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Abstract
Soil water infiltration is central to hydrologic studies and lends itself for detailed

experimentation and mathematical–physical modeling. The most rigorous of these

approaches numerically solve Richards’ equation, possibly coupled through a het-

erogeneous soil to a surface water routine and groundwater model. This approach is

computationally expensive and prone to mass balance errors and overparameteriza-

tion. Analytic solutions of the infiltration process obviate the need for specification

of hydraulic functions and simplify computation and inverse determination of soil

properties. This paper investigates the usefulness of Parlange’s three-parameter infil-

tration equation for forward and inverse modeling of vertical infiltration experiments.

This quasi-exact implicit solution of Richards’ equation, also credited to Haverkamp

and coworkers in recent literature, is valid for the entire infiltration event, matches

cumulative infiltration data from different soils and its (super-)parameters, 𝑆, 𝐾s,

and β, exhibit a solid mathematical–physical underpinning. Nonetheless, Parlange’s

equation has not entered mainstream use for infiltration simulation and data analysis

in the absence of a robust, exact and efficient numerical solution. This paper builds

upon the recent work of Jaiswal et al. and presents theory, algorithms, and source

codes of two numerical procedures for forward and inverse modeling of Parlange’s

infiltration equation. We illustrate the procedures using measured infiltration data

from the Soil Water Infiltration Global (SWIG) database. Our findings highlight the

potential of Parlange’s equation for infiltration modeling and hydraulic characteriza-

tion of the soil sorptivity, 𝑆 [L T−1/2], saturated hydraulic conductivity, 𝐾s [L T−1],

and unitless coefficient, β. Parlange’s infiltration equation provides a powerful alter-

native to mathematically more convenient explicit infiltration equations that suffer

physical underpinning and/or a limited time validity.

Abbreviations: DREAM, DiffeRential Evolution Adaptive Metropolis; LM, Levenberg–Marquardt; MCMC, Markov chain Monte Carlo; SWIG, Soil Water
Infiltration Global.
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1 INTRODUCTION AND SCOPE

Infiltration is the process by which water enters the soil and
moves downward under the influence of gravity and/or capil-
lary action, thereby soaking and/or filling up the pore space,
replenishing the root zone, and possibly seeping into rocks
through cracks. Infiltration is not only an important compo-
nent of the hydrologic budget but also exerts a large con-
trol on surface runoff, erosion, and root zone soil moisture
content, which, in turn, governs slope stability, plant water
uptake, evaporation, groundwater recharge, and heat exchange
between the Earth’s surface and the atmosphere (Liu et al.,
2011). As a result, infiltration is studied in different fields by
water resource and hydraulic engineers, hydrogeophysicists,
hydrogeologists, plant scientists, agronomists, and ecologists
(Philip, 1969).

Soil water infiltration lends itself for detailed experimen-
tation, mathematical–physical modeling, and spatiotemporal
analysis. Numerous mathematical–physical approaches have
been developed to describe water infiltration into variably sat-
urated soils (Assouline, 2013). The most rigorous of these
approaches would use Richards’ equation (Richards, 1931),
coupled, if necessary, through a heterogeneous soil with a
surface water routine and groundwater model. As this mod-
eling approach is computationally expensive and prone to
mass balance errors and, possibly, overparameterization, pref-
erence is usually given to an analytic solution of the infiltra-
tion process. Such analytic functions simplify computation,
obviate the need for specification of the water retention and
unsaturated soil hydraulic conductivity functions, and allow
for a rapid estimation of their unknown coefficients using
least squares regression methods. These coefficients may be
viewed as super-parameters of the hydraulic functions.

A quintessential example of a super-parameter is the soil
sorptivity, 𝑆 [L T−1/2], which measures the capacity of a soil
to absorb water by capillarity. This parameter is innate to
analytic solutions of Richards’ equation for horizontal and/or
vertical infiltration and may be defined as follows (Parlange,
1975; Moret-Fernández et al., 2017):

𝑆2(θi) = ∫
θs

θi

(
θs + θ − 2θi

)
𝐷w(θ)dθ

=
(1 − 𝑚)𝐾s
α𝑚(θs − θr) ∫

θs

θi
(θs + θ − 2θi)𝑆

(λ−1∕𝑚)
e

[(
1 − 𝑆

1∕𝑚
e

)−𝑚
+
(
1 − 𝑆

1∕𝑚
e

)𝑚
− 2

]
dθ (1)

where θ, θi, θs, and θr [L3 L−3] denote the current, initial, sat-
urated, and residual volumetric soil moisture contents, respec-
tively,𝐷w(θ) [L2 T−1] signifies the soil water diffusivity func-
tion of Mualem (1976) and van Genuchten (1980), α [L−1]
is a proxy of the soil’s air-entry value, m is a unitless coeffi-

Core Ideas
∙ Methods for exact and robust forward and inverse

modeling of Parlange’s three-parameter infiltration
equation are presented.

∙ Methods allow for a rapid inverse estimation of 𝑆,
𝐾s, and β from cumulative infiltration measure-
ments.

∙ Time and infiltration form of Parlange’s equation
may provide contrasting parameter values.

∙ Most infiltration experiments are too short to war-
rant an accurate estimation of 𝐾s and β.

cient,𝐾s [L T−1] denotes the saturated hydraulic conductivity,
a measure of the soil’s ability to transmit water under the influ-
ence of gravity, λ [−] is a pore-connectivity parameter, and
𝑆e = (θ − θr)∕(θs − θr) is the unitless degree of saturation.
The sorptivity, 𝑆, not only depends on the soil’s hydraulic
properties as characterized by the Mualem–van Genuchten
parameters, θr , θs, α, 𝑛 = 1∕(1 − 𝑚), 𝐾s and λ, but is also a
function of the soil’s initial moisture content. Hence, the sorp-
tivity is not an invariant soil property, which obfuscates its use
in hydraulic functions. For notational convenience, we omit
the explicit functional dependence of the soil sorptivity, 𝑆,
on the initial moisture content.

In this paper, we focus our attention on the three-parameter
infiltration equation of Parlange et al. (1982). This quasi-exact
implicit solution of Richards’ equation describes cumulative
vertical infiltration, 𝐼(𝑡) ≥ 0 [T], into a homogeneous soil at
uniform initial moisture content

(𝐾s −𝐾i)2

𝑆2 (1 − β)𝑡 =

(𝐾s −𝐾i)
[
𝐼(𝑡) −𝐾i𝑡

]
𝑆2 − 1

2
log(

1
β
exp

{
2β(𝐾s −𝐾i)

[
𝐼(𝑡) −𝐾i𝑡

]
𝑆2

}
+

β − 1
β

)
(2)

where 𝑡 ≥ 0 [T] denotes time, 𝐾i [L T−1] signifies the soil
hydraulic conductivity at the initial moisture content, θi, and,
0 < β < 2 is a unitless parameter. This range of β values
exceeds the unit interval stipulated by Parlange et al. (1982)
and satisfies the theoretical definition of β from Fuentes et al.
(1992) stated explicitly in Haverkamp et al. (1994). For 𝐾i =
0 and β → 0, the above expression simplifies to the well-
known infiltration equation of Green and Ampt (1911) and
to soil types for which the diffusivity, 𝐷w(θ), increases much
more rapidly with θ than d𝐾∕dθ (Assouline, 2013). As the
above expression originates from the water content form of
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Richards’ equation, its use is limited to nonponded conditions.
Parlange et al. (1985) and Haverkamp et al. (2015) general-
ized Equation 2 to ponded conditions with an explicit form
presented by Barry et al. (1995). Haverkamp et al. (1994)
renewed interests in Equation 2 in pursuit of an analytic solu-
tion for three-dimensional infiltration from a disc infiltrom-
eter. Some publications in the vadose zone literature even
credit Equation 2 to Haverkamp et al. (1994), reinforcing
Stigler’s law of eponymy (Stigler, 1980), a supposed tendency
of eponymous expressions to be named after people other than
their original discoverer(s).

As quasi-exact analytic solution of Richards’ equation, Par-
lange’s infiltration equation has several desirable characteris-
tics. Equation 2 is valid for the entire duration of the infiltra-
tion event, matches cumulative infiltration data from a wide
range of soils, and the parameters, 𝑆, 𝐾s, and β, exhibit a solid
mathematical–physical underpinning, adjustable to the initial
and boundary conditions of the infiltration event (Haverkamp
et al., 1994; Rahmati et al., 2020). Despite these desirable
qualifications, the two-term infiltration equation of Philip
(1957),

𝐼(𝑡) = 𝑆
√
𝑡 + 𝑐𝐾s𝑡 (3)

has remained the default choice of many soil hydrologists for
analyzing measured cumulative infiltration curves, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1,
consisting of 𝑛 different (𝑡, 𝐼) data pairs. This infiltration
equation is easy to use, supported by detailed mathematical–
physical analysis, and the optimum values of 𝑆 and the prod-
uct of the dimensionless multiple 𝑐 and 𝐾s can be obtained
from linear least squares via a closed-form expression. One
has to be careful, however, in fitting Philip’s two-term equa-
tion to measured infiltration data as the function has a lim-
ited time validity, 𝑡valid [T]. This issue is often overlooked
and severely compromises the practical applicability of Equa-
tion 3. Indeed, we should not use (𝑡, 𝐼) data pairs beyond 𝑡valid,
as this will corrupt the least squares estimates of 𝑆 and 𝑐𝐾s
(Jaiswal et al., 2021). Thus, the choice for Philip’s two-term
infiltration equation is not given in by its superior ability in
describing the infiltration process, but rather by numerical
convenience.

Parlange’s infiltration equation does not suffer a limited
time validity. This benefit comes with several practical advan-
tages

and, if nothing else, allows determination of 𝑆 and 𝐾s from
any collection of measured (𝑡, 𝐼) data pairs. The reason so as
to why Parlange’s infiltration equation has not entered into
mainstream use for infiltration modeling and data analysis was
articulated in an earlier publication by Jaiswal et al. (2021).
The designation of time, 𝑡, as an independent variable in
Parlange’s infiltration function honors the causal relationship
between 𝑡 and 𝐼 but prevents a closed-form solution of Equa-
tion 2 in pursuit of the 𝐼(𝑡) relationship. Indeed, at each time

𝑡, the cumulative infiltration, 𝐼 , needs to be determined itera-
tively so that the left-hand side of Equation 2 matches exactly
the two terms on the right-hand side. In essence, this amounts
to an inverse problem and necessitates a proper numerical
solver. Unfortunately, most published papers about Parlange’s
infiltration equation in the vadose zone literature did not docu-
ment a numerical solution to the 𝐼(𝑡) form (Kargas & Londra,
2020; Lassabatere et al., 2009, 2014; Wang et al., 2017), nor
consider a recipe for parameter estimation. Other researchers
turned their attention instead to the simplified solution pre-
sented by Haverkamp et al. (1994) and implement three sepa-
rate equations for cumulative infiltration at very short, short,
and long times, respectively (Bouarafa et al., 2019; Di Prima
et al., 2020; Haverkamp et al., 1994; Liu et al., 2018; Moret-
Fernández et al., 2020; Rahmati et al., 2020; Stewart & Abou
Najm, 2018; Vandervaere et al., 2000). These three equations
are much easier to evaluate yet trade numerical issues of Equa-
tion 2 with problems of time validity and continuity.

In an earlier publication, Jaiswal et al. (2021) introduced an
exact, robust, and computationally efficient solution of Par-
lange’s infiltration equation. This solution uses root finding
with the secant method to find the zero-points of the resid-
ual form of Equation 2. This amounts to a finite-difference
approximation of Newton’s method and uses consecutive
secant lines to produce a sequence of iterates intended to con-
verge to solutions of the cumulative infiltration, 𝐼(𝑡), rela-
tionship. Several authors have used the bisection method to
find the interval of 𝐼 , wherein the residual function changes
sign (Latorre et al., 2015, 2018; Moret-Fernández & Latorre,
2017; Moret-Fernández et al., 2019). This interval-halving
approach is not particularly efficient nor does it optimally
exploit the characteristics of the residual function. In this
paper, we refine the numerical solution of Jaiswal et al. (2021)
and present theory, algorithms, and source codes of two dif-
ferent procedures for forward and inverse modeling of Par-
lange’s infiltration equation. Of the two forward modeling
approaches, one involves only explicit equations, which obvi-
ates the need for an iterative solution of the 𝐼(𝑡) relation-
ship and allows use of the basic features of a spreadsheet
for forward modeling of Equation 2. Both numerical solu-
tions admit application of gradient-based parameter estima-
tion with the Levenberg–Marquardt (LM) algorithm (Leven-
berg, 1944; Marquardt, 1963) for least squares estimation of
the Parlange parameters, 𝑆, 𝐾s, and β, from measured cumu-
lative infiltration data. We benchmark the two numerical solu-
tions and present the results of our preliminary studies using
a large sample of experiments and soils from the Soil Water
Infiltration Global (SWIG) database of Rahmati et al. (2018).
To the best of our knowledge, this is the first paper that
fully exploits the potential of Parlange’s infiltration equation
for inverse estimation of hydraulic properties. Latorre et al.
(2015) used inverse estimation of Equation 2 to infer the soil
sorptivity, 𝑆, and saturated hydraulic conductivity, 𝐾s, from
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measured cumulative infiltration data, but they fixed β to the
common value of 0.6. A similar approach with β = 0.6 was
used in other studies (Dohnal et al., 2010; Latorre et al., 2018;
Moret-Fernández et al., 2020; Rahmati et al., 2019).

