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Abstract The HIV-1 Tat protein hijacks P-TEFb kinase to activate paused RNA polymerase II

(RNAP II) at the viral promoter. Tat binds additional host factors, but it is unclear how they regulate

RNAP II elongation. Here, we identify the cytoplasmic ubiquitin ligase UBE2O as critical for Tat

transcriptional activity. Tat hijacks UBE2O to ubiquitinate the P-TEFb kinase inhibitor HEXIM1 of

the 7SK snRNP, a fraction of which also resides in the cytoplasm bound to P-TEFb. HEXIM1

ubiquitination sequesters it in the cytoplasm and releases P-TEFb from the inhibitory 7SK complex.

Free P-TEFb then becomes enriched in chromatin, a process that is also stimulated by treating cells

with a CDK9 inhibitor. Finally, we demonstrate that UBE2O is critical for P-TEFb recruitment to the

HIV-1 promoter. Together, the data support a unique model of elongation control where non-

degradative ubiquitination of nuclear and cytoplasmic 7SK snRNP pools increases P-TEFb levels for

transcriptional activation.

DOI: https://doi.org/10.7554/eLife.31879.001

Introduction
The advent of genome-wide methods to interrogate transcription has shown that many genes in

higher eukaryotes contain stably paused RNAP II molecules immediately downstream of transcrip-

tion start sites (Core et al., 2008; Henriques et al., 2013; Kwak and Lis, 2013; Rahl et al., 2010;

Zeitlinger et al., 2007). The release of RNAP II into productive elongation is controlled by the kinase

positive transcription elongation factor b (P-TEFb), composed of cyclin T1 (CCNT1) and cyclin-

dependent kinase 9 (CDK9) subunits (Kwak and Lis, 2013; Marshall and Price, 1995). P-TEFb

hyper-phosphorylates DRB sensitivity inducting factor (DSIF), negative elongation factor (NELF), and

the C-terminal domain of RNAP II, resulting in a processive polymerase (Czudnochowski et al.,

2012; Yamaguchi et al., 1999). Numerous cellular proteins interact with P-TEFb to relieve pausing,

including bromodomain-containing protein 4 (BRD4) (Yang et al., 2005), Mediator (Takahashi et al.,

2011), nuclear factor (NF)-kB (Barboric et al., 2001), and c-Myc (Eberhardy and Farnham, 2002).

The human immunodeficiency virus-1 (HIV-1) transcription factor, Tat, also interacts with P-TEFb to

activate a paused polymerase at the viral promoter (Feinberg et al., 1991; Wei et al., 1998).

P-TEFb activity is controlled by sequestration into the inhibitory 7SK small nuclear ribonucleopro-

tein (snRNP) complex (Nguyen et al., 2001; Yang et al., 2001). In this complex, hexamethylene

bisacetamide inducible 1 (HEXIM1) inhibits the kinase activity of CDK9 in a 7SK snRNA-dependent

manner (Michels et al., 2004), while the 7SK snRNA methyl phosphate capping enzyme (MEPCE)
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and La-related protein 7 (LARP7) stabilize the 7SK snRNA by adding a 5’ methylphosphate cap or

binding to the 3’ poly(U) tail of the RNA, respectively (He et al., 2008). Multiple signaling pathways

regulate the association of P-TEFb with the 7SK snRNP, tuning the required levels of active kinase in

the cell (Chen et al., 2008; Liu et al., 2014). We have previously shown that 7SK snRNP-inhibited

P-TEFb is recruited to the HIV-1 promoter (D’Orso and Frankel, 2010), where Tat activates tran-

scription elongation by displacing the inhibitory subunits through binding of the nascently tran-

scribed transactivation response element (TAR) RNA. Supporting this model of activation, recent

genome-wide studies have revealed that snRNP-bound P-TEFb occupies the majority of promoters

that display RNAP II pausing (Ji et al., 2013; McNamara et al., 2016). In this context, the splicing

protein SC35 appears to act analogously to Tat by releasing the 7SK snRNP in a nascent RNA-bind-

ing-dependent step (Ji et al., 2013).

Ubiquitination is a post-translational modification in which the 76 amino acid protein ubiquitin

becomes covalently attached via its C-terminus to a primary amine on a substrate protein. Beyond

its well-known function as a signal for degradation, ubiquitination has emerged as a major signaling

pathway in the cell, especially in transcription. As an example, mono-ubiquitination of histone H2B is

associated with transcriptionally active chromatin and regulates subsequent histone

modifications (Hammond-Martel et al., 2012). Ubiquitination of other transcription factors, includ-

ing p53 and Myc, can lead to proteasomal degradation (Haupt et al., 1997; Kim et al., 2003), stabi-

lization (Popov et al., 2010), or re-localization (Le Cam et al., 2006), underscoring the diversity of

regulatory mechanisms for ubiquitination in transcriptional control.

Here, we report the identification of ubiquitin conjugating enzyme E2 O (UBE2O), a hybrid E2-E3

ubiquitin ligase (Mashtalir et al., 2014; Vila et al., 2017; Zhang et al., 2013a), as being critical for

Tat transcriptional activity. We show that Tat recruits UBE2O to robustly ubiquitinate HEXIM1 in a

non-degradative manner. Interestingly, UBE2O-dependent ubiquitinated HEXIM1 species are largely

cytoplasmic, which led to the discovery of a cytoplasmic pool of P-TEFb-7SK snRNP. Tat-dependent

HEXIM1 ubiquitination by UBE2O releases P-TEFb from this cytoplasmic reservoir with the 7SK

snRNP, resulting in the nuclear import of the active kinase. Our results reveal an unanticipated

amount of cytoplasmic regulation of HIV-1 transcription, where the Tat protein co-opts ubiquitina-

tion machinery to reorganize a major transcription elongation complex. Further, UBE2O activity is

essential for the Tat-dependent recruitment of P-TEFb to the viral promoter, demonstrating the

importance of this ubiquitin ligase in targeting P-TEFb to chromatin. Finally, this mechanism of tran-

scription elongation control appears to be more broadly used as treatment of cells with the CDK9

inhibitor, DRB, similarly resulted in P-TEFb nuclear import and chromatin retention with an increased

association between UBE2O and HEXIM1.

Results

UBE2O is a critical regulator of Tat transcriptional activity
Our previous proteomic interaction study identified several high-confidence host binding partners

for the HIV-1 Tat protein (Jäger et al., 2011b), including well-established and novel interactions.

While the contributions of the P-TEFb-based super elongation complex (SEC) (He et al., 2010;

Lin et al., 2010; Schulze-Gahmen et al., 2014; Sobhian et al., 2010) and 7SK snRNP (D’Orso and

Frankel, 2010; Muniz et al., 2010) to regulating viral transcription has become better defined, the

functions of additional Tat interactors are largely unexplored. Many of these Tat factors are involved

in ubiquitin signaling, including PJA2, a ubiquitin ligase that directly modifies Tat to regulate viral

transcription (Faust et al., 2017). In addition, Tat also interacts with the ubiquitin ligases ZFP91 and

UBE2O. ZFP91 ubiquitinates NF-kB-inducing kinase via a Lys63 linkage to activate a non-canonical

NF-kB pathway (Jin et al., 2010). UBE2O is a hybrid E2-E3 ubiquitin ligase that can ubiquitinate mul-

tiple chromatin-associated proteins within their nuclear localization signal (NLS), resulting in cyto-

plasmic retention (Mashtalir et al., 2014). UBE2O has also recently been shown to induce the

degradation of the mixed-lineage leukemia (MLL) protein, which is commonly fused to members of

the P-TEFb-based super elongation complex in leukemia (Liang et al., 2017).

To explore the activity of ZFP91 and UBE2O in HIV-1 transcription, we performed RNAi-mediated

knockdowns of these ubiquitin ligases coupled to a functional assay for Tat activity. We used a HeLa

cell line harboring a single, full-length HIV-1 provirus deleted for the tat gene (HeLaprovirusDtat)
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(Faust et al., 2017), which allowed us to precisely control transcriptional activation by transfection

of a Tat plasmid and to monitor Tat activity in a relatively natural proviral context by the production

of intracellular HIV-1 capsid protein (p24). A small quantity of Tat plasmid (0.5 ng) was transfected

within the linear range of the activation assay approximating physiological Tat concentrations, and

loss-of-function effects for the ligases were assessed (Figure 1A).

Multiple independent siRNAs targeting ZFP91 or UBE2O inhibited Tat activity by 2-fold or

greater, an effect similar to knockdown of the P-TEFb subunits CCNT1 and CDK9 (Figure 1A, Fig-

ure 1—figure supplement 1A, Figure 1—source data 1). Importantly, both ligases are expressed in

CD4+ T cells (Figure 1—figure supplement 1B), underscoring that they can regulate Tat activity

during normal viral infection of target immune cells. To determine whether ZFP91 and UBE2O spe-

cifically regulate transcription elongation, we measured promoter-proximal and -distal HIV-1 RNA

production in the HeLaprovirusDtat cells and found that UBE2O knockdown significantly reduced the

Tat-dependent production of distal, but not proximal, transcripts (Figure 1B, Figure 1—source

data 2). These data strongly implicate UBE2O as an essential regulator of HIV-1 transcription

elongation.

UBE2O interacts with the HEXIM1 protein of the 7SK snRNP
Since the 7SK snRNP complex is critical in regulating pause release at the HIV-1 promoter

(D’Orso and Frankel, 2010), we affinity purified the HEXIM1 protein of the snRNP for mass spec-

trometry to better define the machinery involved in pause release and potentially make connections

to the ubiquitin ligases. As expected, we observed interactions with P-TEFb and other components

of the snRNP complex (Figure 1C). Intriguingly, UBE2O was identified as a HEXIM1 interactor from

multiple purifications (Figure 1C, Supplementary file 1). The HEXIM1-UBE2O interaction was also

identified in a recent effort to map the human interactome by systematic AP-MS of 2594 bait pro-

teins (Huttlin et al., 2015), further validating the interaction. As additional support for the interac-

tion of HEXIM1 and UBE2O, both proteins were identified in peak overlapping fractions from gel

filtration of whole cell extracts (Figure 1D). As both HEXIM1 and Tat can bind UBE2O, we also

examined how Tat expression might alter the HEXIM1-UBE2O interaction. Tat dramatically increased

the association between endogenous HEXIM1 and transfected UBE2O (Figure 1E), supporting the

ability of a viral transcription factor to induce the binding between a ubiquitin ligase and a major

transcriptional regulatory protein. We next performed a tandem affinity purification of Tat-STREP

and UBE2O-FLAG followed by western blotting of endogenous HEXIM1, which demonstrated that

these three proteins can form a multi-protein complex (Figure 1F). Given these strong connections

to HEXIM1 and because the 7SK snRNP plays a key role in activating viral transcription elongation,

we decided to further investigate the activity of UBE2O in regulating Tat function.

