
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
GraphIVM : Accelerating Incremental View Maintenance through Non-relational Caching

Permalink
https://escholarship.org/uc/item/4vw5g1td

Author
Saxena, Gaurav

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vw5g1td
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

GraphIVM: Accelerating Incremental View Maintenance through

Non-relational Caching

A Thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Gaurav Saxena

Committee in charge:

Professor Yannis Papakonstantinou, Chair
Professor Alin Deutsch
Professor Victor Vianu

2015

Copyright

Gaurav Saxena, 2015

All rights reserved.

The Thesis of Gaurav Saxena is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2015

iii

DEDICATION

This work is dedicated to my wife Mugdha and my son Manasth,

in addition to my parents from whom I borrowed last two years

to engage in this endeavor. I wish to pay them back for this favor

now.

iv

EPIGRAPH

How do you eat an elephant?

One bite at a time

—Bill Hogan

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xi

Abstract of the Thesis . xii

Chapter 1 Introduction . 1

Chapter 2 Related Work . 10

Chapter 3 Problem Definition . 14
3.1 Diffs . 14
3.2 Problem Definition 15

3.2.1 Publish-Subscribe IVM 16
3.2.2 IVM in Data Warehousing 18

3.3 View Definition Language 18

Chapter 4 GraphIVM Architecture 20

Chapter 5 Join Graph . 23
5.1 SPJ Views . 24

5.1.1 Vertices and Vertex Values 27
5.1.2 Join Tuples 29
5.1.3 Projected Tuples 30
5.1.4 Join Graph 32

5.2 SPJAp Views . 35

vi

Chapter 6 GraphIVM . 38
6.1 Filtering Base Table Diffs 39
6.2 Maintaining the Join Graph 40

6.2.1 Maintaining the join graph for insert diffs . . . 42
6.2.2 Maintaining the join graph for delete diffs . . 42
6.2.3 Maintaining the join graph for update diffs . . 43

6.3 Generating View Diffs 44
6.4 Materializing the View 45
6.5 Indices . 46

Chapter 7 Optimizations . 53
7.1 Look-Ahead . 53
7.2 View-specific Compilation 56

Chapter 8 Alternative IVM Approaches 58
8.1 Classic IVM . 59
8.2 DBToaster . 60
8.3 Full Outer Join Table 61

Chapter 9 Experimental Evaluation 63
9.1 Compared Systems 63
9.2 Datasets . 67
9.3 Queries . 68
9.4 IVM of Simple Queries 69
9.5 Effect of varying parameters 75

9.5.1 Varying Fanout 75
9.5.2 Varying Number of Joins 79

9.6 Effect of Look-Ahead Optimization 82
9.7 Relative Performance of Different Types of Modifica-

tions to Join Graph 85
9.8 Performance of Materializing the View 87
9.9 Memory Requirements 89

Chapter 10 Future Work . 91
10.1 Improving Scalability 91
10.2 Extending the class of supported views 93

Chapter 11 Conclusion . 95

Bibliography . 96

vii

LIST OF FIGURES

Figure 1.1: Instance and corresponding join graph for view V : R ./ S ./
T (Example 4) . 6

Figure 3.1: Publish-Subscribe and Data Warehousing IVM 17

Figure 4.1: GraphIVM Architecture . 20

Figure 5.1: Schema and view definition for running example 24
Figure 5.2: Database and view instance for running example 25
Figure 5.3: Join graph for our running example 32
Figure 5.4: Hypergraph representation of the view RetweetCounter . . . 37

Figure 7.1: Example of how GraphIVM uses look-ahead to reduce the
size of intermediate results 54

Figure 8.1: Full outer join representation of the view Timeline 62

Figure 9.1: Schema of BSMA datasets 69
Figure 9.2: Size of each relation (in tuples) for the two BSMA datasets

used in the experiments . 69
Figure 9.3: IVM of simple queries (eager maintenance) 75
Figure 9.4: IVM of simple queries (lazy maintenance) 76
Figure 9.5: IVM performance for varying fanout 77
Figure 9.6: IVM performance for varying number of joins when increas-

ing join number leads to increased fanout (Query QJoin-
ChainLengthFollower) . 81

Figure 9.7: IVM performance for varying number of joins when increas-
ing join number leads to decreased fanout (Query QJoin-
ChainLengthRetweet) . 83

Figure 9.8: Effect of look-ahead optimization for varying number of joins
for queries QJoinChainLengthRetweet and QJoinChainLength-
Follower (Publish-subscribe scenario) 84

Figure 9.9: Performance of different types of modification to the join
graph of different queries 86

Figure 9.10: Time required to materialize (scan) the view that has re-
sulted from the varying fanout experiment 88

Figure 9.11: Memory requirements of GraphIVM and DBToaster for vary-
ing fanout and number of joins 90

viii

LIST OF TABLES

Table 9.1: Queries used in the experiments 70
Table 9.2: Queries used in the experiments 71
Table 9.3: Effect of number of joins on fanout for queries QJoinLength-

Follower and QJoinLengthRetweer 80
Table 9.4: Effect of number of joins on number of auxiliary views main-

tained by DBToaster for queries QJoinLengthFollower and
QJoinLengthRetweer . 82

ix

ACKNOWLEDGEMENTS

Several individuals played a crucial part in this thesis. To begin with

I would like to thank my advisor Yannis Papakonstantinou whom I came to

know from a paper ”Hypothetical Queries in OLAP Environment” in 2012 in

the course of my professional work. Later, when I join his research group, he

provided the initial motivation for this work and was instrumental in bringing

it to fruition. I would also like to thank my collaborator Yannis Katsis who

has always been my first stop for bouncing myriad of ideas, some of which have

made it here.

In addition, I would also like to thank Kian Win Ong, for being the

constructive critic of my work at every step. His keen insights on experiments

and his unassailable authority on postgres helped shape crucial parts of this

thesis. Furthermore, I would also like to thank my committee members Alin

Deutsch and Victor Vianu for their feedback and guidance. Last, but not the

least I would like to acknowledge my fellow students and all the professors who

gave me a solid foundation to build this work upon.

This work is currently being prepared for publication. Parts of all the

chapters will be included in the publication with co-authors Yannis Papakon-

stantinou and Yannis Katsis. The thesis author was the primary investigator

and author of this material.

x

VITA

2005 Dual Degree (5-years Master). in Chemical Engineering,
Indian Institute of Technology, Madras, India

2005-2006 IBM India Private Limited, Gurgaon, India

2006-2009 Headstrong, Noida, India

2009-2012 SCA Technologies, Gurgaon, India

2012-2013 Times Internet Limited, Gurgaon, India

2013-2014 Teaching Assistant and Graduate Student Re-
searcher, University of California, San Diego

2015 Master of Science, University of California, San Diego

xi

ABSTRACT OF THE THESIS

GraphIVM: Accelerating Incremental View Maintenance through
Non-relational Caching

by

Gaurav Saxena

Master of Science in Computer Science

University of California, San Diego, 2015

Professor Yannis Papakonstantinou, Chair

Incremental View Maintenance (IVM) is the process of incrementally

maintaining the view when the underlying data change. Given the high fre-

quency of data modifications in many practical scenarios, it is imperative that

an IVM approach is as efficient as possible. One technique commonly used to ac-

celerate IVM is the materialization of a set of additional auxiliary views, which

can be leveraged to speedup the maintenance of the original view. However,

xii

existing approaches assume that these auxiliary views are relational tables.

We argue that this assumption creates both space and time inefficien-

cies by introducing redundancies that would have been avoided if the auxiliary

views were stored in a non-relational format. Based on this observation, we

propose a novel non-relational auxiliary view, referred to as the join graph, and

a corresponding GraphIVM system, which leverages the join graph to acceler-

ate incremental view maintenance. The join graph, which intuitively represents

how tuples of the underlying database join with each other, is shown to be com-

pact and non-redundant, leading to an efficient IVM approach. This approach

also benefits from two additional optimizations, described in the thesis, that

allow it to further speedup the IVM process. Experiments of the GraphIVM

system against state of the art IVM approaches verify that in all cases, but ex-

tremely simple views, GraphIVM significantly outperforms state of the art IVM

approaches. More importantly, its speedup over other approaches increases as

the views become more complex (measured in terms of fanout and number of

joins).

xiii

Chapter 1

Introduction

Incremental View Maintenance (IVM) was originally introduced in the

80s [32, 5] to efficiently maintain materialized views when the underlying data

change. The original motivating use case was keeping materialized views in

data warehouses up to date. The following years saw a significant amount of

research on IVM, leading to more efficient and/or general IVM approaches. The

research interest in IVM subsequently declined as focus shifted away from data

warehousing.

Recently however companies and researchers regained interest in IVM

in the context of publish-subscribe architectures. Publish-subscribe platforms,

such as social networking platforms (e.g., Twitter, Facebook or Linkedin), rely

on technologies that enable the quick propagation of updates from the base

tables (e.g., people’s posts or comments) to query results (e.g, an addition of a

1

2

person’s post has to be quickly propagated on the timeline’s of his/her followers).

These are essentially IVM technologies with the difference that the IVM system

only needs to compute the updates to the view and not apply them to the latter,

as the view is not maintained by the IVM system itself but by the client (in this

case the social networking web-site).

More importantly, the publish-subscribe scenario places novel require-

ments on the performance characteristics of IVM approaches. In particular,

updates have to be propagated from the base tables to the view as quickly as

possible. For instance, twitter receives over 5700 tweets per second on average

and has a record of 143,000 tweets per second [1]. Each of these tweets has to

quickly reach several hundreds of users timeline on average [4] and thousands

in the worst case [7].

An approach that has been historically used to accelerate IVM is mate-

rializing additional auxiliary views that are used to speed up the computation

of view updates [15].

Example 1 Consider three tables R(A,B), S(B,C), and T (C,D) and a view

V : R ./ S ./ T computing their natural join. Now consider what happens

when a new tuple r is added to base table R. As the result of this insertion the

IVM system has to insert to the view all tuples computed through the following

expression: {r} ./ S ./ T 1. Previous approaches observed that this process

1The notation {r} is used to denote a relational instance composed of a single tuple r

3

repeatedly (for every newly added tuple r) evaluates (part of) the relational

expression S ./ T . To avoid this recomputation and accelerate the IVM process,

many IVM approaches materialize this subexpression as a new auxiliary view

VR : S ./ T . Computing the tuples to be inserted to the view then reduces to

computing {r} ./ VR.

However, the set of auxiliary views that need to be generated to speedup

IVM depends on the base tables that accept modifications.

Example 2 Continuing our example, while VR : S ./ T is useful in computing

view modifications resulting from changes to R, it is not useful for accelerating

the maintenance of the view resulting from changes to relation T . Following

similar reasoning to the one used to come up with the auxiliary view VR it can

be seen that the IVM of modifications to table T are best served instead by a

second auxiliary view VT : R ./ S.

Accommodating multiple base table changes thus leads to the generation

of multiple auxiliary views. This can very quickly lead to performance issues for

two main reasons: First, the auxiliary views need to be themselves maintained

whenever the base tables change. This view maintenance partially offsets the

performance benefits of creating auxiliary views in the first place. Second, these

auxiliary views typically contain redundant information, leading to a substantial

storage overhead.

4

Example 3 For instance, consider the views VR : S ./ T and VT : R ./ S

introduced above to speed up the computation of view updates resulting from

updates to base relations R and T , respectively. First, it is clear that when

a tuple r of table R is modified, the IVM system has to maintain not only the

original view V but also the auxiliary view VT . Similarly, changes to table S will

lead to maintenance of both VR and VT . This negatively affects the performance

of the IVM approach. Second, the auxiliary views VR and VT contain in general

redundant information, as they both contain a subset of relation S. In particular,

any s tuple of S that joins with R and T , will appear in both views Vr and Vt.

In this work, we argue that these inefficiencies of auxiliary views are a

byproduct of the assumption made by prior work that these auxiliary views

need to be relational tables. We show that by employing a single non-relational

auxiliary view, we can speed up the view update computation for updates on

any base table. This novel auxiliary view is guaranteed to be non-redundant,

containing each base table tuple at most once. This not only reduces the memory

footprint of the view compared to prior work, allowing it to scale to bigger data

sets but also allows for more efficient maintenance of the auxiliary view. Our

experiments (section 9.9) show that GraphIVM’s memory requirement is several

times lower than other approaches. In addition, it increases at a lower rate than

the number of tuples for increasing join chain length and at similar rate with

increasing fanout.

5

In a nutshell, this novel auxiliary view, referred to as the join graph is a

graph capturing how tuples of the relations involved in the view definition join

with each other. Leaving its formal presentation to chapter 5, we next explain

it through a simple example.

Example 4 Consider the instances of tables R, S and T shown in Figure 1.1a.

Figure 1.1b shows the join graph for the view V : R ./ S ./ T . Ovals (which

as we will see later) represent hyperedges correspond to tuples of the base tables

and the intersection of two tuples show that the tuples join with each other (i.e.,

they contain the same values for the attributes of the corresponding relations

that are used to join these two relations in the view). It is important to note

that each base table tuple appears at most once (in this case it is exactly once),

thus reduces the redundancy of the auxiliary view making it more efficient to

update it. Finally, please note that the join graph contains not only the base

table tuples that make it to the view, but even the tuples that join only with

tuples of a subset of relations mentioned in the view. For instance, tuple R(2, 2)

appears in the join graph even though it only joins with an S tuple (i.e., tuple

S(2, 2)) and not with a T tuple that would allow it to make it to the view. From

that perspective, the join graph can be intuitively used to compute both auxiliary

views VR and VT mentioned above without the associated redundancy.

We present GraphIVM; an IVM approach that utilizes the join graph to

accelerate incremental view maintenance and compare it to state of the art IVM

6

R

A B

1 1

2 2

S

B C

1 1

2 2

3 3

T

C D

1 1

1 2

3 3

(a) Database Instance

S(1,1)

R(1,1) T(1,1)

S(2,2)

R(2,2)

T(
1,
2)

S(3,3)

T(3,3)

(b) Join Graph

Figure 1.1: Instance and corresponding join graph for view V : R ./ S ./ T

(Example 4)

approaches. Experimental results show that in most common cases GraphIVM

significantly outperforms such IVM approaches.

