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Abstract: Light detection and ranging (Lidar) data can be used to create wall-to-wall forest structure
and fuel products that are required for wildfire behavior simulation models. We know that
Lidar-derived forest parameters have a non-negligible error associated with them, yet we do not
know how this error influences the results of fire behavior modeling that use these layers as inputs.
Here, we evaluated the influence of error associated with two Lidar data products—canopy height
(CH) and canopy base height (CBH)—on simulated fire behavior in a case study in the Sierra Nevada,
California, USA. We used a Monte Carlo simulation approach with expected randomized error added
to each model input. Model 1 used the original, unmodified data, Model 2 incorporated error in
the CH layer, and Model 3 incorporated error in the CBH layer. This sensitivity analysis showed
that error in CH and CBH did not greatly influence the modeled conditional burn probability, fire
size, or fire size distribution. We found that the expected error associated with CH and CBH did not
greatly influence modeled results: conditional burn probability, fire size, and fire size distributions
were very similar between Model 1 (original data), Model 2 (error added to CH), and Model 3 (error
added to CBH). However, the impact of introduced error was more pronounced with CBH than with
CH, and at lower canopy heights, the addition of error increased modeled canopy burn probability.
Our work suggests that the use of Lidar data, even with its inherent error, can contribute to reliable
and robust estimates of modeled forest fire behavior, and forest managers should be confident in
using Lidar data products in their fire behavior modeling workflow.

Keywords: wildfire burn probability; crown fire; forest fuels; Sierra Nevada; Lidar; error

1. Introduction

Fire is an important component of forest ecosystems in western North America. Fire impacts on
these ecosystems are predicted to increase as forests respond to a legacy of past management practices
and increased drought stress that is associated with a changing climate [1–5]. Spatially explicit fire
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behavior and effects modeling software packages (hereafter called “fire behavior models”) are the
primary planning tools used by forest fire managers to simulate fire spread across landscapes and to
anticipate the effects of fuel reduction treatments to possibly slow down fire spread and reduce the
fire intensity in a forest [6–11]. These tools are also increasingly used in other forest science domains,
such as assessing fire impacts on wildlife habitat and on carbon dynamics [12,13]. In the United
States (US), fire managers use wildfire behavior models to aid in fire management decision-making,
to plan, allocate, and mobilize suppression resources, and to plan fuel reduction treatments across
landscapes [14–16]. Fire behavior models include BEHAVE [17], FARSITE [18], and FlamMap [19].

1.1. Spatial Inputs to Fire Behavior Models

In addition to spatial data depicting topography (i.e., elevation, slope, and aspect), fire behavior
models require spatial layers depicting forest structure and fuel characteristics [14,20]. These inputs
data include canopy cover, canopy height, canopy base height, canopy bulk density, and fuels [21].
Canopy height (the average height of overstory trees) influences wind profiles within the forest; canopy
base height (the height above which there is sufficient fuel to allow for vertical fire movement through
the canopy) is critical in determining whether fire can reach the crowns of trees; and, canopy bulk
density (the density of the canopy fuels that would be consumed in the flaming front of a fully active
crown fire) quantifies the fuel in the canopy layer, which will feed active crown fires [22]. These metrics
of forest structure are typically generated by entering data from field plots into forest growth models,
such as the Fire and Fuels Extension in Forest Vegetation Simulator (FVS) [23], which use allometry to
calculate the specific metrics. Often the metrics derived from field plots are assumed to represent a
given vegetation patch, referred to as a stand. However, stand-level forest structure variables are not
easily estimated or measured in the field [24]. For example, canopy bulk density cannot be measured
directly [21], and is estimated based on tree crown dimensions, foliage and fine branch biomass.
Calculations of canopy base height and canopy bulk density are based on certain assumptions, such as
the shapes of tree crowns, the inclusion or not of seedlings, the vertical distribution of foliage and
fine branches within tree crowns, and the threshold biomass density used to define the base of the
canopy. These assumptions can lead to errors in the calculation of these variables, and in their spatial
representation over a given stand [22,25]. However, such errors are not typically considered when
interpolated data are used in fire behavior models [7,8,12,13,26].