Tat uses a novel interaction surface to bind the 7SK snRNP and UBE2O
Tat forms an extensive interaction surface on the CCNT1 subunit of P-TEFb (Tahirov et al., 2010).

Given that Tat also potently recruits UBE2O to HEXIM1 (Figure 1E and F), we reasoned that Tat

likely uses an additional binding surface to promote this interaction. To explore whether a novel

functional interface might exist, we used a data set in which all Tat alanine point mutants were

tested for activity in a transcriptional reporter system (D’Orso et al., 2012; Fernandes et al., 2016)

and mapped the activities of these mutants onto the Tat–P-TEFb crystal structure (Tahirov et al.,

2010). Several known regions in Tat were clearly defined where mutants displayed low transcrip-

tional activity, including the cysteine-rich zinc-binding clusters (Figure 2A) and a stretch of hydro-

phobic residues (Phe38, Leu43, Gly44, and Ile45) buried in CCNT1 (Figure 2B). In support of a

distinct interaction surface, a cluster of highly conserved, surface-exposed residues (Glu2, Tyr26,

Lys28, and Phe32) displayed severe loss-of-function phenotypes and faced away from CCNT1 and

CDK9 (Figure 2C).

To directly test if these residues constituted a new binding surface, we purified wild type and

mutant Tat proteins from transiently transfected HEK 293 T cells and examined the interactions with

endogenous proteins. Indeed, Tat K28A poorly bound to UBE2O and the 7SK snRNP proteins

MEPCE and LARP7 (Figure 2D, Figure 2—figure supplement 1 for inputs). Of note, the interactions

of these snRNP proteins with Tat is entirely RNA-dependent (Figure 2D, RNAse A treatment), impli-

cating Lys28 in 7SK snRNA binding in addition to its role in modulating the TAR RNA interaction
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Figure 1. UBE2O is a critical regulator of Tat-dependent transcription and binds HEXIM1 of the 7SK snRNP. (A) UBE2O and ZFP91 RNAi knockdown

inhibit Tat-dependent transcription. Normalized, relative Tat activities ([p24host RNAi/FFLhost RNAi] / [p24N.S. RNAi/FFLN.S. RNAi]) for CCNT1, CDK9, UBE2O,

and ZFP91 are shown, and data are represented as the mean ± SEM of at least three biological replicates (defined as independent transfections. Cells

were transfected independently on at least 2 different days) for independent siRNA transfections in the HeLaprovirusDtat cell line. (B) HIV RNA elongation

Figure 1 continued on next page

Faust et al. eLife 2018;7:e31879. DOI: https://doi.org/10.7554/eLife.31879 4 of 30

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.31879


(D’Orso and Frankel, 2009). Strikingly, mutation of Phe32 (F32A), which is adjacent to Lys28 in the

structure, significantly increased binding to UBE2O by greater than 4-fold. This might indicate that

Phe32 is involved in a handoff from UBE2O to another protein, such that its mutation locks Tat in

the UBE2O-bound state and completely inhibits transcriptional activity. Importantly, the P-TEFb

interaction was unaffected by Lys28 or Phe32 mutations (Figure 2D), unlike the mutation of Phe38

(F38A) and Leu43 (L43A) residues that are buried in CCNT1 and disrupt P-TEFb binding, corroborat-

ing that Lys28 and Phe32 comprise a novel docking surface.

The SEC scaffold protein, AFF1, had an identical binding profile to CDK9 and CCNT1, supporting

recent work that AFF1 is a ubiquitous P-TEFb binding partner (Lu et al., 2014). Transcriptional activ-

ity (D’Orso et al., 2012; Fernandes et al., 2016) and binding data both support a model in which

Tat uses a buried hydrophobic patch (Phe38, Leu43) to anchor onto P-TEFb while using two spatially

adjacent residues (Lys28, Phe32) to stabilize interactions with the 7SK snRNP and UBE2O

(Figure 2E). Further, residues Lys28 and Phe32 were highly selected for during viral replication as

assessed by deep mutational scanning, supporting a critical role of these amino acids

(Fernandes et al., 2016). Thus, Tat encodes an essential hijacking function directed at a ubiquitin

ligase and the 7SK snRNP.

Tat hijacks UBE2O to mono-ubiquitinate HEXIM1 in a non-degradative
manner
Given that Tat induces the association of UBE2O and HEXIM1 (Figure 1E) and encodes a novel inter-

action surface for UBE2O and the 7SK snRNP (Figure 2D), we wanted to determine whether UBE2O

ubiquitinates HEXIM1 and potentially other snRNP proteins, and how Tat might regulate this pro-

cess. To test this, we first pulled down 7SK snRNP complex subunits and, upon blotting for trans-

fected HA-tagged ubiquitin, found that UBE2O co-expression dramatically increased HEXIM1 and

MEPCE ubiquitination but not LARP7, CCNT1, or CDK9 (Figure 3A). Correlating with the ubiquitina-

tion results, AP-MS experiments with the LARP7 and MEPCE subunits identified MEPCE, but not

LARP7, as interacting with UBE2O (Figure 3—figure supplement 1A,B). As HEXIM1 is the key regu-

latory kinase inhibitor of the P-TEFb kinase (Michels et al., 2004) and is known to be ubiquitinated

(Lau et al., 2009), we further characterized the HEXIM1 modification.

We first investigated the nature of the UBE2O-dependent ubiquitin linkage on HEXIM1, as recent

work has shown that UBE2O monoubiquitinates numerous proteins (Mashtalir et al., 2014;

Nguyen et al., 2017; Yanagitani et al., 2017; Zhang et al., 2013a). Similar to previous studies,

expression of a lysine-free ubiquitin mutant (Ub DK), which blocks the ability to form polyubiquitin

chains, did not affect UBE2O-dependent HEXIM1 ubiquitination in vivo (Figure 3B), demonstrating

that HEXIM1 is monoubiquitinated at multiple sites. Further, a catalytically inactive mutant of UBE2O

Figure 1 continued

assay with ZFP91 (si2), UBE2O (si1), or CDK9 RNAi. Knockdowns were performed in the same cells as (A), which contain GFP cloned into the Nef locus.

qPCR was used to monitor the Tat-dependent production of proximal (blue) and distal (red) RNA transcripts, with the relative positions of the primer

sets shown above. Data are presented as the mean ± SEM of relative Tat activity of at least three biological replicates (same definition as above). (C)

AP-MS results using HEXIM1-FLAG as the bait protein. Peptide counts are shown for selected prey proteins from triplicate biological purifications (as

defined above). See also Supplementary file 1 for a complete list of interacting proteins. (D) Gel filtration of HEK 293T whole cell lysate. Fractions were

collected after the void volume and Western blotted for the indicated proteins. ZFP91 is shown as a specificity control. (E) STREP purification of

transfected proteins ±Tat co-transfection. The endogenous HEXIM1 interaction was monitored by western blot using an anti-HEXIM1 antibody. (F)

Tandem affinity purification of Tat-STREP and UBE2O-FLAG from transfected cells. GFP-S-F (which is STREP and FLAG tagged) was used as a negative

control in the experiment. The endogenous HEXIM1 interaction was detected by antibody. Different exposure times from the same blot for the HEXIM1

input and elutions are shown for ease of comparison. Schematic illustrates the Tat-HEXIM1-UBE2O complex.

DOI: https://doi.org/10.7554/eLife.31879.002

The following source data and figure supplement are available for figure 1:

Source data 1. Source data for luciferase-normalized p24 values of siRNA knockdown coupled to Tat activity of Figure 1A.

DOI: https://doi.org/10.7554/eLife.31879.004

Source data 2. Source data for proximal and distal Tat-dependent RNA species of Figure 1B.

DOI: https://doi.org/10.7554/eLife.31879.005

Figure supplement 1. RNAi-mediated protein knockdown and endogenous expression.

DOI: https://doi.org/10.7554/eLife.31879.003
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Figure 2. Tat uses a novel interaction surface to interact with the 7SK snRNP and UBE2O. (A) Tat transcriptional activity data collected from our

systematic set of alanine point mutants (D’Orso et al., 2012; Fernandes et al., 2016) was mapped onto the crystal structure of the Tat-P-TEFb

complex (PDB i.d. 3MI9). The most severe loss-of-function (L.O.F.) mutations are shaded in deep purple while those with no effect on activity are

shaded in white. The cysteine-rich zinc-binding clusters (A) and a hydrophobic stretch buried in CCNT1 (B) are critically important for Tat function. (C) A

Figure 2 continued on next page

Faust et al. eLife 2018;7:e31879. DOI: https://doi.org/10.7554/eLife.31879 6 of 30

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.31879


in the ubiquitin-conjugating domain (C1040S or CD) did not ubiquitinate HEXIM1 (Figure 3—figure

supplement 2A), supporting specific modification by UBE2O. We next reconstituted ubiquitination

of HEXIM1 by UBE2O in vitro and found that, like our observations in vivo, wild-type UBE2O but not

the CD mutant robustly modified HEXIM1 (Figure 3C, Figure 3—figure supplement 2B). As also

observed in vivo, multiple high-molecular-weight HEXIM1 species were generated using the Ub DK

variant. Collectively, these results reveal that HEXIM1 is a UBE2O substrate that is monoubiquiti-

nated at multiple sites.

Although targeting proteins for proteasomal destruction is a well-known function of ubiquitina-

tion, it is increasingly appreciated that this modification, especially mono-ubiquitination, also serves

important signaling functions. Indeed, UBE2O-dependent ubiquitination of HEXIM1 was unaffected

by treatment with the proteasome inhibitor MG132 (Figure 3D, Figure 3—figure supplement 2C

showing MG132 control, Figure 3—figure supplement 2D showing extent of UBE2O overexpres-

sion), supporting a non-degradative mechanism.