Contributions. This work makes the following contributions:

• A novel graph-based, compressed, aggressively materialized auxiliary view

that can be used to speed up IVM. In contrast to other sets of auxiliary

views used in the IVM literature, this auxiliary view, referred to as the join

graph, achieves non-redundancy by storing each base table tuple at most

once. Additionally, the join graph contains enough information about the

underlying base data to guarantee that it is both self-maintainable (i.e.,

it can be maintained without having to access the base tables) and it can

be used to infer the view (so that there is no need to keep a separate copy

7

of the view).

• A novel IVM system, called GraphIVM, which leverages the concept of the

join graph to incrementally maintain a view in an efficient way. GraphIVM

has an architecture flexible enough to support both the data warehousing

and publish-subscribe scenarios.

• A novel join-graph specific optimization, called look-ahead that further in-

creases the performance of GraphIVM. To guarantee self-maintainability,

the join graph in general contains not only base table tuples that join

with each other but even base table tuples that are involved in partial

joins (i.e., in joins that cannot be yet extended to an entire tuple that

would appear in the view). However, when a base table tuple is modified,

GraphIVM has to follow such partial join paths, to check whether as a

result of this modification they may lead to new tuples in the view. The

look-ahead optimization accelerates this process by storing information in

the join graph, whether a join path is partial, so that GraphIVM avoids

following it.

• A second optimization, called view-specific compilation, that allows GraphIVM

to create view-specific maintenance code. Although this approach has

been already employed by state-of-the-art IVM approaches, such as DBToaster

[3], our work not only shows through experiments that this optimization

8

is applicable even in an IVM implementation based on an non-relational

auxiliary view but even explores the performance gain of code compilation,

comparing the GraphIVM system with and without this optimization.

• An experimental evaluation of GraphIVM against three alternative ap-

proaches: (a) traditional IVM without auxiliary views, (b) the DBToaster

system [3], which corresponds to the state of the art in IVM (employing

relational auxiliary views) and (c) an approach that keeps the same infor-

mation as GraphIVM but in a relational form. The experimental results

show that for everything but extremely simple queries GraphIVM outper-

forms all the above approaches and the performance difference increases

as the queries become more complex.

Thesis Outline. This thesis is structured as follows: We start by de-

scribing related work in Chapter 2. We then proceed by describing two defini-

tions of the IVM problem applicable to two different scenarios (publish-subscribe

and data warehousing) in Chapter 3. Chapter 4 outlines the architecture of

GraphIVM, which enables it to support both scenarios. The join graph - the

non-relational auxiliary view that stands behind GraphIVM’s efficiency - is de-

scribed in Chapter 5, the algorithms powering each of GraphIVM’s modules in

Chapter 6 and a list of optimizations that further improve the performance of

the system in Chapter 7. Chapter 8 presents alternative IVM approaches and

Chapter 9 describes the experimental results of comparing GraphIVM against

9

these alternatives. Finally, Chapters 10 and 11 present future work and conclude

the thesis respectively.

Chapter 2

Related Work

Incremental View Maintenance (IVM) has been extensively studied over

the past three decades, leading to a vast literature in the topic. Shimueli et.

al. [32] studied the problem of quickly applying updates to a materialized

view for acyclic database for Project-Join queries and introduced the algebraic

differencing technique. This was extended to SPJ class of views and multiple

views by Blakely et.al. [5]. The class of queries was further extended to include

outer join views [12] and recursive views [14]. Furthermore, Gouzhu et. al. have

discussed the issue of maintaining views which cannot be described in relational

calculus or SQL (like transitive closure) but can be maintained by these query

languages in a detailed survey [9]

We next describe in detail the IVM aspects encountered in prior work

that are closely related to our work on GraphIVM. For comprehensive surveys

10

11

on other aspects of IVM, the reader is referred to [13, 8].

Auxiliary Views in Query Answering. Auxiliary views have been

used in many settings in the database literature. First and foremost, they have

been used to accelerate query answering. By materializing an appropriate view,

one can improve the performance of a query or set of queries. Researchers have

looked not only at the problem of using such views when possible (a problem

known as answering queries using views)[18, 22], but also at the problem of

selecting which views to materialize. This problem, known as the view selection

problem [2, 15, 16, 17, 33, 30], usually appears with varying formulations based

on what is being optimized for. Common optimization goals in view selection

include among others reducing the query response time [33], limiting the storage

requirements [15] or reducing the view maintenance time [30, 16]. Apart from

general relational views, prior work in query optimization has also looked at

the problem of creating more specialized views that can be used by the query

optimizers to optimize query execution. A prime example of such a view are

join indices, used to optimize join evaluation [34]. The join index gave rise to

the idea of the full outer join auxiliary view, which we consider as an alternative

to GraphIVM and discuss it in Section 8.3.

Auxiliary Views in IVM. At a high-level of abstraction, any IVM

approach involves some form of query answering (in particular, a query which

operates on the changes that were performed on the base tables to produce the

12

changes that have to be applied to the view). As such, auxiliary view materi-

alization has also been applied to IVM approaches. IVM approaches typically

employ auxiliary views in two different ways: they either use operator-specific

views to accelerate the maintenance of particular relational algebra operators

(such as aggregation [27, 26] or top-k [37] operators) or they use general views

that are exploited holistically during the maintenance of the auxiliary view

[31, 24, 28, 3]. The join graph employed by GraphIVM falls under the second

category, as it is used to accelerate the maintenance of the entire view, which

may include among others join, projection and aggregation operators. However,

in contrast to previous approaches, to the best of our knowledge GraphIVM is

the first IVM approach to use a holistic non-relational view to accelerate IVM.

Query Compilation. Apart from views, another optimization that

has been recently suggested in the context of IVM is the generation of a view-

specific code for IVM. The idea of compiling a procedure into code has been

widely explored in the query execution literature. Many works explored the idea

of compiling query plans into code in order to speed up query evaluation. This

led to approaches that among others proposed the execution of queries through

iterative programs [10, 11], the conversion of SQL queries into query-specific

JVM code [29] and the translation of queries to native code that eliminates the

pipelining inherent in the DBMS-based query execution in favor of materializing

results [21]. This idea was applied to the IVM problem by the DBToaster [3]

13

system, which suggested the generation of view-specific maintenance code. In

this work we employ this optimization to further increase the performance of

GraphIVM, as we will discuss in chapter 7.

Chapter 3

Problem Definition

We next formally define the IVM problem. We start by defining the

diffs, which capture changes to the tables and then continue by defining the

IVM problem and the supported view definition language.

In this work we consider maintenance of relational views. We use capital

letters to represent relations (e.g., R, S, T) or attributes (e.g., A, B, C) with

the difference made clear from the context, small letters to represent attribute

values (e.g., a, b, c) and 〈a, b, c〉 to represent a tuple with attributes a, b, and c.

3.1 Diffs

Following the convention used by prior IVM works, modifications to a

relation (be it a base relation or a view) are represented through diffs. Let R

be a relation with attributes A1, A2, . . . , An. A diff δR for relation R is a tuple

14

15

representing the insertion, deletion or update of a single tuple in R and they are

respectively called insert, delete and update diffs. We next define these three

types of diffs:

Definition 1 Insert/Delete Diff. An insert/delete diff δ+
R/δ−R for relation

R(A1, A2, . . . , An) is a tuple δ+
R/δ−R = 〈a1, a2, . . . , an〉 representing the

insertion/deletion of the tuple 〈a1, a2, . . . , an〉 to/from R.

Definition 2 Update Diff. An update diff δuR for relation R(A1, A2, . . . , An)

is a tuple δuR =
〈
apre1 , apre2 , . . . , apren ; apost1 , apost2 , . . . , apostn

〉
representing the up-

date of the tuple 〈apre1 , apre2 , . . . , apren 〉 of R to
〈
apost1 , apost2 , . . . , apostn

〉
. The values

apre1 , apre2 , . . . , apren correspond to the values in the tuple before the modification

and are thus called pre-state values. Similarly, we refer to apost1 , apost2 , . . . , apostn

as the post-state values.

Let I be an instance of R and δR a diff for R. We denote by δR(I) the

instance of R generated by applying the modification represented by δR on the

relational instance I.

3.2 Problem Definition

As it has been implemented in data warehousing scenarios, incremental

view maintenance takes as input an insert/delete/update diff on the base table,

computes the corresponding view diffs that reflect the base table change and

16

finally applies them to the view. The updated view can then be accessed by

client queries as any other relation.

However, as discussed in the introduction, recently incremental view

maintenance has been revisited in the context of publish-subscribe systems.

In such systems, the view is materialized not in the database management sys-

tem (DBMS) but instead in the application layer (e.g., by the code of a social

networking web-site). Since the view maintenance is not done in the DBMS,

the IVM system simply needs to transform the base table diffs to view diffs,

which are then propagated to the client for processing.

We next formally define the IVM problem for each of these two scenarios.

Figures 3.1a and 3.1b graphically depicts the resulting definitions. Although

these definitions are very similar (differing essentially in whether the diffs are

applied to the view or not), as we will see in the experiments (Chapter 9),

different IVM approaches exhibit in general different performance characteristics

in each of the two scenarios.

3.2.1 Publish-Subscribe IVM

The structure of the IVM problem for publish-subscribe systems is shown

in Figure 3.1a. As shown in the Figure, in this scenario the clients maintain an

instance (or sub-instance) of the view and subscribe to changes in that view.

The IVM system then computes the changes in the view as view diffs and

17

DB

Pub-Sub
IVMBase

Table
Diffs

c1

⋮

c2

cn

Pu
sh

O
utputDiffs

(a) Publish-Subscribe IVM

DB

Data Warehouse
IVMBase

Table
Diffs

c1

⋮

c2

cn

M
at

er
ial

ize
d

View
 Tu

pl
es

(b) Data Warehousing IVM

Figure 3.1: Publish-Subscribe and Data Warehousing IVM

pushes them to the client. This use case is typically found in systems handling

maintenance of web views [19], real-time monitoring and continuous queries

[6, 23]. We next formally define the IVM problem for such systems:

Definition 3 Publish-Subscribe IVM. Let D be a database with relations

R1, R2, . . . , Rn, I a corresponding database instance and V a view over these

relations. Consider also an input diff δRi on some base relation Ri. IVM in

publish-subscribe systems is the problem of computing a set of view diffs δ̄V =

{δ1
V , δ

2
V , . . . , δ

m
V }, such that applying these diffs on the view has the same effect

as applying the input diff to the base table and then computing the view (i.e.,

δ̄V (V (I)) = V (δRi(I))).

18

3.2.2 IVM in Data Warehousing

In contrast to the publish-subscribe systems, where clients consume view

diffs produced by the IVM system, in data warehousing the IVM system also

applies these diffs to the view. The clients can then access the updated view as

any other database relation. Figure 3.1b shows the resulting IVM system. The

IVM problem in this case is defined as follows:

Definition 4 Data Warehousing IVM. Let D be a database with relations

R1, R2, . . . , Rn, I a corresponding database instance and V a view over these

relations. Consider also an input diff δRi on some base relations Ri. IVM in the

data warehousing-subscribe is the problem of (a) similarly to IVM in the publish-

subscribe scenario computing a set of view diffs δ̄V = {δ1
V , δ

2
V , . . . , δ

m
V } such that

applying the output diffs on the view has the same effect as applying the input

diff to the base table and then computing the view (i.e., δ̄V (V (I)) = V (δRi(I)))

and (b) applying those diffs on the view instance V (I).

3.3 View Definition Language

In this work we consider views that are formulated from a query language

containing most common Select-Project-Join queries with Aggregation. This

language, referred to as SPJAp, contains acyclic queries which can be expressed

using a relational algebra plan containing:

19

• Projection operators under bag semantics.

• Selection operators with arbitrary conditions (including equalities, in-

equalities and functions), s.t. a selection operator appears in the plan

directly over the scan of a base relation (which guarantees that each se-

lection operator operates on attributes coming from a single base table).

• Join operators with equality conditions.

• Aggregation operators through associative aggregate functions operating

over attributes of a single base table. Associative functions are those which

can be incrementally maintained using only their previous value and the

attribute values in the base table diffs. Examples of associative functions

include among others COUNT, SUM, and AVERAGE.

Chapter 4

GraphIVM Architecture

GraphIVM supports both the publish-subscribe and data warehousing

scenarios through the system architecture shown in Figure 4.1. Rounded boxes

correspond to modules of the system, while rectangles represent internal data

structures. GraphIVM employs a single internal data structure, denoted as

the join graph. We next explain the different modules used by GraphIVM in

detail:

DB

Base
Table
Diffs

Join
Graph

Base Table Diff
Filter

Join Graph
Modi�er

View Diff
Generator

View
Generator

Figure 4.1: GraphIVM Architecture

20

21

Base Table Diff Filter. The GraphIVM system takes as input diffs

representing modifications to the base tables 1. As a first step it filters out all

insert and delete diffs, which do not satisfy at least one of the selection con-

ditions of the view, as these diffs do not lead to changes in the view. Update

diffs are slightly more involved, since they contain both the old and new values

of a tuple and depending on whether these values satisfy or not the selection

conditions they may have to be converted to insert and delete diffs. We explain

this case and give a detailed description of the base table diff filtering algorithm

in Section 6.1. Note that this first filtering step is only possible because the

selection operators in SPJAp views can be pushed all the way down to the base

relations (and thus the selection conditions can be evaluated by looking only at

a single base table tuple).

Join Graph Maintainer. Diffs that made it through the base table diff

filter are given as input to the module responsible for maintaining the auxiliary

data structure employed by GraphIVM, known as the join graph. The structure

of the join graph is explained in Chapter 5 and the algorithm for maintaining

it on incoming diffs in Section 6.2.

1Base table diffs can be computed in different ways. The most common ways are database
triggers and modification logs. GraphIVM only requires base table diffs as input and is
agnostic of the specific method used to generate them. For more information on base table
diff generation, the interested reader can refer to previous work [20, 35].

