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Abstract

Computationally advancing the predictive power of the nanoporous materials genome

by

Matthew D Witman

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Berend Smit, Chair

Since tens of thousands of nanoporous materials have been synthesized and millions have
been hypothesized, our ability to both predict novel materials and their performance for
a given application in a computational setting is becoming increasingly important. Utiliz-
ing simulations that can screen for optimal material performance becomes invaluable since
exhaustive experimental exploration of this vast chemical space can quickly become experi-
mentally intractable from an expense and time efficiency standpoint. This thesis is therefore
dedicated to advancing the computational tools and algorithms that can be used to both
predict novel materials and evaluate their performance for clean energy technologies.
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Chapter 1

A brief introduction to the
nanoporous materials genome

1.1 Nanoporous materials galore

The discovery of crystalline materials with microscopic pores (defined as 0.2-2 nm in size by
the International Union of Pure and Applied Chemistry) has given rise to an entire field of
scientific research. Some of the earliest investigations of zeolites revealed that the shape and
size of these microscopic cavities could be used to catalyze reactions and separate chemical
species, leading to their widespread adoption in the petrochemical industry.[1, 2] Zeolites
have dominated (and still do) in mainstream industrial applications, but it was discovered
starting in the 1990s that different chemistries and pore topologies could be accessed via
different classes of porous materials such as metal-organic frameworks (MOFs),[3–6] zeolitic
imidazolate frameworks (ZIFs),[7] covalent organic frameworks (COFs),[8] and porous poly-
mer networks (PPNs).[9] This has led to an explosion of synthesizeable nanoporous materials
over the past two decades, with thousands of experimentally validated crystal structures hav-
ing been deposited in the Cambridge Crystallographic Database.[10] Despite the plethora of
nanoporous material classes that exist, this thesis will focus on two specific types, MOFs and
zeolites. This section briefly introduces these two classes of materials, and for more detailed
background information the reader is referred to the review articles cited within.

Zeolites

As of the beginning of 2019, 234 zeolites have been reported by the International Zeolite
Association, with a handful that exist as naturally occurring minerals. These microporous
structures can typically be thought of as aluminosilicates (consisting of Si4+, O2−, and Al3+

ions) composed of tetrahedrally coordinated T-atoms. These tetrahedral units combine in
a collection of secondary building units (SBUs) in various ways, yielding the wide range of
pore sizes and topologies that are exhibited by the IZA database of zeolites.[11] An example
of both a zeolite SBU and full framework is shown in Fig. 1.1.
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Figure 1.1: (a) A particular zeolite SBU known as a double 4 ring (D4R), which also demon-
strates the fundamental zeolite unit: a Si atom with tetrahedral coordination to its neigh-
boring O atoms. (b) Visualization of the zeolite MWW supercell.

Metal-organic frameworks

MOFs are a widely studied class of crystalline, nanoporous materials whose composition of
metal or metal oxide nodes connected by organic linkers results in highly tunable structures
with diverse chemical and geometric properties.[12] The discipline of reticular chemistry, or
the rational design of MOFs from molecular building blocks in an underlying topology [13],
has been utilized to design vastly diverse structures. Tens of thousands of MOF materi-
als have been experimentally validated and their structural information submitted at the
Cambridge Structural Database.[14] Hence reticular chemistry has been a useful tool, both
experimentally and computationally, to tune these materials structural and chemical prop-
erties for a given application. Fig. 1.2 schematically demonstrates how different ligands and
metal nodes can be combined to form materials with diverse structure and chemistry.



CHAPTER 1. THE NANOPOROUS MATERIALS GENOME 3

Figure 1.2: (a) Schematic visualization of the organic linkers and metal oxide nodes, or
secondary building units (SBUs), from which MOFs are constructed and (b) self assemble
into frameworks exhibiting diverse geometry and chemistry. (c) Three different synthesized
MOFs are shown to demonstrate their structural diversity.

Hypothetical materials

In addition to those that have been synthesized in the laboratory, a plethora of structures
have been hypothesized by following the molecular design rules associated with a particular
class of materials. In one of the first examples of this large scale design of hypothetical
nanoporous materials, Deem and coworkers used Monte Carlo simulations to identify low
energy potential zeolite structures, resulting in a database of over 2,000,000 structures.[15,
16] The advent of MOFs gave rise to many more structure prediction algorithms,[17–22] the
most advanced of which were topology based: SBU building blocks can be abstracted and
overlaid on a template 3D net to construct the final hypothetical structure. Improvement
to these structure building algorithms can still be achieved, since even the topology based
approaches still do not have an automated way of dealing with particular families of MOFs
(see Chapter 2 for a more detailed discussion). Using topological data analysis, the similarity
in pore structures can be quantified amongst the materials in these combined databases and
help shine light on the true pore space diversity that is spanned by these disparate structure
building algorithms.[23] Ultimately, the presence of millions of hypothetical zeolites, MOFs,
COFs, ZIFs, and PPNs necessitates an investigation of a large number of these structures
understand the properties that yield optimal performance.
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Proposed applications

The following is a non-exhaustive list of some applications for which nanoporous materials
have been proposed. These range from the widely studied to the more recently proposed
applications: methane storage,[24] hydrogen storage,[25] CO2 removal from flue gas,[26] light
hydrocarbon separations,[27] mixed-matrix membranes,[28] natural gas upgrading,[29] chem-
ical sensing,[30] water harvesting,[31] water desalination,[32] heavy metal extraction for water
purification,[33] gold extraction from wastewater,[34] quantum computing architectures,[35]
scaffolds for nanoconfined systems,[36] single site catalysts,[37] drug delivery,[38] photocat-
alytic hydrogen production,[39] supercapacitors,[40] lithium ion battery anodes,[41] and the
list goes on. From an applications stand point, this thesis will focus mainly on computational
techniques that improve our ability to find and assess optimal materials in gas storage and
separations.

1.2 A justification for computational materials design

and simulation

The number of nanoporous materials, both synthesized and hypothesized, combined with
the number of applications for which they are being studied, makes the identification of
optimal materials an extremely daunting task. For an order of magnitude estimate, there are
10,000 synthesized nanoporous materials and 2,000,000 hypothesized structures contained in
published databases (although the number of hypothetically enumerable structures is in fact
much larger).[42] Simplistically assuming the only applications of interest are the 18 listed in
the previous section (many of which in actuality contain further sub-applications that would
warrant investigation), the upper bound on the number of experiments we conceivably would
need to design understand each material and find the optimum for a given application would
be on the order of 180,000. It takes weeks or months to create, characterize, and test a
material in the laboratory. If we rely on 1,000 experimental research groups around the
globe operating non-stop year round, taking 30 days to fully synthesize, characterize, and
test a new material, we would have to wait 15 years to complete all these experiments.
Matters are further complicated by the fact that the optimal material may lie within a
hypothetical database and has not yet even been synthesized and reported. In such a case
simulations are the only way to discover this materials utility. Clearly, if sufficiently accurate
computational techniques exist to pre-screen, understand, and identify optimal hypothetical
or existing candidates for a particular application, significant time and cost savings can be
achieved in the materials design process.
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1.3 Improving computational identification of optimal

porous materials

This thesis is organized into the contributions we have made in the three major compo-
nents of computational prediction of optimal nanoporous materials, the steps of which are
summarized in Fig. 1.3. In the life cycle of optimal material identification, one must first
generate novel hypothetical structures (Step 1 of Fig. 1.3) to study. Alternatively, rather
than focusing on hypothetical materials, one can focus only on those that have already
been synthesized.[43] However, by keeping synthesizability in mind when generating novel
hypothetical structures, we can limit the structure prediction exercise to materials that are
likely to be experimentally realized (Chapters 2, 3, and 4). Once we have a database of
materials, we need to have efficient computational techniques that can efficiently predict
a property of interest (Step 2 of Fig. 1.3). For example, we have extended a well-known
enhanced sampling Monte Carlo (MC) technique that permits more efficient acquisition of
thermodynamic adsorption data, thereby enabling a more holistic evaluation of adsorption
performance from an industrial process perspective (Chapter 5). Armed with a database of
materials and the necessary computational chemistry techniques to predict any properties of
interest, we can finally evaluate their performance across the entire database and not only
identify optimal materials for a given application but understand what properties enable
this optimality (Step 3 of Fig. 1.3). In this work we demonstrate how we can advance such
high-throughput screening studies for gas separations by simulating the frameworks as flex-
ible (a more realistic approach than the rigid structure approximation), a topic discussed in
Chapter 6. The final step (Step 4 of Fig. 1.3) of the computational materials design life cycle
is to experimentally validate any in silico predictions that have been made. Alternatively,
we can begin the entire process at Step 4, using previous experimental results to motivate
the computational investigation of a particular family of materials.
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Figure 1.3: A typical process for the computational design and identification of optimal
materials



7

Chapter 2

In silico materials design targeting
experimentally realizable structures

This chapter focuses on the in silico design of MOFs exhibiting 1-dimensional rod topologies.
We introduce an algorithm for construction of this family of MOF topologies, and illustrate
its application for enumerating MOF-74-type analogs. Furthermore, we perform a broad
search for new linkers that satisfy the topological requirements of MOF-74 and consider the
largest database of known chemical space for organic compounds, the PubChem database.
Our in silico crystal assembly, when combined with dispersion-corrected density functional
theory (DFT) calculations, is demonstrated to generate a hypothetical library of open-metal
site containing MOF-74 analogs in the 1-D rod topology from which we can simulate the
adsorption behavior of CO2. We finally conclude that these hypothetical structures have
synthesizable potential through computational identification and experimental validation of
a novel MOF-74 analog, Mg2(olsalazine).
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2.1 Reticular enumeration of MOFs: an extension to

1-D rod materials

The discipline of reticular chemistry, or the rational design of MOFs from molecular building
blocks in an underlying topology [13], has been utilized to design vastly diverse structures
and has been a useful tool, both experimentally and computationally, to tune these materials
structural and chemical properties for a given application. Previous computational work has
been directed towards generating large databases of hypothetical MOFs in silico through a
variety of methods. MOFs can be abstracted by a special type of graph known as a periodic
net that contains the information of their underlying topologies, and resources such as the
RCSR [44] and EPINET [45] databases have been created to store this information. Mar-
tin and Haranczyk used the connectivity information of molecular building blocks and these
catalogued nets to assemble hypothetical materials in silico for various classes of nanoporous
materials [19] and a similar approach was later implemented by the Heine group.[46] The
connection-based assembly strategy of Wilmer et al., which builds MOFs building block by
building block, was shown to generate over 137,000 hypothetical MOFs with diverse geomet-
ric properties and linker functionalization.[18] Three hundred of these materials displayed a
greater simulated methane storage capacity than any known material at the time. In addition
to the assembly algorithm, a methodology for linker selection is also necessary for in silico
design efforts. Previous methods to achieve this have relied on screening moderate-sized
databases of commercially available molecules (∼7,000,000),[47] using a genetic algorithm
to investigate composition space of possible linkers,[48] or brute-force enumeration of link-
ers from fragments of known MOFs.[18] These studies involving enumerated hypothetical
databases have proven useful for, among other things, elucidating structure-function rela-
tionships. Yet a noticeable limitation is that most, with a notable exception of the MIL-47
analogs of Wilmer, do not contain MOFs exhibiting a 1-D rod topology [49] in which the
metal-oxide secondary building units (SBUs) extend as a rod infinitely in one direction.
MOFs exhibiting this topological feature have demonstrated extremely interesting behavior
including remarkable CO2 capture in MOF-74 [50] and so called breathing frameworks [51,
52] which can yield stepped adsorption isotherms.

Yet thus far, reticular chemistry studies on 1-D rod MOFs have been almost exclusively
limited to the experimental realm, with intense focus on exploring analogs of MOF-74 to in-
crease its already remarkable potential for CO2 capture. One of the original works in this area
performed an isoreticular expansion of MOF-74 through exchange of the 2,5-dioxidobenzene-
1,4-dicarboxylate (DOBDC) linker for ligands extended by an increasing number of benzene
rings,[53] thereby increasing the channel volume of MOF-74, also known as Mg2(DOBDC).
Other efforts have aimed to tune or alter the open-metal site chemistry by utilizing different
metal elements during synthesis [54, 55], i.e. M2(DOBDC) [M = Mg, Fe, Co, Ni, Zn], or
through functionalization of the open-metal site by appendage of amine based molecules.[56]

Our reticular chemistry study combines an application that has only been studied exper-
imentally, the creation of MOF-74 analogs, with a computational method for the automated
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generation of hypothetical analogs of MOFs exhibiting a 1-D rod topology. In place of brute-
force enumeration of hundreds or thousands of structures across various topologies seen in
previous in silico studies, we take a more directed approach to investigate the MOF-74
structure and vary the chemical composition of the ligand to alter its geometric and chem-
ical properties. While this has been done previously for structures in the simpler MOF-5
topology,[47] MOF-74 requires a novel building algorithm since it exhibits 1-D SBU rods and
complex connectivity between ligands and SBUs. Furthermore, in this study we explore the
chemical space represented by the ∼60,000,000 distinct chemical species in the PubChem
Compounds database [57] and exchange linkers found within this space with the DOBDC
linker in the original structure. Only 61 molecules (0.0001% of this database) are identified
as feasible MOF-74 analog linkers, which provides a concise starting point for attempts at
experimental synthesis. One ligand in the set that was also commercially available, known by
its pharmaceutical name olsalazine or 3,3’-azobis(6-hydroxybenzoate)salicylic acid, was used
to successfully synthesize a MOF-74 analog. We significantly increase the impact of our in
silico screening by demonstrating that novel, predicted structures are indeed synthesizable.

Hence we develop a hypothetical structure generation method using a geometric opti-
mization routine which permits the rapid in silico assembly of 1-D rod MOF analogs (specif-
ically MOF-74 structures in this study) while only using linkers guaranteed to represent an
experimentally realizable molecule. The library of hypothetical MOF-74 analogs was struc-
turally analyzed and screened for CO2 capture potential by comparison to the performance
of the original structure. Finally, the knowledge ascertained from this computational study
was utilized to direct efforts to synthesize a particular MOF-74 analog from a commercially
available linker, yielding an experimental structure in excellent agreement with the in sil-
ico generated and optimized structure. Thus we have introduced a set of experimentally
realizable structures that can now be targeted in future synthetic efforts.

2.2 In silico generation of hypothetical MOF-74

analogs

The overall workflow for in silico generation, analysis, and experimental synthesis of hypo-
thetical MOF-74 analogs consists of five steps and is summarized below:

1. Identification of potential ligands. Chemical substructure searching and ligand
conformational analysis is performed to select potential substitutes for the MOF-74
DOBDC linker from the PubChem Compounds database.

2. Crystal structure assembly. Potential ligands are inserted into the MOF-74 topol-
ogy through geometric optimization of the crystal structure.

3. Dispersion corrected DFT. Dispersion corrected DFT calculations are performed
to optimize each assembled structure. REPEAT [58] derived partial atomic charges
are obtained following the optimization, required for step 4.
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4. Grand Canonical Monte Carlo (GCMC) simulations. CO2 adsorption is sim-
ulated at flue gas conditions with GCMC for each structure in the library of MOF-74
analogs.

5. Prioritization of synthetic targets. Hypothetical crystal structures constructed
from commercially available linkers are identified as synthetic priority targets. The
hypothetical MOF-74 analog, hereon named Mg2(olsalazine), was synthesized from
the commercially available olsalazine linker to validate our approach of generating
experimentally realizable crystal structures in silico.

The visualization of important structural features in MOF-74, shown in Fig. 2.1, is intended
as a visual aid for the reader throughout this section. This crystal exhibits infinite 1-D
hexagonal channels, where adjacent metal-oxide rods are bridged by a DOBDC linker. A
DOBDC linker connects to each rod through its two carboxylic acid oxygen atoms and an
adjacent phenolic oxygen.

Figure 2.1: The ab face of Mg-MOF-74 illustrates the hexagonal channel shape. A slice of
the channel wall demonstrates the extension of the 1-D metal oxide (Mg-O, Green-Red, re-
spectively) rods in the c-direction and the connectivity of the DOBDC linker to two adjacent
rods.

Identification of potential ligands

To create a library of hypothetical MOF-74 analogs requires identifying linkers which can
feasibly be exchanged with the DOBDC linker in the original structure. The steps through
which ligands were identified and chosen for MOF-74 enumeration is summarized in Fig. 2.2.

1. Database Selection. For this study we expand the scope of our exploration of
chemical space from a commercial database such as eMolecules (www.emolecules.com),
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sometimes referred to as the amazon.com for chemicals, to the larger PubChem Com-
pounds database. This PubChem library of molecules consists of ∼160,000,000 user
deposited structures, from which 60,000,000 are chemically validated and determined
to be unique. This subset of unique molecules is known as the PubChem Compounds
database and is approximately 9 times larger than the eMolecules database. While
these PubChem compounds may not necessarily be commercially available, any ligand
identified from this library should indeed represent a feasible, experimentally realizable
chemical structure.

2. Connectivity Filter. The chemical connectivity of MOF-74 demonstrates greater
complexity than the connectivity seen in the broad class of MOFs where the ligand
attaches to the SBUs by two or more carboxylic acid groups. Here we require a phenol
group directly adjacent to the carboxylic acid group in order to have the correct con-
nectivity. We impose the constraint that a molecule must have exactly two of these
identical substructures shown in Fig. 2.2 to satisfy the particular chemical connectivity
of MOF-74. This substructure can be abstracted as a SMARTs string, or a textual
representation of a substructure within a molecular graph, which can be readily iden-
tified by the open-source software package OpenBabel.[59] Thus each molecular entry
in PubChem can be quickly analyzed and identified if it contains a particular SMART.
After removing database entries that contained fragmented structures, salts, or net
charged species and filtering for molecules that contained exactly two of the required
SMARTs for MOF-74 connectivity, all but ∼400 molecules remained as potential lig-
ands. Thus simply identifying molecules with MOF-74 connectivity indicates we can
only investigate 0.0007% of the chemical space contained in the PubChem database.

3. High Energy Conformer Filter. Additional filtering was required to identify po-
tential linkers that could adopt a conformation suitable for building a MOF-74 analog.
The DOBDC linker is connected to a given metal rod SBU by three Mg-O bonds, one
at each carboxylic acid oxygen and a third at the phenolic oxygen (see Fig. 2.1). This
third connection point from the linker to the SBU adds the constraint that the terminal
benzene ring which connects to the SBU is not free to rotate about the axis defined by
the carboxylic acid bond vector. Since the original linker consists of just one benzene
ring, any proposed linker from which we attempt to build a MOF-74 analog must have
terminal benzene rings that lie in the same plane. An additional requirement is im-
posed in which the angle between the two vectors represented by the carboxylic acid
carbon to benzene ring bond in both connection groups are required to have an angle
of 180 degrees or 120 degrees. If the angle between the vectors is 180 degrees, then
the assembled crystal structure will be a variant of the originally published MOF-74
structure.[60] If the angle between vectors is 120 degrees, then the assembled structure
will be a variant of the m-MOF-74 structure.[54] These orientation constraints signif-
icantly affect the number of linkers that can be used to enumerate MOF-74 analogs.
The Confab tool in OpenBabel, which systematically generates diverse, low-energy
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conformers,[61] was used to generate a set of low energy conformers for each of the 400
remaining linkers. The criteria for a low energy conformer was set at 50 kJ/mol above
the minimum energy conformer in the gas phase and was calculated via the Merck
Molecular Force Field (MMFF94).[62] The molecules that passed the conformational
test were those that contained at least one conformer in which the planes defined by the
terminal benzene atoms were within +/- 10% of 180 degrees and carboxyl acid bond
vectors that were within +/- 10% of 120 degrees or 180 degrees. Discarding molecules
that could not realistically achieve the required conformational constraints of MOF-74
resulted in the removal of all but 61 structures from the set of potential ligands, yielding
a collection of molecules representing 0.0001% of the PubChem database. While not a
quantitative predictor of the synthesizability of a MOF-74 analog, the use of only low
energy conformers suggests that the assembled MOF-74 analog may be experimentally
realizable. Three of the 61 selected linkers in the PubChem database are shown in Fig.
2.3. Each ligand has access to a low energy conformer that exhibits both planarity
between the terminal benzene rings and an angle between the two carboxylic acid C-C
bonds of either 120 degrees or 180 degrees. All remaining linkers can be seen in the
assembled MOF-74 analogs by visualizing the Crystallographic Information (CIF) files
provided in Ref. [21].
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Figure 2.2: Step 1 : PubChem Compounds database is chosen to screen ∼60,000,000 chem-
icals. Step 2 : Filtering out molecules not appropriate for MOF ligands and those that do
not satisfy MOF-74 chemical connectivity removes all but 0.0007% of compounds. Step 3 :
Molecules that cannot achieve a low energy conformer compatible with MOF-74 geometric
requirements are filtered, thereby removing 84% of the remaining potential ligands.
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Figure 2.3: A sample of the 61 molecules found in the PubChem database that were iden-
tified as potential ligands for MOF-74 analogs. The middle linker, olsalazine, is utilized to
synthesize a novel MOF-74 analog.

