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MULTIPLE SOLUTIONS OF
SECOND ORDER HAMILTONIAN SYSTEMS

GABRIELE BONANNO, ROBERTO LIVREA AND MARTIN SCHECHTER

Abstract. The existence and the multiplicity of periodic solutions for a pa-
rameter dependent second order Hamiltonian system are established via link-

ing theorems. A monotonicity trick is adopted in order to prove the existence
of an open interval of parameters for which the problem under consideration
admits at least two non trivial qualified solutions.

1. Introduction

The study of the existence and the multiplicity of solutions for second order
Hamiltonian systems of type

(1.1) −ü(t) = ∇F (t, u(t)),

has been widely investigated in these latest years, see [1]–[6], [9]–[12], [15], [18]–[23],
[25]–[27], [29]–[31], [33]–[52].

Because of its variational structure, the florid minimax methods for critical point
theory, particularly with its linking theorems (see [24, 28, 32, 33, 34]) represents a
fruitful tool in order to approach problem (1.1).

Recently, in [35], the following system

−ü(t) = B(t)u(t) +∇V (t, u(t)),

has been studied, where

(1.2) u(t) = (u1(t), · · · , un(t))

is a map from I := [0, T ] to Rn such that each component uj(t) is a periodic function
in H1 with period T, and the function V (t, x) = V (t, x1, · · · , xn) is continuous from
Rn+1 to R with

(1.3) ∇V (t, x) = ∇xV (t, x) = (∂V/∂x1, · · · , ∂V/∂xn) ∈ C(Rn+1,Rn).

For each x ∈ Rn, the function V (t, x) is periodic in t with period T.

By assuming that the elements of the symmetric matrix B(t) are to be real-valued
functions bjk(t) = bkj(t) and that

(B1) each component of B(t) is an integrable function on I, i.e., for each j and
k, bjk(t) ∈ L1(I),

it was possible to exploit the property that there is an extension of the operator

D0u = −ü(t)−B(t)u(t)

Key words and phrases. Second order Hamiltonian systems, periodic solutions, critical points.
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having a discrete, countable spectrum consisting of isolated eigenvalues of finite
multiplicity with a finite lower bound −L

−∞ < −L ≤ λ0 < λ1 < λ2 < . . . < λl < . . .

(cf. [31]).

Here, inspired by the arguments adopted in [35], we consider the following prob-
lem

(1.4)

 −ü(t) +B(t)u = µ∇V (t, u),

u(T )− u(0) = u̇(T )− u̇(0) = 0,

where B is a symmetric matrix valued function satisfying an elliptic condition (see
next assumption (B3)) and µ is a positive real parameter. In particular, first we
simply require a suitable behaviour of the potential V (t, ·) near zero in order to
establish the existence of positive interval of parameters for which problem (1.4)
admits at least one qualified non trivial solution (see Theorem 3.1). Then, assum-
ing in addition that V (t, ·) satisfies different conditions at infinity, a second non
trivial solution is assured (see Theorems 3.2 – 3.4). The multiplicity results are
obtained combining a linking theorem for functionals depending on a parameter
with a monotonicity trick.

2. Variational setting and preliminary results

In the sequel we will assume the following conditions on the matrix valued func-
tion B

(B2) B(t) = (bij(t)) is a symmetric matrix with bij ∈ L∞(I).
(B3) There exists a positive function γ ∈ L∞(I) such that

B(t)x · x ≥ γ(t)|x|2

for every x ∈ Rn and a.e. t in I.

Thus

γ(t)|x|2 ≤ B(t)x · x ≤ Λ(t)|x|2,
for every t ∈ I and x ∈ Rn, where Λ(t) ∈ L∞(I). Following the notation of [30],
let H1

T be the Sobolev space of functions u ∈ L2(I,Rn) having a weak derivative
u̇ ∈ L2(I,Rn). It is well known that H1

T , endowed with the norm

∥u∥H1
T
:=

(∫ T

0

|u(t)|2 dt+

∫ T

0

|u̇(t)|2 dt

)1/2

,

is a Hilbert space, compactly embedded in C0(I,Rn) and C∞
T ⊂ H1

T .
Because of the previous conditions, it is possible to introduce onH1

T the following
inner product

(Du, v) =

∫ T

0

B(t)u(t) · v(t) dt+
∫ T

0

u̇(t) · v̇(t) dt,

for every u, v ∈ H1
T . The norm induced by (Du, v) is

d(u)1/2 :=

(∫ T

0

B(t)u(t) · u(t) dt+
∫ T

0

|u̇(t)|2 dt

)1/2

.
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In fact, we have

Lemma 2.1. d(·)1/2 is a norm on H1
T . There is a constant c0 > 0 such that

∥x∥2∞ ≤ c0d(x), x ∈ H1
T .