22

The next two modules depend on the scenario in which GraphIVM is

applied.

View Diff Generator. In the publish-subscribe scenario, GraphIVM

employs the view diff generation module to create the view diffs that will be

pushed to the clients. View diffs are created by traversing the join graph, as we

will explain in Section 6.3.

Materialized View Generator. In the data warehousing scenario on

the other hand, GraphIVM needs to also maintain the view. However, as we

explained earlier, this view can be inferred from the - already updated -

join graph and thus GraphIVM refrains from maintaining it in a separate data

structure. Instead, whenever a client asks for the materialized view instance,

GraphIVM invokes the materialized view generation module, which traverses the

join graph to generate a relational representation of the view. The corresponding

view generation algorithm is described in Section 6.4.

Chapter 5

Join Graph

In this Chapter we define the join graph; the auxiliary data structure

used by GraphIVM to maintain the original view. How the join graph is used

to maintain the original view and how it is itself maintained is discussed in

Chapter 6.

To explain the presented notions we use a social networking example

inspired by Twitter as described next.

Example 5 Consider the schema of Figure 5.1a, containing four relations stor-

ing information about users and their followers, tweets and retweets. Consider

also the view RetweetTracker of Figure 5.1b tracking for each tweet that was

retweeted, who was the user that officially posted it and who retweeted it. We

will next explain the join graph by referring to a sample instance of this database

and to the corresponding view instance shown in Figure 5.2a and 5.2b, respec-

23

24

User(username, gender, country)

Follower(username, followername)

Tweet(username, tweet, date)

Retweet(retweeter, retweet, name, tweet)

(a) Schema

CREATE VIEW RetweetTracker AS

SELECT U.username, U.gender, U.country,

T.tweet, T.date, R.retweeter

FROM User U, Tweet T, Retweet R

WHERE U.username = T.username

AND T.tweet = R.tweet

(b) View definition

Figure 5.1: Schema and view definition for running example

tively.

Although the join graph supports the maintenance of any SPJApview,

for ease of exposition we present it in two stages: In the first stage we will

present the subset of the join graph that is used to maintain SPJ views and

then show how it can be extended to support arbitrary SPJApviews.

5.1 SPJ Views

As the name suggests, the join graph is a compact graph-based repre-

sentation of how tuples of relations involved in the view definition join with

each other. Intuitively, one can think of the join graph as a hypergraph whose

25

User

username gender country

joe male USA

bob male USA

alice female USA

cathy male Canada

Tweet
username tweet date

joe t1 2/2/15
joe t9 2/3/15

Follower
username followername

joe bob
joe alice

cathy bob
joe cathy
bob alice

cathy alice

Retweet (R2)

retweet username tweet

t2 bob t1

t3 bob t1

t4 alice t1

t6 bob t3

t7 alice t3

t8 alice t6

(a) Database instance

Retweet Tracker

username gender country tweet date retweeter

joe male USA t1 1/12015 alice

joe male USA t1 2/2/2015 bob

joe male USA t1 2/2/2015 bob

(b) View instance

Figure 5.2: Database and view instance for running example

vertices are tuple attribute values and whose hyperedges contain the vertices

corresponding to the attribute values contained in a base table tuple. Two hy-

peredges of different relations intersect when the corresponding base table tuples

join with each other (i.e., they share the same value for the join attributes). As

we will see though, to achieve compactness the actual join graph is slightly more

involved.

Capturing join attribute values through join tuples. Instead of

creating a distinct hyperedge for each base table tuple, the join graph further

26

compresses the data by creating a single hyperedge for all tuples of the same

relation that share the same join attribute values. This summarization is based

on the observation that all such tuples behave in the same way w.r.t. joins.

Since a hyperedge summarizes many base table tuples based on their behavior

w.r.t. joins, it is referred to as a join tuple.

Capturing projected attribute values through projected tuples.

However, join tuples only capture the values of the join attributes of base table

tuples. To be able to maintain the view, one needs to also capture the values

of the attributes that are projected by the view. To this end, join tuples are

annotated with a set of projected tuples, each containing the value of the pro-

jected attributes of one base table tuple. Thus the combination of a join tuple

and the set of attached projected tuples capture all information of interest for

all base table tuples that share the same values for the join attributes. The

values of non-projected and non-joined attributes are ignored, as they are not

of interest in maintaining the view.

Capturing join attributes through vertices. Finally, in order to

further compress the representation, join tuples of different tables that join

with each other do not contain distinct copies of the shared join attribute values.

Instead they share the same object representing this join attribute values. This

27

object is called a vertex value and corresponds to a node in the join graph.

We next formally define all the components of a join graph in a bottom-

up fashion.

5.1.1 Vertices and Vertex Values

Since the join graph represents how base table tuples join with each

other, the attributes on which different tables join with each other are central

for the approach. This concept of join attributes is formalized through the con-

cept of vertex defined below. For ease of exposition our subsequent discussion

assumes that each relation R appears only once in the FROM clause of the

query. However, all definitions can be easily extended to multiple aliases for a

single relation.

Definition 5 Vertex. Let V be a view and R, S two relations in V , which join

in V with each other on attributes Ā = {A1, A2, . . . , An} and B̄ = {B1, B2, . . . , Bn}

(i.e., V contains the join condition R.Ai = S.Bi,∀i ∈ {1, 2, . . . , n}). Then the〈
Ā, B̄

〉
containing the ordered list of join attributes of relation R and S as its

first and second component respectively constitutes a vertex for the join of R

and S and is denoted by JR,S. Given a vertex JR,S =
〈
Ā, B̄

〉
we will use the

notation JR,S.R (respectively JR,S.S) to represent the list Ā (resp., B̄) of join

attributes of R (resp., S) in the join of R and S.

28

In the following discussion we assume that for each view join between

relations R and S, we consider only one vertex, which could be either JR,S or

JS,R (the choice does not affect the following definitions).

Example 6 Consider the view definition of Figure 5.1b. Since the relations

User and Tweet join on attribute username, the join of these relations will be

represented by the vertex JUser,Tweet = 〈{User.username}, {Tweet.username}〉.

A particular instantiation of a vertex with values is called a vertex value.

A vertex value, which intuitively corresponds to a set of values for the set of

join attributes included in the vertex, is formally defined below:

Definition 6 Vertex Value. Given a vertex

JR,S = 〈{A1, A2, . . . , An}, {B1, B2, . . . , Bn}〉 for the join of relations R and S, a

value for vertex for JR,S is an ordered list of attribute values ā = {a1, a2, . . . , an},

such that each value ai is a valid value for attribute Āi of R and attribute B̄i of

S.

Given a tuple t of relation R (resp. S), the vertex value vv(t, JR,S)

corresponding to t for vertex JR,S is the ordered list of values {a1, a2, . . . , an},

s.t. ai (i = 1, 2, . . . n) is t’s value for attribute Ai.

Example 7 Continuing our example, consider the database instance shown in

Figure 5.2b. Let us focus for now on the first tuple of the User relation, which

we will denote by r1 = User(〈joe,male, USA〉). The vertex value for vertex

29

JUser,Tweet corresponding to tuple r1 is vv(r1, JUser,Tweet) = {joe}, since the

value of tuple r1 for the attribute on which the User and Tweet relations join

is “joe”.

A vertex value is central to the join graph’s compactness. As we will see

later , given an instance of a view V containing a join of relations R and S,

for the entire set of tuples of both R and S that join with each other (i.e., they

agree on the join attribute values), the corresponding join graph will contain

a single vertex value. This comes in contrast to a relational representation of

R ./ S, which would repeat the join attribute values.

5.1.2 Join Tuples

The join graph’s compactness is further achieved through the notion of

join tuples. As discussed above, a join tuple inferred from a base table tuple t

of relation R intuitively contains only the values of the join attributes of t and

it is used to represent all tuples of R that share the same join attribute values.

Since join attribute values are encoded as vertex values, a join tuple is a set of

vertex values. Formally:

Definition 7 Join Tuple. Let V be a view, R a relation in V and S1, S2, . . . , Sm

the set of relations R joins with in V . Then a join tuple of R is a tuple

〈j1, j2, . . . , jm〉, where ji, i = 1, . . . ,m is a vertex value for the vertex JR,Si.

30

Given a tuple t of relation R, the corresponding join tuple jt(t) is the

tuple 〈j1, j2, . . . , jm〉, where ji (i = 1, 2, . . . , n) is the vertex value vv(t, JR,Si)

corresponding to t for vertex JR,Si .

Example 8 Continuing our example, recall that the view contains a join be-

tween User and Tweet on the username and another join between Tweet and

Retweet on attribute tweet. Consider the first tuple r1 = User(〈joe,male, USA〉)

of relation User. The corresponding join tuple can be written as jt(r1) =

〈vv(r1, JUser,Tweet)〉 = 〈{joe}〉. Similarly, the join tuple corresponding to the

first Tweet tuple r2 = Tweet(〈joe, t1, 2/2/15〉) is

jt(r1) = 〈vv(r1, JUser,Tweet), vv(r1, JTweet,Retweet)〉 = 〈{joe}, {t1}〉.

5.1.3 Projected Tuples

As discussed earlier, join tuples succinctly represent the join attribute

values of base table tuples. However, they do not capture the values of the base

table tuples for the attributes of the base relation that are projected by the

view. This is captured by the concept of projected tuples, defined below.

Definition 8 Projected Tuple. Consider a view V and a relation R men-

tioned in V . Let P̄ = {P1, P2, . . . , Pn} be an ordered list of the set of attributes

of R that appear in the projection list of V . Then a projected tuple for rela-

tion R is a tuple 〈p1, p2, . . . , pn〉, s.t. each pi, i = 1, 2, . . . , n is a valid value

31

for attribute Pi. Each projected tuple has also an associated natural number c,

referred to as the count of the projected tuple.

Given a tuple t of relation R, the corresponding projected tuple pt(t) is

the tuple 〈a1, a2, . . . , an〉, where ai is t’s value for attribute Pi. The projected

tuple’s count is in this case 1.

The count of a projected tuple signifies how many base table tuples

that have the same projected attribute values are summarized by the particular

projected tuple.

In the join graph, a projected tuple is always associated with a particular

join tuple.

Example 9 In our running example the attributes of relation User that are

projected in the view are username, gender and country. Therefore the projected

tuple corresponding to the User tuple r1 = User(〈joe,male, USA〉) is pt(r1) =

〈joe,male, USA〉. Notice that the projected tuple includes username joe even

though it is already included in the join tuple (as it is also an attribute involved

in a join). Similarly, for the Tweet tuple r2 = Tweet(〈joe, t1, 2/2/15〉) the

corresponding projected tuple is pt(r2) = 〈t1, 2/2/15〉.

32

joe t1

joe, male, USA

2/2/15

bob alice

2

charlie

User

Tweetalice t9

alice, female, USA

2/3/15

bob

bob, male, USA

cathy

cathy, female, USA

t3

bobalice

t6

charlie

User Re-
tweet

User User
Re-
tweet

Re-
tweet

Tweet

Complete Path Partial Path

Figure 5.3: Join graph for our running example

5.1.4 Join Graph

A join graph uses a set of vertex values, join tuples created using these

vertex values and projected tuples attached to these join tuples to represent a

database instance. Formally:

Definition 9 Join Graph. A join graph 〈d〉 consists of a set of vertex values

VV, a set of join tuples J containing vertex values in VV and a set of projected

tuples P, each attached to a join tuple in J .

For a given view and database instance, GraphIVM maintains the corre-

sponding join graph. Consider a databaseD consisting of relationsR1, R2, . . . , Rn,

a view V over D and a database instance I. The join graph for I w.r.t. V is a

join graph 〈VV ,J ,P〉, s.t.:

• VV contains for each vertex JRi,Rj and for each set of tuples t̄ of Ri (resp.

Rj) that share the same values for attributes in JRi,Rj .Ri (resp. JRi,Rj .Ri),

a single vertex value vv(t, JRi,Rj), where t is an arbitrary tuple in t̄.

33

• J contains for each set of tuples t̄ of relation Ri (i = 1, 2, . . . , n) that

share the same join attribute values a single join tuple jt(t), where t is an

arbitrary tuple in t̄. The join tuples are constructed using vertex values

in VV .

• P contains for each set t̄ of tuples of relation Ri (i = 1, 2, . . . , n) that share

the same join attribute and projected attribute values a single projected

tuple pt(t) where t is an arbitrary tuple in t̄. This projected tuple is

attached to the tuple jt(t) ∈ J with count equal to the number of tuples

in t̄.

We next present an example of a join graph and explain the graphical

notation that we use to represent join graphs.

Example 10 Figure 5.3 shows the graphical representation of the join graph

for the database instance of our running example (Figure fig:SchemaInstance)

w.r.t. to the RetweetTracker view. Join tuples are graphically depicted as ovals.

The relation corresponding to the join tuple is shown in the middle of the oval,

while the vertex values contained in it are shown in its corners. For instance the

leftmost oval graphically depicts a join tuple of relation User with vertex value

{joe}. Similarly the oval with which this oval intersects corresponds to a join

tuple of relation Tweet with two vertex values {joe} and {t1}. Projected tuples

are shown as rectangles connected to the join tuple to which they are attached.

For instance, there is a single projected tuple 〈joe,male, USA〉 attached to the

34

leftmost join tuple. If a projected tuple has count 1, then this is omitted from

the graphical representation; otherwise it is shown in a circle connected to the

projected tuple. For instance the projected tuple 〈bob〉 has count of 2. Finally, by

looking at the graphical representation of the join graph, it is obvious that through

the concepts of join tuples, projected tuples and vertex values, it is a compact

representation showing how the tuples of the underlying database instance join

with each other.

A central concept in the join graph is the concept of a path. Intuitively

a path in a join graph corresponds to a set of join tuples of different relations,

such that for each pair of join tuples in the set, one join tuple is “connected”

to the other through other join tuples in the set. Formally:

Definition 10 Path. Let 〈VV ,J ,P〉 be a join graph and P = {j1, j2, . . . , jn} ⊆

J a set of join tuples of this graph. This set is called a path iff the following

two conditions hold:

• No join tuples in P correspond to the same relation.