Crystal structure assembly

The etb net of MOF-74, visualized in Fig. 2.4, exhibits special complexities which preclude
the use of previously developed methods for in silico crystal design.[18, 19] Three distinct
problems arise. Firstly, not all edges in nets that abstract a 1-D rod MOF represent a linker
or segment of a linker. As seen in Fig. 2.4, only some edges (highlighted in red) in the etb
net abstract the ligand that connects one SBU rod to another, while others abstract edges
that exist within the SBU rod itself (highlighted by thin black lines). Secondly, each node
in etb does not abstract a single, discrete SBU in MOF-74 but rather they abstract only
the metal atom contained within the SBU rod. For example, all nodes that can be visited
without traversing a red edge represent the three metals contained by one rod within a single
unit cell. Thirdly, attempting to define the c-component of the SBU rods central (a, b, c)
coordinates becomes ambiguous since the rod transverses periodic boundary conditions in
the c-direction. Thus the process of embedding the SBU rods in three dimensional space
can significantly change depending on the selected linker. Upon exchange of the red edges in
Fig. 2.4b with an alternative linker to DOBDC, the edge may in fact no longer be parallel to
the ab face and all the SBU rods will shift relative to each other in the c-direction based on
the new ligands geometry. These three difficulties necessitate a new methodology to quickly
assemble crystal structures from the 61 selected ligands.
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Figure 2.4: The etb net representation of MOF-74 where purple spheres represent nodes and
lines represent edges in the graph. Nodes correspond to the metal atoms in each rod, red
lines are edges that abstract a ligand in MOF-74, and thin black lines abstract connections
within a single SBU rod. (a) View of the ab face of etb net. (b) View of the bc face of the
etb net.

We overcome these challenges by simplifying our view of the MOF-74 net topology and
by using a simple geometric optimization routine to assemble a new crystal structure for a
given ligand. We identify three geometric constraints that must remain invariant after ligand
exchange, schematically represented in Fig. 2.5. Firstly, the length of a ligand, L, is quantified
as the distance between the two carboxylic acid carbons since they represent atoms that are
immediately connected to the SBU rods. Thus they are termed the connection points of
each rod. Upon enumerating a new crystal structure, we require that the magnitude of the
distance between the connection points on two adjacent rods be equal to the length of the
ligand. Secondly, the chemical environment within the SBU rod is invariant, so the relative
coordinates of all Mg and O atoms in the rod are fixed. Thirdly, the a and b fractional
coordinates of the center of all rods must remain constant to preserve the hexagonal packing
of the crystal structure.
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Figure 2.5: An abstracted view of the MOF-74 unit cell visually demonstrates the three
constraints for building analog 1-D structures in red as well as the optimization variables
in green {F, dc1, dc2, . . . , dcr}. The three constraints dictate how the SBU rods are able to
position themselves relative to one another in the crystal framework.

By imposing these constraints, we can establish the framework of the unit cell by resolving
the only two variables that can change for any given ligand. These optimization variables are
visually distinguished in green in Fig. 2.5. Firstly, each of the r number of SBU rod may shift
in the c-direction relative to its starting c-coordinate. Secondly, the unit cell will expand
by some fractional value in both the a and b crystallographic directions. These variables we
denote dc = {dc1, dc2, . . . , dcr} and F , respectively. The c lattice parameter cannot increase
or decrease upon ligand exchange due to the connectivity of a 1-D rod MOF. Thus, given a
linker of length L as an input, we can solve for the values of F and dc that satisfy the three
constraints of Fig. 2.5. A continuum of (F , dc) solutions exist; if F increases for example, dc
must also change in order to maintain a fixed length between connection points on adjacent
rods. The final task is to choose an (F , dc) from the set of solutions that yields the most
feasible crystal structure. This is accomplished by implementing a 3D-point cloud fitting of
all carboxylic acid and phenolic oxygen atoms on the terminal benzene rings to their known
connection coordinates on an SBU rod, as shown in Fig. 2.6. The (F , dc) combination that
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results in a point cloud fitting with the lowest root mean square displacement (RMSD) is
selected as the optimal crystal framework. Thus the structural assembly method is fast and
efficient, taking only a few seconds to generate all 61 hypothetical MOFs, three of which are
visualized in Fig. 2.7.

Figure 2.6: A schematic representation of the objective of the MOF-74 assembly algorithm.
Using point cloud fitting to align the ligand as closely as possible to its connection points
on the metal oxide rod, the optimal (F , dc) solution minimizes the RMSD between these
connection points subject to the constraints shown in Fig. 2.5

.

Figure 2.7: Visualization of three of the constructed hypothetical MOF-74 analogs.
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Geometry relaxations and partial atomic charge analysis

The geometries, including both cell parameters and atomic positions, of the 61 hypothetical
MOF-74 analogs generated from the aforementioned procedure are optimized at DFT level
of theory, using the PBE functional,[63] together with Grimmes D3 dispersion correction
[64] with the AxilrodTellerMuto three-body terms. The optimized lattice parameters of the
original Mg-MOF-74, a = 26.17 Å and c = 6.95 Å , are in good agreement with experimen-
tal values (a = 25.92 and c = 6.86).[65] Similar settings were used in our previous studies
on MIL-53 type MOFs [66, 67], in which good agreement with experimental structural and
calorimetric data was obtained. All periodic DFT calculations were performed using the
CP2K code which uses a mixed Gaussian/plane-wave basis set.[68, 69] We employed double-
ζ polarization quality Gaussian basis sets and a 400 Ry plane-wave cutoff for the auxiliary
grid, in conjunction with the Goedecker-Teter-Hutter pseudopotentials.[70, 71] A conver-
gence threshold of 1.0 × 106 Hartree was used for all self-consistent field calculations. The
structural optimizations were considered converged if the maximum force on all atoms falls
below 0.534 kcal mol−1 Å−1 (4.5 × 10−4 Hartree Bohr−1). All calculations were performed
with the Γ-point approximation using a 1 × 1 × 2 multiplication of the hexagonal primitive
cell.

The partial atomic charge analysis was performed at the relaxed geometry, using the
REPEAT method Campañá et al.,[58] which was recently implemented into the CP2K
code based on a restrained electrostatic potential framework.[72] Our implementation of
the REPEAT method in the CP2K code makes it possible to perform seamless geometry
optimization and accurate partial atomic charge analysis of porous materials in the same
software package. In addition, the parallel algorithms significantly accelerate the partial
atomic charge analysis of large systems, for which the computational cost scales cubically
with the cell length and density of grid points used for the electrostatic potential fitting. The
REPEAT method calculates partial atomic charges from electrostatic potentials determined
from DFT calculations, and only the grid points outside the van der Waals (vdW) radii of
each atom were included in the fitting. In our calculations, we have used the vdW radii
from the Universal Force Field (UFF),[73] which were also used by Campañá et al. in their
original paper on the REPEAT method, with a scaling factor of 1.0. No other restraint was
imposed during the REPEAT charge analysis. A detailed comparison of the derived charges
from our implementation and from previous calculations are shown in Section 2.3.

Porosity characterizations and GCMC simulations

Geometric structure analysis of the MOF-74 analog set was completed using the Zeo++
software suite.[74] A probe radius of 1.65 Å which corresponds to the kinetic diameter of
CO2 was utilized to characterize the probe accessible surface area, the probe accessible
volume, the largest included sphere, and the largest free sphere of all hypothetical structures.
GCMC simulations at flue gas temperature of 313 K were utilized to measure the CO2

adsorption capabilities of the MOF-74 analog library. Force field parameters were obtained
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from previous studies [75] in which DFT single-point energy calculations were performed
along a guest molecules approaching path of minimal repulsion to each unique atom type in
MOF-74.

The energies were parameterized with the Buckingham potential to obtain highly accurate
pairwise interaction parameters that are able to describe the repulsive interaction of CO2

with the excess electron density at an open metal site, an essential requirement for capturing
the adsorption behavior of CO2 in MOF-74. These pairwise parameters are available for the
atom types present in the original MOF-74 structure, however all MOF-74 analogs contain
a unique atom type in the crystal that is not present in the original structure because all
61 ligands have more atom types than the original DOBDC linker. UFF was utilized to
describe non-bonded, pairwise interactions between CO2 and these atom types not found in
the original MOF-74 structure.

Prioritization of synthetic targets

The olsalazine molecule was identified as one of the commercially available ligands in the set
of hypothetical MOF-74 analogs and was therefore targeted for experimental synthesis.

2.3 High-throughput evaluation of hypothetical

MOF-74 Analogs for CO2 capture

Quality of structural assembly

Our geometric optimization routine was executed for each of the 61 potential linkers found
within the PubChem Compounds database to generate a new hypothetical MOF-74 struc-
ture. The accuracy of this methodology in generating reasonable lattice geometries can be
evaluated by observing the unit cell parameters both before and after DFT relaxation. Fig.
2.8 illustrates how DFT relaxation very marginally alters the lattice cell parameters. The
accuracy of the generated crystal structures can be attributed to our pre-screening of linkers
to find low energy conformers. Since the new a (and b) lattice cell parameters are dependent
on the length of the proposed linker, using an energy minimized linker conformation results
in a crystal structure that changes minimally following DFT relaxation. The error in the
c-parameter tends to be slightly larger than the error in the a-parameter since it is constant
in the crystal assembly step and cannot be pre-optimized by ligand conformational analysis.
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Figure 2.8: The absolute % error in the magnitudes of each lattice cell parameter from pre-
DFT relaxed structures. DFT optimization results in very little change in the lattice cell
parameters for all structures.

Geometric analysis of hypothetical structures

An interesting comparison can be drawn between the CO2 accessible volume (AV ) and the
CO2 accessible surface area (ASA), shown in Fig. 2.9a. After the volume of the unit cell
reaches a critical volume of around 10,000 Å3, linkers are able to produce variations in ASA
because the length of the inserted linker permits variations in molecular structure, such as
functional side groups or ring twisting in the interior of the linker, that still satisfy the con-
strained linker environment of the MOF-74 topology. For example, structures in the 10,000
Å3 range have a 50% variation in their range of ASA, whereas at volumes below 10,000
Å3 there is a much narrower, almost negligible distribution in ASA. This presents unique
opportunities to make 1-D apertures that are accessible to extremely large guest molecules
whose channel walls are much rougher than the original MOF-74 structure. These variations
in channel wall shape, combined with the extremely large free spheres shown in Fig. 2.9b,
suggest that the capture and separation of larger molecules could be a useful application
for these analog structures. MOFs with such a large aperture have been previously synthe-
sized,[53] and indeed one analog in our set, the novel Mg2(olsalazine), was synthesized and
characterized. The validation of this structure is described later in the manuscript. Due
to the close packing of linkers in the crystallographic c-direction, all analogs strictly main-
tain channels with a dimensionality of one since the largest included sphere and largest free
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spheres are almost exactly equivalent for all structures.

Figure 2.9: (a) The volume accessible to a 3.3 Å diameter probe versus the accessible surface
area. (b) The free sphere, Df , plotted against the largest included sphere, Di, for the
hypothetical MOF-74 library.

Benchmarking simulated CO2 adsorption with previous results

Before using GCMC simulations to study CO2 adsorption in the hypothetical set of analogs
and gauge their potential to reduce the parasitic energy [76] of carbon capture, we need to
benchmark our predicted adsorption in the original MOF-74 framework to previous results. A
comparison of the partial charges between previously published work (VASP/REPEAT) [75]
and this work (CP2K/REPEAT) are shown in Table 2.1 for the original MOF-74 structure.

The electrostatic potential generated by CP2K results in REPEAT derived charges that
are 6% (Mg atom) and 8% (Oa atom) different than previous work. This difference only
results in a small over-prediction of the CO2 loading at low pressures on the CO2 adsorp-
tion isotherm as seen in Fig. 2.10, thereby validating the approach we have taken to relax
structures and obtain partial charges. We note small differences in the derived REPEAT
charges exist. This is because the electrostatic potentials are sensitive to computational set-
tings, and different codes employ different basis sets and pseudopotentials. In particular, for
the implementation of the REPEAT method in CP2K, in order to use the same integration
method and grid as those used for the calculation of the DFT electrostatic potential, Gaus-
sian charge densities with a fixed width are used in place of point charges. Nevertheless, we
do not expect these technical differences will result in qualitatively different pictures on the
calculated adsorption isotherms.
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Table 2.1: Summary of partial atomic charges derived from VASP (previous work) and
CP2K (this work). The naming convention of atom types can be found in Ref. [75].

Atom type VASP/REPEAT CP2K/REPEAT

Mg 1.56 1.66
Oa -0.9 -0.92
Ob -0.75 -0.76
Oc -0.9 -0.97
Ca 0.9 0.88
Cb -0.31 -0.32
Cc 0.46 0.48
Cd -0.23 -0.26
H 0.19 0.21

Figure 2.10: The CP2K relaxed structure and REPEAT derived atomic partial charges were
validated by comparison of the CO2 adsorption isotherm in the original MOF-74 structure
with the previously published results of Lin et al. The experimental isotherm of Mason et
al. is scaled due to 80% accessibility of the material.[50]

CO2 capture in MOF-74 analogs

We can now proceed to screen the library of hypothetical analogs for CO2 capture potential.
The Henry coefficient versus AV plotted in Fig. 2.11a shows a declining trend but with sig-
nificant scatter. Many of the structures achieve comparable Henry coefficients to the original
structure even with a 6-fold increase in the AV . This is not surprising as the Henry coef-
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ficient should not suffer significantly from simply increasing the pore size (see the following
section for a toy model that predicts this trend), yet it confirms that many of the analogs can
achieve the remarkable CO2 uptake of the original MOF-74 in the limit of infinite dilution.
At higher pore volumes the gravimetric uptake of CO2 drops significantly, however. The
gravimetric and volumetric dilution of the open-metal sites by inserting extended ligands
into the framework is not compensated by the addition of any binding sites as strong as the
under coordinated metals. Fig. 2.11b clearly demonstrates the decrease in performance in
CO2 loading after exchanging ligands to make a hypothetical MOF-74 structure. Further-
more, visualization of the CO2 isotherms, color-coded by each structures accessible volume
in Fig. 2.12b, reveals that most of the analog structures display condensation-like behavior
rather than saturation-like behavior at high CO2 pressures. Only the original MOF-74 struc-
ture and several of the smallest pore volume structures show any indication of approaching
a saturation loading in the pressure range of 2.5 bar. Fig. 2.12a clearly demonstrates the
superiority of the original MOF-74 structure for CO2 capture applications.

Figure 2.11: (a) CO2 Henry coefficient in the hypothetical MOF-74 library. (b) Average
CO2 loading in MOF-74 analogs at 313 K and 1 bar. The gold star represents the original
MOF-74 structure, and the red diamond represents the newly synthesized Mg2(olsalazine).



CHAPTER 2. IN SILICO DESIGN OF NOVEL MATERIALS 24

Figure 2.12: (a) CO2 adsorption isotherms (in units of moles loaded per kilogram) in the
hypothetical MOF-74 analog library color-coded by each structures CO2 accessible volume.
The isotherm with star markers represents the isotherm for the original MOF-74 analog. (b)
CO2 adsorption isotherms (in units of molecules loaded per unit cell) in the hypothetical
MOF-74 analog library color-coded by each structures CO2 accessible volume.

2.4 Modeling CO2 Henry coefficient trends in the

MOF-74 analogs

A toy model of CO2 binding in MOF-74

The Henry coefficient, KH , is computed via the Widom insertion technique, which is related
to the ensemble averaged binding energy of a randomly inserted ghost particle inside the
empty framework. This can be mathematically expressed via the following:

KH = β
〈
exp

(
−β∆U+

)〉
(2.1)

where β = (kBT )−1 and ∆U+ is the energy of the system after a random ghost particle
insertion. This random ghost insertion of a CO2 molecule is performed inside the MOF-
74 framework, which can be approximated as occurring at either the very strongly binding
open metal site (blue circles in Fig. 2.13a) or at the comparatively much weakly binding sites
anywhere else inside the framework (empty space in Fig. 2.13a). Approximating the MOF-
74 material as a simulation domain containing some volume fraction of strongly binding
sites, f ′, and some volume fraction of weakly binding sites, f ′′, with binding energetics of
U ′ and U ′′, respectively, the real MOF-74 material can be replaced by a very simple lattice
model view of independent strong and weak binding sites shown in Fig. 2.13b. Based on
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this approximate lattice model, the expectation value in Eqn. 2.1 reduces to the following
analytical expression:

KH = β [(1− f ′′) exp(−βU ′) + f ′′ exp(−βU ′′)] (2.2)

Figure 2.13: (a) A two binding site approximation of the MOF-74 material where the blue
circles represent the volume corresponding to the strong binding sites and everywhere else
is considered a weak binding site. (b) An equivalent representation of the approximated
MOF-74 model containing some volume fraction of strongly binding sites, f ′, and weakly
binding sites, f ′′.

Evaluating the model-based approximation of the Henry
coefficient

We can plot the value of KH as a function of f ′′ from Eqn. 2.2 to demonstrate the KH trend
shown in Fig. 2.11a. Since the volume occupied by strong binding sites remains constant
in all MOF-74 analogs (the number of open metal sites per unit cell remains constant),
the larger linkers that increase the AV correspond to an increase of f ′′ in our analytical
model. As shown in Fig. 2.14, the trend in KH dependence on f ′′ mimics the relatively weak
dependence of the CO2 Henry coefficient on the AV (Fig. 2.11a). It is not until extreme
volumetric dilution of the strong binding sites that the Henry coefficient begins to drop
precipitously, and such low volume fraction of strong binding sites were not generated in the
library of hypothetical analogs.
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Figure 2.14: The solution to the analytic KH expression in Eqn. 2.2 is shown as a function of
the volume fraction of weak binding sites. Several solutions are shown for varying differences
between the strong and weak binding site energies. The red region corresponds to a rough
estimation of the values of f ′′ spanned by the library of MOF-74 analogs.

2.5 Synthesis and validation of a novel MOF-74

analog: Mg2(olsalazine)

Synthesis procedure

The reaction of olsalazine sodium with Mg(NO3)2·6H2O in a mixture of DMF:ethanol (ratio
of 1:1) at 120 oC yields a homogeneous material based on yellow rod-type crystals as con-
firmed by scanning electron microscopy (SEM) images (Fig. 2.15a). The size of the isolated
crystals was too small to permit structural resolution via single crystal X-ray diffraction. De-
spite this, PXRD confirms that the material is highly crystalline and the simulated pattern
from the idealized structure of [Mg2(olsalazine)] shows an excellent agreement with the ex-
perimental pattern of the as-made [Mg2(olsalazine)(DMF)2]·2DMF·3H2O (Fig. 2.15b). Ad-
ditional characterization techniques (Ref. [21]) were also used to confirm the Mg2(olsalazine)
product. Mg2(olsalazine) consists of hexagonal one-dimensional channels with dimensions of
23.3 Å (Mg-Mg distance, including van der Waals radii) which are larger than the channels
resulted in Mg2(DOPBDC) (18.4 Å) as shown in Fig. 2.15d. Similar to the original MOF-
74 structure, concurrent work has interestingly shown that the olsalazine based MOF-74
structure can also be synthesized with different metals.[38]
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Figure 2.15: (a) SEM image of the as-made material reveals that the morphology of
[Mg2(olsalazine)(DMF)2]·2DMF·3H2O crystals is based upon rods (scale bar: 5 µm); (b)
comparison the simulated pattern from the idealized structure of [Mg2(olsalazine)] with the
experimental pattern of the as made [Mg2(olsalazine)(DMF)2]·2DMF·3H2O; (c) comparison
of the theoretical and the experimental CO2 adsorption isotherms collected at 298, 303 and
313 K and 1 bar; and (d) view of Mg2(olsalazine) along c-axis showing the formation of
a 3-dimensional framework with hexagonal one-dimensional pores as it is observed in Mg-
MOF-74.

Validation of CO2 adsorption performance

CO2 adsorption isotherms were experimentally measured to further characterize the mate-
rial and to directly test our theoretical predictions of the CO2 adsorption behavior. The
theoretical and experimental isotherms are in good agreement, especially at low pressure,
as shown in Fig. 2.15c. At higher pressures the experimental isotherms demonstrate that
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the material has lower saturation loading than the theory predicts. The GCMC simulations
are performed assuming a perfect, fully accessible crystal structure. From an experimental
point of view, it is difficult to obtain a perfect crystal; defects that cause pockets of inacces-
sibility to CO2 in the Mg2(olsalazine) powder would give a lower saturation loading in the
experimental material. In fact, the experimental BET surface area was calculated to be 2331
m2/g, while the theoretical accessible surface area for N2 was computed to be 2763 m2/g
with Zeo++, thereby suggesting that indeed we do not have 100% crystal accessibility in the
Mg2(olsalazine) powder. Ultimately, these experimental results demonstrate the theoretical
methods used (in silico crystal design, DFT optimization, partial atomic charge analysis,
force field parameterization, and GCMC simulations) not only correctly predict the crystal
structure but also its CO2 adsorption behavior.