Strikingly, Tat expression increased HEXIM1 non-degradative mono-ubiquitination (Figure 3D),

supporting a model of Tat-mediated HEXIM1 ubiquitination by UBE2O. Tat expression also

increased the ubiquitination of endogenous HEXIM1, but not CCNT1 (Figure 3—figure supplement

3A), supporting the specificity of UBE2O-dependent ubiquitination as observed in transfected cells

(Figure 3A). Furthermore, endogenous HEXIM1 that is associated with Tat, likely as part of the Tat-

UBE2O-HEXIM1 complex (Figure 1F), is in a modified state (Figure 3—figure supplement 3B),

including a species with the same molecular weight as mono-ubiquitinated HEXIM1 (refer to

Figure 3A). Importantly, Tat-stimulated non-degradative ubiquitination of endogenous HEXIM1

(Figure 3E) was completely blocked by siRNA-mediated knockdown of UBE2O (Figure 3E), signify-

ing that Tat hijacks the enzyme for HEXIM1 mono-ubiquitination. In addition, UBE2O knockdown

prevented endogenous, Tat-independent HEXIM1 ubiquitination, but did not increase HEXIM1 pro-

tein levels (Figure 3E), further confirming that HEXIM1 is an endogenous substrate for non-degrada-

tive UBE2O mono-ubiquitination, and is not an artifact of UBE2O overexpression. Importantly,

HEXIM1 ubiquitination by UBE2O is a function that is exploited and induced by Tat (Figure 3E) to

modulate viral transcription.

UBE2O ubiquitinates the NLS of HEXIM1
HEXIM1 ubiquitination resembles the modification of a recently described class of UBE2O substrates

that are transcription factors with acceptor lysines contained within a bipartite NLS surrounding a

patch of aliphatic hydrophobic amino acids (Mashtalir et al., 2014), termed the ‘VLI patch’, which is

also found in UBE2O itself and results in auto-ubiquitination. This bipartite NLS motif is consistent

with UBE2O’s preference for juxtaposed hydrophobic and basic patches (Yanagitani et al., 2017).

Interestingly, while not identical, HEXIM1 has a similar motif (Figure 4A), with an NLS composed of

12 and 3 basic amino acid segments surrounding a stretch of mostly aromatic hydrophobic (W, Y)

amino acids. To identify the sites of ubiquitination in HEXIM1 and to determine if the NLS is indeed

a target, we first generated a fully lysine-free HEXIM1 mutant (DK) in which all lysines were mutated

to arginine and observed no modification (Figure 4B, last lane), demonstrating that ubiquitination is

lysine-dependent. When all lysines within the N- and C-termini were mutated to arginines

(CTDK + NTDK), leaving lysines intact only within the NLS, HEXIM1 was still ubiquitinated

Figure 2 continued

surface-exposed patch of severe loss-of-function mutants (Glu2, Tyr26, Lys28, and Phe32) does not contact CCNT1 or CDK9. (D) IP of transiently

transfected wild type or mutant STREP-tagged Tat proteins. GFP-S was used as a negative control. Western blots were performed on STREP elutions

using antibodies to the endogenous proteins indicated. Important residues are color coded as indicated. L.O.F. cluster is the four surface-exposed

mutants from (C). See also Figure 2—figure supplement 1 for inputs. (E) Model of Tat interaction surfaces. Tat uses a hydrophobic patch including

Leu43 and Phe38 buried at the CCNT1 interface, which also results in the binding of CDK9 and AFF1. Mutation of Lys28 reduces the interactions with

both the 7SK snRNP proteins and UBE2O, whereas mutation of Phe32 dramatically increases the UBE2O interaction, associating the ligase with this

residue.

DOI: https://doi.org/10.7554/eLife.31879.006

The following figure supplement is available for figure 2:

Figure supplement 1. Protein input blots for Tat mutant IPs.

DOI: https://doi.org/10.7554/eLife.31879.007
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Figure 3. HIV-1 Tat hijacks UBE2O for the non-degradative monoubiquitination of HEXIM1. (A) In vivo ubiquitination of transfected, STREP-tagged

P-TEFb and 7SK snRNP proteins co-transfected with HA-ubiquitin ±co transfection of UBE2O-F or ZFP91-F (-F designates FLAG tagged protein). ZFP91

is used as a specificity control. Denaturing lysis and IPs were performed to detect ubiquitination by HA western blot. Ubiquitinated species are

indicated. Schematics illustrate that UBE2O increases ubiquitination of the 7SK snRNP proteins MEPCE and HEXIM1. (B) In vivo ubiquitination of

Figure 3 continued on next page
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(Figure 4B), consistent with acceptor residues being located in the NLS. Several additional mutants

suggest that lysines within the C-terminus can also be ubiquitinated (see Figure 4B legend), but we

focused on the NLS modifications because of the previously defined connections to UBE2O

(Mashtalir et al., 2014).

To more precisely map the acceptor sites, we used mass spectrometry (MS) and identified multi-

ple ubiquitinated lysines in the NLS and C-terminus (Figure 4C, Supplementary file 2), supporting

our initial mapping (Figure 4B). Since the HEXIM1 NLS is lysine and arginine-rich, not all peptides

covering this region are detectable by MS after trypsin or Arg-C digestion. Therefore, as an alterna-

tive approach to map acceptor sites in the NLS, we restored individual lysines within the lysine-free

(DK) background and found that four (Lys150, Lys151, Lys152, and Lys159) recovered monoubiquiti-

nation, with Lys151 and Lys159 being the most robust (Figure 4D). These four lysines are located

within the first segment of the bipartite NLS, suggesting that they are the most accessible for

UBE2O ubiquitination.

One intriguing possibility is that HEXIM1 is modified by UBE2O in the context of the 7SK snRNP,

especially given the observation that Tat also stimulates HEXIM1 modification (Figure 3D,E) and is

known to be in complex with the 7SK snRNP (D’Orso and Frankel, 2010; Jäger et al., 2011b;

Muniz et al., 2010; Sobhian et al., 2010). Modification within the 7SK snRNP is also suggested by

UBE2O binding and ubiquitination of MEPCE (Figure 3A, Figure 3—figure supplement 1A). In sup-

port of this model, a HEXIM1 mutant deficient for 7SK RNA binding (150–156 Ala) (Michels et al.,

2004; Yik et al., 2004) displayed a complete loss of UBE2O-dependent ubiquitination, in striking

contrast to another HEXIM1 mutant deficient for P-TEFb binding that was still fully ubiquitinated

(202PYNT205 -> 202PDND205) (Michels et al., 2004) (Figure 4E). Because the 150–156 Ala mutant

also lacks some of the lysines that become ubiquitinated (Figure 4D), we generated a HEXIM1 150–

156 Arg mutant which similarly lacks the NLS acceptor lysines but retains RNA binding (Lau et al.,

2009) and found that it was ubiquitinated equally to wild-type HEXIM1 (Figure 4E). Thus, RNA bind-

ing by HEXIM1 appears to be a prerequisite for UBE2O recognition and ubiquitination. 7SK RNA-

binding releases HEXIM1 from an auto-inhibited state (Barboric et al., 2005), which likely estab-

lishes the proper conformation of HEXIM1 for UBE2O ubiquitination.

UBE2O influences HEXIM1 subcellular localization
Given that UBE2O ubiquitinates the NLS of HEXIM1, we next asked whether this modification

resulted in a redistribution of HEXIM1 subcellular localization. Expression of UBE2O, itself a cyto-

plasmic ubiquitin ligase, altered the localization of endogenous HEXIM1 with an increase of HEXIM1

in the cytoplasm and a simultaneous decrease in the nuclear pellet fraction containing chromatin

(Figure 5A). Consistent with the cytoplasmic accumulation of HEXIM1, the majority of the UBE2O-

Figure 3 continued

HEXIM1-S in HEK 293 T cells co-transfected with UBE2O-F and either wild type or lysine-free (DK) HA-ubiquitin. Monoubiquitinated HEXIM1 and

additional ubiquitinated species are indicated. (C) In vitro ubiquitination of HEXIM1 by UBE2O. HEXIM1-S purified from HEK 293T cells was incubated

with recombinant E1 and ubiquitin, UBE2O-F purified from HEK 293T cells, and ATP. Control reactions lacked individual components as indicated.

Additionally, one reaction was incubated with UBE2O CD (catalytically dead) purified from HEK 293T cells in place of wild type UBE2O (lane 6) or

recombinant ubiquitin DK in place of wild type ubiquitin (lane 7). See also Figure 3—figure supplement 2B. (D) In vivo ubiquitination of HEXIM1-S co-

transfected with UBE2O-F or Tat-F and subsequently treated with DMSO control or MG132 to block proteasomal degradation. See also Figure 3—

figure supplement 2C. (E) HEK 293 T cells were transfected with non-silencing or UBE2O-directed siRNA (si1). Knockdown cells were then transfected

with HIS-Ubiquitin L73P followed by a denaturing nickel purification. The L73P ubiquitin mutant was used to enrich for ubiquitinated species, which

were detected by western blot using specific antibodies (anti-CDK9, anti-HEXIM1) on the nickel-purified elution and are indicated. Schematic illustrates

that Tat enhances HEXIM1 ubiquitination through UBE2O.

DOI: https://doi.org/10.7554/eLife.31879.008

The following figure supplements are available for figure 3:

Figure supplement 1. FLAG-tagged MEPCE and LARP7 AP-MS.

DOI: https://doi.org/10.7554/eLife.31879.009

Figure supplement 2. A catalytically inactive UBE2O does not induce HEXIM1 ubiquitination.

DOI: https://doi.org/10.7554/eLife.31879.010

Figure supplement 3. Tat induces the ubiquitination of endogenous HEXIM1 and MEPCE.

