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We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the
study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The col-
loidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid
target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The
per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The
absorption evolution of the obtained suspensions was optically characterized through absorption spec-
troscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of
the ZnO NPs structure. HRTEM results showed that 5–8 nm spheroids ZnO NPs were obtained. Strong
second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO
NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggre-
gation state.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Highly efficient nonlinear optical properties found in ZnO
nanostructures are very attractive as an optical characterization
tool and to be used as bio-markers for optical nonlinear imaging
[1–3]. For the latter case, second-harmonic generation (SHG),
rather than two-photon excitation of fluorescence (TPEF) of ZnO
nanoparticles (NPs) is particularly interesting because the SHG
process do not cause thermal dissipation in cells, permitting longer
time emission without photo-bleaching effects, and the phase
matching condition is absent as long as the NPs size is smaller than
the excitation wavelength of light, allowing an omnidirectional
emission [2] which is useful for transmission and reflection track-
ing of the SHG signal.

SHG from ZnO has been widely investigated on bulk powders
[1], colloidal solutions [2–4], nanowires [5], nanoparticles [2,6,7],
from films containing different ZnO grain sizes [8] and nanocom-
posite films [9], but mostly for nanostructures larger than 20 nm.
Controlling the size and/or morphology of ZnO NPs is fundamental
to control their second- and third-order nonlinear optical proper-
ties [2,3,8,9]. Both the size and the morphology of ZnO NPs are con-
tinuously improved with the improvement of the NPs synthesis
techniques and, essentially, smaller NPs with determined shape
can be fabricated in a controlled way [10,11]. Therefore, recent
studies to characterize the nonlinear optical properties of samples
containing smaller ZnO NPs are found elsewhere [12]. In this work,
we characterize the SHG signal from ZnO NPs of 5–8 nm deposited
on glass substrates forming micro-sized structures containing
nanoparticle aggregates. Studying the SHG signal of the NPs depos-
ited on substrates rather than in solution is fundamental for bio-
marking purposes.

The second-order optical nonlinearity of ZnO is originated
intrinsically from its crystalline structure, with ZnO crystalizing
preferably in the wurtzite-type structure with a hexagonal crystal
lattice belonging to the noncentrosymmetric point group 6 mm
and space group P63mc. ZnO has large second-order nonlinear
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Fig. 1. Experimental set up for LASL experiments. Nanosecond laser pulses are
focused to a Zn target, immersed in acetone, to produce ablation. A convex lens of
13.5 cm focal length (L1) is used.
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coefficients (d33 = �5.86 pm/V, d31 = 1.76 pm/V and d15 = 1.93 pm/
V) [13], therefore, the second harmonic generation process is
essentially allowed in the electric-dipole approximation away from
exciton resonances [14]. When ZnO is synthesized as microcrys-
talline thin films containing nanostructures, the value of the non-
linear coefficients are 14 times larger than in bulk ZnO and can
be resonantly increased as the energy of the SHG frequency
approaches the ZnO band gap [4,5,13,14]. These enhanced coeffi-
cient values are comparable to the ones found in typical optical
crystals (LiNbO3, LiTaO3 and KTP) used for efficient frequency dou-
bling experiments and that is what it makes the SHG process in
ZnO nanostructures being observable even to the naked eye.

Several methods for the production of ZnO nanoparticles are
found in literature such as hydrothermal methods, electrochemical
depositions, sol–gel, chemical vapor deposition, thermal decompo-
sition, combustion methods, chemical-thermal synthesis, anodiza-
tion, co-precipitation, and electrophoretic deposition [15].
However, many of these methods are inefficient and expensive
and, when using chemical synthesis methods, those can produce
chemical residuals, which are harmful and toxic for biomedical
applications.

