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Abstract: The Soft Collinear Effective Theory (SCET) is a powerful framework for study-

ing factorization of amplitudes and cross sections in QCD. While factorization at leading

power has been well studied, much less is known at subleading powers in the λ� 1 expan-

sion. In SCET subleading soft and collinear corrections to a hard scattering process are

described by power suppressed operators, which must be fixed case by case, and by well es-

tablished power suppressed Lagrangians, which correct the leading power dynamics of soft

and collinear radiation. Here we present a complete basis of power suppressed operators

for gg → H, classifying all operators which contribute to the cross section at O(λ2), and

showing how helicity selection rules significantly simplify the construction of the operator

basis. We perform matching calculations to determine the tree level Wilson coefficients of

our operators. These results are useful for studies of power corrections in both resummed

and fixed order perturbation theory, and for understanding the factorization properties

of gauge theory amplitudes and cross sections at subleading power. As one example, our

basis of operators can be used to analytically compute power corrections for N -jettiness

subtractions for gg induced color singlet production at the LHC.
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1 Introduction

Factorization theorems play an important role in understanding the all orders behavior of

observables in Quantum Chromodynamics (QCD). While typically formulated at leading

power, the structure of subleading power corrections is of significant theoretical and practi-

cal interest. A convenient formalism for studying factorization in QCD is the Soft Collinear

Effective Theory (SCET) [1–4], an effective field theory describing the soft and collinear

limits of QCD. SCET allows for a systematic power expansion in λ � 1 at the level of

the Lagrangian, and simplifies many aspects of factorization proofs [5]. SCET has been

used to study power corrections at the level of the amplitude [6] and to derive factorization

theorems at subleading power for B decays [7–13]. More recently, progress has been made

towards understanding subleading power corrections for event shape observables [14–17].

In this paper, we focus on the power suppressed hard scattering operators describing

the gluon initiated production (or decay) of a color singlet scalar. We present a complete

operator basis to O(λ2) in the SCET power expansion using operators of definite helic-

ity [17–19], and discuss how helicity selection rules simplify the structure of the basis. We

also classify all operators which can contribute at the cross section level at O(λ2), and dis-

cuss the structure of interference terms between different operators in the squared matrix

element. We then perform the tree level matching onto our operators. These results can be

used to study subleading power corrections either in fixed order, or resummed perturbation

theory, and compliment our recent analysis for the case of qq̄ initiated production [17].

We will consider the production of a color singlet final state, which we take for con-

creteness to be the Higgs, with the underlying hard Born process

ga(qa) gb(qb)→ H(q1) , (1.1)

where ga,b denote the colliding gluons, and H the outgoing Higgs particle. We work in the

Higgs effective theory, with an effective Higgs gluon coupling

Lhard =
C1(mt, αs)

12πv
GµνGµνH , (1.2)

obtained from integrating out the top quark. Here v = (
√

2GF )−1/2 = 246 GeV, and the

matching coefficient is known to O(α3
s) [20].

The active-parton exclusive jet cross section corresponding to eq. (1.1) can be proven

to factorize for a variety of jet resolution variables. For concreteness we will take the case

of beam thrust, τB. The leading power factorized expression for the beam thrust cross

section can be written schematically in the form [21]

dσ(0)

dτB
=

∫
dxa dxb dΦ(qa+ qb; q1)M({q1}) H(0)

g ({qi})
[
B(0)
g B(0)

g

]
⊗ S(0)

g , (1.3)

where the xa,b denote the momentum fractions of the incoming partons, dΦ denotes the

Lorentz-invariant phase space for the Born process in eq. (1.1), and M({qi}) denotes the

measurement made on the color singlet final state.1 The dependence on the underlying hard

1By referring to active-parton factorization we imply that this formula ignores contributions from pro-

ton spectator interactions [22] that occur through the Glauber Lagrangian of ref. [23]. There are also

perturbative corrections at O(α4
s) that are described by a single function Bgg in place of BgBg [23, 24].

– 1 –
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interaction is encoded in the hard function Ĥ({qi}) and the trace is over color. The soft

function Ŝ describes soft radiation, and the beam functions Bi describe energetic initial-

state radiation along the beam directions [25]. The factorization theorem of eq. (1.3) allows

logarithms of τB to be resummed to all orders through the renormalization group evolution

of the hard, beam and soft functions.

The factorization formula in eq. (1.3) captures all terms in the cross section scaling as

τ−1
B , including delta function terms. More generally the cross section can be expanded in

powers of τB as,

dσ

dτB
=

dσ(0)

dτB
+

dσ(1)

dτB
+

dσ(2)

dτB
+

dσ(3)

dτB
+O(τ) . (1.4)

Here the superscript refers to the suppression in powers of
√
τB relative to the leading power

cross section. This particular convention is chosen due to the power expansion in SCET,

where one typically takes the SCET power counting parameter λ to scale like λ2 ∼ τB. Odd

orders in eq. (1.4) are expected to vanish, and we will show this explicitly for dσ(1)/dτB.

The first non-vanishing power correction to the cross section then arises from dσ(2)/dτB,

which contains all terms that scale like O(τ0
B).

It is generally expected that the power corrections in eq. (1.4) obey a factorization

formula similar to that of eq. (1.3). Schematically,

dσ(n)

dτB
=

∫
dxa dxb dΦ(qa+ qb; q1)M({q1})

∑
j

H
(nHj)
j ⊗

[
B

(nBj)
j B

(n′Bj)

j

]
⊗ S(nSj)

j , (1.5)

where j sums over the multiple contributions that appear at each order, nHj + nBj +

n′Bj +nSj = n, and ⊗ denotes a set of convolutions, whose detailed structure has not been

specified and is known to be more complicated than typical leading power factorization

theorems. We also let ⊗ include nontrivial color contractions. The derivation of such

a formula would enable for the resummation of subleading power logarithms using the

renormalization group evolution of the different functions appearing in eq. (1.5), allowing

for an all orders understanding of power corrections to the soft and collinear limits.

To derive a factorization theorem in SCET, QCD is matched onto SCET, which consists

of hard scattering operators in Lhard and a Lagrangian Ldyn describing the dynamics of

soft and collinear radiation

LSCET = Lhard + Ldyn . (1.6)

The dynamical Lagrangian can be divided into two parts

Ldyn = Lfact + L(0)
G . (1.7)

Here L(0)
G is the leading power Glauber Lagrangian determined in ref. [23] which couples

together soft and collinear fields in an apriori non-factorizable manner, and Lfact includes

both the leading interactions which can be factorized into independent soft and collinear

Lagrangians, and subleading power interactions which are factorizable as products of soft

and collinear fields. Our focus here is on determining the subleading power Lhard for

gg → H, and Ldyn only plays a minor role when we carry out explicit matching calculations

(and L(0)
G does not play a role at all since these matching calculations are tree level).

– 2 –
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The hard scattering operators are process dependent, while the Lagrangian Ldyn is

universal and the relevant terms for our analysis are known in SCET to O(λ2) in the

power expansion [26–31]. A field redefinition can be performed in the effective theory [5]

which allows for the decoupling of leading power soft and collinear interactions in Lfact. If

L(0)
G is proven to be irrelevant, then the Hilbert spaces for the soft and collinear dynamics

are factorized, and a series of algebraic manipulations can be used to write the cross section

as a product of squared matrix elements, each involving only collinear or soft fields. This

provides a field theoretic definition of each of the functions appearing in eq. (1.5) in terms

of hard scattering operators and Lagrangian insertions in SCET. Since the Lagrangian

insertions are universal, the remaining ingredient which is required to derive a subleading

power factorization theorem for the gg → H process is a complete basis of subleading power

hard scattering operators. The derivation of a basis, which is the goal of this paper, provides

the groundwork for a systematic study of power corrections for color singlet production

through gluon fusion.

An important application of the results presented in this paper is to the calculation of

subleading power corrections to event shape observables for gg → H, such as 0-jettiness [21].

Recently, there has been considerable interest in the use of event shape observables for per-

forming NNLO fixed order subtractions using the qT [32] or N -jettiness [33, 34] subtraction

schemes. These ideas have been applied to color singlet production [35–45], to the produc-

tion of a single jet in association with a color singlet particle [33, 46–48], and to inclusive

photon production [49]. By analytically computing the power corrections for the subtrac-

tions, their stability and numerical accuracy can be significantly improved. This was shown

explicitly in [16] with the SCET based analytic calculation of the leading power corrections

for 0-jettiness for qq̄ initiated Drell Yan like production of a color singlet, and it would be

interesting to extend this calculation to gg → H. For a direct calculation of the power

corrections in QCD, see [50].

An outline of this paper is as follows. In section 2 we provide a brief review of SCET

and of the helicity building blocks required for constructing subleading operators in SCET.

In section 3 we present a complete basis of operators to O(λ2) for the gluon initiated

production of a color singlet, and carefully classify which operators can contribute to the

cross section at O(λ2). In section 4 we perform the tree level matching to the relevant

operators. We conclude and discuss directions for future study in section 5.

2 Helicity operators in SCET

In this section we briefly review salient features of SCET, as well as the use of helicity

operators in SCET. Reviews of SCET can be found in refs. [51, 52], and more detailed

discussions on the use of helicity operators can be found in refs. [17–19].

2.1 SCET

SCET is an effective field theory of QCD describing the interactions of collinear and soft

particles in the presence of a hard interaction [1–5]. Collinear particles are characterized

by a large momentum along a particular light-like direction, while soft particles are charac-

terized by having a small momentum with homogenous scaling of all its components. For
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each jet direction present in the problem we define two light-like reference vectors nµi and

n̄µi such that n2
i = n̄2

i = 0 and ni ·n̄i = 2. We can then write any four-momentum p as

pµ = n̄i ·p
nµi
2

+ ni ·p
n̄µi
2

+ pµni⊥ . (2.1)

A particle with momentum p close to the ~ni direction will be referred to as ni-collinear.

In lightcone coordinates its momenta scale like (ni ·p, n̄i ·p, pni⊥) ∼ n̄i ·p (λ2, 1, λ). Here

λ� 1 is a formal power counting parameter determined by the measurements or kinematic

restrictions imposed on the QCD radiation. The choice of reference vectors is not unique,

and any two reference vectors, ni and n′i, with ni · n′i ∼ O(λ2) describe the same physics.

The freedom in the choice of ni is represented in the effective theory as a symmetry known

as reparametrization invariance (RPI) [26, 27]. More explicitly, there are three classes of

RPI transformations under which the EFT is invariant

RPI-I RPI-II RPI-III

niµ → niµ + ∆⊥µ niµ → niµ niµ → eαniµ

n̄iµ → n̄iµ n̄iµ → n̄iµ + ε⊥µ n̄iµ → e−αn̄iµ . (2.2)

The transformation parameters are assigned the power counting ∆⊥ ∼ λ, ε⊥ ∼ λ0, and

α ∼ λ0. Additionally, while α can be a finite parameter, the parameters ∆⊥ and ε⊥ are

infinitesimal, and satisfy ni · ∆⊥ = n̄i · ∆⊥ = ni · ε⊥ = n̄i · ε⊥ = 0. RPI symmetries

can be used to relate operators at different orders in the power expansion, and will be

used in this paper to relate the Wilson coefficients of several subleading power operators

to the leading power Wilson coefficients for the gg → H process. Furthermore, the RPI-

III symmetry will constrain the form of the Wilson coefficients of our subleading power

operators. At tree level the Wilson coefficients are simply rational functions of the large

momentum components of the fields appearing in the operator, which must satisfy the

rescaling symmetries of RPI-III.

SCET is constructed by decomposing momenta into label and residual components

pµ = p̃µ + kµ = n̄i ·p̃
nµi
2

+ p̃µni⊥ + kµ . (2.3)

The momenta n̄i · p̃ ∼ Q and p̃ni⊥ ∼ λQ are referred to as the label components, where

Q is a typical scale of the hard interaction, while k ∼ λ2Q is a small residual momentum

describing fluctuations about the label momentum. Fields with momenta of definite scaling

are obtained by performing a multipole expansion. Explicitly, the effective theory consists

of collinear quark and gluon fields for each collinear direction, as well as soft quark and

gluon fields. Independent gauge symmetries are enforced for each set of fields, which have

support for the corresponding momenta carried by that field [31]. The leading power gauge

symmetry is exact, and is not corrected at subleading powers.

In SCET, fields for ni-collinear quarks and gluons, ξni,p̃(x) and Ani,p̃(x), are labeled by

their collinear direction ni and their large momentum p̃. The collinear fields are written in a

mixed representation, namely they are written in position space with respect to the residual

momentum and in momentum space with respect to the large momentum components.

– 4 –
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Operator Bµni⊥ χni Pµ⊥ qus Dµ
us

Power Counting λ λ λ λ3 λ2

Table 1. Power counting for building block operators in SCETI.

Derivatives acting on collinear fields give the residual momentum dependence, which scales

as i∂µ ∼ k ∼ λ2Q, whereas the label momentum operator Pµ gives the label momentum

component. It acts on a collinear field as Pµ ξni,p̃ = p̃µ ξni,p̃. Note that we do not need an

explicit ni label on the label momentum operator, since it is implied by the field that the

label momentum operator is acting on. We will use the shorthand notation P = n̄i·P . We

will often suppress the explicit momentum labels on the collinear fields, keeping only the

label of the collinear sector, ni. Of particular relevance for the construction of subleading

power operators is the P⊥ operator, which identifies the O(λ) perp momenta between two

collinear fields within a collinear sector.

Soft degrees of freedom are described in SCET by quark and gluon fields qus(x) and

Aus(x). In this paper we will restrict ourselves to the SCETI theory where the soft degrees

of freedom are referred to as ultrasoft so as to distinguish them from the soft modes of

SCETII [53]. The operators we construct are also applicable in the SCETII theory, but

additional soft operators would be required. For a more detailed discussion see ref. [17].

The ultrasoft fields carry residual momenta, i∂µ ∼ λ2Q, but do not carry label momenta,

since they are not associated with any collinear direction. Correspondingly, they also do not

carry a collinear sector label. The ultrasoft fields are able to exchange residual momenta

between distinct collinear sectors while remaining on-shell.

SCET is constructed such that manifest power counting in the expansion parameter λ

is maintained at every stage of a calculation. All fields have a definite power counting [3],

shown in table 1, and the SCET Lagrangian is expanded as a power series in λ

LSCET = Lhard + Ldyn =
∑
i≥0

L(i)
hard + L(0)

G +
∑
i≥0

L(i) . (2.4)

Here (i) denotes objects at O(λi) in the power counting. The Lagrangians L(i)
hard contain

the hard scattering operators O(i), and are determined by an explicit matching calculation.

The hard scattering operators encode all process dependence, while the L(i) describe the

dynamics of ultrasoft and collinear modes in the effective theory, and are universal. The

terms we need are explicitly known to O(λ2), and can be found in a summarized form

in [51]. Finally, L(0)
G is the leading power Glauber Lagrangian [23], which describes the

leading power coupling of soft and collinear degrees of freedom through potential operators.

In this paper we will be interested in subleading power hard scattering operators, in

particular, L(1)
hard and L(2)

hard. The hard effective Lagrangian at each power is given by a

product of hard scattering operators and Wilson coefficients,

L(j)
hard =

∑
{ni}

∑
A,··

[ `A∏
i=1

∫
dωi

]
~O

(j)†
A+··:··(··:··...··:··)[··:··−]

(
{ni};ω1, . . . , ω`A

)
× ~C

(j)
A+··:··(··:··...··:··)[··:··−]

(
{ni};ω1, . . . , ω`A

)
. (2.5)

– 5 –
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The appropriate collinear sectors {ni} are determined by directions found in the collinear

states of the hard process being considered. If there is a direction n′1 in the state then we

sum over the cases where each of n1, . . ., n4 is set equal to this n′1.2 The sum over A, ·· in

eq. (2.5) runs over the full basis of operators that appear at this order, which are specified

by either explicit labels A and/or helicity labels ·· on the operators and coefficients. The
~C

(j)
A are also vectors in the color subspace in which the O(λj) hard scattering operators
~O

(j)†
A are decomposed. Explicitly, in terms of color indices, we follow the notation of ref. [18]

and have

~O†+··:··(··:··...··:··)[··:··−] = Oa1···αn

+··:··(··:··...··:··)[··:··−] T̄
a1···αn ,

Ca1···αn

+··:··(··:··...··:··)[··:··−] =
∑
k

Ck+··:··(··:··...··:··)[··:··−]T
a1···αn
k ≡ T̄ a1···αn ~C+··:··(··:··...··:··)[··:··−] . (2.6)

Here T̄ a1···αn is a row vector of color structures that spans the color conserving subspace.

The ai are adjoint indices and the αi are fundamental indices. The color structures do not

necessarily have to be independent, but must be complete.

Hard scattering operators involving collinear fields are constructed out of products

of fields and Wilson lines that are invariant under collinear gauge transformations [2, 3].

The field building blocks for these operators are collinear gauge-invariant quark and gluon

fields, defined as

χni,ω(x) =
[
δ(ω − Pni)W

†
ni

(x) ξni(x)
]
, (2.7)

Bµni⊥,ω(x) =
1

g

[
δ(ω + Pni)W

†
ni

(x) iDµ
ni⊥Wni(x)

]
.

For this particular definition of χni,ω, we have ω > 0 for an incoming quark and ω < 0

for an outgoing antiquark. For Bni,ω⊥, ω > 0 (ω < 0) corresponds to outgoing (incoming)

gluons. The covariant derivative in eq. (2.7) is given by,

iDµ
ni⊥ = Pµni⊥ + gAµni⊥ , (2.8)

and the collinear Wilson line is defined as

Wni(x) =

[ ∑
perms

exp
(
− g

Pni

n̄·Ani(x)
)]

. (2.9)

The emissions summed in the Wilson lines are O(λ0) in the power counting. The square

brackets indicate that the label momentum operators act only on the fields in the Wilson

line. The collinear Wilson line, Wni(x), is localized with respect to the residual position

x, so that χni,ω(x) and Bµni,ω(x) can be treated as local quark and gluon fields from the

perspective of the ultrasoft degrees of freedom.

All operators in the theory must be invariant under ultrasoft gauge transformations.

Collinear fields transform under ultrasoft gauge transformations as background fields of

2Technically the ni in {ni} are representatives of an equivalence class determined by demanding that

distinct classes {ni} and {nj} have ni · nj � λ2.

– 6 –
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the appropriate representation. Dependence on the ultrasoft degrees of freedom enters the

operators through the ultrasoft quark field qus, and the ultrasoft covariant derivative Dus,

defined as

iDµ
us = i∂µ + gAµus . (2.10)

Other operators, such as the ultrasoft gluon field strength, can be constructed from the

ultrasoft covariant derivative. The power counting for these operators is shown in table 1.

The complete set of collinear and ultrasoft building blocks is summarized in table 1.

These can be combined, along with Lorentz and Dirac structures, to construct a basis of

hard scattering operators at any order in the SCET power counting. All other field and

derivative combinations can be reduced to this set by the use of equations of motion and

operator relations [54]. As shown in table 1, both the collinear quark and collinear gluon

building block fields scale as O(λ). Therefore, while for most jet processes only a single

collinear field appears in each sector at leading power, subleading power operators can

involve multiple collinear fields in the same collinear sector, as well as P⊥ insertions. The

scaling of an operator is simply obtained by adding up the powers for the building blocks

it contains. This implies that at higher powers hard scattering operators involve more

and more fields, or derivative insertions, leading to any increasingly complicated structure.