1.2. Lidar to Measure Forest Structure

The use of Light Detection and Ranging (Lidar) for forest structure mapping provides an
alternative protocol for data layer creation for fire behavior models than what is typically used.
Instead of an interpolated product, Lidar data provides a spatially complete and precise measurement
or model (via regression) of many aspects of forest structure and fuels over landscape scales that can be
evaluated for measured accuracy when compared to data from field plot networks [20,27–29]. While it
is possible to use model-based methods to upscale forest parameters from Lidar footprints to areas
without Lidar coverage, for example [30–33], regression-based methods are still the most commonly
unbiased method for extracting forest parameters in areas with extensive field plots. For example,
researchers used Lidar to predict canopy base height (R2 = 0.77; RMSE = 4.1 m) and canopy height
(R2 = 0.98; RMSE = 1.5 m), among other variables, in a western hemlock forest in Washington State [27].
Others analyzed Lidar data from Sierra Nevada forests to extract canopy stand height with moderate
success (R2 = 0.75, RMSE = 6.4 m) [34]. In Washington State, researchers examined canopy fuel
metrics in a mixed-conifer forest and reported good prediction rates for canopy height (R2 = 0.94;
RMSE = 1.86 m) and canopy base height (R2 = 0.78; RMSE = 0.68 m) [35]. This study was done in an
even aged plantation and reported better results for physical measurements (e.g., max height, basal
area, and canopy cover) than for modeled estimates (e.g., canopy base height). Using the same Lidar
data as presented here, researchers provided a review of the prediction ability of Lidar metrics for a
suite of forest structural variables. The best prediction rates were associated with maximum canopy
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height (R2 = 0.87), basal area (R2 = 0.82), and canopy cover (R2 = 0.85) [20]. Canopy base height
prediction was more problematic with R2 = 0.41. From these and other projects we understand that
retrieving accurate forest structure variables is challenging in dense mixed-conifer forests on a complex
terrain, since the precision of stand structure metric predictions generally decrease with increasing
canopy penetration [20]. Thus, Lidar-derived forest variables have a non-negligible uncertainty
associated with them.

Error is customarily defined as the difference between reality and our representation of reality [36].
When reality cannot be easily measured, error is assumed to fall within a range or distribution of
possible values. There is a growing body of literature that is reporting on the ability of Lidar to
predict forest structural and fuel variables [37]. However, the predicted results can be fraught with
error introduced by the regression modeling process, a commonly used procedure to predict fuel
metrics from Lidar measurements and field measurements, and error in these cases is evaluated using
Root Mean Square Error (RMSE), which is the standard error of the regression model. Thus, in this
paper, we define error as a random variable with mean of 0 and standard deviation that is equal to
the calculated RMSE value derived from a regression equation describing the relationship between
field-based measures and Lidar-based measures of forest structure.

There are challenges with this approach, however. It is important to note that while Lidar data is
commonly evaluated in comparison to field-gathered data, there are differences in forest structure data
measurements between Lidar and field-based protocols. The Lidar-derived forest structure products
are created using regression models between point cloud metrics and direct measures (e.g., canopy
height) or modeled estimates using allometry (e.g., canopy base height) [38]. This represents a real
difference in method (i.e., regressions with direct measures vs. modeled estimates) and complicates the
discussion about error in Lidar data. While acknowledging this measurement mismatch between field
and Lidar data [39,40], we are using the basic error model discussed above to evaluate the influence of
expected error on fire behavior results.

1.3. Error Influence on Model Results

Despite the increase in use of Lidar for mapping forests and the increasing acquisition of Lidar data
over large forested areas, Lidar has not yet been routinely used to create input spatial data layers for fire
behavior models. There are only a few studies that used Lidar data to create input spatial data layers
for fire behavior modeling [41–44]. There are many likely reasons why this is the case [27,28,43,45–47].
Some are practical and technical, such as the complexity in Lidar processing workflow, lack of consistent
Lidar data products for use in management situations, and the limited spatial extent of Lidar coverage;
and, some might have to do with a lack of understanding of how accurate or useful Lidar data can be
or a lack of trust of remotely sensed products by fire managers [14,15,48,49]. We know from extensive
literature in spatial modeling that error associated with input spatial data layers can influence the
results of a spatial modeling workflow [50–54]. While this critical body of literature does not focus
on fire behavior models, the methods suggested are relevant here. One customary method to assess
this influence on model result is to compute the model numerous times, with input values that are
randomly sampled from a distribution of expected error using the Monte Carlo process [36].

The Monte Carlo simulation method involves specifying the probability distribution of a variable
of interest (in this case Lidar error), and then performing random assignment of that variable for a
specified number of runs. The method produces a distribution of results that can be compared to a
model run with original data without error inclusion to evaluate the relative contribution of error on
the model results. Monte Carlo simulation techniques are well suited in the field of spatial modeling,
because only in rare circumstances it is possible to develop the kind of formal error analysis that
is required for alternative methods. Although the Monte Carlo method requires a large number of
calculations, it is attractive for its general applicability and the ease of implementation.