DOI: https://doi.org/10.7554/eLife.31879.011
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Figure 4. UBE2O ubiquitinates the NLS of HEXIM1. (A) Domain organization of HEXIM1. The positions of the 23 lysines in HEXIM1 are indicated by

yellow bars in the C-terminal (CT) and N-terminal (NT) regions and the NLS. (Below) Alignment of the NLS sequences from HEXIM1, UBE2O, and a

known UBE2O substrate, BAP1 (Mashtalir et al., 2014). UBE2O and several of its target proteins contain a consensus bipartite NLS architecture that

shares similarities with the HEXIM1 NLS. Basic residues are labeled in blue while hydrophobic residues are labeled in pink. (B) In vivo ubiquitination of

HEXIM1 lysine mutants. Combinations of STREP-tagged lysine-to-arginine mutants were generated in the HEXIM1 N-terminal region (NTDK), NLS
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dependent ubiquitinated species of HEXIM1 were also cytoplasmic (Figure 5B, lane 2), suggesting

that HEXIM1 may be ubiquitinated in this fraction to regulate its localization and inhibit chromatin

recruitment. It is also feasible that a nuclear fraction of UBE2O ubiquitinates nuclear HEXIM1, lead-

ing to its redistribution to the cytoplasm. This is particularly intriguing given UBE2O’s known nucleo-

cytoplasmic shuttling activity and interactions with nuclear import/export machinery

(Mashtalir et al., 2014). Interestingly, the lysine-free HEXIM1DK mutant, which is not ubiquitinated

by UBE2O (Figure 4B), accumulated greater than threefold more in the chromatin-containing

nuclear pellet compared to wild-type HEXIM1 when expressed in HEK 293 T cells (Figure 5C), fur-

ther supporting a role of HEXIM1 lysine modification in regulating its localization. In this way,

UBE2O likely acts to potentiate transcription by ubiquitinating HEXIM1 and promoting its sequestra-

tion in the cytoplasm, a mechanism co-opted by Tat during viral infection.

HEXIM1 ubiquitination regulates interactions with the 7SK snRNP and
is required for Tat-dependent P-TEFb release from the snRNP
In addition to ubiquitinating the HEXIM1 NLS, UBE2O appeared to first require RNA binding by

HEXIM1 for ubiquitination (Figure 4E). Given this requirement, we explored whether UBE2O ubiqui-

tination might alter protein-protein interactions within a HEXIM1 RNP complex (Ray et al., 2014;

Werner et al., 2015), in particular the 7SK snRNP or the recently described HEXIM1-NEAT1 RNP

(Morchikh et al., 2017). Interestingly, the knockdown of UBE2O resulted in an increased association

of CCNT1, CDK9, and LARP7 with endogenously purified HEXIM1 (Figure 6A), with no obvious

effect on the HEXIM1 interactions with proteins of the NEAT1 RNP. This result supports the idea

that UBE2O regulates HEXIM1 activity as part of the 7SK snRNP. Further, while Tat expression

released HEXIM1 from the 7SK snRNP, with no effect on NEAT1 RNP interactions (Figure 6A),

knockdown of UBE2O limited the ability of Tat to disrupt HEXIM1-CCNT1 binding. Together, these

results underscore that UBE2O is involved in specifically regulating HEXIM1’s interaction with the

7SK snRNP in cells.

To further explore the role of UBE2O and Tat in altering HEXIM1’s interactions with the 7SK

snRNP, we utilized the transcriptionally inactive Tat F32A variant, which has a mutant interaction

phenotype that is specific to UBE2O (Figure 2D) and would allow us to uncover the role of this

ligase in P-TEFb release from the 7SK snRNP. Unlike wild-type Tat, the F32A mutant was unable to

stimulate HEXIM1 ubiquitination (Figure 6B) despite its increased association with UBE2O

(Figure 2D), further supporting a non-productive binding mode of this Tat mutant to the ligase. Fur-

ther, the F32A mutant was deficient in releasing P-TEFb from endogenous 7SK snRNP-bound

HEXIM1 compared to wild type Tat (Figure 6C), corroborating a role for HEXIM1 ubiquitination in

the P-TEFb eviction step by Tat. To further support the role of HEXIM1 ubiquitination in the release

of P-TEFb, we utilized the HEXIM1 DK mutant, which is not ubiquitinated by UBE2O (Figure 4B).

This lysine-free mutant was refractory to complete P-TEFb release by Tat (Figure 6D) compared to

wild-type HEXIM1. Altogether, the data firmly support that HEXIM1 ubiquitination by UBE2O is a

critical step in the eviction of P-TEFb from the 7SK snRNP by Tat.

Figure 4 continued

(NLSDK), and C-terminal region (CTDK). A complete lysine-free HEXIM1 is designated as DK. UBE2O-F was co-transfected where indicated, and

ubiquitination was detected by anti-HA western after denaturing lysis and IP. Monoubiquitin and multi-monoubiquitin species are indicated. The NTDK

mutant had no effect on ubiquitination, suggesting that there are no acceptor sites in the N-terminal region. However, both the NLSDK and CTDK

mutants displayed decreased ubiquitination, demonstrating the presence of acceptor lysines in these regions. Schematic illustrates that lysines in the

NLS (pink connection between domains) and in the C-terminal region function as acceptor sites. See also Supplementary file 2. (C) Coverage of the

HEXIM1 sequence by MS. Sequences not identified by MS are bolded and underlined. Shaded in red is the HEXIM1 bipartite NLS. Color coding

reflects whether a lysine was identified with a ubiquitin di-glycine tryptic remnant fragment. Shown below is a protein gel of HEXIM1-S purified under

denaturing conditions from HEK 293 T cells with the co-expression of UBE2O-F. Arrows indicate unmodified and monoubiquitinated HEXIM1 species.

(D) In vivo ubiquitination of individual lysine residues in the HEXIM1 NLS re-introduced in the context of the lysine-free (DK) HEXIM1 background.

Ubiquitination of single-lysine HEXIM1 proteins was detected by HA Western blot. (top) All lysines are numbered in the HEXIM1 NLS and those that

restore ubiquitination are indicated. (E) In vivo ubiquitination of wild-type STREP-tagged HEXIM1 or mutants deficient in binding P-TEFb (202PYNT205 ->

202PDND205) or the 7SK snRNA (150–156 Ala). HEXIM1-S was co-transfected with UBE2O-F as indicated.

DOI: https://doi.org/10.7554/eLife.31879.012
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Figure 5. UBE2O influences HEXIM1 subcellular localization. (A) Subcellular localization of endogenous HEXIM1. HEK 293T were transfected ±3 mg

UBE20-F plasmid and fractionated into cytoplasmic (Cyto.), soluble nuclear (Nucl. sol.), and nuclear pellet (Nucl. pel.) fractions. Numbers represent

quantified pixel intensity for HEXIM1 bands relative to un-transfected cells for the same fraction. Tubulin, SP1, and histone H4 were used as markers for

each fraction and show the quality of the separations. HEXIM1 bands were first normalized to the pixel intensity of appropriate fraction controls (i.e.

Figure 5 continued on next page
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Tat releases P-TEFb from cytoplasmic 7SK snRNP complexes for nuclear
import and chromatin enrichment
Given the observation of HEXIM1 in the cytoplasm (Figure 5A,B) and the fact that UBE2O-depen-

dent ubiquitination regulates HEXIM1’s interactions with the P-TEFb–7SK snRNP complex (Figure 6),

we wished to determine if the full 7SK snRNP was contained in the cytoplasmic compartment.

Indeed, a native IP of endogenous HEXIM1 from cytoplasmic and soluble nuclear fractions revealed

robust RNA-dependent interactions between HEXIM1 and proteins of the P-TEFb-7SK snRNP com-

plex in the cytoplasm (Figure 7A), agreeing with a previous finding that a significant fraction of a

‘large-form’ of P-TEFb is in the cytoplasm (Ramanathan et al., 1999). It should be noted that frac-

tions were generated under salt concentrations that do not disassemble the 7SK snRNP (He et al.,

2008). Immunofluorescence confirmed that a significant fraction of the CCNT1 subunit of P-TEFb

was localized to the cytoplasm (Figure 7B), consistent with a previous observation that CCNT1 and

CDK9 are detected in the cytoplasm in unstimulated resting memory CD4+ T cells, the target

immune cells of HIV-1 infection (Mbonye et al., 2013). Further, the interaction of HEXIM1 with 7SK

snRNA was also detected in the cytoplasm (Figure 7C, Figure 7—source data 1). Altogether, the

results establish that, in addition to the known nuclear pool of 7SK snRNP, a cytoplasmic reservoir of

the full 7SK complex exists.

We next examined whether Tat utilizes this cytoplasmic pool of inhibited P-TEFb. Since newly

translated Tat is cytoplasmic, especially during acute infection (Ranki et al., 1994; Kim et al., 2010),

and shuttles between the nucleus and cytoplasm (Stauber and Pavlakis, 1998), we reasoned Tat

might alter the localization of P-TEFb. Indeed, Tat expressed in HeLa cells, which we observed in

cytoplasmic and nuclear fractions (Figure 7D, STREP western), decreased the amount of CCNT1 and

CDK9 in the cytoplasm four-fold with a concomitant increase in the nuclear, chromatin-containing

pellet (Figure 7D). Notably, localization of HEXIM1, of which nearly 30% is in complex with P-TEFb

in HeLa cells (Barboric et al., 2007; Byers et al., 2005), was unaltered, supporting that free, and

not snRNP-bound, P-TEFb enters the nucleus. P-TEFb nuclear import can be observed at the lowest

Tat expression levels tested, arguing against an overexpression phenotype.

With the Tat-dependent increase of P-TEFb in the chromatin fraction (Figure 7D) and the involve-

ment of UBE2O in Tat-dependent P-TEFb release (Figure 6), we examined whether UBE2O was

involved in P-TEFb chromatin recruitment, specifically at the HIV-1 promoter. As expected, Tat

expression increased the enrichment of CDK9 at the viral promoter (Figure 7E, Figure 7—source

data 2). Importantly, knockdown of UBE2O greatly inhibited Tat-dependent CDK9 recruitment to

the integrated viral promoter, supporting a critical role of this ligase in regulating viral transcription.

UBE2O knockdown also prevented CDK9 enrichment in the absence of Tat, supporting an endoge-

nous role of UBE2O in regulating HEXIM1 ubiquitination and maintaining appropriate P-TEFb kinase

levels on the HIV-1 promoter.