Remark 2.1. For an explicit estimate of the constant c0 we refer to [12, 21, 30].

A solution of problem (1.4) is any function u0 ∈ C1(I,Rn) such that u̇0 is
absolutely continuous, and satisfies

−ü0 +B(t)u0 = µ∇V (t, u0) a.e. in I,

and

u0(T )− u0(0) = u̇0(T )− u̇0(0) = 0.

It follows that, if we put λ = 1/µ, a critical point of the functional

Gλ(u) = λd(u)− 2

∫
I

V (t, u) dt, 0 < λ < ∞

is a solution of (1.4) where the system takes the form

(2.1) λDu(t) = ∇V (t, u(t))

We introduced the parameter λ to make use of the monotonicity trick. This requires
us to work in an interval of the parameter λ, and it allows us to obtain solutions
under very weak hypotheses. However, we obtain solutions only for almost every
value of the parameter. We can then obtain solutions for all values of the parameter
by introducing appropriate mild assumptions.

In proving the theorems, we shall make use of the following results of linking.
Let E be a reflexive Banach space with norm ∥ · ∥. The set Φ of mappings Γ(t) ∈
C(E × [0, 1], E) is to have following properties:

a): for each t ∈ [0, 1),Γ(t) is a homeomorphism of E onto itself and Γ(t)−1 is
continuous on E × [0, 1)

b): Γ(0) = I
c): for each Γ(t) ∈ Φ there is a u0 ∈ E such that Γ(1)u = u0 for all u ∈ E

and Γ(t)u → u0 as t → 1 uniformly on bounded subsets of E.
d): For each t0 ∈ [0, 1) and each bounded set A ⊂ E we have

sup
0≤t≤t0
u∈A

{∥Γ(t)u∥+ ∥Γ−1(t)u∥} < ∞.

A subset A of E links a subset B of E if A ∩ B = ϕ and, for each Γ(t) ∈ Φ, there
is a t ∈ (0, 1] such that Γ(t)A ∩B ̸= ϕ.

Define

Gλ(u) = λI(u)− J (u), λ ∈ Λ,

where I,J ∈ C1(E,R) map bounded sets to bounded sets and Λ is an open interval
contained in (0,+∞). Assume one of the following alternatives holds.

(H1) I(u) ≥ 0 for all u ∈ E and I(u) + |J (u)| → ∞ as ∥u∥ → ∞.

(H2) I(u) ≤ 0 for all u ∈ E and |I(u)|+ |J (u)| → ∞ as ∥u∥ → ∞.

Moreover assume that
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(H3) There are sets A, B such that A links B and

a0 := sup
A

Gλ ≤ b0 := inf
B

Gλ

for each λ ∈ Λ. a(λ) := infΓ∈Φ sup 0≤s≤1
u∈A

Gλ(Γ(s)u) is finite for each λ ∈ Λ.

Theorem 2.1. Assume that (H1)( or (H2)) and (H3) hold. Then for almost all
λ ∈ Λ there exists a bounded sequence uk(λ) ∈ E such that

∥G′
λ(uk)∥ → 0, Gλ(uk) → a(λ) as k → ∞.

For a proof, cf. [34].

3. Statement of the theorems

Theorem 3.1. Assume

(1) There are a function b(t) ∈ L1(I) and positive constants m and θ < 2 such
that

2V (t, x) ≤ b(t)|x|θ, |x| ≤ m, x ∈ Rn.

(2) There is a constant M > K0 = c0m
θ−2∥b∥1 such that

(3.1) lim inf
c→0

2

∫
I

V (t, cφ)/c2∥φ∥22 > Mλ0,

where φ is an eigenfunction of D corresponding to the first eigenvalue λ0.

Then the system (2.1) has a nontrivial solution uλ satisfying

d(uλ) < m2/c0, Gλ(uλ) < 0

for each λ ∈ (K0,M).