• For every pair of join tuples k1, km ∈ P there exists a set {k1, k2, . . . , km} ⊆

P such that ki and ki+1 (i = 1, . . . ,m− 1) share a common vertex value.

Example 11 The set of three join tuples within the leftmost dashed box in

Figure 5.3 form a path.

35

We distinguish between two types of paths: a complete path, which in-

cludes join tuples of every relation mentioned in the view and a partial path,

which does not include join tuples of at least one relation in the view.

Example 12 Figure 5.3 contains two dashed boxes, denoting a complete and

partial path. The path corresponding to the rightmost box is partial because it is

missing a join tuple of relation Retweet, which is mentioned in the view.

As we will see in Chapter 6, paths in a join graph form the underpinnings

of the IVM algorithm used by GraphIVM.

5.2 SPJAp Views

If a view contains also aggregations, we could maintain it by keeping the

join graph for the non-aggregated (i.e., SPJ) sub-expression of the view and

then treat the aggregation as an additional post-processing step during view

maintenance. However, this approach would in general introduce unnecessary

overhead, as the join graph would be maintaining more information than is

necessary for the efficient maintenance of the view.

To avoid this problem, we extend the join graph to keep information on

aggregated values. In the following discussion we assume that it is possible to

push aggregation operators in the relational algebra representation of the view

down to single relations (if an aggregation cannot be pushed down or can be

36

pushed down only partially, the aggregation operator that cannot be pushed

down to individual relations will be considered by the maintenance algorithm

as additional post-processing that has to be carried out after the processing of

the join graph).

Consider a view V mentioning relation R and an aggregate operator γḠ;f̄ ,

where Ḡ is a set of group by attributes and f̄ a set of associative aggregation

functions. Assume also that in the relational algebra representation of the view

γḠ;f̄ has been pushed down on top of relation R 1. To create the join graph for

an instance w.r.t. V , γḠ;f̄ (R) is considered as a base relation. However, when it

comes to creating projected tuples, instead of creating regular projected tuples,

we will have to create extended projected tuples that capture also information on

the aggregation. We next formally define the notion of the extended projected

tuple.

Definition 11 Extended Projected Tuple. Consider a view V and the op-

erator γḠ;f̄ pushed down to R in the relational algebra representation of V . Then

an extended projected tuple for R is a tuple 〈ḡ, ā〉, where ḡ are valid attribute

values for the respective attributes in Ḡ and ā are valid output values for the

respective aggregation function f̄ . Each extended projected tuple has also an

associated natural number c, referred to as the count of the extended projected

tuple.

1This approach can be easily extended to the case where a selection exists between the
aggregate operator and the scan operator.

37

joe t1

1

4 4joe

1

User

Tweet

Re-
tweet

Figure 5.4: Hypergraph representation of the view RetweetCounter

The count of an extended projected tuples intuitively represents the num-

ber of base table tuples that were aggregated to produce the extended projected

tuple. The following example illustrates this concept:

Example 13 Consider the schema of our running example shown in Figure

5.1a and the following aggregated version TweetReachCounter of the view of

our running example:

SELECT U.username, count(R.tweet)

FROM User U, Tweet T, Retweet R

WHERE U.username = T.username

AND T.tweet = R.tweet

GROUP BY U.username

Figure 5.4 shows a part of the join graph corresponding to this view. The

Retweet join tuple has an attached extended projected tuple that has the value 4

for the aggregate function COUNT and an associated count of 4 (since 4 base

tuples were aggregated to produce this extended projected tuple).

Chapter 6

GraphIVM

Having defined the join graph, we can now describe the inner workings of

each of the GraphIVM modules shown in Figure 4.1. As explained in Chapter

4, GraphIVM incrementally propagates base table diffs to a view V by follow-

ing the following three major steps: (a) Filtering out base table diffs that do

not satisfy the selection conditions of V , (b) applying the diffs that made it

through the filtering step to the join graph, and (c) depending on the scenario

(publish-subscribe vs datawarehousing) using the join graph to either create

corresponding view diffs sent to the clients of the system or generating the en-

tire materialized view when a client requests the latter. We next describe each

of these steps.

38

39

6.1 Filtering Base Table Diffs

As described above , GraphIVM only reflects in the join graph those base

table tuples that satisfy the selection conditions of the view. Thus, when a new

base table diff δR for relation R arrives, GraphIVM first runs it through a filter

to check whether it satisfies the selection conditions on R placed by the view.

Depending on whether the diff satisfies the selection conditions, GraphIVM

either propagates it to the next module or simply discards it.

Algorithm 1 shows the filtering procedure. We distinguish three cases,

depending on the type of the base table diff. For our subsequent discussion,

let V be a view mentioning relation R, δR a diff on R and S a set of selection

conditions placed by V on R.

Filtering insert diffs. If δR is an insert diff (lines 1-4 of Algorithm 1)

and it does not satisfy at least one of the selection conditions in S, then the

modification represented by the diff does not need to be reflected in the join

graph and thus the diff is simply discarded.

Filtering delete diffs. Similarly, if δR is a delete diff (lines 5-8) and

does not satisfy some selection condition in S, then it is also discarded, as

the diff represents the deletion of a tuple that does not satisfy the selection

conditions and thus is not included in the join graph to begin with.

Filtering update diffs. The most interesting case is when δR is an

update diff (lines 9-26). In that case, the diff may represent the update of a

40

tuple that was not in the join graph (because it did not satisfy some selection

conditions before the update) but should be included now (because the updated

values satisfy all selection conditions). If this is the case (lines 22-24), the update

diff δR is converted to an insert diff by keeping only the post-state values of the

initial update diff. Similarly an update diff may be converted to a delete diff

(when the pre-state values satisfy the conditions but the post-state values do

not, as shown in lines 19-21), simply propagated as an update diff (when both

pre-state and post-state values satisfy the conditions, as shown in lines 17-18)

or simply discarded (when both pre-state and post-state values do not satisfy

the conditions, as shown in lines 25-26).

Note that this filtering procedure is only possible because each selection

condition in in SPJAp views refers to attributes of a single relation at a time.

6.2 Maintaining the Join Graph

A diff produced by the base table diff filter corresponds to a modification

that should be reflected in the join graph to bring it up to sync with the base

data. This is accomplished by the join graph maintenance module, which uses

three different maintenance algorithms depending on the type of the incoming

diff (i.e., insert, delete or update).

The input to the join graph maintenance algorithms is a base table diff

(δtR) where t is the type of diff and R is the corresponding base table. Given

41

this input diff δtR, the join graph maintenance algorithm modifies the join graph

to reflect δtR and also outputs information on what changes it made to the

join graph. This information, denoted as join graph modification will be later

consumed by the view diff generator algorithm to create the resulting view diffs.

Before describing the join graph maintenance algorithms, let us first

define the set of possible join graph modifications, which these algorithms may

produce:

Definition 12 Join Graph Modification. A modification of join graph

〈VV ,J ,P〉 can be one of the following:

• Insert modification: ins(j, p̄), representing the insertion of a join tuple j

to J with attached projection tuples p̄.

• Delete modification: del(j, p̄), representing the deletion of the join tuple

j ∈ J , where p̄ ⊆ P is a subset of the projected tuples attached to j.

• Update modification: upd(j, ppre, ppost), representing the update of the join

tuple’s j ∈ J projected value ppre to ppost.

We can now describe the join graph maintenance algorithms for each

type of base table diffs. During the following discussion on the algorithms

please note that all algorithms also maintain the “look-ahead”; an additional

piece of information attached to join tuples to further improve the performance

42

of performing IVM. We discuss look-ahead in detail in the optimization section

(Section 7.1).

6.2.1 Maintaining the join graph for insert diffs

An insert diff δ+
R for relation R may result in modifications of either

projected tuples or join tuples in the join graph.

Let t be the newly inserted R tuple described by the diff. If the join tuple

jt(t) corresponding to t already exists in the join graph (i.e., t has the same join

attribute values as another tuple of R represented in the join graph), then the

algorithm has to either add a new projected tuple pt(t) to the join graph and

attach it to jt(t) if pt(t) does not already exist, or increment the count of pt(t)

by one if p(t) already exists in the join graph.

On the other hand, if jt(t) does not already exist in the join graph, jt(t)

together with pt(t) have to be added to the join graph. The creation of jt(t)

may also lead to the generation of new vertex values in the graph. This resulting

algorithm is Algorithm 2.

6.2.2 Maintaining the join graph for delete diffs

A delete diff represents the deletion of a base table tuple. The join

graph maintenance algorithm reflects this deletion in the join graph by finding

the corresponding projected tuple and reducing its count by one. However,

43

this deletion can lead to deletion of up to three types of objects in the graph;

projected tuples, join tuples and vertex values.

If the count of the projected tuple becomes zero, then the projected tuple

has to be removed from the join graph and from the join tuple to which it is

attached. If this leads to the join tuple having zero attached projected tuples,

then the join tuple has to be removed as well. Finally, if due to the deletion of

the join tuple some vertex value ends up not being contained in any join tuple,

this vertex value has to be also removed from the join graph. The resulting

algorithm is Algorithm 3.

6.2.3 Maintaining the join graph for update diffs

An update base table diff δuR may lead to changes to both join tuples and

projected tuples, based on the attributes of the corresponding base table tuple

that are updated. Algorithm 4 shows the procedure followed by GraphIVM to

reflect an update diff in the join graph.

Let δuR be an update diff for relation R describing the update of tuple tpre

of R to tpost. If the diff describes the update of values of projected attributes

(lines 1-11 of the algorithm), then the system increases the count of the new

projected tuple pt(tpost) by one and decreases the count of the old projected

tuple pt(tpre) by one. Special cases are handled as expected. For instance, if the

new projected tuple does not already exist, it is created and if the old projected

44

tuple ends up having count equal to zero, it is removed.

If the diff describes the update of values of join tuples (lines 12-29), then

GraphIVM moves the projected tuples attached to the old join tuple jt(tpre) to

the new join tuple jt(tpost).

6.3 Generating View Diffs

The join graph maintenance algorithm brings the join graph in sync with

the base tables. Then, depending on the IVM scenario, GraphIVM activates

different modules. In the case of a publish-subscribe scenario, GraphIVM should

create the view diffs representing the modifications that have to be applied to

the view and ship them to the clients that are listening for diffs. To this end,

it invokes the view diff generation module, which creates the view diffs by us-

ing the join graph together with the information on which join and projected

tuples were modified by the join graph maintenance algorithm. We next de-

scribe this algorithm, leaving the discussion of the module activated in the data

warehousing scenario for the next section.

Given a modified join tuple j or projected tuple p of j in the join graph,

the view tuples that have to be modified are all tuples corresponding to complete

paths including j. To find all such paths, the view diff generation algorithm

starts from the modified join tuple j and explores the entire graph by visiting

45

neighboring join tuples1 in a Breadth-First-Search (BFS) fashion. Once a com-

plete path is found, the algorithm appropriately combines the projected tuples

of the join tuples included in the path to create entire view tuples that have to

be inserted, deleted or updated in the view.

Algorithm 5 summarizes the resulting procedure, which is split into three

subprocedures depending on the graph of join graph modification (insert, delete

or update) that lead to invocation of the the view diff generation module.

6.4 Materializing the View

While in the publish-subscribe scenario GraphIVM has to produce view

diffs, in the data warehousing scenario GraphIVM this is not required. In this

case the IVM process is completed after the system maintains the join graph as

explained in Section 6.2.

However, in this data warehousing scenario, a client may at some point

in time request a copy of the materialized view in relational form. As we have

discussed above, GraphIVM does not explicitly maintain the view in relational

form. Instead it captures all information that is needed to recreate the view in

the join graph and can recreate on demand such a relational representation of

the view. The view intuitively corresponds to all tuples that can be created from

complete paths in the join graph. Thus, in order to create such a view, it suffices

1Given a pair of join tuples j and j′ of different relations, they are said to be neighboring
tuples if and only if they share the same vertex value

46

to pick an arbitrary relation R mentioned in the view and run sub-routine

tupleGeneratorForInsDel of Algorithm 5 for every join tuple of R. Algorithm 6

outlines the resulting procedure.

6.5 Indices

All algorithms presented above rely on the ability to quickly find a

join tuple, projected tuple and vertex value. To ensure that this is the case,

GraphIVM employs the following three indices; one for each of the above con-

cepts:

• Join tuple index: Given a set of join attribute values, the index returns

the join tuple that contains all these join attribute values.

• Projected tuple index: Given a join tuple j and an ordered list ā of at-

tribute values, the index returns the projected tuple p of j, which consists

of values ā.

• Vertex value index: Given a vertex JR,S and an ordered list of attribute

values ā, the index return the vertex value for JR,S that contains the values

ā.