The Laser Ablation of Solids in Liquids (LASL) is an experimen-
tally simple, low cost and clean method of synthesis, where it is
possible to use organic solvents as the liquid media obtaining
nanostructures of very high purity, since there is no need of stabi-
lizing molecules or ligands [16]. This technique has successfully
demonstrated the synthesis of ZnO in solution [10,17,18] and zinc
peroxide (ZnO2) nanoparticles [18]. By using the LASL technique it
is possible to control the size and morphology of the ZnO NPs
through the ablation conditions [10,11]. The ZnO NPs show differ-
ent physical and chemical properties depending upon their mor-
phology, size and number of defects [17,19]. Furthermore, it has
been demonstrated that relatively more stable colloidal nanoparti-
cles solutions are obtained when using the LASL technique
[11,16,20–22].

Therefore, the LASL technique results ideal to produce ZnO NPs
in a controlled manner and then study their nonlinear optical prop-
erties. To the best of our knowledge, no studies characterizing the
nonlinear optical properties of ZnO NPs synthesized by LASL has
been performed thus far. In this context, the aim of this paper is
twofold: firstly, to use the LASL technique as a simple and versatile
synthesis route to obtain 5–8 nm ZnO NPs in a controlled manner;
secondly, to characterize the nanoparticles SHG response when
they are deposited on glass substrates and find its correlation with
the ZnO nanostructure. To obtain the ZnO NPs, the ablation of a Zn
target immersed in acetone was performed at fixed laser fluence
and ablation time. The SHG signal characterization of ZnO NPs
was performed using nonlinear SHG microscopy.
2. Experimental

2.1. Synthesis of the ZnO NPs colloidal solutions

The colloidal suspensions of ZnO NPs were synthesized by using
a Zn target and acetone as liquid medium (Sigma–Aldrich, Co.). The
experimental set up used in the laser ablation experiments is
shown in Fig. 1. Nanosecond (ns) laser pulses (7 ± 2 ns pulse dura-
tion) from a Nd:YAG laser (Minilite II, Continuum) were used to
ablate the Zn target (a disk of 2.54 cm � 0.375 cm, 99.999% pure,
Kurt J. Lesker Co.). The laser was operated in its fundamental emis-
sion wavelength (1064 nm) at 15 Hz repetition rate. A convex lens
of 13.5 cm focal length (L1) is used. Both, the per pulse laser flu-
ence (22 J/cm2) and the ablation time (10 min) were fixed during
the synthesis.
2.2. Sample characterization

2.2.1. UV–Vis characterization
The optical absorption spectra of the colloidal suspensions were

taken on a daily basis after the NPs synthesis using a double beam
spectrometer (Lambda 650 Perkin-Elmer) from 320 to 720 nm. A
quartz cuvette with an optical path length of 10 mm was used
for the optical characterization. For reference purposes, the ace-
tone absorption spectrum was recorded. All the experiments were
performed under environmental (25 �C and 1 atmosphere pres-
sure) conditions without any special monitoring or control.

2.2.2. Raman characterization
Commercial ZnO powder and the as-obtained ZnO NPs were

characterized by Raman microspectroscopy in the rage 250–
800 cm�1. A microRaman system (Dimension M1, Lambda Solu-
tions) equipped with a 5 mW CW Nd-YAG (k = 532 nm) laser and
an optical microscope (Olympus BX-41) was used. An objective
lens of 50X was utilized to focus down the laser beam on the sam-
ple. To perform Raman measurements in the ZnO NPs deposited on
glass substrates, samples were prepared by drying at room temper-
ature some drops of the colloidal ZnO NPs suspension on a glass
slide. The Raman spectra were captured over 15 acquisitions of
5 s each.