This paper explores the impact of error in two important Lidar-derived fire behavior model
inputs—canopy height (CH) and canopy base height (CBH)—on fire behavior model results. Although
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it would be useful to explicitly include the other Lidar-derived canopy structure variables (canopy
cover, canopy bulk density), we chose to only examine CH and CBH for two reasons. First, these
two variables represent different reasonable expectations of accuracy in Lidar data: canopy height is
typically more accurately mapped using Lidar, and canopy base height is more challenging. Second,
computation and analysis time for exploring all four canopy structure variables would have been
prohibitive. We explored the influence of the expected variability in error on fire behavior modeling
through a sensitivity analysis using a Monte Carlo simulation approach by altering the model input
layers through adding randomized error and examining the results.

Specifically, our objectives were to: (1) develop landscape canopy fuels maps using Lidar data
informed by a forest inventory plot network, (2) simulate landscape-level fire behavior incorporating
the error that is associated with the development of canopy fuels maps (CH and CBH), and (3) estimate
the relative influence of the error through mapped and statistical results. Our overall goal is to identify
limits on the confidence on the output of the fire behavior modeling when such models use as input
Lidar data-based layers, with some measurement error.

2. Materials and Methods

2.1. Study Area

The Last Chance study area is within the Tahoe National Forest in the northern Sierra Nevada
in California, USA (Figure 1). Last Chance is a 13,767 ha site on topographically complex and steep
terrain with elevation ranging from 488 to 2188 m above sea level. The climate is Mediterranean
with a predominance of winter precipitation, a majority of which is snow, averaging 1182 mm per
year (1990–2008; Hell Hole Remote Automated Weather Station). Most of the study area is mixed
conifer forest; only 7% area is non-conifer forest (<10% of coniferous tree crown area). Dominant
tree species include sugar pine (Pinus lambertiana), ponderosa pine (P. ponderosa), incense-cedar
(Calocedrus decurrens), red and white fir (Abies magnifica and A. concolor), and California black oak
(Quercus kelloggii). Tree densities and species composition vary with fire and management history as
well as topography. From 1750 to 1900 the point fire return interval was 17.5 years, which represents
the average time required for fire to re-scar the same sample within the study area; the composite fire
return interval when >10% of the recording trees were scarred was 6.1 years [55]. In the 20th century,
the area was subject to widespread fire suppression policies [1,56].
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2.2. Data Acquisition

2.2.1. Field Sampling

We systematically established forest inventory plots at 125 to 500 m spacing across the study area.
Tree, shrub, canopy cover, and fuels information were collected in 0.05 ha circular plots (radius = 12.62 m)
in the same year as the Lidar collection, as described in a field sampling protocol used before, and
described in Collins et al. (2011) [7]. Using high precision GPS unit (TrimbleTM GeoXH), plot center
coordinates were obtained with sub-meter accuracy for 248 plots. We used summarized plot data in a
regression analysis to produce the landscape forest structure and fuel model map layers for the fire
behavior simulations.

2.2.2. Lidar Data

The laser scanner campaign was completed in September 2008 in five survey flights in leaf-on
conditions by the National Center for Airborne Laser Mapping (NCALM) using an Optech GEMINI
Airborne Laser Terrain Mapper (ALTM) sensor at an altitude of approximately 600–800 m above
ground level (AGL). The Optech ALTM operated at a pulse rate frequency (PRF) of 70 KHz, with
a scanning frequency of 40 Hz and a scan angle of 20◦, and recorded up to four echoes per pulse.
The swath width of a single pass was about 580 m. In order to increase point density the aircraft flew
twice over the area with a large overlap between two adjacent swaths, such that every ground point
was acquired from at least three and mostly four angles to yield an average of 9 and minimum of
6 pulses per m2. Since the Lidar system records up to four returns per pulse, the total return density in
heavy canopy forest was often greater than 10 points per m2. The horizontal accuracy was about 10 cm
and the vertical accuracy was 5.5–10 cm. From the raw point data, we developed a digital elevation
model (DEM), a terrain model (DTM), and a surface model (DSM), as well as a canopy height model
(CHM) at 1 m resolution [57]. We extracted from the raw Lidar point cloud the following Lidar metrics:
minimum height, height percentiles (1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th), maximum,
mean, standard deviations, and the coefficient of variation of height; these metrics were used with
field plot data at a later step.

2.3. Fire Behavior Model Inputs

This work focuses on FlamMap, as we have experience working with this model, and have used it
in the mixed conifer zone of the Sierra Nevada for several years [16,58]. FlamMap requires a standard
suite of co-registered spatial data layers at the same resolution (topography (i.e., elevation, slope and
aspect), canopy (i.e., canopy cover, canopy height, canopy base height, and canopy bulk density) and
fuels), as well as weather data to perform simulations. Methods for these input layers are summarized
in Table 1 and described here.

Table 1. Methods for generating the input layers used in FlamMap.