The remainder of the paper is organized as follows. Sec-
tion 2 expands on the iterative solution of Jaiswal et al. (2021)
and introduces two different numerical solutions of Parlange’s
infiltration equation, the so-called infiltration and time forms
of Equation 2. In this section, we are especially concerned
with the partial derivatives of the two forms of Parlange’s
equation. This is followed by Section 3, which describes
briefly the measured infiltration data of the SWIG database,
and Section 4, which verifies the accuracy, robustness, and
computational efficiency of the two numerical solutions and
evaluates their ability to match cumulative infiltration data of
a large number of experiments of the SWIG database. In this
section, we benchmark the least squares values of the Par-
lange parameters and their confidence intervals against their
counterparts derived from Bayesian analysis using Markov
chain Monte Carlo (MCMC) simulation with the DiffeRential
Evolution Adaptive Metropolis [DREAM(ZS)] algorithm with
sampling from past states (Vrugt et al., 2008, 2009, 2016).
Finally, Section 5 concludes our paper with a summary of our
main findings.

2 PARLANGE’S INFILTRATION
EQUATION

The cumulative infiltration function of Parlange in Equation 2
is a quasi-exact implicit solution of Richards’ equation. We
conveniently refer to this original formulation as the infiltra-
tion form of Parlange, in anticipation of an alternative for-
mulation, the so-called time form, detailed in Section 2.2. In
this section, we present numerical solutions of both forms of
Parlange’s infiltration function and introduce recipes for least
squares estimation of their parameters, including the sorp-
tivity, 𝑆, saturated hydraulic conductivity, 𝐾s, dimensionless
coefficient, β, and/or hydraulic conductivity, 𝐾i, at the initial
moisture content, θi. In Section 4, we illustrate the two forms
of Parlange’s infiltration function by application to measured
infiltration data from the SWIG database of Rahmati et al.
(2018). As in Jaiswal et al. (2021), we follow the theoretical
definition of β from Fuentes et al. (1992) and Haverkamp et al.
(1994) and assume that 0 < β < 2 and β ≠ 1.

2.1 Infiltration form

2.1.1 Forward modeling

The classification of Parlange’s infiltration function as a semi-
implicit equation may seem superfluous but nevertheless, has

important practical implications, as it means that we cannot
simply compute the cumulative infiltration, 𝐼 , as a function
of time, 𝑡. Rather, at each time, 𝑡, we must use an iterative
recipe to determine the value of 𝐼 so that the left-hand side of
Equation 2, 𝑓 (𝑡, 𝑆,𝐾s, 𝐾i, β), matches exactly its right-hand
side, 𝑔(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β), as follows:

(𝐾s −𝐾i)2

𝑆2 (1 − β)𝑡
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

𝑓 (𝑡,𝑆,𝐾s ,𝐾i ,β)

=

(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)
𝑆2 − 1

2
log
{

1
β
exp

[
2β(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)

𝑆2

]
+

β − 1
β

}
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

𝑔(𝐼,𝑡,𝑆,𝐾s ,𝐾i ,β)

(4)

The solution, 𝑥, to an equation of the form 𝑓 (𝑥) =
𝑔(𝑥) is equal to the zero-point(s) of the so-called resid-
ual function, 𝑟(𝑥) = 𝑓 (𝑥) − 𝑔(𝑥). The residual function,
𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β), of Parlange’s infiltration Equation 4,

𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β) = 𝑓 (𝑡, 𝑆,𝐾s, 𝐾i, β) − 𝑔(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β)
(5)

is equal to

𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β) =
(𝐾s−𝐾i)(𝐼−𝐾i𝑡)

𝑆2 − 1
2 log

{
1
β exp

[
2β(𝐾s−𝐾i)(𝐼−𝐾i𝑡)

𝑆2

]
+ β−1

β

}
−(𝐾s−𝐾i)2

𝑆2 (1 − β)𝑡

(6)

We can express the above equation in two new variables,
Δ𝐾 = 𝐾s −𝐾i [L T−1], and ξ = Δ𝐾∕𝑆2 [L−1]. This change
of variables simplifies the definition of the residual function:

𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) =

ξ(𝐼 −𝐾i𝑡) −
1
2 log

{
1
β exp[2βξ(𝐼 −𝐾i𝑡)] +

β−1
β

}
−ξΔ𝐾(1 − β)𝑡

(7)

If we divide all terms by ξ > 0, then we yield

𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) =

𝐼 −𝐾i𝑡 −
1
2ξ log

{
1
β exp[2βξ(𝐼 −𝐾i𝑡)] +

β−1
β

}
− Δ𝐾(1 − β)𝑡

(8)
which may be further rearranged to

𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) =

𝐼 − 1
2ξ log

(
1
β{exp[2βξ(𝐼 −𝐾i𝑡)] + β − 1}

)
−
[
Δ𝐾(1 − β) +𝐾i

]
𝑡

(9)
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F I G U R E 1 Plot of the residual function, 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ), for
0 ≤ 𝐼 ≤ 20 cm using 𝑡 = 3 hours, sorptivity 𝑆 = 2.0 cm h−1/2, soil
hydraulic conductivity at the initial moisture content 𝐾i = 0.0 cm h−1,
soil hydraulic conductivity𝐾s = 1.0 cm h−1, and coefficient β = 1.5.
The red cross portrays the root, 𝐼r , of the residual function

The wording residual function is appropriate as
𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) measures the deviation between an
observable true value (zero) and the estimated value of this
quantity.

At any given time, 𝑡, the zero-point of 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ),
equals a solution, 𝐼(𝑡), of the cumulative infiltration curve.
Thus, we must find the value of the cumulative infiltration, 𝐼 ,
at which the residual function equals zero. To provide insights
into the functional shape of the residual function, please con-
sider Figure 1, which presents a plot of 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) at
𝑡 = 3 h using 𝑆 = 2.0 cm h−1/2, 𝐾i = 0.0 cm h−1, 𝐾s = 1.0
cm h−1, and β = 1.5. The red cross at the intersection of the
horizontal and vertical dashed red lines equals the root of the
residual function, 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ).

The residual function, 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ), attains its largest
value, 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) > 0, at 𝐼 = 0 and decreases strictly
from left to right across the graph. For, 0 ≤ 𝑥 < 𝑦, we
yield that 𝑟(𝑥, 𝑡,Δ𝐾,𝐾i, β, ξ) < 𝑟(𝑦, 𝑡,Δ𝐾,𝐾i, β, ξ). This con-
dition of strict monotonicity implies the existence of a single
root, 𝐼r , and first derivative, 𝑟′(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) < 0, which
does not change sign. Strict monotonicity is highly desir-
able as it guarantees convergence towards the zero-point of
𝑟(𝑥, 𝑡,Δ𝐾,𝐾i, β, ξ) from any arbitrary initial guess, 𝑥 > 0.
To understand whether the properties of the residual func-
tion generalize to other Parlange parameter values and mea-
surement times, 𝑡, Figure 2 visualizes the residual function,
𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ), for 12 USDA soil types using 𝐾i = 0 and
values of 𝑆, 𝐾s, and β documented in Table 5 of Jaiswal et al.
(2021) and shown in Table 1. The right-most column reports
the time, 𝑇5, it takes for each soil type to infiltrate 𝐼 = 5 cm
of water.

T A B L E 1 The sorptivity, 𝑆, saturated hydraulic conductivity, 𝐾s,
and unitless coefficient, β, of Parlange’s infiltration equation for each
USDA soil type

Soil type 𝑺 𝑲𝐬 𝛃 𝑻𝟓

cm h−1/2 cm h−1 h

Clay 1.042 0.214 1.644 14.687

Clay loam 1.491 0.307 1.505 8.169

Loam 2.267 0.969 1.507 3.104

Loamy sand 6.315 15.261 0.836 0.238

Sand 9.327 31.877 0.704 0.109

Sandy clay 0.799 0.136 1.363 22.972

Sandy clay loam 1.700 1.261 2.000 3.335

Sandy loam 3.907 4.443 1.053 0.767

Silt 1.381 0.205 1.766 10.761

Silt loam 1.704 0.379 1.699 6.587

Silt clay 0.353 0.021 1.702 139.232

Silty clay loam 0.519 0.058 1.999 58.869

Note. Listed values correspond to Table 5 of Jaiswal et al. (2021). The hydraulic
conductivity,𝐾i (cm h−1), at the initial moisture content, θi, is fixed to zero. Entries
in the last column, 𝑇5, list the time required to infiltrate 𝐼 = 5 cm of water.

For each soil type, we consider 𝑛 = 10 equally spaced
measurement times, 𝑡, between 𝑡 = 𝑇5∕𝑛 and 𝑡 = 𝑇5. This
sequence of 10 measurement times is color coded with a
palette of light to dark blue and matches the color bar of the
clayey soil in Figure 2a. The different graphs confirm our
earlier findings. The residual function, 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ),
is smooth, continuous, and strictly decreasing for all soil
types but (d) loamy sand and (e) sand. Specifically,
𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) increases with 𝐼 if β > 1 and decreases
for β < 1. This strict monotonicity proofs the existence of a
unique root for all soil types and measurement times. Sup-
port for this claim is provided by the different graphs, which
demonstrate that the residual function crosses the y axis only
once within the domain, 0 ≤ 𝐼 ≤ 6 cm, of cumulative infil-
tration values, 𝐼 . These properties of the residual function are
highly desirable and will help guide a search method to the
zero-point of 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ) from any initial guess, 𝐼(0),
of this root. This guarantees a robust and exact numerical solu-
tion of the infiltration form of Parlange’s equation.

In the remainder of this paper, we suppress the dependence
of the residual function, 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ), on soil-specific
constants, Δ𝐾 = 𝐾s −𝐾i, 𝐾i, β, and ξ = Δ𝐾∕𝑆2, and write
𝑟(𝐼, 𝑡) instead.

The residual function in Equation 9 warrants application
of an arsenal of root-finding algorithms to solve for a col-
lection of different (𝑡, 𝐼) data pairs that make up the cumu-
lative infiltration curve, 𝐼(𝑡). Consider the residual function,
𝑟(𝐼, 𝑡), on the interval [𝐼a, 𝐼b], where 𝑟(𝐼a, 𝑡) and 𝑟(𝐼b, 𝑡) have
opposite signs. Then, per the intermediate value theorem, the
function must have at least one root in the interval from 𝐼a
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F I G U R E 2 Plot of the residual function, 𝑟(𝐼, 𝑡,Δ𝐾,𝐾i, β, ξ), for 0 ≤ 𝐼 ≤ 5, using the 12 different soil types listed in Table 1 below with 𝑛 = 20
measurement times each. Each time, 𝑡, is coded with a different blue tint

to 𝐼b. Latorre et al. (2015) used the bisection method to find
the interval of 𝐼 , wherein the residual function changes sign.
This interval-halving approach is an improvement over brack-
eting and uses the function value, 𝑟(𝐼c, 𝑡), at the midpoint,
𝐼c = 𝐼a + (𝐼b − 𝐼a)∕2, of the root interval, [𝐼a, 𝐼b], to verify
in which of the two subintervals, [𝐼a, 𝐼c] or [𝐼c, 𝐼b], the func-
tion changes sign. If 𝑟(𝐼a, 𝑡) and 𝑟(𝐼c, 𝑡) have opposite signs,
the subinterval [𝐼a, 𝐼c] must contain a zero-point, and, conse-
quently, we set 𝐼b = 𝐼c; otherwise, there must be a sign change
in the interval [𝐼c, 𝐼b], and we set 𝐼a = 𝐼c. We then compute
the midpoint of the new [𝐼a, 𝐼b] interval, and so forth. Thus,
at each successive iteration, bisection selects the subinterval
(left or right) with opposite signs, thereby reducing the width
of the root interval by 50%. This process is continued until the
interval (bracket) surrounding the root is sufficiently small.
The bisection method may be easy to use but requires a rela-
tively large number of residual function evaluations to deter-
mine an accurate value of its zero-point at each time 𝑡.