47

Data: (a) Base table diff δR for relation R,

(b) Set S of selection conditions on R

Result: Diff δ′R for table R or nothing (∅)
1 if δR is an insert diff (i.e., δR = δ+

R) then

2 foreach selection condition s in S do

3 if values of δ+
R do not satisfy s then

4 return ∅
end

end

return δ+
R

end

5 if δR is a delete diff (i.e., δR = δ−R) then

6 foreach selection condition s in S do

7 if values of δ−R do not satisfy s then

8 return ∅
end

end

return δ−R
end

9 if δR is an update diff (i.e., δR = δuR) then

10 preSatisfySelect = true

11 postSatisfySelect = true

12 foreach selection condition s in S do

13 if pre-state values of δuR do not satisfy s then

14 preSatisfySelect = false

end

15 if post-state values of δuR do not satisfy s then

16 postSatisfySelect = false

end

end

17 if preSatisfySelect and postSatisfySelect then

18 return δuR

end

19 if preSatisfySelect and not postSatisfySelect then

20 Convert δuR to delete diff δ−R by keeping pre-state values only

21 return δ−R

end

22 if not preSatisfySelect and postSatisfySelect then

23 Convert δuR to insert diff δ+
R by keeping post-state values only

24 return δ+
R

end

25 if not preSatisfySelect and not postSatisfySelect then

26 return ∅
end

end

Algorithm 1: Base Table Diff Filtering

48

Data: (a) Insert base table diff δ+
R for relation R,

describing the insertion of tuple t

(b) Join graph 〈VV,J ,P〉
Result: Set of join graph modifications

1 if jt(t) ∈ J then

2 if pt(t) ∈ P then

3 Increment count of pt(t) by 1

else

4 Add pt(t) to P with count 1

5 Add pt(t) to list of projected tuples in jt(t)

end

6 if pt(t) contains an aggregated attribute then

7 Re-calculate aggregate value

end

else

8 Find or create, if absent, vertex values vv from δ+
R

9 Add jt(t) to J
10 foreach vertex value v in vv do

11 if v 6∈ VV then

12 Insert v to VV
end

13 Insert jt(t) to v

14 Update local look-ahead of all join tuples in v

15 if pt(t) contains an aggregated attribute then

16 calculate aggregate value

end

end

end

17 return {ins(jt(t), {pt(t)})}
Algorithm 2: Join Graph Maintenance for Insert Diffs

49

Data: (a) Delete base table diff δ−R for relation R,

describing the deletion of tuple t

(b) Join graph 〈VV,J ,P〉
Result: Set of join graph modifications

1 if pt(t) contains an aggregated value then

2 Re-calculate Aggregated value

end

3 Reduce the count of pt(t) by 1

4 if count of instances of pt(t) = 0 then

5 Remove pt(t) from jt(t)

6 Remove pt(t) from P

end

7 if number of projected tuples in jt(t) = 0 then

8 foreach vertex value v in vertex values of jt(t) do

9 Remove jt(t) from v

10 if v contains no join tuple then

11 Remove v from VV
12 Update local look-ahead of all join tuples in v

end

end

end

13 return {del(jt(t), {pt(t)})}
Algorithm 3: Join Graph Maintenance for Delete Diffs

50

Data: (a) Update base table diff δuR for relation R,

describing the update of tuple tpre to tpost

(b) Join graph 〈VV,J ,P〉
Result: Set of join graph modifications

1 if δuR updates projected attributes then

2 Find new projected tuple pt(tpost)

3 if pt(tpost) ∈ P then

4 Increment count of pt(tpost) by 1

else

5 Add pt(tpost) to P with count 1

6 Add pt(tpost) to jt(tpre)

end

7 Find old projected tuple pt(tpre)

8 if count of pt(tpre) > 1 then

9 Reduce count of pt(tpre) by 1

else

10 Remove pt(tpre) from jt(tpre)

11 Remove pt(tpre) from P

end

end

p̄ = all projected tuples of jt(tpre)

12 if δuR updates join attributes then

13 Find old join tuple jt(tpre)

14 Find old vertex values oldV V from tpre

15 foreach vertex value v ∈ oldV V do

16 Remove jt(tpre) from v

17 if v contains no join tuples then

18 remove v from VV
end

end

19 if If jt(tpost) doesn’t exists then

20 Add jt(tpost) to J
21 Update local look ahead for jt(tpost)

end

22 copy p to jt(tpost)

23 Find or create new vertex values newV V from jt(tpost)

24 foreach vertex value v ∈ newV V do

25 Add jt(tpost) to v

26 if v 6∈ VV then

27 Add v to VV
end

end

28 Remove jt(tpre) from J
29 return {del(jt(tpre), p̄)}, {ins(jt(tpost), p̄)}

else

30 return {upd(jt(t), pt(tpre), pt(tpost))}
end

Algorithm 4: Join Graph Maintenance for Update Diffs

51

Data: (a) Set of join graph modifications S

(b) Join graph 〈VV,J ,P〉
Result: Set of view diffs ∆

1 foreach s ∈ S do

2 if s is an insert join graph modification then

3 t = tupleGeneratorForInsDel(s(j), s(p̄))

4 Convert t to δ+
V

and add to ∆

end

5 if s is a delete join graph modification then

6 t = tupleGeneratorForInsDel(s(j), s(p̄))

7 Convert t to δ−
V

and add to ∆

end

8 if s is a update join graph modification then
t = tupleGeneratorForUpdates(s(j), s(p̄))

9 Convert t to δuV and add to ∆

end

10 return ∆

end

Procedure tupleGeneratorForInsDel(j, p̄, 〈VV,J ,P〉)
11 Starting from j, visit join tuples in J reachable from j in BFS fashion considering complete paths only

12 C be a relation with schema identical to the view

13 foreach complete path discovered by BFS do

14 Add to C, the cartesian product of p̄ and the projected tuples, for all the join tuples on path

except j

end

15 A = aggregator(C)

16 return A

Procedure tupleGeneratorForUpdates(j, ppre, ppost, 〈VV,J ,P〉)
17 Starting from j, visit join tuples in J reachable from j in BFS fashion considering complete paths only

18 C be a relation with schema identical to the view

19 foreach complete path discovered by BFS do

20 Add to C the cartesian product of the projected tuples, for all the join tuples on path except j

end

21 A = aggregator(C)

22 A = tpre × A; tpost × A
23 return A

Procedure aggregator(C)

24 foreach tuple t in C do
tf = Multiply counts of projected tuples

25 if view is aggregated then

26 foreach aggregated value v in t do

27 v = v × tf
end

28 A = group C on group by attributes and compute new aggregated values

else

29 A = Repeat each tuple t in C tf times

end

end

30 return A

Algorithm 5: View Diff Generation

52

Data: (a) 〈j, p〉, where j and p the modified join

and projected tuple, resp.

(b) Join graph 〈VV,J ,P〉
Result: View Instance as bag of tuples

1 Arbitrarily choose a relation R of the view

2 foreach join tuple j ∈ J of R do

3 p̄ = projected tuples associated with j4 tupleGeneratorForInsDel(j, p̄)

end

5 return v-diff

Algorithm 6: Materialized View Generation

Chapter 7

Optimizations

We next present two optimizations that can be applied to GraphIVM

to further increase its performance. The first optimization, referred to as look-

ahead accelerates the view diff generation and view materialization process by

adding to the join graph information on which partial paths can be extended

to complete paths. The second optimization consists in replacing the general

algorithms presented in Chapter 6 with code specifically crafted for a particular

view; a process referred to as view-specific compilation.

7.1 Look-Ahead

Both the view diff generation and view materialization algorithms rely

on finding all complete paths that contain a particular join tuple j. Currently

both algorithm find these complete paths by iteratively exploring all partial

53

54

Tweet (T)
username tweet date

joe t1 2/2/15
joe t9 2/3/15

Retweet (R1)

retweet username tweet

t2 bob t1

t3 cathy t1

t4 alice t1

t6 bob t3

t7 alice t3

t8 alice t6

Retweet (R2)

retweet username tweet

t2 bob t1

t3 cathy t1

t4 alice t1

t6 cathy t3

t7 alice t3

t8 alice t6

username followername

bob alice

∂
Follower(F)
+

Figure 7.1: Example of how GraphIVM uses look-ahead to reduce the size of

intermediate results

paths containing j and trying to extend them to a complete path. To accelerate

this process, we introduce the concept of the look-ahead ; a flag attached to a

join tuple, signifying whether the join tuple is part of a complete path.

We differentiate between two variants of the look-ahead; the local look-

ahead (LLA) and the global look-ahead (GLA). Given a join tuple j, its local

look-ahead specifies whether j shares each of its vertex values with other join

tuples. Thus the local look-ahead allows the algorithm to infer whether a partial

join path containing only this join tuple can be extended in all directions by one

join tuple. On the other hand the global look-ahead of a join tuple j specifies

whether j is member of a complete path.

The look-ahead information can be used to quickly prune partial paths

that cannot be extended to complete paths. We next illustrate this through an

example:

Example 14 Look-Ahead. Consider the following view TweetReach, which

tracks the users to which a second degree tweet can reach:

55

CREATE VIEW TweetReach as

SELECT T.username, T.tweet, F.user

FROM Tweet T, Retweet R1, Retweet R2, Follower F

WHERE T.tweet = R1.tweet

AND R1.tweet = R2.tweet

AND R2.username = F.username

Consider a base table diff δ+
F (〈bob, charlie〉) for relation Follower. To

create the view diffs corresponding to this base table diff, the view diff genera-

tion algorithm will start a BFS from δ+
F , trying to find all complete paths that

contain it. Figure 7.1 graphically depicts this search. As a first step it consid-

ers tuple r1 = R2(〈t4, charlie, t1〉). Without look-ahead information, the view

diff generation algorithm will have to include r1 in the intermediate join result.

However, querying the join tuple jt(r1, JR2,F) = {〈t4〉 , 〈t1〉} for its LLA will

reveal that it is not further connected and the view diff generation algorithm will

safely ignore r1 thereby reducing the intermediate join result size. Let us now

consider the tuple r2 = R2(〈t8, charlie, t6〉). Its local look-ahead is not very

informative, since r2 is connected to r3 = R1(〈t7, charlie, T3〉). Thus in the

presence of only LLA the algorithm would have to consider r2 only to disqualify

it when it reaches r3 (which is not connected further). However, in the presence

of GLA the fact that r2 cannot lead to a complete path can be deduced simply

by querying the GLA of the join tuple jt′(r2, JR2,F) = {〈t8〉 , 〈t6〉}. Since jt′ is

not a part of any complete path, therefore r2 can be ignored as well.

Maintenance of local and global look-ahead. The astute reader

56

may be wondering how these look-aheads are maintained when the join graph

is updated. Since the LLA is based on knowledge only of the neighbors of a join

tuple, it can be maintained eagerly by the join graph maintenance algorithm

while processing a base table diff.

On the other hand, since the GLA of a join tuple j is based on a more

global knowledge of the existence of complete paths containing j, its mainte-

nance would require traversing the graph. To avoid paying the cost of this

traversal every time the join graph is updated, GraphIVM allows GLA informa-

tion to be partially invalidated after changes to the join graph. The GLA of a

join tuple will again be made consistent whenever the particular tuple is visited

by the graph traversal algorithm (either as part of the the view diff generation

algorithm or as part of the view materialization algorithm). This allows the

lazy maintenance of GLA information with negligible cost.

GraphIVM is executed by default with GLA enabled, as our experimental

results presented in Section 9.6 have shown that GLA can have a profound

positive impact in the performance of the system.

7.2 View-specific Compilation

There are in general two ways of coding an IVM approach. The first

approach consists in writing a system containing generic code that can maintain

any view. The second approach consists in writing a system which takes the view

57

as input and generates view-specific maintenance code. The second approach,

which we call view-specific compilation has been shown to perform significantly

better than the non-compiled approach in prior work [25, 3].

Based on these observations, we built in addition to the generic GraphIVM

system (referred from now on as the default or non-compiled approach), also

a compiled version of the former. Generating view-specific maintenance code

allows for some natural optimizations that come from knowledge of the view. In

particular, the compiled version of GraphIVM benefited among others from the

following two optimizations: First, knowing the view and its schema, allows for

the generation of code that uses primitive data types instead of generic objects.

This not only improves memory efficiency, but may also enable additional com-

piler optimizations. Second, knowing the view implies knowing the maximum

path length in a join graph. This information can be leveraged to code the BFS

join graph traversal through a set of nested loops that are more amenable to

compiler optimizations than general queue-based BFS approaches.

Our experimental results discussed in Chapter 9 indicate that produc-

ing view-specific code leads to both significantly better performance and lower

memory requirements than generic non-compiled approaches.

Chapter 8

Alternative IVM Approaches

We next introduce the state of the art in IVM to which we will be com-

paring GraphIVM against. The first alternative, is traditional IVM without

any auxiliary caches. This corresponds to the state of the art in IVM before

approaches with aggressive materialization of auxiliary views where introduced.

The second alternative is the DBToaster system [3]. Employing several opti-

mizations, including among others aggressive materialization and view-specific

compilation it has been shown to outperform existing IVM approaches. How-

ever, similarly to all other IVM systems with auxiliary caches we are aware of,

it employs relational auxiliary views, in contrast to GraphIVM’s non-relational

join graph. Finally, we introduce a third alternative, which is inspired from the

join graph but uses a relational data structure instead. This alternative, re-

ferred to as the Full Outer Join Table approach captures the same information

58

59

maintained by the join graph in the form of a full outer join table.

We next briefly describe each of the three approaches. The experimental

evaluation of GraphIVM against each of these systems is presented in Chapter

9.

8.1 Classic IVM

This corresponds to traditional IVM approaches without the use of any

auxiliary views. A typical IVM system has the following architecture: Given a

set of base table diffs, encoded as tuples of a base diff table ∆, they compute

a diff query Q that operates on both the diff table ∆ and the base tables and

computes the diff table for the view.

However, by not materializing auxiliary views, many invocations of the

same diff query may be recomputing over and over the same partial results.

GraphIVM avoids such recomputations by keeping materialized intermediate

results in the form of the join graph. We next illustrate this through an example.

Example 15 Let us apply the classic IVM technique to the view RetweetTracker

of our running example. Ignoring projections for now the view definition can be

written as User(U) ./U.userId=T.userId Tweet(T) ./T.tweetId=R.retweetTweetId Retweet(R).

If we consider deltas on Retweet, the diff query executed by classical IVM will be

User(U) ./U.userId=T.userId Tweet(T) ./T.tweetId=R.retweetTweetId ∆m
Retweet where m

is the type of the modification. For every diff table instance ∆m
Retweet classic IVM

60

would need to repeatedly recompute the join User(U) ./U.userId=T.userId Tweet(T)

(or at least the part of it relevant to the diff).

8.2 DBToaster

DBToaster [3] represents the state of the art IVM system employing a

variety of optimizations that make it outperform prior IVM approaches. Of

particular interest for this work are two optimizations:

The first is the auxiliary view materialization strategy used by the sys-

tem. DBToaster creates an entire lattice of auxiliary views such that one view

can be efficiently maintained from other views in this lattice. However, all these

auxiliary views are relational, leading to redundancy that not only negatively

affects the memory requirements of the system but also the maintenance time,

as one change has to be reflected in many views. We next illustrate this through

an example:

Example 16 Ignoring projections for now, the view RetweetTracker of our run-

ning example can be written as

User(U) ./U.userId=T.userId Tweet(T) ./T.tweetId=R.retweetTweetId Retweet(R). To

maintain this view, DBToaster considers creating the following auxiliary views

V1 = User(U) ./U.userId=T.userId Tweet(T), V2 = Tweet(T) ./T.tweetId=R.retweetTweetId

Retweet(R) in addition to the base tables. It can be easily seen that a diff δmRetweet

on Retweet will have to be joined both with V1 to maintain RetweetTracker and

61

with the base table Tweet to maintain V2. Thus the redundant representation of

tuples employed by DBToaster leads in general to more maintenance.