2.2.3. SEM and HRTEM studies
Samples of ZnO NPs deposited on glass substrates were used for

the scanning electron microscopy (SEM) characterization.
Seemingly, samples for high resolution transmission electron
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microscopy (HRTEM) characterization were prepared on Cu grids
coated with carbon. Through evaporation of the colloidal solution,
the ZnO NPs were left behind on the slides/grids. The SEM mea-
surements were carried out using a Scanning Electron Microscope
(Hitachi, SU3500) equipment while the HRTEM measurements
were carried out using a Transmission Electron Microscope (JEOL
2010), at an accelerating voltage of 200 kV.
2.2.4. Nonlinear optical microscopy experiments
Nonlinear optical microscopy measurements were performed

using an ultrashort pulsed laser coupled to an inverted microscope
from which the signal is collected in both reflection and transmis-
sion modes. The reflection mode is utilized both to image the sam-
ple and to collect the backscattered nonlinear signal, while the
transmission mode is utilized to characterize the polarization
and intensity dependences of the nonlinear process. Fig. 2 depicts
the experimental setup viewed from right to left. The incoming
ultrashort pulses are generated using a Ti:Sapphire oscillator
(TiF-15, AVESTA Ltd.), pumped at 532 nm with a 3 W CW laser
(Verdi, Coherent), delivering 820 nm ultrashort 30 fs pulses at a
89 MHz repetition rate and 530 mW of average output power. Prior
to enter the inverted microscope (TE 2000 U, Nikon) the laser beam
passes through a half-wave plate, k/2, which controls the angle of
the linearly polarized laser beam. A linear polarizer (LP) can be
placed afterwards in the beam path to control the laser power
according to the Malus’ law. In the microscope system, a short pass
dichroic beam splitter, DCF (T750dcspxr, Chroma Tech.), reflects
the fundamental laser beam towards the inverted microscope
objective, MO (20X, Nikon). The maximum averaged laser power
measured after the MO is �86 mW and the measured lateral reso-
lution of the microscope system is �2.2 lm (then a radius of
1.1 lm). Therefore, the maximum laser energy fluence delivered
at the sample is estimated to be �26 mJ/cm2; note that under such
laser irradiation conditions no thermal damages of the ZnO NPs are
induced [23].

The transmitted nonlinear optical signal is collected at the con-
focal plane using the telescope system made with the condenser
lens, L1, and the de-scanning lens L2. In this plane, the image of
the point-spread function is taken using a CMOS color camera
(THORLABS DCC1645C) connected to a conventional PC. The
fundamental beam is filtered out the beam path to collect only
the nonlinear optical signals using different interferometric filter
combinations. More specifically, a hot mirror (21001a, Chroma
Tech.) and a pass band filter (FF01-420/40; Semrock) combination
allows blocking the fundamental 820 nm beam up to 7 orders of
magnitude while transmitting 90% between 400 and 440 nm to
collect the SHG signal. In the reflection mode, the nonlinear signal
is collected with the MO, transmitted through the DCF and, by
means of a third lens, L3 (the so-called tube lens), both the sample
image and the image of the scattered nonlinear signal at the laser
focus are taken simultaneously with a second CMOS camera con-
nected to the PC. Finally, the images taken are processed using
ImageJ; an open source image processing package.
3. Results and discussion

3.1. Absorption spectrum of ZnO NPs in acetone

Absorption spectra evolution after synthesizing the ZnO NPs in
acetone solution are presented in Fig. 3. The curves are normal-
ized to the absorption spectra of acetone in order to observe
the development of the characteristic peak at around 350 nm,
which is formed due to ZnO NPs exciton resonance absorption
[22]. Note that the peak starts to be appreciated at the 5th day
after the NPs synthesis, then it continues evolving throughout
the days, and finally it keeps unchanged from the 30th day
onwards. In the process, just after the synthesis, a small ZnO shell
is formed around Zn NPs core, then the NPs keeps oxidizing
towards the Zn core as the time passes by until full oxidation.
During this period of time, a decrease in both the absorption peak
and broadness of the 351 band is clearly appreciated allowing the
transmission of VIS light (>400 nm). As an end result, the solution
transparency increases. This transmittance evolution of the col-
loidal suspension is depicted in the Fig. 3 inset, from day 1 after
the synthesis an up to day 30th, passing from dark yellow to a
more translucent solution. The corresponding energy band of
the measured absorption peak at 351 nm (�3.53 eV) indicates
the formation of ZnO NPs below 10 nm in size according to tight
binding model calculations [24] and effective mass models used
to compute the NPs ZnO radius [25]. Note that no shift of the
absorption peak (and so the energy band) is observed. This indi-
cates that the increase of the NPs size during the oxidation pro-
cess is not considerably affected.