Spatial Layer Development Method

Topography (Elevation, Slope, Aspect) Created directly from interpolated Lidar last return, and resampled from 1 m DEM

Canopy Cover Directly calculated with Lidar

Canopy Height Regression between field plot data and Lidar metrics

Canopy Base Height Regression between field plot data and Lidar metrics

Canopy Bulk Density Fire and Fuels Extension in Forest Vegetation Simulator, then regression with Lidar metrics

Fuel Model Regression between plot-measured surface fuels and Lidar metrics

Weather Remote Automated Weather Station (RAWS)

Spatial Data Layers from Lidar. Elevation (m) was resampled to 20 m resolution from 1 m Lidar
DEM using the mean values, and slope (in percent) and slope aspect (in degrees) were created from
the 20-m resolution DEM. The CHM was used to create a canopy cover (CC) layer at 20-m resolution
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by finding the ratio of the number of CHM pixels that fall within the pixel that have a value above a
threshold (1.5 m) to the total number of CHM pixels [59]. Lidar data were processed using Python.
We used plot CC, canopy bulk density (CBD), and the average of the live tree heights (CH), and heights
to live crown base (CBH) as the dependent variables in a regression analysis with Lidar-derived
metrics as independent variables. This approach determines the combination of coefficients that
yield the best-predicted values that are correlated with the plot measured forest structure variables.
The coefficients are then applied to the entire study area [27] to create four canopy fuels spatial layers.

CBD was calculated using the Fire and Fuels Extension in Forest Vegetation Simulator (FVS in [23]),
with tree lists that were obtained from forest inventory plots. FVS calculates CBD, as described
elsewhere [21], and assumes a uniform vertical distribution of crown fuels along the crown’s length.
As such, and contrary to canopy cover, our expectations were low that a predictive relationship directly
with Lidar metrics could be identified and a suitable model evaluated with error in this analysis. As an
alternative, we used a regression tree to assign CBD based on the same Lidar derived topographic and
forest structure variables described above. Independent variables that were used included CC, CH,
and elevation; model fit was moderate (p = 0.01, R2 = 0.35), but were deemed suitable in describing
forest conditions based on generalized vegetation types.

Fuel Models. To assign fuel models we developed a selection criteria utilizing fuels and shrub
cover data collected from field plots. All of the fuel models used were based on Scott and Burgan [60].
Although there are other fuel classifications, some of which provide greater detail across fuel strata
(e.g., Prometheus System [61], Fuel Characteristic Classification System [62], these are not currently
supported in FlamMap. We used individual regression trees to predict three plot-derived fuel variables:
(1) surface fuel load (includes litter and 1, 10, 100 h fuels), (2) shrub cover, (3) coarse fuel load (1000 h
fuels). Independent variables that were used in the model were Lidar-derived forest structure and
topographic variables: slope, aspect, elevation, canopy cover, and canopy base height. Regression trees
are ideal for such an analysis because they identify break values for predictor variables that can be
used to repeatedly assign fuel models to stands [7,20]. Statistical fits were moderate (R2 = 0.35–0.42),
but were deemed appropriate for categorizing stands into discrete fuel models. Table 2 summarizes
our final fuel model selection for the entire landscape based on results from the individual regression
trees. The chosen fuel models in the selection logic were based on previous studies, input from local
fire/fuel managers, and on our familiarity with the study area [7,20].

Table 2. Fuel model assignments and their proportion throughout the study area. Fuel model selection
logic was based on multiple regression tree analyses using plot-level data for dependent variables
(shrub cover and fuel loads by category) and independent forest structure variables from Lidar data
(20 m pixel resolution).

Scott and Burgan (2005)
Fuel Model Description of Stands with Fuel Model Assigned % of Study Area

SH3 (143) Basal Area < 50 m2 ha−1, Canopy Cover < 40%, moderate fuel
load dominated by shrubs and forest litter

26

TU2 (162) Basal Area 60 m2 ha−1, Canopy Cover > 30%, moderate fuel
load dominated by shrubs and forest litter

1

TU5 (165) Basal Area 20–80 m2 ha−1, Canopy Cover > 40%, high fuel
load dominated by shrubs and forest litter

29

TL (189) Basal Area 40–80 m2 ha−1, Canopy Cover > 30%, moderate to
low site productivity

52

SB2 (202) Basal Area > 40 m2 ha−1, Canopy Cover > 40%, high site
productivity, moderate fuel load with coarse fuels present

10

Weather Data. We obtained weather information from the Duncan Peak Remote Automated
Weather Station (RAWS), restricting the analysis period to the dominant fire season for the area
(1 June–30 September). Observations were available from 2002 to 2009. We used 90th percentile
and above wind speeds to generate multiple wind scenarios, under which fires were simulated.
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We identified the dominant direction and average speed of all the observations at or above the 90th
percentile value. This resulted in four different dominant wind directions, each with its own wind
speed and relative frequency (based on the proportion of observations recorded at or above the
90th percentile value for each dominant direction) (Table 3). Despite incorporating multiple wind
directions, we did not capture the influence of terrain on wind patterns. This choice to forego the use
of more complex wind patterns, such as those output from Wind Ninja [63], was made in order to save
computational and analytical time, especially given the number of simulations employed (described
below). We used 95th percentile fuel moistures, which combined with the filtered wind speeds, capture
conditions that are associated with large wildfire growth. As a result, our modeled fires represent only
those fires that are likely to escape initial fire suppression efforts.