Furthermore, to ensure that the effective theory completely reproduces all IR limits of the

full theory, as well as to guarantee that the renormalization group evolution of the operators

is closed, it is essential that operator bases in SCET are complete, namely all operators

consistent with the symmetries of the problem must be included. Enumerating a minimal

basis of operators becomes difficult at subleading power, and it is essential to be able to

efficiently identify independent operators, as well as to make manifest all symmetries of

the problem.

2.2 Helicity operators

An efficient approach to simplify operator bases in SCET is to use operators of definite

helicity [17–19]. This general philosophy is well known from the study of on-shell scattering

amplitudes, where it leads to compact expressions, removes gauge redundancies, and makes

symmetries manifest. The use of helicities is also natural in SCET since the effective

theory is formulated as an expansion about identified light like directions with respect to

which helicities are naturally defined, and collinear fields carry these directions as labels.

Furthermore, since SCET is formulated in terms of collinear gauge invariant fields, see

eq. (2.7), one can naturally project onto physical polarizations. SCET helicity operators

were introduced in [18] where they were used to study leading power processes with high

multiplicities. This was extended to subleading power in [19] where it was shown that the

use of helicity operators is also convenient when multiple fields appear in the same collinear

sector. In this section we briefly review SCET helicity operators, since we will use them

to simplify the structure of the subleading power basis for gg → H. We will follow the

notation and conventions of [17–19]. A summary of the complete set of operators that we

will use is given in table 2.
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Field: Bai± J ᾱβij± J ᾱβij0 J ᾱβi± J ᾱβi0 J ᾱβ
i0̄

P⊥± ∂us(i)± ∂us(i)0 ∂us(i)0̄

Power counting: λ λ2 λ2 λ2 λ2 λ2 λ λ2 λ2 λ2

Equation: (2.11a) (2.14) (2.15) (2.16) (2.23)

Field: Baus(i)± B
a
us(i)0

Power counting: λ2 λ2

Equation: (2.22)

Table 2. The helicity building blocks in SCETI that will be used to construct a basis of hard

scattering operators for gg → H, together with their power counting order in the λ-expansion, and

the equation numbers where their definitions may be found. The building blocks also include the

conjugate currents J† in cases where they are distinct from the ones shown.

We define collinear gluon and quark fields of definite helicity as

Bai± = −ε∓µ(ni, n̄i)Baµni⊥,ωi
, (2.11a)

χαi± =
1 ± γ5

2
χαni,−ωi

, χ̄ᾱi± = χ̄ᾱni,−ωi

1 ∓ γ5

2
. (2.11b)

Here a, α, and ᾱ are adjoint, 3, and 3̄ color indices respectively, and the ωi labels on

both the gluon and quark building blocks are taken to be outgoing, which is also used for

our helicity convention. Using the standard spinor helicity notation (see e.g. [55] for an

introduction)

|p〉 ≡ |p+〉 =
1 + γ5

2
u(p) , |p] ≡ |p−〉 =

1− γ5

2
u(p) , (2.12)

〈p| ≡ 〈p−| = sgn(p0) ū(p)
1 + γ5

2
, [p| ≡ 〈p+| = sgn(p0) ū(p)

1− γ5

2
,

with p lightlike, the polarization vector of an outgoing gluon with momentum p can be

written

εµ+(p, k) =
〈p+|γµ|k+〉√

2〈kp〉
, εµ−(p, k) = −〈p−|γ

µ|k−〉√
2[kp]

, (2.13)

where k 6= p is an arbitrary light-like reference vector, chosen to be n̄i in eq. (2.11a).

Since fermions always arise in pairs, we can define currents with definite helicities.

Here we will restrict to the case of two back to back directions, n and n̄, as is relevant

for gg → H. A more general discussion can be found in refs. [17, 19]. We define helicity

currents where the quarks are in opposite collinear sectors,

h = ±1 : J ᾱβnn̄± = ∓
√

2

ωn ωn̄

εµ∓(n, n̄)

〈n̄∓ |n±〉
χ̄ᾱn± γµχ

β
n̄± , (2.14)

h = 0 : J ᾱβnn̄0 =
2√

ωn ωn̄ [nn̄]
χ̄ᾱn+χ

β
n̄− , (J†)ᾱβnn̄0 =

2√
ωn ωn̄〈nn̄〉

χ̄ᾱn−χ
β
n̄+ ,
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as well as where the quarks are in the same collinear sector,

h = 0 : J ᾱβi0 =
1

2
√
ωχ̄ ωχ

χ̄ᾱi+ /̄ni χ
β
i+ , J ᾱβ

i0̄
=

1

2
√
ωχ̄ ωχ

χ̄ᾱi− /̄ni χ
β
i− , (2.15)

h = ±1 : J ᾱβi± = ∓

√
2

ωχ̄ ωχ

εµ∓(ni, n̄i)(
〈ni ∓ |n̄i±〉

)2 χ̄ᾱi± γµ /̄ni χβi∓ .
Here i can be either n or n̄. All of these currents are manifestly invariant under the RPI-

III symmetry of SCET. The Feynman rules for all currents are very simple, and are given

in [17]. Note that the operators J ᾱβnn̄±, J ᾱβi0 , and J ᾱβ
i0̄

have quarks of the same chirality, and

hence are the ones that will be generated by vector gauge bosons.

At subleading power one must also consider insertions of the Pµi⊥ operator. Note that

we can drop the explicit i index on the P⊥ operator, as it is implied by the field that the

operator is acting on. The Pµ⊥ operator acts on the perpendicular subspace defined by the

vectors ni, n̄i, so it is naturally written as

P⊥+ (ni, n̄i) = −ε−(ni, n̄i) · P⊥ , P⊥− (ni, n̄i) = −ε+(ni, n̄i) · P⊥ . (2.16)

The P⊥± operator carry helicity h = ±1. We use square brackets to denote which fields

are acted upon by the P⊥± operator, for example Bi+
[
P⊥+Bi−

]
Bi−, indicates that the P⊥+

operator acts only on the middle field, whereas for currents, we use a curly bracket notation

{
P⊥λ J

ᾱβ
i0

}
=

1

2
√
ωχ̄ ωχ

[
P⊥λ χ̄ᾱi+

]
/̄niχ

β
i+ , (2.17)

{
J ᾱβi0 (P⊥λ )†

}
=

1

2
√
ωχ̄ ωχ

χ̄ᾱi+ /̄ni

[
χβi+(P⊥λ )†

]
,

to indicate which of the fields within the current is acted on.

To work with gauge invariant ultrasoft gluon fields, we construct our basis post BPS

field redefinition. The BPS field redefinition is defined by [5]

Baµn⊥ → Y
ab
n B

bµ
n⊥, χαn → Y αβ̄

n χβn, (2.18)

and is performed in each collinear sector. Here Yn, Yn are fundamental and adjoint ultrasoft

Wilson lines. For a general representation, r, the ultrasoft Wilson line is defined by

Y (r)
n (x) = P exp

ig 0∫
−∞

ds n ·Aaus(x+ sn)T a(r)

 , (2.19)

where P denotes path ordering. The BPS field redefinition has the effect of decoupling

ultrasoft and collinear degrees of freedom at leading power [5], and it accounts for the full

physical path of ultrasoft Wilson lines [56, 57].

The BPS field redefinition introduces ultrasoft Wilson lines into the hard scattering

operators. These Wilson lines can be arranged with the ultrasoft fields to define ultrasoft
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gauge invariant building blocks. In particular, the gauge covariant derivative in an arbitrary

representation, r, can be sandwiched by Wilson lines and decomposed as

Y (r) †
ni

iD(r)µ
us Y (r)

ni
= i∂µus + [Y (r) †

ni
iD(r)µ

us Y (r)
ni

] = i∂µus + T a(r)gB
aµ
us(i) . (2.20)

Here we have defined the ultrasoft gauge invariant gluon field by

gBaµus(i) =

[
1

ini · ∂us
niνiG

bνµ
us Ybani

]
. (2.21)

In the above equations the derivatives act only within the square brackets. Note from

eq. (2.21), that ni · Baus(i) = 0. The Wilson lines which remain after this procedure can be

absorbed into a generalized color structure, T̄BPS (see [19] for more details). Determining a

complete basis of color structures is straightforward, and detailed examples are given in [17].

Having defined gauge invariant ultrasoft gluon fields, we can now define ultrasoft gauge

invariant gluon helicity fields and derivative operators which mimic their collinear counter-

parts. For the ultrasoft gluon helicity fields we define the three building blocks

Baus(i)± = −ε∓µ(ni, n̄i)Baµus(i), Baus(i)0 = n̄µBaµus(i) , (2.22)

and similarly for the ultrasoft derivative operators

∂us(i)± = −ε∓µ(ni, n̄i) ∂
µ
us, ∂us(i)0 = n̄iµ∂

µ
us, ∂us(i)0̄ = niµ∂

µ
us . (2.23)

Unlike for the gauge invariant collinear gluon fields, for the ultrasoft gauge invariant gluon

field we use three building block fields to describe the two physical degrees of freedom

because the ultrasoft gluons are not fundamentally associated with any direction. Without

making a further gauge choice, their polarization vectors do not lie in the perpendicular

space of any fixed external reference vector. When inserting ultrasoft derivatives into oper-

ators we will use the same curly bracket notation defined for the P⊥ operators in eq. (2.17).

Gauge invariant ultrasoft quark fields can also appear explicitly in operator bases at

subleading powers. From table 1 we see that they power count as O(λ3), and are there-

fore not relevant for our construction of an O(λ2) operator basis. Details on the structure

of subleading power helicity operators involving ultrasoft quarks can be found in [17].

It is important to emphasize that although ultrasoft quarks do not appear in the hard

scattering operators at O(λ2) they do appear in the calculation of cross sections or ampli-

tudes at O(λ2) due to subleading power Lagrangian insertions in the effective (examples

where they play an important role for factorization in B-decays include both exclusive

decays [53, 58, 59] and inclusive decays [7, 8, 10]). Such ultrasoft quark contributions also

played an important role in the recent subleading power perturbative SCET calculation

of ref. [16].

Finally, we note that the helicity operator basis presented in this section only provides

a complete basis in d = 4, and we have not discussed evanescent operators [60–62]. An

extension of our basis to include evanescent operators would depend on the regularization

scheme. However, in general additional building block fields would be required, for example

an ε scalar gluon Baε to encode the (−2ε) transverse degrees of freedom of the gluon. As in
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standard loop calculations, we expect that the evanescent operators at each loop order could

be straightforwardly identified and treated. Since we do not perform a one-loop matching

to our operators, we leave a complete treatment of evanescent operators to future work.

3 Operator basis

In this section we enumerate a complete basis of power suppressed operators up to O(λ2) for

the process gg → H. The organization of the operator basis in terms of helicity operators

will make manifest a number of symmetries arising from helicity conservation, greatly

reducing the operator basis. Helicity conservation is particularly powerful in this case due

to the spin-0 nature of the Higgs. The complete basis of field structures is summarized

in table 3. In section 3.4 we will show which operators contribute to the cross section at

O(λ2). These operators are indicated with a check mark in the table.

Examining eq. (2.5) we see that the hard Lagrangian in SCET is written as a sum over

label momenta of the hard operators. For the special case of two back-to-back collinear

sectors this reduces to

L(j)
hard =

∑
n

∑
A,··

[
`A∏
i=1

∫
dωi

]
~O

(j)†
A+··:··(··:··...··:··)[··:··−]

(
n, n̄;ω1, . . . , ω`A

)
× ~C

(j)
A+··:··(··:··...··:··)[··:··−]

(
n, n̄;ω1, . . . , ω`A

)
. (3.1)

When writing our basis, we therefore do not need to include operators which are identical

up to the swap of n ↔ n̄. This means that when writing an operator with different field

structures in the two collinear sectors we are free to make an arbitrary choice for which

is labeled n and which n̄, and this choice can be made independently for each operator.

When squaring matrix elements, all possible interferences are properly incorporated by the

sum over directions in eq. (3.1).

As discussed in section 1, we will work in the Higgs effective theory with a Higgs

gluon coupling given by the effective Lagrangian in eq. (1.2). We therefore do not consider

operators generated by a direct coupling of quarks to the Higgs. All quarks in the final

state are produced by gluon splittings. The extension to include operators involving quarks

coupling directly to Higgs, as relevant for H → bb̄, is straightforward using the helicity

building blocks given in section 2.2.

3.1 Leading power

The leading power operators for gg → H in the Higgs effective theory are well known. Due

to the fact that the Higgs is spin zero, the only two operators are

gngn̄ :

O
(0)ab
B++ = Ban+ Bbn̄+H , O

(0)ab
B−− = Ban− Bbn̄−H . (3.2)
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Order Category Operators (equation number) # helicity # of σ
O(λ2)
2j 6=0

configs color

O(λ0) Hgg O
(0)ab
Bλ1λ1

= Banλ1
Ban̄λ1

H (3.2) 2 1 X

O(λ) Hqq̄g O
(1)a ᾱβ
Bn,n̄λ1(λi)

= Ban,n̄λ1
J ᾱβnn̄ λj H (3.4), (3.5) 4 1 X

O(λ2) Hqq̄QQ̄ O
(2)ᾱβγ̄δ
qQ1(λ1;λ2) = J ᾱβ(q)nλ1

J γ̄δ(Q)n̄λ2
H (3.19) 4 2

O
(2)ᾱβγ̄δ
qQ2(λ1;λ1) = J ᾱβ

(qQ̄)nλ1
J γ̄δ(Qq̄)n̄ λ1

H (3.20) 2 2

O
(2)ᾱβγ̄δ
qQ3(λ1;−λ1) = J ᾱβ(q)nn̄λ1

J γ̄δ(Q)nn̄−λ1
H (3.22) 2 2

Hqq̄qq̄ O
(2)ᾱβγ̄δ
qq1(λ1;λ2) = J ᾱβ(q)nλ1

J γ̄δ(q)n̄λ2
H (3.24) 3 2

O
(2)ᾱβγ̄δ
qq3(λ1;−λ1) = J ᾱβ(q)nn̄λ1

J γ̄δ(q)nn̄−λ1
H (3.25) 1 2

Hqq̄gg O
(2)ab ᾱβ
B1λ1λ2(λ3) = Banλ1

Bbn̄λ2
J ᾱβn λ3

H (3.8) 4 3 X

O
(2)ab ᾱβ
B2λ1λ2(λ3) = Ban̄λ1

Bbn̄λ2
J ᾱβn λ3

H (3.10) 2 3

Hgggg O
(2)abcd
4g1λ1λ2λ3λ4

= SBanλ1
Bbnλ2

Bcn̄λ3
Bdn̄λ4

H (3.14) 3 9

O
(2)abcd
4g2λ1λ2λ3λ4

= SBanλ1
Bbn̄λ2

Bcn̄λ3
Bdn̄λ4

H (3.16) 2 9 X

P⊥ O
(2)a ᾱβ
Pχλ1(λ2)[λP ] = Banλ1

{J ᾱβn̄ λ2
(PλP⊥ )†}H (3.27) 4 1 X

O
(2)abc
PBλ1λ2λ3[λP ] = S Banλ1

Bbn̄λ2

[
PλP⊥ B

c
n̄λ3

]
H (3.30) 4 2 X

Ultrasoft O
(2)a ᾱβ
χ(us(n))0:(λ1) = Baus(n)0 J

ᾱβ
nn̄ λ1

H (3.35) 2 1

O
(2)a ᾱβ
χ(us(n̄))0:(λ1) = Baus(n̄)0 J

ᾱβ
nn̄ λ1

H (3.37) 2 1

O
(2) ᾱβ
∂χ(us(i))λ1:(λ2) = {∂us(i)λ1

J ᾱβnn̄ λ2
}H (3.39) 4 1

O
(2)abc
B(us(n))λ1:λ2λ3

= Baus(n)λ1
Bbn λ2

Bcn̄ λ3
H (3.43) 2 2 X

O
(2)abc
B(us(n̄))λ1:λ2λ3

= Baus(n̄)λ1
Bbn λ2

Bcn̄ λ3
H (3.45) 2 2 X

O
(2)ab
∂B(us(i))λ1:λ2λ3

=
[
∂us(i)λ1

Bnλ2

]
Bn̄ λ3 H (3.48) 4 1 X

Table 3. Basis of hard scattering operators for gg → H up to O(λ2). The λi denote helicities, S

represents a symmetry factor present for some cases, and detailed lists of operators can be found in

the indicated equation. The number of allowed helicity configurations are summarized in the fourth

column. The final column indicates which operators contribute to the cross section up to O(λ2)

in the power expansion, as discussed in section 3.4. Counting the helicity configurations there are

a total of 53 operators, of which only 28 contribute to the cross section at O(λ2). Of those 28,

only 24 have non zero Wilson coefficients at tree level since the operators in eq. (3.27) are absent

at this order. These numbers do not include the number of distinct color configurations which are

indicated in the 5th column.

Here the purple circled denotes that this is a hard scattering operator in the effective

theory, while the dashed circles indicate which fields are in each collinear sector. Note that

here we have opted not to include a symmetry factor at the level of the operator. We

will include symmetry factors in the operator only when there is an exchange symmetry

within a given collinear sector. We assume that overall symmetry factors which involve

exchanging particles from different collinear sectors are taken into account at the phase
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space level. The color basis here is one-dimensional, and we take it to be

T̄ ab = δab , T̄ abBPS =
(
YTn Yn̄

)ab
=
(
YTn̄ Yn

)ba
. (3.3)

3.2 Subleading power

Due to the spin zero nature of the Higgs, the O(λ) operators are highly constrained. To

simplify the operator basis we will work in the center of mass frame and we will further

choose our n and n̄ axes so that the total label ⊥ momentum of each collinear sector

vanishes. This is possible in an SCETI theory since the ultrasoft sector does not carry

label momentum, and it implies that we do not need to include operators where the P⊥
operator acts on a sector with a single collinear field. At O(λ) the suppression in the

operator must therefore come from an explicit collinear field.

There are two possibilities for the collinear field content of the operators, either three

collinear gluon fields, or two collinear quark fields and a collinear gluon field. Interestingly,

the helicity selection rules immediately eliminate the possibility of O(λ) operators with

three collinear gluon fields, since they cannot sum to a zero helicity state. We therefore only

need to consider operators involving two collinear quark fields and a collinear gluon field.