In our earlier publication (Jaiswal et al., 2021), we used
the secant method to locate the root of 𝑟(𝐼, 𝑡). This approach
exploits much better the monotone nature of the residual func-
tion and, as a result, demands only a handful of iterations to
find its zero-point. In this paper, we further refine our iterative
procedure and resort to Newton’s method instead:

𝐼(𝑘+1) = 𝐼(𝑘) −
𝑟
[
𝐼(𝑘), 𝑡

]
𝑟′
[
𝐼(𝑘), 𝑡

] (10)

where 𝑟′(𝐼, 𝑡) signifies the derivative of the residual func-
tion with respect to 𝐼 and 𝑘 denotes iteration counter. The
derivative, 𝑟′(𝐼, 𝑡), of the residual function, 𝑟(𝐼, 𝑡), will help
determine the direction of movement to the zero-point. For
example, if 𝑟[𝐼(𝑘), 𝑡] < 0 and 𝑟′[𝐼(𝑘), 𝑡] > 0 at the kth iter-
ate, 𝐼(𝑘), then the root of the residual function must lie to
the right of 𝐼(𝑘), and the next iterate, 𝐼(𝑘+1), should exceed,
𝐼(𝑘). Equation 10 satisfies this analogy. The derivative of
the residual function, 𝑟′(𝐼, 𝑡), can be derived by analytic
means:

𝑟′(𝐼, 𝑡) = d𝑟
d𝐼

= 1 −
β exp[2βξ(𝐼 −𝐾i𝑡)]

exp[2βξ(𝐼 −𝐾i𝑡)] + β − 1
(11)

We now have all ingredients to implement Newton’s
method and solve for the root of Parlange’s residual function
at any time, 𝑡 > 0. Figure 3 illustrates the application of Equa-
tion 10 to the residual function, 𝑟(𝐼, 𝑡), at 𝑡 = 1 h using 𝑆 =
2.0 cm h−1/2, 𝐾i = 0.0 cm h−1, 𝐾s = 1.0 cm h−1, and β =
1.5. Suppose our initial guess of the root, 𝐼(0), is 𝐼(0) = 0.45.
Based on the value of the residual function, 𝑟(𝐼, 𝑡), and its
derivative function, 𝑟′(𝐼, 𝑡), at 𝐼 = 𝐼(0), the recurrence rela-
tionship of Equation 10 yields a new guess, 𝐼(1) ≈ 4.956, of
the zero-point of 𝑟(𝐼, 𝑡). If we repeat this recipe for 𝐼(1), then
we yield our next iterate, 𝐼(2) = 2.485. After one more itera-
tion, we attain 𝐼(3) = 2.279, in close proximity of the actual
root, 𝐼r = 2.274, of 𝑅(𝐼, 𝑡).
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F I G U R E 3 Graphical illustration of the application of Newton’s
method to root finding of the residual function, 𝑟(𝐼, 𝑡), at 𝑡 = 1 h using
sorptivity 𝑆 = 2.0 cm h−1/2, soil hydraulic conductivity 𝐾s = 1.0 cm
h−1, and coefficient β = 1.5. Newton’s method is initialized at 𝐼(0) =
0.45 cm. Based on the function value, 𝑟(𝐼, 𝑡), and its derivative, 𝑟′(𝐼, 𝑡)
(solid blue line), at 𝐼 = 𝐼(0), Newton’s method yields 𝐼(1) ≈ 4.956 via
the recursion, 𝐼(1) = 𝐼(0) − 𝑟′(𝐼, 𝑡)∕𝑟(𝐼, 𝑡), of Equation 10. This new
guess of the root results in a next iterate, 𝐼(2) ≈ 2.485, which, in turn,
leads to 𝐼(3)≈ 2.278, in close vicinity of the actual root, 𝐼r = 2.274,
indicated with the red cross. A few more iterations (not shown) are
required to satisfy convergence thresholds

Thus, after only a handful of iterations at 𝑡 = 1 h, we yield
the approximate zero point of the residual function, 𝑅(𝐼, 𝑡), a
testament to the efficiency of Newton’s method. In practice,
however, we may need more iterations to improve solution
accuracy and satisfy convergence thresholds specified by the
user. This may include termination tolerances on the root, 𝐼tol,
and its function value, 𝑟tol, which promote solution accuracy
and precision, and conditions such as the maximum allowable
number of iterations, 𝑘max, which safeguard computational
efficiency. Note that the distance to the root and/or magnitude
of the residual function, 𝑟(𝐼, 𝑡), do not always decrease in the
sequence of iterates, 𝐼(0), 𝐼(1), …, 𝐼(𝑘). Indeed, the solution
may deteriorate temporarily between successive iterations en
route of Newton’s method to the zero point of the residual
function. In the examples considered herein, the first iterate,
𝐼(1), is worse than 𝐼(0), or |𝑟[𝐼(1), 𝑡]| > |𝑟[𝐼(0), 𝑡]|, but subse-
quent solutions improve upon the initial guess. Smoothness
and monotonicity come in handy as these properties of the
residual function virtually guarantee that the sequence of 𝐼
iterates from Newton’s method will converge to the zero-point
of 𝑟(𝐼, 𝑡), independent of the choice of the initial guess, 𝐼(0).
The constant sign of the derivative function, 𝑟′(𝐼, 𝑡), will help
guide the iterates to the root, 𝐼r , of 𝑟(𝐼, 𝑡) from any reason-
able initial guess, 𝐼(0) > 0. Care should always be exercised

that the residual function, 𝑟(𝐼, 𝑡), is differentiable in the inter-
val around the root.

If so desired, we can substitute the expressions of 𝑟(𝐼, 𝑡) and
𝑟′(𝐼, 𝑡) in Equation 10. This produces the following recurrence
relation:

𝐼(𝑘+1) =

𝐼(𝑘) −
𝐼(𝑘) −

1
2ξ log(

1
β {exp[2βξ(𝐼 −𝐾i𝑡)] + β − 1}) − (Δ𝐾(1 − β) +𝐾i)𝑡

1 −
(
β exp

{
2βξ

[
𝐼(𝑘) −𝐾i𝑡

]})/(
exp

{
2βξ

[
𝐼(𝑘) −𝐾i𝑡

]}
+ β − 1

)
(12)

We do not use this equation in our numerical solution but
rather evaluate Equation 10 and evaluate separately the resid-
ual function, 𝑟[𝐼(𝑘), 𝑡], and its derivative function, 𝑟′[𝐼(𝑘), 𝑡],
at each iteration,𝑘. In our earlier publication by Jaiswal et al.
(2021), we used the function values, 𝑟[𝐼(𝑘), 𝑡] and 𝑟[𝐼(𝑘−1), 𝑡],
of the last two iterates to approximate the function deriva-
tive, 𝑟′[𝐼(𝑘), 𝑡], at 𝐼(𝑘). This so-called secant method requires
one or more iterations at each time, 𝑡, to compute the 𝐼(𝑡)
relationship.

Algorithm 1 (Figure 4) summarizes the different steps of
our numerical solution of the infiltration form of Parlange’s
equation. Based on the parameter values, 𝑆 [L T−1/2], 𝐾i [L
T−1], 𝐾s [L T−1] and β, and a 𝑛 × 1 vector, 𝐭 = [𝑡1 𝑡2 ⋯ 𝑡𝑛]⊤,
of infiltration times, the algorithm returns a 𝑛 × 1 vector of
simulated cumulative infiltration values, 𝐈 = [𝐼1 𝐼2 ⋯ 𝐼𝑛]⊤
[L], at 𝑡1, 𝑡2,… , 𝑡𝑛 [T]. The time vector should be sorted
in increasing order, thus, 𝑡𝑚 > 𝑡𝑚−1 for all 𝑡 = (2, 3,… , 𝑛).
The user is free to specify the termination tolerances on the
function value of the root, 𝑟tol > 0, and the maximum allow-
able number of iterations, 𝑘max, of Newton’s method. Our
numerical experiments have shown that the default values of
𝑟tol = 10−12 and 𝑘max = 20 guarantee a robust, accurate and
efficient numerical solution of the 𝐼(𝑡) relationship. To sim-
plify application and use, Supplemental Section S1 presents
the implementation of Algorithm 1 in MATLAB. The
subroutine Parlange_I.m may be executed directly from the
MATLAB command prompt by typing I = Parlange_I(eta,t)
and is equal to a vector-valued function, 𝐈 = 𝐟 (η, 𝐭), of
the 𝑑 × 1 parameter vector, 𝛈 = [𝑆 𝐾s β 𝐾i]⊤, and the 𝑛 ×
1 time vector, 𝐭 = [𝑡1 𝑡2 ⋯ 𝑡𝑛]⊤. The values of 𝑟tol and
𝑘max may be submitted as third and fourth input argu-
ments in the function call to Parlange_I, otherwise their
default values of 10−12 and 20, respectively, will be assigned
instead.

We would be remiss not to comment on two important
aspects of our numerical solution of Parlange’s infiltration
form. In the first place, the choice of the initial guess, 𝐼(0)
[named 𝑦(0) in Algorithm 1], and its impact on algorithmic
robustness and efficiency has been studied to considerable
extent. Details of these studies are presented in Supplemen-
tal Section S2. Secondly, the exponential and logarithmic
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F I G U R E 4 Algorithmic recipe of numerical solution of infiltration form of Parlange’s function

T A B L E 2 Description of the parameters of Parlange’s infiltration Equation 2 including symbol, units, and respective lower and upper bounds

Parameter Description Unit Min. Max. Remark
𝑆 Soil sorptivity cm h−1/2 10−4

𝐾s Saturated hydraulic conductivity cm h−1 10−4

β Dimensionless coefficient – 10−4 1.999 β ≠ 1
𝐾i Initial hydraulic conductivity cm h−1 0 ≪ 𝐾s

functions of Parlange’s infiltration equation are subject to
numerical under- and/or overflow. For example, the dimen-
sionless argument, γ = 2βξ(𝐼 −𝐾i𝑡), of the exponential func-
tion of Parlange’s residual Function 9 is growing with time, 𝑡,
and may exceed the value of 709.783 established in the Insti-
tute of Electrical and Electronics Engineers (IEEE) standard
for floating-point arithmetic (IEEE 754) on a 64-bit central
processing unit (CPU). This limit of the exponential func-
tion may already be surpassed at early infiltration times for
large values of ξ = Δ𝐾∕𝑆2. Very small values of ξ, on the
other hand, may provoke numerical underflow. These numer-
ical artefacts are unavoidable but can be evaded to some extent
by imposing a lower limit of 10−4 on the values of 𝑆, 𝐾s, and
β (see Table 2).

As 𝐾i does not elicit numerical problems, its lower bound
may be set to zero. According to the mathematical definition
of β given by Haverkamp et al. (1994), this dimensionless
quantity cannot exceed two. Furthermore, for β = 1, the resid-
ual function, 𝑟(𝐼, 𝑡), will equal zero for all 𝐼 > 0. As a result,
we yield, β ∈ [10−4, 1) and β ∈ (1, 2). The upper bounds of
the soil sorptivity, 𝑆, and initial and saturated hydraulic con-
ductivities, 𝐾i and 𝐾s, respectively, are diffuse and not as
clearly defined. Their values should just be set large enough
to accommodate all soil types of the textural triangle. We will
revisit this topic of floating-point arithmetic in a later section
and present a simple workaround (patch) that rectifies simu-
lation of the 𝐼(𝑡) relationship at late times and/or for unusual
parameter values.
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F I G U R E 5 Parameter estimation of the infiltration form of
Parlange’s equation: comparison of measured (red dots) and simulated
(solid blue line) cumulative infiltration curve. The vertical gray lines
portray the 𝑛 = 10 residuals

2.1.2 Inverse modeling

Now that we have available an efficient numerical solution
of the infiltration form of Parlange’s equation, we can pro-
ceed with estimation of its parameters, 𝑆, 𝐾s, 𝐾i, and β from
an experimental record, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1, of cumulative infiltration
data. The tilde symbol emphasizes measured quantities of the
𝑛 × 1 vectors, �̃� = [𝐼1 𝐼2 ⋯ 𝐼𝑛]⊤, and, �̃� = [𝑡1 𝑡2 ⋯ 𝑡𝑛]⊤, of
cumulative infiltration data and corresponding observation
times, respectively. If we group the Parlange parameters in
a 4 × 1 vector, 𝛈 = [𝑆 𝐾s 𝐾i β]⊤, and adopt a least squares
approach, then the optimum parameters, �̂�, will minimize the
familiar sum of squared residuals, 𝐹 (𝛈, �̃�):

𝐹 (𝛈, �̃�) =
𝑛∑
𝑖=1

[
𝐼𝑖 − 𝑓 (𝛈, 𝑡𝑖)

]2
=

𝑛∑
𝑖=1

𝑒𝑖(𝛈, 𝑡𝑖)2

= 𝐞(𝛈, �̃�)⊤𝐞(𝛈, �̃�) (13)

where 𝑓 (𝛈, 𝑡𝑖) is the scalar-valued form of Par-
lange’s infiltration Equation 2, 𝐞(𝛈, �̃�), signifies the
𝑛 × 1 vector of cumulative infiltration residuals,
𝐞(𝛈, �̃�) = [𝑒1(𝛈, 𝑡1) 𝑒2(𝛈, 𝑡2)⋯ 𝑒𝑛(𝛈, 𝑡𝑛)]⊤, and the sym-
bol ⊤ denotes transpose. The formulation, 𝑓 (𝛈, 𝑡), implies
that time, 𝑡 ≥ 0, is treated as exogenous (independent)
variable and, consequently, the function will return as
output argument the cumulative infiltration, 𝐼 ≥ 0. The
vector-valued form of Equation 2, 𝐟 (𝛈, 𝐭), returns a vector
of cumulative infiltration values, 𝐈 = [𝐼1 𝐼2 ⋯ 𝐼𝑛]⊤, corre-
sponding to the entries of the time vector, 𝐭 = [𝑡1 𝑡2 ⋯ 𝑡𝑛]⊤.
Figure 5 illustrates the application of the infiltration form

of Parlange’s equation to a data record of 𝑛 = 10 measured
(𝑡, 𝐼) data pairs. The vertical lines portray the residuals,
𝐞(η, �̃�) = [𝑒1(η, 𝑡1) 𝑒2(η, 𝑡2)⋯ 𝑒10(η, 𝑡10)]⊤.