Table 3. Parameters used for fire behavior model simulations. Parameters were drawn from the
Duncan Remote Automated Weather Station, and represent the 90th percentile and above winds and
the 95th percentile fuel moistures for the predominant fire season in the area (1 June–30 September).

Weather Input
Specific Parameter/Value

Speed (km/h) Direction (Degrees az.) Relative Frequency

Wind
19 225 0.75
20 45 0.10
19 180 0.05

Fuel Type 1 h 10 h 100 h Live Herbaceous Live Woody

Moisture Content (%) 2 3 5 30 60

2.4. Fire Behavior Model Simulations

We employed a command-line version of FlamMap [19], called RANDIG, to model fires across
the Last Chance landscape. FlamMap uses the minimum travel time (MTT) algorithm [64] to simulate
fire spread based on Huygens’ Principle, where the growth and behavior of a fire edge is modeled as a
vector or wave front [64,65]. Fire spread is predicted by the Rothermel equations [66], and crown fire
initiation is evaluated according theory for start and spread of crown fire presented by Van Wagner [67],
and as implemented by Scott and Reinhardt [21]. Extensive application has demonstrated that the
Huygens’ principle in general, and the MTT algorithm in particular, can predict fire spread and
replicate large fire boundaries in heterogeneous ecosystems reasonably well [12,68–75].

In addition to landscape topographic and canopy fuels maps described above, RANDIG requires
the number/pattern of ignitions, fire duration, wind speed and direction, and fuel moistures. For each
fire behavior model run, we simulated 10,000 randomly placed ignitions, burning for 240 min.
While the use of numerous randomly place ignitions is not a true application of a Monte Carlo
method, the intent with it is to remove the influence of fire start location as a significant influence on
the model outputs. The burn period duration was selected, such that simulated fire sizes (for one
burn period) approximated large spread events (daily) observed in actual fires that occurred near
the study area [13]. There were three recent fires that burned near or within the Last Chance study
area, for which daily spread information existed: the 2001 Star Fire, the 2008 American River Fire
complex, and the 2013 American Fire. The range of average simulated fire sizes for our experimental
runs (1500–2100 ha) approximates the largest daily spread events that were observed in these three
fires. However, a nearby wildfire, the 2014 King Fire, demonstrated extreme fire growth that was an
order of magnitude larger than our modeled daily spread events. This emphasizes a limitation of our
modeling approach in that it is not capturing the extreme plume-dominated fire growth [76]. Instead,
our approach likely represents larger (albeit not extreme) wind-driven fire events in Sierra Nevada
mixed-conifer forests.

All data layers were combined with a grid cell resolution of 20 m, maintaining the detail of the
canopy surface models. Outputs from FlamMap include: (1) mapped conditional burn probability
(CBP), (2) and a collection of 20 mapped marginal conditional burn probabilities (CBPi) from 0–10 m
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parsed into 0.5 m flame length classes at 40 m resolution, and (3) mapped modeled fires, one fire per
run. Conditional burn probabilities are computed by dividing the total number of times a pixel burned
by the total number of simulated fires (10,000 random ignitions). The conditional burn probability
for a given pixel is an estimate of the likelihood that a pixel with the given forest and environmental
conditions will burn given a single random ignition. To identify more problematic simulated fire
occurrences we performed analysis on the burn probabilities for which modeled flame lengths were
greater than the critical flame length, where the potential for crown fire initiation is high. The CBPi
outputs were used to calculate the probabilities with flame lengths greater than the critical flame length
set to 2 m by summing CBPi outputs of value greater than 2 m (i.e., 2 m + 2.5 m + 3 m, etc.).