2.6 Outlook: Discovering novel analogs of different

classes of 1D rod MOFs

We have outlined a new, systematic method for enumerating MOFs exhibiting a 1-D rod
topology. This method could be generally extended to systems other than the etb net and
MOF-74, as we schematically visualize in Fig. 2.16. The geometric optimization approach
permits the rapid and automated enumeration of analog structures, and our focus on search-
ing for linkers in the PubChem database limited the structural assembly process to MOFs
whose ligands are experimentally validated molecular species. The paucity of linkers found
within PubChem (0.0001% of all molecules) that satisfy the strict geometric constraints of
the MOF-74 topology provides a concise starting point for experimental efforts to synthesize
analog structures. By providing an in silico methodology for generating 1-D rod MOFs
as complex as MOF-74, we expand upon our ability to generate and predict properties of
potentially interesting crystalline materials. Furthermore, we demonstrate the experimental
validity of our in silico generated library by targeting the olsalazine linker for MOF synthe-
sis. Mg2(olsalazine) was synthesized and its structural characterization presented excellent
agreement with the a priori computationally predicted structure. Future work will focus on
this targeted experimental synthesis of novel analogs of other 1D rod MOF structures.
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Figure 2.16: The simplification of MIL-53 to a set of geometric constraints and design
variables shows how the building algorithm can be applied to MOFs other than MOF-74 in
the etb net. In fact, this example demonstrates how no information about the underlying
net of MIL-53 is necessary to set up a geometric optimization to enumerate analogs of the
original structure.

Geometric analysis of the constructed hypothetical MOFs indicates that a wide range of
surface areas are possible for a given accessible volume. This roughness and functionality of
the channel walls, combined with the extremely large channel volumes, suggests that these
MOFs could have greater potential for separations applications involving larger molecules
than CO2. Physical and chemical variations in the channel surface would provide regions
of preferentially favorable interactions for adsorption of various large molecules, whereas for
CO2 capture, any new ligand in the analog library simply dilutes the open metal site density
and does not provide any new, equally strong binding sites. Ultimately, we have intro-
duced 61 hypothetical MOF-74 analogs and demonstrated their potential synthesizability.
Future experimental and computational efforts are two-fold: synthesize additional hypothet-
ical structures and investigate their potential for separation processes of large molecules.
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Chapter 3

Rational materials design targeting
high performance gas storage and
separations

In the previous chapter, we presented the automated enumeration of a library of hypothetical
MOF-74 analogs (also known as M2(DOBDC) [M = Mg, Fe, Co, Ni, Zn]). In this chapter
we focus on the in silico characterization and simulation of a rationally designed MOF-74
analog not represented in the aforementioned study. Hereon known as M2(DHFUMA) [M =
Mg, Fe, Co, Ni, Zn], this hypothesized material displays enhanced small molecule adsorption
properties over the original M2(DOBDC) series. Constructed from 2,3-dihydroxyfumarate
(DHFUMA), an aliphatic ligand which is smaller than the aromatic 2,5-dioxidobenzene-1,4-
dicarboxylate (DOBDC), the M2(DHFUMA) framework has a reduced channel diameter,
resulting in higher volumetric density of open metal sites and significantly improved vol-
umetric hydrogen (H2) storage potential. Furthermore, the reduced distance between two
adjacent open metal sites in the pore channel leads to a CO2 binding mode of one molecule
per two adjacent metals with markedly stronger binding energetics. Through dispersion-
corrected density functional theory (DFT) calculations of guest-framework interactions and
classical simulation of the adsorption behavior of binary CO2:H2O mixtures, we theoreti-
cally predict the M2(DHFUMA) series as an improved alternative for carbon capture over
the M2(DOBDC) series when adsorbing from wet flue gas streams. The improved CO2 up-
take and humidity tolerance in our simulations is tunable based upon metal selection and
adsorption temperature which, combined with the significantly reduced ligand expense, el-
evates this material’s potential for CO2 capture and/or H2 storage. The dynamical and
elastic stability of Mg2(DHFUMA) was verified by hybrid DFT calculations, demonstrating
its significant potential for experimental synthesis. This chapter constitutes an unofficial
adaptation of an article that appeared in an ACS publication [77]. ACS has not endorsed
the content of this adaptation or the context of its use.
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Figure 3.1: Artistic rendition of CO2 adsorbing in Mg2(DHFUMA)
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3.1 Introducing a MOF with an ultra-high density of

open metal sites

Despite the many advantages of MOFs that result from high tunability of chemistry and
structure, the cost of MOF production is still a major factor that impedes their large-scale
industrial applications. Apart from the capital investment in infrastructures, the cost of
MOF production consists largely of raw materials (including metal salts and organic ligands)
and processing, which includes but is not limited to non-reusable organic solvents and cost
associated with activation. For MOF-74 with a molecular formula M2(DOBDC) (M = Mg,
Zn, Fe, etc and DOBDC = 2,5-dioxido-1,4-benzenedicarboxylate), the major cost of raw
materials comes from organic ligand (i.e. DOBDC). Taking Mg-MOF-74 as an example, the
cost of metal salts, usually MgCl2, can almost be neglected, i.e. it accounts for only a small
percentage of the expense of organic ligands (see Appendix A). Indeed, MOFs built from
much cheaper raw organic ligands will need to be developed before they can be widely used in
industry in large quantities. Generally speaking, larger and longer aromatic organic ligands
are more expensive than smaller and shorter aliphatic ligands. However, the majority of
the MOFs synthesized so far feature aromatic organic ligands, because the coordination-
driven self-assembly of building blocks to produce porous crystalline MOFs requires the
molecular precursor to be rigid and possess proper directionality.[78] Such properties are
more likely to appear in conjugated organic ligands, e.g. DOBDC and BDC (BDC = 1,4-
benzenedicarboxylate), both of which are frequently used in the synthesis of MOFs. On the
other hand, most of the aliphatic ligands are flexible and do not have sites to form directional
metal-ligand bonds, and they are less likely to form porous and crystalline solids with metal
centres. Therefore, aliphatic ligands are rarely employed in MOF synthesis. Nevertheless,
there are still several MOFs based on aliphatic ligands,[79–81] including the commercially
available aluminium fumarate (Basolite A520).[82] However, there are no open metal sites
in these MOFs, thereby limiting their CO2 and H2 storage potential at low and ambient
pressures. It would be extremely useful to develop a MOF-74 analog featuring both open
metal sites, which lead to enhanced adsorbate-adsorbent interactions and higher gas uptake
at ambient pressure, and cheap aliphatic linkers, which lower the overall raw materials cost.
To the best of our knowledge, all the MOF-74 analogs which have been experimentally
synthesized so far were constructed from longer, aromatic organic linkers and are therefore
likely to be more expensive with limited improvement on gas adsorption capacity in low to
ambient pressure regimes.

Another popular approach to increase the gas adsorption capacity of MOFs is to syn-
thesize MOFs with expanded pores and larger internal surface areas, e.g. by replacing the
DOBDC linker in MOF-74 with longer linkers.[53] We investigated the effectiveness of pore
expansion in MOF-74 analogs in one of our recent high-throughput screening studies,[21]
whereby we developed a novel in silico crystal assembly algorithm that differed from pre-
vious approaches[18–20, 46, 47] to create a library of MOF-74 analogs which exhibit 1-D
metal-oxide rod building units.[49] We found that the gravimetric uptake of CO2 dropped
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significantly in MOF-74 analogs with higher pore volumes due to the spatial and gravi-
metric dilution of the open metal sites which serve as the strong adsorption sites for CO2

molecules. Thus the increased pore volume in these analogs (which results from construc-
tion with extended ligands) sacrifices gravimetric uptake and further complicates synthesis
by introducing more complex organic molecule building units and by potentially reducing
mechanical stability. Therefore larger pore sizes are not always desirable. While many ef-
forts have been made to tune and improve upon the exceptional small molecule adsorption
properties of the original MOF-74 framework,[54–56, 83, 84] we undertake a rational design
approach to further improve the gas adsorption capabilities in MOF-74 analogs by increasing
the density of open metal sites, e.g. by replacing the DOBDC linker with a smaller molecule.
While DOBDC represents the smallest aromatic molecule that satisfies the topological re-
quirement of MOF-74, an even smaller molecule can be identified from the thousands of
aliphatic molecules which are smaller in size than DOBDC.

In this work, we rationally design in silico a MOF-74 analog based on a cheaper and com-
mercially available aliphatic ligand, i.e. DHFUMA (DHFUMA = 2,3-dihydroxyfumarate),
and simulate its H2, CO2 and H2O adsorption properties, based on extensive previous
work dedicated to describing the energetic interactions of small molecules in the MOF-
74 framework.[75, 85–88] Namely, we predict significantly improved H2 volumetric storage
capacity, increased low pressure CO2 adsorption, and higher CO2:H2O selectivity in the
M2(DHFUMA) series than the M2(DOBDC) series. The cost (per mol) of DHFUMA is
lower than that of DOBDC by more than 80% (see Appendix A), and the density of open
metal sites in M2(DHFUMA) is twice of that of M2(DOBDC). Typical protocols used to
synthesize M2(DOBDC) have been tested and shown to result in a crystalline material that
is not the desired M2(DHFUMA) product (see Appendix A); however, calculation of the
elastic constants and vibrational frequencies demonstrate the dynamical and mechanical
stability of M2(DHFUMA) and provide justification that the material can be synthesized.
M2(DHFUMA), if it can be synthesized in large quantities, has the potential to be a bet-
ter candidate than M2(DOBDC) for industrial applications including hydrogen storage and
carbon capture.

3.2 Techniques for in silico evaluation of H2 storage

and CO2 capture potential

In silico crystal design

Part of our recent work has focused on the in silico crystal design of 1-D rod MOFs.[21] The
building blocks of these MOFs are embedded in three dimensional space by an optimization
routine that is constrained by geometric rules that must hold for a 1-D rod MOF. Utiliz-
ing this method allows for facile substitution of DOBDC for DHFUMA into the MOF-74
framework and quickly creates an accurate starting crystal structure for DFT optimization.
Fig. 3.2 demonstrates the analogous connectivity groups in DHFUMA and DOBDC. We
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believe this to be the smallest possible ligand with which a MOF-74 analog can be con-
structed. Dispersion-corrected DFT optimization was performed to relax the M2(DOBDC)
and M2(DHFUMA) frameworks and obtain partial atomic charges for each unique atom type
in the framework.
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Figure 3.2: The DOBDC ligand and framework is visually compared to the DHFUMA
ligand and framework. (1, 1’, 1”) oxygen atoms connect to one metal rod in the MOF-74
type framework and (2, 2’, 2”) connect to an adjacent metal rod. The distance between
adjacent open metal sites is shown to be 2 Å smaller in the Mg2(DHFUMA) framework.

DFT calculations

A majority of the periodic density functional theory calculations, including geometry and
cell optimisations, have been performed using the CP2K code which uses a mixed Gaussian
/ plane-wave basis set.[68, 69] We have used both gradient corrected (i.e. PBE [63]) and
hybrid density functional (i.e. PBE0 [89, 90] with 25% Hartree-Fock exchange) methods. It
is known that a correct description of the dispersion interactions is important to predict the
MOF structures and host-guest interactions in MOFs.[91, 92] In this work, we have used one
of the most popular pairwise additive descriptions of the dispersion interactions as developed
by Grimme et al., i.e. the D3 method [64] with the Axilrod-Teller-Muto three-body terms, in
combination with the conventional PBE and PBE0 functionals. The same method was used
in our previous work on MIL-53,[66, 67] UiO-66,[93] and MOF-74 [21] types of MOFs, and
we achieved very good agreement between theory and experimental results on structures and
calorimetric measurements. We note that a hybrid functional is necessary here to provide
a correct description of the electronic structures and host-guest interactions of MOF-74
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materials featuring M2+ cations with unpaired electrons, including Mn2+, Fe2+, Co2+, Ni2+

and Cu2+. The Hartree-Fock exchange calculations, which are part of the hybrid DFT
functional PBE0, were performed and significantly accelerated using the auxiliary density
matrix method (ADMM),[94] which enables us to consider relatively large systems (with
the largest system containing 489 atoms) at hybrid DFT level. The partial atomic charge
analysis was performed using the REPEAT method proposed by Campañá et al.,[58] which
was recently implemented into the CP2K code based on a restrained electrostatic potential
framework.[72] The REPEAT method calculates partial atomic charges from electrostatic
potentials determined from DFT calculations, and only the grid points outside the van der
Waals radii of each atom were included in the fitting. We have used partial atomic charges
determined using the REPEAT scheme in our recent work on MOF-74, in which very good
agreement was obtained between theory and experiment on the adsorption isotherms of CO2

molecules.[21] The vibrational frequency and elastic constants calculations were performed
using the CRYSTAL code[95, 96] with the B3LYP hybrid functional.[97] More details of the
calculations are included in Appendix A.

Classical simulations and pore characterization

A critical component in the classical molecular simulation of nanoporous materials is the
parameterization of classical potential energy functions (or force fields) that can accurately
describe the energetics of guest-adsorbate systems. Many times off-the-shelf force fields
such as UFF [73] or Dreiding [98] are used in lieu of a more accurate alternative, but this
approach breaks down with MOFs that contain complex electronic structure features such
as open metal sites.[75] Several different approaches have been used specifically to generate
force fields which successfully describe gas interactions in MOF-74 type frameworks which
contain these open metal sites.[75, 99, 100] Pham et al. used a many body polarization
approach for the first time to classically capture the complex H2 - open metal site potential
energy interactions in the Mg2(DOBDC) framework and later extended their force field
development to the entire metal series.[88, 101] In this work, the model of Pham was used to
model H2 adsorption in Mg2(DOBDC) and Mg2(DHFUMA) and we refer the reader to these
publications for further details. The Grand Canonical Monte Carlo (GCMC) simulations of
H2 with many body polarization were calculated with the RASPA2 software package.[102]

Mercado et al. used a recently developed approach to parameterize the potential energy
surface for the isoreticular series M2(DOBDC) [M = Mg, Mn, Fe, Co, Ni, Zn] such that
classical molecular simulation of CO2 and H2O could be performed for the entire metal
series for the first time.[87] The parameterization was performed by calculating DFT single
point energies along the path of minimum repulsion between unique guest-host pairwise
types to accurately capture the repulsive behavior between the guest and the excess electron
density at the open metal sites. We adopt this force field parameterization for studying the
adsorption properties of CO2 and H2O in DHFUMA and refer the reader to this publication
for specific details and the parameters themselves. The unique types assigned to each atom
in the DHFUMA crystal structure and their correspondence to the atom types of Mercado’s
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force field are shown in Appendix A, in addition to a justification for the transferability
of the force field. Grand Canonical Monte Carlo (GCMC) simulations were executed to
calculate adsorption isotherms and isosteric heats of adsorption of the frameworks under
consideration. An annealing minimization scheme was used to determine the classical binding
energy of adsorbates in all analogs. In this scheme, an NVT ensemble Monte Carlo simulation
consisting of one adsorbate molecule is successively quenched from T = 298 K to T = 1 K.
The potential energy of the final configuration in the T = 1 K simulation then corresponds to
the classical binding energy. The porosity characterization of all frameworks was performed
with the Zeo++ application using the high accuracy settings.[74, 103]

3.3 Physical characterization of the M2(DHFUMA)

series

Comparison of the M2(DHFUMA) vs M2(DOBDC) unit cells

We list our calculated lattice parameters of the all the MOFs considered in this work in Table
3.1, and we compare the data on M2(DOBDC) with available experimental results (taken
from Ref. [85]; see references therein) from which we find that the errors of our theoretically
predicted lattice parameters of M2(DOBDC) are within ∼1%. We also find that for the
same metal, the a lattice parameter of M2(DHFUMA) is proportionally smaller than that
of M2(DOBDC) by 27∼29%, and the c lattice parameter of M2(DHFUMA) is almost the
same as that of M2(DOBDC), with the biggest difference to be only 0.16 Å (Cu and Zn).
Indeed, the decreased unit cell volume of M2(DHFUMA), i.e. by ∼50% in comparison with
M2(DOBDC), is mainly due to the shortening of the lattice parameter along the a and b
axes, and a direct result of that is the doubling of the volumetric density of open metal
sites. We will see that the shortening of the a lattice parameter and the doubling of the
density of open metal sites in M2(DHFUMA) have a significant effect on the optimal binding
configuration of CO2 in M2(DHFUMA).

Porosity characterization

The channel geometry of the Mg analogs of the DHFUMA and DOBDC series were analyzed
by Zeo++ to demonstrate the differences in porosity which are later shown to have a sig-
nificant impact on the adsorption properties of the two frameworks. A probe radius of 1.65
Å was used which corresponds to the kinetic diameter of CO2. Table 3.2 summarizes these
important geometric quantities. We note that the distance between the centers of two metal
rods opposite each other in a single hexagon of DHFUMA, i.e. the approximate diameter
of a single channel, is equal to 12.6 Å. When accounting for the Van der Waals radii of the
framework atoms in DHFUMA, the largest free and included spheres are close to half of
this diameter as shown in Table 3.2. Interestingly, the typical diameter of single wall carbon
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Table 3.1: Lattice parameters (in Å) of M2(DOBDC) and M2(DHFUMA) from theory and
experiment.

Metal
DHFUMA (theory) DOBDC (theory) DOBDC (expt) a/a′

a c a′ c′ a′ c′ (theory)

Mg 18.86 6.88 26.17 6.95 25.89 6.87 72%
Mn 18.70 7.14 26.22 7.01 26.23 7.04 71%
Fe 18.93 6.75 26.11 6.85 26.10 6.85 73%
Co 18.67 6.77 25.91 6.82 25.89 6.81 72%
Ni 18.59 6.65 25.73 6.75 25.72 6.74 72%
Cu 18.85 6.13 25.84 6.29 26.00 6.26 73%
Zn 19.01 6.72 26.18 6.88 25.93 6.84 73%

nanotubes (SWNTs), depending on the chirality indices, can range from 6.2 (n+m = 8) to
12.2 (n+m = 18) for the lowest energy tube for each combination of chirality indices.[104]

Table 3.2: Accessible Surface Area (ASA), Accessible Volume (AV), Largest Included Sphere
(DI), Largest Free Sphere (DF ), open metal site volumetric density (ρMg), and open metal
site weight percent of two frameworks: Mg2(DHFUMA) vs Mg2(DOBDC)

Ligand ASA AV DI DF ρMg wt% Mg
[m2/g] [cm3/g] [Å] [Å] [Mg/Å3] [%]

DOBDC 1782 0.350 11.8 11.1 0.0044 20.0
DHFUMA 1043 0.095 7.6 6.3 0.0084 25.2

We have therefore designed a MOF with a channel geometry that is essentially compa-
rable to a SWNT but with a significantly higher degree of chemical diversity due to the
presence of oxygen atoms and open metal sites decorating the inside of the channel (see Fig.
A.1. The proximity and increased volumetric density of open metal sites in the DHFUMA
structure compared to the DOBDC structure will later be shown to result in a new CO2

binding configuration. The volumetric densities of open metal sites in Mg2(DHFUMA) and
Mg2(DOBDC) are 0.0084 Mg/Å3 and 0.0044 Mg/Å3, respectively. One in every six atoms
in DHFUMA is an open metal site, whereas one in every nine atoms in DOBDC is an open
metal site. With nearly two times the volumetric metal site density and one and a half times
the molar metal site density of DOBDC (in addition to the reduced inter-atomic distance
between adjacent Mg atoms in each channel), DHFUMA contains a spatial configuration of
open metal sites that is more favorable for hydrogen storage and CO2 capture. Additional
pertinent crystallographic data for Mg2(DOBDC) and Mg2(DHFUMA) is shown in Table
A.4.
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Predictions of material stability

To verify whether M2(DHFUMA) is stable and therefore has the potential to be synthe-
sized experimentally, we calculated the vibrational frequencies and elastic constants, taking
Mg2(DHFUMA) as an example. Our calculated vibrational frequencies and the full elastic
matrix of Mg2(DHFUMA) are shown in Appendix A. We find all the vibrational modes of
Mg2(DHFUMA) have positive frequencies, demonstrating its dynamical stability. We fur-
ther verify the elastic stability of Mg2(DHFUMA) against the Born stability criteria,[105]
and we find the calculated elastic constants of Mg2(DHFUMA) satisfy all the necessary
and sufficient stability conditions (see Appendix A),[106] demonstrating Mg2(DHFUMA)
to be mechanically stable. We expect M2(DHFUMA) based on other metals to have the
same behavior and suggest these materials have the potential to be synthesized in future
experiments. The results of the mechanical and dynamical stability calculations are not
surprising, especially since the metal oxide rod M-O coordination environment is identical
to M2(DOBDC) and since DHFUMA is an experimentally validated ligand with a fully con-
jugated backbone exhibiting a planar geometry between the two connection groups (see Fig.
3.2). The synthetic difficulties arise in finding the necessary reaction conditions to yield the
correct crystalline M2(DHFUMA) product, the details of which are elaborated in Ref. [77].