The helicity structure of these operators is also constrained. In particular, to cancel the spin

of the collinear gluon field, the collinear quark current must have helicity ±1. Furthermore,

the quark-antiquark pair arises from a gluon splitting, since we are considering gluon fusion

in the Higgs EFT, and therefore both have the same chirality. Together this implies that the

quarks are described by the current J ᾱβnn̄±. The only two operators in the basis at O(λ) are

qn(q̄g)n̄ :

O
(1)a ᾱβ
Bn̄+(+) = Ban̄+ J

ᾱβ
nn̄+H , O

(1)a ᾱβ
Bn̄−(−) = Ban̄− J

ᾱβ
nn̄−H , (3.4)

for the case that the gluon field is in the same sector as the antiquark field, which we have

taken to be n̄, and

(qg)nq̄n̄ :

O
(1)a ᾱβ
Bn−(+) = Ban− J

ᾱβ
nn̄+H , O

(1)a ᾱβ
Bn+(−) = Ban+ J

ᾱβ
nn̄−H , (3.5)

for the case that the gluon field is in the same direction as the collinear quark field. In

both cases the color basis is one-dimensional T̄ aαβ̄ = T a
αβ̄

. After the BPS field redefinition

we have

T̄ aαβ̄BPS =
(
Y †nYn̄T

a
)
αβ̄

, T̄ aαβ̄BPS =
(
T aY †nYn̄

)
αβ̄

, (3.6)

for eqs. (3.4) and (3.5) respectively.
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3.3 Subsubleading power

At O(λ2) the allowed operators can include either additional collinear field insertions,

insertions of the P⊥ operator, or ultrasoft field insertions. We will treat each of these cases

in turn.

3.3.1 Collinear field insertions

We begin by considering operators involving only collinear field insertions. At O(λ2) the

operator can have four collinear fields. These operators can be composed purely of collinear

gluon fields, purely of collinear quark fields, or of two collinear gluon fields and a collinear

quark current. In each of these cases helicity selection rules will restrict the possible helicity

combinations of the operators.

Two quark-two gluon operators. We begin by considering operators involving two

collinear quark fields and two collinear gluon fields, which are again severely constrained

by the helicity selection rules. Since the two gluons fields can give either helicity 0 or 2,

the only way to achieve a total spin zero is if the quark fields must be in a helicity zero

configuration. Furthermore, since they arise from a gluon splitting they must have the same

chirality. This implies that all operators must involve only the currents J ᾱβn 0 or J ᾱβ
n 0̄

, where

we have taken without loss of generality that the two quarks are in the n-collinear sector,

as per the discussion below eq. (3.1). The gluons can then either be in opposite collinear

sectors, or in the same collinear sector. The color basis before BPS field redefinition is

identical for the two cases. It is three dimensional, and we take as a basis

T̄ abαβ̄ =
(

(T aT b)αβ̄ , (T bT a)αβ̄ , tr[T aT b] δαβ̄

)
. (3.7)

In the case that the two collinear gluons are in opposite collinear sectors a basis of

helicity operators is given by

(gqq̄)n(g)n̄ :

O
(2)ab ᾱβ
B1++(0) = Ban+ Bbn̄+ J

ᾱβ
n 0 H , O

(2)ab ᾱβ

B1++(0̄)
= Ban+ Bbn̄+ J

ᾱβ
n 0̄
H , (3.8)

O
(2)ab ᾱβ
B1−−(0) = Ban− Bbn̄− J

ᾱβ
n 0 H , O

(2)ab ᾱβ

B1−−(0̄)
= Ban− Bbn̄− J

ᾱβ
n 0̄
H .

The color basis after BPS field redefinition is given by

T̄ abαβ̄
BPS =

(
(YTn Yn̄)cb(T aT c)αβ̄ , (YTn Yn̄)cb(T cT a)αβ̄ , TF (YTn Yn̄)ab δαβ̄

)
, (3.9)

where we have used tr[T aT b] = TF δ
ab.

In the case that the two gluons are in the same collinear sector a basis of helicity

operators is given by

(qq̄)n(gg)n̄ :

O
(2)ab ᾱβ
B2+−(0) = Ban̄+ Bbn̄− J

ᾱβ
n 0 H , O

(2)ab ᾱβ

B2+−(0̄)
= Ban̄+ Bbn̄− J

ᾱβ
n 0̄
H . (3.10)

The color basis after BPS field redefinition is

T̄ abαβ̄
BPS =

(
(Y †nYn̄T

aT bY †n̄Yn)αβ̄ , (Y †nYn̄T
bT aY †n̄Yn)αβ̄ , tr[T aT b] δαβ̄

)
. (3.11)
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Four gluon operators. Operators involving four collinear gluon fields can have either

two collinear gluon fields in each sector, or three collinear gluon fields in one sector. A

basis of color structures before BPS field redefinition is given by

T̄ abcd =
1

2



tr[abcd] + tr[adcb]

tr[acdb] + tr[abdc]

tr[adbc] + tr[acbd]

tr[abcd]− tr[adcb]

tr[acdb]− tr[abdc]

tr[adbc]− tr[acbd]

2tr[ab] tr[cd]

2tr[ac] tr[db]

2tr[ad] tr[bc]



T

. (3.12)

Here we have used a simplified notation, writing only the adjoint indices of the color

matrices appearing in the trace. For example, tr[abcd] ≡ tr[T aT bT cT d]. The color bases

after BPS field redefinition will be given separately for each case. For the specific case of

SU(Nc) with Nc = 3 we could further reduce the color basis by using the relation

tr[abcd+ dcba] + tr[acdb+ bdca] + tr[adbc+ cbda]

= tr[ab]tr[cd] + tr[ac]tr[db] + tr[ad]tr[bc] . (3.13)

We choose not to do this, as it makes the structure more complicated, and because it does

not hold for Nc > 3.

In the case that there are two collinear gluon fields in each collinear sector, a basis of

helicity operators is given by

(gg)n(gg)n̄ :

O
(2)abcd
4g1++++ =

1

4
Ban+Bbn+Bcn̄+Bdn̄+H , O

(2)abcd
4g1+−+− = Ban+Bbn−Bcn̄+Bdn̄−H , (3.14)

O
(2)abcd
4g1−−−− =

1

4
Ban−Bbn−Bcn̄−Bdn̄−H .

The spin zero nature of the Higgs implies that a number of helicity configurations do not

contribute, and therefore are not included in our basis operators here. The color basis after

BPS field redefinition is given by

T̄ abcdBPS =
1

2



(tr[T a
′
T b
′
T c
′
T d
′
] + tr[T d

′
T c
′
T b
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T c
′
T d
′
T b
′
] + tr[T b

′
T d
′
T c
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T d
′
T b
′
T c
′
] + tr[T c

′
T b
′
T d
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T b
′
T c
′
T d
′
]− tr[T d

′
T c
′
T b
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T c
′
T d
′
T b
′
]− tr[T b

′
T d
′
T c
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T d
′
T b
′
T c
′
]− tr[T c

′
T b
′
T d
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

1
2δ
abδcd

1
2(YTn Yn̄)ac(YTn Yn̄)bd

1
2(YTn Yn̄)ad(YTn Yn̄)bc



T

. (3.15)
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The other relevant case has three gluons in one sector, which we take to be the n̄

collinear sector. The basis of operators is then given by

(g)n(ggg)n̄ :

O
(2)abcd
4g2+++− =

1

2
Ban+Bbn̄+Bcn̄+Bdn̄−H , O

(2)abcd
4g2−+−− =

1

2
Ban−Bbn̄+Bcn̄−Bdn̄−H . (3.16)

In this case, the post-BPS color basis is given by

T̄ abcdBPS =
1

2



(tr[T a
′
T b
′
T c
′
T d
′
] + tr[T d

′
T c
′
T b
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T c
′
T d
′
T b
′
] + tr[T b

′
T d
′
T c
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T d
′
T b
′
T c
′
] + tr[T c

′
T b
′
T d
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T b
′
T c
′
T d
′
]− tr[T d

′
T c
′
T b
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T c
′
T d
′
T b
′
]− tr[T b

′
T d
′
T c
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T d
′
T b
′
T c
′
]− tr[T c

′
T b
′
T d
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

1
2(YTn Yn̄)abδcd

1
2(YTn Yn̄)acδbd

1
2(YTn Yn̄)adδbc



T

. (3.17)

The helicity basis has made extremely simple the task of writing down a complete and

minimal basis of four gluon operators, which would be much more difficult using traditional

Lorentz structures. The helicity operators also make it simple to implement the constraints

arising from the spin zero nature of the Higgs.

Four quark operators. We now consider the case of operators involving four collinear

quark fields. These operators are again highly constrained by the helicity selection rules

and chirality conservation, since each quark-antiquark pair was produced from a gluon

splitting. In particular, these two constraints imply that there are no operators with non-

vanishing Wilson coefficients with three quarks in one collinear sector. Therefore, we need

only consider the cases where there are two quarks in each collinear sector.

When constructing the operator basis we must also treat separately the case of identical

quark flavors Hqq̄qq̄ and distinct quark flavors Hqq̄QQ̄. For the case of distinct quark

flavors Hqq̄QQ̄ we will have a q ↔ Q symmetry for the operators. Furthermore the two

quarks of flavor q, and the two quarks of flavor Q̄, are necessarily of the same chirality.

In the case that both quarks of the same flavor appear in the same current, the current

will be labeled by the flavor. Otherwise, the current will be labeled with (qQ̄) or (Qq̄)

appropriately. For all these cases, the color basis is

T̄ αβ̄γδ̄ =
(
δαδ̄ δγβ̄ , δαβ̄ δγδ̄

)
. (3.18)

We will give results for the corresponding T̄ αβ̄γδ̄
BPS basis as we consider each case below.

For the case of operators with distinct quark flavors Hqq̄QQ̄ and two collinear quarks

in each of the n and n̄ sectors there are three possibilities. There is either a quark anti-

quark pair of the same flavor in each sector (e.g. (qq̄)n(QQ̄)n̄), a quark and an antiquark
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of distinct flavors in the same sector (e.g. (qQ̄)n(Qq̄)n̄), or two quarks with distinct flavors

in the same sector (e.g. (qQ)n(q̄Q̄)n̄). In the case that there is a quark anti-quark pair of

the same flavor in each sector, the basis of helicity operators is

(qq̄)n(QQ̄)n̄ :

O
(2)ᾱβγ̄δ
qQ1(0;0) = J ᾱβ(q)n0 J

γ̄δ
(Q)n̄0H , O

(2)ᾱβγ̄δ

qQ1(0;0̄)
= J ᾱβ(q)n0 J

γ̄δ
(Q)n̄0̄

H , (3.19)

O
(2)ᾱβγ̄δ

qQ1(0̄;0)
= J ᾱβ

(q)n0̄
J γ̄δ(Q)n̄0H , O

(2)ᾱβγ̄δ

qQ1(0̄;0̄)
= J ᾱβ

(q)n0̄
J γ̄δ

(Q)n̄0̄
H ,

where we have chosen the q quark to be in the n sector. Since all the operators have

total helicity 0 along the n̂ direction, there are only chirality constraints here and no

constraints from angular momentum conservation. In the case that there is a quark anti-

quark of distinct flavors in the same sector, chirality and angular momentum conservation

constrains the basis to be

(qQ̄)n(Qq̄)n̄ :

O
(2)ᾱβγ̄δ
qQ2(0;0) = J ᾱβ

(qQ̄)n0
J γ̄δ(Qq̄)n̄0H , O

(2)ᾱβγ̄δ

qQ2(0̄;0̄)
= J ᾱβ

(qQ̄)n0̄
J γ̄δ

(Qq̄)n̄0̄
H . (3.20)

For the operators in eqs. (3.19) and (3.20) the color basis after BPS field redefinition is

T̄αβ̄γδ̄BPS =

([
Y †nYn̄

]
αδ̄

[
Y †n̄Yn

]
γβ̄
, δαβ̄ δγδ̄

)
. (3.21)

When there are two quarks of distinct flavors in the same sector the basis of helicity

operators is constrained by chirality and reduced further to just two operators by angular

momentum conservation, giving

(qQ)n(q̄Q̄)n̄ :

O
(2)ᾱβγ̄δ
qQ3(+;−) = J ᾱβ(q)nn̄+ J γ̄δ(Q)nn̄−H , O

(2)ᾱβγ̄δ
qQ3(−;+) = J ᾱβ(q)nn̄− J

γ̄δ
(Q)nn̄+H . (3.22)

For the operators in eq. (3.22) the color basis after BPS field redefinition is

T̄αβ̄γδ̄BPS =

([
Y †nYn̄

]
αδ̄

[
Y †nYn̄

]
γβ̄
,
[
Y †nYn̄

]
αβ̄

[
Y †nYn̄

]
γδ̄

)
. (3.23)

In the cases considered in eqs. (3.19) and (3.20) where there is a quark and antiquark

field in the same collinear sector, we have chosen to work in a basis using J ᾱβi0 and J ᾱβ
i0̄

which

contain only fields in a single collinear sector. One could also construct an alternate form

for the basis, for example using the currents J ᾱβnn̄λ. From the point of view of factorization

our basis is the most convenient since the fields in the n and n̄-collinear sectors are only

connected by color indices, which will simplify later steps of factorization proofs. In the
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following, we will whenever possible use this logic when deciding between equivalent choices

for our basis.

For identical quark flavors the operators are similar to those in eqs. (3.19), (3.22). The

distinct operators include

(qq̄)n(qq̄)n̄ :

O
(2)ᾱβγ̄δ
qq1(0;0) =

1

4
J ᾱβ(q)n0 J

γ̄δ
(q)n̄0H , (3.24)

O
(2)ᾱβγ̄δ

qq1(0̄;0)
= J ᾱβ

(q)n0̄
J γ̄δ(q)n̄0H , O

(2)ᾱβγ̄δ

qq1(0̄;0̄)
=

1

4
J ᾱβ

(q)n0̄
J γ̄δ

(q)n̄0̄
H ,

(qq)n(q̄q̄)n̄ :

O
(2)ᾱβγ̄δ
qq3(+;−) = J ᾱβ(q)nn̄+ J γ̄δ(q)nn̄−H . (3.25)

Note that in eq. (3.24) there are only three operators due to the equivalence between the

two operators ∑
n

J ᾱβ(q)n0 J
γ̄δ
(q)n̄0̄

H ≡
∑
n

J ᾱβ
(q)n0̄

J γ̄δ(q)n̄0H , (3.26)

due to the fact that the n label is summed over, as in eq. (3.1). We also have the same

color bases as in eqs. (3.21) and (3.23) for O
(2)
qq1 and O

(2)
qq3 respectively.

3.3.2 P⊥ insertions

Since we have chosen to work in a frame where the total ⊥ momentum of each collinear

sector vanishes, operators involving explicit insertions of the P⊥ operator first appear at

O(λ2). The P⊥ operator can act only in a collinear sector composed of two or more fields.

At O(λ2), there are then only two possibilities, namely that the P⊥ operator is inserted into

an operator involving two quark fields and a gluon field, or it is inserted into an operator

involving three gluon fields.

In the case that the P⊥ operator is inserted into an operator involving two quark fields

and a gluon field, the helicity structure of the operator is highly constrained. In particular,

the quark fields must be in a helicity zero configuration. Combined with the fact that they

must have the same chirality, this implies that all operators must involve only the currents

J ᾱβn̄ 0 or J ᾱβ
n̄ 0̄

. Here we have again taken without loss of generality that the two quarks are

in the n̄-collinear sector. A basis of operators is then given by

(g)n(qq̄P⊥)n̄ :

O
(2)a ᾱβ
Pχ+(0)[+] = Ban+

{
P+
⊥J

ᾱβ
n̄ 0

}
H , O

(2)a ᾱβ
Pχ−(0)[−] = Ban−

{
P−⊥J

ᾱβ
n̄ 0

}
H , (3.27)

O
(2)a ᾱβ

Pχ+(0̄)[+]
= Ban+

{
P+
⊥J

ᾱβ
n̄ 0̄

}
H , O

(2)a ᾱβ

Pχ−(0̄)[−]
= Ban−

{
P−⊥J

ᾱβ
n̄ 0̄

}
H .
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Since we have assumed that the total P⊥ in each collinear sector is zero, integration by

parts can be used to make the P⊥ operator act only on either the quark, or the antiquark

field, which has been used in eq. (3.27). (The additional operators that are needed when

we relax this assumption are discussed in appendix A.) The color basis is one-dimensional

T̄ aαβ̄ = T aαβ̄ . (3.28)

After BPS field redefinition the structure is given by

T̄ aαβ̄BPS =
(
Y †n̄T

bYban Yn̄
)
αβ̄

=
(
YTn Yn̄

)ac
T cαβ̄ . (3.29)

In the case that the P⊥ operator is inserted into an operator involving three gluon

fields, the helicity selection rules simply imply that the helicities must add to zero. A basis

of operators involving three collinear gluon fields and a P±⊥ insertion is given by

(g)n(ggP⊥)n̄ :

O
(2)abc
PB+++[−] = Ban+ Bbn̄+

[
P−⊥B

c
n̄+

]
H , O

(2)abc
PB−−−[+] = Ban− Bbn̄−

[
P+
⊥B

c
n̄−
]
H ,

O
(2)abc
PB++−[+] = Ban+ Bbn̄+

[
P+
⊥B

c
n̄−
]
H , O

(2)abc
PB−−+[−] = Ban− Bbn̄−

[
P−⊥B

c
n̄+

]
H . (3.30)

Note that the analogous operators with the helicities O
(2)abc
PB+−+[+] and O

(2)abc
PB−+−[−] are not

eliminated, but instead are equivalent to those in the last row by integrating the P±⊥ by

parts onto the other n̄-collinear field since the total P⊥ in each collinear sector is zero.

(The additional operators that are needed when we relax this assumption are discussed in

appendix A.)

The basis of color structures here is two dimensional,

T̄ abc =

(
ifabc

dabc

)
, T̄ abcBPS =

(
ifa

′b′c′ Ya′an Yb
′b
n̄ Yc

′c
n̄

da
′b′c′ Ya′an Yb

′b
n̄ Yc

′c
n̄

)
=

(
if bcdYa′dn̄ Ya

′a
n

dbcd Ya′dn̄ Ya
′a
n

)
. (3.31)

In the BPS redefined color structure we have written it both in a form that makes the

structure of the Wilson lines appearing from the field redefinition clear, as well as in a

simplified form.

3.3.3 Ultrasoft insertions

At O(λ2) we have the possibility of operators with explicit ultrasoft insertions. To have

label momentum conservation these operators must have a collinear field in each collinear

sector. Interestingly, despite the fact that the leading power operator has two collinear

gluon fields, for the operators involving an ultrasoft insertion one can have either two

collinear quark fields, or two collinear gluon fields.

The construction of an operator basis involving ultrasoft gluons is more complicated

due to the fact that they are not naturally associated with a given lightcone direction. There

are therefore different choices that can be made when constructing the basis. We will choose
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to work in a basis where all ultrasoft derivatives acting on ultrasoft Wilson lines are ab-

sorbed into Bus fields. To understand why it is always possible to make this choice, we con-

sider two pre-BPS operators involving two collinear quark fields, and an ultrasoft derivative

Oµ1 = χ̄n̄(iDµ
us)χn , Oµ2 = χ̄n̄(−i

←−
Dµ
us)χn , (3.32)

where (−i
←−
Dµ
us) = (iDµ

us)† and we have not made the contraction of the µ index explicit, as

it is irrelevant to the current discussion. Performing the BPS field redefinition, we obtain

Oµ1BPS = iχ̄n̄Y
†
n̄D

µ
usYnχn , Oµ2BPS = −iχ̄n̄Y †n̄

←−
Dµ
usYnχn . (3.33)

If we want to absorb all derivatives acting on Wilson lines into Bus fields, we must organize

the Wilson lines in the operators as

Oµ1BPS = iχ̄n̄Y
†
n̄Yn(Y †nD

µ
usYn)χn , Oµ2BPS = −iχ̄n̄(Y †n̄

←−
Dµ
usYn̄)Y †n̄Ynχn . (3.34)

Using eq. (2.20) we see that this can be written entirely in terms of ∂us operators acting

on collinear fields, and the two ultrasoft gauge invariant gluon fields Bus(n) and Bus(n̄) for

Oµ1BPS and Oµ2BPS respectively. Note, however, that ultrasoft gluon fields defined with re-

spect to both lightcone directions are required. Alternatively, it is possible to work only

with Bus(n), for example, but in this case we see that the ultrasoft derivative must also

be allowed to act explicitly on pairs of ultrasoft Wilson lines, for example [∂µus(Y
†
nYn̄)]. In

constructing our complete basis we will choose to avoid this so that ultrasoft derivatives

acting on soft Wilson lines occur only within the explicit Bus fields. This choice also makes

our basis more symmetric.

