etch rate 

(µm/hr) 

SiC:Carrier wafer 

etch selectivity 

at 400 W RF bias 

Cost   Comments 

SiC   40  1:1 $1000 -- 

Satisfactory selectivity but expensive. 

Satisfactory selectivity and inexpensive. 

 

Sapphire 5 8:1 $400 

Fused Silica  

 

20 1.9:1 $30 

Al wafer 

 

1.5-2 25:1 $200 Sputter into sample and etch chamber 

walls 

Ni wafer  1 40:1 $200 Sputter into sample and etch chamber 

walls. 

 

Cu film on 

Si wafer  

 

NA NA NA 

 

Sputter contaminating and nonvolatile 

etch byproducts into sample and etch 

chamber walls 

Ni film on Si 

wafer 

 

1 40:1 NA Sputter into sample and etch chamber 

walls.  Also, Ni films thicker than 2 µm 

buckle and delaminate due to high 

compressive stress. 
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Table 4. Summary for Au-Au thermo-compression bonding  characteristics with Finetech flip-chip bonder. 

Bonding type Temperature and Force  Sample size 

Au-Au thermo-compression 

bonding 

To minimize p-mirror 

damage: 

1-275 ºC, 5 min (30 N/cm2) 

2- 200 ºC, 2 hr (300 N/cm2 

with graphite fixture) 

0.3x0.3 cm2 to 1.5x1.5 cm2 

 

 

 
 

(a) (b) 

Figure 3. SiC pillars can be completely removed from the surface if appropriate process controls are applied.  The image on 

the left (a) shows SiC pillars (40+ µm mircomasking defects) that can form during etching and that will not be completely 

etched even when the highly selective etch is subsequently applied.  The SiC pillars formation was suppressed as shown on the 

right (b) by an optimized etch and process controls: 1) Metal carrier wafers were avoided (fused silica carrier was employed).  

2) The carrier wafer and etch chamber were seasoned with SF6 plasma prior to etching. 
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(a) UV LED grown on SiC (b) wafer-to-wafer FC bonding (c) thinning and etching of SiC 

with selective SF6 plasma 

(d) TFFC LED singulation 

and KOH roughening 

  
(e) AFM image of the surface of exposed AlN surface as 

(roughness ~0.6 nm) after complete etching of SiC in step (c). 

 

(f) Cross-sectional SEM image of nano-sharp hexagonal 

pyramids that are produced after KOH roughening of N-face 

AlN in step (d). 

Figure 4. Process flow (a-d) demonstrate UV-C thin-film flip-chip (TFFC) grown on SiC and (e) shows AFM of exposed AlN 

surface after completing SiC growth substrate-removal in step (c).  The hexagonal pyramids shown in (f) expand the effective angle 

of the light-extraction-cones. Figure adapted, with permission, from Ref. [85]. 
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(a) Differential interference contrast (DIC) micrograph shows eight TFFC LEDs during an etch stop before the substrate is 

completely etched by the SF6 plasma.  In the top four LEDs, a thin layer of SiC remained. In the bottom four LEDs, no SiC 

remained and the N-face AlN was exposed.  The colorful fringes in the lower four LEDs were due to thinfilm interference. 

  
(b) Optical micrograph of UV-C TFFC LED (278 nm). (c) SEM image of a packaged UV-C TFFC LED (278 nm). 

Figure 5. Optical microscope micrographs of a processed thin film LED (5-finger topology) with no cracks or chipping in the 

active region in (a) and (b).  After dicing, the suspended AlN/AlGaN/n-AlGaN between the TFFC LEDs concave up due to 

residual tensile stresses in the AlN/AlGaN/n-AlGaN film which renders the n- and p- pads accessible as shown in (c). 
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(a) 278 nm LED structure on SiC.  The TDD was ~1x109 

cm-2 in the AlN buffer and AlGaN layers. 
(b) The light-current (L-I) curve before, and after KOH 

roughening.  The enhancement in the L-I slope KOH 

roughening was ~ 200%.  The area of the p-contact 

(Ni/Al/Ni/Au) was 0.093 mm2 ~0.1 mm2.  

  
(c) The voltage-current (I-V) curve before, and after KOH 

roughening, for a 298 nm TFFC LED. The inset shows a 

298 nm EL spectrum at 60 mA with FWHM of 12.7 nm. 

The area of the p-contact (Ni/Al/Ni/Au) was 0.013 mm2. 

(d) The voltage-current (I-V) curve before, and after KOH 

roughening, for the 278 nm TFFC LED. The inset shows a 

278.5 nm EL spectrum at 95 mA with FWHM of 10 nm. The 

DC power was 7.6 mW at 95 mA. 

Figure 6. TFFC LEDs demonstration had high LEE.  The LEE was enhanced significantly via KOH roughening  of the 

exposed N-face AlN layer of TFFC LED.  The L-I slope increased by ~3X with optimized KOH roughening without 

encapsulation, and despite using 5 nm p-GaN as p-contact layer.  
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