3.4 Enhanced H2 storage potential of Mg2(DHFUMA)

The doubling of the volumetric density of open metal sites results in a factor of two increase
in the simulated volumetric H2 storage capacity of Mg2(DHFUMA) over Mg2(DOBDC)
at cryogenic temperatures. Utilizing the many body polarization scheme implemented in
the RASPA2 package and the polarizable model of Pham et al. [88] to compute H2 po-
tential energy interactions in Mg2(DOBDC), we simulate the adsorption isotherms of both
Mg2(DOBDC) and Mg2(DHFUMA) at 77 K. We assumed that the force field is transfer-
able and adopt all model parameters of Pham with the exception of the frameworks’ partial
atomic charges for which we use the values derived from our REPEAT analysis which are
summarized in Appendix A. Fig. 3.3(a) demonstrates a good agreement of our isotherm
with the theoretical isotherm of Pham et al. and the experimental isotherm of Dietzel et al.
(data extracted from Ref. [88] and Ref. [107], respectively) for Mg2(DOBDC) at 77 K. Our
simulated isotherm as generated by RASPA2 slightly over predicts the gravimetric uptake
(by ∼20% at 1 bar) shown by the experimental results and simulated by Pham et al. which
we further discuss in Appendix A.

Since the weight compositions of Mg in DHFUMA (25.2 wt %) and DOBDC (20.0 wt
%) differ slightly, the amount of H2 loaded per framework weight in DHFUMA is marginally
better than DOBDC at low pressure but does not represent a remarkable improvement as
shown in Fig. 3.3(a). The strong H2 - open metal site interactions dominate the adsorption
at low temperatures and pressures and weak H2 - H2 interactions are not sufficient to provide
the strong cooperative binding effects observed with CO2 which are later discussed in the
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Figure 3.3: H2 isotherms computed at T = 77 K. (a) Mg2(DOBDC) isotherms computed
in this work, by Pham et al. (extracted from Ref. [88]), and measured by Dietzel et al.
(extracted from Ref. [107]) and the predicted Mg2(DHFUMA) assuming a transferable force
field. Isotherms are in units of amount adsorbed per framework mass. (b) Mg2(DHFUMA)
and Mg2(DOBDC) simulated isotherms from this work in units of amount adsorbed per
framework volume.

section on enhanced CO2 heat of adsorption. In other words, H2 gravimetric adsorption is
not significantly improved in DHFUMA at low pressures, and the framework displays H2

saturation behavior at significantly lower pressures than in DOBDC as one would expect
from the reduced channel volume. Nevertheless, the advantage of Mg2(DHFUMA) for H2

storage lies exactly in this reduced channel volume and the doubling of volumetric open metal
site density. As can be seen from Fig. 3.3(b), the H2 storage capacity on a volumetric basis
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(in which the amount loaded is expressed per total volume of adsorbent) is approximately
twice that of Mg2(DOBDC). Not only would a Mg2(DHFUMA) based storage device require
half the volume to achieve approximately the same H2 storage by weight percent, the ligand
is also drastically cheaper. At the cryogenic temperature of 77 K and extremley low pressure
of 0.5 bar, Mg2(DHFUMA) is predicted to achieve a volumetric uptake of 41.5 g H2/L which
is sufficient to surpass the DOE’s 2020 H2 volumetric storage target of 40 g H2/L. We note
that Mn-BTT (BTT3− = 1,3,5-benzenetristetrazolate), one of the best performing MOFs for
volumetric hydrogen uptake, has been reported to achieve uptake of 43 g H2/L but at the
higher pressure of 1.2 bar.[25]

3.5 Enhanced CO2 affinity in the M2(DHFUMA)

series

DFT predicted binding geometries and energies

Figure 3.4: DFT optimised binding configurations of CO2 in (a) Mg2(DOBDC) and (b)
Mg2(DHFUMA).
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Table 3.3: Binding energies (in kJ/mol) and relevant O · · ·M binding distances (in Å) of
CO2 in M2(DOBDC) and M2(DHFUMA) from theory and experiment.

Metal
DHFUMA (theory) DOBDC (theory) DOBDC (expt) Eb - E′b

Eb dO···M E′b d′O···M E′b d′O···M (theory)

Mg 50.1 2.59 / 2.60 41.3 2.33 43.5 2.27 8.8
Mn 40.5 2.64 / 2.75 29.2 2.57 31.7 2.51 11.3
Fe 40.9 2.56 / 2.76 30.0 2.43 33.2 2.29 10.9
Co 41.1 2.49 / 2.79 29.3 2.43 33.6 2.23 11.8
Ni 46.1 2.46 / 2.69 34.8 2.32 38.6 2.29 11.3
Cu 32.0 2.69 / 2.80 19.9 2.74 22.1 2.86 12.1
Zn 37.6 2.76 / 2.83 31.3 2.66 26.8 2.43 6.3

Table 3.4: Binding energies (in kJ/mol) and relevant O · · ·M binding distances (in Å) of
H2O in M2(DOBDC) and M2(DHFUMA) from theory.

Metal
DHFUMA (theory) DOBDC (theory)

Eb dO···M E′b d′O···M

Mg 87.4 2.19 88.6 2.16
Mn 73.5 2.26 73.3 2.29
Fe 77.5 2.20 77.1 2.21
Co 79.4 2.17 78.9 2.17
Ni 89.2 2.12 89.4 2.11
Cu 68.1 2.22 62.5 2.24
Zn 74.9 2.22 68.4 2.23

Taking Mg as an example, we show our theoretical optimised binding configuration of
CO2 in Mg2(DOBDC) and Mg2(DHFUMA) in Figs. 3.4a and 3.4b, respectively. From
Fig. 3.4, we can find that a single CO2 molecule has very different binding modes in
Mg2(DOBDC) and Mg2(DHFUMA). In Mg2(DOBDC), one terminal oxygen of CO2 binds
to Mg of Mg2(DOBDC) with a short binding distance of 2.33 Å while the other terminal
oxygen of CO2 is aligned with the DOBDC linker and points towards the open pore space
of Mg2(DOBDC). However, in Mg2(DHFUMA), because of the much shorter inter-chain
Mg· · ·Mg distance (i.e. 6.03 Å in comparison with 8.26 Å in Mg2(DOBDC)), both terminal
oxygen atoms of CO2 are able to bind to two neighbouring Mg2+ cations simultaneously,
with similar binding distances (i.e. 2.59∼2.60 Å). Such a unique binding mode results in
a much enhanced binding energy of CO2 in Mg2(DHFUMA), i.e. 50.1 kJ/mol, which is
20% (8.8 kJ/mol) stronger than that in Mg2(DOBDC). We show a detailed comparison of
the binding energies and relevant O· · ·M binding distances of CO2 in M2(DOBDC) and
M2(DHFUMA) with different metals in Table 3.3, in which we also list available experimen-
tal data on CO2 adsorption in M2(DOBDC).[108] We further looked at the adsorption of a
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single H2O molecule in both M2(DOBDC) and M2(DHFUMA) with different metals, and we
show a detailed comparison of the binding energies and relevant O· · ·M binding distances in
Table 3.4. Interestingly, the binding energies of a single H2O molecule in M2(DOBDC) and
M2(DHFUMA) with the same metal are almost identical. Taking Mg as an example, the
binding energies of H2O are 88.6 and 87.4 kJ/mol in Mg2(DOBDC) and Mg2(DHFUMA),
respectively. This is because H2O has only one central oxygen, and it interacts with both
Mg2(DOBDC) and Mg2(DHFUMA) through a single-contact O· · ·Mg interaction. Com-
paring the whole series of CO2 and H2O adsorption in M2(DOBDC) and M2(DHFUMA)
with different metals, we can find that the trend is the same, i.e. CO2 tends to have much
stronger binding in M2(DHFUMA) than that in M2(DOBDC) with the same metal, while
H2O tends to have almost the same binding strength in M2(DHFUMA) and M2(DOBDC)
with the same metal. This would lead to improved selectivity of CO2 in a CO2:H2O mixture
in M2(DHFUMA) than that in M2(DOBDC).

Enhanced CO2 adsorption

We demonstrate in Appendix A that the force field of Mercado can reproduce the ab initio
potential energy landscape of CO2 in our set of analogs as shown by the agreement of both
binding energies and binding geometries. With confirmation of the force field’s transferabil-
ity, Henry coefficients of the M2(DOBDC) and M2(DHFUMA) structures were computed at
temperatures of 313.0 K and 400.0 K, shown in Table 3.5.

Table 3.5: KH ∗ 10−3 [mol/kg/Pa] of CO2 in the M2(DHFUMA) vs M2(DOBDC) series at
313 K and 400 K

Metal DHFUMA DOBDC
313 K 400 K 313 K 400 K

Mg 10.7 0.22 1.56 0.064
Fe 1.8 0.07 0.20 0.017
Co 3.2 0.11 0.26 0.021
Ni 3.0 0.12 0.27 0.021
Zn 0.39 0.028 0.076 0.009

An order of magnitude increase is observed in DHFUMA structures over DOBDC struc-
tures for a given metal substitution. It is also worthwhile to note that, for a given metal sub-
stitution, M2(DHFUMA) structure achieves the same order of magnitude (and only slightly
lower) Henry coefficient at 400 K as its DOBDC counterpart at 313 K in all frameworks
except for the Mg analogs. This large decrease in the free energy of a single adsorbed CO2

molecule in DHFUMA is a direct result of the decreased potential energy of the one molecule
per two open metal sites binding mode, which has been demonstrated in our DFT optimiza-
tion and GCMC simulations. GCMC simulations were utilized to simulate the CO2 uptake in
M2(DOBDC) and M2(DHFUMA) structures and calculate isotherms for each material. The
higher density of open metal sites and enhanced energy binding configuration results in larger
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uptake at low pressures; however, the reduced channel volume results in quicker saturation
of the DHFUMA adsorbent. The CO2 isotherms in Mg2(DOBDC) and Mg2(DHFUMA) in
Fig. 3.5 visualize this trend.

10-5 10-4 10-3 10-2 10-1 100 101 102

CO2 Pressure [bar]

0

5

10

15

20
A

bs
ol

ut
e 

A
ds

or
pt

io
n 

[m
ol

/k
g]

Mg2(DHFUMA)
Mg2(DOBDC)

Figure 3.5: Absolute CO2 adsorption in Mg2(DHFUMA) vs the absolute CO2 adsorption
in Mg2(DOBDC) at 313 K. The DHFUMA structure significantly outperforms the DOBDC
structure in CO2 uptake at low pressures but has far lower capacity of CO2 in the limit of
saturation.

Thus at low pressures DHFUMA performs significantly better in total CO2 uptake but
performs worse in total uptake at higher pressures. A detailed view of all CO2 isotherms
is provided in Appendix A. Due to the favorable enhancement of the binding energy, most
DHFUMA analogs are able to capture significantly more CO2 in any pressure range relevant
to industrial CO2 capture from flue gas where PCO2 = 0.15 bar. Fig. 3.6 demonstrates the
excess amount of CO2 captured by each metal analog of DHFUMA in comparison to its
DOBDC analogs across a pressure range applicable to flue gas conditions.

The excess value peaks at low pressures and then quickly drops to large negative values
after the DHFUMA framework saturates with CO2. It is also significant that DHFUMA
analogs continue to load approximately 2 mol/kg more CO2 at an elevated temperature
of 400 K since high temperature adsorption can be used to mitigate competitive water
adsorption, as will be seen in later discussion.
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Figure 3.6: Absolute CO2 adsorption in DHFUMA minus the absolute CO2 adsorption in
DOBDC (a) at 313 K and (b) at 400 K. The pressure region in pink corresponds to the
typical partial pressure of CO2 (P = 0.15 bar) in the exhaust from a coal fired power plant.
For each metal a temperature exists between 313 K and 400 K which maximizes the excess
CO2 uptake in the DHFUMA structure.

Enhanced CO2 heat of adsorption

The isosteric heat of adsorption, ∆HAds, as a function of loading is a measure of the enthalpy
gained on average by adsorbing one additional molecule in the adsorbent system at a specified
loading. Conversely, the isosteric heat of desorption, ∆HDes, as a function of loading is the
amount of enthalpy required to desorb one additional molecule at a specified loading. In
Fig. 3.7 we observe an interesting feature of CO2 adsorption in the DHFUMA structure that
shows a monotonic increase in the heat of desorption as a function of loading from zero
to saturation loading. A molecule that adsorbs when the framework is close to saturation
(0.8∼0.9 molec./M2+) releases nearly 10 kJ/mol more enthalpy than the first molecule to
adsorb. In other words, the cooperative binding of CO2 is very strong (due to the proximity of
the primary binding sites) and increases in strength monotonically with loading. This leads to
the perhaps non-intuitive property that the enthalpy penalty to desorb CO2 always decreases
as the loading decreases from saturation to empty framework. Notably, Mg2(DHFUMA)
does not exhibit this trend because the binding energy of one CO2 molecule is so strong
that cooperative adsorption is only favorable enough to maintain a constant ∆HDes as a
function of loading. The same phenomena does not exist with the DOBDC series. Only
a 1∼2 kJ/mol increase in ∆HDes is observed in all DOBDC analogs between the limit of
0 loading and the inflection point at one molecule per open metal site. Thus cooperative
adsorption at loadings below 1 molecule per open metal site is negligible in the DOBDC
frameworks when compared to the DHFUMA frameworks.
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Figure 3.7: The heat of desorption as a function of loading for the M2(DOBDC) and
M2(DHFUMA) analogs. The DHFUMA structures, with the exception of the Mg analog,
exhibit a 7-10 kJ/mol increase in the ∆HDes between the limit of zero loading and saturation.

Optimizing CO2 capture in binary CO2:H2O mixtures

Enhanced CO2 uptake in the range of partial pressures relevant to adsorption from a coal-
fired flue stream does not necessarily indicate an improved potential for industrial scale
CO2 capture.[109] A multitude of other factors must be considered such as CO2 selectivity,
compression work of the CO2 enriched waste stream, and the energy required for adsorbent
regeneration, and these attributes can be quantified through a metric known as the parasitic
energy.[76] However, the deleterious effects of water on CO2 uptake is often overlooked when
evaluating materials for CO2 capture potential via the parasitic energy.[110] For this reason
we investigated water adsorption in the DHFUMA and DOBDC series as well since creative
strategies such as high temperature adsorption and low temperature desorption (HALD
[111]) have been proposed to mitigate the parasitic energy when adsorbing CO2 from humid
flue gas streams. Pure component water isotherms and binding geometries are shown in
Appendix A.

More relevant to carbon capture, we performed a CO2:H2O binary mixture analysis to
investigate each structure’s potential performance for carbon capture in the presence of
water. GCMC simulations were performed at a fixed reservoir pressure of 0.15 bar, and
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the molar composition of CO2:H2O of the reservoir was varied at different temperatures.
Note that N2 was not simulated in the mixture as its uptake in the MOF-74 framework
series has been shown to be negligible in comparison to the uptake of CO2 and H2O at flue
gas adsorption conditions.[86, 87]. The same stepped feature of water adsorption occurs
in this binary analysis as in the pure component H2O isotherms and, at a certain critical
pressure, water condenses within the pore. In the case of this binary mixture analysis, the
condensation of H2O is sufficient to entirely remove any adsorbed CO2 at equilibrium. Fig.
3.8 demonstrates the loss in CO2 uptake capacity that occurs after the molar composition
of water (at fixed total pressure) in the reservoir becomes too high.
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Figure 3.8: A mixture analysis of CO2 and H2O adsorption in the Mg analogs of DHFUMA
and DOBDC. Each data point represents an equilibrated absolute adsorption loading from a
GCMC simulation at 400 K and fixed total pressure of 0.15 bar while the molar composition
of H2O to CO2 is varied between simulations. For each analog, two values are extracted,
and (1) and (2) demonstrate the values extracted for Mg2(DHFUMA). (1) Corresponds to
the CO2 uptake that is equal to 90% of the uptake in the limit of 0 mole fraction of H2O.
(2) Corresponds to the H2O mole fraction at which the total CO2 uptake has decreased by
10%.

Yet at higher temperature, the onset of the water step is shifted to a significantly higher
mole fraction. A reduction in CO2 uptake capacity follows from this temperature increase, yet
this uptake loss is mitigated in the DHFUMA structure due to the enhanced CO2 affinity.
An entire summary of the mixture analysis for each structure at various temperatures is
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presented in Appendix A. From one mixture analysis at a specified temperature, we can
extract two values of importance which are visualized in Fig. 3.8: the water mole fraction just
before water condensation occurs and the amount of CO2 loaded at that specific water mole
fraction. These represent competing process design variables. To increase the water mole
fraction at which condensation occurs, we must raise the temperature, which consequently
reduces the amount of CO2 loaded. These two quantities are plotted for each analog structure
across a range of adsorption temperatures (313K - 400K for M = [Co, Fe, Ni, Zn] and 400K
- 473K for M = [Mg]) in Fig. 3.9.
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Figure 3.9: Mixture analysis of all analogs demonstrating the competing nature of CO2

uptake and water tolerance. The y-axis corresponds to value (1) extracted from Fig. 3.8 and
the x-axis corresponds to value (2). The ideal material for CO2 capture would have a data
point corresponding to 313 K at the top right corner of the plot.

From a carbon capture process design perspective, the ideal material would be located
in the top right corner of Fig. 3.9 where the material loads large amounts of CO2 in the
presence of extremely high water mol fractions. Since the x and y quantities of Fig. 3.9
represent competing variables (but we desire to maximize both of them), we can interpret
this summary as a problem of Pareto optimality and a Pareto frontier can be observed
for Co2(DHFUMA). This means that regardless of the adsorption temperature chosen for
our capture process, there is no material that can simultaneously achieve a higher water
tolerance and CO2 uptake capacity at thermodynamic equilibrium than Co2(DHFUMA).
Therefore, regardless of the selected operating temperature, Co2(DHFUMA) will have the



CHAPTER 3. RATIONAL DESIGN OF HIGH PERFORMING ADSORBENTS 48

best uptake and water tolerance as is easily visualized in Fig. 3.9. In more physical terms,
a Pareto optimal material in this context of CO2 capture in the presence of humidity will
be the material which delicately balances two factors. First, CO2 uptake must remain the
highest with increasing temperature, which fundamentally arises from the highest CO2 Henry
coefficient, which in turn arises from the strength of CO2 interactions at the open metal
site(s). Second, H2O condensation must occur at the highest water mol fraction, which
arises from a combination of the weakest possible H2O interactions with the open metal site
and the largest pore size. Hence we can see the competing nature of these two factors since
the strength of CO2 binding and H2O binding at the open metal site are highly correlated,
and the advantage of DHFUMA becomes immediately clear since we selectively strengthen
the binding energetics of CO2 across all metals due to the one molecule per two open metal
site binding mode. Thus we also notably observe that each M2(DHFUMA) represents a
Pareto frontier over its DOBDC counterpart. For example, Ni2(DOBDC) cannot maximize
either water tolerance or CO2 uptake above Ni2(DHFUMA) regardless of our specification
of the adsorption temperature.

3.6 Outlook: A challenging materials synthesis

problem worth solving

We have demonstrated the in silico design of a new MOF-74 analog based on the aliphatic
DHFUMA ligand. We predict exceptional small molecule adsorption properties via a combi-
nation of ab initio electronic structure calculations and classical molecular simulation tech-
niques in conjunction with the extensive previous research efforts to create simulation meth-
ods that accurately predict guest molecule behavior in MOF-74 type frameworks. Namely
we have predicted (1) a doubling of the volumetric storage capacity of H2 in Mg2(DHFUMA)
over Mg2(DOBDC) at the cryogenic temperature of 77 K and pressures below 1 bar (and
can meet the 2020 DOE target of 40 g/L at ∼0.5 bar); (2) a marked enhancement of CO2

uptake in low pressure regimes over the DOBDC analog series; (3) a selective increase of
CO2 binding energy (i.e. stronger CO2 binding with no change in H2O binding energy), the
basis for which we propose an industrial scale CO2 capture process inspired by the HALD
scheme (see Appendix A). These enhancements are a direct result of the open metal site
properties of the M2(DHFUMA) frameworks.

This material contains double the volumetric density of open metal sites over DOBDC
analogs, leading to a remarkable simulated volumetric H2 storage capacity. Additionally, the
distance between two adjacent open metal sites in each channel is reduced from 8.3 Å in
DOBDC to 6.0 Å in DHFUMA. CO2 binds to two open metal sites in the M2(DHFUMA)
framework, resulting in a significantly stronger binding energy than in M2(DOBDC). The
confined pore channel results in significant cooperative adsorption of CO2, with an isosteric
heat of adsorption that is ∼15 kJ/mol stronger at saturation than in the limit of zero loading.
Furthermore, since H2O still can only bind to one open metal site in M2(DHFUMA), the ab
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initio calculated quantity of ∆Ebind,H2O−∆Ebind,CO2 in the DHFUMA series is typically ∼10
kJ/mol higher than in the DOBDC series, indicating that the DHFUMA series has more
selective CO2 binding energetics relative to H2O. This enhanced selectivity for CO2 is ex-
ploited in our classical GCMC simulations and adsorption at high temperatures is proposed,
allowing for a theoretical process by which CO2 can be captured in appreciable amounts
(∼1-2 mol/kg) in the presence of non-trace amounts of water (∼0.1-1 mol %). The water
tolerance and amount of CO2 captured is dependent on metal choice and adsorption temper-
ature. Finally, an 80% decrease in ligand expense (per mol) suggests that an M2(DHFUMA)
analog may in the future represent an economically improved path forward for large scale
H2 storage or CO2 capture from flue gas.