For the operators involving one ultrasoft gluon and two collinear quarks we have

the basis

gus(q)n(q̄)n̄ :

O
(2)a ᾱβ
χ(us(n))−:(+) = Baus(n)− J

ᾱβ
nn̄+H , O

(2)a ᾱβ
χ(us(n))+:(−) = Baus(n)+ J

ᾱβ
nn̄−H , (3.35)

with the unique color structure

T̄ aαβ̄
BPS =

(
T aY †nYn̄

)
αβ̄

, (3.36)

and

O
(2)a ᾱβ
χ(us(n̄))+:(+) = Baus(n̄)+ J

ᾱβ
nn̄+H , O

(2)a ᾱβ
χ(us)(n̄))−:(−) = Baus(n̄)− J

ᾱβ
nn̄−H , (3.37)

with the unique color structure

T̄ aαβ̄
BPS = (Y †nYn̄T

a)αβ̄ . (3.38)

Note that the color structures associated with the two different projections of the Bus field

are distinct. All other helicity combinations vanish due to helicity selection rules. The
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helicity selection rules differ between eq. (3.35) and eq. (3.37) due to the different choice

of reference vector for the ultrasoft field in the two cases.

We also have operators involving two collinear quark fields and a single ultrasoft

derivative,

∂us(q)n(q̄)n̄ :

O
(2) ᾱβ
∂χ(us(n))−:(+) = {∂us(n)− J

ᾱβ
nn̄+}H , O

(2) ᾱβ
∂χ(us(n))+:(−) = {∂us(n)+ J

ᾱβ
nn̄−}H , (3.39)

with the unique color structure given before and after BPS field redefinition by

T̄αβ̄ = (δαβ̄) , T̄αβ̄BPS =
[
Y †nYn̄

]
αβ̄
, (3.40)

and

O
(2) ᾱβ

∂†χ(us(n̄))+:(+)
= {J ᾱβnn̄+ (i∂us(n̄)+)†}H , O

(2) ᾱβ

∂†χ(us(n̄))−:(−)
= {J ᾱβnn̄− (i∂us(n̄)−)†}H , (3.41)

with the unique color structure given before and after BPS field redefinition by

T̄αβ̄ = (δαβ̄) , T̄αβ̄BPS =
[
Y †nYn̄

]
αβ̄
. (3.42)

Although the color structure happens to be the same in both cases, we have separated

them to highlight the different decompositions of the ultrasoft derivatives in the two cases.

Note that the form of the ultrasoft derivatives which appear is constrained by the helicity

constraints.

Similarly, we have the corresponding operators involving two collinear gluons. A basis

of helicity operators involving two collinear gluons and a single ultrasoft gluon field is

given by

gus(g)n(g)n̄ :

O
(2)abc
B(us(n))0:++ = Baus(n)0 B

b
n+ Bcn̄+H , O

(2)abc
B(us(n))0:−− = Baus(n)0 B

b
n− Bcn̄−H , (3.43)

with the basis of color structures,3

T̄ abcBPS =

(
ifabd

(
YTn Yn̄

)dc
dabd

(
YTn Yn̄

)dc
)T

, (3.44)

and

O
(2)abc
B(us(n̄))0:++ = Baus(n̄)0 B

b
n+ Bcn̄+H , O

(2)abc
B(us(n̄))0:−− = Baus(n̄)0 B

b
n− Bcn̄−H , (3.45)

3In order to see how the Wilson line structure in eq. (3.44) arises, we look at the object Dab
usBc

nBd
n̄ pre-

BPS field redefinitions. This object must be contracted with a tensor to make it a singlet under ultrasoft

gauge transformations. Each of these resulting forms can be mapped onto the color structures of eq. (3.44)
after performing the BPS field redefinition
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with the basis of color structures,

T̄ abcBPS =

(
ifabd

(
YTn̄ Yn

)dc
dabd

(
YTn̄ Yn

)dc
)T

. (3.46)

We have only included the T̄ abcBPS version of the color structure here because the Baus(n)λ are

generated by BPS field redefinition.

The Wilson coefficients of the operators that include Bus(n)0 can be related to the Wil-

son coefficients of the leading power operators using RPI symmetry (see [6]). In particular,

we have

C
(2)
Bn(us)0:λ1,λ1

= −
∂C

(0)
λ1,λ1

∂ω1
, (3.47)

where C
(0)
λ1,λ1

is the Wilson coefficient for the leading power operator of eq. (3.2). We will

explicitly verify this at the level of tree level matching in section 4.

We must also consider operators with an insertion of ∂us(n) with two collinear gluons

in different collinear sectors. The gluon equations of motion allow us to eliminate the

operators in · ∂Bn⊥ and in̄ · ∂Bn̄⊥, which can be rewritten purely in terms of collinear

objects [54]. Furthermore, we again choose to organize our basis of operators such that

ultrasoft derivatives act on ultrasoft Wilson lines only within the Bus fields, as was done

in the quark case. (We also do not include operators where the ultrasoft derivative acts on

the Higgs field, since this is moved to the other fields by integration by parts.) The basis

of operators involving ultrasoft derivatives is then given by

∂us(g)n(g)n̄ :

O
(2)ab

∂B(us(n))0̄:++
= Ban+

[
∂us(n)0̄Bbn̄+

]
H , O

(2)ab

∂B(us(n))0̄:−− = Ban−
[
∂us(n)0̄Bbn̄−

]
H , (3.48)

with the basis of color structures

T̄ abBPS =
(
YTn Yn̄

)ab
. (3.49)

and

O
(2)ab
∂B(us(n̄))0:++ =

[
∂us(n̄)0 Ban+

]
Bbn̄+H , O

(2)ab
∂B(us(n̄))0:−− =

[
∂us(n̄)0 Ban−

]
Bbn̄−H , (3.50)

with the basis of color structures

T̄ abBPS =
(
YTn̄ Yn

)ab
. (3.51)

The Wilson coefficients of the operators that include ∂us(n)0 can also be related to

the Wilson coefficients of the leading power operators using RPI symmetry (see [6]). In

particular, we have

C
(2)
∂B(us(n̄))0:λ1λ1

= −
∂C

(0)
λ1,λ1

∂ω1
, (3.52)

where C
(0)
λ1,λ1

is the Wilson coefficient for the leading power operator of eq. (3.2). We will

explicitly show how this arises in the tree level matching in section 4.

– 22 –



J
H
E
P
0
7
(
2
0
1
7
)
0
6
7

Operators Factorization Beam n Beam n̄ Soft

O(λ0) O
(0)
B O

(0)
B H

(0)
g B

(0)
g B

(0)
g S

(0)
g Bn δ̂ Bn Bn̄ δ̂ Bn̄ YTn Yn̄M̂(0) YTn̄ Yn

O(λ2) O
(1)
Bn̄O

(1)
Bn̄ H

(0)
g1 B

(0)
q B

(2)
qggS

(0)
q χ̄n δ̂ χn χ̄n̄Bn̄δ̂ Bn̄χn̄ Y †n̄YnM̂(0) Y †nYn̄

O(0)O
(2)
B1 H

(0)
g2 B

(2)
gqqB

(0)
g S

(0)
g χ̄nBnχnδ̂ Bn Bn̄ δ̂ Bn̄ YTn Yn̄M̂(0) YTn̄ Yn

O(0)O
(2)
Pχ H

(0)
g3 B

(0)
g B

(2)
gqPS

(0)
g Bn δ̂ Bn χ̄n̄[P⊥χn̄]δ̂ Bn̄ YTn Yn̄M̂(0) YTn̄ Yn

O(0)O
(2)
PB H

(0)
g4 B

(0)
g B

(2)
ggPS

(0)
g B̄n δ̂ Bn Bn̄[P⊥Bn̄]δ̂ Bn̄ YTn Yn̄M̂(0) YTn̄ Yn

O(0)O
(2)
4g2 H

(0)
g5 B

(0)
g B

(2)
gg S

(0)
g Bn δ̂ Bn Bn̄Bn̄Bn̄δ̂ Bn̄ YTn Yn̄M̂(0) YTn̄ Yn

O(0)O
(2)
B(us)0 H

(0)
g6 B

(0)
g B

(0)
g S

(2)
gB Bn δ̂ Bn Bn̄ δ̂ Bn̄ Bus(n)0 YnYn̄M̂(0) Yn̄Yn

O(0)O
(2)
∂(us)0 H

(0)
g7 B

(0)
g B

(0)
g S

(2)
g∂0 Bn δ̂ Bn Bn̄ δ̂ Bn̄ ∂us(n)0 YnYn̄M̂(0) Yn̄Yn

O(0)O
(2)

∂(us)0̄
H

(0)
g8 B

(0)
g B

(0)
g S

(2)

g∂0̄
Bn δ̂ Bn Bn̄ δ̂ Bn̄ ∂us(n)0̄ YnYn̄M̂(0) Yn̄Yn

Table 4. Subleading beam and soft functions arising from products of hard scattering operators

in the factorization of Higgs with a jet veto, and their field content. Helicity and color structures

have been suppressed. We have not included products of operators whose beam and soft functions

are identical to those shown by charge conjugation or n↔ n̄.

3.4 Cross section contributions and factorization

While the basis of operators presented in this section is quite large, many of the operators

will not contribute to a physical cross section at O(λ2). In this section we briefly discuss

the helicity operator basis, focusing in particular on understanding which operators can

contribute to the cross section for an SCETI event shape observable, τB, measured on

gg → H. In section 3.4.1, we show that there are no contributions to the cross section

from hard scattering operators at O(λ), which would correspond to power corrections of
√
τB. Then in section 3.4.2, we use helicity selection rules to determine which operators

can contribute at O(λ2) = O(τB). The results are summarized in table 3.

Given the set of contributing operators, one can then determine the full subleading

power factorization theorem for the related observables with Higgs production. Here we

restrict ourselves to determining the structure of the factorization theorem terms arising

purely from our subleading hard scattering operators, written in terms of hard, beam

and soft functions. A summary of these results is given in table 4. In many cases the

beam and soft functions which appear in the subleading power factorization formula are

identical to those at leading power. For the case of the soft functions this simplification

arises due to color coherence, allowing a simplification to the Wilson lines in the soft

functions that appear. For gluon-gluon and quark-quark color channels the leading power

soft functions are

S(0)
g =

1

(N2
c − 1)

tr
〈
0
∣∣YTn̄ YnM̂(0)YTn Yn̄

∣∣0〉 , S(0)
q =

1

Nc
tr
〈
0
∣∣Y †n̄YnM̂(0)Y †nYn̄

∣∣0〉 , (3.53)
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and depend on the kinematic variables probed by the measurement operator M̂(0). For the

beam functions, this simplification occurs since the power correction is often restricted to

a single collinear sector. The other collinear sector is then described by the leading power

beam functions (incoming jet functions) for gluons and quarks [25, 63]

δab

N2
c − 1

B(0)
g = −ω θ(ω)

2π

∫
dx−

2|ω|
e

i
2
`+x−

〈
p
∣∣∣Bµan⊥ (x−n2) δ̂ [δ(ω − P̄)Bbn⊥µ(0)

] ∣∣∣p〉 , (3.54)

δαβ̄

Nc
B(0)
q =

θ(ω)

2π

∫
dx−

2|ω|
e

i
2
`+x−

〈
p
∣∣∣χαn (x−n2) /̄n2 δ̂ [δ(ω − P̄)χ̄β̄n(0)

] ∣∣∣p〉 ,
where we take `+ � Λ2

QCD/ω. The result for the leading power measurement function

δ̂ appearing in these beam functions depends on the factorization theorem being treated.

Often the beam functions are inclusive in which case δ̂ = 1, giving functions of the mo-

mentum fraction of the struck parton x and a single invariant mass momentum variable,

B
(0)
g (x, ω`+) and B

(0)
q (x, ω`+). Here we assume an SCETI type measurement that does not

fix the P⊥ of the measured particle. This assumption has been explicitly used in writing the

form of the beam functions in eq. (3.54), as well as in our construction of the operator basis.

3.4.1 Vanishing at O(λ)

We begin by considering possible contributions to the cross section at O(λ). While we

will not discuss the factorization of the cross section in detail, the contribution of the hard

scattering operators to the cross section at O(λ) can be written schematically as

dσ(1)

dτB
⊃ N

∑
X,i

δ̃(4)
q 〈P1P2|C(1)

i O
(1)
i (0) |X〉 〈X|C(0)O(0)(0) |P1P2〉 δ

(
τB − τ (0)

B (X)
)

+ h.c. . (3.55)

Here N is a normalization factor, P1, P2 denote the incoming hadronic states, and we use

the shorthand notation δ̃
(4)
q = (2π)4δ4(q−pX) for the momentum conserving delta function.

This expression should merely be taken as illustrative of the operator contributions, and

in particular, we have not made explicit any color or Lorentz index contractions, nor the

treatment of the initial state. The summation over all final states, X, includes phase space

integrations. The measurement of the observable is enforced by δ
(
τB − τ (0)

B (X)
)
, where

τ
(0)
B (X), returns the value of the observable τB as measured on the final state X. The

explicit superscript (0) indicates that the measurement function is expanded to leading

power, since here we focus on the power suppression due to the hard scattering operators.

From eq. (3.55) we see that hard scattering operators contribute to the O(λ) cross

section through their interference with the leading power operator. The O(λ) basis of

operators is given in eqs. (3.4) and (3.5), each of which involves a single collinear quark

field in each collinear sector. Conservation of fermion number then immediately implies

that these operators cannot have non-vanishing matrix elements with the leading power

operator which consists of a single collinear gluon field in each sector. Therefore, all

contributions from hard scattering operators vanish at O(λ). Although we do not consider

them in this paper, using similar arguments one can show that all other sources of power

corrections, such as Lagrangian insertions, also vanish at O(λ).
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3.4.2 Relevant operators at O(λ2)

Unlike the O(λ) power corrections, the power corrections at O(λ2) = O(τB) will not vanish.

Contributions to the cross section at O(λ2) whose power suppression arises solely from hard

scattering operators take the form either of a product of two O(λ) operators or as a product

of an O(λ2) operator and an O(λ0) operator

dσ(2)

dτB
⊃ N

∑
X,i

δ̃(4)
q 〈P1P2|C(2)

i O
(2)
i (0) |X〉 〈X|C(0)O(0)(0) |P1P2〉 δ

(
τB − τ (0)

B (X)
)

+ h.c.

+N
∑
X,i,j

δ̃(4)
q 〈P1P2|C(1)

i O
(1)
i (0) |X〉 〈X|C(1)

j O
(1)
j (0) |P1P2〉 δ

(
τB−τ (0)

B (X)
)

+ h.c. . (3.56)

For gg → H the operator basis has only a single operator at O(λ) (up to helicities and

n↔ n̄), which was given in eqs. (3.4) and (3.5). This operator will contribute to the cross

section at O(λ2), as indicated in table 4.

The contributions from O(λ2) hard scattering operators are highly constrained since

they must interfere with the leading power operator. We will discuss each possible contri-

bution in turn, and the summary of all operators which can contribute to the O(λ2) cross

section is given in table 3. The schematic structure of the beam and soft functions aris-

ing from each of the different operator contributions is shown in table 4. The subleading

beam and soft functions enumerated in this table are universal objects that will appear

in processes initiated by different Born level amplitudes (such as qq̄ annihilation), unless

forbidden by symmetry. In this initial investigation, we content ourselves with only giving

the field content of the beam and soft functions. In table 4, to save space, we do not write

the external vacuum states for the soft functions, or the external proton states for the beam

functions, nor do we specify the space-time positions of the fields. We do not present here

the full definitions analogous to the leading power definitions given in eqs. (3.53) and (3.54),

but using the field content given in table 4. Deriving full definitions goes hand in hand

with presenting the complete factorization theorems for these contributions, which will be

given in future work.

Two quark-one gluon operators. The two quark-one gluon operators, O
(1)
Bn̄ can con-

tribute to the cross section by interfering with themselves. These operators are interesting

since they effectively have a quark like cusp, instead of a gluon like cusp as is true of the

leading power operators. They contribute with a leading power quark channel soft func-

tion S
(0)
q , a quark beam function B

(0)
q and a subleading power beam function B

(2)
qgg that has

fermion number crossing the cut (as indicated by its first q subscript).

Two quark-two gluon operators. In the case of the two quark-two gluon operators,

the only operators that will have a non-vanishing contribution are those that have the two

gluons in different collinear sectors, namely O
(2)
B1 . This gives a gluon beam function B

(0)
g ,

soft function S
(0)
g , and a subleading power beam function with gluon quantum numbers

crossing the cut B
(2)
gqq (with three color contractions). The operator O

(2)
B2 , which has two

quarks in a helicity 0 configuration in one collinear sector, and two gluons in a helicity 0

configuration in the other collinear sector does not contribute, since rotational invariance

implies that its interference with the leading power operator vanishes.

– 25 –



J
H
E
P
0
7
(
2
0
1
7
)
0
6
7

Four gluon operators. To give a non-vanishing interference with the leading power

operator the four gluon operators must have an odd number of collinear gluon fields in

each sector. This implies that O
(2)
4g1 does not contribute, while O

(2)
4g2 does. Once again we

can prove that O
(2)
4g2 generates a contribution that enters with simply the leading power

gluon soft function S
(0)
g (the direct proof of this requires some fairly extensive color algebra).

This happens despite the fact that the subleading power beam function B
(2)
gg has six color

contractions. The contribution from this four gluon operator first enters the cross section

at O(α2
s).

Four quark operators. For a four quark operator to interfere with the leading power

operator, it must have both zero fermion number and a helicity 1 projection in each collinear

sector. This eliminates all four quark operators from contributing to the cross section

at O(λ2).

P⊥ operators. Both the operators involving P⊥ insertions have the correct symmetry

properties and therefore both O
(2)
Pχ and O

(2)
PB can contribute to the O(λ2) cross section. Both

contributions have a leading power gluon beam function B
(0)
g and soft function S

(0)
g . The

operator O
(2)
PB has a similar structure to the operator O(2)

P1 found in the quark case in [17],

which contributes a leading log to the thrust (beam thrust) cross section [16]. It involves

a subleading power beam function B
(2)
ggP (with two color contractions). On the other hand,

we find in section 4.3.2 that the operator O
(2)
Pχ has a vanishing Wilson coefficient at tree

level, so its factorized contribution starts at least at O(α2
s) for the cross section. It has a

subleading beam function B
(2)
gqP with a single color contraction.