A second important optimization is the generation of view-specific main-

tenance code. The inclusion of this optimization in GraphIVM not only im-

proves the performance of the system, but as we will see next, also makes it

easier to discern the difference in performance achieved by maintaining a non-

relational auxiliary view instead of the relational views employed by DBToaster.

8.3 Full Outer Join Table

By looking at the join graph, one can easily see that what it captures

are all partial join paths of the underlying database (up to tuples that do not

satisfy the selections). Although the join graph represents such information in

non-relational form, there is a relation that captures the same information; this

is the full outer join equivalent of the original query (i.e., the original query

where all inner joins have been replaced by full outer joins).

To check how an approach that captures the same information as the

join graph but in relational form would perform, we introduce the Full Outer

Join IVM system: a system, which keeps the full outer join equivalent of the

view. It should be obvious that even in this case, the relational structure of

this auxiliary view introduces significant redundancy, which leads to both space

and time inefficiencies. Time inefficiencies are primarily caused by the need to

62

Timeline

username followername tweet

joe bob t1

joe alice t1

joe cathy t1

joe bob t1

joe alice t1

joe cathy t1

cathy bob -

bob alice -

cathy alice -

Figure 8.1: Full outer join representation of the view Timeline

de-duplicate base table tuples to process a base table diff. Let us see this with

an example.

Example 17 Let us consider the following view Timeline and the database in-

stance shown in Figure 5.2a.

CREATE VIEW Timeline AS

SELECT username, followername, tweet

FROM Follower F, Tweet T

WHERE F.username = T.username

A full outer join implementation of this view is shown in Figure 8.1. If a tuple

δ+
F = 〈joe, t10, 2/4/15〉 is added to Tweet, we do not know the set of tuples of

followers the base table diff δ+
F should join with. This is because the full outer

join table of Timeline contains 6 rows for user 〈joe〉, 3 of them repeated twice.

We would need to de-duplicate these 6 tuples to get the unique set of 3 Follower

tuples.

Chapter 9

Experimental Evaluation

To see how GraphIVM performs in practice, we implemented it and ex-

perimentally measured its performance. Our experiments explore among others

the performance of GraphIVM compared to other IVM approaches in both the

publish-subscribe and data warehousing scenarios. They also explore the effect

of the optimizations described in Chapter 7 on GraphIVM and the memory

requirements of the system.

9.1 Compared Systems

We compare GraphIVM against the three IVM approaches, described

in Chapter 8: (a) the classic IVM approach without any auxiliary caches, (b)

a full outer join table approach, and (c) DBToaster [3], which is a state-of-

the-art IVM approach making among other extensive use of relational auxiliary

63

64

views. All systems compared are in-memory implementations apart from the

classic IVM implementations, where for completeness we compared three dif-

ferent implementation of the classic IVM approach: The first is an in-memory

implementation of the IVM problem that we coded independently of any DBMS.

The second is a classic IVM approach built on top of an in-memory DBMS and

the third is a classic IVM approach running on top of a disk-based DBMS.

We next present all the systems used in our experimental evaluation. For each

system we describe the runtime configuration used to run the corresponding

system.

GraphIVM (GIVM/GIVMCPP). This corresponds to the imple-

mentation of the GraphIVM system. Unless otherwise stated, GraphIVM was

executed with enabled look-ahead optimization. We distinguish between two

versions of GraphIVM: The first version, referred to as GIVM is a general non-

compiled implementation of GraphIVM written in Java. The second version,

referred to as GIVMCPP is an implementation of GraphIVM that produces

view-specific code as explained in Section 7.2. To enable an “apples-to-apples”

comparison to DBToaster, which is implemented in C++, the compiled version

GIVMCPP consists of view-specific C++ code.

The non-compiled Java version GIVM was run with JRE7 using 15GB

heap with concurrent mark and sweep garbage collector on warm JIT. On the

other hand, the C code produced from GIVMCPP was compiled using gcc4.8.2

65

with the -O3 flag (which are the same compilation options used for DBToaster

as we will explain below).

Full Outer Join Table (OJT). This is an in-memory implementation

of the full outer join approach, described in Section 8.3. Similarly to GIVM

(and DIVM, discussed next) the full outer join approach was implemented in

Java.

Classic IVM (DIVM). This is an in-memory implementation of classic

IVM without auxiliary caches. DIVM contains indices on the base tables on the

join attributes and computes view diffs using index-based tuple accesses. DIVM

was written in Java and executed using the exact same configuration parameters

as those used for GIVM.

Classic IVM using in-memory DBMS (H2). This is an imple-

mentation of classic IVM on top of the H2 in-memory database management

systems (DBMS). In this case, we executed the diff query plan generated by

classic IVM in H2. H2 was executed in embedded, in-memory mode with the

following configuration options: (a) Auto analyze was disabled in order to re-

duce the latency of updates, (b) the query cache was disabled in order to avoid

caching of the results between different runs of the same experiment, (c) tem-

porary tables were used to reduce the overhead of logging, and (d) indices on

the join attributes were built to enable the use of index-based joins.

Classic IVM using disk-based DBMS (Postgres). This is an imple-

66

mentation of classic IVM on top of the PostgreSQL disk-based DBMS. Although

PostgreSQL is disk-based, we tried to move processing to memory by setting

the buffer cache size to 2GB and the effective cache cache to 4GB (although

we did not see PostgreSQL use more than 1GB of main memory at any time),

and by using temporary tables. In addition, we turned off the auto analyze

function in the interest of increasing performance, as we analyzed the relations

manually before running the experiments. Moreover, we drove the PostgreSQL

experiments from Java code, which was communicating to PostgreSQL using

JDBC’s prepared statements as we saw that this gave better performance than

using PL/SQL. Finally, as in the case of H2, we specified indices on all join

attributes to enable index-based join plans.

DBToaster (DBT). This is the official DBToaster implementation,

which generates C++ code. The generated code was compiled using gcc4.8.2

with the -O3 flag, as recommended by the documentation on the system’s web-

site. All base tables in DBToaster were maintained as streams (i.e., specified as

tables that may accept diffs) and diffs were injected to the system using trigger

functions, which are more efficient than the alternative event-based mechanism

also supported by the system.

Apart from the GraphIVM system that can natively support both the

data warehousing and publish-subscribe IVM scenarios, all other systems were

67

executed in two different versions: the data warehousing version, which main-

tains the materialized view and is the default behavior of all such systems and

the publish-subscribe version, which does not maintain the view but creates

view diffs instead. To create the publish-subscribe version of DBToaster we

edited the compiled code to remove the code of maintaining the view and re-

placed it by a call to a dummy function that accepts as parameter the view diff

and has an empty body (essentially simulating a client waiting to consume the

output diffs).

All experiments were performed on a PC with an Intel i7 3.2Ghz CPU

and 16GB of RAM running Ubuntu 14.04. All the experiments were run on

warm caches.

9.2 Datasets

To compare the systems on a social networking dataset, created using

the BSMA-Gen [38] data generator, which was developed for the Benchmarking

in Social Media Analytics (BSMA) benchmark [36]. BSMA-Gen produces a

set of tweets and retweets based on a network for followers. To model a real

social network, the tweet generation follows a Poisson process, while the retweet

generation follows a power law in combination with a time decay function [38].

Using the output of the generator, we created a database instance, following

the schema shown in Figure 9.1.

68

To check the scalability of the systems for simple queries, while being able

to run the systems without running out of memory for more complex queries, we

used BSMA-Gen to generate two datasets of different sizes. The first dataset,

referred to as the large dataset was created by calling the BSMA-Gen for 1M

Users. This resulted in 6M tweets and 7M retweets of 1M users with 110M

followers. To make sure that this dataset fits in memory, we subsequently pruned

the follower table down to 11M tuples in a random fashion. The resulting table

sizes are summarized in Figure 9.2a. As we will see, this dataset was used to

run relatively simple queries. To test how the systems scale for more complex

queries (with large fanout and/or a large number of joins), we scaled this dataset

down by a factor of 100. The table sizes of the resulting dataset (referred to as

the small dataset) is shown in Figure 9.2b.

9.3 Queries

Given the social networking schema of Figure 9.1, we designed a set

of nine queries over these schema to be maintained. Table 9.1 and 9.2 shows

for each query the corresponding relational algebra description and a textual

description explaining its semantics. The first three queries (queries Q1-Q3)

correspond to simple Select-Project-Join (SPJ) queries that provide useful infor-

mation in a social networking setting. The next three queries (queries Q1Agg-

Q3Agg) are the aggregated versions of the previous queries. Finally the last

69

User(userid)

Follower(userId, followerId)

Tweet(userId, tweetId, tweetDate)

Retweet(userId, tweetId, tweetDate, retweetTweetId)

Figure 9.1: Schema of BSMA datasets

Relation Tuples
Users 1M

Follower 11M
Tweet 6M

Retweet 7M

(a) Large BSMA dataset

Relation Tuples
Users 10K

Follower 1M
Tweet 60K

Retweet 70K

(b) Small BSMA dataset

Figure 9.2: Size of each relation (in tuples) for the two BSMA datasets used

in the experiments

three queries shown on the table are synthetic queries used to check the perfor-

mance of the approaches under varying parameters.

9.4 IVM of Simple Queries

Our first experiment explores the performance of the different IVM ap-

proaches in maintaining simple queries (i.e., queries that have in this case at

most two joins). To this end, we used all systems presented in section 9.1 apart

from OJT1 to maintain the three simple SPJ queries Q1-Q3 and their three

1The full outer join table approach (OJT) was considered in the fanout experiments de-
scribed in Section 9.5.1 and found to perform worse than even classic IVM without auxiliary
views (DIVM). For this reason it was not further considered in the experiments.

70

T
a
b
le

9
.1

:
Q

u
er

ie
s

u
se

d
in

th
e

ex
p

er
im

en
ts

Q
u

e
ry

ID
R

e
la

ti
o
n
a
l

A
lg

e
b
ra

E
x
p
re

ss
io

n
D

e
sc

ri
p
ti

o
n

Q
1

U
se
r(
U

)
./
U
.u
se
r
I
d
=
T
.u
se
r
I
d
T
w
ee
t(
T

)
T

w
ee

ts
as

so
ci

at
ed

w
it

h
ea

ch
u
se

r
Q

2
F
ol
lo
w
er

(F
)
./
F
.u
se
r
I
d
=
T
.u
se
r
I
d
T
w
ee
t(
T

)
T

w
ee

ts
sh

ow
n

to
a

u
se

r
on

h
er

ti
m

el
in

e
Q

3
U
se
r(
U

)
./
U
.u
se
r
I
d
=
T
.u
se
r
I
d
T
w
ee
t(
T

)
./
T
.t
w
ee
tI
d
=
R
.r
et
w
ee
tT
w
ee
tI
d
R
et
w
ee
t(
R

)
R

et
w

ee
ts

of
tw

ee
ts

cr
ea

te
d

b
y

a
u
se

r
Q

1A
gg

γ
U
.u
se
r
I
d
;C
O
U
N
T

(T
.t
w
ee
tI
d
)

(U
se
r(
U

)
./
U
.u
se
r
I
d
=
T
.u
se
r
I
d
T
w
ee
t(
T

))
N

u
m

b
er

of
tw

ee
ts

p
er

u
se

r
Q

2A
gg

γ
F
.F
o
ll
o
w
er
I
d
;C
O
U
N
T

(T
.t
w
ee
tI
d
)

(F
ol
lo
w
er

(F
)
./
F
.u
se
r
I
d
=
T
.u
se
r
I
d
T
w
ee
t(
T

))
N

u
m

b
er

of
tw

ee
ts

sh
ow

n
to

a
u
se

r
on

h
er

ti
m

el
in

e
Q

3A
gg

γ
U
.u
se
r
I
d
;C
O
U
N
T

(R
.r
et
w
ee
tI
d

(U
se
r(
U

)
./
U
.u
se
r
I
d
=
T
.u
se
r
I
d
T
w
ee
t(
T

)
./
T
.t
w
ee
tI
d
=
R
.r
et
w
ee
tT
w
ee
tI
d
R
et
w
ee
t(
R

))
N

u
m

b
er

of
re

tw
ee

ts
,

tw
ee

ts
of

a
u
se

r
ge

n
er

at
ed

71

T
a
b
le

9
.2

:
Q

u
er

ie
s

u
se

d
to

m
ea

su
re

th
e

eff
ec

t
of

fa
n
ou

t
an

d
jo

in
ch

ai
n

le
n
gt

h

Q
u
e
ry

ID
R

e
la

ti
o
n
a
l

A
lg

e
b
ra

E
x
p
re

ss
io

n
D

e
sc

ri
p
ti

o
n

Q
F

an
ou

t
F
ol
lo
w
er

(F
1
)
./
F

1
.u
se
r
I
d
=
F

2
.f
o
ll
o
w
er
I
d
F
ol
lo
w
er

(F
2
)

./
F

2
.u
se
r
I
d
=
T
.u
se
r
I
d
T
w
ee
t(
T

)
T

w
ee

ts
se

en
b
y

se
co

n
d

d
eg

re
e

fo
ll
ow

er
s

Q
J
oi

n
C

h
ai

n
L

en
gt

h
F

ol
lo

w
er

F
ol
lo
w
er

(F
1
)(
./
F
i−

1
.u
se
r
I
d
=
F
i
.f
o
ll
o
w
er
I
d
F
ol
lo
w
er

(F
i)

) n
./
F
n
.f
o
ll
o
w
er
I
d
=
T
.u
se
r
I
d
T
w
ee
t

T
w

ee
ts

se
en

b
y

n
+

1
d
eg

re
e

fo
ll
ow

er
Q

J
oi

n
C

h
ai

n
L

en
gt

h
R

et
w

ee
t

R
et
w
ee
t(
R

1
)(
./
R
i−

1
.t
w
ee
tI
d
=
R
i
.r
et
w
ee
tT
w
ee
tI
d
R
et
w
ee
t(
R
i)

) n
./
R
n
.u
se
r
I
d
=
F
.u
se
r
I
d
F
ol
lo
w
er

(F
)

U
se

rs
w

h
ic

h
sa

w
n

+
1

d
eg

re
e

R
et

w
ee

ts
of

a
tw

ee
t

72

aggregated equivalents Q1Agg-A3Agg. To mimic the workload of a social net-

working system, we used the large dataset and considered the last 50,000 tuples

added by the BSMA-Gen to tables Tweet and Retweet as diffs that were given

as input to each of the systems 2.