The transcriptional inhibitor DRB re-localizes P-TEFb from the
cytoplasm to the nucleus
Viruses often hijack existing host mechanisms; therefore, to investigate whether the nuclear import

of P-TEFb freed from cytoplasmic 7SK snRNP might be a more general pathway to regulate tran-

scriptional elongation, we used the CDK7/9 inhibitor 5,6-Dichloro-1-beta-D-ribofuranosylbenzimida-

zole (DRB), which blocks transcription elongation by decreasing RNAP II serine two phosphorylation

(S2-P) (Koga et al., 2015). RNAP II S2-P levels dramatically decreased when HeLa cells were treated

with DRB (Figure 8A). Remarkably, similar to Tat, DRB treatment induced extensive re-localization

Figure 5 continued

Cyto. normalized to tubulin, Nucl. sol. normalized to SP1, Nucl. pel. normalized to histone H4) prior to comparison between treatments. Two exposures

of HEXIM1 from the same blot are shown. (B) Subcellular fractionation of HEK 293 T cells transfected with HIS-Ubiquitin. UBE2O-F was co-transfected as

indicated and denaturing nickel pull-downs were used to detect HEXIM1 ubiquitination by anti-HEXIM1 western in the various subcellular fractions.

Ubiquitinated species are indicated. (C) Subcellular localization of 0.25 mg of transfected HEXIM1-S or HEXIM1 DK-S plasmid in HEK 293 T cells.

Numbers represent quantified pixel intensity for HEXIM1 (STREP) bands relative to wild-type expression for the same fraction. Bands were normalized

as in (A).
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Figure 6. HEXIM1 ubiquitination is required for Tat-dependent release of P-TEFb from the inhibitory 7SK snRNP complex. (A) Endogenous IP of

HEXIM1 in non-silencing (n.s.) and UBE2O RNAi cells, ±Tat expression. Rabbit IgG was used as a negative IP control. Western blots were performed

with the specific endogenous antibodies indicated to detect HEXIM1 protein-protein interactions. (B) In vivo ubiquitination assay of HEXIM-S. Wild type

Tat or the F32A mutant was co-transfected as indicated. HEXIM1 ubiquitination was monitored by anti-HA western. The monoubiquitinated HEXIM1
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of P-TEFb, but not HEXIM1, from the cytoplasm to the nuclear pellet, the same fraction containing

reduced RNAP II S2-P. Supporting a role of UBE2O in this import pathway, DRB treatment also

increased the association between UBE2O and endogenous HEXIM1 (Figure 8B). Given that DRB is

a transcriptional inhibitor, one possibility is that P-TEFb nuclear import is part of a transcriptional

stress response that senses and maintains proper polymerase phosphorylation in the nucleus. These

results substantiate a model whereby re-localization of free P-TEFb to the nucleus is an important

regulatory mechanism to sustain proper RNAP II S2-P levels.

Discussion
Since HIV-1 has a small 9-kilobase genome encoding only 18 proteins, it has evolved ways to eco-

nomically utilize its limited genetic information and rely heavily on host protein complexes to exe-

cute all stages of its life cycle. Here we show that the viral transcription factor Tat hijacks a new host

partner, UBE2O, which ubiquitinates transcription machinery to enhance viral transcription. UBE2O

binds Tat via an interaction surface distinct from the well-known surface used to bind P-TEFb

(Tahirov et al., 2010). We discovered that a single lysine (Lys28) and adjacent phenylalanine (Phe32)

in Tat are largely responsible for the interaction with UBE2O. The requirement of just a few critical

residues for interaction helps further explain how Tat can rewire large host complexes for its function

using relatively little genetic information. Previous structural work has implicated Lys28 and Phe32 in

directly binding AFF4 of the SEC (Schulze-Gahmen et al., 2014) and thus may be an interaction ‘hot

spot’. Interestingly, while AFF4 is localized exclusively to the nucleus (Figure 7D), Tat recruits

UBE2O to the 7SK snRNP in the cytoplasm and thus the ‘hot spot’ can be used to form complexes

with different host partners in distinct cellular compartments.

A classic example of transcriptional regulation being coupled to signaling events in the cytoplasm

is illustrated by the NF-kB pathway, where the application of a stimulus (e.g. TNFa) leads to the

cytoplasmic degradation of inhibitor of kB (IkB) and subsequent nuclear import of NF-kB to activate

gene expression (Napetschnig and Wu, 2013). By analogy, we find a significant pool of the inhibi-

tory 7SK snRNP-P-TEFb complex in the cytoplasm, presumably reflecting the ‘large’ P-TEFb com-

plexes previously described (Ramanathan et al., 1999), that serves as an inactive reservoir of

P-TEFb. Surprisingly, Tat expression resulted in a significant redistribution of the P-TEFb subunits

CCNT1 and CDK9, but not HEXIM1, from the cytoplasm to the histone-containing nuclear fraction,

confirming that Tat can utilize this pool of inhibited P-TEFb. High FRET signal between Tat and

CCNT1 in the cytoplasm (Marcello et al., 2001) and an intrinsic nucleocytoplasmic shuttling activity

of CDK9 (Napolitano et al., 2002) support this hypothesis. Similar to NF-kB signaling, the P-TEFb

nuclear import pathway also employs ubiquitination in that UBE2O-dependent modification of

HEXIM1 is important for initial P-TEFb release from the 7SK snRNP (Figure 6). Intriguingly, UBE2O

inhibits NF-kB activation by preventing the polyubiquitination of TRAF6 (Zhang et al., 2013b), sug-

gesting that UBE2O is potentially intercalated in a signaling pathway that regulates stimulus-depen-

dent NF-kB and P-TEFb nuclear import. An exciting future direction is to detail the additional

cellular machinery that controls this multi-compartment signaling pathway.

We also demonstrated that another host protein, ZFP91, is important for Tat-dependent tran-

scription (Figure 1A). ZFP91 is a classical C2H2 zinc finger (ZnF) protein, and while ZnF domains

generally function as DNA-binding motifs, a previous report demonstrated that one ZFP91 ZnF

domain can function as an atypical E3 ubiquitin ligase (Jin et al., 2010). We were unable to identify

any substrate proteins for ZFP91 ligase activity in the Tat-P-TEFb transcriptional network. It will be

interesting to determine whether ZFP91 mediates Tat co-activation through ubiquitination, and, if

so, to identify the substrates of this activity. The previously identified target of ZFP91 ubiquitination

was NF-kB-inducing kinase (NIK) (Jin et al., 2010), which is involved in activating the noncanonical

NF-kB pathway. Therefore, in addition to the NF-kB binding sites in the HIV-1 promoter, Tat binds

Figure 6 continued

species is indicated. (C) Endogenous IP of HEXIM1. Prior to lysis, cells were transfected with vector, wild type Tat, or Tat F32A. HEXIM1 interactions

were detected by western blot with the indicated antibodies. (D) IP of HEXIM1-S wild type or DK mutant co-transfected with increasing Tat plasmid.
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Figure 7. Tat utilizes UBE2O for the chromatin recruitment of P-TEFb released from a cytoplasmic pool of 7SK snRNP. (A) Endogenous HEXIM1 IP

using cytoplasmic and soluble nuclear fractions. One sample from each fraction was treated with RNAse A prior to the IP to evaluate RNA-dependence

of interactions. (B) Immunofluorescence analysis of endogenous CCNT1 in HeLaprovirusDtat cells, demonstrating nuclear and cytoplasmic staining. Nuclei

were stained with DAPI. (C) RNA-IP assay of the 7SK snRNA. An endogenous HEXIM1 IP was performed using cytoplasmic and soluble nuclear
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two NF-kB regulatory proteins (ZFP91 and UBE2O), demonstrating that HIV-1 has heavily co-opted

this host transcription pathway to control its own gene expression.

Many diverse stimuli are known to release P-TEFb from the 7SK snRNP (Amente et al., 2009;

Bartholomeeusen et al., 2012; Biglione et al., 2007; Contreras et al., 2007; Nguyen et al., 2001),

so nuclear import of the free kinase as described here is likely a general mechanism to control

Figure 7 continued

fractions. RNA was then purified from the IPs and 7SK snRNA was detected by RT-qPCR. Fold enrichments were calculated as relative amounts of 7SK

snRNA [HEXIM1 IP/rabbit IgG IP], with the average fold enrichments shown ± SEM for biological triplicates (purifications performed on different days

from independently seeded cells). (D) HeLa cells were transfected with increasing amounts of Tat-S plasmid (0, 0.5, or 5 mg) followed by subcellular

fractionation, and western blots of endogenous proteins were performed using the indicated antibodies. Fraction markers are shown to demonstrate

the quality of the fractions. (E) Chromatin immunoprecipitation (ChIP) of CDK9 at the HIV-1 promoter in the HeLaprovirusDtat cell line, ±UBE2O RNAi, ±Tat

expression. Values represent mean % input (IP/input) minus a non-specific IgG control from biological duplicate experiments (defined as independent

transfections on different days). Error bars represent standard error. Western blots below demonstrate efficient UBE2O knockdown and Tat expression

in the cells used for ChIP.

DOI: https://doi.org/10.7554/eLife.31879.015

The following source data is available for figure 7:

Source data 1. Source data for RIP assay of Figure 7C.

DOI: https://doi.org/10.7554/eLife.31879.016

Source data 2. Source data for ChIP experiment in Figure 7E.

DOI: https://doi.org/10.7554/eLife.31879.017
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Figure 9. Model of basal and Tat-activated HIV-1 transcription. (Top) Basal transcription. The inhibited P-TEFb-7SK snRNP complex resides in the

cytoplasm and bound to RNAP II at the viral promoter. Inhibition of P-TEFb kinase activity pauses the RNAP II-7SK snRNP complex at the promoter.

UBE2O, also residing in the nucleus and cytoplasm, ubiquitinates HEXIM1, resulting in the sequestration of HEXIM1 in the cytoplasm and the nuclear

import/retention of P-TEFb. This freed P-TEFb is then able to phosphorylate RNAP II, leading to low-level activation. (Bottom) Activated transcription.
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transcription elongation and not restricted to this viral case. Indeed, treatment of cells with the CDK

inhibitor DRB potently relocalized P-TEFb to the nuclear pellet fraction, phenocopying the Tat effect

(Figure 8A). As many compounds releasing P-TEFb from 7SK snRNP are inhibitors, particularly of

transcription, nuclear import of the freed kinase might be part of a transcriptional stress response

pathway. In this model, a likely signal of transcriptional stress is the phosphorylation state of RNAP

II. Any decrease in RNAP II phosphorylation is then sensed and relayed to the cytoplasm, where

P-TEFb is freed from the inhibitory snRNP. It will be interesting to define which cellular machinery

sense the phosphorylation status of RNAP II, and how this signal is relayed to the cytoplasm to ulti-

mately restore RNAP II phosphorylation.