Ultrasoft operators. The ultrasoft operators involving quark fields cannot contribute to

the cross section through interference with the leading power operator due to fermion num-

ber conservation. Therefore, only the gluon operators of eqs. (3.43) and (3.48) contribute.

They have leading power gluon beam functions B
(0)
g .

3.4.3 Comparison with q̄ Γq

It is interesting to briefly compare the structure of the operator basis, as well as the

contributions to the O(λ2) cross section, to the basis for a process with two collinear sectors

initiated by the q̄Γq current as discussed in [17]. The leading power factorization theorems

for the two cases are essentially identical, with simply a replacement of quark and gluon

jet (beam) functions, as well as the color charges of the Wilson lines in the soft functions.

However, at subleading power there are interesting differences arising both from the helicity

structure of the currents, as well as from the form of the leading power Wilson coefficient.

An interesting feature of gg → H is that the Wilson coefficient for the leading power

operator, which is given in section 4.1, depends explicitly on the large label momenta of the

gluons at tree level. This is not the case for the q̄ Γq current, whose leading power operator

has a Wilson coefficient that is independent of the large label momenta at tree level. As

discussed in section 3.3.3, the Wilson coefficients of hard scattering operators involving

insertions of n ·∂, n̄ ·∂, or Bus(n)0 are related to the derivatives of the leading power Wilson
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coefficients by RPI. This implies that these particular operators vanish at tree level for a

q̄ Γq current, but are present at tree level for gg → H. For the q̄ Γq current the power

corrections from the ultrasoft sector arise instead only from subleading power Lagrangian

insertions. Therefore, the nature of power corrections in the two cases is quite different

in terms of the organization of the effective theory in the ultrasoft sector. However, this

does not say anything about their numerical size which would require a full calculation.

Furthermore, the organization of the collinear hard scattering operators is nearly identical

in the two cases.

Despite this difference in the organization of the particular corrections within the

ultrasoft sector of the effective theory, there is also much similarity in the way that the

subleading power operators contribute to the cross section at O(λ2). In particular, in

both cases, operators involving an additional ultrasoft or collinear gluon field as compared

with the leading power operator contribute as an interference of the form O(λ2)O(1), see

table 4. This is guaranteed by the Low-Burnett-Kroll theorem [64, 65]. However, the

subleading hard scattering operators that have a different fermion number in each sector

than the leading power operators contribute as O(λ)O(λ). For the gg → H case, this is the

O
(1)
Bn̄ operator, while for a qΓq̄ current considered in [17], it was a hard scattering operator

involving two collinear quarks recoiling against a collinear gluon. In the NNLO calculation

of power corrections for the qΓq̄ case [16], this operator played an important role, as it

gave rise to a leading logarithmic divergence not predicted by a naive exponentiation of

the one-loop result, and it is expected that the same will be true here. We plan to consider

this calculation in a future work, and to understand in more detail the relation between

the leading logarithmic divergences for the qΓq̄ current, compared with a gg current.

4 Matching

In this section we perform the matching to the operators relevant for the calculation of the

O(λ2) cross section, which were enumerated in section 3.4.2 and summarized in table 3.

As discussed in section 1, we will work in the context of an effective Higgs gluon coupling

Lhard =
C1(mt, αs)

12πv
GµνGµνH , (4.1)

obtained from integrating out the top quark. Here v = (
√

2GF )−1/2 = 246 GeV, and the

matching coefficient is known to O(α3
s) [20]. Corrections to the infinite top mass can be

included in the matching coefficient C1. We use the sign convention

Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , iDµ = i∂µ + gAµ . (4.2)

In the matching, we take all particles as outgoing. However, to avoid a cumbersome

notation we use ε instead of ε∗ for the polarization of an outgoing gluon. We also restrict to

Feynman gauge although we check gauge invariance by enforcing relevant Ward identities.

For operators involving collinear gluon fields gauge invariance is guaranteed through the

use of the B⊥ fields.
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The Higgs effective Lagrangian has Feynman rules for 2, 3, and 4 gluons which are

summarized in appendix B. Due to the non-negative powers of momenta appearing in

these Feynman rules they give rise to Wilson coefficients which are less singular than those

arising from power corrections to the ultrasoft and collinear dynamics of SCET. This will

be seen explicitly in the subleading power matching calculations. To simplify the notation

throughout this paper we will suppress the factor of C1(mt, αs)/(12πv), and simply write

the Feynman rules and matching relations for the operator

Ohard = GµνGµνH . (4.3)

The dependence on C1(mt, αs)/(12πv) is trivially reinstated.

Throughout the matching, collinear gluons in the effective theory will be indicated

in Feynman diagrams as a spring with a line drawn through them, collinear quarks will

be indicated by dashed lines, and ultrasoft gluons will be indicated with an explicit “us”.

This will distinguish them from their full theory counterparts for which standard Feynman

diagram notation for quarks and gluons is used. Furthermore, for the full theory diagrams,

we will use the ⊗ symbol to denote the vertex of the Higgs effective theory, as compared

with the purple circle used to denote a hard scattering operator in the effective theory.

Due to the large number of operators present in our basis, we find it most convenient

to express the results of the tree-level matching in the form of the Wilson coefficient mul-

tiplying the relevant operator. For this purpose we define a shorthand notation with a

caligraphic O,

O(i)
X = Ctree

X O
(i)
X , (4.4)

where as before, the superscript indicates the power suppression, and the subscript is a

label that denotes the field and helicity content. We will write results for O(i)
X in a form

such that it is trivial to identify the tree level Wilson coefficient Ctree
X , so that higher order

corrections can be added as they become available.

4.1 Leading power matching

The leading power matching is of course well known, however, we reproduce it here for

completeness and to illustrate the matching procedure. The matching can be performed

using a two gluon external state. Since the leading power operator is independent of any

⊥ momenta, in performing the matching we can take the momenta

pµ1 = ω1
nµ

2
, p2 = ω2

n̄µ

2
, (4.5)

and the polarizations to be purely ⊥, namely εµi = εµi⊥. All of the operators in section 3.1

give a non-vanishing contribution to the two-gluon matrix element for this choice of

polarization.

In the two gluon matrix element, this choice of polarization does not remove overlap

with any of the operators in section 3.1. Expanding the QCD result, we find∣∣∣∣∣∣
O(λ0)

= −2iδabω1ω2ε1⊥ · ε2⊥ . (4.6)
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This is reproduced by the leading power operator

O(0)
B = −2ω1ω2δ

abBa⊥n̄,ω2
· Bb⊥n,ω1

H , (4.7)

or in terms of the helicity basis of eq. (3.2), we have

O(0)
B++ = 2ω1ω2δ

abBan̄+,ω2
· Bbn+,ω1

H , O(0)
B−− = 2ω1ω2δ

abBan̄−,ω2
· Bbn−,ω1

H . (4.8)

While we focus here on the case where there is zero perp momentum in each collinear

sector, we also give the Feynman rule in the case that each sector has a non-zero perp

momentum. This will allow us to illustrate the gauge invariance properties of the collinear

gluon field B⊥. The expansion of the collinear gluon field with an incoming momentum k

is given by

Bµn⊥ = Aµa⊥kT
a − kµ⊥

n̄ ·AankT a

n̄ · k
+ · · · , (4.9)

where the dots represent terms with multiple gluon fields. The two gluon terms are given

in appendix B. Gauge invariance therefore dictates the Feynman rule of our operator in

the case of generic perp momenta for the two gluon fields,

= −2iδabω1ω2

(
εµ1⊥ − p

µ
1⊥
n̄ · ε1
n̄ · p1

)(
εµ2⊥ − p

µ
2⊥
n̄ · ε2
n̄ · p2

)
. (4.10)

We note that the additional terms are essential to enforce that the required Ward identities

are satisfied, and the result is gauge invariant. While this is trivial in this simple leading

power example, for the more complicated matching calculations considered in the remainder

of the paper we will often perform the matching for particular kinematic configurations,

and the gauge invariance of the collinear gluon fields is an important ingredient to uniquely

obtain the full result.

4.2 Subleading power matching

We now consider the matching at O(λ). In section 3.2 we argued that the only O(λ)

operator which can contribute to the cross section at O(λ2) has two collinear quark fields

in opposite collinear sectors and a collinear gluon field. We can therefore perform the

matching using this external state. For concreteness we start with the case with a quark in

the n-collinear sector, and a gluon and antiquark in the n̄-collinear sector, (q)n(q̄g)n̄. Since

the power suppression arises from the explicit fields, and all propagators are off shell, we

can use the kinematics

pµ1 = ω1
nµ

2
, p2 = ω2

n̄µ

2
, p3 = ω3

n̄µ

2
, (4.11)

and take the polarization of the gluon to be purely ⊥, εµi = εµi⊥. This choice suffices to

obtain non-zero matrix elements for all the operators we want to probe, and to distinguish

them from one another.
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For the matching calculations, we will use the notation

un(i) = Pnu(pi) , and vn(i) = Pnv(i) , with Pn =
/n/̄n

4
, (4.12)

for the projected SCET spinors. Here we have taken the momentum pi to be n-collinear,

but similar relations exist for the case that it is n̄-collinear. The spinors obey

u(pi) =
(

1 +
/pi⊥
n̄ · pi

/̄n

2

)
un(i) , u(pi) =

(
1 +

/pi⊥
n · pi

/n

2

)
un̄(i) , (4.13)

for the n-collinear and n̄-collinear cases respectively, with direct analogs for the v(pi)

spinors.

Expanding the QCD diagram to O(λ), we find∣∣∣∣∣∣
O(λ)

=
−2igω3

ω2
ūn(p1)/ε3⊥T

avn̄(p2) . (4.14)

There are no contributions from time ordered products in the effective theory to this

particular matrix element used in the matching. This is due to the fact that there are

no O(λ0) or O(λ1) operators involving just two quark fields, and the collinear Lagrangian

insertions in each section preserve the fermion number of each sector, so this particular

matrix element can not be obtained from Lagrangian insertions starting from the leading

power operator involving two collinear gluons. Therefore, the result must be reproduced

entirely by a hard scattering operator in SCET. This operator is given by

O(1)
Bn̄ = −2g

ω3

ω2
χ̄n,ω1

/B⊥n̄,ω3
χn̄,−ω2H . (4.15)

or, in terms of the helicity operators of eq. (3.4)

O(1)
Bn̄+(+) = 4g

ω3

ω2
T aαβ̄

√
ω1ω2

2
〈n̄n〉Ban̄+,ω3

J ᾱβnn̄+H ,

O(1)
Bn̄−(−) = −4g

ω3

ω2
T aαβ̄

√
ω1ω2

2
[n̄n]Ban̄−,ω3

J ᾱβnn̄−H . (4.16)

The Wilson coefficient has a singularity as the energy fraction of the quark in the n̄-collinear

sector becomes soft. This operator will therefore contribute to the leading logarithmic

divergence at the cross section level at O(λ2). Note that this operator is explicitly RPI-III

invariant, with its Wilson coefficient taking the form of a ratio of the large momentum

components of the two n̄ collinear fields.

For convenience, we also give the full Feynman rule for this operator

= −2igT c
ω3

ω2

(
γν⊥ −

/p3⊥n
ν

ω3

)
. (4.17)

Note that this Feynman rule contains terms that were not present in the matching cal-

culation due to the special choice of kinematics used there. These additional terms are

determined by the gauge invariant gluon field, B⊥n̄, and it is easy to see that they ensure

that this operator satisfies the required Ward identities.
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The matching for the operators in the case (q̄)n(qg)n̄ can be easily obtained from the

above results by exploiting charge conjugation. This gives

O(1)
Bn = −2g

ω3

ω1
χ̄n,ω1

/B⊥n,ω3
χn̄,−ω2H , (4.18)

and for the helicity operators in eq. (3.5) we obtain

O(1)
Bn+(−) = 4g

ω3

ω1
T aαβ̄

√
ω1ω2

2
〈n̄n〉Ban−,ω3

J ᾱβnn̄+H ,

O(1)
Bn−(+) = −4g

ω3

ω1
T aαβ̄

√
ω1ω2

2
[n̄n]Ban+,ω3

J ᾱβnn̄−H . (4.19)

This concrete matching calculation at subleading power also clearly illustrates the dis-

tinction between subleading power hard scattering operators, and the standard picture of

leading power factorization in terms of splitting functions. In the leading power factor-

ization for H → gqq̄, when the qq̄ pair become collinear, the amplitude factorizes into

H → gg multiplied by a universal g → qq̄ splitting function. This gives rise to a leading

power contribution, due to the nearly on-shell propagator of the intermediate gluon that

undergoes the splitting. For the operator considered here, the gluon which splits into the

qq̄ pair is far off-shell, due to the fact that the q and q̄ are in distinct collinear sectors.

Because of this, it is represented in the effective theory by a local contribution (namely

a hard scattering operator), and this operator is power suppressed. The hard scattering

operators therefore describe precisely the contributions that are not captured by a splitting

function type factorization. While this is particularly clear for the operator considered here,

this picture remains true for the subleading power hard scattering operators for the more

complicated partonic contributions considered at subsubleading power in section 4.3. The

hard scattering operators describe local contributions, which do not factorize in standard

splitting function type picture, and therefore in general have no relation to known splitting

functions which appear in the literature.

4.3 Subsubleading power matching

In this section we perform the tree level matching to the O(λ2) operators, considering only

those which contribute at the cross section level at O(λ2), as discussed in section 3.4.2.

Since there are a number of operators, each with different field content, we will consider

each case separately.

4.3.1 Ultrasoft derivative

We begin by performing the matching to the ultrasoft derivative operators of section 3.3.3.

To perform the matching we can use a state consisting of two perpendicularly polarized

collinear gluons, and we take our momenta as

pµ1 = (ω1 + k1)
nµ

2
+ p1r

n̄µ

2
+ pµ1⊥ , pµ2 = (ω2 + k2)

n̄µ

2
+ p2r

nµ

2
+ pµ2⊥ . (4.20)

Since we have taken non-zero label perp momentum to keep the particles on shell we will

have operators contributing that involving the P⊥ operator. These operators were not
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included in our basis, since we assumed zero total perp momentum in each sector. (See

appendix A for the additional operators required in the case that the collinear sectors have

non-vanishing perp momentum.) However, these terms are easy to identify. Dropping

these terms involving the label perp momentum to identify the contributions relevant for

the matching, we find ∣∣∣∣∣∣
O(λ2)

= −2iδabω1k2ε1⊥ · ε2⊥ − 2iδabω2k1ε1⊥ · ε2⊥ . (4.21)

This result must be completely reproduced by hard scattering operators in the effective

theory, since the relevant subleading propagator insertions are proportional to residual

components of the ⊥ momentum, which we have taken to be zero in the matching (see

appendix B, and in particular eq. (B.16)).

The operators given in section 3.3.3 were defined post BPS field redefinition, in which

case the partial derivative operator ∂µ acts on gauge invariant building blocks. While the

distinction between pre- and post-BPS field redefinition is not relevant for the calculation

of the matrix elements in this particular case, since there are no ultrasoft emissions, it of

course determines the form that the operators are written in. For convenience, we give

the operators both before and after BPS field redefinition. Note that the collinear gluon

field transforms as an adjoint matter field under ultrasoft gauge transformations since the

ultrasoft gauge field acts as a background field.

Matching onto pre-BPS field redefinition operators, we find

O(2)
n·D = 4ω1tr

[
Bµ⊥n,ω1

[in ·Dus,Bµ⊥n̄,ω2
]
]
H , O(2)

n̄·D = 4ω2tr
[
Bµ⊥n̄,ω2

[in̄ ·Dus,Bµ⊥n,ω1
]
]
H ,

(4.22)

where the trace is over color. This color structure will be fixed by matching with an

additional ultrasoft gluon in section 4.3.4. To determine the operators post-BPS field

redefinition, we can either directly apply the BPS field redefinition, or simply match to the

operators of section 3.3.3. We find that the operators where the ultrasoft derivative acts

on the gluon fields are given by

O(2)ab
∂B(us)(0) = −2ω1Bµa⊥n,ω1

in · ∂Bµb⊥n̄,ω2
H, O(2)ab

∂B(us)(0̄)
= −2ω2Bµa⊥n̄,ω2

in̄ · ∂Bµb⊥n,ω1
H, (4.23)

or expanded in terms of the helicity operator basis

O(2)ab

∂B(us(n))0̄:++
= −2ω1Bµan+,ω1

i∂us(n)0̄B
µb
n̄+,ω2

H , (4.24)

O(2)ab
∂B(us(n̄))0:++ = −2ω2Bµan̄+,ω2

i∂us(n̄)0B
µb
n+,ω1

H ,

O(2)ab

∂B(us(n))0̄:−− = −2ω1Bµan−,ω1
i∂us(n)0̄B

µb
n̄−,ω2

H ,

O(2)ab
∂B(us(n̄))0:−− = −2ω2Bµan̄−,ω2

i∂us(n̄)0B
µb
n−,ω1

H .

Here the color indices are contracted against the basis of color structures given in eq. (3.49).

These operators also give rise, after BPS field redefinition to operators involving Bus. These

will be discussed in section 4.3.4.
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As mentioned above eq. (3.48), using the gluon equations of motion we can eliminate

operators involving n̄ · ∂Bn̄ and n · ∂Bn from our basis to all orders in perturbation theory.

This structure of the ultrasoft derivative operators is important for the matching at O(λ2).

In particular, only the n̄ · ∂ acts on the n-collinear sector, and only the n · ∂ acts on the

n̄-collinear sector. These correspond to the residual components of the label momenta.

In a graph consisting of only collinear particles (i.e. no ultrasoft particles) the residual

components of the label momenta can be chosen to vanish, so that these operators do not

contribute. In all purely collinear graphs computed in the remainder of this paper, we

will always make this choice, and therefore, these operators will not contribute. However,

these operators will contribute, and will play an important role, when ultrasoft particles

are present in the graph.

4.3.2 qqg

We now consider the case of the O(λ2) operators involving two collinear quark fields, a

collinear gluon field, and a P⊥ insertion. In section 3.3 we argued that the only such

operators have both quark fields in the same collinear sector, which we will take to be the

n-collinear sector. To perform the matching we take the kinematics

pµ1 = ω1
nµ

2
+ pµ⊥ + p1r

n̄µ

2
, pµ2 = ω2

nµ

2
− pµ⊥ + p2r

n̄µ

2
, pµ3 = ω3

n̄µ

2
. (4.25)

With this choice all subleading Lagrangian insertions in SCET vanish. This can be seen

from the explicit subleading Lagrangians and Feynman rules given in appendix B by noting

that these give contributions to this matrix element the involve residual components of ⊥
momentum, or residual components of the large label momentum, which are zero for the

choice of momentum in eq. (4.25). The result must therefore be entirely reproduced by

hard scattering operators. Expanding the QCD result we find that it vanishes at O(λ2)∣∣∣∣∣∣∣
O(λ2)

= 0 . (4.26)

This is expected since this diagram involves only collinear dynamics in a single collinear

sector, and non-trivial terms will be reproduced by power suppressed Lagrangians. There-

fore, at tree level, the hard scattering operators involving two quarks in the same sector

along with a P⊥ insertion have vanishing Wilson coefficients. We do not have an argument

that the Wilson coefficients of these operators would continue to vanish at higher orders in

perturbation theory, and therefore we do not expect this to be the case.