Figures 9.3a and 9.3b show the time required by each system to main-

tain the 50,000 diffs for the publish-subscribe and data warehousing scenario,

respectively. Missing bars indicate that the corresponding system ran out of

memory during the experiment. By looking at the results, we can make the

following observations:

GraphIVM vs Other Systems. We observe that the GraphIVM sys-

tem always outperforms classic IVM approaches that do not employ any auxil-

iary caches. The speedup factor depends on the implementation of the specific

approach. If the classic IVM approach is built on top of the disk-based Post-

greSQL, then the speedup of GraphIVM is 10-100, if it is built on top of the

in-memory H2, the speedup is 5-10 and if it is a specialized in-memory imple-

mentation (DIVM), the speedup is 2-3.

The comparison of GraphIVM to DBToaster is more interesting (in

this case we compare the compiled C++ version GIVMCPP of GraphIVM,

as DBToaster also produces C++ code). On SPJ queries (queries Q1-Q3)

GraphIVM always outperforms DBToaster. For aggregate queries the picture is

2BSMA-Gen creates timestamps for tweets and retweets, allowing us to infer which were
the latest tweets and retweets that were added to the system.

73

mixed: DBToaster outperforms GraphIVM for queries Q1Agg and Q2Agg, but

falls behing the latter for query Q3Agg. This behavior is due to the extremely

simple nature of Q1Agg and Q2Agg. Both queries consist of a single join and

thus DBToaster does not have to create any auxiliary view, which corresponds

to the best case for the system. As we can see in the case of Q3Agg, which has

two joins and as will become even more obvious in the following Sections, when

the queries involve longer join chains, GraphIVM easily outperforms DBToaster.

Publish-Subscribe vs Data Warehousing Scenario. In general sys-

tems have to carry out more work in the data warehousing scenario as compared

to the publish-subscribe scenario, as they have to not only compute the diffs

(which they do anyway during the IVM process) but also apply them to the

view to maintain it. Interestingly, GraphIVM breaks this pattern by perform-

ing better in the data warehousing scenario. The reason for this discrepancy

is the unique architecture of GraphIVM: Since GraphIVM does not maintain

the view as a separate data structure but as part of the join graph, in the data

warehousing scenario it does not have to perform any additional view mainte-

nance. On the other hand though, since it does not internally generate view

diffs, it has to incur the cost of generating them from the join graph in the

case of the publish-subscribe scenario. This leads to the cost of the publish-

subscribe scenario exceeding that of the data warehousing scenario in the case

of GraphIVM. Finally, even though GraphIVM does not have to pay the cost of

74

maintaining a relational view on updates, it has to incur the cost of generating

a relational version of the view from the join graph in the data warehousing

scenario, whenever the clients want to access the view. We explore this cost of

view materialization in Section 9.8.

Accounting for Set-oriented Processing in DBMSs. Our experi-

ments so far simulated eager view maintenance, in which each IVM system is

invoked for every single incoming base table diff. However, it is well known that

DBMSs can benefit from processing a set of tuples at a time. To see whether

this makes a difference in the relative performance of the systems, we ran a

variant of the above experiment in which all 50,000 input diffs were given to

each system as input at once. This simulates a lazy IVM scenario. The resulting

IVM times are shown in Figures 9.4b and 9.4a for the data warehousing and

publish-subscribe scenario, respectively. The times of GraphIVM, DIVM and

DBToaster remain the same as before, as they internally operate at one tuple

at a time. The times of IVM approaches built on top of DBMSs generally im-

prove with the biggest improvement witnessed by PostgreSQL, which improves

by an order of magnitude over the eager maintenance. However, even with this

improvement GraphIVM still outperforms these systems.

75

Q1 Q2 Q3 Q1Agg Q2Agg Q3Agg

1

100

10000

1000000

GIVMCPP

GIVM

DIVM

DBT

H2E

PostgresE
Queries

T
im

e
 (

m
s
)

(a) Publish-subscribe scenario

Q1 Q2 Q3 Q1Agg Q2Agg Q3Agg

1

10

100

1000

10000

100000

1000000

GIVMCPP

GIVM

DIVM

DBT

H2E

PostgresE

Queries

T
im

e
 (

m
s
)

(b) Data warehousing scenario

Figure 9.3: IVM of simple queries (eager maintenance)

9.5 Effect of varying parameters

We next explore the effect of varying two parameters, that are commonly

characterizing the structure of a join view: the fanout and the number of joins.

9.5.1 Varying Fanout

Given an SPJAp query Q and an input diff δ, we define the fanout of Q

w.r.t. δ to be the number of view diffs that should be generated as the result

of maintaining the single base table diff δ.

To control the effect of this parameter, we executed the following experi-

ment. Starting from the small BSMA dataset, we created 50,000 new users and

76

Q1 Q2 Q3 Q1Agg Q2Agg Q3Agg

1

10

100

1000

GIVMCPP

GIVM

DIVM

DBT

H2L

PostgresL

Queries

T
im

e
 (

m
s
)

(a) Publish-subscribe scenario

Q1 Q2 Q3 Q1Agg Q2Agg Q3Agg

1

10

100

1000

10000

GIVMCPP

GIVM

DIVM

DBT

H2L

PostgresL

Queries

T
im

e
 (

m
s
)

(b) Data warehousing scenario

Figure 9.4: IVM of simple queries (lazy maintenance)

77

0 20 40 60 80 100 120

1

10

100

1000

10000

GIVMCPP GIVM DBT DIVM OJT

Fanout

T
im

e
 (

m
s
)

(a) Publish-subscribe scenario

0 20 40 60 80 100 120

1

10

100

1000

10000

100000

GIVMCPP GIVM DBT DIVM OJT

Fanout

T
im

e
 (

m
s
)

(b) Data warehousing scenario

Figure 9.5: IVM performance for varying fanout

78

for each such user u we created n Follower tuples (i.e., we created n tuples of

the form Follower(u, f ′), where f ′ is a new value), essentially specifying that

each such user has n followers. We then created 50,000 new insert diffs for the

Tweet relation, each inserting one tweet for each newly created user u and we

asked the systems to maintain the view QFanout as given in Table 9.2. It is

easy to see that each input diff generates n view diffs, essentially making the

parameter n the fanout of the view w.r.t. the input diff.

Figures 9.5a and 9.5b show the time required by the GraphIVM (both

non-compiled and compiled versions), the in-memory classic IVM, DBToaster

and Full Outer Join approach to maintain the view for fanouts ranging from 1

to 100 for the publish-subscribe and data warehousing scenario, respectively.

For the publish-subscribe scenario (Figure 9.5a), all approaches require

more time to perform IVM as the fanout increases. GraphIVM has been found

to perform better than any other Java-based approaches. The full outer join

approach has been found to perform worse than even classic IVM and therefore

we did not consider it in the rest of the experiments. DBToaster is shown to

perform better than GIVM for small values of the fanout, but keep in mind that

this corresponds to the non-compiled Java-based version of GraphIVM. If we

compare DBToaster to the compiled C++-based version of GraphIVM (denoted

as GIVMCPP), we see that the latter outperforms DBToaster by a speedup that

is most of the time an order of magnitude and increases with fanout.

79

The difference between GraphIVM and the other systems becomes even

more pronounced in the data warehousing scenario (Figure 9.5b). While all

approaches perform worse with increasing fanout, GraphIVM remains almost

constant, as it does not need to create output diffs and is thus not affected by

the fanout. The slight decrease in performance is probably due to engineering

details (potentially decreased performance of the hash-based indices).

9.5.2 Varying Number of Joins

In this experiment, we investigate the relationship between the number

of joins in the view definition and the time required to incrementally maintain

the views. To explore this relationship we used the queries QJoinChainLength-

Follower and QJoinChainLengthRetweet of Table 9.2 including a chain of n

Follower and n Retweet joins, respectively. We varied n between 1 and 4, lead-

ing to a variation of the number of joins per query between 2 and 5. For query

QJoinChainLengthFollower, we considered the insertion of 50,000 Tweet tuples

for a particular user, while for query QJoinChainLengthRetweet we considered

the insertion of 50,000 follower tuples for a particular user. Both experiments

were run on the small BSMA dataset.

These two queries represent the two different effects an increase in the

number of joins may have. Introducing more joins in a query may either increase

the fanout (if introducing a join leads to the construction of additional tuples)

80

Table 9.3: Effect of number of joins on fanout for queries QJoinLengthFollower

and QJoinLengthRetweer

Number of joins 2 3 4 5
QJoinLengthFollower Fanout 182 381 445 545
QJoinLengthRetweet Fanout 110 56 24 11

or decrease it (if the join acts like a filter). In our case increasing the join

length leads to an increase of fanout in the case of QJoinChainLengthFollower

(because a follower has in general more than one followers) and in a decrease of

fanout in the case of QJoinChainLengthRetweet (because a lot of retweets are

not further retweeted).

Table 9.3 shows the fanout for each query as the number of joins in-

creases. We next discuss each of the two cases:

Increasing fanout with increasing number of joins (query QJoin-

ChainLengthFollower). Figures 9.6a and 9.6b show the IVM times for this

case for the publish-subscribe and data warehousing scenario, respectively. The

increase in fanout makes all systems require more time for IVM as the number

of joins increases. However, both versions of GraphIVM perform always better

than all other systems.

Decreasing fanout with increasing number of joins (query QJoin-

ChainLengthRetweet). Figures 9.7a and 9.7b show the IVM times for this

case for the publish-subscribe and data warehousing scenario, respectively. The

decrease in fanout makes GraphIVM become better with increased number of

81

1 2 3 4 5 6

1

10

100

1000

10000

100000

GIVMCPP GIVM DBT DIVM

Number of Joins

T
im

e
 (

m
s
)

(a) Publish-subscribe scenario

1 2 3 4 5 6

1

10

100

1000

10000

100000

GIVMCPP GIVM DBT DIVM

Number of Joins

T
im

e
 (

m
s
)

(b) Data warehousing scenario

Figure 9.6: IVM performance for varying number of joins when increasing join

number leads to increased fanout (Query QJoinChainLengthFollower)

82

Table 9.4: Effect of number of joins on number of auxiliary views maintained

by DBToaster for queries QJoinLengthFollower and QJoinLengthRetweer

Number of joins 2 3 4 5
DBToaster: # Views Created 5 7 9 SOE
DBToaster: # Views Updated 3 4 5 SOE

joins. Interestingly, DBToaster becomes worse, as the decreased fanout is offset

by the need to maintain more auxiliary views as the number of joins increases.

Table 9.4 shows the number of views created and updated by DBToaster in the

maintenance of each of the queries for varying number of joins. No numbers are

reported for 5 joins, as DBToaster crashed with a Stack Overflow Error (SOE).

Helped by its compact, non-relational auxiliary view (and as we will see also by

the look-ahead optimization), GraphIVM not only does not run out of memory

but even improves its performance with increasing number of joins in this case.

9.6 Effect of Look-Ahead Optimization

To check how much the performance of GraphIVM is a result of the look-

ahead optimization, we next ran the same two experiments of varying number

of joins for GraphIVM with no look-ahead, with local look-ahead and with

global look-ahead enabled. We denote the respective systems by GIVM (NLA),

GIVM (LLA) and GIVM (GLA). Figures 9.8a and 9.8b show the IVM times of

these systems for varying number of joins for queries QJoinChainLengthRetweet

83

1.5 2 2.5 3 3.5 4 4.5 5 5.5

1

10

100

1000

10000

GIVMCPP GIVM DBT DIVM

Number of Joins

T
im

e
 (

m
s
)

(a) Publish-subscribe scenario

1 2 3 4 5 6

1

10

100

1000

10000

GIVMCPP GIVM DBT DIVM

Number of Joins

T
im

e
 (

m
s
)

(b) Data warehousing scenario

Figure 9.7: IVM performance for varying number of joins when increasing join

number leads to decreased fanout (Query QJoinChainLengthRetweet)

84

1 2 3 4 5 6

0

100

200

300

400

500

600

700

800

GIVM (NLA) GIVM (LLA) GIVM (GLA)

Number of Joins

Ti
m

e
(m

s)

(a) QJoinChainLengthRetweet

1 2 3 4 5 6

0

1000

2000

3000

4000

5000

6000

GIVM (NLA) GIVM (LLA) GIVM (GLA)

Number of Joins

Tim
e(

ms
)

(b) Query QJoinChainLengthFollower

Figure 9.8: Effect of look-ahead optimization for varying number of joins for

queries QJoinChainLengthRetweet and QJoinChainLengthFollower (Publish-

subscribe scenario)

85

and QJoinChainLegthFollower, respectively. The times are shown only for the

publish-subscribe scenario, as in the data warehousing scenario, GraphIVM does

not create view diffs and is thus not affected by the presence or absence of the

look-ahead optimization.

Let us first look at QJoinChainLengthRetweet (Figure 9.8a). As we

explained in the previous section, GraphIVM performs better as the number

of joins increase when the global look-ahead is enabled. However, the picture

changes when GraphIVM employs only local look-ahead or no look-ahead, in

which case it performs almost identically or worse, respectively with increasing

number of joins. The global look-ahead in this case, helps GraphIVM to quickly

disregard during the BFS procedure paths that are not complete.