The hijacking of the UBE2O E3 ligase by Tat results in ubiquitination of the HEXIM1 protein of

the 7SK snRNP and adds a new dimension to viral transcriptional regulation. Monoubiquitination by

UBE2O does not cause protein degradation but rather stimulates two signaling outcomes, adding to

the growing list of functions for ubiquitination (Gatti et al., 2015; Thorslund et al., 2015;

Werner et al., 2015; Yuan et al., 2014). First, ubiquitinated HEXIM1 displays decreased enrichment

in the chromatin fraction and accumulates in the cytoplasm (Figure 5A,C), which is analogous to a

previously reported function of UBE2O ligase activity in regulating the localization of chromatin-

associated proteins by increasing their cytoplasmic retention (Mashtalir et al., 2014). Second,

HEXIM1 ubiquitination is important for the Tat-dependent release of P-TEFb from the 7SK snRNP

and recruitment to the viral promoter for transcription activation. These two signaling outcomes of

UBE2O activity are coupled in that ubiquitination both aids P-TEFb nuclear import and sequesters

HEXIM1 in the cytoplasm, which could sustain P-TEFb kinase activity in the nucleus by limiting re-

association of the free kinase with its inhibitor. Our findings reveal that the coordination of multiple

localization pathways is involved in regulating transcription elongation.

The data presented here lead to an updated model of Tat activation (Figure 9). As shown previ-

ously (D’Orso and Frankel, 2010), the P-TEFb-7SK snRNP complex is recruited to the HIV-1 pro-

moter in its basal state (without Tat), resulting in P-TEFb inhibition and accumulation of paused RNA

polymerase II at the promoter, consequently poising the system for activation. In addition, UBE2O

ubiquitinates nuclear and cytoplasmic HEXIM1, sequestering HEXIM1 in the cytoplasm and releasing

some P-TEFb from the 7SK snRNP for nuclear import and retention. This activity of UBE2O supports

basal, low-level HIV-1 gene expression.

Once Tat is expressed (Figure 9, bottom), it is also recruited to the HIV-1 promoter. The synthesis

of TAR triggers Tat-dependent release of the 7SK snRNP, activating the P-TEFb kinase. Tat also

binds UBE2O, further increasing HEXIM1 ubiquitination, thereby inducing P-TEFb release from the

7SK snRNP and promoting sequestration of HEXIM1 in the cytoplasm. Tat appears to target both

the nuclear and cytoplasmic pools of the 7SK snRNP complex. P-TEFb that is released from the cyto-

plasmic pool enters the nucleus to sustain high-level transcriptional activation in Tat-expressing cells.

The ability of Tat to hijack multiple reservoirs of P-TEFb helps explain its potent transcriptional activ-

ity. At the moment, it is unclear how Tat times the usage of the distinct fractions of P-TEFb–7SK

snRNP. However, work presented here demonstrates that as Tat expression levels increase, more of

the cytoplasmic P-TEFb reservoir is utilized, as evidenced by the dose response of Tat protein levels

and the increase in P-TEFb nuclear import (Figure 7D). Given that DRB, a compound that induces

stress and thus 7SK snRNP disassembly, also increases P-TEFb nuclear import and retention, it may

be likely that the nuclear import of free P-TEFb kinase is a more general regulatory mechanism that

is not restricted to HIV-1 transcription.

Figure 9 continued

Once Tat is expressed, it can assemble with the inhibited P-TEFb complex at the HIV-1 promoter. The synthesis of TAR RNA results in the displacement

of the inhibitory snRNP to activate the kinase activity of CDK9 (D’Orso and Frankel, 2010). Further, Tat enhances the association of UBE2O with

HEXIM1, leading to increased HEXIM1 ubiquitination and P-TEFb release and nuclear import. Residue F32 in Tat is critically important for the UBE2O-

dependent activation mechanism. Tat combines multiple P-TEFb targeting mechanisms to supply activated kinase to RNAP II at the HIV-1 promoter.
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Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Recombinant DNA
reagent

UBE2O-FLAG
(plasmid)

this paper vector:pcDNA4/TO,
insert: full-length Homo
sapiens UBE2O

Recombinant DNA
reagent

HEXIM1-STREP
(plasmid)

this paper vector:pcDNA4/TO,
insert: full-length Homo
sapiens HEXIM1

Sequence-based
reagent

ZFP91 siRNA #1 Qiagen SI05109223

Sequence-based
reagent

ZFP91 siRNA #2 Qiagen SI05109230

Sequence-based
reagent

ZFP91 siRNA #3 Qiagen SI05150985

Sequence-based
reagent

UBE2O siRNA #1 Qiagen SI04153863

Sequence-based
reagent

UBE2O siRNA #2 Dharmacon J-008979–05

Sequence-based
reagent

UBE2O siRNA #3 Dharmacon J-008979–06

Sequence-based
reagent

CDK9 siRNA Qiagen SI00605066

Sequence-based
reagent

CCNT1 siRNA Qiagen SI02625707

Sequence-based
reagent

Non-silencing siRNA Qiagen SI03650318

Cell line (Homo sapiens) HeLa (provirusDtat) PMID: 28345603

Peptide, recombinant
protein

HA-ubiquitin this paper purified from E. coli BL21

Peptide, recombinant
protein

HA-DK ubiquitin this paper purified from E. coli BL21

Peptide, recombinant
protein

UBE2O this paper purified from HEK 293 T cells
with high salt

Peptide, recombinant
protein

UBE2O, catalytically
inactive

this paper purified from HEK 293 T cells
with high salt

Peptide, recombinant
protein

HEXIM1 this paper purified from HEK 293 T cells
with high salt

Commercial assay
or kit

HiPerFect transfection
reagent

Qiagen used for transfecting siRNA

Commercial assay
or kit

PolyJet Transfection
reagent

Signa Gen used for transfecting DNA

Commercial assay
or kit

STREP-tactin superflow
resin

IBA Lifesciences

Antibody anti-HA Covance MMS-101P
RRID:AB_2314672

1:2000 dilution

Antibody anti-HEXIM1 Abcam ab25388
RRID:AB_2233058

1:2000 dilution, also used for IP

Antibody anti-CDK9 Santa Cruz
Biotechnology

sc-13130
RRID:AB_627245

used for ChIP

Antibody anti-IgG Millipore 12–371
RRID:AB_145840

used for ChIP

Antibody anti-IgG Santa Cruz
Biotechnology

sc-2027
RRID:AB_737197

For IP

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody anti- RNA polymerase II Santa Cruz
Biotechnology

sc-899x
RRID:AB_632359

1:2000

Antibody anti- CCNT1 Santa Cruz
Biotechnology

sc-8127
RRID:AB_2073892

1:2000

Antibody anti- CCNT1 Santa Cruz
Biotechnology

sc-10750
RRID:AB_2073888

1:2000

Antibody anti- MEPCE Santa Cruz
Biotechnology

sc-82542
RRID:AB_2266399

1:1000

Antibody anti- SP1 Santa Cruz
Biotechnology

sc-14027
RRID:AB_2171049

1:5000

Antibody anti-AFF1 Bethyl A302-344A
RRID:AB_1850255

1:1000

Antibody anti- AFF4 Bethyl A302-538A
RRID:AB_1998985

1:1000

Antibody anti- UBE2O Bethyl A301-873A
RRID:AB_1309799

1:1000

Antibody anti-Ku70 Bethyl A302-624A-T
RRID:AB_10554672

1:1000

Antibody anti- SFPQ Bethyl A301-322A-T
RRID:AB_937995

1:1000

Antibody anti-LARP7 Aviva ARP40847_P050
RRID:AB_1294403

1:2000

Antibody anti-LARP7 Santa Cruz
Biotechnology

sc-515209
RRID:AB_2728652

1:2000

Antibody anti-HEXIM1 Everest EB06964
RRID:AB_2118260

1:5000

Antibody anti-CDK9 Santa Cruz
Biotechnology

sc-8338
RRID:AB_2260303

1:2000

Antibody anti-CDK9 ProMab 30212
RRID:AB_2728653

1:2000

Antibody anti-TUBULIN Sigma-Aldrich T6199
RRID:AB_477583

1:10,000

Antibody anti-FLAG Sigma-Aldrich F1804
RRID:AB_262044

1:5000

Antibody anti-RNA pol II
phosphor-Ser2

Abcam ab5095
RRID:AB_304749

1:2000

Antibody anti-STREP-HRP Millipore 71591
RRID:AB_10806716

1:5000

Antibody anti-histone H4 Active Motif 39269
RRID:AB_2636967

1:5000

Cell culture, plasmids, and reagents
HeLaprovirusDtat, HeLa (RRID:CVCL_0030), and HEK 293T (RRID:CVCL_0063) cells were maintained in

DMEM (10% FBS, 1% pen/strep) at 37C with 5% CO2 and discarded after 25–30 passages. HeLa and

HEK 293 T cells were purchased from ATCC as authenticated cell lines. The HeLaprovirusDtat cell line

was generated from an early frozen stock of authenticated HeLa cells and was validated by Southern

blot, which has been detailed previously (Faust et al., 2017). Symptoms for mycoplasma contamina-

tion were not observed, therefore no test for mycoplasma contamination was performed. ZFP91 and

UBE2O were cloned into pcDNA4-TO (Thermo) with a C-terminal 3x-FLAG tag. ZFP91, UBE2O,

CCNT1, CDK9, HEXIM1, LARP7, MEPCE, and HIV-1 HXB2 Tat were cloned into pcDNA4-TO with a

C-terminal 2xSTREP tag. Human ubiquitin was cloned into pcDNA4-TO containing an N-terminal HA

tag. All HEXIM1 and HIV-1 Tat point mutants were generated by standard quick-change mutagene-

sis. The HEXIM1 DK mutants were ordered as a gBlock gene fragment from IDT with restriction sites
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and cloned into appropriate vectors. DNA was transfected with Poly Jet (Signa Gen) and siRNA was

transfected with HiPerFect (Qiagen) or RNAi MAX (Thermo). All transfections were performed

according to manufacturer’s protocol. MG132 was purchased from Selleckchem (S2619). DRB was

purchased from Abcam (ab120939). 2x and 4x Laemmli buffer were purchased from BioRad. Human

E1 protein was a kind gift from the laboratory of John Gross.