The theoretical work in this paper should motivate efforts to experimentally synthe-
size M2(DHFUMA) analogs and confirm our simulated volumetric H2 storage capacity and
adsorption behavior of CO2:H2O mixtures. We note the synthesis of M2(DOBDC) is usu-
ally very challenging.[83] Thus far our efforts to synthesize M2(DHFUMA) are unsuccessful.
However, we do not see any obvious reason why M2(DHFUMA) cannot be synthesized ex-
perimentally, considering the dynamical and mechanical stability of these materials as well
as the availability and chemical stability of the metal and organic precursors. We also believe
this framework could be useful for a variety of other separations or storage applications rel-
evant to clean energy. In the future we plan to investigate a range of topics such as selective
adsorption of components from light olefin mixtures which are small enough to fit into the
DHFUMA channel network if the material can be synthesized.
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Chapter 4

In silico materials prediction
targeting 2D zeolites for more energy
efficient separations

Having demonstrated the power of in silico techniques for predicting three dimensional
porous crystals, a subsequent question arises. Which computational techniques will allow us
to predict or gain insight into porous crystals that can be synthesised as two-dimensional (2D)
frameworks? Scientific interest in 2D materials, ranging from graphene and other single layer
materials to atomically thin crystals, is quickly increasing for a large variety of technological
applications. While in silico design approaches have made a large impact in the study of
3D crystals, algorithms designed to discover atomically thin 2D materials from their parent
3D materials are by comparison more sparse. We hypothesize that determining how to cut
a 3D material in half (i.e. which Miller surface is formed) by severing a minimal number
of bonds or a minimal amount of total bond energy per unit area can yield insight into
preferred crystal faces. We answer this question by implementing a graph theory technique
to mathematically formalize the enumeration of minimum cut surfaces of crystals. While
the algorithm is generally applicable to different classes of materials, we focus on zeolitic
materials due to their diverse structural topology and because 2D zeolites have promising
catalytic and separation performance compared to their 3D counterparts. We report here
a simple descriptor based only on structural information that predicts whether a zeolite is
likely to be synthesizable in the 2D form and correctly identifies the expressed surface in
known layered 2D zeolites. The discovery of this descriptor allows us to highlight other
zeolites that may also be synthesized in the 2D form that have not been experimentally
realized yet. Finally, our method is general since the mathematical formalism can be applied
to find the minimum cut surfaces of other crystallographic materials such as metal-organic
frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.
This chapter is an unofficial adaptation of an article that appeared in an ACS publication
[112]. ACS has not endorsed the content of this adaptation or the context of its use.
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Figure 4.1: Artistic rendition of a graph theoretic interpretation of 2D zeolites
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4.1 Investigating 2D zeolites for separations and

catalytic applications

Two dimensional (2D) materials are quickly gaining attention as promising materials in
a wide variety of applications.[113] While the pre-eminent 2D material (graphene) has a
thickness of one atom,[114] more classes of 2D materials have been studied in recent times
(i.e. van der Waals layered structures).[115] Atomically thin or layered crystals can also be
considered 2D materials since they maintain long range connectivity in the direction of two
unit cell vectors but not the third. We hypothesize that answering the following question
can yield insights into preferred crystal faces and hence the propensity of crystals to form
2D-like structures: how can a 3D crystal be cut into two separate partitions by severing a
minimum number of bonds or, given a pairwise potential, by severing the minimum total
bond energy per unit area? Such concepts have already been used to rationalize the crystal
dissolution of a zeolite by atomic force microscopy [116] and more recently it has been used
in coarse grain crystal growth modeling.[117] Answering this question is, generally speaking,
the analogous problem of minimal cuts in graph theory.[118] Given a connected graph, a
minimum cut typically seeks to split the graph into two partitions by removing a minimum
number of edges or, in the case of a weighted graph, removing edges whose total weight is
minimal. Hence if a crystallographic material is interpreted as a graph with atoms for nodes
and bonds for edges, we can use graph theory techniques to determine the surface termination
for a given Miller plane that minimizes the number of cut bonds, i.e. the number of dangling
bonds. As phrased here, this problem is not constrained to one particular class of materials.
Initially however, zeolites present the perfect class of crystals to apply this minimum cut
formalism since the Si-O bonds have an extremely narrow range of distances and hence each
bond can be thought of as approximately equivalent in strength. For the remainder of this
work we focus our discussion on zeolite materials. However, we stress that the formalism of
this graph theory approach could be applied to many other crystalline materials, including
but not limited to metal oxides, zeolitic-imidazolate frameworks (ZIFs), and metal-organic
frameworks (MOFs), by introducing edge weights that address the different bond strengths
in more complex materials.

Zeolites are crystalline solids whose microporous void structures have made them ubiqui-
tous in a variety of commercial applications, most notably as catalysts in the petrochemical
industry and as adsorbents in small molecule separation processes. It is estimated that
the global zeolite molecular sieve market will surpass USD 35 billion by 2024.[119] Just as
the majority of experimental zeolite research has focused on the performance of bulk 3D
materials in catalysis, separations, and other applications, so too has the majority of com-
putational research focused on 3D materials, from hypothetical structure generation [16,
20, 120] (including successful prediction of novel materials [21]) and synthetic descriptors
[121–126] to performance prediction and high-throughput screening.[74, 127–129] However,
the research on 2D zeolite materials has accelerated in recent times, especially over the
past decade.[130–133] For example, 2D zeolites have demonstrated improved catalytic per-
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formance [134–136] and shown potentially greater separations efficiency [32, 137–140] over
their 3D counterparts. Both applications benefit from improved mass transfer in thin 2D
zeolite materials. For catalysis, catalyst deactivation by coking, which is a major problem
for 3D zeolite frameworks, can be significantly suppressed with 2D zeolite catalysts. For
separations, the diffusion time for molecules to pass through the 2D zeolite molecular sieves
can also be dramatically reduced. 2D zeolites have also been used as precursors to 3D zeo-
lites for which no other synthetic procedure is known.[141] While the 2D form of a relatively
small number of International Zeolite Association (IZA) [11] zeolites have been discovered,
their significant potential in a variety of applications merits further investigations to uncover
novel 2D zeolite structures. In this work we show that in silico design of 2D zeolites can
help further this goal.

Computational investigations of 2D zeolite structures have also intensified recently, espe-
cially to understand the interactions between and the reassembly process of layered 2D pre-
cursors that are generated in the Assembly, Disassembly, Organization, Reassembly (ADOR)
process.[142–145] We aim to build upon these computational studies to develop a high-
throughput screening technique and a descriptor to understand whether an IZA zeolite is
likely to demonstrate a stable 2D form. To do this we take advantage of some notable
work on high-throughput surface characterization performed in the context of the Materials
Project, for which the Pymatgen code has generated an efficient and user-friendly platform
for generating surface slabs of inorganic crystalline materials.[146, 147] Integrating this plat-
form with open source software for graph theory applications, we apply a technique known
as the max-flow min-cut algorithm [118] coupled with an advanced recursive implementation
to calculate the minimum cut for any particular surface.[148] Examining the statistics of
this minimum cut across all IZA zeolites yields a simple structural descriptor that predicts
whether the material is likely to be synthesized as a layered 2D zeolite. Furthermore, the
formulation of this graph theory problem is flexible and can be used to mimic the chemistry
of specific 2D zeolite synthesis methods such as the ADOR strategy [131] by re-weighting
edges in a graph to model varying bond strengths. Thus we show that we can mathemati-
cally formalize the generation of zeolite surfaces using graph theory and use this information
to make useful predictions regarding the synthesizability of 2D zeolites.

4.2 Minimal cut graph theory to mathematically

analyze crystal surfaces

Motivation

We are interested in the fundamental question of how a 3D material can be cut into two
separate partitions by removing a minimum number of bonds or, given pairwise potentials,
the minimum total bond energy per unit area. Our assumption is that this minimum cut
indicates that the surface formed is energetically preferred [149] or that the delamination of
the 3D structures into 2D sheets may be facile in this direction. While the true surface energy
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under synthesis conditions is extremely complex due to solvent, pH, structure directing
agents (SDAs), etc., this minimum cut solution serves as a simple starting point from which
an interesting structural descriptor will later be derived. However, we note that conceptual
use of minimum cut surfaces has been able to predict and rationalize the crystal dissolution
of a zeolite by atomic force microscopy [116] and more recently it has been used in coarse
grain crystal growth modelling.[117] Before entering a detailed discussion of the methods, the
solution to this minimum cut problem for zeolites is visualized in Fig. 4.2 for zeolite MWW
where the minimum cut surface termination of the (001) and (100) surfaces are determined.
For example, the (100) surface cannot be formed by removing less than two bonds per unit
cell.

Figure 4.2: Zeolite MWW is shown along with the min cut surface terminations for both
(001) = blue and (100) = green Miller planes. For either Miller plane, the surface termination
shown represents the minimum number of bonds that can be cut while preserving the 2D
periodicity corresponding to that particular Miller surface.

Within graph theory, the problem of determining the minimal cuts (see next section for
formal definition) arises in many varieties and has been an active area of research for decades
[150–156] with importance in a large number of applications.[157–161] We will combine
previous graph theory work on minimal cuts [148] in a novel application: the automatic
determination of minimum or near minimum cut surface terminations for any given Miller
face of any given zeolite. Since a zeolite can be mathematically interpreted as a simple
connected graph, we can use a minimum cut algorithm to solve the surface termination of a
particular Miller face that cuts the minimal number of Si-O bonds. In this Methods section
we start with mathematical notation and briefly outline the minimal amount of information
necessary to understand a special type of graph cut, known as the minimum s-t edge cut,
and provide references for additional details. After explaining how a ”zeolite graph” can be
created, we show how the minimum s-t cut problem can be applied to minimize the number
of bond cuts necessary to terminate a particular Miller surface of a zeolite.
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Preliminaries

The minimal amount of formalism is presented here in order to define the graph theory
concepts utilized in this work, and the exact notation of Ref. [148] is used. We take G =
(V,E) to be an edge-weighted, connected, directed graph with a set of vertices (or nodes) V
and a set of edges E ⊆ V ×V where each pair of vertices is ordered, and n = |V | is the order
of the graph (number of nodes) and m = |E| is the size of the graph (number of edges). An
edge is denoted by its vertex pair e = (u, v). The weight of an edge e = (u, v), denoted we, is
a numerical value associated with that edge, and the weights of all edges are given by the list
w = (we1 , we2 , ..., wem). In this work the only possible edge weights will be we = 0, we = 1
or we =∞, as explained later. Two different vertices in V may be specially distinguished as
the source and target vertices, or s and t, respectively.

Now, a directed s-t path in G is any path which starts at s and ends at t, or more formally
a sequence of vertices and edges of the form s, (s, v1), v1, (v1, v2), v2, ....vk−1(vk−1, t), t. A
generic s-t edge cut is a set of edges C belonging to E that, when removed from the graph,
interrupts all paths from s to t. The value or weight of the cut, w(C) =

∑
e∈C we, is simply

the sum over the weights of all edges in the cut. From here on we will use the definition of a
minimum cut (or min cut), denoted as C0, to describe an s-t edge cut whose weight w(C0)
is a minimum among all possible s-t edge cuts. Henceforth we may drop the s-t for brevity
since all graphs in this work have a source and target. Multiple minimum cuts can exist, in
which case C0 is a set of min cuts. Finally, a near-minimum cut (or near-min cut) Cε is an
s-t edge cut whose weight is w(Cε) ≤ (1 + ε)w(C0), in which ε is a threshold to control how
”near” a near-min cut must be to the min cut. Again, Cε is a set of near-min cuts if more
than one exists. The following section gives visual examples of this formalism and briefly
describes how the min cuts are calculated.

Determining the min and near-min cuts

The min cut of a directed, single-source, single-target graph is determined by computing
the maximum flow of the graph.[162] Several algorithms can identify the max flow and in
our work this problem is solved using the ”shortest-augmenting path” as implemented in the
python library NetworkX.[163] Once the max flow is known, the value of the min cut is known
by the max-flow min-cut theorem, and a single C0 solution can be easily determined.[118]
Further details can be found in the extensive literature regarding the max-flow min-cut
theorem, and we point the reader to Ref. [148] and references therein for more information.
We show an edge-weighted, connected, directed graph with source s and target t in Fig.
4.3 to illustrate the min (C0) and near-min cuts (Cε) that can be computed. Note that
each black double-sided arrow represents two anti-parallel edges which effectively remove
the directionality of all s-t paths in the graph. This is desired because materials’ bonds have
no directionality but the min cut algorithm in this work operates only on directed graphs.
As a consequence the min cut value is modified to be w(C) =

∑
e∈C we/2 when anti-parallel

edges exist to avoid double counting.
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Figure 4.3: Sample graph with source and target nodes (purple) for which we seek to find
all min and near-min cuts, where red edges represent those included in the cut. (a) Shows
the min cut solution while (b-c) show near-min cut solutions. Hence C0 = (Ca) and Cε =
(Ca, Cb, Cc) when ε = 0.125. More near-min cuts could be included in Cε with an increased
value of ε.

Determining the first min cut (Fig. 4.3a) is relatively easy using the max-flow min-cut
theorem. However, identifying all min and near min cuts (Fig. 4.3a, b and c) requires
additional effort for which Balcioglu and Wood have proposed an elegant algorithm that
can be easily implemented.[148] First, a single min cut C0 is found by the max-flow min-cut
theorem. Next, a recursive call to the max-flow min-cut algorithm is performed, but at each
level of the recursion tree, the weight of a particular edge is modified to force its inclusion
or exclusion from the previously identified min cut. We refer the reader to Section 2.2 and
Fig. 2.2 of Ref. [148] for more specifics and to Appendix B for the Python implementation
of this recursive function. This recursive search of possible cuts ultimately outputs all min
cuts and any near min cuts based on the user specified value of ε. It should be noted that
the computational feasibility of identifying Cε decreases for increasing ε since the number of
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cuts may be exponential in the size of the graph; however, we are only interested in values
of ε = 0 in this work but still envision the use of non-zero ε in future work.

4.3 An algorithmic procedure to generate the

minimal cut surfaces of zeolites

Creating an initial zeolite nanosheet

A “naive” zeolite surface slab (nanosheet) can easily be generated using open source materials
science libraries, and for this work we utilize the generalized surface slab building feature
of Pymatgen.[146, 147] The algorithm can build a surface slab of any Miller index from a
bulk unit cell of any Bravais lattice, while advanced features can be used to build slabs
where the two slab surfaces share an inversion point symmetry (when possible), to work
with polar surfaces, and to determine symmetrically unique Miller faces. To generate our
library of zeolite surfaces, we adopt the following procedure. We create a surface slab for a
given Miller face for a given zeolite using Pymatgen and ensure that the slab contains Laue
symmetry (when possible) so that both surfaces of the slab are symmetrically equivalent.
A schematic representation is shown in Fig. 4.4 where, by Pymatgen convention, the slab’s
surface is parallel to the ab plane of the new unit cell and the c-direction corresponds to the
vacuum.

We also require that the Pymatgen generated initial slab have N layers with translational
symmetry where the thickness of the 2 ... N-2 layers must be greater than a certain cutoff
distance. We chose a cutoff distance of 30 Å to minimize the self interactions of the two
surfaces so that the slabs could be used for first principles calculation in future work. When
enumerating all near min cuts, we will only finalize a cut C0 or Cε if at least one Si atom
attached to any of the edges e ∈ C0, Cε is in Slab Bulk Layer 1, shown in Fig. 4.4. Imposing
such a constraint eliminates the possibility of identifying equivalent cuts in the translationally
symmetric layers, since a cut that only contained edges with Si atoms in Slab Bulk Layer
0 would be discarded due to the existence of an equivalent cut in Slab Bulk Layer 1. This
also preserves the bulk character of Slab Bulk Layers 2 ... N-2 so that the surfaces remain
sufficiently separated.

Application of min cuts to zeolites

A zeolite slab can be easily converted into a simple graph upon which the min cuts can be
calculated. O atoms are ignored since all are two coordinated to exactly two different Si.
Thus a zeolite can be interpreted as a simple connected graph where each node represents an
Si atom with an edge between any two Si atoms that are connected by the same O. First, a
zeolite slab is prepared and then interpreted as a simple graph which is schematically shown
in Step 1 of Fig. 4.5. The real zeolite graph should have edges that represent bonds crossing
periodic boundaries in two dimensions (as denoted by the dashed lines in this toy example)
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Figure 4.4: (Top) Each Miller surface slab contains N layers, where the slab thickness of
the 2 ... N-2 bulk layers was chosen to be greater than 30 Å. (Bottom) The (103) Miller
surface slab of MFI for N=6 is shown with oxygen atoms excluded where the color of each
Si corresponds to its layer in the slab.

but none in the third dimension which corresponds to the direction perpendicular to the
vacuum on either side of the slab. Any nodes in Step 1 that are less than 4-coordinated are
under-coordinated Si atoms whose bonds have been removed in the initial slab generation.
They are identified as the initial surface nodes in Step 2 and colored purple. On each side
of the slab, these initial surface nodes are connected to a new single surface node, which
is designated as the source or target node for a min s-t cut computation. The weights of
these new edges must be set to infinity as shown in Step 3 to ensure that any C0 and Cε
are independent of the initial surface given in Step 1. In Step 4, we show a solution to the
min s-t cut that is identified by the algorithm, specifically the leftmost cut. There is no
need to repeat the algorithm to identify the analogous cut on the right side of the slab since
it is immediately determined by Laue symmetry or, in its absence, translational symmetry
between the slab layers which was visualized in Fig. 4.4. The final step is to remove the
partitions of the graph containing the source and target nodes, as well as passivate each
dangling Si-O bond with an H atom. Hence we have identified a surface termination of the
zeolite by disconnecting a minimum number of Si-O bonds since we = 1. It should be noted
that the generated surface may express Si-OH, Si-(OH)2, or Si-(OH)3 groups to minimize
the total number of removed bonds.
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Figure 4.5: (Step 1) Schematic representation of a toy zeolite slab graph where nodes cor-
respond to Si atoms and O atoms are replaced by a single edge. Note the dashed edges
which are periodic when embedded in the 2D unit box. (Step 2) Under-coordinated surface
nodes are identified. (Step 3) s and t nodes are connected to the surface nodes by edges with
infinite weight. (Step 4) The min cut solution is found. (Step 5) The dangling bonds in the
final structure are passivated with hydrogen.
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We also note that the algorithm for finding min cuts using the max-flow min-cut theorem
operates on directed graphs, but in this section the zeolite graph in Fig. 4.5 is presented as a
simple undirected graph. However, finding a min cut in undirected graphs is straightforward
provided the following standard transformation is performed.[156, 164] Every edge in the
undirected graph can be replaced with two directed anti-parallel edges (Fig. 4.3), each with
a weight equal to that of the original undirected edge. The previously discussed min cut
algorithm can be executed on this analogous directed graph, and any min cut represents a
cut of equal weight in the original undirected graph, provided the cut weight is modified to
w(C) =

∑
e∈C we/2 to avoid double counting the additional anti-parallel edge.

The Lammps Interface code,[165] which interprets nanoporous materials as periodic
graphs using Python’s NetworkX package,[163] was used to convert zeolite structures into
their analogous graphs, and Pymatgen was used to generate the initial surface slabs. We
extended NetworkX’s default max-flow min-cut computation with the previously described
recursive algorithm of Ref. [148] to solve the min cut of the initial slab. Using GNU parallel
[166] to run embarrassingly parallel jobs was sufficient to generate just one min cut slab for
each symmetrically unique Miller surface up to maximum index of 2 of every IZA zeolite in
just a few days on a 8 processor desktop. This yielded a total of ∼3700 slabs.

4.4 Predicting 2D zeolites from minimal cuts

Generation and characterization of IZA zeolite surfaces

The min cut for each Miller surface up to a maximum index 2 for each IZA (excluding any
interrupted structures, denoted with a “-” by the IZA commission) was solved to generate
a library of 2D nanosheets. Thus for each Miller face of each IZA we have calculated the
w(C0) value, which is exactly equal to the number of edges that are cut to form the surface
since we = 1 in this scheme. Since each slab is embedded in a new unit cell with the vacuum
parallel to the c-direction as visualized in Fig. 4.4, w(C0) is converted to a cut density by
division with the area of the face spanned by the ab unit cell vectors. Then each Miller
surface is ranked by this surface density of cut edges, δ = w(C0)/(|a× b|) with units of Å−2,
as shown in Table 4.1 for the examples of EMT and MWW. From now on δ will be referred
to as the min cut density, which can also be interpreted as a density of cut bonds when the
weight of each edge in the graph is unity. Note that several Miller surfaces can have the same
min cut density due to symmetry equivalence, and this was exploited to save computational
time by only performing the min cut analysis on one of the symmetrically equivalent Miller
planes as calculated by Pymatgen. Repeating the analysis in Table 4.1 would be extremely
arduous if not impossible by manual/visual inspection of all IZA zeolites. Some additional
analyses on the statistics of all IZA min cuts are shown in Appendix B to highlight the
necessity of the automated and robust algorithmic approach provided in this work.
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Table 4.1: Ranking of the EMT and MWW Miller surfaces based on their min cut density,
δ [=] Å−2. Surfaces ranked higher than 10 are omitted for clarity.