I. Rocha-Mendoza et al. / Optics and Laser Technology 99 (2018) 118–123 121
3.2. Raman characterization of ZnO NPs

In Fig. 4 the Raman spectra measured in the 250–800 cm�1

range, of the commercial ZnO powder (spectrum (a)) and the as-
obtained material (spectrum (b)), are shown. The Raman spectrum
corresponding to the commercial powder (bulk ZnO) is constituted
by peaks centered at 330, 380, 410, 435, 540, 584 and 662 cm�1

[26]. The peak centered at 436 cm�1 is the most intense and has
its origin in the vibrations of Zn-O in the interior of ZnO crystals,
commonly observed in micro-sized particles as it is the case for
commercial powders. On the other hand, the spectrum of the as-
obtained material presents a photoluminescent background and a
wide band centered at 560 cm�1 corresponding to the vibrational
surface mode that is dominant in the case of ZnO NPs [26,27].
The peak at 435 cm�1 has a very low intensity. This result indicates
that the obtained material is constituted by ZnO NPs.
3.3. SEM and HRTEM results

Scanning Electron Microscopy (SEM) and High Resolution
Transmission Electron Microscopy (HRTEM) were used to assess
the NPs morphology at different size scales. In Fig. 5(a) a SEM
image displays aggregated ZnO NPs at the micrometer scale. As
Fig. 3. Normalized absorption spectra of ablated ZnO NPs in acetone taken at
different ageing times. The formation evolution of the resonance absorption peak at
351 nm, due to ZnO NPs exciton resonance, is observed. All the spectra are
normalized against the absorption spectrum of acetone.
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one can see, granular ZnO is the type of material supported on
the glass slide. It is worth noting that the SHG experiments were
performed in that kind of sample. On the other hand, in Fig. 5(b)
the HRTEM image shows that the clusters are conformed by spher-
oidal nanoparticles of around 5–8 nm size. The morphology and
size of the obtained ZnO NPs are in good agreement with the data
from the literature; there exist many reports related to the use of
the LASL technique where ZnO NPs have been obtained in several
liquid media including water, ethanol, methanol, SDS, acetone. In
the most of cases spheroidal ZnO NPs with sizes ranging from 5
to 80 nm were obtained [10,15]. However, it is clear that a more
detailed analysis needs to be performed to gain insight of the entire
features of the obtained ZnO NPs. Such an analysis is currently
underway in view of a better understanding of both isolated and
aggregates of the ZnO NPs.

3.4. Second harmonic generation in Zn/ZnO synthesized by LASL

Fig. 6 shows the characterization of the SHG signal originated
from the ZnO NPs aggregates shown in Fig. 5(a). The same struc-
tures are also appreciated in the bright field image shown in
Fig. 6(a), taken through the microscope in reflection mode, where
the blue1 signal corresponds to the back-scattered SHG, which is
observable with the naked eye. In contrast to other reports, where
a 500 mW pump power was used to observe SHG signal from ZnO
NPs [2,4], our system allowed us to observe it at lower powers
(below100 mW), and CMOS camera integration times <300 ms.
Otherwise, the transmission mode of our microscope system (see
Fig. 2) is used to take the SHG image at the confocal plane and it
is shown in Fig. 6(b). A set of conveniently chosen band pass filters
is used to collect the SHG signal only.