In the case of query QJoinChainLengthFollower (Figure 9.8b) GraphIVM

requires always more time as the number of joins in the query increase. However,

even in this case, global look-ahead proves to be extremely beneficial.

9.7 Relative Performance of Different Types of

Modifications to Join Graph

As we discussed in the description of the join graph maintenance algo-

rithm in Section 6.2, a base table diff may lead to different types of modifications

to the join graph. In particular, it may lead to an insertion or deletion of a join

86

Q1 Q2 Q3 Q1Agg Q2Agg Q3Agg

0

10

20

30

40

50

60

70

80

90

100

IPT

IJT

DPT

DJT

Queries

T
im

e
 (

m
s
)

(a) GIVM

Q1 Q2 Q3 Q1Agg Q2Agg Q3Agg

0

5

10

15

20

25

IPT

IJT

DPT

DJT

Queries

T
im

e
 (

m
s
)

(b) GIVMCPP

Figure 9.9: Performance of different types of modification to the join graph of

different queries

87

tuple or projected tuple. These join graph modifications incur in general differ-

ent costs.

In this experiment, we compared these costs as follows: Starting from the

large BSMA dataset and for the join graph of each query Q1-Q3 and Q1Agg-

Q3Agg, we measured the time it takes to apply a certain modification time

50,000 times. The resulting times are shown for both the general non-compiled

version of GraphIVM and for the compiled variant in Figures 9.9a and 9.9b,

respectively. The labels IPT, IJT, DPT and DJT stand for insertion of projected

tuple, insertion of join tuple, deletion of projected tuple and deletion of join

tuple, respectively.

The experiment shows that the insertion of a join tuple takes more time

than the insertion of projected tuples. Similarly for the deletion of respective

tuples. The reason for this difference is that a modification of a join tuple on

top of what is needed to modify a projected tuple also entails changes to the

vertex values.

9.8 Performance of Materializing the View

As we discussed above, GraphIVM maintains the view internally as the

join graph and thus does not have to pay the price of maintaining a separate

relational view in the data warehousing scenario. On the other hand however,

it will have to pay the cost of generating this relational representation of the

88

0 20 40 60 80 100 120

1

10

100

1000

10000

GIVMCPP GIVM DBT DIVM OJT

Fanout

T
im

e
 (

m
s
)

Figure 9.10: Time required to materialize (scan) the view that has resulted

from the varying fanout experiment

view from the internal join graph, when this view is accessed.

To check this view materialization cost, we ran an experiment in which

the entire view was read from each of the systems. As for the view that was

scanned, we used the final view after running the varying fanout experiment of

Section 9.5.1. The resulting times are shown in Figure 9.10. Since GraphIVM

has to reconstruct the relational view from the non-relational join graph by

traversing the latter, it needs more time than other approaches, which store

the view in a relational (or almost) relational format. However, keep in mind

that on the other hand, due to this non-relational structure GraphIVM achieves

much better IVM performance than other approaches.

89

9.9 Memory Requirements

As a final experiment, we looked at the memory requirements of GraphIV-

Mand compared it to the memory requirements of DBToaster. To check the

memory requirements of both systems, we measured the memory used by each

system at the end of the varying fanout experiment (described in Section 9.5.1)

and the varying number of joins experiment on query QJoinChainLengthFol-

lower (described in Section 9.5.2). The resulting space requirements for GIVM,

GIVMCPP and DBT are shown in Figures 9.11a and 9.11b for the fanout and

number of joins experiment, respectively. To see how the memory requirements

of each system scales w.r.t. the number of tuples in the view, each figure also

displays the size of the view in tuples.

We can see that the memory requirements of the compiled C++ imple-

mentation of GraphIVM are for both experiments much lower than the memory

requirements of DBToaster. However, the most interesting observations come

from the experiment varying the number of joins (shown in Figure 9.11b). While

the memory requirements of DBToaster scale linearly with the number of tuples

in the view, GraphIVM manages to scale a a sublinear pace. This is the result

of the highly compressed join graph representation used by GraphIVM.

90

0 20 40 60 80 100 120

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

GIVMCPP GIVM DBT

Fanout

S
p
a
c
e
 (

G
B

)

1 10 30 50 70 100

0

2

4

6

8

10

12

14

Tuples In The View

Fanout

#
T

u
p
le

s
/1

0
M

(a) Varying fanout (Query QFanout)

1 2 3 4 5 6

0.01

0.1

1

10

GIVMCPP GIVM DBT

Number of Joins

S
p
a
c
e
 (

G
B

)

1 2 3 4 5 6

1

10

100

1000

10000

Tuples In The View

Number of joins

N
u
m

b
e
r

o
f
T

u
p
le

s
 /

 1
0
M

(b) Varying number of joins (Query QJoinChainLengthFollower)

Figure 9.11: Memory requirements of GraphIVM and DBToaster for varying

fanout and number of joins

Chapter 10

Future Work

As part of our future work we plan to extend the presented work in

two important directions. First, we would like to improve the scalability of

GraphIVM by allowing it to store the join graph either partially on in its entirety

on disk. Second, we would like to extend the approach to more expressive view

definition languages. We discuss next each of these two extensions in detail.

10.1 Improving Scalability

GraphIVM is currently an in-memory system designed to demonstrate

how non-relational caches can be used to accelerate IVM. While the in-memory

implementation is sufficient for many use cases, it precludes the system from

supporting IVM of very large datasets.

To address this issue, we are planning of extending the system to store

91

92

the join graph on disk and bring into main memory only the parts relevant to

the processing being done. In such a system the various components of the join

graph would be stored on disk and the existing indices or pointers would be

changed to contain the block address and offset within the disk block where a

component can be found.

However, in order for this scheme to work efficiently, we will have to

address among others the following three major challenges: The first challenge

is designing how data have to be laid out on disk to improve the I/O throughput.

Data that are accessed together by the algorithm should ideally be stored in

sequential parts of the disk. Fortunately, the algorithms discussed in Chapter 6

give some hints on expected access patterns. For instance, a join tuple is usually

accessed together with the projected tuples attached to it, suggesting that both

concepts should be co-located.

Another challenge is making sure that indices, which are predominantly

used by the algorithms are as efficient as possible. This issue could be solved

by making sure that the indices could reside in memory.

A third challenge is deciding exactly what to read into the main memory

and cache. A lazy approach that transfers into the main memory only the tuples

that are needed for a particular step of the algorithm may prove inefficient.

Instead, the system could bring an entire part of the join graph that is expected

to be accessed either during the particular invocation of the algorithm or in the

93

future. This suggests a hybrid approach where part of the join graph is accessed

from the main memory while another part (that does not fit in memory) is

accessed from disk on demand.

As part of our future work, we will be exploring whether using our

approach-specific optimizations as well as other optimizations employed by

DBMSs, it is possible to scale GraphIVM to larger datasets that do not fit

in main memory, while maintaining its performance characteristics.

10.2 Extending the class of supported views

As discussed above, GraphIVM currently allows the efficient IVM of

SPJAp views. To extend the applicability of our work to a larger number of

views, we seek to extend the class of supported views. This extension could

be done in different ways: First, we could extend the join operators to support

not only equi-joins but also joins involving inequalities or arbitrary functions.

Second, we could add support for selections that cannot be pushed all the way

down to the base tables. This includes among others selections that act on

the result of an aggregation. Both of these extensions could be handled by

creating a view diff filter which acts on the results of view diff generator or view

materialization algorithms (Algorithms 5 and 6, respectively).

Finally, we would also like to extend our framework to aggregations in-

volving non-associative functions. To allow the efficient IVM of such views, we

94

could extend GraphIVM to allow the addition of user-defined data structures

and corresponding user-defined functions designed to handle the IVM of ag-

gregations involving such a non-associative function. For instance, the system

could support MAX(R.a) on attribute a of relation R on deletions, by storing

the all values of a. This could be accomplished by creating a MAX-heap data

structure and a corresponding user-defined function responsible for handling the

IVM of aggregations involving the MAX function.

Chapter 11

Conclusion

We have seen how moving from relational to non-relational auxiliary

views can lead to significant performance improvements in incremental view

maintenance. The novel non-relational join-graph together with the look-ahead

and view-specific compilation optimizations allow GraphIVM to significantly

outperform state of the art IVM approaches in most common scenarios. In

our future work we plan to extend the practical applicability of the system by

improving its scalability and extending the supported view definition language.

I would like to thank Yannis Katsis and Yannis Papakonstantinou who

co-authored this thesis with me.

95

Bibliography

[1] New tweets per second record, and how! https://blog.twitter.com/

2013/new-tweets-per-second-record-and-how. Accessed: 2015-04-12.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of
materialized views and indexes in sql databases. In VLDB, 2000.

[3] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-order
delta processing for dynamic, frequently fresh views. PVLDB, 5(10):968–
979, 2012.

[4] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s an
influencer: quantifying influence on twitter. In Proceedings of the fourth
ACM international conference on Web search and data mining, pages 65–
74. ACM, 2011.

[5] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently updating ma-
terialized views. In Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data, Washington, D.C., May 28-30, 1986.,
pages 61–71, 1986.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable
continuous query system for internet databases. In ACM SIGMOD 2000,
pages 379–390, 2000.

[7] A. Cheng, M. Evans, and H. Singh. Inside twitter: An in-depth look inside
the twitter world. Report of Sysomos, June, Toronto, Canada, 2009.

[8] R. Chirkova and J. Yang. Materialized views. Foundations and Trends in
Databases, 4(4):295–405, 2012.

[9] G. Dong and J. Su. Incremental maintenance of recursive views using
relational calculus/sql. ACM SIGMOD Record, 29(1):44–51, 2000.

96

97

[10] J. C. Freytag and N. Goodman. Translating aggregate queries into iterative
programs. In VLDB’86 Twelfth International Conference on Very Large
Data Bases, August 25-28, 1986, Kyoto, Japan, Proceedings., pages 138–
146, 1986.

[11] J. C. Freytag and N. Goodman. On the translation of relational queries
into iterative programs. ACM Trans. Database Syst., 14(1):1–27, 1989.

[12] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-
maintainable views. In Advances in Database Technology EDBT’96, pages
140–144. Springer, 1996.

[13] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Eng. Bull., 1995.

[14] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In ACM SIGMOD 1993, pages 157–166, 1993.

[15] H. Gupta. Selection of views to materialize in a data warehouse. In ICDT
’97, pages 98–112, 1997.

[16] H. Gupta and I. S. Mumick. Selection of views to materialize under a
maintenance cost constraint. In ICDT ’99, pages 453–470, 1999.

[17] H. Gupta and I. S. Mumick. Selection of views to materialize in a data
warehouse. IEEE Trans. Knowl. Data Eng., 17(1):24–43, 2005.

[18] A. Y. Halevy. Answering queries using views: A survey. VLDB J.,
10(4):270–294, 2001.

[19] Y. Jin and R. E. Strom. Relational subscription middleware for internet-
scale publish-subscribe. In Proceedings of the 2nd International Workshop
on Distributed Event-Based Systems, DEBS 2003, Sunday, June 8th, 2003,
San Diego, California, USA (in conjunction with SIGMOD/PODS), 2003.

[20] A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross. Implementing
incremental view maintenance in nested data models. In Database Pro-
gramming Languages, 6th International Workshop, DBPL-6, Estes Park,
Colorado, USA, August 18-20, 1997, Proceedings, pages 202–221, 1997.

[21] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query
evaluation. In Proceedings of the 26th International Conference on Data
Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA,
pages 613–624, 2010.

98

[22] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering
queries using views. In Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May
22-25, 1995, San Jose, California, USA, pages 95–104, 1995.

[23] L. Liu, C. Pu, and W. Tang. Correction to continual queries for internet
scale event-driven information delivery. IEEE TKDE, 12(5):861, 2000.

[24] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view
selection and maintenance using multi-query optimization. In SIGMOD
Conference, pages 307–318, 2001.

[25] T. Neumann. Efficiently compiling efficient query plans for modern hard-
ware. PVLDB, 4(9):539–550, 2011.

[26] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental mainte-
nance for non-distributive aggregate functions. In VLDB, pages 802–813,
2002.

[27] D. Quass. Maintenance expressions for views with aggregation. In VIEWS,
pages 110–118, 1996.

[28] D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making views self-
maintainable for data warehousing. In Parallel and Distributed Information
Systems, 1996., Fourth International Conference on, pages 158–169. IEEE,
1996.

[29] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman. Compiled query
execution engine using JVM. In Proceedings of the 22nd International
Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta,
GA, USA, page 23, 2006.

[30] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view mainte-
nance and integrity constraint checking: Trading space for time. In Proceed-
ings of the 1996 ACM SIGMOD International Conference on Management
of Data, Montreal, Quebec, Canada, June 4-6, 1996., pages 447–458, 1996.

[31] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view mainte-
nance and integrity constraint checking: Trading space for time. In SIG-
MOD, pages 447–458, 1996.

[32] O. Shmueli and A. Itai. Maintenance of views. In ACM SIGMOD Record,
volume 14, pages 240–255. ACM, 1984.

[33] D. Theodoratos and T. K. Sellis. Data warehouse configuration. In
VLDB’97, Proceedings of 23rd International Conference on Very Large
Data Bases, August 25-29, 1997, Athens, Greece, pages 126–135, 1997.

99

[34] P. Valduriez. Join indices. ACM Trans. Database Syst., 12(2):218–246,
1987.

[35] J. Widom. Research problems in data warehousing. In CIKM ’95, pages
25–30, 1995.

[36] F. Xia, Y. Li, C. Yu, H. Ma, and W. Qian. Bsma: A benchmark for
analytical queries over social media data. PVLDB, 7(13), 2014.

[37] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of
materialized top-k views. In ICDE, pages 189–200, 2003.

[38] C. Yu, F. Xia, Q. Zhang, H. Ma, W. Qian, M. Zhou, C. Jin, and A. Zhou.
Bsma-gen: A parallel synthetic data generator for social media timeline
structures. In Database Systems for Advanced Applications, pages 539–
542. Springer, 2014.