4.3.3 ggg

We now consider matching to the O(λ2) three gluon operators which have a single P⊥.

In section 3.4.2 we have argued that the only such operators that contribute to the cross

section at O(λ2) have two gluons in the same collinear sector, which we take to be n̄ for

concreteness. To perform the matching, we take the kinematics as

p1 = ω1
nµ

2
, p2 = ω2

n̄µ

2
+ pµ⊥ + p2r

nµ

2
, p3 = ω3

n̄µ

2
− pµ⊥ + p3r

nµ

2
. (4.27)
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As a further simplification, we can take the polarization vector of the gluon in the n-collinear

sector to be purely ⊥, εµ1 = εµ1⊥ . All of the three gluon operators in our basis give a non-

vanishing contribution to the three-gluon matrix element for this choice of polarizations.

In performing the expansion of the QCD diagrams we will obtain all three projections

of the polarization vectors, namely n̄ · ε2,3, n · ε2,3, and p⊥ · ε2,3⊥. However, all of the

operators in our basis are formed from B⊥, and therefore contain only the n · ε2,3 and

p⊥ · ε2,3⊥ components. From the on-shell conditions for the gluon we have the relation

ω2
n̄ · ε2

2
=
p2
⊥n · ε2
2ω2

− p⊥ · ε⊥ , (4.28)

and similarly for ε3. Note that we always use the Minkowski signature for the ⊥ momenta,

i.e. p2
⊥ = −~p 2

⊥ . In performing the matching one can therefore keep track of only the ⊥
polarizations, as long as the n̄ · ε polarizations are converted into n · ε and p⊥ · ε⊥ using the

above equation. This allows one to simplify the structure of the matching while keeping

enough terms to reconstruct operators formed from B⊥ gluon fields.

Expanding the QCD diagrams, and keeping only the ⊥ terms of the polarizations

we find +


∣∣∣∣∣∣∣∣
O(λ2)

= −4gfabc
ω3

ω2
(ε1⊥ ·ε2⊥p⊥ ·ε3⊥ − ε2⊥ ·ε3⊥p⊥ ·ε1⊥)− 4gfabcε1⊥ ·ε2⊥p⊥ ·ε3⊥ + [(2, b)↔(3, c)] ,∣∣∣∣∣∣∣∣
O(λ2)

= 0 ,

∣∣∣∣∣∣∣∣
O(λ2)

= −4gfabc
(
p⊥ ·ε3⊥ε1⊥ ·ε2⊥ − p⊥ ·ε1⊥ε2⊥ ·ε3⊥ +

ω2

ω3
p⊥ ·ε3⊥ε1⊥ ·ε2⊥

)
+ [(2, b)↔ (3, c)] , (4.29)

We have shown results for the individual diagrams to emphasize the structure of the con-

tributions, namely that only the diagrams involving an off-shell propagator or the Higgs

EFT three gluon vertex contribute. Simplifying this result, we find that the sum of the

QCD diagrams is given by + + +


∣∣∣∣∣∣∣∣
O(λ2)

= 4gfabc
(

2 +
ω3

ω2
+
ω2

ω3

)
ε2⊥ · ε3⊥p⊥ · ε1⊥ − 4gfabc

(
2 +

ω3

ω2
+
ω2

ω3

)
ε1⊥ · ε2⊥p⊥ · ε3⊥

− 4gfabc
(

2 +
ω3

ω2
+
ω2

ω3

)
ε1⊥ · ε3⊥p⊥ · ε2⊥ . (4.30)

– 34 –



J
H
E
P
0
7
(
2
0
1
7
)
0
6
7

For the choice of kinematics and polarizations used in the matching there are no SCET

subleading Lagrangian contributions at this power, for similar reasons to the case of gqq̄

discussed above. Therefore, the hard scattering operators must exactly reproduce the

QCD result.

We write the operators and their Wilson coefficients both in the helicity basis of

eq. (3.30), as well as in a more standard Lorentz structures, as the two may prove useful for

different purposes. In terms of standard Lorentz structures the tree level matching gives

O(2)
PB1 = −

(
1

2

)
4g

(
2 +

ω3

ω2
+
ω2

ω3

)
ifabcBan⊥,ω1

·
[
P⊥Bbn̄⊥,ω2

·
]
Bcn̄⊥,ω3

H ,

O(2)
PB2 = 4g

(
2 +

ω3

ω2
+
ω2

ω3

)
ifabc

[
P⊥ · Ban̄⊥,ω3

]
Bbn⊥,ω1

· Bc⊥n̄,ω2
H . (4.31)

We have written the first operator in this form to incorporate the symmetry factor. In the

helicity basis, we have

O(2)
PB+++[−] = 4gifabc

(
2 +

ω3

ω2
+
ω2

ω3

)
Ban+,ω1

Bbn̄+,ω3

[
P−⊥B

c
n̄+,ω2

]
H ,

O(2)
PB−−−[+] = 4gifabc

(
2 +

ω3

ω2
+
ω2

ω3

)
Ban−,ω1

Bbn̄−,ω3

[
P+
⊥B

c
n̄−,ω2

]
H ,

O(2)
PB++−[+] = −2gifabc

(
2 +

ω3

ω2
+
ω2

ω3

)
Ban+,ω1

Bbn̄−,ω3

[
P+
⊥B

c
n̄+,ω2

]
H ,

O(2)
PB−+−[−] = −2gifabc

(
2 +

ω3

ω2
+
ω2

ω3

)
Ban−,ω1

Bbn̄−,ω3

[
P−⊥B

c
n̄+,ω2

]
H . (4.32)

We therefore see explicitly that the helicity selection rules are realized in the tree level

matching. Furthermore, the Wilson coefficient is formed from Bose symmetric combina-

tions of ratios of the large momentum components of the n̄ collinear fields, as required

by RPI-III invariance. For convenience, we also give the Feynman rule of the combined

operator with three external gluons

(4.33)

= 4gfabc
(

2+
ω2

ω3
+
ω3

ω2

)[
pµ⊥g

νρ
⊥ −p

ν
⊥g

µρ
⊥ −p

ρ
⊥g

µν
⊥ +

p2
⊥

ω2ω3

(
ω3n

νgµρ⊥ − ω2n
ρgµν⊥ + pµ⊥n

νnρ
)]
.

This contains additional terms not present in the earlier matching calculation, due to the

particular choice of ⊥ polarizations used to simplify the matching. One can explicitly check

that this operator satisfies the Ward identity, which is gauranteed by the fact that it is

written in terms of B⊥ fields. It is also interesting to note that the Wilson coefficient of

this operator has a divergence as either ω2, or ω3 become soft, so that it will give rise to a

leading logarithmic divergence in the cross section at O(λ2).
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4.3.4 Ultrasoft gluon

The operators involving a single ultrasoft insertion were given in section 3.3.3, and it was

argued that they were related by RPI to the leading power operator involving two collinear

gluons. In this section we will explicitly perform the tree level matching to verify that this

relation holds. The operators in section 3.3.3 were given after BPS field redefinition, since

it is more convenient when enumerating a complete basis to work with a gauge invariant

ultrasoft gluon field. While it is possible to directly match to the post-BPS operators, we

will first perform the matching to pre-BPS field redefinition operators involving ultrasoft

covariant derivatives, and verify the color structure given in eq. (4.22). We will then give

the operators after BPS field redefinition.

We perform the matching to a three particle external state, with one collinear gluon in

each sector, and a single ultrasoft gluon. To simplify the matching we take the momenta

of the collinear particles as

pµ1 = ω1
nµ

2
, pµ2 = ω2

n̄µ

2
, (4.34)

and the momentum of the ultrasoft particle as

pµ3 = n̄ · p3
nµ

2
+ n · p3

n̄µ

2
+ pµ3⊥ , (4.35)

where (n · p3, n̄ · p3, p3⊥) ∼ (λ2, λ2, λ2). The full theory QCD diagrams expanded to O(λ2)

are given by ∣∣∣∣∣∣∣∣∣
O(λ2)

= 2gω2f
abcε1 · ε2

n̄ · p3

n · p3
n · ε3 + 4gfabcω2ε1 · ε3

ε2⊥ · p3⊥
n · p3

− 4gfabcω2ε2 · ε3
p3⊥ · ε1⊥
n · p3

,∣∣∣∣∣∣∣∣
O(λ2)

= −2gω1f
abcε1 · ε2

n · p3

n̄ · p3
n̄ · ε3 − 4gfabcω1ε2 · ε3

ε1⊥ · p3⊥
n̄ · p3

+ 4gfabcω1ε1 · ε3
p3⊥ · ε2⊥
n̄ · p3

,∣∣∣∣∣∣∣∣
O(λ2)

= 0 ,

∣∣∣∣∣∣∣∣
O(λ2)

= 2gfabcω1ε1 · ε2n · ε3 − 2gfabcω2ε1 · ε2n̄ · ε3 . (4.36)

In this case there are also contributions from T product diagrams in SCET correcting the

emission of an ultrasoft gluon. Once we subtract these terms from the full theory result,

– 36 –



J
H
E
P
0
7
(
2
0
1
7
)
0
6
7

the remainder will be localized at the hard scale. The O(λ2) Feynman rule for the emission

of a ultrasoft gluon from a collinear gluon is given by (see appendix B and e.g. [6] for the

explicit Feynman rule)

= 〈|TBνn⊥(0)L(2)
An
|εn, pn; εs, ps〉 = −ifabcεnµ

2εsρpsσ

p−nn · ps

(
gµρ⊥ g

σν
⊥ − g

µσ
⊥ gρν⊥

)
.

(4.37)

The two SCET diagrams involving this Lagrangian insertion are given by

=
4ω2f

abc

n · p3
(ε1 · ε3p3⊥ · ε2⊥ − ε1⊥ · p3⊥ε2 · ε3) ,

=
4ω1f

abc

n̄ · p3
(ε1 · ε3p3⊥ · ε2⊥ − ε1⊥ · p3⊥ε2 · ε3) . (4.38)

Finally we also have contributions from the ultrasoft derivative operators of section 4.3.1,

with a leading power emission of a ultrasoft gluon. For these diagrams we find

= 2gω2f
abcε1 · ε2

n̄ · p3

n · p3
n · ε3 , = −2gω1f

abcε1 · ε2
n · p3

n̄ · p3
n̄ · ε3 .

(4.39)

The SCET T -products therefore exactly reproduce the QCD diagrams, with the exception

of the contribution from the three gluon vertex of the Higgs effective theory. Subtracting

the SCET contributions from the expansion of the QCD diagrams, we find that the hard

scattering operators are given by

O(2)
n·D = 4ω1tr

[
Bµ⊥n,ω1

[n ·Dus,Bµ⊥n̄,ω2
]
]
H , O(2)

n̄·D = 4ω2tr
[
Bµ⊥n̄,ω2

[n̄ ·Dus,Bµ⊥n,ω1
]
]
H ,

(4.40)

as stated in eq. (4.22). In terms of gauge invariant ultrasoft gluon fields we have

O(2)
B(us(n)) =

(
ifabd

(
YTn Yn̄

)dc)(−2gω2Ban⊥,ω1
· Bbn̄⊥,ω2

Bcus(n)0

)
,

O(2)
B(us(n̄)) =

(
ifabd

(
YTn̄ Yn

)dc)(−2gω1Ban⊥,ω1
· Bbn̄⊥,ω2

Bcus(n̄)0

)
, (4.41)
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where the color structures that appear at tree level are the first components of the color

basis of eqs. (3.44) and (3.46). In terms of helicity operators,

O(2)
B(us(n))0:++ = −2g

(
ifabd

(
YTn Yn̄

)dc)
ω2Ban+,ω1

Bbn̄+,ω2
Bcus(n)0H ,

O(2)
B(us(n))0:−− = −2g

(
ifabd

(
YTn Yn̄

)dc)
ω2Ban−,ω1

Bbn̄−,ω2
Bcus(n)0H ,

O(2)
B(us(n̄))0:++ = −2g

(
ifabd

(
YTn̄ Yn

)dc)
ω1Ban+,ω1

Bbn̄+,ω2
Bcus(n̄)0H ,

O(2)
B(us(n̄))0:−− = −2g

(
ifabd

(
YTn̄ Yn

)dc)
ω1Ban−,ω1

Bbn̄−,ω2
Bcus(n̄)0H . (4.42)

This agrees with the relation derived from RPI symmetry, given in eq. (3.47). For conve-

nience, we also give the Feynman rule for the contribution of the hard scattering operators

to a single ultrasoft emission both before BPS field redefinition

= 2gfabcω1g
µν
⊥ n

ρ − 2gfabcω2g
µν
⊥ n̄

ρ , (4.43)

as well as after BPS field redefinition

= 2gfabc
[
ω1

(
nρ − n · p3

n̄ · p3
n̄ρ
)
− ω2

(
n̄ρ − n̄ · p3

n · p3
nρ
)]

= 2gfabc
[
nρ
(
ω1 +

n̄ · p3

n · p3
ω2

)
− n̄ρ

(
ω2 +

n · p3

n̄ · p3
ω1

)]
. (4.44)

Note that the contribution from hard scattering operators before the BPS field redefinition

is local, but not gauge invariant, since before BPS field redefinition there are also SCET

T -product diagrams involving. After BPS field redefinition, the contribution from the hard

scattering operators is gauge invariant, but at the cost of locality. However, as emphasized

in [17], the form of the non-locality is dictated entirely by the BPS field redefinition, and

is therefore not problematic. It is therefore advantageous to work in terms of the ultrasoft

gauge invariant building blocks, so that the contributions from the hard scattering operators

alone are gauge invariant. Note also that here we have restricted the ⊥ momentum of the

two collinear particles to vanish for simplicity. Furthermore, because of the ultrasoft wilson

lines in the color structure of eq. (3.44), there are also Feynman rules with multiple ultrasoft

emissions. This is analogous to the familiar case of the B⊥ operator which has Feynman

rules for the emission of multiple collinear gluons.

4.3.5 qqgg

A basis for the operators involving two collinear quark and two collinear gluon fields was

given in section 3.3.1. In section 3.4.2 it was argued that the only non-vanishing contribu-

tions to the cross section at O(λ2) arise from operators with the two collinear quarks and

a collinear gluon in one sector, recoiling against a collinear gluon in the other sector.
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In performing the matching to these operators there are potentially T -product terms

from the three gluon O(λ2) operator of section 4.3.3, where one of the gluons splits into a

qq̄ pair. By choosing the momentum

pµ1 = ω1
nµ

2
+pµ⊥+p1r

n̄µ

2
, pµ2 = ω2

nµ

2
−pµ⊥+p2r

n̄µ

2
, pµ3 = ω3

n̄µ

2
, pµ4 = ω4

nµ

2
, (4.45)

we see from eq. (4.33) that all SCET T -product contributions vanish, so that the result

must be reproduced by hard scattering operators in SCET. Expanding the QCD diagrams

to O(λ2), we find that all the contributions from the two gluon vertex in the Higgs effective

theory vanish ∣∣∣∣∣∣∣∣
O(λ2)

= 0 ,

∣∣∣∣∣∣∣
O(λ2)

= 0 ,

∣∣∣∣∣∣∣∣
O(λ2)

= 0

∣∣∣∣∣∣∣∣∣
O(λ2)

= 0 ,

∣∣∣∣∣∣∣∣∣
O(λ2)

= 0 . (4.46)

This result might be anticipated from the structure of the diagrams. However, there is a

non-vanishing contribution from the three-gluon vertex in the Higgs effective theory∣∣∣∣∣∣∣
O(λ2)

= −4g2fabcω4ε3⊥ · ε4⊥
(ω1 + ω2)2

ūn(p1)T a
/̄n

2
vn(p2) . (4.47)

In terms of standard Lorentz and Dirac structures the corresponding hard scattering op-

erator is given by

O(2)
B1 =

4g2ifabcω4

(ω1 + ω2)2
Bbn⊥,ω4

· Bcn̄⊥,ω3
χ̄n,ω1T

a /̄n

2
χn,−ω2H . (4.48)

Projected onto the helicity operator basis of eq. (3.8), and using the color basis of eq. (3.7),

we find

O(2)
B1++(0) = − 4g2ω4

(ω1 + ω2)2
2
√
ω1ω2

(
(T aT b)αβ̄ − (T bT a)αβ̄

)
Ban+,ω4

Bbn̄+,ω3
J ᾱβn0 H ,

O(2)
B1−−(0) = − 4g2ω4

(ω1 + ω2)2
2
√
ω1ω2

(
(T aT b)αβ̄ − (T bT a)αβ̄

)
Ban−,ω4

Bbn̄−,ω3
J ᾱβn0 H ,

O(2)

B1++(0̄)
= − 4g2ω4

(ω1 + ω2)2
2
√
ω1ω2

(
(T aT b)αβ̄ − (T bT a)αβ̄

)
Ban+,ω4

Bbn̄+,ω3
J ᾱβ
n0̄
H ,

O(2)

B1−−(0̄)
= − 4g2ω4

(ω1 + ω2)2
2
√
ω1ω2

(
(T aT b)αβ̄ − (T bT a)αβ̄

)
Ban−,ω4

Bbn̄−,ω3
J ᾱβ
n0̄
H . (4.49)
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For convenience, we also give the Feynman rule for the operator

= −4g2fabcT aω4

(ω1 + ω2)2

(
gµν⊥ −

pν4⊥n̄
µ

ω4

)
/̄n

2
. (4.50)

Again, this contains additional terms not present in the matching calculation, and it is

straightforward to check that they are necessary to satisfy the required Ward identities.

4.3.6 gggg

Finally, we consider the matching to the operators involving four collinear gluon fields.

A basis of such operators was given in eq. (3.16). In section 3.4.2 it was argued that to

contribute to the cross section at O(λ2), there must be three collinear gluons in the same

sector. For concreteness, we take this to be the n̄ sector. The operators with three gluons

in the n sector can be obtained by crossing n̄↔ n.

To perform the matching we choose the momenta as

pµ1 = ω1
nµ

2
, pµ2 = ω2

n̄µ

2
, pµ3 = ω3

n̄µ

2
−pµ⊥+p3r

nµ

2
, pµ4 = ω4

n̄µ

2
+pµ⊥+p4r

nµ

2
. (4.51)

With this choice, each particle in the n̄ sector is on-shell, but the sum of any two of their

momenta is off-shell,

p2
i = 0 , (p1 + pj)

2 ∼ O(1) , (pj + pk)
2 ∼ O(λ2) , j, k = 2, 3, 4 ; j 6= k , (4.52)

which regulates all propagators. This particular choice of momenta is convenient since it

simplifies T -product contributions from SCET. Furthermore, we take the external polar-

izations to be purely perpendicular, i.e. εµi = εµi⊥. All of the four gluon operators give a

non-vanishing contribution to the four-gluon matrix element for this choice of polarization,

allowing their Wilson coefficients to be obtained.

In computing the full theory diagrams for the matching it is convenient to separate

the diagrams into those involving on-shell propagators, which will be partially reproduced

by T -product terms in SCET, and diagrams involving only off-shell propagators. Since the

four gluon operators obtain their power suppression entirely from the fields, for diagrams

involving only off-shell propagators the residual momenta in eq. (4.51) can be ignored, as

they contribute only power suppressed contributions. Diagrams with on-shell propagators

are regulated by the residual momenta in eq. (4.51).