Theorem 3.2. Assume that hypotheses (1) and (2) of Theorem 3.1 are satisfied
in addition to

(3.2) lim inf
c→∞

2

∫
I

V (t, cφ)/c2∥φ∥22 > Mλ0.

Then the system (2.1) has two nontrivial solutions uλ, vλ satisfying

d(uλ) < m2/c0, Gλ(uλ) < 0, Gλ(vλ) > 0

for almost all λ ∈ (K0,M).

Theorem 3.3. Assume that hypotheses (1) and (2) of Theorem 3.1 are satisfied.
Moreover,

(3) The function V is such that

(3.3) V (t, x)/|x|2 → ∞, as |x| → ∞,

uniformly with respect to t.
(4) There is a function W (t) ∈ L1(I) such that

2V (t, x)− 2V (t, rx) + (r2 − 1)x · ∇xV (t, x)(3.4)

≤ W (t), t ∈ I, x ∈ Rn, r ∈ [0, 1].
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Then the system (2.1) has two nontrivial solutions uλ, vλ satisfying

d(uλ) < m2/c0, Gλ(uλ) < 0, Gλ(vλ) > 0

for each λ ∈ (K0,M).

Theorem 3.4. The conclusions of Theorem 3.3 hold if we replace Hypothesis (3.4)
with:

There are a constant C and a function W (t) ∈ L1(I) such that

H(t, θx) ≤ C(H(t, x) +W (t)), 0 ≤ θ ≤ 1, t ∈ I, x ∈ Rn,

where

H(t, x) = ∇xV (t, x) · x− 2V (t, x).

4. Proofs of the theorems

Before giving the proofs, we shall prove a few lemmas.

Lemma 4.1. If (3.4) holds, then

(4.1)

∫
I

[2V (t, u)− 2V (t, ru) + (r2 − 1)u · ∇uV (t, u)] ≤ C, u ∈ H1
T , r ∈ [0, 1],

where the constant C does not depend on u, r.

Proof. This follows from (3.4) if we take u = x. �

Lemma 4.2. If u satisfies G′
λ(u) = 0 for some λ > 0, then there is a constant C

independent of u, λ, r such that

(4.2) Gλ(ru)−Gλ(u) ≤ C

for all r ∈ [0, 1].

Proof. From G′
λ(u) = 0 one has that

(G′
λ(u), g)/2 = λ(Du, g)−

∫
I

g · ∇uV (t, u) = 0

for every g ∈ H1
T . Take

g = (1− r2)u.

Then we have

Gλ(ru)−Gλ(u) =λ(r2 − 1)(Du, u)

+

∫
I

[2V (t, u)− 2V (t, ru)] dt

=

∫
I

[2V (t, u)− 2V (t, ru) + ((r2 − 1)u · ∇uV (t, u)] dt

≤ C

by Lemma 4.1. �
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Proof of Theorem 3.1. Fix λ ∈ (K0,M), put r2 = m2/c0 and define

Br = {u ∈ H1
T : d(u) ≤ r2}, ∂Br = {u ∈ H1

T : d(u) = r2}.
We claim that

(4.3) inf
u∈∂Br

Gλ(u) > 0.

Indeed, let δ > 0 be such that K0 < K0 + δ < λ < M , then for every u ∈ ∂Br one
has

Gλ(u) ≥ λd(u)−
∫
I

b(t)|u(t)|θ ≥ λm2/c0 −mθ∥b∥1 ≥ δm2/c0,

and (4.3) holds. On the other hand, from (3.1), fixed ε ∈
(
0,Mλ0 − 2

∫
I
V (t, cφ)/c2∥φ∥22

)
,

there exists σ̄ > 0 such that

2

∫
I

V (t, cφ)/c2∥φ∥22 > Mλ0 + ε

for every |c| < σ̄. Hence, for c sufficiently small one has cφ ∈ Br, as well as

Gλ(cφ) = c2∥φ∥22(λλ0 − 2

∫
I

V (t, cφ)/c2∥φ∥22)

≤ c2∥φ∥22(Mλ0 − 2

∫
I

V (t, cφ)/c2∥φ∥22)

≤ −c2∥φ∥22ε < 0.

For each λ let µ(λ) = infBr Gλ. Then −∞ < µ(λ) < 0. There is a minimizing
sequence (uk) ⊂ Br such that Gλ(uk) → µ(λ). Consequently, there is a renamed
subsequence such that uk ⇀ u ∈ H1

T and uk → u ∈ L∞(I). Thus

λd(uk) → µ(λ) + 2

∫
I

V (t, u) dt.