2.4.1. Monte Carlo Simulations

We used a Monte Carlo simulation analysis focusing on two canopy fuels variables—CH and
CBH—in our simulation experiment. We ran the FlamMap simulation to generate conditional burn
probability based on the original set of eight topographic, canopy fuels, and surface fuel model layers.
We simulated error propagation by generating the same conditional burn probability estimates for
two additional scenarios, with 100 runs each. This resulted in a total of 201 different conditional burn
probability surfaces. We chose to run the model 100 times (and not more, as is typical with Monte
Carlo simulations), as there is to date no scripted version of the model, and each run took considerable
computation and analyst time. Model 1 used the original, unmodified data; Model 2 used 100 versions
of the perturbed CH layer (CH + Error), and Model 3 used 100 versions of the perturbed CBH layer
(CBH + Error). The workflow for Model 2 (CH + Error) is shown in Figure 2, and the workflow also
applies to Model 3 (CBH + Error). In each case, the 100 error estimates for CH and CBH were generated
through random sampling from a Gaussian distribution, with mean = 0 and standard deviation being
equal to the calculated RMSE value that was derived from each regression equation and added to the
original CH or CBH values.
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Figure 2. General workflow for creating original Model 1 run with original data, and Model 2 run
(Monte Carlo with Canopy Height + Error). The same workflow holds for Model Scenario 3 (Crown
Base Height + Error).

2.4.2. Evaluation of Error Impact on Model Result

Comparisons between Model 1 (original data) and Models 2 and 3 allow for the interpretation
of the changes in modeled fire behavior that is caused by measurement error. For each CBP result,
we selected fires of flame lengths >2 m (corresponding to crown fire initiation and more problematic
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fire occurrence from a fire suppression and modeling perspective) for the subsequent analysis. First,
we calculated the difference between the original CBP (Model 1) and the individual error CBP maps
for Models 2 and 3. We compared the distribution of fire size classes between all of the models,
and compared how fire size related to number of ignitions across all the models.

To test the significance of the difference between the original run and the runs with error,
we calculated a z-score for Model 2 and Model 3, according to the formula:

Z = (
(Obs − Exp)

σObs
)

where Obs is the result from Model 2 or Model 3, Exp is the result from Model 1, and σ is the standard
deviation. These z-scores were compared to canopy height and canopy base height and other model
input layers through regression. We divided each variable into a set number of bins based on a constant
interval (e.g., 5 m for CH, 5% for CC, 0.2 m for CBH, 100 m for elevation, 5◦ for slope, and 30◦ for
aspect). Z-scores for Model 2 or Model 3 were regrouped based on the divided bins of each factor, and
the mean difference for each bin was calculated. Regression analysis was used to reveal how different
input factors influenced the differences between simulation results. Linear regression, polynomial
regression, and piecewise linear regression were tested, respectively, to get the best fit for each analysis.

3. Results

3.1. Canopy Height and Canopy Base Height

Forest structural characteristics in the Last Chance study area are typical of Sierra Nevada mixed
conifer forests. Results from the regression equations used to create CH and CBH layers are shown
in Table 4. CH was best modeled using the mean and 25th percentile Lidar metrics as important
predictors (p < 0.0001, R2 = 0.81). CBH was best modeled using the 10th and 25th percentile Lidar
metrics (p < 0.0001, R2= 0.51). Both regression equations were significant. The RMSE of 4.12 m (CH)
and 1.62 m (CBH) were used to develop 100 perturbed layers with introduced error for both CH and
CBH, as described in the Methods section above.

Table 4. Details of canopy height and crown base height field data, and details of resulting regression
with Lidar metrics.

Forest Variables Mean (SD) Minimum-Maximum Regression Equation R2 (RMSE)

Canopy Height (m) 23.3 (10.1) 0–51.9 4.73 − 0.82 × L25th + 1.88 × Lmean 0.81 (4.12 m)
Crown base height (m) 3.7 (2.4) 0–12.7 0.17 + 0.25 × L10th + 0.30 × L25th 0.51 (1.62 m)

SD = Standard Deviation of the Mean; Lmean = Mean of Lidar returns; L25th = 25th percentile of Lidar returns;
L10th = 10th percentile of Lidar returns.

3.2. Fire Behavior Model Results

The conditional burn probability of the study area is depicted in Figure 3. Some areas are more
likely to burn and they are shown in red versus other areas that burn less often, which are shown
in green. The conditional burn probabilities that are produced from Model 1 with the original data
ranged from 0.0 to 0.225, with a mean of 0.049. This overall pattern of CBP did not change when CH
and CBH error were included in the simulation. Model 2 (CH + Error) ranged from 0.0 to 0.220, with a
mean of 0.048 and Model 3 (CBH + Error), ranged from 0.0 to 0.193, with a mean of 0.049 (Figure 3).
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Figure 3. Map of conditional burn probability (CBP) for high severity fires across the Last Chance
study area (40 m resolution): (a) Model 1 (original data); (b) Average CBP for 100 runs of Model 2
(CH + Error); and, (c) Average CBP for 100 runs of Model 3 (CBH + Error).