In Jaiswal et al. (2021), we used the DREAM(ZS) algorithm
to find the optimum values of the Parlange parameters and
their associated posterior uncertainty. This MCMC method
uses repeated evaluation of the infiltration form of Parlange’s
equation to delineate the d-dimensional parameter space of
statistically acceptable solutions. In this paper, we focus our
attention on the class of local search methods, which seek iter-
ative improvement starting from a single initial point, 𝛈(0), in
the d-dimensional parameter space, 𝛈 ∈ 𝐄 ⊆ ℝ𝑑 . Well known
methods such as Newton, Gauss–Newton, and LM rely on a
so-called Hessian (sensitivity) matrix,𝐇(𝛈), and gradient vec-
tor, 𝐠(η), to find the most productive search direction in pur-
suit of the objective function minimum. These methods share
in common their expression for the new iterate, 𝛈(𝑘+1), of Par-
lange parameter values

𝛈(𝑘+1) = 𝛈(𝑘) + Δ𝛈(𝑘) (14)

but differ in their computation of the 𝑑 × 1 shift vector, Δ𝛈(𝑘).
We use the LM algorithm (Levenberg, 1944; Marquardt,
1963), also known as damped least squares:

Δ𝛈(𝑘)

=
{
𝐉f
[
𝛈(𝑘), �̃�

]⊤
𝐉f
[
𝛈(𝑘), �̃�

]
+ Λ(𝑘)

}−1

𝐉f
[
𝛈(𝑘), �̃�

]⊤
𝐞
[
𝛈(𝑘), �̃�

]
(15)

where 𝐉f [𝛈(𝑘), �̃�] denotes the 𝑛 × 𝑑 Jacobian matrix of Par-
lange’s infiltration form, 𝐞[𝛈(𝑘), �̃�], is the 𝑛 × 1 vector of cumu-
lative infiltration residuals for the current iterate, 𝛈(𝑘), of
Parlange parameter values and, Λ(𝑘), is the 𝑑 × 𝑑 damping
matrix

Λ(𝑘) = λ(𝑘)𝐈𝑑 ⊙ diag
{
𝐉f
[
𝛈(𝑘), �̃�

]⊤
𝐉f
[
𝛈(𝑘), �̃�

]}
(16)

where λ > 0 is a strictly positive damping factor and the
binary operator ⊙ works as follows:

Λ(𝑘) = λ(𝑘)

⎡⎢⎢⎢⎢⎣
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤⎥⎥⎥⎥⎦𝑑
⊙

⎡⎢⎢⎢⎢⎣
𝑎1
𝑎2
⋮
𝑎𝑑

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝑎1λ(𝑘) 0 ⋯ 0
0 𝑎2λ(𝑘) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑑λ(𝑘)

⎤⎥⎥⎥⎥⎦

(17)
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and produces a 𝑑 × 𝑑 diagonal matrix with entries 𝑎𝑗λ(𝑘) ∀𝑗 =
(1, 2,… , 𝑑) on the main diagonal and zeros elsewhere. The
damping factor, λ, is strictly positive and adjusted after
each iteration, 𝑘. If λ → 0, then the damping matrix, Λ(𝑘),
goes to zero and Equation 15 reduces to Gauss–Newton. On
the other hand, if λ takes on very large values, say λ →
106, then the damping matrix of Equation 16 will dominate
the 𝑑 × 𝑑 matrix–matrix product, 𝐉f [𝛈(𝑘), �̃�]⊤𝐉f [𝛈(𝑘), �̃�], and
Equation 15 reduces to steepest descent with shift vector,
Δθ(𝑘) ≃ − 1

2λ𝐠[𝛈(𝑘), �̃�], equal to a multiple of the 𝑑 × 1 gra-

dient vector, 𝐠[𝛈(𝑘), �̃�] = 𝐉f [𝛈(𝑘), �̃�]⊤𝐞[𝛈(𝑘), �̃�]. Thus, by adap-
tively changing the value of λ between successive iterations,
the LM method can switch between Gauss–Newton (uses cur-
vature of response surface) and steepest descent (uses gradient
only).

The 𝑛 × 𝑑 Jacobian matrix, 𝐉f (𝛈, �̃�), is a generalization of
the gradient vector, 𝐠(𝛈, �̃�), to vector-valued functions and
stores the first-order derivatives of the infiltration form of Par-
lange’s Equation 2 with respect to its d parameters, 𝑆, 𝐾s, 𝐾i,
and β:

𝐉f (𝛈, �̃�) =
[
∂𝐟 (𝛈, �̃�)
∂η1

⋯
∂𝐟 (𝛈, �̃�)
∂η𝑑

]
=
⎡⎢⎢⎢⎣
∂𝑓 (𝛈,𝑡1)
∂η1

⋯ ∂𝑓 (𝛈,𝑡1)
∂η𝑑

⋮ ⋱ ⋮
∂𝑓 (𝛈,𝑡𝑛)
∂η1

⋯ ∂𝑓 (𝛈,𝑡𝑛)
∂η𝑑

⎤⎥⎥⎥⎦
(18)

where 𝐟 (𝛈, �̃�) is the vector-valued form of Equation 2 with the
measured infiltration times, �̃�, as exogenous variable, and 𝑗 =
(1, 2,… , 𝑑). Thus, the jth column, 𝐣f𝑗 , of 𝐉f (𝛈, �̃�), measures
the derivative of 𝑓 (𝛈, 𝑡1), 𝑓 (𝛈, 𝑡2), …, 𝑓 (𝛈, 𝑡𝑛), with respect
to the jth parameter, η𝑗 , with the other 𝑑 − 1 parameters held
fixed at their respective values. For the time being, we treat the
initial hydraulic conductivity, 𝐾i, as an unknown parameter.
In practice, however, this parameter is often set to zero. This
assumption may not seem appropriate for soils with a rather
high initial moisture content, nevertheless, is justified by our
earlier findings presented in Jaiswal et al. (2021).

The implicit infiltration form of Parlange’s function in
Equation 2 admits analytic expressions for its partial deriva-
tives. Symbolic differentiation (see Appendix A) leads to fol-
lowing expressions for the parameters:

∂𝑓 (𝛈, 𝑡)
∂𝑆

=

2(𝐼 −𝐾i𝑡)(α + β − αβ − 1) + 2𝑡(β − 1)(𝐾s −𝐾i)(α + β − 1)
𝑆(α + β − αβ − 1)

(19a)

∂𝑓 (𝛈, 𝑡)
∂𝐾s

=

αβ(𝐼 −𝐾i𝑡) − [𝐼 +𝐾i𝑡 + 2𝑡(β − 1)(𝐾s −𝐾i)](α + β − 1)
(𝐾s −𝐾i)(α + β − αβ − 1)

(19b)

∂𝑓 (𝛈, 𝑡)
∂β

=

𝑆2(1 − α)∕2β + α(𝐾s −𝐾i)(𝐼 −𝐾i𝑡) − 𝑡(α + β − 1)(𝐾s −𝐾i)
2

(𝐾s −𝐾i)(α + β − αβ − 1)

(19c)

∂𝑓 (𝛈, 𝑡)
∂𝐾i

=
[𝐼 −𝐾i𝑡 + (2β − 1)𝑡(𝐾s −𝐾i)](α + β − 1) − αβ𝑡(𝐾s −𝐾i) − αβ(𝐼 −𝐾i𝑡)

(𝐾s −𝐾i)(α + β − αβ − 1)

(19d)

and an equation for the infiltration rate, ∂𝐼∕∂𝑡:

∂𝑓 (𝛈, 𝑡)
∂𝑡

=
[(1 − β)𝐾s + β𝐾i](α + β − 1) − αβ𝐾i

α + β − αβ − 1
(20)

where α is a dimensionless variable

α = exp
[
2β(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)

𝑆2

]
(21)

The 𝑛 × 𝑑 Jacobian matrix, 𝐉f (𝛈, �̃�), of the infiltra-
tion form of Parlange’s equation stores the partial
derivatives of Equations 19a, 19b, 19c, and 19d, as
follows:

𝐉f (𝛈, �̃�) =
[
∂𝐟 (𝛈, �̃�)
∂𝑆

∂𝐟 (𝛈, �̃�)
∂𝐾s

∂𝐟 (𝛈, �̃�)
∂β

∂𝐟 (𝛈, �̃�)
∂𝐾i

]
(22)

with column-wise entries written in numerator layout

𝐣f𝑗(𝛈) =
∂𝐟 (𝛈, �̃�)
∂η𝑗

∈ ℝ𝑛×1 (23)

where 𝐟 (𝛈, 𝐭) signifies the vector-valued form of the infil-
tration expression in Equation 2. The analytic form of the
Jacobian matrix, 𝐉f (𝛈, �̃�), can thus be computed directly and
without difficulty, thereby avoiding the need for less accurate
and computationally more expensive numerical differentia-
tion in our search for the most productive descent direction,
Δ𝛈(𝑘), at 𝛈 = 𝛈(𝑘).

Figure 6 visualizes the four columns of the Jaco-
bian matrix, 𝐽f (η, �̃�), for 0 ≤ 𝐼 ≤ 20 cm, using 𝑆 = 2.0
cm h−1/2, 𝐾s = 1.0 cm h−1, 𝐾i = 0.1 cm h−1, and
β = 1.5.

Notice the excellent agreement between the analytic val-
ues of (a) ∂𝑓 (𝛈, 𝑡)∕∂𝑆, (b) ∂𝑓 (𝛈, 𝑡)∕∂𝐾s, (c) ∂𝑓 (𝛈, 𝑡)∕∂β, and
(d) ∂𝑓 (𝛈, 𝑡)∕∂𝐾i and their estimates derived from numer-
ical differentiation using two-sided intervals. This vali-
dates our use of a closed-form Jacobian in the LM algo-
rithm. All partial derivatives are zero if 𝐼 = 0 and change
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F I G U R E 6 The Jacobian matrix of the infiltration form of Parlange’s equation: plot of the first-order derivatives (a) ∂𝐼∕∂𝑆 (h1/2), (b) ∂𝐼∕∂𝐾s
(h), (c) ∂𝐼∕∂β (cm), and (d) ∂𝐼∕∂𝐾i (h) as function of the cumulative infiltration, 0 ≤ 𝐼 ≤ 20 cm, using sorptivity 𝑆 = 2.0 cm h−1/2, soil hydraulic
conductivity 𝐾s = 1.0 cm h−1, coefficient β = 1.5, and soil hydraulic conductivity at the initial moisture content 𝐾s = 1.0 cm h−1. The solid black
line portrays the analytic derivatives of Equations 19a and 19b–19d, whereas the blue circles correspond to their numerical estimates derived from
central differencing with size of the upper and lower interval equal to 1% of the magnitude of the parameter values. The horizontal bars on top of
Graphs a and b display the corresponding time axis

monotonically with the cumulative infiltration. The partial
derivatives of the soil sorptivity, 𝑆, and initial hydraulic con-
ductivity, 𝐾i, have a striking similarity. The two functions
increase synchronously from zero, reach a maximum mag-
nitude after infiltrating about 𝐼 = 10 cm of water, and stay
constant thereafter. This sigmoidal relationship of the par-
tial derivatives with respect to 𝐼 is not innate to ∂𝐼∕∂𝑆
and ∂𝐼∕∂𝐾i but is also observed for the parameter β, albeit
opposite in magnitude and sign. Indeed, the partial deriva-
tive, ∂𝐼∕∂β, decreases monotonically from zero at 𝑡 = 0 to
reach a constant magnitude of about −0.65 halfway through
the infiltration experiment. The partial derivative of the sat-
urated hydraulic conductivity, ∂𝐼∕∂𝐾s, is negligible at early
times of infiltration but increases linearly with 𝑡 and 𝐼

thereafter to attain relatively large values at late infiltration
times.