The microscope transmission mode is used to obtain both the
intensity and the polarization dependence of the SHG signal by
means of the half-wave plate and the linear polarizer as already
described above. In Fig. 6(c) and (d) the transmitted SHG signal
taken at two different locations within the sample are shown in
solid black squares and open gray diamonds, respectively. Note
that the dependence of the SHG signal with respect to the laser
input power is quadratic (plotted in log-log scale in Fig. 6(c)) due
to the 2nd order nonlinearity of the process. However, instead of
the expected isotropic polarization dependence of the SHG signal,
due to randomly oriented ZnO monocrystalline structures [4,28],
both nearly isotropic and well-defined anisotropy dependences
were observed in our samples. This is shown in Fig. 6(d) with the
open gray diamonds and the solid black squares polar plots,
respectively. Note that similar isotropic and anisotropic SHG signal
dependences were obtained throughout the sample and for differ-
ent ZnO NPs samples obtained under similar synthesis conditions
(data not shown).

While the origin of the isotropic SHG signal is attributed to ran-
domly organized monocrystalline ZnO NPs, the anisotropic SHG
could be originated from aggregated NPs forming ZnO microstruc-
tures. Note that, in either case, the signal is visible to the naked eye
as reported in previous work performed on larger ZnO NPs [1–7].
This suggests that the high efficiency of the SHG process in ZnO
NPs may not depend on the nanoparticles size or the aggregation
state. Our hypothesis is supported with results published just
recently by Multian et. al., where it is found that the SHG signal
from 2 nm ZnO NPs suspensions is comparable to the SHG signal
obtained from commercial 150 nm ZnO NPs suspensions [12].

In this sense, knowing the origin of the SHG efficiency with
respect the NPs size, would be important to estimate the limits
1 For interpretation of color in Fig. 6, the reader is referred to the web version o
this article.
f



Fig. 5. Morphology of synthesized ZnO NPs. (a) SEM image of the ZnO NPs deposited on a glass slide. (b) HRTEM image of ZnO NPs clusters conformed of spheroidal
nanoparticles of around 5–8 nm size.

101 102100

101

102

/  data
  m = 2
 m = 2SH

G
 s

ig
na

l, 
[a

rb
. u

n.
]

power, [mW]

0

50

100

0

30

60
90

120

150

180

210

240
270

300

330

0

50

100

 S
H

G
 s

ig
na

l, 
[a

rb
. u

n.
]

a) b)

c) d)

30 μm
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of the nonlinear optical process. Therefore, we believe that more
studies in this direction are foreseen. Additionally, the optimum
size of ZnO NPs also needs to be investigated in view of using these
NPs as bio-markers for cell imaging. This taking into consideration
that the optimum size for nanoparticles cellular uptake (endocyto-
sis) in living cells is estimated to be between 30 and 50 nm [29,30],
and also considering that cell cytotoxicity increases for smaller NPs
sizes [31,32].

4. Conclusions

We reported the use of LASL technique for the facile and fast
synthesis of ZnO NPs with second order nonlinear optical proper-
ties (SHG). The ZnO NPs showed the characteristic sharp resonance
absorption peak at 351 nm due to ZnO nanoparticles exciton reso-
nance absorption. Analysis by HRTEM showed ZnO NPs with aver-
age nanoparticle size of 5–8 nm. Efficient SHG signal from
aggregated ZnO NPs, containing small sized nanoparticles, is
observed. While nearly isotropic SHG signal is attributed to ran-
domly distributed ZnOmonocrystalline NPs, anisotropic SHG could
be originated from aggregated form of the ZnO NPs microstruc-
tures. The comparable signals suggest that the SHG efficiency
may not depend on the NPs size or aggregation state. A more
detailed study to determine the origin of the SHG efficiency of
smaller ZnO NPs is required. LASL technique is an experimentally
simple technique to synthesize in a controlled manner
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biocompatible nanoparticles, which represent a cost effective and
green alternative way of designing potentially efficient biomarkers
for nonlinear imaging applications.
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