The difference between Model 1 and Model 2 was slight, and ranged from −0.055 to 0.007.
CPB increases were apparent on the margins of the study area, and largest decreases in the central
study area, areas with higher CC and elevation. The difference between Model 1 and Model 3 was
larger, and ranged from −0.122 to 0.116 (Figure 4). Increases in CBP were apparent across the study
area and decreases were apparent mainly in the northwest.
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There were strong and predictable relationships between the significant difference in modeled 
CBP (z-score) and CH and CBH. There were moderate fits between CC and z-score value (R2 = 0.63), 
and CBH and z-score value (R2 = 0.49) in Model 2. At lower canopy heights, the addition of error from 
the CH data layer (Model 2) increased CBP (values above the 0.0 line in Figure 6a), and this trend 
was similar for CBH (Figure 6b), with higher canopy base height decreasing modeled CBD. In Model 
3, there were good fits between CC and z-score value (R2 = 0.79) and moderate fit between CBH and 

Figure 4. Difference in modeled conditional burn probability for (a) Model 2 (Canopy Height + Error)
minus Model 1 (original data), and (b) Model 3 (Canopy Base Height + Error) minus Model 1
(original data).

A distribution of modeled area of CBP for each Model reveals little error impact, with only slight
differences in Model 3 at low and high CBP (Figure 5a). Fire size differences between models are
consistent with this. The mean fire size in Model 1 was 1313.0 ha (SD = 822.32 ha) and ranged from 0.3
to 4328.5 ha. For Model 2, the mean fire size was 1295.2 ha, and ranged from 0.3 to 4430.9 ha, and for
Model 3, the mean was 1277.3 ha, and it ranged from 0.32 to 4115.5 ha. Fire size distributions with
respect to the number of ignitions for Model 2 and Model 3 were similar to Model 1 (Figure 5b).
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Model 3. Note that the conditional burn probability shown for Model 2 and Model 3 is the average of
100 runs, and the number of ignitions is the average frequency of the 100 runs within each fire size bin.

3.3. Relationship Between Significant Difference in CBP and Model Input Variables

There were strong and predictable relationships between the significant difference in modeled
CBP (z-score) and CH and CBH. There were moderate fits between CC and z-score value (R2 = 0.63),
and CBH and z-score value (R2 = 0.49) in Model 2. At lower canopy heights, the addition of error from
the CH data layer (Model 2) increased CBP (values above the 0.0 line in Figure 6a), and this trend was
similar for CBH (Figure 6b), with higher canopy base height decreasing modeled CBD. In Model 3,
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there were good fits between CC and z-score value (R2 = 0.79) and moderate fit between CBH and
z-score value (R2 = 0.56). Similar to with Model 2, at lower canopy heights, the addition of error from
canopy base height data layer (Model 3) increased CBP (Figure 7a), and increases in CBH lessened the
modeled CBP (Figure 7b).
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4. Discussion

There is considerable uncertainty in spatially explicit fire behavior modeling. Much of this
uncertainty is the result of inherent variability in forest structure and surface fuels at multiple spatial
scales [77]. Developing spatially comprehensive products that are based on interpolating information
from discrete field plots may not robustly capture this variability, especially in complex forests. Error
in input spatial products when captured from field data is rarely reported or estimated, and overall
uncertainties that these data create are rarely addressed in the literature describing operational fire
behavior modeling [6,7]. These errors can include errors in forest structure inputs, as well as errors
in fuel model estimation, which can be very large [20]. In contrast, analysts produce wall-to-wall
detailed maps of forest structure from Lidar data that can be compared to field measures in order
to derive error measures [20,27–29,45,47]. As noted earlier, there can be a measurement mismatch
between Lidar and field-based data protocols, in particular with CBH. CBH—or the height above
which there is sufficient fuel to move a fire upward—is a critical component for assessing fire hazard in
a given area [38,78,79] yet it is difficult to measure. Lidar-derived CBH involves regressions between
point cloud metrics and plot data [20,27–29,49], while the typical measurement for CBH without Lidar
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involves estimates at the plot scale through allometric equations that consider species, diameter at
breast height (DBH), tree height, crown length, height to live crown base, crown ratio, and crown
width [38,78,79]. This discrepancy in method (i.e., regression with direct measures vs. modeled
estimate) can result in a low correlation between Lidar and field estimates for CBH [20,35,79], and thus
inflating the error estimates that are associated with CBH.