We begin by considering the expansion of the full theory diagrams that don’t involve

any on-shell propagators. In this case, all ⊥ momenta can be set to zero, and the result

will be purely local. The relevant QCD diagrams expanded to O(λ2) arise from the four

gluon vertex in the Higgs effective theory,∣∣∣∣∣∣∣
O(λ2)

= 4ig2(f eabf ecd + f eadf ecb)ε1⊥ · ε3⊥ε2⊥ · ε4⊥
+ 4ig2(f eacf ebd + f eadf ebc)ε1⊥ · ε4⊥ε2⊥ · ε3⊥
+ 4ig2(f eabf edc + f eacf edb)ε1⊥ · ε2⊥ε3⊥ · ε4⊥ , (4.53)
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from a splitting off of the three gluon vertex, + perms


∣∣∣∣∣∣∣∣
O(λ2)

= 2ig2

(
ω3 − ω2

ω4

)
fabef cdeε1⊥ · ε4⊥ε3⊥ · ε2⊥

+ [(2, d)↔ (4, b)] + [(3, c)↔ (4, b)] , (4.54)

and from multiple emissions off of the two gluon vertex, either using the four gluon vertex

with a single off-shell propagator + perms


∣∣∣∣∣∣∣
O(λ2)

= 2ig2

(
ω2

ω3 + ω4

)
[
f baef cde(ε3⊥ · ε4⊥ε1⊥ · ε2⊥ − ε4⊥ · ε2⊥ε3⊥ · ε1⊥)

+ f bcefade(ε1⊥ · ε4⊥ε3⊥ · ε2⊥ − ε4⊥ · ε2⊥ε1⊥ · ε3⊥)

+f bdeface(ε1⊥ · ε4⊥ε3⊥ · ε2⊥ − ε3⊥ · ε4⊥ε1⊥ · ε2⊥)
]

+ [(2, d)↔ (3, c)] + [(2, d)↔ (4, b)] , (4.55)

or sequential emissions with two off-shell propagators + perms


∣∣∣∣∣∣∣
O(λ2)

= 2ig2 ω2ω3

ω4(ω3 + ω4)
ε2⊥ · ε3⊥ε4⊥ · ε1⊥fabef ecd

+ [perms] . (4.56)

In the last case we have not explicitly listed the permutations, since all possible permuta-

tions are required.

We now consider the expansion of the full theory diagrams involving on-shell propaga-

tors. These will generically involve both local and non-local pieces. The non-local pieces

will be directly reproduced by T -products in the effective theory. The first class of dia-

grams involving on-shell propagators are those with all propagators on-shell. Here, at tree

level, the dynamics occurs entirely within a single collinear sector. The two relevant QCD

diagrams expanded to O(λ2) are∣∣∣∣∣∣∣
O(λ2)

= 0 ,

 + perms


∣∣∣∣∣∣∣
O(λ2)

= 0 , (4.57)

both of which have vanishing subleading power contributions.

Next, we consider diagrams involving both on-shell and off-shell propagators. To sim-

plify the results, we will often use the relation

p2
⊥

(p2 + p3)2
= −ω3

ω2
, (4.58)

which will allow us to write the result in terms of a local term, which is just a rational

function of the label momenta, and a non-local term, which explicitly contains the on-shell
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propagator. These non-local terms will be cancelled by the T -product diagrams in SCET.

For a first class of diagrams, where we have a nearly on-shell splitting in the n̄-collinear

sector, we have both a local term

∣∣∣∣∣∣∣
O(λ2)

= 4ig2faedf bce
(ω3 − ω4)

(ω3 + ω4)
ε1⊥ · ε2⊥ε3⊥ · ε4⊥ , (4.59)

when the splitting is into the particles 3 and 4, as well as a term that has both local and

non-local pieces +


∣∣∣∣∣∣∣
O(λ2)

(4.60)

=
4ig2faebfdce

ω4

[
2(ω2 + ω3)

(p2 + p3)2
p⊥ · ε1⊥p⊥ · ε2⊥ε3⊥ · ε4⊥

−(2ω3 + ω4)ε1⊥ · ε4⊥ε2⊥ · ε3⊥
]

+ [3↔ 4, b↔ c, p⊥ → −p⊥] .

As will be discussed in more detail when we consider the corresponding diagrams in the

EFT, the first permutation is purely local, since there is no corresponding T -product term

in the effective theory, and thus it must be fully reproduced by a hard scattering operator.

This particular splitting allows a slight simplification in the calculation of the SCET dia-

grams. For a second class of diagrams, where we have an on-shell splitting emitted from

an off-shell leg, we again have a purely local term

∣∣∣∣∣∣∣∣
O(λ2)

= 0 , (4.61)

as well as non-local contributions, +


∣∣∣∣∣∣∣∣
O(λ2)

(4.62)

= 2ig2faebfdce
[(

4ω4

(ω2 + ω3)(p2 + p3)2

)
p⊥ · ε1⊥p⊥ · ε2⊥ε3⊥ · ε4⊥

−ω3(ω2 − ω3)(ω2 + ω3 + ω4)2

ω2ω4(ω2 + ω3)2
ε1⊥ · ε4⊥ε2⊥ · ε3⊥

]
+ [3↔ 4, b↔ c, p⊥ → −p⊥] .

Again, we see the same pattern, that the first permutation gives rise to a purely local term,

while the second two permutations give rise to both local and non-local terms.
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Finally, we have the diagrams involving the three gluon vertex in the Higgs effective

theory. We again have a local contribution

∣∣∣∣∣∣∣
O(λ2)

= −2ig2fadef ebc
ω2(ω3 − ω4)

(ω3 + ω4)2
ε1⊥ · ε2⊥ε3⊥ · ε4 , (4.63)

and a non-local contribution +


∣∣∣∣∣∣∣
O(λ2)

(4.64)

= 2ig2faebfdce
[

8

(p2 + p3)2
p⊥ · ε1⊥p⊥ · ε2⊥ε3⊥ · ε4⊥

−
{

(ω3 + ω4)2 − ω2ω3

ω2ω4

}
ε1⊥ · ε4⊥ε2⊥ · ε3⊥

]
+ [3↔ 4, b↔ c, p⊥ → −p⊥] .

The non-local terms in the above expansions must be reproduced by T -product terms in

the effective theory. First, there are potential contributions from O(2)
PB, with the two gluon

Feynman rule for Bn̄,⊥, which is given in appendix B. Such contributions give vanishing

overlap for our choice of ⊥ polarizations. There are however T -product contributions aris-

ing from the three gluon O(2)
PB operator, with an L(0) insertion. The three gluon Feynman

rule for the O(2)
PB vertex was given in eq. (4.33). Since the O(2)

PB operator has an explicit P⊥
insertion, it vanishes in the case that either of the particles in the n̄ sector has no perpendic-

ular momentum. This is why our particular choice of momenta for the matching simplifies

the structure of the T -products. The two non-vanishing permutations are given by

+ (4.65)

= −8ig2fabef ecd
(ω2 + ω3 + ω4)2

(ω3 + ω2)ω4

[
ω3

(ω2 + ω3)
ε1⊥ · ε4⊥ε3⊥ · ε2⊥ −

p⊥ · ε1⊥p⊥ · ε2⊥ε3⊥ · ε4⊥
(p2 + p3)2

]
+ [3↔ 4, b↔ c, p⊥ → −p⊥] ,

which consists both of a local and a non-local term. The non-local terms exactly reproduce

the ones obtained in the QCD expansion +


non-loc.

=

 + + +perms


non-loc.

= 8ig2p⊥ · ε1⊥p⊥ · ε2⊥ε3⊥ · ε4⊥
(
fabef ecd

(p2 + p3)2

(ω2 + ω3 + ω4)2

(ω3 + ω2)ω4
+ [3↔ 4, b↔ c]

)
. (4.66)
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While it is of course necessary that the EFT reproduces all such non-local terms, this is

also a highly non trivial cross check of both the three and four gluon matching.

The matching coefficients for the hard scattering operators are given by the remaining

local terms. Before presenting the result we briefly comment on the organization of the

color structure. All diagrams are proportional to fabef cde, facef bde or fadef bce, which are

related by the Jacobi identity fabef cde = facef bde− fadef bce. A basis in terms of structure

constants can easily be related to the trace basis of (3.12) using

facef bde = tr[abdc] + tr[acdb]− tr[acbd]− tr[adbc] = e2 − e3 ,

fadef bce = tr[abcd] + tr[adcb]− tr[acbd]− tr[adbc] = e1 − e3 , (4.67)

where ei is the i-th element of the basis in (3.12). We find it most convenient to write the

Wilson coefficient in the (facef bde, fadef bce) basis. After subtracting the local piece of the

SCET T−product of (4.65) from the full theory graphs, and manipulating the result to

bring it into a compact form, we find the following operator

O(2)
4g = 16παsf

adef bce(Ban⊥,ωi
· Bbn̄⊥,ωj

)(Bcn̄⊥,ωk
· Bdn̄⊥,ω`

)

(
3+

ω3
j + ω3

k + ω3
` + ωjωkω`

(ωj + ωk)(ωj + ω`)(ωk + ω`)

)
.

(4.68)

The Wilson coefficient is manifestly RPI-III invariant. When the matrix element of this

operator is taken we are forced to sum over permutations which gives the proper Bose

symmetric result, as well as inducing terms with other color structures. In terms of the

helicity operators of eq. (3.16), we have

O(2)
4g = 16παsf

adef bce

(
3 +

ω3
j + ω3

k + ω3
` + ωjωkω`

(ωj + ωk)(ωj + ω`)(ωk + ω`)

)
×
[
Ban+,ωi

Bbn̄+,ωj
Bcn̄+,ωk

Bdn̄−,ω`
+ Ban+,ωi

Bbn̄+,ωj
Bcn̄−,ωk

Bdn̄+,ω`

+ Ban−,ωi
Bbn̄−,ωj

Bcn̄+,ωk
Bdn̄−,ω`

+ Ban−,ωi
Bbn̄−,ωj

Bcn̄−,ωk
Bdn̄+,ω`

]
= 16παs

[
3 +

ω3
j +ω3

k+ω3
` +ωjωkω`

(ωj+ωk)(ωj+ω`)(ωk+ω`)

][
(fadef bce+facef bde)Ban+,ωi

Bbn̄+,ωj
Bcn̄+,ωk

Bdn̄−,ω`

− (fadef bce + fabef cde)Ban−,ωi
Bbn̄+,ωj

Bcn̄−,ωk
Bdn̄−,ω`

]
. (4.69)

We see that all the helicity selection rules are satisfied in the tree level matching, as

expected. We have also checked the result using the automatic FeynArts [66] and FeynRules

implementation of the HiggsEffectiveTheory [67]. For more complicated calculations at

subleading power in SCET it would be interesting to fully automate the computation of

Feynman diagrams involving power suppressed SCET operators and Lagrangians.

The four gluon operators derived in this section can be used to study O(α2
s) collinear

contributions atO(λ2). It would be interesting to understand in more detail the universality

of collinear splittings at subleading power, as well as collinear factorization properties. For

some recent work in this direction from a different perspective, see [68, 69]. The behavior of

these Wilson coefficients is also quite interesting. They exhibit a singularity as any pair of

collinear particles simultaneously have their energy approach zero. This was also observed
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in the Wilson coefficients for operators describing the subleading collinear limits of two

gluons emitted off of a qq̄ vertex [17].

5 Conclusions

In this paper we have presented a complete basis of operators at O(λ2) in the SCET

expansion for color singlet production of a scalar through gluon fusion, as relevant for

gg → H. To derive a minimal basis we used operators of definite helicities, which allowed

us to significantly reduce the number of operators in the basis. This simplification is due

to helicity selection rules which are particularly constraining due to the scalar nature of

the produced particle. We also classified all possible operators which could contribute to

the cross section at O(λ2). In performing this classification the use of a helicity basis

again played an important role, allowing us to see from simple helicity selection rules

which operators could contribute. While the total number of subleading power operators

is large, the number that contribute at the cross section level is smaller. We compared

the structure of the contributions to the case of a quark current, q̄Γq, finding interesting

similarities, despite a slightly different organization in the effective theory.

A significant portion of this paper was devoted to a tree level calculation of the Wilson

coefficients of the subleading power operators which can contribute to the cross section

at O(λ2). The Wilson coefficients obtained in this matching will allow for a study of the

power corrections at NLO and for the study of the leading logarithmic renormalization

group structure at subleading power. An initial investigation of the renormalization group

properties of several subleading power operators relevant for the case of e+e− → q̄q was

considered in [15].

A number of directions exist for future study, with the goal of understanding factor-

ization at subleading power. In particular, one would like to combine the hard scattering

operators derived in this paper with the subleading SCET Lagrangians to derive a complete

factorization theorem at subleading power for a physical event shape observable. Combined

with the operators in [17], all necessary ingredients are now available to construct such a

subleading factorization for thrust for q̄q or gg dijets in e+e− collisions. This would also

allow for a test of the universality of the structure of the subleading factorization. The

operators of this paper can also be used to study threshold resummation, where power

corrections of O((1− z)0) have received considerable attention [70–81], particularly for the

qq̄ channel, but it would be interesting to extend this to the gg case.

An interesting application of current relevance of the results presented in this paper

is to the calculation of fixed order power corrections for NNLO event shape based sub-

tractions. Gaining analytic control over power corrections can significantly improve the

performance and stability of such subtraction schemes. This has been studied for qq̄ ini-

tiated Drell Yan production to NNLO in [16] using a subleading power operator basis in

SCET (see also [50] for a direct calculation in QCD). Combined with the results for the

operator basis and matching for qq̄ initiated processes given in [17], the operator basis

presented in this paper will allow for the systematic study of power corrections for color

singlet production and decay.
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A Generalized basis with P⊥n, P⊥n̄ 6= 0

In the main text we presented a complete basis of operators to O(λ2) in a frame where

the total P⊥ in each collinear sector is restricted to be zero. In this section we extend the

basis, giving the additional operators present when the individual collinear sectors have

non-vanishing P⊥. We then perform a tree level matching calculation to those operators

which can contribute to the cross section at O(λ2). While all these operators are fixed by

RPI, we choose to find their coefficients by simply performing the tree level matching with

more general kinematics.

A.1 Operators

We begin by noting that operators involving two collinear gluon fields with a single insertion

of the P⊥ operator are eliminated by the helicity selection rules. Operators involving two

collinear gluon fields must therefore have two insertions of the P⊥ operator. A basis of

helicity operators involving two insertions of the P⊥ operator, where one P⊥ operator acts

in each collinear sector, is given by

(P⊥gn)(P⊥gn̄) :

O
(0)ab
PBP++[−:−] = [P−⊥B

a
n+] [P−⊥B

b
n̄+]H , O

(0)ab
PBP−−[+:+] = [P+

⊥B
a
n−] [P+

⊥B
b
n̄−]H ,

O
(0)ab
PBP+−[−:+] = [P−⊥B

a
n+] [P+

⊥B
b
n̄−]H , O

(0)ab
PBP−+[+:−] = [P+

⊥B
a
n−] [P−⊥B

b
n̄+]H ,

O
(0)ab
PBP++[+:+] = [P+

⊥B
a
n+] [P+

⊥B
b
n̄+]H , O

(0)ab
PBP−−[−:−] = [P−⊥B

a
n−] [P−⊥B

b
n̄−]H . (A.1)

When both P⊥ operators act on the same collinear sector, which we take to be the

n-collinear sector, then we have

(P⊥P⊥gn)gn̄ :

O
(0)ab
BPP++[−+] = [P−⊥P

+
⊥B

a
n+] [Bbn̄+]H , O

(0)ab
BPP−−[−+] = [P−⊥P

+
⊥B

a
n−] [Bbn̄−]H ,

O
(0)ab
BPP++[++] = [P+

⊥P
+
⊥B

a
n−] [Bbn̄+]H , O

(0)ab
BPP−−[−−] = [P−⊥P

−
⊥B

a
n+] [Bbn̄−]H . (A.2)
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Note that we have used up our freedom to integrate by parts by never having the P⊥
operator act on the H field. The color basis for all these operators before and after the

BPS field redefinition is the same as given in eq. (3.3).

We also must consider the generalization of the operators involving three gluon or quark

fields to generic ⊥ momentum in the collinear sectors. As discussed in the text surrounding

eq. (3.27), in the case that the P⊥ operator is inserted into an operator involving two quark

fields and a gluon field, the helicity structure of the operator is highly constrained. In

particular, the quark fields must be in a helicity zero configuration, and also have the same

chirality. This implies that all operators must involve only the currents J ᾱβn̄ 0 or J ᾱβ
n̄ 0̄

. Here

we have taken without loss of generality that the two quarks are in the n̄-collinear sector.

The basis of O(λ2) operators for the case that the P⊥ operator acts on the n̄ sector, is

then given by

(g)n(qq̄P⊥)n̄ :

O
(2)a ᾱβ
Pχ+(0)[+] = Ban+

{
P+
⊥J

ᾱβ
n̄ 0

}
H , O

(2)a ᾱβ
Pχ−(0)[−] = Ban−

{
P−⊥J

ᾱβ
n̄ 0

}
H , (A.3)

O
(2)a ᾱβ

Pχ+(0̄)[+]
= Ban+

{
P+
⊥J

ᾱβ
n̄ 0̄

}
H , O

(2)a ᾱβ

Pχ−(0̄)[−]
= Ban−

{
P−⊥J

ᾱβ
n̄ 0̄

}
H ,

O
(2)a ᾱβ
Pχ+(0)[+] = Ban+

{
J ᾱβn̄ 0P

†+
⊥
}
H , O

(2)a ᾱβ
Pχ−(0)[−] = Ban−

{
J ᾱβn̄ 0P

†−
⊥
}
H ,

O
(2)a ᾱβ

Pχ+(0̄)[+]
= Ban+

{
J ᾱβ
n̄ 0̄
P†+⊥

}
H , O

(2)a ᾱβ

Pχ−(0̄)[−]
= Ban−

{
J ᾱβ
n̄ 0̄
P†−⊥

}
H ,

which replaces the four operators in eq. (3.27). For the case that the P⊥ operator acts on

the n sector the basis is

(P⊥g)n(qq̄)n̄ :

O
(2)a ᾱβ
Pχ+(0)[+] = [P−⊥B

a
n+] J ᾱβn̄ 0 H , O

(2)a ᾱβ
Pχ−(0)[−] = [P+

⊥B
a
n−] J ᾱβn̄ 0 H , (A.4)

O
(2)a ᾱβ

Pχ+(0̄)[+]
= [P−⊥B

a
n+] J ᾱβ

n̄ 0̄
H , O

(2)a ᾱβ

Pχ−(0̄)[−]
= [P+

⊥B
a
n−] J ᾱβ

n̄ 0̄
H .

The color basis for all these operators (before and after the BPS field redefinition) is the

same as given in eqs. (3.28) and (3.29).

The final case we must consider are the generalized versions of eq. (3.30), which involve

the insertion of a single P⊥ operator into an operator involving three collinear gluon fields.