The Jacobian matrix is not only a principal input of the LM
algorithm but also conveys important information about Par-
lange parameter sensitivity. Indeed, the larger the magnitude
of ∂𝑓 (𝛈, 𝑡)∕∂𝑆, ∂𝑓 (𝛈, 𝑡)∕∂𝐾s, ∂𝑓 (𝛈, 𝑡)∕∂β, and ∂𝑓 (𝛈, 𝑡)∕∂𝐾i,
with respect to measured cumulative infiltration data, �̃�, the
easier it is to pinpoint the values of 𝑆, 𝐾s, β, and 𝐾i. From the
partial derivatives of 𝑆, β, and 𝐾i, we conclude that cumu-
lative infiltration measurements at intermediate to late infil-
tration times contain most information about the soil sorp-
tivity, 𝑆, coefficient β, and initial hydraulic conductivity,
𝐾i. As the partial derivative of 𝐾s continues to grow with
time, late infiltration measurements will be most informa-
tive for the saturated soil hydraulic conductivity, 𝐾s. We con-
clude that the sensitivities to the Parlange parameters are
not segregated in time but rather congregate at intermedi-
ate to late infiltration times. This finding, albeit useful for
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F I G U R E 7 Frequency distribution of the length, 𝑡𝑛, of the vertical
infiltration experiments of the Soil Water Infiltration Global (SWIG)
database. The duration of each infiltration experiment is synonymous
with 𝑡𝑛, the last time measurement of the data record, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1

experimental design, explains the strong correlation between
the posterior samples of 𝐾s, 𝐾s, and β reported in our
earlier study (Jaiswal et al., 2021) using synthetic infil-
tration data simulated with HYDRUS-1 D. This correla-
tion not only increases parameter uncertainty but also com-
plicates the search for the least squares values of 𝑆, 𝐾s,
and β. What is more, as ∂𝐼∕∂𝑆, ∂𝐼∕∂𝐾s, ∂𝐼∕∂𝐾i, and
∂𝐼∕∂β are maximized at intermediate to late infiltration
times, this places a premium on the length of the infil-
tration experiment. As most infiltration experiments typi-
cally last a few hours only (see Figure 7), the measured
dataset, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1, of 𝑛 (𝑡, 𝐼) pairs may not contain enough
information to warrant an accurate determination of the
sorptivity, initial and saturated soil hydraulic conductivities,
and coefficient β. Certainly, short infiltration experiments will
provoke problems with an accurate estimation of the Parlange
parameters.

A detailed algorithmic recipe of the LM optimization
method is presented in Supplemental Section S3. A com-
parison of the objective function at the proposed point,
𝛈p, and the current iterate, 𝛈(𝑘), is used to adjust the
value of λ. Furthermore, we describe an amendment to
the LM algorithm that guarantees that the least squares
estimates of 𝑆, 𝐾s, β, and 𝐾i stay within the parameter
space delineated by the half-closed and closed intervals of
Table 2.

In the next section, we will discuss an explicit solution of
Parlange’s infiltration equation. This so-called time-form has
a direct analytic solution and serves as a prelude to Section 4
in which we will compare the numerical solutions of the infil-
tration and time forms of Parlange’s infiltration equation and
benchmark their performance against measured data from the
SWIG database.

2.2 Time form

2.2.1 Forward modeling

The infiltration form of Parlange’s infiltration equation,
𝑓 (𝑡,𝛈), in Equation 2 requires a root-finding method to solve
for the cumulative infiltration, 𝐼 , at each time, 𝑡. Our iter-
ative procedure with Newton’s method, albeit exact, effi-
cient, and fast, may not convince all readers to use this
numerical solution of Parlange’s infiltration equation for for-
ward modeling and parameter estimation. We, therefore fol-
low Lassabatere et al. (2009) and Kargas and Londra (2020)
and consider an alternative solution of Equation 2. This
so-called time form of Parlange’s infiltration equation does
not demand an iterative procedure for forward modeling
of its 𝐼(𝑡) relationship for given values of 𝑆, 𝐾s, and β.
This obviates the need for a programming language such as
MATLAB and allows use of a spreadsheet for infiltration
modeling.

If we set the hydraulic conductivity, 𝐾i, at the initial mois-
ture content, θi, equal to zero, then Parlange’s infiltration
function in Equation 2 simplifies to

𝐾2
s

𝑆2 (1 − β)𝑡 =
𝐾s𝐼

𝑆2 − 1
2
log

[
1
β
exp

(
2β𝐾s𝐼

𝑆2

)
+

β − 1
β

]
(24)

The designation of time, 𝑡, as an independent variable in
the above expression is common to science and engineer-
ing yet necessitates use of an iterative recipe such as artic-
ulated in Section 2.1.1 for simulation of the 𝐼(𝑡) relation-
ship. This includes a matching notation of 𝑓 (𝛈, 𝑡) and 𝐟 (𝛈, 𝐭)
for the scalar- and vector-valued forms of Parlange’s infil-
tration function and extraneous variables, 𝛈 = [𝑆 𝐾s β]⊤.
With a swap of the dependent and independent variables,
the above formulation of Parlange’s infiltration equation
admits a direct solution for the infiltration time, 𝑡, as
follows:

𝑡 = 𝐼

𝐾s(1 − β)
− 𝑆2

2(1 − β)𝐾2
s
log

[
1
β
exp

(
2β𝐾s𝐼

𝑆2

)
+

β − 1
β

]
(25)

This so-called time form of Parlange’s infiltration equa-
tion evokes an erroneous causal relationship between 𝑡 and
𝐼 , in favor of a direct, analytic solution of the cumula-
tive infiltration, 𝐼(𝑡), relationship. The revised definition of
𝐼 and 𝑡 as exogenous and endogenous variables, respec-
tively, implies a change in notation to 𝑓 (𝛈, 𝐼) and 𝐟 (𝛈, 𝐈)
for the scalar- and vector-valued forms of Equation 25,
respectively, with parameter vector, 𝛈 = [𝑆 𝐾s β]⊤, as
𝐾i = 0.

The time form of Parlange’s infiltration Equation 25
may be expressed in the two variables, Δ𝐾 = 𝐾s −𝐾i and
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F I G U R E 8 Algorithmic recipe of numerical solution of time form of Parlange’s function

ξ = Δ𝐾∕𝑆2, as follows

𝑡 = 𝐼

Δ𝐾(1−β) −
1

2(1−β)ξΔ𝐾 log
[
1
β exp(2βξ𝐼) +

β−1
β

]
= 1

Δ𝐾(β−1)

(
1
2ξ log

{
1
β [exp(2βξ𝐼) + β − 1]

}
− 𝐼

) (26)

Algorithm 2 (Figure 8) details our numerical solution of Equa-
tion 26. Based on the scalars, 𝑆 [L T−1/2], 𝐾s [L T−1], and
β and the 𝑛 × 1 vector, 𝐈 = [𝐼1 𝐼2 ⋯ 𝐼𝑛]⊤ (𝑘), of cumula-
tive infiltration values, the algorithmic recipe returns as out-
put argument the 𝑛 vector, 𝐭 = [𝑡1 𝑡2 ⋯ 𝑡𝑛]⊤, of measurement
times. As is evident from the algorithmic recipe, basic arith-
metic operations and mathematical functions suffice to evalu-
ate the time form of Parlange’s infiltration equation and sim-
ulate its 𝐼(𝑡) relationship for given values of the soil sorptiv-
ity, 𝑆, saturated hydraulic conductivity, 𝐾s, and coefficient, β.
The function Parlange_t in Supplemental Section S4 presents
our MATLAB implementation of Algorithm 2. This function
can be executed at the MATLAB command prompt as follows:
t=Parlange_t(eta,I). These computations may also be accom-
plished in a spreadsheet.

The time form of Parlange’s infiltration equation, 𝑓 (𝛈, 𝐼),
may be much easier to implement and solve, but it is not
exempt from numerical problems. Indeed, the time form in
Equation 26 will return not-a-number for the infiltration time,
𝑡, if the input argument, 2βξ𝐼 , of the exponential function
exceeds the value of 709.783. We utilize the remedy of Table 2
and specify a lower limit of 10−4 on the values of 𝑆, 𝐾s, and
β. An antidote to numerical under- and overflow of the time
and infiltration form of Parlange’s equation will be presented
in the results section.

2.2.2 Inverse modeling

The parameters, 𝑆, 𝐾s, and β, of the time form, 𝑓 (𝛈, 𝐼), of
Parlange’s infiltration Equation 2 may be estimated from a

measured record, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1, of cumulative infiltration val-
ues. Supplemental Section S5 details our implementation of
the LM algorithm for constrained least squares estimation of
the parameters 𝑆, 𝐾s, and β of the time form of Parlange’s
infiltration function. This algorithmic recipe is similar to that
used for least squares estimation of 𝑆, 𝐾s, β, and 𝐾i using
the infiltration form of Parlange’s equation in Supplemental
Section S3 but with a different formulation of the objective
function and Jacobian matrix.

The time form of Parlange’s equation treats time, 𝑡 (and not
𝐼 as in the infiltration form), as the dependent variable. This
swap of the dependent and independent variables implies the
use of time residuals in evaluating the goodness of fit of the
simulated infiltration curve (see Figure 9). If we make the con-
venient assumption that the time residuals are uncorrelated
and with a constant variance, then we yield the least squares
objective function:

𝐹 (𝛈, �̃�) =
𝑛∑
𝑖=1

[
𝑡𝑖 − 𝑓 (𝛈, 𝐼𝑖)

]2 = 𝑛∑
𝑖=1

𝑒𝑖(𝛈, 𝐼𝑖)2 = 𝐞(𝛈, �̃�)⊤𝐞(𝛈, �̃�)

(27)
where 𝑓 (𝛈, 𝐼𝑖) signifies the scalar-valued form of the time
form of Parlange’s infiltration Equation 26 and 𝐞(𝛈, �̃�)
signifies the 𝑛 × 1 vector of time residuals, 𝐞(𝛈, �̃�) =
[𝑒1(𝛈, 𝐼1) 𝑒2(𝛈, 𝐼2)⋯ 𝑒𝑛(𝛈, 𝐼𝑛)]⊤.

The 𝑛 × 𝑑 Jacobian matrix of the time form of Parlange’s
infiltration equation, 𝐉f (𝛈, �̃�), organizes column-wise the par-
tial derivatives of 𝑓 (𝛈, 𝐼𝑖) with respect to 𝑆, 𝐾s, and β as
follows:

𝐉f (𝛈, �̃�) =
[
∂𝐟(𝛈,̃𝐈)
∂𝑆

∂𝐟(𝛈,̃𝐈)
∂𝐾s

∂𝐟(𝛈,̃𝐈)
∂β

]

=

⎡⎢⎢⎢⎢⎢⎣

∂𝑓 (𝛈,𝐼1)
∂𝑆

∂𝑓 (𝛈,𝐼1)
∂𝐾s

∂𝑓 (𝛈,𝐼1)
∂β

⋮ ⋮ ⋮

∂𝑓 (𝛈,𝐼𝑛)
∂𝑆

∂𝑓 (𝛈,𝐼𝑛)
∂𝐾s

∂𝑓 (𝛈,𝐼𝑛)
∂β

⎤⎥⎥⎥⎥⎥⎦
(28)
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F I G U R E 9 Time form of Parlange’s equation: comparison of
measured (red dots) and fitted (solid green line) cumulative infiltration
data. The horizontal gray lines signify the 𝑛 = 10 time residuals

where 𝐟 (𝛈, �̃�) signifies the vector-valued form of the time
expression in Equation 25. This function returns a column
vector of simulated infiltration times, 𝐭 = [𝑡1 𝑡2⋯ 𝑡𝑛]⊤, corre-
sponding to the 𝑛 × 1 vector of cumulative infiltration obser-
vations, �̃�. With 𝐾𝑖 = 0, we yield, α = exp(2β𝐾s𝐼∕𝑆2), in
Equation 21 and the partial derivatives, ∂𝑡∕∂𝑆, ∂𝑡∕∂𝐾s, and
∂𝑡∕∂β, of Equation 25 equal

∂𝑓 (𝛈, 𝐼)
∂𝑆

=
𝑆2(α + β − 1) log[(α + β − 1)∕β] − 2𝐼αβ𝐾s

𝑆𝐾2
s (β − 1)(α + β − 1)

(29a)

∂𝑓 (𝛈, 𝐼)
∂𝐾s

=

𝐼𝐾s(α + β + αβ − 1) − 𝑆2(α + β − 1) log[(α + β − 1)∕β]
𝐾3

s (β − 1)(α + β − 1)

(29b)

∂𝑓 (𝛈, 𝐼)
∂β

=

𝐼𝐾s(αβ + β − 1) − 1
2
𝑆2(α + β − 1) log[(α + β − 1)∕β] − 1

2
(α − 1)(β − 1)𝑆2∕β

𝐾2
s (β − 1)2(α + β − 1)

(29c)

We can simplify the above equations by expressing the par-
tial derivatives as a function of Δ𝐾 = 𝐾s and ξ = Δ𝐾∕𝑆2.
This change of variables would imply different entries of the
parameter vector, 𝛈, which is not desired in our formulation
of the LM method.