Antibodies
Normal rabbit IgG (sc-2027), RNA polymerase II (sc-899x), CCNT1 (sc-8127 and sc-10750), MEPCE

(sc-82542), and SP1 (sc-14027) were purchased from Santa Cruz Biotechnology. AFF1 (A302-344A),

AFF4 (A302-538A), UBE2O (A301-873A), Ku70 (A302-624A-T), and SFPQ (A301-322A-T) antibodies

were purchased from Bethyl. The HA antibody (MMS-101P) was purchased from Covance. LARP7

antibodies were purchased from Aviva (ARP40847_P050) and Santa Cruz (sc-515209). HEXIM1 anti-

bodies were purchased from Abcam (ab25388) and Everest (EB06964). CDK9 antibodies were pur-

chased from Santa Cruz (sc-8338 and sc13130) and ProMab (30212). The tubulin (T6199) and FLAG

(F1804) antibodies were purchased from Sigma. The RNA pol II phosphor-Ser2 (ab5095) was pur-

chased from Abcam. The STREP-HRP antibody (71591) and IgG (12-371) were purchased from Milli-

pore. The histone H4 antibody (39269) was purchased from Active Motif.

RNAi knockdown of Tat host factors
HeLaprovirusDtat cells were transfected with non-silencing or specific siRNAs (Qiagen) at 5–10 nM final

concentrations using HiPerFect. After 48 hours, cells were transfected with 0.5 ng Tat-expressing

plasmid and 1 ng CMV-firefly luciferase plasmid as a transfection control using PEI. After an addi-

tional 48 hr, cells were lysed in cell lysis buffer (5 mM Tris-HCl pH 8.0, 85 mM KCl, 0.5% IGEPAL CA-

630). Cell-associated HIV-1 p24 production was detected by p24 ELISA. In parallel, 10 mL of lysate

was used in a standard luciferase assay. All p24 values were normalized to firefly luciferase activity

for each siRNA to generate a relative Tat activity score, defined as [p24host RNAi/FFLhost RNAi] / [p24N.

S. RNAi/FFLN.S. RNAi]. For analysis of protein knockdown, 2x Laemmli sample buffer was added to

siRNA-treated cells and then loaded onto gels. Knockdowns were determined by western blot with

the indicated antibodies. siRNAs:

ZFP91 #1: CTGCGGCACACTTATCTTCAA (Qiagen, SI05109223)

ZFP91 #2: CAGCTCTTAAAGTGAGGGTTA (Qiagen, SI05109230)

ZFP91 #3: CCGCGACTCCTATGCATAGAA (Qiagen, SI05150985)

UBE2O #1: TCCCGGGACCATTCCATGGAA (Qiagen, SI04153863)

UBE2O #2: GACUUUAGGUUCCGUACAA (Dharmacon, J-008979–05)

UBE2O #3: GUUGUAGAGUUGAAAGUUA (Dharmacon, J-008979–06)

CDK9: TAGGGACATGAAGGCTGCTAA (Qiagen, SI00605066)

CCNT1: AGGCTTTGAACTAACAATTGA (Qiagen, SI02625707)

Non-silencing (N.S.): Qiagen All-Star negative control (SI03650318)

Denaturing in vivo ubiquitination assay
HEK 293T or HeLa cells were transfected using PolyJet with 7 mg total DNA containing STREP-

tagged bait protein and HA-Ubiquitin for denaturing STREP IPs or HIS-Ubiquitin for denaturing HIS

IPs. After 30 hr, cells were lysed in an equal volume SDS Lysis Buffer (2% SDS, 50 mM Tris-HCl pH

8.0, 150 mM NaCl, 0.5 mM DTT) for denaturing STREP IPS or PBS + 6M guanidinium-HCl for dena-

turing HIS IPs and boiled for 10 min. Boiled lysates were sonicated on a Fisher Sonic Dismembrator

Model 500 and centrifuged in a microfuge at full speed. Cleared lysates were incubated with Strep-

tactin Superflow Agarose or HisPur nickel resin for 3 hr at room temperature. For STREP elution, the

resin was washed with RIPA buffer and bound material was eluted with 1x STREP elution buffer (IBA-

GmbH). For HIS elution, resin was washed with PBS + 0.2% Triton X-100 and bound material was

eluted with PBS + 250 mM imidazole. Ubiquitination of immunoprecipitated material was detected

by HA western blot for STREP IP or with endogenous antibodies for HIS IP. For RNAi-ubiquitination

experiments, cells were first transfected with siRNA for 48 hr prior to DNA transfection. For MG132

treatment, cells that had been transfected with DNA for 24 hr were then incubated with 2.5 mM

MG132 for an additional 16 hr before harvesting.
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Cloning, expression, and purification of recombinant proteins
Human wild type and DK ubiquitin with an N-terminal HA tag were cloned into the pGEX6p-1 vector

(GE Healthcare) and expressed as a fusion protein with an N-terminal GST tag. The fusion proteins

were expressed in E. coli BL21 (DE3). The GST-fusion proteins were digested on column with PreSci-

ssion protease. The released ubiquitin proteins were collected and further purified by Superdex 200

Increase (GE Healthcare).

In vitro ubiquitination assay
Assays were performed in a total volume of 30 mL with 0.1 mM recombinant human E1, 0.1 mM wild

type UBE2O or catalytically inactive UBE2O (both wild-type UBE2O and UBE2O CD were purified

from HEK 293 T cells with high salt), 5 mM HA-tagged ubiquitin (wild type or DK) and 0.2 mM HEXIM1

(purified from HEK 293 T cells) in reaction buffer containing 50 mM Tris-HCl pH7.4, 100 mM NaCl, 1

mM DTT, 5 mM MgCl2, 4 mM ATP at 37˚C with constant shaking for 2 hr. Samples were quenched

with 4x Laemmli sample buffer (containing 2-Mercaptoethanol) before analysis by SDS-PAGE. Ubiq-

uitination of HEXIM1 was verified by immunoblotting with anti-HEXIM1 antibody.

RNA elongation assay
HeLaprovirusDtat cells were transfected with siRNAs to obtain 10 nM final concentration. After 48 hr of

RNAi, cells were transfected with a Tat-expressing plasmid for an additional 10 hr. RNA was purified

on Zymo Quick-RNA Mini Prep columns (R1054) according to the manufacturer’s protocol, DNAse-

treated with TURBO DNAse (Thermo), and used in RT-PCR reactions with a primer immediately

downstream of the HIV-1 TAR sequence to detect short RNA species and oligo dT to detect Tat-acti-

vated, poly-adenylated messages. RNA abundance was then quantified by qPCR, and HIV-1 RNA

levels (short and long) were normalized to RPLP0 RNA levels (housekeeping gene). Values are

reported as relative Tat activity, defined as [HIV-1 RNAhost RNAi/RPLP0 RNAhost RNAi] / [HIV-1 RNAN.S.

RNAi/RPLP0 N.S. RNAi]. Primers used in qPCR reactions are:

HIV-1 Proximal F 5’-CTCTCTGGTTAGACCAGATCTGA-3’

HIV-1 Proximal R 5’-GTGGGTTCCCTAGTTAGCCAGA-3’

HIV-1 Distal F 5’-CACATGAAGCAGCACGACTT-3’

HIV-1 Distal R 5’-GGTCTTGTAGTTGCCGTCGT-3’

RPLP0 F 5’-GCTGCTGCCCGTGCTGGTG-3’

RPLP0 R 5’-TGGTGCCCCTGGAGATTTTAGTGG-3’

Affinity purification and western blot
HEK 293T or HeLa cells were transfected with 7 mg total DNA containing STREP-tagged or FLAG-

tagged bait protein. After 40 hr, cells were collected, lysed in Lysis Buffer (50 mM Tris-HCl pH 8.0,

150 mM NaCl, 2 mM MgCl2, 0.5% Triton X-100, 0.2% Na-deoxycholate, Roche protease inhibitor

cocktail) and rocked for 30 min at 4˚C. Lysate was cleared and incubated with Streptactin Superflow

resin slurry (IBA-GmBH) or magnetic M2-FLAG resin slurry (Sigma) at 4˚C. The resin was washed with

WASH buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM MgCl2, 0.5% Triton X-100) and eluted

with 1x STREP elution buffer (IBA-GmbH) diluted in WASH buffer or FLAG elution buffer (200 mg/mL

3x FLAG peptide, diluted in WASH buffer), shaking at RT for 30 min. The eluate was mixed 1:1 with

2x Laemmli sample buffer, boiled, and loaded on a SDS-PAGE gel. Proteins were detected with spe-

cific antibodies.

RNA-IP
A fraction of the elution from a STREP IP was resuspended in RNA Lysis Buffer (Zymo). RNA was

then processed with Zymo Quick-RNA Mini Prep kit as detailed above. Primers specific for the 7SK

snRNA were used in RT-qPCR reactions (7SK F: 5’-GGATGTGAGGCGATCTGGC-3’, 7SK R: 5’-

AAAAGAAAGGCAGACTGCCAC-3’)

High-salt IP
For high-salt purification of UBE2O WT and CD from HEK 293 T cells, the same lysis and IP was per-

formed as above. For washing, beads were washed 4x in High Salt Wash Buffer (25 mM Tris-HCl pH

8.0, 0.1% Triton X-100, 2 mM MgCl2, 1 M NaCl, 0.5 mM DTT) and 2x in IP Dilution Buffer (25 mM
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Tris-HCl pH 8.0, 0.1% Triton X-100, 2 mM MgCl2, 150 mM NaCl, 0.5 mM DTT) and eluted as

described.

Tandem IP
2 � 15 cm plates of HEK 293 T cells were transfected per condition with either 5 mg of Tat-STREP

and 5 mg UBE2O-FLAG or 5 mg of GFP-STREP-FLAG. The same lysis and IP was performed as above

for the first STREP IP. The STREP elution was then incubated with FLAG-M2 resin overnight at 4C.