In this case a basis of O(λ2) operators for the case that the P⊥ operator acts in the

n̄-collinear sector is given by

(g)n(ggP⊥)n̄ :

O
(2)abc
PB+++[−] = Ban+ Bbn̄+

[
P−⊥B

c
n̄+

]
H , O

(2)abc
PB−−−[+] = Ban− Bbn̄−

[
P+
⊥B

c
n̄−
]
H ,

O
(2)abc
PB++−[+] = Ban+ Bbn̄+

[
P+
⊥B

c
n̄−
]
H , O

(2)abc
PB−−+[−] = Ban− Bbn̄−

[
P−⊥B

c
n̄+

]
H ,

O
(2)abc
PB+−+[+] = Ban+ Bbn̄−

[
P+
⊥B

c
n̄+

]
H , O

(2)abc
PB−+−[−] = Ban− Bbn̄+

[
P−⊥B

c
n̄−
]
H , (A.5)
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where these six operators replace the four in eq. (3.30). In addition we have operators for

the case that the P⊥ acts in the n-collinear sector,

(P⊥g)n(gg)n̄ :

O
(2)abc
PB+++[−] = [P+

⊥B
a
n+]Bbn̄+ Bcn̄+H , O

(2)abc
PB−−−[+] = [P−⊥B

a
n−]Bbn̄− Bcn̄−H ,

O
(2)abc
PB++−[+] = [P−⊥ B

a
n+ ]Bbn̄+ Bcn̄−H , O

(2)abc
PB−−+[−] = [P+

⊥B
a
n− ]Bbn̄− Bcn̄+H . (A.6)

The color basis for all of these operators is the same as given in eq. (3.31).

A.2 Matching

We now consider the matching to these operators. We begin with the matching to the

operators involving two P⊥ insertions into the leading power operator. We use a two gluon

final state and take the kinematics as

pµ1 = ω1
nµ

2
+ pµ1⊥ + p1r

n̄µ

2
, p2 = ω2

n̄µ

2
+ pµ2⊥ + p2r

nµ

2
. (A.7)

We find at O(λ2) ∣∣∣∣∣∣
O(λ2

= −4iδabp1⊥ · p2⊥ε3⊥ · ε4⊥ . (A.8)

This is recognized as the tree level matrix element of the operator

O(2)
PBP = −4δabgµνgδρ[Pδ⊥Baνn⊥,ω1

][Pρ⊥B
bµ
n̄⊥,ω2

] , (A.9)

or in terms of helicity operators,

O
(0)ab
PBP++[−:−] = −4[P−⊥B

a
n+] [P−⊥B

b
n̄+]H , O

(0)ab
PBP−−[+:+] = −4[P+

⊥B
a
n−] [P+

⊥B
b
n̄−]H ,

O
(0)ab
PBP++[+:+] = −4[P+

⊥B
a
n+] [P+

⊥B
b
n̄+]H , O

(0)ab
PBP−−[−:−] = −4[P−⊥B

a
n−] [P−⊥B

b
n̄−]H ,

(A.10)

We see that not all possible helicity combinations appear in the tree level matching. Fur-

thermore, the operators of eq. (A.2) where both P⊥ insertions are in the same collinear

sector do not appear at this order.

We now consider the matching to the operators of eqs. (A.3) and (A.4). We can simplify

the matching by performing it in two steps. First, to extract the Wilson coefficient of the

operator involving the action of the P⊥ on the collinear gluon field we take our kinematics as

pµ1 = ω1
nµ

2
+pµ⊥+p1r

n̄µ

2
, pµ2 = ω2

nµ

2
−pµ⊥+p2r

n̄µ

2
, pµ3 = ω3

n̄µ

2
+pµ3⊥+p3r

nµ

2
. (A.11)
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With this choice, all subleading Lagrangian insertions vanish, for similar reasons as for the

gqq̄ matching discussed in the text, as do insertions of the operator of eq. (A.9), so that the

result must be reproduced by hard scattering operators. Expanding the QCD result, we find∣∣∣∣∣∣
O(λ2)

= 0 . (A.12)

To extract the operators where the P⊥ acts in the n-collinear sector we simplify the

matching by taking

pµ1 = ω1
nµ

2
+ pµ1⊥ + p1r

n̄µ

2
, pµ2 = ω2

nµ

2
+ pµ2⊥ + p2r

n̄µ

2
, pµ3 = ω3

n̄µ

2
, (A.13)

where, unlike in the text, we have allowed for a generic ⊥ momentum in the n-collinear

sector. Note that for this configuration it is still true that subleading T -products vanish,f

or similar reasons as for the gqq̄ matching discussed in the text, at least at this order. Only

the operator of eq. (A.9) appeared in the matching, however its contribution vanishes for

this matching configuration. Expanding the full theory result we find∣∣∣∣∣∣
O(λ2)

= 0 , (A.14)

just as was the case when the ⊥ momenta in each sector were restricted to vanish.

Finally, we must consider the matching with general ⊥ momenta to the three gluon

operators. Again, we can perform the matching in two steps. In the first step we take the

momenta as

pµ1 = ω1
nµ

2
+pµ1⊥+p1r

n̄µ

2
, pµ2 = ω2

nµ

2
−pµ⊥+p2r

n̄µ

2
, pµ3 = ω3

n̄µ

2
+pµ⊥+p3r

nµ

2
. (A.15)

to isolate the action of the operator with an insertion of the P⊥ operator in the n-collinear

sector. The QCD amplitudes expanded to this order are +


∣∣∣∣∣∣∣∣
O(λ2)

= −4gfabc
[
ω3

ω2
(ε1 ·ε3)(p1⊥ ·ε2)−ω2

ω3
(ε1 ·ε2)(p1⊥ ·ε3)

]
,

∣∣∣∣∣∣∣∣
O(λ2)

= 0 , (A.16)

∣∣∣∣∣∣∣∣
O(λ2)

= 4gfabc [(ε1 · ε2)(p1⊥ · ε3)− (ε1 · ε3)(p1⊥ · ε2)] .
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There are no SCET contributions at this order, since for our choice of kinematics there is

no perpendicular momentum flowing in the n̄ leg. Therefore, the hard scattering operators

which appear in the tree level matching are

O(2)
PB = 4gifabc

(
1 +

ω2

ω3

)
Bbn̄⊥,ω2

· [Ban⊥,ω1
P†⊥] · Bcn̄⊥,ω3

. (A.17)

In the second step of the matching we can take the kinematics as

pµ1 = ω1
nµ

2
, pµ2 = ω2

nµ

2
+ pµ2⊥ + p2r

n̄µ

2
, pµ3 = ω3

n̄µ

2
+ pµ3⊥ + p3r

nµ

2
, (A.18)

which allows us to determine the Wilson coefficients of the operators with a P⊥ acting in
the n̄-collinear sector. Expanding the relevant QCD diagrams to O(λ2), we find +


∣∣∣∣∣∣∣∣∣
O(λ2)

(A.19)

= 4gfabc
[
ω3

ω2
[(ε2 · ε3)(p2,⊥ · ε1)− (ε1 · ε2)(p2,⊥ · ε3)] + (ε1 · ε2)(p3,⊥ · ε3)− (2↔ 3)

]
,∣∣∣∣∣∣∣∣∣

O(λ2)

= 0 ,

∣∣∣∣∣∣∣∣
O(λ2)

= 4gfabc
[
−ω3

ω2
(ε1 ·ε3)(p2,⊥ ·ε2)−(ε1 ·ε2) (p2,⊥ ·ε3)+(ε2 ·ε3)(p2,⊥ ·ε1)−(2↔3)

]
.

There are no SCET T -product contributions, so that these must be exactly reproduced by

hard scattering operators in the effective theory. We therefore find the following operators

O(2)
PB1 = −4g

(
1 +

ω3

ω2

)
ifabcBan⊥,ω1

·
[
P⊥Bbn̄⊥,ω2

·
]
Bcn̄⊥,ω3

H ,

O(2)
PB2 = 4g

(
2 +

ω3

ω2

)
ifabcBan⊥,ω1

·
[
Bc⊥n̄,ω2

P†⊥
]
· Bbn̄⊥,ω3

H ,

O(2)
PB3 = 4g

(
2 +

ω3

ω2

)
ifabcBan⊥,ω1

· Bc⊥n̄,ω3

[
P⊥ · Bbn̄⊥,ω2

]
H . (A.20)

These can be projected onto definite helicities following eq. (4.32).

B Useful Feynman rules

In this appendix we summarize for convenience several useful Feynman rules used in the

text, both from the Higgs effective theory, and from SCET.

The Feynman rules in the Higgs effective theory with

Ohard = GµνGµνH , (B.1)
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are well known, and are given by

= −4iδab(p1 · p2g
ρδ − pρ1p

δ
2) , (B.2)

= −4gfdeg(pρ1g
δλ − pλ1gρδ)

− 4gfged(pρ3g
δλ − pδ3gλρ)

− 4gf egd(pλ2g
ρδ − pδ2gλρ) , (B.3)

= 4ig2(fadffaeg + faeffadg)gδρgλσ

+ 4ig2(fadefafg + fadgfafe)gδλgρσ

+ 4ig2(fadefagf + fadffage)gδσgρλ . (B.4)

Before presenting the subleading power Feynman rules in SCET, we begin by briefly

reviewing the Lagrangian, and gauge fixing for the collinear gluons. The gauge covariant

derivatives that we will use to write the Lagrangian are defined by

iDµ
n = i∂µn + gAµn , i∂µn =

n̄µ

2
n · ∂ +

nµ

2
P + Pµ⊥ ,

iDµ
ns = iDµ

n +
n̄µ

2
gn ·Aus , i∂µns = i∂µn +

n̄µ

2
gn ·Aus , (B.5)

and

iDµ
us = i∂µ + gAµus , (B.6)

and their gauge invariant versions are given by

iDµn = W †niD
µ
nWn ,

iDµn⊥ = W †niD
µ
n⊥Wn = Pµn⊥ + gBµ

n⊥ ,

iDµns = W †niD
µ
nsWn . (B.7)

The leading power SCET Lagrangian can be written as

L(0) = L(0)
nξ + L(0)

ng + L(0)
us , (B.8)

where [4]

L(0)
nξ = ξ̄n

(
in ·Dns + i /Dn⊥Wn

1

Pn
W †ni /Dn⊥

)
/̄n

2
ξn , (B.9)

L(0)
ng =

1

2g2
tr
{

([iDµ
ns, iD

ν
ns])

2
}

+
1

α
tr
{

([i∂µns, Anµ])2
}

+ 2tr
{
c̄n[i∂nsµ , [iD

µ
ns, cn]]

}
,

and the ultrasoft Lagrangian, L(0)
us , is simply the QCD Lagrangian. We have used a covari-

ant gauge with gauge fixing parameter α for the collinear gluons.
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The O(λ) Lagrangian can be written

L(1) = L(1)
χn

+ L(1)
An

+ L(1)
χnqus , (B.10)

where [26, 27, 30, 31]

L(1)
χn

= χ̄n

(
i /Dus⊥

1

P̄
i /Dn⊥ + i /Dn⊥

1

P̄
i /Dus⊥

)
/̄n

2
χn , (B.11)

L(1)
An

=
2

g2
Tr
([
iDµns, iDνn⊥

][
iDnsµ, iD⊥us ν

])
+ 2

1

α
Tr
(
[iDµ

us⊥, An⊥µ][i∂νns, Anν ]
)

+ 2Tr
(
c̄n[iDµ

us⊥, [iD
⊥
nµ, cn]]

)
+ 2Tr

(
c̄n[Pµ⊥, [WniD

⊥
usµW

†
n, cn]]

)
,

L(1)
χnqus = χ̄ng/Bn⊥qus + h.c..

Finally, the O(λ2) Lagrangian can be written as [26, 30, 31]

L(2) = L(2)
χn

+ L(2)
An

+ L(2)
χnqus , (B.12)

where

L(2)
ξnqus

= χ̄n
/̄n

2
[W †nin ·DWn]qus + χ̄n

/̄n

2
i /Dn⊥

1

P
ig/Bn⊥qus + h.c. , (B.13)

L(2)
nξ = χ̄n

(
i /Dus⊥

1

P
i /Dus⊥ − i /Dn⊥

in̄ ·Dus

(P)2
i /Dn⊥

)
/̄n

2
χn ,

L(2)
ng =

1

g2
Tr
(

[iDµns, iD⊥νus ][iDnsµ, iD⊥usν ]
)

+
1

g2
Tr
(

[iDµ
us⊥, iD

ν
us⊥][iD⊥nµ, iD⊥nν ]

)
+

1

g2
Tr ([iDnsµ, in · Dns][iDnsµ, in̄ ·Dus]) +

1

g2
Tr
(

[iDµ
us⊥, iD

⊥
nν ][iD⊥nµ, iDν

us⊥]
)
,

L(2)
gf =

1

α
Tr
(
[iDµ

us⊥, An⊥µ][iDν
us⊥, An⊥ν ]

)
+

1

α
Tr ([in̄ ·Dus, n ·An][i∂µns, Anµ])

+ 2Tr
(
c̄n[iDµ

us⊥, [WniD
⊥
usµW

†
n, cn]]

)
+ Tr (c̄n[in̄ ·Dus, [in ·Dns, cn]])

+ Tr
(
c̄n[P, [Wnin̄ ·DusW

†
n, cn]]

)
.

Using these Lagrangians, one can derive the required Feynman rules for the calculations

described in the text. The O(λ) Feynman rule for the emission of a ultrasoft gluon from

a collinear gluon in a general covariant gauge, specified by a gauge fixing parameter α, is

given by

= −gfabc
[
gνρ⊥

((
1− 1

α

)
pµn −

(
1 +

1

α

)
n · ps

n̄µ

2
− p2

nn̄
µ

n̄ · pn

)

− 2gµνpρn⊥ + gµρ⊥

((
1− 1

α

)
pνn −

p2
nn̄

ν

n̄ · pn

)
+

(
n̄µpνn + n̄νpµn +

1

2
n̄µn̄νn · ps

)
pρn⊥
n̄ · pn

]
, (B.14)
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and the O(λ) propagator correction to the gluon propagator is given by

= −4iδabgµνq⊥ · qr⊥ + 2i

(
1− 1

α

)
δab
[
qµr⊥q

ν + qµqνr⊥
]
. (B.15)

For the matching calculation for the operators involving an ultrasoft derivative in

section 4.3.1, we also needed the O(λ2) corrections to the propagator, which is given by

= −iδabq⊥r · q⊥r g
µν
⊥ + iδab

(
1− 1

α

)
qµr⊥q

ν
r⊥

+
i

2
δab
(

1− 1

α

)
(qµ⊥n

ν n̄ · qr + qν⊥n
µn̄ · qr) + · · · , (B.16)

where the dots indicate the other tensor components in the light cone basis, which are not

relevant for the current discussion. For simplicity, the matching was performed using a ⊥
polarized gluon. In the n-collinear sector, the leading power hard scattering operator pro-

duces only n̄, and ⊥ polarized gluons. Therefore, only the ⊥ − ⊥ and n− ⊥ components of

the propagator are needed. In the matching, the ⊥ − ⊥ term vanishes since it proportional

to the residual ⊥ momentum, which is set to zero, and the n− ⊥ term vanishes for a ⊥
polarized gluon, due to the gluons equation of motion, q⊥ · ε⊥ = 0.

At O(λ2), the individual propagator and emission factors are sufficiently complicated

that it is also convenient to give the complete result for the matrix element

= 〈0|T{Bνn⊥(0),L(2)
An
}|εn, pn; εs, ps〉

∣∣∣
α=1

=

= −ifabcεnµ
2εsρpsσ

n̄ · pn n · ps
(
gµρ⊥ g

σν
⊥ − g

µσ
⊥ gρν⊥

)
, (B.17)

where we have restricted to α = 1 for simplicity.

Since we have also matched to operators involving collinear quarks, we also summarize

the subleading power Feynman rules involving collinear quark. The Feynman rules for the

correction to a collinear quark propagator are given by

= i
/̄n

2

2p⊥ · pr⊥
n̄ · p

, (B.18)

= i
/̄n

2

p2
r⊥

n̄ · p
, (B.19)
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and the Feynman rules for the emission of a collinear gluon are given by

= igT a

(
nµ +

γ⊥µ /p⊥
n̄ · p

+
/p
′

⊥γ
⊥
µ

n̄ · p′
−

/p⊥/p
′

⊥
n̄ · pn̄ · p′

n̄µ

)
/̄n

2
, (B.20)

= (B.21)

igT a

(
γ⊥µ /pr⊥
n̄ · p

+
/p
′

r⊥γ
⊥
µ

n̄ · p′
+

/pr⊥/p⊥
n̄ · qn̄ · p

n̄µ −
/p
′

⊥/p
′

r⊥
n̄ · qn̄ · p′

n̄µ −
/p
′

r⊥/p⊥
n̄ · qn̄ · p′

n̄µ +
/p
′

⊥/pr⊥
n̄ · qn̄ · p′

n̄µ

)
/̄n

2
,

= (B.22)

igT a

(
n̄µp2

r⊥
n̄ · p

−
n̄µp

′2
r⊥

n̄ · p′
−
γµ⊥/p⊥n̄ · pr

(n̄ · p)2
−
/p
′

⊥γ
µ
⊥n̄ · pr

(n̄ · p′)2
−
n̄µ/p

′

⊥/p⊥n̄ · pr
n̄ · q(n̄ · p)2

+
n̄µ/p

′

⊥/p⊥n̄ · pr
n̄ · q(n̄ · p′)2

)
/̄n

2
.

We can see that each term in the power suppressed collinear Lagrangian insertions are

proportional to either pr⊥, or n̄ · pr. At tree level, and in the absence of ultrasoft particles,

one can use RPI to set all these terms to zero. This was used extensively to simplify our

matching calculations.

For convenience we also give the expansion of the Wilson lines and collinear gluon field

to two emissions. The collinear Wilson lines are defined by

Wn =

[ ∑
perms

exp
(
− g
P̄
n̄ ·An(x)

)]
. (B.23)

Expanded to two gluons with incoming momentum k1 and k2, we have

Wn = 1−
gT an̄·Aank

n̄·k
+ g2

[
T aT b

n̄·k1(n̄·k1 + n̄·k2)
+

T bT a

n̄·k2(n̄·k1 + n̄·k2)

]
n̄·Aank1n̄·Abnk2

2!
,

W †n = 1 +
gT an̄·Aank

n̄·k
+ g2

[
T aT b

n̄·k1(n̄·k1 + n̄·k2)
+

T bT a

n̄·k2(n̄·k1 + n̄·k2)

]
n̄·Aank1n̄·Abnk2

2!
.

(B.24)

The collinear gluon field is defined as

Bµn⊥ =
1

g

[
W †niD

µ
n⊥Wn

]
. (B.25)

Expanded to two gluons, both with incoming momentum, we find

gBµn⊥ = g

(
Aµa⊥kT

a − kµ⊥
n̄ ·AankT a

n̄ · k

)
+ g2(T aT b − T bT a)

n̄ ·Aank1A
µb
⊥k2

n̄ · k1
(B.26)

+ g2(kµ1⊥+kµ2⊥)

(
T aT b

n̄ · k1(n̄ · k1 + n̄ · k2)
+

T bT a

n̄ · k2(n̄ · k1 + n̄ · k2)

)
n̄ ·Aank1n̄ ·Abnk2

2!
.
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In both cases, at least one of the gluons in the two gluon expansion is not transversely

polarized. Such terms can therefore be eliminated in matching calculations by choosing

particular polarizations, as was done in the text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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