Also λd(u) ≤ lim inf λd(uk) = µ(λ) + 2
∫
I
V (t, u) dt, namely Gλ(u) ≤ µ(λ) < 0 and

u /∈ ∂Br. Hence, u is in the interior of Br and we have G′
λ(u) = 0. �

Proof of Theorem 3.2. First observe that, if we define

I(u) = d(u) J (u) =

∫
I

V (t, u) dt

for every u ∈ H1
T one has that Gλ = Gλ. Hence, taking in mind that I(u) ≥ 0 for

all u ∈ H1
T , it is clear that (H1) holds. Moreover, as in the proof of Theorem 3.1,

take r2 = m2/c0. Then

ν(λ) = inf
∂Br

Gλ > 0, λ ∈ (K0,M).

By hypothesis, there are c1, c2 such that c1φ ∈ Br and c2φ /∈ Br with Gλ(ciφ) <
0, i = 1, 2. The set A = (c1φ, c2φ) links B = ∂Br (cf.,e.g., [33]). Applying Theorem
2.1, for almost every λ we obtain a bounded sequence (yk) ⊂ H1

T such that

Gλ(yk) → a(λ) := inf
Γ∈Φ

sup
0≤s≤1, u∈A

Gλ(Γ(s)u) ≥ ν(λ), G′
λ(yk) → 0.

Since the sequence is bounded, there is a renamed subsequence such that yk ⇀ y ∈
H1

T and yk → y ∈ L∞(I). Since G′
λ(yk) → 0, we have

λd(yk, v)−
∫
I

∇V (t, yk)v(t) → 0.
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In the limit this gives G′
λ(y) = 0. We also have λd(yk) →

∫
I
∇V (t, y)y = λd(y).

Consequently, we have Gλ(yk) = λd(yk) − 2
∫
I
V (t, yk) → λd(y) − 2

∫
I
V (t, y) =

Gλ(y) showing that Gλ(y) = a(λ) ≥ ν(λ) > 0. The proof is completed taking uλ as
already assured by Theorem 3.1 and vλ = y. �

5. The remaining proofs

Proof of Theorem 3.3. Note that (3.3) implies (3.2). By Theorem 3.2, for a.e. λ ∈
(K0,M), there exists uλ such that G′

λ(uλ) = 0, Gλ(uλ) = a(λ) ≥ ν(λ) > 0. Let
λ satisfy K0 < λ < M . Choose λn → λ, λn > λ such that there exists un satisfying

G′
λn

(un) = 0, Gλn(un) = a(λn) ≥ ν(λn) > 0.

Therefore, ∫
I

2V (t, un)

d(un)
dt < M.

Now we prove that {un} is bounded inH1
T . If ∥un∥H1

T
→ ∞, let ũn = un/d

1/2(un).

Then d(ũn) = 1 and there is a renamed subsequence such that ũn → ũ weakly in
H1

T , strongly in L∞(I) and a.e. in I. Let Ω0 ⊂ I be the set where ũ ̸= 0. Then
|un(t)| → ∞ for t ∈ Ω0. If Ω0 had positive measure, then, observing that (3.3) and
the continuity of V assure the existence of β ∈ R such that

V (t, x) ≥ β

for every (t, x) ∈ I × Rn, we would have

M >

∫
I

2V (t, un)

d(un)
dt =

∫
Ω0

2V (t, un)

d(un)
+

∫
I\Ω0

2V (t, un)

d(un)
dt

≥
∫
Ω0

2V (t, un)

|un|2
|ũn|2dt+

∫
I\Ω0

2β

d(un)
dt.

At this point, we obtain a contradiction passing to the liminf and applying the

Fatou lemma, since from (3.3) it is clear that for every t ∈ Ω0,
2V (t,un)
|un|2 |ũn|2 → +∞

as n → ∞. This shows that ũ = 0 a.e. in I. Hence, ũn → 0 in L∞(I). For any
s > 0 and hn = sũn, we have

(5.1)

∫
I

V (t, hn) dt →
∫
I

V (t, 0) dt.

Take rn = s/d1/2(un) → 0. By Lemma 4.2

(5.2) Gλn(rnun)−Gλn(un) ≤ C.