To provide insights into the different columns of 𝐉f (𝛈, 𝐈),
please consider Figure 10 , which plots the analytic deriva-
tives (a) ∂𝑓 (𝛈, 𝐼)∕∂𝑆, (b) ∂𝑓 (𝛈, 𝐼)∕∂𝐾s, and (c) ∂𝑓 (𝛈, 𝐼)∕∂β,
of the time form of Parlange’s infiltration equation for 0 ≤
𝐼 ≤ 20 cm using 𝑆 = 2.0 cm h−1/2, 𝐾s = 1.0 cm h−1, and

β = 1.5. The green circles display separately our estimates
of ∂𝑓 (𝛈, 𝐼)∕∂𝑆, ∂𝑓 (𝛈, 𝐼)∕∂𝐾s, and ∂𝑓 (𝛈, 𝐼)∕∂β derived from
numerical differentiation using a central difference scheme
with backward and forward intervals equal to 1% of the actual
parameter values.

First and foremost, notice the excellent agreement between
the analytic values of ∂𝑡∕∂𝑆, ∂𝑡∕∂𝐾s, and ∂𝑡∕∂β and their esti-
mates derived from numerical differentiation. The analytic
derivatives are preferred in practice as they are not only exact,
but also easy to compute. Secondly, the traces of the partial
derivatives of 𝑆, 𝐾s, and β are in close agreement with their
respective counterparts of the infiltration form of Parlange’s
equation depicted previously in Figure 6. A side-by-side
comparison of ∂𝑓 (𝛈, 𝐭∕∂η𝑗) and ∂𝑓 (𝛈, 𝐈∕∂η𝑗) for𝑗 = (1,2,3)
demonstrates that the partial derivatives of𝑆,𝐾s, and β hardly
differ in magnitude but only in sign. The traces of ∂𝑡∕∂𝑆 and
∂𝑡∕∂β exhibit the characteristic "S"-shaped behavior of ∂𝐼∕∂𝑆
and ∂𝐼∕∂β but with opposite signs. Their magnitude increases
monotonically from zero at early times of infiltration and
reach a constant magnitude after infiltrating approximately
10 cm of water. The partial derivative of 𝐾s is negligi-
ble at early times of infiltration but decreases linearly
with 𝑡 and 𝐼 thereafter to attain relatively small values
at late infiltration times. Lastly, the partial derivatives
suggest that time measurements taken at intermediate
to late times contain the most information about the
Parlange parameters. This overlap confirms reported
problems with the joint estimation of 𝑆, 𝐾s, and β and
reiterates the importance of a sufficiently long infiltration
experiment.

Now that the forward and inverse solutions of the infil-
tration and time form of Parlange’s equation have been pre-
sented, we move on to the experimental data that are used to
benchmark both solutions.

3 EXPERIMENTAL DATA

We evaluate the infiltration and time forms of Parlange’s
equation using measured data from the SWIG database of
(Rahmati et al., 2018; Rahmati et al., 2019). This database
documents more than 5,000 infiltration datasets involving
experiments on all 12 soil types (listed in Table 1) of the
texture triangle. These experiments were conducted with a
variety of different measurement devices and experimental
techniques including infiltrometers, permeameters and
rainfall simulators. Our analysis only considers experiments
measured with a double ring infiltrometer (coded with
Instrument 1 in the SWIG database), as this device honors
most the assumptions of one-dimensional, vertical water flow
(underneath the inner ring) of Parlange’s infiltration equa-
tion. This collection involves a total of𝑀 = 646 infiltration
datasets.
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F I G U R E 1 0 The Jacobian matrix of the time form of Parlange’s infiltration equation: plot of the first-order derivatives (a) ∂𝑡∕∂𝑆 (h3/2 cm−1),
(b) ∂𝑡∕∂𝐾s (h2 cm−1), and (c) ∂𝑡∕∂β (h) (solid lines) of Equations 29a–29c as function of the cumulative infiltration, 0 ≤ 𝐼 ≤ 20 cm, using sorptivity
𝑆 = 2.0 cm h−1/2, soil hydraulic conductivity 𝐾s = 1.0 cm h−1, and coefficient β = 1.5. The green circles correspond to estimates of the derivatives
derived from numerical differentiation using two-sided intervals. The horizontal bar on top of each graph signifies the time axis

4 BENCHMARK ANALYSIS

Before we can proceed with application of the infiltration
form of Parlange’s infiltration equation to the experiments of
the SWIG database, we must first benchmark its numerical
solution. This will inspire confidence in the accuracy of the
simulated cumulative infiltration values. The time form of
Parlange’s infiltration equation comes in handy as its numer-
ical solution of the 𝐼(𝑡) curve is explicit and, thus, exact.
We set 𝐾i = 0, and draw at random𝑁 = 1,000 parameter
vectors from a 𝑑 = 3-dimensional cube using Latin hypercube
sampling with lower limits of 10−4 (see Table 2) and upper
bounds of 50, 100, and 2 for 𝑆, 𝐾s, and β, respectively. Next,
we create a vector of 𝑛 = 100 cumulative infiltration values
spaced equally between 𝐼 = 0.01 cm and 𝐼 = 10 cm. We coin
this vector, 𝐈true = [0.01 0.02 …9.99 10.00]⊤, and repeat the
same steps for each parameter vector. Specifically, we use 𝐈true
as input to the time form of Parlange’s Equation 26 and store
the corresponding infiltration times in the 𝑛 vector 𝐭true; thus,
𝐭true = 𝐟 (𝛈, 𝐈true). Next, we admit the 𝑛 vector 𝐭true to the infil-
tration form of Equation 4 to yield a 𝑛 × 1 vector of simulated
cumulative infiltration values, 𝐈sim = 𝐟 (𝛈, 𝐭true). The numer-
ical error of each parameter vector, err, is now set equal to
the Manhattan distance or 𝓁1 norm of the true and simulated
cumulative infiltration curves, err =

∑𝑛
𝑖=1 |𝐼true,𝑖 − 𝐼sim,𝑖|, in

units of cm. Figure 11 presents a frequency distribution of the
logarithmic err values (base 10) of the thousand parameter
vectors. The frequencies are divided by the sample size to
yield normalized values between 0 and 1.

The Manhattan distance of the true and simulated cumula-
tive infiltration curves is almost always smaller than 10−6 cm.
This provides support for the claim that our numerical solu-

F I G U R E 1 1 Histogram of the numerical error of the infiltration
form of Parlange’s equation. We use a termination tolerance of 𝑟tol =
10−12 on the absolute function value at the root and 𝑘max = 20 iterations
in Newton’s method

tion of Equation 4 is exact and robust. The solution is also
efficient requiring only a few milliseconds to complete a sin-
gle 𝐼(𝑡) relationship on an Intel Core i7-10700 T @ 2.00 GHz
desktop computer. Note that in about 2% of the cases (about
20 parameter vectors), the MATLAB codes of the infiltra-
tion and time form of Parlange’s equation terminate prema-
turely. This comes as no surprise. The argument, 2β𝐾s𝐼∕𝑆2,
of the exponential function in the infiltration (and time) form
of Parlange’s equation can exceed the upper limit of 709.783
on a 64-bit computer before the simulated infiltration reaches
𝐼true = 10 cm. This numerical overflow of the exponent results
in not-a-number for the respective 𝐼(𝑡) and 𝑡(𝐼) data pairs.

To provide insights into these so-called dissident (or aber-
rant) parameter vectors, Figure 12 presents scatter plots of the
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F I G U R E 1 2 Scatter plots of the parameter pairs, (a) (𝑆,𝐾s), (b) (𝑆, β), and (c) (𝐾s, β) used in our Monte Carlo experiment, where 𝑆 is
sorptivity, 𝐾s is saturated hydraulic conductivity, and β is a unitless coefficient. Dissident parameter vectors are highlighted with a blue color and
return not-a-number for one or more entries of the 𝑛 vectors of infiltration time, 𝐭, and cumulative infiltration, 𝐈. The bottom-right graph (d) displays
the simulated infiltration curves of the dissident parameter vectors

bivariate parameter samples of (a) (𝑆,𝐾s), (b) (𝑆, β), and (c)
(𝐾s, β) used in our Monte Carlo experiment. The blue-colored
squares correspond to dissident parameter vectors and, thus,
those that are subject to numerical overflow.

The aberrant parameter vectors have a common denomina-
tor. They all congregate at the lower bound of the soil sorp-
tivity, 𝑆, irrespective of the values of 𝐾s and β. The closer
the sorptivity is to zero, the larger the value of the exponent,
2β𝐾s𝐼∕𝑆2, and the more susceptible the forward, 𝐼(𝑡) or 𝑡(𝐼),
solution will be to numerical overflow. As the exponent grows
linearly with 𝐼 , numerical overflow is inevitable. The infil-
tration experiment just needs to be long enough. A simple
workaround may help salvage the simulated 𝐼(𝑡) or 𝑡(𝐼) rela-
tionships of Parlange’s infiltration equation. The cumulative
infiltration curves of the dissident parameter vectors depicted
in the bottom-right graph (Figure 12d) exhibit a constant slope
well before the time of overflow, 𝑡o. In other words, the soils
of the dissident parameter vectors are fully saturated prior
to exponent overflow. We can exploit this finding and pro-
tect Parlange’s infiltration equation against numerical over-

flow by switching to saturated flow at 𝑡 = 𝑡o. The MATLAB
functions, Parlange_I_patch and Parlange_t_patch, in Supple-
mental Section S6 implement this workaround for the infiltra-
tion and time form of Parlange’s equation, respectively. These
patched functions complete the 𝐼(𝑡) or 𝑡(𝐼) relationships of all
thousand soils (parameter vectors). As overflow is not preva-
lent in the short experiments of the SWIG database, we do
not make use of the patched functions. To prevent numerical
overflow, one can also discard the second term, β − 1, in the
exponent of Equations 9 and 26. This provides a nearly exact
solution of 𝐼(𝑡)or 𝑡(𝐼) for 𝑡 ≥ 𝑡𝑜, equivalent to our numerical
solution.

We now move on to the collection of 646 measured infiltra-
tion datasets and use the LM algorithm to determine the least
squares values of 𝑆, 𝐾s, and β for the infiltration and time
forms of Parlange’s equation. We execute Algorithms S3.1
and S5.1 10 times using different initial guesses of 𝑆, 𝐾s, and
β. In the absence of detailed information about the upper val-
ues of the soil sorptivity and saturated hydraulic conductivity,
we did not impose upper limits for 𝑆 and 𝐾s in our successive
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F I G U R E 1 3 Two-dimensional scatter plots of the least squares parameter values of the (a) soil sorptivity, 𝑆, (b) saturated hydraulic
conductivity, 𝐾s, and (c) coefficient β derived from the Levenberg–Marquardt algorithm by fitting separately the infiltration and time forms of
Parlange’s function to the collection of 𝑀 = 646 infiltration datasets, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1, of the Soil Water Infiltration Global (SWIG) database. The x axis of
each graph pertains to the infiltration form and plots the optimal values of 𝑆I, 𝐾s,I, and βI, respectively, whereas the y axes documents their
counterparts, 𝑆T, 𝐾s,T, and βT, of the time form, 𝑓 (𝛈, 𝐼), of Parlange’s function. The solid black line signifies the 1:1 line between the plotted
quantities of the two forms

trials of the LM algorithm. As a result, the optimum Parlange
parameters will satisfy,𝑆 ≥ 10−4 cm h−1/2,𝐾s ≥ 10−4 cm h−1,
10−4 ≤ β< 2, and β ≠ 1. Figure 13 compares the least squares
values of the (a) soil sorptivity, 𝑆, (b) saturated hydraulic con-
ductivity, 𝐾s, and (c) coefficient, β, derived from the infil-
tration (x axis) and time (y axis) forms of Parlange’s infiltra-
tion equation. For convenience, we assign the subscripts “I”
and “T” to the parameters of the infiltration and time forms,
respectively. Each square corresponds to a different infiltra-
tion experiment. The solid black line going from left to right
across the graphs equals the 1:1 line of the plotted quantities.

It is important to keep in mind that we did not inspect
nor appraise the infiltration data. Thus, the three scatter plots
present only our preliminary findings for the collection of ver-
tical infiltration experiments of the SWIG database. The least
squares values of 𝑆 and 𝐾s center on the 1:1 line and exhibit
a relatively small dispersion. This is particularly true for the
soil sorptivity and inspires confidence in the ability of the LM
algorithm to converge on robust values of the Parlange param-
eters. The (𝐾s,I, 𝐾s,T) pairs in the bottom-left corner of the
scatter plot demonstrate considerable variation around the 1:1
line, as is emphasized in the small inset in the top-left corner
of the middle graph. It is not immediately clear what causes
these differences in the least squares values of the saturated
hydraulic conductivity of the infiltration and time forms of
Parlange’s equation. Without doubt, data quality and quantity
exert a large control on the estimates of 𝐾s,I and 𝐾s,T, and so
will the duration of an infiltration experiment. The scatter of
the (𝐾s,I, 𝐾s,T) data pairs around the 1:1 line simply articu-
lates different optima of the saturated hydraulic conductivity
for the cumulative infiltration and time residuals, respectively.
The infiltration and time form of Parlange’s equation may dif-
fer in their sensitivity to outliers and/or other (𝑡, 𝐼) data points

that breach assumptions of soil homogeneity and/or a constant
initial water content. The data of a small number of experi-
ments raise concern as their (𝑡, 𝐼) relationship violates mono-
tonicity (e.g. Sample IDs 3646 and 3647). The data of some
other experiments is at odds with the default dimensions of
cm and hour used in the SWIG database. For example, Sam-
ple IDs 3710-3745 present high-quality infiltration data, yet
their clayey soils supposedly infiltrate between 30 and 50 cm
of water in an experiment lasting about 0.05 h (3 min). This
raises concerns about data units and calls for a more exhaus-
tive appraisal of data quality. These dissonant soils are not
too difficult to single out, as Parlange’s equation is unable to
describe reasonably well their measured infiltration curves.
This is confirmed by the rather large values for the root mean
square error of their least squares parameter values, which
exceeds by far the typical values of 0.006–0.8 cm (infiltra-
tion form) and 2.5 × 10−4 to 0.1 h (time form). By and large,
however, the experimental data of the SWIG database appear
robust and accurate. For these soils, discrepancies between
𝐾s,I and 𝐾s,T simply articulate a different optimum value of
the saturated hydraulic conductivity for the time and cumula-
tive infiltration residuals.