EMT MWW

Rank Face δ Face δ

R1 (001) 0.0234 (001) 0.0112
R2 (100) 0.0248 (102) 0.0314
R3 (110) 0.0248 (102) 0.0314
R4 (010) 0.0248 (112) 0.0314
R5 (101) 0.0256 (112) 0.0314
R6 (101) 0.0256 (012) 0.0314
R7 (111) 0.0256 (012) 0.0314
R8 (111) 0.0256 (100) 0.0331
R9 (011) 0.0256 (110) 0.0331
R10 (011) 0.0256 (010) 0.0331
...

Application: Predicting IZAs likely to grow in layered 2D form

We aim to have a predictor for zeolites which can grow in a stable, layered 2D form. A closer
look at Table 4.1 reveals a major difference between the statistics of the min cut densities
for MWW and EMT. For MWW, the difference in the min cut density between the R2 and
R1 surface, δR2 − δR1, is relatively large with a value of 0.02 whereas for EMT this quantity
is practically zero. Now the question becomes whether such an outlying min cut density of
the R1 surface indicates that it can be more easily isolated during crystal growth, leading
to the formation of layered 2D zeolites. In other words, can one more readily find synthesis
conditions/SDAs to achieve enhanced stability of the R1 surface relative to other surfaces
or obstruct growth in the dimension orthogonal to R1? To investigate this question, we plot
δR1 vs δR2 − δR1 for all IZA zeolites to elucidate an important trend shown in Fig. 4.6.

In this plot each data point corresponds to an IZA zeolite, where gold points have a
known 2D form [130, 133, 167] and blue points have no known 2D forms. Picking a structure
at random, one would have an approximate 7% chance of choosing an IZA zeolite that is
known to exhibit a 2D form. However, when focusing on structures with the largest δR2−δR1

values, that probability increases significantly (up to ≈ 70%). In other words, δR2− δR1 is a
probabilistic descriptor for identifying an IZA zeolite with a known 2D form. Physically, this
simple structural descriptor says the following: it is more likely to find synthesis conditions
or SDAs that block the growth of a zeolite in one crystallographic dimension when the face
perpendicular to that dimension has a much lower minimum cut density than any other face.
This leads to the formation of a 2D layered precursor and it is only the growth in the third
crystallographic dimension that is blocked. To ensure that the descriptor actually predicts
a 2D zeolite with the correct surface, we manually investigated all reports of the known 2D
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Known 2D Form No Known 2D Form
IZA Formula 𝛿"# -	𝛿"% IZA Formula 𝛿"# -	𝛿"%
CDO Si36O72 0.020 CGF Co4Ga5P9O36 0.021
MWW Al0.4B5.1Si66.5O144 0.020 UOS Si55.5Ge40.5O192 0.019
FER Al6Si30O72 0.020 JSW Co8Al16P24O96 0.019
HEU Al8Si28O72 0.018 SBN Ga8Ge12O40 0.017
CAS Al4Si20O48 0.017 GON Si32O64 0.015
STI Al20Si52O144 0.013 BRE Al4Si12O32 0.015
PCR Si60O120 0.012 EPI Al6Si18O48 0.015
RWR Si32O64 0.012 AEN Al24P24O96 0.014
RRO Si18O36 0.011 USI Co4Ga6P10O40 0.012
AFO Al10P10O40 0.010 ZON Zn8Al24P32O128 0.012
NSI Si24O48 0.009 CFI Si32O64 0.011
OKO Si68O136 0.007 JRY Co2Al10P12O48 0.011
MTF Si44O88 0.006 AFS Mg6Al22P26Si2O112 0.010
MFI AlnSi96-nO192 0.0005 BPH Be14P14O56 0.010
SOD Al6Si6O24 0.0 STT Si64O128 0.010

Figure 4.6: The plot of δR1 vs δR2−δR1 where each data point corresponds to an IZA zeolite.
Large values of δR2− δR1 lead to a much higher probability that an IZA zeolite has a known
2D form, indicating it is a probabilistic descriptor for the ability to form such structures.
The 15 IZAs with known 2D form and the top 15 IZAs with no known 2D form are listed in
order of decreasing descriptor value to help identify them in the figure. The chemical formula
given by the IZA Commission [11] (omitting counter ions and SDAs) is also provided.

structures from the literature following the references in Ref. [130] and [133]. In all cases,
the reported 2D structure [168–176] is formed such that the expressed surface corresponds
to the same surface we identify as R1 in our high-throughput screening. To summarize, Fig.
4.6 clearly demonstrates that the R1 surface is much more likely to be expressed under given
synthetic conditions than the R2 surface when δR2− δR1 is large, while the absolute value of
δR1 is less relevant for predicting layered 2D crystal growth.

We note real zeolite synthesis is a very complex process, which requires fine control of
reaction conditions, including but not limited to the right reactants, a specific structure
directing agent, controlled pH (of reaction medium), optimized reaction temperature and
time, and the right mixing fraction and procedure. The experimental realization of our
predicted 2D zeolite candidates also relies on the fact that the right reaction conditions need
to be identified. This is beyond the scope of our current work. However, our predicted surface
terminations of the Miller planes with the lowest cut densities may provide crucial insights
on one of the most important reaction ingredients of zeolite synthesis, i.e. the structure
directing agents. By computationally screening the binding strengths of conventional and
unconventional SDA molecules with different Miller planes of a selected 2D zeolite candidate,
one may identify a SDA molecule with much stronger interaction with the lowest cut density
Miller plane than with other Miller planes, and therefore zeolite growth will be promoted
along this unique direction and inhibited along other directions, which results in a 2D zeolite
with a maximally expressed Miller surface. We also note that the life time of zeolite surfaces
has been reported to inversely correlate with the density of surface dangling bonds (i.e.
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the cut density),[116] indicating that the lowest density cut Miller planes will have more
time to interact with SDA molecules and have increased expression in the growth process,
furthering the chance that a 2D instead of a 3D zeolite will be formed. It should be noted
MFI represents an outlier since it is the only zeolite that can be synthesized in a stand-alone
2D form,[177] i.e. not as a layered 2D precursor, and also has δR2− δR1 approximately equal
to zero. This 2D form is also achieved by synthesis methods unique to this structure, namely
as a multilamellar precursor with surfactant.[130] Thus a large δR2− δR1 value more reflects
the probability to find synthesis conditions to direct formation of 2D layered precursors but
as expected does not represent the complex surfactant chemistry at the MFI surface that is
utilized to direct its stand-alone 2D growth.

Finally, the structure corresponding to each data point is provided in Ref. [112]. These
results provide a list of structures that can be immediately targeted experimentally because
they are higher probability candidates to form novel 2D layered structures according to the
statistics of currently known 2D layered zeolites. These large δR2 − δR1 value structures
serve as a starting point for future experimental and computational efforts to predict and
investigate which synthetic conditions and SDAs may result in some 2D layered structure
where the expressed surface is defined by our predicted R1 surface.

Application: Potential 2D zeolites for water desalination

The non-equilibrium molecular dynamics simulations of Jamali et al. demonstrated that
using 2D zeolite nanosheets for water desalination could hypothetically provide large im-
provements in water permeation performance over current technologies.[32] We now look at
all known zeolites with 2D form (as well as those in the “high probability zone” of Fig. 4.6) to
determine which structures have potential for this application, i.e. are porous in the direction
perpendicular to the R1 surface. Here we define a nanosheet as porous if the largest free
sphere (or pore limiting diameter), Df , in the crystallographic direction perpendicular to the
R1 surface is larger than the kinetic diameter of water. Df in the direction perpendicular to
the R1 surface was calculated with Zeo++ [74] and is plotted vs. the descriptor in Fig. 4.7.

Only MFI satisfies this porosity criteria for all zeolites with a known 2D form. SOD and
MWW have the next largest values for Df but neither have pore limiting diameters large
enough in the direction perpendicular to the R1 surface to allow water to pass from one side
of the nanosheet to the other. However, several structures can be identified with relatively
large δR2− δR1 value (indicating a higher probability of having a layered 2D form) that have
a pore limiting diameter through the R1 surface larger than the kinetic diameter of water,
some of which are listed in Fig. 4.7. Our analysis shows that these materials have the similar
structural characteristic as other stable 2D layered zeolites and, given their potential for
different types of separations, we hope that this work will stimulate a more targeted effort
to synthesize them.
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No Known 2D Form
IZA Formula 𝛿"#-	𝛿"%

1 AFS Mg6Al22P26Si2O112 0.010
2 BPH Be14P14O56 0.010
3 BOZ Be66.7As25.3O80.5 0.009
4 AFN Al8P8O32 0.008
5 ETL Si72O144 0.007
6 MSE Al11.4Si100.6O224 0.006
7 SEW Si61.3B4.7O132 0.005
8 OBW Be22Si54O150 0.005
9 MON Al4.5Si11.5O32 0.005

Figure 4.7: The largest free sphere, Df , in the direction perpendicular to the R1 surface
plotted vs the descriptor δR2 − δR1. For separations to occur in such 2D structures, this
value must be larger than the kinetic diameter of the smallest species in the separation
mixture. MFI is the only known 2D zeolite to achieve porosity through the nanosheet, but
nine potential structures are highlighted that would also be porous and have not yet been
discovered in a 2D form. The chemical formula given by the IZA Commission [11] (omitting
counter ions and SDAs) is also provided.

Application: Predicting likely 2D zeolites from ADOR
disassembly

There exist a variety of specific synthesis techniques for achieving a 2D form of an IZA
zeolite.[130, 133] However, if one were to ask which materials may form layered 2D sheets for
a specific synthesis method, it is possible in some situations to tailor the min cut algorithm
to mimic the chemistry of a particular synthesis technique. Here we provide an example on
the versatility of our algorithm to show how we can identify potential 2D zeolites formed
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during the disassembly step of a special synthesis procedure, namely the ADOR strategy.
In this technique, germanium preferentially occupies double 4 rings (D4R) sites which are
selectively hydrolzyed upon acid treatment. With this knowledge, the weights of the edges
in a zeolite graph should be set to zero if the edge contains one node in a D4R unit and one
node outside the D4R unit. Removing the penalty to cut these edges mimics the selectivity
of O-Ge bond hydrolyzation. This re-weighting of bonds attached to D4R units is shown
schematically in Fig. 4.8a.

w(          ) = 0
w(          ) = 1

(a) (b)

Kinetic 
Diameter H2O

Figure 4.8: (a) A schematic showing the re-weighting of edges corresponding to bonds that
are selectively hydrolyzed during ADOR disassembly. (b) The Df vs. our descriptor, δR2 −
δR1, is plotted for IZA zeolites containing D4R motifs. Only structures where δR1 = 0 are
considered, so a non-zero value of the descriptor indicates that exactly one Miller surface
(the R1 surface) can be generated by only cleaving bonds connecting a D4R unit to the rest
of the structure. The red line once again indicates the kinetic diameter of H2O.

With this new weighting scheme, a min cut density of zero, or w(C0) = 0, can occur for
a particular Miller plane if all bonds in the min cut correspond to those that are selectively
hydrolyzed during ADOR disassembly. Thus the first requirement for 2D sheet formation
with this technique is that δR1 = 0. However, if there exist two min cut surfaces with δ = 0
for two different Miller planes, it is evident that no 2D sheet could form as it would be
hydrolyzed into discrete fragments that lack 2D periodicity. For 2D layers to be formed,
it is sufficient to see that one and only one Miller surface has a min cut density of zero,
or in other words, the second requirement is that δR2 − δR1 6= 0. Fig. 4.8b shows the pore
limiting diameter vs δR2− δR1 when the weighting modification of Fig. 4.8a has been applied
to demonstrate promising materials for ADOR disassembly.

Here only IZA structures that have D4R units are shown and are color-coded by those
that have been synthesized as germanosilicates. Ref. [131] determined, presumably by man-
ual inspection, that “the most suitable candidates for top-down synthesis of 2D zeolites [are]:
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ITG, ITH, ITR, IWR, IWW, SVV, UOS, and UTL ... [and] IWV ”, and our automated
approach provides very similar prospective. Regarding non-germanosilicates, Ref. [131] pro-
poses IWV as a potential material for ADOR disassembly if it can be synthesized as a
germanosilicate, but excludes IFY, UFI, UOV, and ISV (which were likely excluded since
they contain D3R or single 4 rings that if hydrolyzed, would destroy the 2 dimensionality).
However, we additionally highlight as a target for the synthesis community that DFO can be
included as a potential candidate if the germanosilicate version of the framework can be syn-
thesized. UOS appears in Ref. [131] but not our list since our calculations revealed that more
than one Miller surface can be formed by only hydrolyzing bonds connected to D4R units,
or δR2 = 0. Clearly ITG, ITR, IWR, and IWW are all high potential candidate structures
for separations applications since the 3D → 2D transformation via Ge-O hydrolysis results
in an atomically thin sheet porous to water molecules. Finally, it should be highlighted that
this re-weighting scheme can generally be applied to any structural motif in zeolites (e.g.
double 6 rings, cages, etc.) to accommodate future disassembly techniques. Subsequent min
cut calculations can then provide a formal way of determining whether a 2D sheet can be
formed from a 3D structure by only breaking bonds connected to specific building blocks.

4.5 Outlook: Computationally directed search for 2D

porous materials

We have applied a powerful graph theory technique to find and enumerate the minimum
cut 2D surfaces of 3D crystallographic materials. The ability to calculate a Miller surface
termination that minimizes the number of cut bonds (or the minimum total energy of cut
bonds given a classical potential) provides a mathematical approach to identifying important
surfaces, and we have specifically applied these ideas to zeolites in this work. For any given
zeolite and Miller face, one can automatically and rigorously enumerate all of the minimal or
near minimal cuts to create a library of 2D nanosheets. To our knowledge this is the first in
silico design approach using graph theory to study crystal surfaces in such a high-throughput
manner. While specifically applied to IZA zeolites in this project, this methodology has the
potential to be applied to other crystallographic systems (i.e. ZIFs, metal oxides, MOFs,
etc.) [178–181] to investigate various surface terminations in a formalized, high-throughput
methodology. One could also, for example, perform an identical analysis for the database
of aluminophosphates [182] and other zeotypes due to the generality of our graph theory
approach.

Our algorithmic approach to zeolite surface generation not only yields a probabilistic
descriptor for the likelihood that an IZA material has a known layered 2D form but also
correctly identifies the expressed surface. From random selection one has ∼ 7% chance of
selecting a material with known 2D form. Using our descriptor, one can bias this selection
probability to ∼ 70%. This indicates that materials with favorable descriptor values and
as of yet unknown 2D form are the most likely to be discovered in layered 2D form upon
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investigation of new synthesis conditions. We provide a list of structures which can guide
experimental efforts for attempted synthesis of layered 2D zeolites with far higher probability
than random search. We have furthermore demonstrated the versatility of the algorithm by
predicting suitable candidates for a particular synthesis method, namely the 3D to 2D trans-
formation during the disassembly step of ADOR. While ADOR is relatively new, Eliášová
et al. commented that new methods to selectively design structural weakness at specific
structural motifs (other than Ge-O in ADOR) and to selectively break such bonds will be
critical to developing new 2D forms of known zeolites.[131] When such synthetic procedures
are discovered and developed, our algorithmic approach will be invaluable to automatically
identify likely materials for such 3D to 2D transformations from the large number of IZAs,
non-IZAs, and hypothetical zeolites. Assuming sufficiently accurate classical potentials, a
natural extension of this combined ADOR/min cut analysis would be to identify other inor-
ganic crystals that are high probability candidates for exfoliation, or in other words exhibit
a 3D to 2D disassembly with exactly one preferred Miller surface.[181]

Our formal approach to enumerating zeolite surfaces also opens a path for other compu-
tational studies that can be performed to better investigate and understand zeolite surfaces.
For example, screening based approaches can be applied to identify SDAs or solvent condi-
tions that energetically favor the min cut surface over higher density cut surfaces, leading to
controlled structure growth. Informatics based identification of SDAs may be able to predict
compounds that will lead to isolation of the 2D layered form of some of the high-potential
candidates identified in this work. Ultimately, the theory applied here (and its continued de-
velopment) will not only be important for the continued investigation of zeolite surfaces and
identification of potential 2D zeolites, but will also provide a new methodology to examine
surfaces of other classes of crystallographic materials.
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Chapter 5

Advancing simulation techniques for
evaluating adsorption
thermodynamics

Monte Carlo simulations are the foundational technique for predicting thermodynamic prop-
erties of open systems where the process of interest involves the exchange of particles. Thus,
they have been used extensively to computationally evaluate the adsorption properties of
nanoporous materials and are critical for the in silico identification of promising materials
for a variety of gas storage and chemical separation applications. In this work we demon-
strate that a well-known biasing technique, known as “flat-histogram” sampling, can be
combined with temperature extrapolation of the free energy landscape to efficiently provide
significantly more useful thermodynamic information than standard open ensemble MC sim-
ulations. Namely, we can accurately compute the isosteric heat of adsorption and number of
particles adsorbed for various adsorbates over an extremely wide range of temperatures and
pressures from a set of simulations at just one temperature. We extend this derivation of
the temperature extrapolation to adsorbates with intramolecular degrees of freedom when
Rosenbluth sampling is employed. Consequently, the working capacity and isosteric heat can
be computed for any given combined temperature/pressure swing adsorption process for a
large range of operating conditions with both rigid and deformable adsorbates. Continuous
thermodynamic properties can be computed with this technique at very moderate computa-
tional cost, thereby providing a strong case for its application to the in silico identification of
promising nanoporous adsorbents. This chapter is adapted with permission from Witman,
M.; Mahynski, N. A.; Smit, B. J. Chem. Theory Comput. 2018, 14, 61496158. Copyright
2018 American Chemical Society.
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Figure 5.1: Artistic rendition of a flat-histogram illuminating the adsorption capabilities of
porous materials



CHAPTER 5. ADVANCING ADSORPTION THERMODYNAMICS SIMULATIONS 70

5.1 Beyond the grand canonical: flat-histogram

Monte Carlo methods for simulating the

thermodynamics of open systems

Open ensemble Monte Carlo (MC) simulations, in which particles can be added or removed
from a simulation domain, are the technique of choice for studying many important thermo-
dynamic phenomena such as phase coexistence and adsorption.[183] For example, Gibbs en-
semble MC is particularly useful for predicting phase coexistence [184, 185] and grand canon-
ical MC (GCMC) is often used to predict adsorption thermodynamics of fluids in porous
media.[186, 187] Extensive work over the past several decades has focused on developing these
methods, as well as biasing techniques to enhance sampling of systems where the standard
acceptance probability of moves becomes prohibitively small. Some of the most prominent
examples include Rosenbluth sampling,[188] configurational bias MC (CBMC),[189, 190]
and continuous fractional MC [191] methods which allow effective sampling of deformable
molecules and/or high density systems that otherwise cannot be simulated with standard
GCMC particle insertion moves.

A different category of biasing techniques emerged when Wang and Landau (WL) de-
veloped a general technique to construct a bias on-the-fly enabling the sampling of low
probability (high free energy) states that are otherwise not sampled during a normal MC
simulation.[192] The goal of transition matrix Monte Carlo (TMMC) is closely related to that
of the WL scheme, but there are distinct algorithmic differences between the two which are
detailed extensively in the literature.[193] These are generally referred to as flat-histogram
or density-of-states sampling techniques since the goal is to sample states characterized by
a given collective variable with uniform probability.[194, 195] Often the two techniques are
merged to exploit the advantages of each method while avoiding their individual disadvan-
tages, and have been applied extensively to study phase coexistence and adsorption thermo-
dynamics.[195–200] More complex applications of WL/TMMC have been developed recently,
especially in the context of studying adsorption and phase coexistence in model systems that
contain flexibility, multicomponent mixtures, and non-rigid molecules.[201, 202] Recently, an
approach for extrapolating the free energy landscapes determined by WL/TMMC has pre-
sented an opportunity to predict continuous thermodynamic properties as a function of tem-
perature by simply post-processing simulation data obtained at a single temperature.[203–
205]

In this article, we build upon the aforementioned literature to demonstrate the effective-
ness of a flat-histogram method for evaluating a porous material’s performance in adsorption
processes involving rigid and deformable adsorbates. By applying the recently developed
temperature extrapolation procedure,[203] we can predict the thermodynamic adsorption
properties of a porous material over a continuous range of temperature and pressure condi-
tions from a simulation at just one temperature. For the first time, we extend this derivation
of temperature extrapolation to simulations in which Rosenbluth sampling has been used to
sample deformable molecules (e.g., a flexible chain with internal degrees of freedom). This
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applicability to both rigid and flexible molecules, as well as the large temperature ranges
over which thermodynamic properties can be extrapolated, demonstrates some significant
advantages of this method compared to traditional GCMC for the in silico evaluation of
porous materials. We additionally show how these techniques can be useful in practical
applications. As an example, we consider the capture of gaseous species in nanoporous ma-
terials using combined temperature and pressure swing adsorption (T/PSA). If one would
like to optimize the operating conditions for such an adsorption process, one needs to know
the adsorption isotherms over a wide range of conditions. Using these flat-histogram and
temperature extrapolation techniques, materials can be evaluated for T/PSA processes over
a wide range of operating conditions (via determination of working capacities and isosteric
heats) from simulation data obtained at just one temperature.