FLAG resin was wash 4x with FLAG wash buffer (50 mM Tris pH 8.0, 2 mM MgCl2, 0.1% Triton

X-100, 150 mM NaCl). Bound material was eluted with the same FLAG elution buffer as above.

Endogenous IP
HeLa or HEK 293 T cells were lysed in Lysis Buffer. Cleared cell lysates were incubated with control

IgG or specific antibodies (1–10 mg) for 3 hr. Protein A Dynabeads slurry (Life Technologies) was

washed and added to antibody-lysate mixture for an additional 3 hr. Dynabeads were then washed

with WASH buffer. For elution, 50 mL of 2x Laemmli Buffer (BioRad) was added to beads and incu-

bated at 65C for 15 min, with occasional mixing. After elution, 1.5 mL of BME was added to eluate,

which was then processed by SDS-PAGE and Western blotting.

Endogenous RNA-IP
Immunocomplexes were eluted with 50 mL of RNA elution buffer (10 mM EDTA pH 8.0, 1% SDS, 50

mM Tris-HCl pH 8.0) for 15 min at 65˚C. RNA was purified from the elution on Quick-RNA MiniPrep

columns as detailed above. 4 mL of DNAse-treated RNA was used in an RT reaction with primers

specific for the 7SK snRNA and quantitated by qPCR.

Affinity purification-mass spectrometry
AP-MS experiments were performed as previously described (Jäger et al., 2011a; 2011b). Slight

modifications were as follows: HEK 293 T cells were transfected with 5–20 mg plasmid complexed

with PolyJet Reagent. After 40 hr, cells were harvested and washed in PBS, and then resuspended in

Lysis Buffer. Following incubation at 4˚C for 30 min on a tube rotator, lysates were centrifuged for

20 min at 4˚C. Cleared lysates and 2 mg of 1x FLAG peptide (Sigma) were added to 20 mL anti-FLAG

M2 magnetic beads and rotated for 2 hr at 4˚C. FLAG beads were sequentially washed 3x with

Wash Buffer (0.05% NP-40, 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA) and 1x with Wash

Buffer without NP-40. Beads were incubated with Elution Buffer (50 mM Tris-HCl, pH 7.4, 150 mM

NaCl, 1 mM EDTA, 0.05% RapiGest SF Surfactant (Waters)) on a vortex mixer at room temperature

for 30 min. Eluates (10 mL) were processed and analyzed by mass spectrometry as previously

described (Davis et al., 2015; Mirrashidi et al., 2015).

Gel filtration
HEK 293 T cells were lysed in Lysis Buffer. Cell extracts were filtered through a 0.22 mm filter and

loaded on a Superdex 200 Increase 10/300 GL (GE Healthcare) in 1x phosphate-buffered saline con-

taining 1 mM DTT. The flow rate was 0.7 mL/min and 0.5 mL fractions were collected after the elu-

tion of the void volume. Each fraction was subjected to western blot analysis.

Identification of ubiquitinated HEXIM1 lysines by MS
HEK 293 T cells in 11 � 15 cm plates were transfected with 1 mg of HEXIM1-S, 5 mg of UBE2O-F,

and 2 mg of HA-Ub (to 15 mg DNA total with pBluescript) by PolyJet. After 48 hr, a denaturing

STREP IP was performed on the lysate. Sample eluate was digested with trypsin or Arg-C (according

to manufacturer’s protocol) and analyzed by mass spectrometry as previously described

(Kane et al., 2015) with slight modifications. Briefly, the raw data was matched to protein sequences

by the MaxQuant algorithm (version 1.5.2.8) (Cox and Mann, 2008). Data were searched against a

database containing SwissProt Human (downloaded 12/2014), and the APEX2 sequence,

concatenated to a decoy database where each sequence was randomized in order to estimate the

false discovery rate (FDR). The data were filtered to obtain a peptide, protein, and site-level false

discovery rate of 0.01.
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Subcellular fractionation
HEK 293T or HeLa cells were collected and the pelleted cell volume (PCV) was measured. For DRB

treatment, cells were treated with DMSO control or 100 mM DRB for 1 hr prior to harvesting. Cells

were washed in 3x PCV of Buffer A (10 mM Tris-HCl, pH 8.0, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM

DTT, Roche protease inhibitor cocktail), resuspended in 5x PCV Buffer A, and allowed to swell on

ice. Triton X-100 was then added to the cells to achieve a final concentration of 0.5% and rocked for

1 min. The cellular material was passed through a 25G needle and spun at 1500 x g for 5 min. The

supernatant was collected as the cytoplasmic fraction. The nuclei were resuspended in ¼ pelleted

nuclear volume (PNV) of Buffer B (20 mM Tris-HCl, pH 8.0, 25% glycerol, 1.5 mM MgCl2, 20 mM

KCl, 0.2 mM EDTA, 0.5 mM DTT, Roche protease inhibitors). ¼ PNV of Buffer C (Buffer B with 1.2 M

KCl) was then added drop-wise to nuclei, which were then rocked for 30 min. The suspension was

centrifuged and the supernatant was collected as the high salt nuclear extract (nucleoplasm). The

nuclear pellet was then resuspended in RIPA buffer and sonicated. The sonicated lysate was spun at

full speed and the supernatant was collected as the nuclear pellet. A Bradford assay (BioRad) was

used to determine the protein concentration in each fraction. 10 mg of protein from each fraction

was analyzed by SDS-PAGE and western blot.

Immunofluorescence
HeLaprovirusDtat cells on coverslips were fixed in 4% formaldehyde for 20 min, quenched with 0.15 M

glycine, and permeabilized with 0.1% Triton X-100 for 15 min. Permeabilized cells were blocked with

blocking buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 2% BSA, 10% goat serum) for 1 hr, and then

incubated with anti-CCNT1 antibody (sc-10750) at dilution of 1:100 for 1 hr. Cells were then washed

with PBS and incubated with goat anti-rabbit IgG-Alexa Fluor 555 (1:1000) and 100 ng/mL DAPI in

blocking buffer. Cover slips were washed in PBS and mounted on slides with ProLong Gold antifade

mounting solution (Thermo). Confocal images were obtained with a spinning disk confocal micro-

scope (Nikon Ti-E microscope equipped with Yokagawa CSU-22) by using the 561 and 405 nm exci-

tation for Alexa Fluor 555 epifluorescence and 4,6-diamidino-2-phenylindole (DAPI), respectively.

Chromatin immunoprecipitation (ChIP)-qPCR
HeLaprovirusDtat cells were transfected with either N.S. or UBE2O siRNA to obtain a 10 nM final con-

centration. After 48 hr, cells were transfected with a Tat-expressing plasmid (pcDNA4\TO-Tat:FLAG)

for the +Tat condition and a mock expressing plasmid control (pcDNA4\TO:FLAG) for the –Tat con-

dition for an additional 15 hr. 8.0 � 106 cells per ChIP were grown on 10 cm plates and were cross-

linked with 0.5% formaldehyde for 10 min followed by addition of 150 mM glycine for 5 min to

quench the crosslinking reaction. Cells were harvested and lysed for 30 min at 4˚C with rotation in

Farnham lysis buffer (5 mM PIPES pH 8.0, 85 mM KCl, 0.5% NP-40, 1 mM PMSF, 1x EDTA-free pro-

tease inhibitor tablet (Roche)) at a concentration of 107 cells/mL. Nuclei were collected and resus-

pended in cold Szak’s RIPA buffer (50 mM Tris-HCl pH 8.0, 1% NP-40, 150 mM NaCl, 0.5% Na-

Deoxycholate, 0.1% SDS, 2.5 mM EDTA, 1 mM PMSF, 1x EDTA-free protease inhibitor tablet

(Roche)) to a final concentration of 2.5 � 107 nuclei/mL. Nuclei were sonicated for 60 cycles (30 s

ON, 30 s OFF) on a waterbath sonicator (Diagenode) to obtain DNA fragment sizes between

150 and 500 bp. Sheared chromatin was pre-cleared with Protein G beads for 1 hr at 4˚C. Protein G

beads (100 mL of 10 mg/mL stock, Thermo Fisher) were conjugated with 10 mg of the following anti-

bodies: CDK9 (Santa Cruz Biotechnology, sc13130) and IgG (Millipore, 12–371). Antibody bound

beads were blocked with 5% BSA +RIPA for 1 hr. Pre-cleared sheared chromatin (8 � 106 nuclei)

was added to the blocked antibody bound beads and incubated overnight. Washes, elutions, and

de-crosslinking was performed as previously described (McNamara et al., 2016). Primers used for

qPCR amplification of the HIV promoter (HIV (+141) Fwd: 5’-GCTTAAGCCTCAATAAAGCTTGCC

TTGAG-3’, HIV (+141) Rev: 5’-GTCCTGCGTCGAGAGATCTCCTCTG-3’).
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Czudnochowski N, Bösken CA, Geyer M. 2012. Serine-7 but not serine-5 phosphorylation primes RNA
polymerase II CTD for P-TEFb recognition. Nature Communications 3:842. DOI: https://doi.org/10.1038/
ncomms1846, PMID: 22588304

D’Orso I, Frankel AD. 2009. Tat acetylation modulates assembly of a viral-host RNA-protein transcription
complex. PNAS 106:3101–3106. DOI: https://doi.org/10.1073/pnas.0900012106, PMID: 19223581

D’Orso I, Frankel AD. 2010. RNA-mediated displacement of an inhibitory snRNP complex activates transcription
elongation. Nature Structural & Molecular Biology 17:815–821. DOI: https://doi.org/10.1038/nsmb.1827,
PMID: 20562857

D’Orso I, Jang GM, Pastuszak AW, Faust TB, Quezada E, Booth DS, Frankel AD. 2012. Transition step during
assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. Molecular and Cellular Biology
32:4780–4793. DOI: https://doi.org/10.1128/MCB.00206-12, PMID: 23007159

Davis ZH, Verschueren E, Jang GM, Kleffman K, Johnson JR, Park J, Von Dollen J, Maher MC, Johnson T,
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Jäger S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li
K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D’Orso I, Fernandes J, Fahey M, Mahon C,
et al. 2011b. Global landscape of HIV-human protein complexes. Nature 481:365–370. DOI: https://doi.org/10.
1038/nature10719, PMID: 22190034
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