The right-most scatter plot illustrates large differences in
the least squares values of β for the infiltration and time forms
of Parlange’s equation. With the exception of a small cluster
of points in the center of the graph, a large proportion of the
(βI, βT) pairs deviate considerably from the 1:1 line and con-
gregate at the edges of the domain. In quite a number of cases,
the optimal βI and βT values appear at opposing sides of the
parameter space. This is a disturbing result and may signal an
insufficient sensitivity of the simulated 𝐼(𝑡) relationships to
parameter β. However, we should be careful in drawing con-
clusions about these discrepancies in the inferred βI and βT
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F I G U R E 1 4 First-order approximation of the parameter
confidence intervals of coefficient β for each of the 646 infiltration
records of the Soil Water Infiltration Global (SWIG) database. The
horizontal and vertical gray lines portray the 95% confidence intervals
of the inferred β values for the infiltration (βI) and time (βT) form of
Parlange’s equation, respectively

values of the infiltration and time forms, respectively, as the
scatter plot portrays only the optimal, least squares, values of
β without recourse to their underlying uncertainty.

To provide insights into parameter uncertainty, please con-
sider Figure 14 which plots error bars on the inferred β val-
ues. The horizontal and vertical gray lines portray the 95%
confidence intervals of the βI and βT values of the infiltra-
tion and time form, respectively. These confidence intervals
can be computed from the diagonal entries of the covari-
ance matrix, 𝐂(�̂�) = 𝐹 (�̂�, χ)∕(𝑛 − 𝑑)[𝐉f (�̂�, χ)

⊤𝐉f (�̂�, χ)]−1, at
the least squares solution, �̂�, of𝑆,𝐾s, and β, where input argu-
ment, χ, signifies the exogenous variable, �̃� or �̃�, for the infil-
tration and time form of Parlange’s equation, respectively. The
so-obtained confidence intervals are only an approximation of
the actual parameter uncertainty.

The least squares βI and βT values exhibit a large uncer-
tainty with 95% confidence intervals that cover a large part
of the feasible search space. Indeed, the gray lines (horizon-
tal and vertical) extend far beyond a small neighborhood sur-
rounding the least squares, (βI, βT), data pairs and go from left
to right and top to bottom across the scatter plot. Thus, param-
eter β appears poorly defined by calibration against the mea-
sured infiltration data. This finding does not come as a sur-
prise. The partial derivatives of the infiltration and time forms
of Parlange’s equation have warned against the use of short
infiltration experiments. Such datasets provoke problems with
the joint estimation of 𝑆, 𝐾s, and β as the information for the
Parlange parameters congregates at intermediate to late infil-
tration times. As a large proportion of the infiltration experi-
ments last a few hours only (see Figure 7), this will compli-
cate an accurate estimation of βI and βT. Similar findings were

reported by Moret-Fernández and Latorre (2017) for upward
infiltration experiments, wherein β governs the exfiltration at
long times. In fact, Latorre et al. (2018) concluded that infil-
tration experiments must exceed 10,000 s (∼2.8 h) to warrant
an accurate determination of β. Our findings suggest that 3 h
may be optimistic. One should therefore be careful in inter-
preting the least squares values of β of the infiltration and time
forms of Parlange’s equation.

To benchmark the least squares estimates and first-order
confidence intervals of the Parlange parameters, we sep-
arately analyzed the collection of infiltration experiments
using Bayesian analysis with the DREAM(ZS) algorithm.
This MCMC method explores exhaustively the search space
in pursuit of the optimal parameter values and their mul-
tivariate posterior distribution. This distribution provides
an exact characterization of parameter uncertainty. We use
a uniform prior parameter distribution, 𝑝(𝛈), and Gaussian
likelihood function, 𝐿(𝛈|χ) = 𝐹 (𝛈, χ)−𝑛∕2, where 𝐹 (𝛈, χ)
signifies the objective function of Equations 13 and 27 for
the infiltration, χ = �̃�, and time, χ = �̃�, forms of Parlange’s
equation, respectively. Figure 15 compares the DREAM(ZS)–
derived values of 𝑆I, 𝐾s,I, and βI with their counterparts of
Algorithm S3.1 using gradient-based search with the LM
algorithm. We observe similar results for the time form of
Parlange’s equation and thus do not present the findings
here.

The optimum soil sorptivity and saturated hydraulic
conductivity derived from the DREAM(ZS) algorithm are
in nearly perfect agreement with their counterparts of the
LM algorithm. The (𝑆DREAM, 𝑆LM) and (𝐾s,DREAM, 𝐾s,LM)
data pairs lay almost exclusively on the 1:1 line, inspiring
confidence in the ability of the LM algorithm to locate
successfully the least squares values of the Parlange param-
eters. The (βDREAM, βLM) data pairs, on the contrary, exhibit
considerable dispersion around the 1:1 line. The βDREAM
values are found interior to their search space and do not
congregate at the edges as their counterparts, βLM, of the
LM algorithm do. This manifests our earlier problems
with an accurate estimation of coefficient βI. The 95%
confidence intervals of 𝑆DREAM and 𝑆LM are remarkably
similar for the soil sorptivity but differ substantially for the
saturated hydraulic conductivity. The first-order approxi-
mation characterizes rather poorly the uncertainty of the
least squares 𝐾s,I values of the LM algorithm with 95%
confidence intervals that go from top to bottom in the graph
and extend far beyond their nonlinear counterparts. Thus,
the saturated soil hydraulic conductivity is much better
defined by calibration against cumulative infiltration data
than one would expect from the linear confidence intervals.
Fortunately, the linear and nonlinear confidence intervals
are in a much better agreement for parameter βI, as they
almost always envelop the search domain. Altogether, we
conclude that the LM algorithm successfully infers the
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F I G U R E 1 5 Two-dimensional scatter plots of the optimal values of (a) sorptivity, 𝑆I, (b) saturated hydraulic conductivity, 𝐾s,I, and
(c) coefficient βI of the DREAM(ZS) algorithm (on x axis) and their values derived separately from the Levenberg–Marquardt (LM) algorithm (on y
axis). Each square signifies a different infiltration experiment. The solid gray lines display separately the 95% confidence intervals of the inferred
parameter values. The solid black line portrays the 1:1 line relationship between the plotted parameter pairs

F I G U R E 1 6 Comparison of observed (red dots) and simulated cumulative infiltration, 𝐼 , curves for a selection of eight representative soils of
the Soil Water Infiltration Global (SWIG) database using the least squares values of sorptivity (𝑆), saturated hydraulic conductivity (𝐾s) and
coefficient β of the infiltration (solid blue line) and time (solid green line) forms of Parlange’s infiltration equation. The bottom right corner of each
graph reports the code of each experiment in the SWIG database

least squares values of the Parlange parameters. The first-
order approximation provides an adequate characterization
of the confidence intervals of 𝑆 and β but significantly
overestimates the uncertainty of the saturated hydraulic
conductivity, 𝐾s. Bayesian analysis coupled with the
DREAM(ZS) algorithm will yield an exact characterization of
Parlange parameter uncertainty.

We are now left with a demonstration of the quality of fit
of the infiltration and time forms of Parlange’s infiltration
equation. Figure 16 displays the measured infiltration data

(red circles) of eight different soil types from our collection
of 𝑀 = 646 experiments of the SWIG database, including
(a) sand, (b) sandy loam, (c) sandy clay loam, (d) loam, (e)
silty loam, (f) clay loam, (g) silty clay loam, and (h) clay. The
solid lines portray the least squares fit of the infiltration (in
blue) and time (green) forms of Parlange’s equation using the
values of 𝑆, 𝐾s, and β derived from the LM algorithm. The
bottom-right corner of each graph reports the SWIG code of
each soil.
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T A B L E 3 Least squares estimates of the parameters, sorptivity (𝑆), saturated hydraulic conductivity (𝐾s), and coefficient β, for the infiltration
(subscript “I”) and time (subscript “T”) forms of Parlange’s equation

Infiltration form Time form
Soils Code 𝒏 𝑺𝐈 𝑲𝐬,𝐈 𝛃𝐈 𝑺𝐓 𝑲𝐬,𝐓 𝛃𝐓

cm h−1/2 cm h−1 cm h−1/2 cm h−1

Sand 1497 17 20.62 18.03 1.00 × 10−4 21.95 17.13 1.00 × 10−4

Sandy loam 456 35 29.15 5.91 1.00 × 10−4 33.90 1.57 1.08 × 10−4

Sandy clay loam 441 35 46.22 16.25 1.00 × 10−4 51.40 11.86 1.00 × 10−4

Loam 195 18 8.40 3.69 1.00 × 10−4 8.92 3.41 1.00 × 10−4

Silty loam 433 35 11.65 7.88 1.00 × 10−4 12.80 7.03 1.00 × 10−4

Clay loam 278 18 5.13 1.00 × 10−4 2.00 5.09 1.05⋅10−4 2.00

Silty clay loam 1478 26 4.88 1.48 1.00 × 10−4 5.28 1.16 1.00 × 10−4

Clay 235 18 10.02 1.23 1.16 × 10−4 10.80 0.61 1.05 × 10−4

Note. Each row corresponds to a different soil type of Figure 16 and documents the length, 𝑛, of the data record, Soil Water Infiltration Global (SWIG) code, and values
of 𝑆I, 𝐾s,I, βI, 𝑆T, 𝐾s,T, and βT, respectively.

The simulated cumulative infiltration curves are in excel-
lent agreement with the measured data. For some of the soils,
we observe small differences between the observed data and
the Parlange function at early times of infiltration. These
apparent discrepancies are rather small and may be the result
of model misspecification, a nonuniform initial water con-
tent, and/or heterogeneous soil. Fortunately, this model–data
mismatch should not corrupt too much the Parlange parame-
ter estimates as the partial derivatives of the infiltration and
time forms are relatively small at early times of infiltration
(see Figures 6 and 10), and thus parameter sensitivity is rela-
tively low. Infiltration measurements at late times, on the con-
trary, will exert a much larger control on the values of 𝑆, 𝐾s,
and β.

To understand the close correspondence between the time-
series plots of the infiltration and time forms of Parlange equa-
tion for the different soil types, please consider Table 3, which
reports the least squares parameter estimates of the eight infil-
tration data sets of Figure 16. The first three columns list the
soil type, number of observations, 𝑛, of the data record, and
corresponding SWIG code followed by the optimized values
of𝑆,𝐾s, and β for the infiltration and time forms of Parlange’s
equation.

The infiltration and time form of Parlange’s equation return
fairly similar values of the Parlange parameters. This is true
for all soil types, except for sandy loam and sandy clay loam.
The differences in the parameter estimates do not seem to
affect much the simulated (𝑡, 𝐼) relationships (see Figure 16),
which are in excellent agreement with each other. We have
noticed similar findings for other soils of the SWIG database,
yet in some cases using values for βI and βT at opposite sides
of the parameter space. This is a somewhat troubling find-
ing and demonstrates the lack of sensitivity of the simulated
infiltration curve to coefficient β. Notice that if 𝑆I < 𝑆T then

𝐾s,I > 𝐾s,T. This is true for all tabulated soils and implies the
presence of a negative correlation between 𝑆 and 𝐾s. If the
sorptivity increases, then the saturated hydraulic conductivity
must decrease to yield an approximately similar cumulative
infiltration curve.

5 SUMMARY AND CONCLUSIONS

Analytic solutions of the infiltration process obviate the need
for specification of the hydraulic functions and allow a rapid
characterization of soil physical properties using least squares
regression methods. Such functions are preferred over numer-
ical solutions of Richards’ equation (Richards, 1931), which
are computationally expensive, prone to mass balance errors
and subject to overparameterization. In this paper, we focused
attention on the three-parameter infiltration function of Par-
lange et al. (1982). This quasi-exact implicit solution of
Richards’ equation is valid for the entire duration of the infil-
tration event, describes accurately measured infiltration data
from a wide range of soils, and the parameters, 𝑆, 𝐾s, and
β, exhibit a solid physical and/or mathematical underpinning,
adjustable to the initial and boundary conditions of the infil-
tration event. Despite these desirable capabilities, Parlange’s
equation has not entered into mainstream use for infiltration
modeling and data analysis, as researchers and practitioners
struggle with its numerical solution.