Hence,

(5.3) Gλn(sũn) ≤ C +Gλn(un) = C + a(λn) ≤ C + a(M).

But

Gλn(sũn) = λns
2(Dũn, ũn)− 2

∫
I

V (t, sũn)

≥ s2λd(ũn)− 2

∫
I

V (t, sũn)

→ λs2

by (5.1). This implies
Gλn(sũn) → ∞ as s → ∞,
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contrary to (5.3).
This contradiction shows that ∥un∥H1

T
≤ C. Then there is a renamed subse-

quence such that un → u weakly in H1
T , strongly in L∞(I) and a.e. in I. It now

follows that for the bounded renamed subsequence,

G′
λ(un) → 0, Gλ(un) → lim

n→∞
a(λn) ≥ ν(λ).

We can now follow the proof of Theorem 3.2 to obtain the desired solution. �

Proof of Theorem 3.4. We follow the proof of Theorem 3.3 until we conclude that
ũn → 0 in L∞(I) as a consequence of the fact that we assume that ∥un∥H1

T
→ ∞.

We define θn ∈ [0, 1] by

Gλn(θnun) = max
θ∈[0,1]

Gλn(θun).

For any c > 0 and hn = cũn, we have∫
I

V (t, hn) dt →
∫
I

V (t, 0) dt ≤ 0.

Thus, for every fixed c > 0, if n is large enough one has that 0 < c/d1/2(un) < 1
and

Gλn(θnun) ≥ Gλn((c/d
1/2(un))un) = Gλn(cũn) = c2λnd(ũn)− 2

∫
I

V (t, hn) dt,

so that

lim inf
n→∞

Gλn(θnun) ≥ c2λ,

namely, lim
n→∞

Gλn(θnun) = ∞. If there is a renamed subsequence such that θn = 1

for every n, then

(5.4) Gλn(un) → ∞.

If 0 ≤ θn < 1 for all n, then we have (G′
λn

(θnun), θnun) = 0. Indeed, defined
h(θ) = Gλn(θun) for every θ ∈ [0, 1], one has

d

dθ
h(θ) = (G′

λn
(θun), un)

.
Hence, if θn = 0 then (G′

λn
(θnun), θnun) = 0 · d

dθh(0) = 0. Otherwise, if 0 <
θn < 1, being h(θn) = maxθ∈[0,1] h(θ), one has

G′
λn

(θnun), θnun) = θn · d

dθ
h(θn) = 0.

Therefore, ∫
I

H(t, θnun) dt =

∫
I

(
∇V (t, θnun)θnxn − 2V (t, θnun)

)
dt

= Gλn(θnun)−
1

2
(G′

λn
(θnun), θnun)

= Gλn(θnun) → ∞.
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By hypothesis,

Gλn(un) =

∫
I

H(t, un)

≥
∫
I

H(t, θnun) dt/C −
∫
I

W (t) dt → ∞.

Thus, (5.4) holds in any case. But

Gλn(un) = a(λn) ≤ a(M) < ∞.

This contradiction shows that ∥un∥H1
T

≤ C. It now follows that for a renamed
subsequence,

G′
λ(un) → 0, Gλ(un) → lim

n→∞
a(λn) ≥ ν(λ).

We can now follow the proof of Theorem 3.2 to obtain the desired solution. �

6. Some examples

Here we show that the assumptions required in the main theorems are naturally
satisfied in many simple and meaningful cases.

For simplicity, in the following, we suppose that n = 1, I = [0, π] and B(t) ≡ 1
for all t ∈ I while α, β ∈ L1(I) are two positive functions. A direct computation
shows that the eigenvalues of D, with periodic boundary conditions, are

λl = 4l2 + 1.

Hence, λ0 = 1 and the corresponding eigenfunctions are constants.

Example 6.1. Put

V (t, x) = α(t)|x|θ

for every t ∈ I, x ∈ R, with 1 ≤ θ < 2. Then all the assumptions of Theorem 3.1
are satisfied. Indeed, condition (1) holds with b(t) = 2α(t) and for every m > 0.
Moreover, if φ(t) = k for every t ∈ I, with k ∈ R \ {0}, one has ∥φ∥22 = k2π and

2

∫
I

V (t, cφ)/c2∥φ∥22 = ∥b∥1|ck|θ−2/π,

showing that is (2), i.e., that lim infc→0 2
∫
I
V (t, cφ)/c2∥φ∥22 = +∞.