5.2 Flat-histogram Monte Carlo with temperature

extrapolation for flexible adsorbates

A variety of studies have used flat-histogram approaches to determine the free energy land-
scape as a function of particle number in open ensembles.[196, 198, 206, 207] Due to the
detailed discussion and derivation of these techniques elsewhere, we only briefly summarize
the formalism to obtain the macrostate probabilities in the grand canonical ensemble. Then
we show how analyzing the potential energy fluctuations at each macrostate allows determi-
nation of the free energy landscape at different temperatures by Taylor series expansion, and
we subsequently extend this temperature extrapolation derivation to the case of deformable
adsorbates. Finally we explain how to obtain the continuous thermodynamic properties of
the adsorbate/adsorbent system that are important for predicting a material’s utility as an
adsorbent.

Thermodynamic background

We provide a brief review of the statistical mechanics equations that will be important for ap-
plying temperature extrapolation in the case when Rosenbluth sampling has been employed
in conjunction with a TMMC biasing scheme. The total canonical partition function of an N
particle system in a given volume, V , at thermodynamic temperature, β = (kBT )−1 (where
kB is Boltzmann’s constant and T is the absolute temperature), is denoted Q(N, V, β). It
can be factored into an integration over kinetic, Qk(N, β), and configurational, Qc(N, V, β),
degrees of freedom as shown in Eqn. 5.1.

Q(N, V, β) = Qk(N, β)Qc(N, V, β) = Qk(N, β)

(
1

N !

∫
drN exp [−βE(ΓrN )]

)
(5.1)

Here E is the total potential energy and ΓrN is the configuration of the N particle system.
More generally we can write Qk(N, β) = q(β)N , where q(β) represents the integration over
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the kinetic degrees of freedom of a single molecule. In the case of monatomic particles,
q(β) = Λ−3 where Λ is the thermal de Broglie wavelength; however, in what follows we keep
the notation of q(β) to more generally include polyatomic flexible molecules.

When this system can exchange particles with an infinite reservoir that imposes some
constant chemical potential, µ, the system is described by the grand canonical ensemble
where the grand canonical partition function is given by Eqn. 5.2.

Ξ(µ, V, β) =
∞∑
N=0

exp (βµN)Q(N, V, β) (5.2)

In this ensemble, the probability of observing N particles in the system is given by Eqn. 5.3:

Π(N ;µ, V, β) =
exp (βµN)Q(N, V, β)

Ξ(µ, V, β)
(5.3)

By specifying µ, V , and T , one can use grand canonical MC simulations to sample the
probability distribution in Eqn. 5.3 and compute, among other things, the expected number
of particles in the system.

Grand canonical flat-histogram simulations

Flat-histogram techniques operate quite differently from the standard MC approach. They
seek to bias the simulation so that a collective variable, or macrostate, is sampled uniformly,
i.e., all macrostates are visited with equal probability and thus have a flat probability distri-
bution. Therefore, macrostates that have a high free energy relative to other states become
equally probable when the biasing function has been properly determined, and an efficient
method to achieve this goal was pioneered by Wang and Landau.[192, 208, 209] When study-
ing adsorption, a convenient macrostate variable is the number of particles in the system,
N . Upon convergence of the WL algorithm, Π(N ;µ, V, β) is known for each macrostate
N , which can then be re-weighted to some determine Π(N ;µ′, V, β) at some new chemical
potential µ′ by simple post-processing.[202, 206] Alternatively, for single-component systems
one can directly solve Q(N, V, β) as the biasing function rather than Π(N ;µ, V, β).[199]

Transition matrix Monte Carlo formulation

Typically the Wang-Landau approach builds up an initial estimate of Π(N ;µ, V, β) quickly
but converges rather slowly. Transition matrix Monte Carlo (TMMC) tends to do the op-
posite, so a simulations often start with a WL stage which is later switched to TMMC to
accumulate the statistics that refine the exact values of the biasing function.[195] The start-
ing point for TMMC is the statement of detailed balance for Monte Carlo particle exchange
moves between macrostates:

Π(N ;µ, V, β)P (N → N + 1) = Π(N + 1;µ, V, β)P (N + 1→ N) (5.4)
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Here P (N → N + 1) represents the probability that a proposed MC move takes the system
from macrostate N to macrostate N + 1, given that the system was already in macrostate
N . The remaining task is to determine the values of P (N). This is done by constructing the
collection matrix (C-matrix). Each entry in the C-matrix is updated by evaluation of the
unbiased acceptance rule, acc(ΓrN → ΓrN+1) when a swap move is proposed. For example,
every time a particle addition move is proposed, the N th row and (N+1)th column is updated
with the probability of accepting such a transition:

C(N,N + 1) = C(N,N + 1) + acc(ΓrN → ΓrN+1) (5.5)

Simultaneously, the probability that such a transition is rejected is also used to update the
C-matrix.

C(N,N) = C(N,N) + [1− acc(ΓrN → ΓrN+1)] (5.6)

The same concept applies to updating the C-matrix for particle deletion moves, and since
only single particle additions or deletions are proposed, the C-matrix is tridiagonal. The
transition probability can be computed at the end of the simulation from the C-matrix via
Eqn. 5.7.

P (N → N + 1) =
C(N,N + 1)∑

∆∈{−1,0,1}C(N,N + ∆)
(5.7)

P (N) may then be used to obtain Π(N ;µ, V, β) via Eqn. 5.4. Regarding the implementation
of this method, the simulation can be performed at any arbitrary value of µ. The macrostate
probabilities can then be easily re-weighted to other values of the chemical potential to
obtain Π(N ;µ′, V, β), which is extensively detailed elsewhere.[202, 206] It will be useful in
subsequent sections to note that Eqn. 5.4 can be combined with Eqns. 5.1 and 5.3 such
that the calculation of Π(N ;µ, V, β) is re-expressed as a calculation of lnQc(N + 1, V, β) in
Eqn. 5.8.

lnQc(N + 1, V, β) = lnQc(N, V, β)− ln [q(β) exp(βµ)] + ln

[
P (N → N + 1)

P (N + 1→ N)

]
(5.8)

Temperature extrapolation of the free energy landscape

For TMMC, we expressed Eqn. 5.8 in terms of lnQc(N, V, β) to demonstrate how to most
efficiently perform temperature extrapolation. The canonical partition function at some new
temperature, β′, is just the product of the kinetic and configurational partition functions at
this new temperature, or Q(N, V, β′) = q(β′)NQc(N, V, β

′). The kinetic partition function
is known exactly at this new temperature since ln q(β′)N = −3N ln(Λ′). The configura-
tional partition function is not known analytically; however, it can be estimated at this new
temperature by a Taylor series expansion truncated to some order m, as shown in Eqn. 5.9.



CHAPTER 5. ADVANCING ADSORPTION THERMODYNAMICS SIMULATIONS 74

lnQc(N, V, β
′) ≈ lnQc(N, V, β) +

m∑
n≥1

1

n!

∂n lnQc(N, V, β)

∂βn
(β′ − β)n (5.9)

Since lnQc(N, V, β) is a cumulant generating function and related to the fluctuations in the
system’s total potential energy, the derivative terms in the Taylor expansion can be evaluated
by simply recording the potential energy from the simulation at the original temperature, β,
and computing ensemble-averaged quantities, such as:

∂ lnQc(N, V, β)

∂β
= −〈E〉

∂2 lnQc(N, V, β)

∂β2
=
〈
(E − 〈E〉)2

〉
∂3 lnQc(N, V, β)

∂β3
= −

〈
(E − 〈E〉)3

〉
∂4 lnQc(N, V, β)

∂β4
=
〈
(E − 〈E〉)4

〉
− 3

(〈
(E − 〈E〉)2

〉)2

(5.10)

Higher order terms may also be derived.[203] Using the Taylor series expansion to approxi-
mate ln q(β) at a different temperature would have been highly undesirable since the analytic
solution is already known for any temperature.[204] This has been avoided by factoring the
total partition function so that the Taylor approximation is only applied to lnQc(N, V, β).
Finally, the extent to which lnQc(N, V, β) can be accurately extrapolated at each of the N
macrostates depends on how well the moments of the potential energy distribution have con-
verged throughout the simulation. The results section demonstrates that this extrapolation
can be valid over a surprisingly large temperature range.

Extension to deformable adsorbates

The formalism presented thus far has implicitly assumed that the particles are rigid bodies
with no internal degrees of freedom. Molecules with internal degrees of freedom often require
additional sampling biases to explore configurational space effectively. One such approach we
focus on is Rosenbluth sampling.[188, 189] Additional complexities must be accounted for in
order to perform temperature extrapolation on TMMC simulations of deformable molecules
using this sampling scheme, which we will now illustrate.

Rosenbluth sampling

The standard, unbiased acceptance rule for particle insertions in GCMC can become pro-
hibitively small for the simulation of deformable adsorbates, since the vast majority of ran-
domly generated configurations would yield an extremely high internal energy arising from
intramolecular potentials (bonds, bends, torsions, etc.). Rosenbluth sampling presents an
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efficient way to overcome this obstacle by biasing the growth of chain molecules during a MC
move.[188, 190] In the case of flat-histogram MC, it is also necessary to take advantage of
such a biasing scheme when accumulating statistics for the C-matrix. The acceptance rule
for a MC particle insertion move using Rosenbluth sampling (in the notation of Ref. [183])
is given as follows:

acc(ΓrN → ΓrN+1) = min

[
1,
V q(β) exp(βµB)

(N + 1)
Wext(ΓrN+1)

]
(5.11)

where Wext(ΓrN+1) is the Rosenbluth factor of the inserted molecule and µB is the chemical
potential of a reservoir of “ideal chain” molecules (see the following section for details). In
Rosenbluth sampling, only the chain’s external (intermolecular and non-bonded intramolec-
ular) interactions determine its acceptance probability, while reasonable trial configurations
are generated using only the intramolecular bonded interactions. An in-depth discussion of
this biasing technique and the algorithm for computingWext(ΓrN+1) is presented extensively
in Ref. [183] and elsewhere.[210, 211]

Ideal chain partition function

In order to extrapolate the thermodynamic observables of a system of chain molecules sim-
ulated using Rosenbluth sampling,[183] the dependence of the ideal chain partition function
on temperature must also be accounted for. An ideal chain is considered to have only in-
tramolecular bonded interactions, and so its partition function represents the integration
over each bonded degree of freedom in the molecule. We focus on propane (C3H8) for the
remainder of this work which has two bonds and one angle potential such that the ideal
chain partition function becomes:

QIC,c(β) =

∫
dr1

∫
dr2

∫
dθ1 exp(−β(Ebond(r1) + Ebond(r2) + Eangle(θ1)). (5.12)

QIC,c(β) represents the configurational component of the partition function which has been
separated from the integration of kinetic degrees of freedom, q(β), such that the total ideal
chain partition function becomes QIC(β) = QIC,c(β)q(β). The default TraPPE description
[212] of propane in the RASPA package [102] was used to evaluate the Ebond and Eangle terms.
Such an integral can be easily handled directly, and the value of the ideal chain partition
function can be found by numerical integration for any temperature. However, for larger
adsorbates with many internal degrees of freedom, the ideal chain partition may be a much
more difficult integral to evaluate. A simulation-based alternative to handle these cases is
discussed in a subsequent section of this chapter.
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Rosenbluth factor and the chemical potential

For the purposes of understanding temperature extrapolation of flat-histogram simulations
with chain molecules, it is important to understand the relationship between the ensemble
average of the Rosenbluth factor and the excess chemical potential [211]:〈

Wext(ΓrN+1)
〉

= exp [−β(µ− µIC)] (5.13)

This equation states that the ensemble average of Wext(ΓrN+1) samples the difference in
chemical potential between the fully interacting chain and the ideal chain reference state,
µIC . Consequently, the ensemble average of Rosenbluth trial insertions can be re-expressed
as the ratio of the canonical partition functions normalized by the ideal chain partition
function.

〈
Wext(ΓrN+1)

〉
=

Q(N + 1, V, β)

Q(N, V, β)QIC(β)
(5.14)

This can be contrasted with the unbiased GCMC case where the ensemble average of trial
insertions yields only the ratio of the canonical partition functions.

Chemical potential of deformable adsorbates

To perform temperature extrapolation of TMMC simulations with Rosenbluth sampling, it
is critical to see how the chemical potential of a reservoir of ideal chain molecules depends
on the ideal chain partition function. First, consider a reservoir of rigid ideal gas particles:

βµ = βµo + ln(ρ) (5.15)

Here ρ is the fluid density, which in the case of an ideal gas, is equal to βP where P is the
pressure. For real fluids, we can account for the non-ideality of the reservoir by replacing P
with the fugacity, f = φP , after obtaining the fugacity coefficient, φ, from an equation of
state. The reference state chemical potential, βµo = − ln q(β), derives from the canonical
partition function of a single ideal gas particle (which for a rigid particle is just the integration
over its kinetic degrees of freedom).

If the reservoir consists of ideal chains, the chemical potential of such a fluid takes a
similar form as Eqn. 5.15, but the reference state no longer accounts only for an integration
over the kinetic degrees of freedom. Now the reference state must also account for the
fact that the ideal chain has some potential energy interactions associated with its bonded
internal degrees of freedom. Unlike the case of an ideal gas of rigid molecules, now there
are interactions that cannot be neglected in the limit of zero density. Thus, the reference
state chemical potential is shifted by the temperature dependent ideal chain configurational
partition function to give the chemical potential of an ideal chain, µIC , in Eqn. 5.16.[183,
187]

βµIC = − lnQIC(β) = − ln q(β)− lnQIC,c(β) (5.16)
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The chemical potential of a reservoir of these ideal chain molecules, µB, is similar to Eqn.
5.15 where the reference state βµo has been replaced by βµIC .

βµB = [− ln q(β)− lnQIC,c(β) + ln(βφP)] + C (5.17)

Note we have introduced a temperature-dependent shift to the reservoir chemical potential
in Eqn. 5.17, where C = − ln 〈Wext

IG (β)〉. Known as the ideal gas Rosenbluth weight,Wext
IG ac-

counts for when non-bonded intramolecular interactions can contribute to an isolated chain’s
partition function due to the molecule’s size (e.g., 1-5 pair interactions). It’s inclusion in
Eqn. 5.17 is derived in detail elsewhere.[187, 210, 211] By using propane as our flexible ad-
sorbate we can presently ignore this possibility (〈Wext

IG (β)〉 = 1), which allows us to proceed
with a slightly more concise derivation of the temperature extrapolation in subsequent sec-
tions. As in the case of rigid adsorbates, we can account for the non-ideality of the reservoir
phase by replacing P with f and obtaining the fugacity coefficient from an equation of state.
Alternatively, direct simulations of the bulk fluid can provide this information if a reliable
equation of state is not readily available.[205]

Constructing and extrapolating the macrostate distribution

The TMMC formulation for chain molecules now becomes slightly more complex when using
Rosenbluth sampling. This is because Rosenbluth sampling for particle insertions only yields
the excess chemical potential relative to the ideal chain, a topic which we expand upon in
the following section (this discussion closely relates to the formalism presented in Ref. [213]
where the excess chemical potential of the ideal gas reference state of chain molecules was
also computed in the context of a TMMC study). Thus, in order to properly compute the
value of the total configurational partition function, one must add the contribution from the
ideal chain when calculating lnQc(N, V, β) at each successive N macrostate, as shown in
Eqn. 5.18.

lnQc(N + 1, V, β) = lnQIC,c(β) + lnQc(N, V, β)− ln [q(β) exp(βµB)] + ln

[
P (N → N + 1)

P (N + 1→ N)

]
(5.18)

Thus, from a TMMC simulation at a chosen β, we may construct lnQc(N, V, β) using the
transition probabilities, P , computed from the C-matrix; what remains is to then predict the
macrostate distribution, ln Π(N, V, β′), at arbitrary β′ via extrapolation. Following Eqn. 5.3,
assuming the fugacity coefficient is known from an equation of state, we obtain:
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ln Π(N ;µ, V, β′) ∼ β′µN + lnQ(N, V, β′)

∼ [ln(β′φ′P)− ln q(β′)− lnQIC,c(β
′)]N + lnQc(N, V, β

′) + lnQk(N, β
′)

∼ [ln(β′φ′P)− lnQIC,c(β
′)]N + lnQc(N, V, β

′)

∼ [ln(β′φ′P)− lnQIC,c(β
′)]N + lnQc(N, V, β)+

m∑
n≥1

1

n!

∂n lnQc(N, V, β)

∂βn
(β′ − β)n

∼ N ln (β′φ′P) + [lnQc(N, V, β)−N lnQIC,c(β
′)] +

m∑
n≥1

1

n!

∂n lnQc(N, V, β)

∂βn
(β′ − β)n

(5.19)

Following Eqn. 5.18, observe that lnQc(N, V, β) in the macrostate probabilities implicitly
contains a contribution of N × lnQIC,c(β) since it is constructed iteratively from P (N)
starting from the N = 0 state. Thus, the bracketed term in the final line explicitly shows
that differences between the ideal chain partition functions at the simulation temperature
and the temperature being extrapolated to contribute to the macrostate probabilities at a
chosen P and φ. Note that in Eqn. 5.19, QIC,c(β) = 1 for rigid adsorbates. By summing
the terms in Eqn. 5.19, we obtain an estimate of the grand canonical partition function
(Eqn. 5.2), which serves to normalize the macrostate probabilities. Just as in the case of
adsorbates with no internal degrees of freedom, one uses the moments of the total potential
energy distribution (which now included all bonded and non-bonded energies) to evaluate
terms in the Taylor series of lnQc(N, V, β).

Computing the ideal chain partition function’s temperature dependence

Previously we described a situation in which we could numerically integrate the ideal chain
partition function, QIC,c(β), for propane since this requires an integration in only three di-
mensions. Now suppose the chain molecule of interest contains many internal degrees of
freedom such as heptane, an alkane chain with seven monomer units. In this case, deter-
mining QIC,c(β) would consist of an integration over 6 bonded interactions, 5 bend (angle)
interactions, and 4 dihedral interactions based on the TraPPE force field implementation
in RASPA. This high dimensional integral is too complex for numerical integration. Al-
though we envision this quantity could be sampled by a Monte Carlo integration and the
use of some modified Rosenbluth sampling scheme, a much easier shortcut is available to
us. Since this quantity only serves as a reference state for the Rosenbluth sampling scheme,
we do not strictly need to obtain the actual value of QIC,c(β) to temperature extrapolate
thermodynamic observables. Rather we only need to know its ratio between the simulation
temperature, β, and the extrapolation temperature, β′.
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To simulate an ideal chain, one can perform an NVT simulation of a single chain in an
empty box. If the molecule has intramolecular non-bonded interactions, these should be
turned off to satisfy the definition of an ideal chain. We can then extrapolate lnQIC,c(β) to
some β′ using a Taylor series approximation as shown in Eqn. 5.20.

lnQIC,c(β
′) ≈ lnQIC,c(β) +

m∑
n≥1

1

n!

∂n lnQIC,c(β)

∂βn
(β′ − β)n (5.20)

Exploiting the cumulant generating properties of the canonical partition function, we can
solve for the ratio of the ideal chain partition function between the simulation temperature
and the extrapolation temperature by relating the partial derivatives in the summation to
the total potential energy fluctuations, Etot. Since only intramolecular bonded interactions
exist in the simulation of the ideal chain, the total potential energy is just equal to the total
intramolecular bonded interactions, or Etot = Eint.

∂ lnQIC,c(β)

∂β
= −〈Eint〉

∂2 lnQIC,c(β)

∂β2
=
〈
(Eint − 〈Eint〉)2

〉
∂3 lnQIC,c(β)

∂β3
= −

〈
(Eint − 〈Eint〉)3

〉
∂4 lnQIC,c(β)

∂β4
=
〈
(Eint − 〈Eint〉)4

〉
− 3

(〈
(Eint − 〈Eint〉)2

〉)2

(5.21)

These partial derivatives allow us to accurately evaluate the summation in Eqn. 5.20 as-
suming sufficient statistics in the energy fluctuations have been collected. For propane, we
can compare the values obtained from a direct numerical integration of both QIC,c(β) and
QIC,c(β

′) versus the method shown in Eqn. 5.20. Table 5.1 demonstrates that both meth-
ods yield excellent agreement. Just like the calculation of the ideal gas Rosenbluth weight
for GCMC simulations of chain molecules, this simulation of the ideal chain must only be
performed once for use in any subsequent flat-histogram temperature extrapolation analyses.
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Table 5.1: The value of propane’s ideal partition function as a function of some new tem-
perature, T ′, is obtained from direct numerical integration (NI). The ratio of the partition
functions obtained from NI is compared to the extrapolation method using potential energy
fluctuations (Eqn. 5.20) measured at T = 400 K.