This paper builds on our recent work published in Jaiswal
et al. (2021) and presents theory, algorithms, and source codes
of two separate approaches for forward and inverse model-
ing of Parlange’s infiltration equation. The first approach,
coined the infiltration form, treats time, 𝑡, as an inde-
pendent (exogenous) variable and uses root finding with
Newton’s method to simulate the 𝐼(𝑡) relationship. This
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iterative solution may not persuade and/or convince all read-
ers to use Parlange’s equation for infiltration modeling and
data analysis. We, therefore, considered a second and arguably
easier numerical solution of Parlange’s infiltration equation.
The so-called time form evokes an erroneous causal relation-
ship between 𝑡and 𝐼 , in favor of an analytic solution of the
𝐼(𝑡) relationship. This enables use of a spreadsheet for for-
ward simulation. Benchmark experiments confirmed that the
two numerical solutions of Parlange’s infiltration equation are
exact and efficient yet suffer from numerical overflow of the
exponential function. The use of a constant infiltration rate
at the time(s) of overflow offers robust protection of Par-
lange’s equation and its numerical solutions against numerical
overflow.

The infiltration and time form of Parlange’s infiltration
equation admit application of gradient-based search with the
LM algorithm for least squares estimation of the Parlange
parameters, 𝑆, 𝐾s, and β, from measured cumulative infiltra-
tion data. Preliminary investigations, carried out on more than
600 infiltration experiments of the SWIG database, demon-
strated a high level of agreement in the optimal values of
𝑆 and 𝐾s for the infiltration and time forms of Parlange’s
equation. Furthermore, the so-obtained least squares values
of the sorptivity and saturated hydraulic conductivity were
shown to correspond almost perfectly with their counterparts
of 𝑆 and 𝐾s derived separately from an exhaustive explo-
ration of the parameter space using MCMC simulation with
the DREAM(ZS) algorithm. This inspires confidence in the
ability of the LM algorithm to locate globally optimal val-
ues of the Parlange parameters. We witnessed considerable
differences in the least squares values of β inferred by the
two numerical solutions and parameter estimation algorithms.
This somewhat troubling finding demonstrates a lack of sen-
sitivity of the simulated infiltration curve to coefficient β,
a result provoked by the rather short lengths of the infiltra-
tion records in our collection of experiments. Linear and non-
linear confidence intervals of 𝑆, 𝐾s, and β were computed
and compared to better understand parameter uncertainty. The
first-order approximation provided a reasonable description
of the uncertainty of 𝑆 and β but was deficient for the satu-
rated hydraulic conductivity. The relatively short lengths of
the experiments of the SWIG database and limited duration
contribute to the large uncertainty of the inferred𝐾s, and β
values as the infiltration process is dominated by the capillary
effect.

Theory, algorithms, and source codes presented herein
should encourage the use of Parlange’s equation for infiltra-
tion modeling and data analysis and provide an easy enough
alternative to functions suffering from a limited time valid-
ity and lack of physical underpinning. For those unfamil-
iar with MATLAB, we provide a spreadsheet with forward
and inverse modeling capabilities of Parlange’s infiltration
equation.
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APPENDIX A: PARTIAL DERIVATIVES OF
INFILTRATION FORM OF PARLANGE
In this Appendix, we derive analytic expressions for the par-
tial derivatives of the infiltration form, 𝑓 (𝛈, 𝑡), of Parlange’s
Equation 4 with respect to 𝛈 = [𝑆 𝐾s β 𝐾i ]⊤ and time,𝑡. The
partial derivatives of η1, η2, η3, and η4 serve as columns of

the Jacobian matrix, whereas the time derivative, ∂𝑓 (η, 𝑡)∕∂𝑡,
equals the infiltration rate.

We start our derivation with the residual function in
Equation 9:

𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β) =
(𝐾s−𝐾i)(𝐼−𝐾i𝑡)

𝑆2 − 1
2 log

{
1
β exp

[
2β(𝐾s−𝐾i)(𝐼−𝐾i𝑡)

𝑆2

]
+ β−1

β

}
−(𝐾s−𝐾i)2

𝑆2 (1 − β)𝑡
(A1)

According to the chain rule, the partial derivative of
𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β) with respect to the soil sorptivity, 𝑆, must
satisfy the following equality:

∂𝑟
∂𝑆

= ∂𝑟
∂𝐼

∂𝐼
∂𝑆

+ ∂𝑟
∂𝑆

∂𝑆
∂𝑆

+ ∂𝑟
∂𝐾s

∂𝐾s
∂𝑆

+ ∂𝑟
∂β

∂β
∂𝑆

+ ∂𝑟
∂𝐾i

∂𝐾i
∂𝑆

+ ∂𝑟
∂𝑡

∂𝑡
∂𝑆

= 0 (A2)

The parameters are independent and, thus, ∂𝐾s∕∂𝑆, ∂β∕∂𝑆,
and ∂𝐾i∕∂𝑆 equal zero. Furthermore, the parameters are
assumed invariant and, thus, ∂𝑡∕∂𝑆 = 0. As a result, the above
expression simplifies to

0 = ∂𝑟
∂𝐼

∂𝑓 (𝛈, 𝑡)
∂𝑆

+ ∂𝑟
∂𝑆

× 1 + ∂𝑟
∂𝐾s

× 0 + ∂𝑟
∂β

× 0

+ ∂𝑟
∂𝐾i

× 0 + ∂𝑟
∂𝑡

× 0 = ∂𝑟
∂𝐼

∂𝑓 (𝛈, 𝑡)
∂𝑆

+ ∂𝑟
∂𝑆

(A3)

and we yield the following equation for ∂𝑓 (η, 𝑡)∕∂𝑆:

∂𝑓 (η, 𝑡)
∂𝑆

= −
∂𝑟∕∂𝑆
∂𝑟∕∂𝐼

(A4)

We can certainly differentiate the residual function,
𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β), with respect to 𝑆 and 𝐼 . Symbolic
differentiation with respect to 𝑆 results in the following
expression:

∂𝑟
∂𝑆

= −
2(𝐾s −𝐾i)(𝐼 −𝐾i𝑡) + 2𝑡(β − 1)(𝐾s −𝐾i)2

𝑆3

+
2β(𝐾s −𝐾i)(𝐼 −𝐾i𝑡) exp[

2β(𝐾s−𝐾i)(𝐼−𝐾i𝑡)
𝑆2 ]

𝑆3{exp[ 2β(𝐾s−𝐾i)(𝐼−𝐾i𝑡)
𝑆2 ] + β − 1}

(A5)

With the help of the dimensionless variable, α,

α = exp
[
2β(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)

𝑆2

]
(A6)
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the expression for ∂𝑟∕∂𝑆 simplifies to

∂𝑟
∂𝑆

=

−
[2(𝐾s −𝐾i)(𝐼 −𝐾i𝑡) + 2𝑡(β − 1)(𝐾s −𝐾i)2](α + β − 1) + 2αβ(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)

𝑆3(α + β − 1)

=
−2(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)(α + β − αβ − 1) − 2𝑡(β − 1)(𝐾s −𝐾i)2(α + β − 1)

𝑆3(α + β − 1)
(A7)

Similarly, the partial derivative of the residual function,
𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β), with respect to 𝐼 equals

∂𝑟
∂𝐼

=
(𝐾s −𝐾i)(α + β − αβ − 1)

𝑆2(α + β − 1)
(A8)

We can now substitute Equations A7 and A8 into Equation A4
to yield the partial derivative of the infiltration form of Par-
lange’s equation with respect to the sorptivity, 𝑆:

∂𝑓 (𝛈, 𝑡)
∂𝑆

=
2(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)(α + β − αβ − 1) + 2𝑡(β − 1)(𝐾s −𝐾i)2(α + β − 1)

𝑆(𝐾s −𝐾i)(α + β − αβ − 1)

=
2(𝐼 −𝐾i𝑡)(α + β − αβ − 1) + 2𝑡(β − 1)(𝐾s −𝐾i)(α + β − 1)

𝑆(α + β − αβ − 1)

= 2𝑡(β − 1)(𝐾s −𝐾i)
α + β − 1

α + β − αβ − 1
+ 2

𝑆
(𝐼 −𝐾i𝑡) (A9)

We can follow a similar derivation for the other three parame-
ters of the infiltration form of Parlange’s infiltration equation.
Application of the chain rule to Equation A1 produces three
identities:

∂𝑟
∂𝐼

∂𝑓 (𝛈, 𝑡)
∂𝐾s

+ ∂𝑟
∂𝐾s

= 0 ⇒
∂𝑓 (𝛈, 𝑡)
∂𝐾s

= −
∂𝑟∕∂𝐾s
∂𝑟∕∂𝐼

(A10a)

∂𝑟
∂𝐼

∂𝑓 (𝛈, 𝑡)
∂β

+ ∂𝑟
∂β

= 0 ⇒
∂𝑓 (𝛈, 𝑡)

∂β
= −

∂𝑟∕∂β
∂𝑟∕∂𝐼

(A10b)

∂𝑟
∂𝐼

∂𝑓 (𝛈, 𝑡)
∂𝐾i

+ ∂𝑟
∂𝐾i

= 0 ⇒
∂𝑓 (𝛈, 𝑡)
∂𝐾i

= −
∂𝑟∕∂𝐾i
∂𝑟∕∂𝐼

. (A10c)

The partial derivatives of the residual function,
𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β), with respect to 𝐾s, β, and 𝐾i, can
be derived by analytic means to yield

∂𝑟
∂𝐾s

=

[𝐼 +𝐾i𝑡 + 2𝑡(β − 1)(𝐾s −𝐾i)](α + β − 1) − αβ(𝐼 −𝐾i𝑡)
𝑆2(α + β − 1)

(A11a)

∂𝑟
∂β

=

𝑡(α + β − 1)(𝐾s −𝐾i)
2 − 𝑆2(1 − α)∕2β − α(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)
𝑆2(α + β − 1)

(A11b)

∂𝑟
∂𝐾i

=

αβ𝑡(𝐾s −𝐾i) + αβ(𝐼 −𝐾i𝑡)

−[𝐼 −𝐾i𝑡 + (2β − 1)𝑡(𝐾s −𝐾i)](α + β − 1)
𝑆2(α + β − 1)

(A11c)
where the dimensionless variable, α, has been defined
in Equation A6. If we admit the above expressions to
Equations A10a–A10c and enter Equation A8 in the denom-
inator, then we yield the following expressions for the par-
tial derivatives of Parlange’s equation with respect to 𝐾s, β,
and 𝐾i

∂𝑓 (𝛈, 𝑡)
∂𝐾s

=

αβ(𝐼 −𝐾i𝑡) − [𝐼 +𝐾i𝑡 + 2𝑡(β − 1)(𝐾s −𝐾i)](α + β − 1)
(𝐾s −𝐾i)(α + β − αβ − 1)

(A12a)

∂𝑓 (𝛈, 𝑡)
∂β

=

𝑆2(1 − α)∕2β + α(𝐾s −𝐾i)(𝐼 −𝐾i𝑡)

−𝑡(α + β − 1)(𝐾s −𝐾i)2

(𝐾s −𝐾i)(α + β − αβ − 1)
(A12b)

∂𝑓 (𝛈, 𝑡)
∂𝐾i

=

[𝐼 −𝐾i𝑡 + (2β − 1)𝑡(𝐾s −𝐾i)](α + β − 1)

−αβ𝑡(𝐾s −𝐾i) − αβ(𝐼 −𝐾i𝑡)
(𝐾s −𝐾i)(α + β − αβ − 1)

(A12c)
We are now left with an analytic expression for the infiltration
rate, 𝐼 [L T−1]. The infiltration rate must satisfy the following
relationship:

𝑖 =
∂𝑓 (𝛈, 𝑡)

∂𝑡
= −

∂𝑟∕∂𝑡
∂𝑟∕∂𝐼

(A13)

The denominator, ∂𝑟∕∂𝐼 , has been used previously in our
derivation for the partial derivatives of the parameters. The
numerator of Equation A13 may be derived by differenti-
ating the residual function, 𝑟(𝐼, 𝑡, 𝑆,𝐾s, 𝐾i, β), with respect
to 𝑡:

∂𝑟
∂𝑡

=

[(𝐾s −𝐾i)
2(β − 1) −𝐾i(𝐾s −𝐾i)](α + β − 1) + αβ𝐾i(𝐾s −𝐾i)

𝑆2(α + β − 1)

(A14)
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If we enter Equations A14 and A8 into Equation A13, then we
yield the following expression for the infiltration rate:

𝑖 = ∂𝐼
∂𝑡

=
[(1 − β)𝐾s + β𝐾i](α + β − 1) − αβ𝐾i

α + β − αβ − 1
(A15)

in units of length per time. This concludes the deriva-
tion of the partial derivatives of the infiltration form of
Parlange’s equation with respect to 𝑆, 𝐾s, β, 𝐾i, and
time, 𝑡.
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