Finally, observe that in this case the interval of the parameter λ for which the
conclusions of Theorem 3.1 hold is (0,+∞).

Example 6.2. Let g : R → R be a positive and continuously differentiable function
such that

L = lim
x→∞

g(x) > c0π

and

2g(1) + g′(1) = 2g(−1)− g′(−1) = θ,

where 1 ≤ θ < 2. Put

F (x) =

{
|x|θ if |x| ≤ 1
x2g(x) if |x| > 1.

Then, the function

V (t, x) = α(t)F (x)
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for every t ∈ I, x ∈ R satisfies all the assumptions of Theorem 3.2. Indeed, arguing
as in the previous example, we see that conditions (1) and (2) hold with m = 1.
Moreover, for |c| large enough one has

2

∫
I

V (t, cφ)/c2∥φ∥22 = 2∥α∥1g(ck)/π.

Hence,

lim inf
c→∞

2

∫
I

V (t, cφ)/c2∥φ∥22 = 2∥α∥1L/π > 2∥α∥1c0 = K0

and condition (3.2) holds.

Example 6.3. Assume that α, β ∈ L∞(I) and put

V (t, x) = α(t)|x|θ + β(t)|x|τ

for every t ∈ I, x ∈ R with 1 ≤ θ < 2 < τ . Then all the assumptions of Theorem
3.3 are satisfied. Indeed, condition (1) holds with b(t) = 2(α(t) + β(t) and m = 1.
Moreover, if φ(t) = k for every t ∈ I, with k ∈ R \ {0}, one has

2

∫
I

V (t, cφ)/c2∥φ∥22 = 2(∥α∥1|ck|θ−2 + ∥β∥1|ck|τ−2)/π.

Hence

lim inf
c→0

2

∫
I

V (t, cφ)/c2∥φ∥22 = +∞

and (2) is verified. It is an easy matter to verify that condition (3) holds. Finally,
if

Vr(t, x) = 2V (t, x)− 2V (t, rx) + (r2 − 1)x · ∇xV (t, x)

for every t ∈ I, x ∈ R and r ∈ [0, 1], then, exploiting the choice of θ and τ and
observing that 2 − τ + τr2 − 2rτ ≤ 0, we see that there exists C > 0 independent
from t, x and r, such that

Vr(t, x) = 2α(t)|x|θ(1− rθ) + 2β(t)|x|τ (1− rτ )

+(r2 − 1)[α(t)θ|x|θ + β(t)τ |x|τ ]
= α(t)|x|θ(2− θ + θr2 − 2rθ)

+β(t)|x|τ (2− τ + τr2 − 2rτ ) < C,

namely (3.4) holds.

We conclude with a further example that points out how Theorem 3.3 applies
to functions that do not satisfy the well known Ambrosetti-Rabinowitz condition.

Example 6.4. Let α ∈ L∞(I) and put

V (t, x) = α(t)|x|2 ln2 |x|

for all t ∈ I and x ∈ R (with the meaning V (t, 0) = 0). Since

lim
x→0

|x|2−θ ln2 |x| = 0

for every 0 < θ < 2, it is clear that condition (1) holds with b(t) = α(t) and m
small enough. Moreover, if as usual φ(t) = k for t ∈ I and k ∈ R \ 0, one has

lim inf
c→0

2

∫
I

V (t, cφ)/c2∥φ∥22 = lim inf
c→0

2∥α∥1 ln2 |ck|/π = +∞,
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that is (2) is verified. It is simple to check that (3) holds. Finally, if Vr is defined
as in the previous example, for r ∈ (0, 1] one has

Vr(t, x) = 2α(t)|x|2
[
ln2 |x| − r2 ln2 |rx|+ (r2 − 1)(ln2 |x|+ ln |x|)

]
= 2α(t)|x|2

[
−r2 ln2 r − 2r2 ln r ln |x|+ r2 ln |x| − ln |x|

]
≤ 2α(t)|x|2 ln |x|

[
r2 − 1− 2r2 ln r

]
.

Since r2 − 1− 2r2 ln r ≤ 0 for every r ∈ [0, 1], there exists C > 0 independent from
t, x and r such that

Vr(t, x) < C.

For r = 0 one has

V0(t, x) = −2α(t)|x|2 ln |x|.
Thus, in any case, (3.4) holds.
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