Our work showed that the impact on modeled results of expected errors associated with
Lidar-based forest structure are not significant. Conditional burn probability, fire size, and fire
size distributions were very similar between models run with and without added error. However,
there are important aspects that need further discussion. First, the impact of introduced error is more
pronounced when the error is introduced to the CBH layer than with the CH layer (e.g., the difference
between modeled CBP in the former (CBH) case is −0.1217 to 0.1157, as compared to −0.0547 to 0.0065
in the latter (CH) case). This is not surprising, as the CBH error is larger proportionally than the CH
error. Second, the introduction of error in both CH and CBH layers at lower CBHs serves to increase
modeled CBP. This is a logical result when one considers how influential CBH is on hazardous fire
potential [8]. Fire propagation in forested environments is strongly influenced by the transition from
surface fire to crown fire [21,80]. Ladder fuels, or forest fuels that provide vertical fuel continuity and
can preheat canopy fuels that have not yet ignited [38,79,81] are important in fire behavior, but US fire
behavior models such as FlamMap and Farsite are not currently able to use a quantitative measure of
ladder fuels in forests. Instead, CBH is used in US fire behavior models to represent the vertical fuel
structure in forests. CBH is used in increments of 0.5 m in spatial fire behavior models that can be used
on large area, such as the Last Chance study area.

Our results focused on two extremes of Lidar error—canopy height is easiest to measure with
Lidar and canopy base height is more difficult—but we need to also consider how error in the other
input layers—topography, canopy cover, crown bulk density, and surface fuels—can influence the
modeled results. While Lidar-derived topographic variables are generally considered accurate [57],
crown bulk density and surface fuels are very difficult to capture accurately over large areas with
field methods or with Lidar [20]. Further exploration is needed that examines the contributions to
uncertainty from each of the input layers that are used in models such as FlamMap.

It is well documented elsewhere [20] that the accuracy of products that are derived from discrete
return Lidar captured from an aircraft decreases with increased penetration into dense forest canopy.
New technological developments will likely ameliorate this. For example, there is an expectation that
full waveform Lidar will produce more detailed characterizations of vegetation structure, due to its
ability to digitize and record the entire backscattered signal of each laser pulse [82,83]. Studies focusing
on canopy bulk density and CBH estimation using large-footprint, waveform-digitizing Lidar data have
reported good results (e.g., [84]), demonstrating that waveform data from a large-footprint system may
provide the spatially explicit forest structure that is needed for fire behavior modeling. Additionally,
developments in mobile ground based Lidar (e.g., portable canopy Lidar or portable profiling Lidar)
will likely be able to map important inter-canopy forest structure variables [85,86] in more detail.
Moreover, new methods to link novel ground measurements of critical forest structure—such as
presence and condition of ladder fuels—will likely prove fruitful [38].

One of the key uses for fire behavior models is to explore the impacts of fuel treatment alternatives
across forested landscapes [87]. While we did not explicitly examine the interaction between error and
potential fuel treatment location, there is little here to suggest that the error introduced by Lidar data
would significantly influence any modeled treatment impact. This is perhaps useful information for
forest and fire managers, who are tasked with planning landscape level forest fuel treatments, exploring
fuel treatment alternatives across land ownerships, and using fire behavior models to contribute to the
planning process that is mandated for the management of federal and state agencies [6,7].
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5. Conclusions

Lidar data is increasingly being used in operational forest management to quantify and map
forest characteristics [45,88,89], and it is being acquired across increasingly large forest landscapes.
Lidar data products will likely be increasingly used in fire behavior models as increasing numbers
of forest managers acquire these data. However, they are not yet routinely used in fire behavior
modeling. The challenge is not that Lidar-based estimates of CH and CBH have errors, they do (as do
field-based estimates). But rather, that forest fire managers are used to dealing fire behavior models
when critical inputs are estimated from field measurements. Managers need an assessment of how
their fire behavior models will operate differently when parameters such as CH and CBH are estimated
from Lidar measurements instead of field measurements. Here, we investigated the influence of error
in Lidar-derived CH and CBH on fire behavior models through a Monte Carlo sensitivity analysis
in a case study area in the Sierra Nevada in California. We developed three models (Model 1 used
the original, unmodified data, Model 2 incorporated error in the CH layer, and Model 3 incorporated
error in the CBH layer) and examined the difference, pattern, and significance of conditional burn
probability and fire size, and the relationship between significant areas of change with other model
input layers. We found that the expected error that is associated with CH and CBH did not greatly
influence modeled results: conditional burn probability, fire size, and fire size distributions were very
similar between Model 1 (original data), Model 2 (error added to CH), and Model 3 (error added to
CBH). Important lessons include: (1) the impact of introduced error is more pronounced with CBH
than with CH; and, (2) at lower canopy heights, the addition of error increased modeled canopy
burn probability.

As Lidar data is more commonly collected for forests, a better understanding of the influence
of Lidar-derived layer error on the fire behavior modeling process might help forest managers and
scientists to better evaluate how Lidar can play a role in their work. Our work suggests that the use of
Lidar data, even with its inherent error, can contribute to reliable and robust estimates of modeled
forest fire behavior and forest managers should be confident in using Lidar data products in their fire
behavior modeling workflow.
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