T ′ [K] QIC,c(β
′) (NI) ln

QIC,c(β)

QIC,c(β′)
(NI) ln

QIC,c(β)

QIC,c(β′)
(Eqn. 5.20)

350 0.00427 0.2003 0.2002
360 0.00446 0.1580 0.1580
370 0.00465 0.1169 0.1169
380 0.00484 0.0769 0.0769
390 0.00503 0.0380 0.0380
400 0.00522 0.0000 0.0000
410 0.00542 -0.0370 -0.0370
420 0.00562 -0.0732 -0.0731
430 0.00582 -0.1085 -0.1084
440 0.00603 -0.1430 -0.1428
450 0.00623 -0.1767 -0.1765

Extraction of thermodynamic properties

Temperature extrapolation of lnQ(N, V, β) yields continuous thermodynamic properties that
cannot readily be obtained from standard GCMC simulations. For example, isotherms and
isosteric heats of adsorption can be computed for any combination of reservoir (T ,P) state
points via a computationally cheap post-processing of the lnQ(N, V, β) data. These are
typically the first two important quantities considered when evaluating a material’s potential
as an adsorbent.

Isotherm prediction

The adsorption isotherm at a given temperature, β′, and chemical potential, µ′, can be
resolved by computing the expectation number of particles in the system via Eqn. 5.22 for
a range of pressures (or equivalently, chemical potentials).

〈N〉µ′,V,β′ =
∑
N

N · Π(N ;µ′, V, β′) (5.22)

The ability to calculate this quantity at any µ′ (via re-weighting) and β′ (subsequent ex-
trapolation) from simulation data obtained at some different, single (µ,β) point results in
significantly more predictive power than running simple GCMC simulations for individual
(µ,β) state points.
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Enthalpy of adsorption

Another important thermodynamic quantity for predicting an adsorbent material’s utility
is the isosteric heat (or enthalpy of adsorption). The isosteric heat of adsorption measures
how much enthalpy is released when an additional molecule is adsorbed and plays an im-
portant role in calculating how much energy is required when cycling between adsorption
and desorption conditions. The isosteric heat of adsorption can be determined from several
statistical mechanics approaches. Since the standard energy-particle fluctuation method
can suffer from poor statistical convergence, Vlugt et al. proposed determining the isosteric
heat from a series of NVT simulations with Widom insertions (which just requires a simple
post-processing step of our TMMC simulation data).[214] In this work, however, we chose
to calculate the isosteric heat using the Clausius-Clapeyron equation. Isotherms can be
obtained for arbitrarily small spacing between different T and P state points via the afore-
mentioned post-processing and temperature extrapolation, therefore the derivative in the
Clausius-Clapeyron equation (Eqn. 5.23) can be numerically evaluated.

qst(N, T ) = −RT 2

(
∂ lnP
∂T

)
N

(5.23)

Thus, qst as a function of N and T is known over the temperature range at which the
temperature extrapolation is valid and the total enthalpy change between two states (N1,
T1) and (N2, T2) is easily calculated by integrating Eqn. 5.23.[215] As noted in Ref. [215] one
can replace P with the fugacity to account for the non-ideality of the vapor phase. While
the isosteric heat often has only a weak dependence on temperature, it is interesting that
this dependence can be explicitly computed via this method. In systems where the heat of
adsorption has a strong dependence on temperature, the use of flat histogram simulations to
compute isosteric heats via this method provides a highly attractive alternative to GCMC.

5.3 A simplified computational approach for

generating flat-histogram probability

distributions

Adsorbate/adsorbent system

Results in this work focus on the performance of the flat-histogram simulation of single-
component adsorbate thermodynamic properties of CH4, CO2, and C3H8 in MOF-950. MOF-
950, visualized in Fig. 5.2, was chosen as a model system because it was recently shown to
have a high working capacity for methane.[216] CH4 and CO2 were modeled as rigid adsor-
bates with the united-atom TraPPE and EPM2 forcefields, respectively.[212, 217] C3H8 was
modeled as a flexible adsorbate, also with the united-atom TraPPE forcefield. The molecule
definition files for these adsorbates are provided in the standard RASPA installation. The
framework was modeled as rigid, and the Universal Force Field parameters were adopted



CHAPTER 5. ADVANCING ADSORPTION THERMODYNAMICS SIMULATIONS 82

for the MOF atoms.[73] Interaction parameters between the MOF and adsorbate were de-
termined by Lorentz-Berthelot combining rules. The MOF-950 crystallographic information
file is included in Ref. [112].

Figure 5.2: Visual representation of the MOF-950 framework with the viewing plane parallel
to the 011 face.

Transition matrix MC implementation

Before using TMMC, one typically wants to obtain a good initial estimate of the macrostate
probabilities by quickly exploring the entire macrostate space via the WL algorithm. While
TMMC can technically operate with any initial biasing array, it will more efficiently explore
macrostate space if the initial biasing array approximates the true macrostate probabilities
which are roughly determined from a short WL run. In practice, macrostate space is also
distributed in discrete chunks for parallel computation. The results of the individual simula-
tions are then stitched back together to obtain the free energy across the entire macrostate
space. Significant previous work has focused on determining the optimal way to distribute
the macrostate blocks to each individual flat-histogram simulation.[218, 219] In this work we
alternatively solve the macrostate probabilities, or lnQ(N, V, β), by running many simula-
tions in the canonical ensemble for each value of N while performing Widom insertions.[183]
By imposing constant N simulations, we can artificially make the ”observation” of each
macrostate equally likely by performing N = 1 . . . Nmax different NVT simulations. There-
fore, it is not necessary to ever construct or update a biasing function to make the sampling
probability distribution flat as in WL/TMMC for effective macrostate exploration; however,
we can still use the principles of TMMC to obtain the transition probabilities via Widom
insertions and deletions. This is formally equivalent to taking a window size of 1, as has been
already performed in Ref. [198]. In other words, performing a flat-histogram simulation with
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a window size of 1 reduces the flat-histogram simulation to an Nmax number of NVT simu-
lations where the C-matrix statistics are consequently populated by Widom insertions and
deletions. For simplicity, we henceforth refer to a TMMC simulation with window size of 1 as
an NVT+W simulation. It should be noted that this ghost insertion approach in individual
canonical ensemble simulations works well for supercritical fluids, which are the conditions of
interest for high-throughput screening of materials’ separation performance for light gases,
but we have not explored its efficacy with temperature extrapolation in subcritical regimes
where phase coexistence generates a bimodal macrostate distribution.

Simulation details

All simulations were performed with the RASPA code.[102] NVT+W simulations were per-
formed to obtain the data necessary to generate temperature extrapolated isotherms and
isosteric heats, and the accuracy of these temperature extrapolated thermodynamic proper-
ties are compared to standard GCMC simulations. For GCMC simulations, 5 × 104 cycles
were utilized for both equilibration and production. Each NVT+W simulation was equili-
brated for 5× 103 cycles, and 4× 103 cycles were used to accumulate the statistics necessary
to construct the C-matrix, where translation/rotation/regrow/Widom moves were proposed
in a ratio of 1/1/1/2. Cycles were defined such that this led to a total of at least 3.2×104×N
Widom insertions and deletions acquired for each NVT simulation. For each adsorbate, the
Peng-Robinson equation of state was used to compute the fugacity coefficient of the reser-
voir fluid for a given temperature and pressure,[220] under the assumption that it faithfully
captures the bulk behavior of the simulation model. The input files required to run the
simulations are provided in Ref. [221].

5.4 Generating continuous thermodynamic

observables to predict material performance

Isotherms of CH4, CO2, and C3H8 in MOF-950

Fig. 5.3 shows the isotherms computed from NVT+W and GCMC simulations for rigid
CH4 and CO2 and deformable C3H8 in MOF-950. In this figure, open circles represent
GCMC predicted loadings, while dashed lines represent the calculation of an isotherm at
the color-coded temperature from an NVT+W simulation at that same temperature. Solid
lines represent the temperature extrapolated isotherms from the NVT+W simulation data
originally obtained at one single temperature, Tsim, using up to third order terms (m = 3) in
Eqn. 5.9. The temperature extrapolated isotherms for CH4 (Fig. 5.3a-b), CO2 (Fig. 5.3c-d)
and C3H8 (Fig. 5.3e-f) are generated from NVT+W simulations at Tsim = 270 K, Tsim = 300
K and Tsim = 400 K, respectively. In all cases the GCMC isotherms match the temperature
extrapolated isotherms over an extremely large temperature extrapolation range, and the log-
log representation of the data shows that the Henry coefficients match exactly. Interestingly,
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the temperature extrapolation for CO2 perfectly capture the non-Langmuirian shape (low
pressure inflection) of the adsorption isotherms for all temperatures.
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Figure 5.3: CH4 (a-b), CO2 (c-d), and C3H8 (e-f) isotherms are shown for MOF-950. (b),
(d), and (f) are plotted on log-log axes to show the agreement between all calculations in
the low-pressure, Henry’s Law regime. Open circles represent GCMC simulations, dashed
lines represent NVT+W calculated isotherms from a simulation at the specified temperature,
and solid lines represent temperature extrapolated isotherms from an NVT+W simulation
originally performed at a single temperature (Tsim = 270 K for CH4, Tsim = 300 K for CO2,
and Tsim = 400 K for C3H8).
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To evaluate a material’s potential as an adsorbent, one is often interested in calculating
working capacity, or the difference in uptake between the adsorption and desorption tem-
perature and pressure. Since we can evaluate the number of particles adsorbed (Eqn. 5.22)
for any given number of temperatures and pressures by post-processing of the lnQc(N, V, β)
simulation data, the working capacity can be easily calculated via Eqn. 5.24.

nwc = 〈N〉µ2V β2 − 〈N〉µ1V β1 (5.24)

In a combined temperature and pressure swing adsorption (T/PSA) process, both tem-
perature and pressure change between the adsorption and desorption conditions; however,
an NVT+W simulation at only one temperature is needed to obtain any T/PSA working
capacity, assuming that the Taylor series is sufficient to approximate the temperature de-
pendence of lnQc(N, V, β). From an engineering perspective, this is a marked advantage of
NVT+W simulations over unbiased GCMC since we can numerically compute nearly con-
tinuous working capacities as a function of (µ2, β2, µ1, β1) state points and use this data as
input into process simulation software.

Isosteric heats of CH4, CO2, and C3H8 in MOF-950

The isosteric heat of adsorption was computed for each adsorbate in MOF-950. Using the
temperature extrapolated isotherms where 〈N〉µV T was generated on a grid of ∆T = 2 K
and ∆P = 250 Pa intervals, the derivative in the Clausius-Clapeyron equation was numer-
ically evaluated. Fig. 5.4 shows that the heat of adsorption predicted via this methodology
produces the same results as GCMC simulations which use the particle-energy fluctuation
method at a fixed temperature.[214]

However, an added benefit can be achieved by using the flat-histogram technique to solve
the isosteric heats. Fig. 5.5 shows the isosteric heat of adsorption, qst(N, T ), plotted as a
continuous function of temperature and loading for CO2 in MOF-950. This data is only
accessible due to the evaluation of the Clausius-Clapeyron equation on the aforementioned
grid of 〈N〉µV T values, which would otherwise take a large number of GCMC simulations at
many different temperatures and pressures to obtain. As expected the temperature depen-
dence of the isosteric heat is small, but interestingly the temperature extrapolated NVT+W
data combined with the Clausius-Clapeyron analysis quantifies the subtle dependence of qst
on temperature. Another advantage of obtaining the data visualized in Fig. 5.5 is that the
total change in enthalpy between any two states (termed the enthalpy of immersion in Ref.
[215]) can be determined by numerical integration of the isosteric heat values along the path
between the two states. Also note that, since we have determined lnQ(N, V, β), one can also
compute the entropy of adsorption as a function of loading via the Helmholtz free energy,
F (N, V, β) = −kBT lnQ(N, V, β).
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Figure 5.4: The isosteric heats of adsorption are plotted as a function of loading for CH4

(blue), CO2 (orange), and C3H8 (green) at temperatures of 270 K, 300 K, and 400 K,
respectively.
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Figure 5.5: The full isosteric heat diagram, qst(N, T ), is shown for CO2 in MOF-950.

Statistical performance of temperature extrapolation

The temperature range over which the macrostate distribution can be extrapolated depends
on the order at which the Taylor series approximation is truncated and how well the mo-
ments of the potential energy distribution have converged. To show the accuracy of the
temperature extrapolation, we performed NVT+W simulations for a large number of β val-
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ues to compute lnQtrue(N, V, β). Next we took the values from one particular temperature,
βsim, and extrapolated them to every other temperature, denoted by lnQextrap,βsim(N, V, β).
The relative error (RE) can be computed for each N macrostates and each extrapolation
temperature β by Eqn. 5.25, and the results of this evaluation for all three adsorbates in
MOF-950 are shown in Fig. 5.6. These are encouraging results for our ability to effectively
screen continuous thermodynamic adsorption properties of light gases in the supercritical
regime since the range over which the macrostates can be extrapolated is quite large. For
the more difficult cases of deeply subcritical fluid regimes, future investigation on the efficacy
of this temperature extrapolation is warranted.

RE(β, βsim) = 100× lnQtrue(N, V, β)− lnQextrap,βsim(N, V, β)

lnQtrue(N, V, β)
(5.25)

Two characteristic decreases in performance can be observed from Fig. 5.6. First, the RE
performance decreases for NVT states corresponding to very high particle densities, most
notably with CO2. However, the regions of highest percent error for CH4 and CO2 (|RE| >
0.5%) correspond to states with density greater than the saturation loading as can be seen
from the isotherm analysis in Fig. 5.3. It is important to choose Nmax greater than the one’s
preliminary estimate of the saturation loading to avoid missing non-zero contributions at
states that contribute significantly to the system’s average properties, but the poor sampling
well above the actual saturation loading has little impact on the results since they contribute
negligibly (have sufficiently low value of Π(N)) for any relevant temperature and pressure
values.

The more important characteristic performance decrease arises at the extremes of the
temperature extrapolation range when a 1st order Taylor approximation is used, i.e., m = 1
in Eqn. 5.9. This suggests using a 1st order Taylor approximation is not sufficient to capture
the curvature of lnQ(N, V, β) as a function of β as one might expect when extrapolating over
a large range of ∆β. Interestingly, the accuracy of the m ≥ 2 extrapolations are essentially
identical, indicating that the m ≥ 3 order terms contribute negligibly to the expansion of
lnQ(N, V, β) for these systems at these temperatures. For most of the extrapolation space,
the error is within ± 0.5 % which leads to excellent prediction of thermodynamic properties
across the entire temperature range.

Advantages of the flat-histogram approach

First, we highlight some of the significant advantages of these flat-histogram simulations
over GCMC. Most importantly, flat-histogram simulations combined with temperature ex-
trapolation yield the macrostate distribution as a function of adsorbed particle number over
a large range of temperatures. Hence, thermodynamic observables can be predicted for a
broad range of conditions from a computationally cheap post-processing of simulation data
obtained at a single temperature for both rigid and, as we have demonstrated, deformable
adsorbates. The temperature extrapolation was not only accurate in the tested range of
∆T = 100 − 150 K, but could also be achieved with only low order moments (m < 3 in
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Figure 5.6: The first, second, and third rows of data correspond to the RE of temperature
extrapolation for CH4, CO2, and C3H8, respectively. The data was extrapolated from the
simulation temperatures denoted by red lines which are located at 270 K, 300 K, and 400 K
for for CH4, CO2, and C3H8, respectively. Each column represents the Taylor approximation
with largest order m (Eqn. 5.9). Finally, the color code is the RE of the extrapolation
estimate, given by Eqn. 5.25.

Eqn. 5.9) of the potential energy distribution. This is highly encouraging as it indicates that
applying this technique to study light gas adsorption under relevant supercritical (T, P )
process conditions does not need computationally demanding convergence of higher order
moments because the curvature of the partition function is sufficiently small and can be
accurately described by a low order Taylor expansion.

Since this post-processing of simulation data can be performed for arbitrarily small dif-
ferences in state points, this is a powerful technique if the thermodynamic properties of an
adsorbent needs to be obtained for a continuous range of temperatures and pressures, e.g., as
input for process optimization software. Consider in Fig. 5.3a that there are approximately
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100 GCMC state points plotted, yet only approximately 100 total NVT+W simulations were
required to generate significantly more useful data. An arbitrarily large number of GCMC
simulations would be required to interpolate the expected number of particles as a func-
tion of temperature and pressure with the same accuracy as these flat-histogram methods.
In this way, flat-histogram simulations can be vastly more efficient, depending on the goal
of the simulation. Also, accumulating statistics at high density states becomes more effi-
cient with the NVT+W approach since constant N simulations are imposed for high density
macrostates and the thermodynamic properties of the system are extracted from Widom
insertions. In contrast, equilibrating a GCMC simulation at an extremely high density can
be slow to converge due to infrequent acceptance of the particle insertion moves. The major
drawback of these flat-histogram methods compared to GCMC becomes evident if one only
needs to compute 〈N〉µ,V,β at a very limited number of state points.

Finally, we comment on the choice of using the NVT+W scheme, i.e., a TMMC scheme
with a window size of 1, rather than a traditional binning scheme where each bin contains
a range of macrostates. While optimal binning size is an important technical considera-
tion, we chose to run TMMC in the NVT+W scheme to simplify several implementation
details. The fundamental difference between the two implementations is that NVT+W
simply uses Widom insertions to compute transition probabilities and uses many canonical
ensemble simulations to quickly build up the initial estimate of the macrostate probabilities.
WL/TMMC methods often require at least an initial pass with the WL algorithm to obtain
a reasonably good starting estimate for the macrostate probabilities, enabling a simulation
to visit high free energy states. Therefore no implementation of WL is necessary in a MC
package when generating NVT+W data. Performing a traditional WL/TMMC simulation
requires performing C-matrix updates on the fly, implementing biased acceptance rules, and
updating biasing arrays, all of which has indeed been implemented before in freely available
packages.[222] In the case of NVT+W, the MC code simply needs to write the unbiased ac-
ceptance criteria to disk, and all macrostate probability (TMMC) calculations can be done
in post-processing. This may be useful to researchers working with multiple different MC
codes for which there are no implemented WL/TMMC functionalities. A minor disadvantage
of NVT+W is that additional simulation time is spent equilibrating each individual NVT
simulation, an issue not experienced with WL/TMMC. Further investigation is also required
before utilizing this scheme in deeply subcritical, phase coexistence regimes.

5.5 An outlook for flat-histogram simulations in

high-throughput screening of adsorption

thermodynamics

We have outlined the practical utility of flat-histogram Monte Carlo simulations that, when
combined with temperature extrapolation, provide significantly more thermodynamic infor-
mation regarding adsorption in nanoporous materials than traditional GCMC simulations.
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The formalism for the temperature extrapolation of macrostate probabilities was extended
for the first time to handle molecules with intramolecular degrees of freedom simulated using
Rosenbluth sampling. This led to successful application of the method on both rigid and de-
formable adsorbates. Consequently, the working capacity and working enthalpy for a T/PSA
process over an extremely wide range of conditions can also be ascertained from a simulation
at only one temperature. Thus, the results presented here demonstrate the potential of these
simulation techniques for in silico identification and study of high-performing adsorbents for
realistic T/PSA processes. Mechanistically, the TMMC simulations were executed using a
window size of 1 such that the problem reduces to a series of NVT simulations with Widom
insertions used to compute the transition probabilities.

If the simulations community moves towards flat-histogram techniques, a material’s per-
formance can immediately be re-calculated when specified process conditions change. Rather
than repeating a MC simulation at the new conditions, this can be achieved by simply re-
processing the free energy landscape from our original simulation. In other words we sig-
nificantly increase the recyclability of our simulation results by performing flat-histogram
MC simulations. Similar to the way that databases are currently being developed to store
and benchmark results in computational material science,[223, 224] developing databases of
free energy landscapes for different pure components or mixtures will provide more robust
data as we continue to screen potential adsorbents for separations and storage applica-
tions. There also remain exciting opportunities to extend these methods to adsorption in
nanoporous materials involving mixtures, for which a theoretical framework has already been
developed.[198, 203] Upon further method development and application of more advanced
sampling techniques to multi-component mixtures, these methods could lead to numerical,
“model-free” optimization of the operating conditions that minimize the parasitic energy of
separations in porous materials.[76, 110]
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Chapter 6

Advancing the accuracy of
high-throughput screening of
adsorption thermodynamics

For applications of metal-organic frameworks (MOFs) in gas storage and separation, flex-
ibility is often seen as a parameter that can tune material performance. In this work we
aim to determine the optimal flexibility for the shape selective separation of similarly sized
molecules (e.g. Xe/Kr mixtures). To obtain systematic insight into how the flexibility im-
pacts this type of separation we develop a simple analytical model that predicts a material’s
Henry regime adsorption and selectivity as a function of flexibility. We elucidate the com-
plex dependence of selectivity on a framework’s intrinsic flexibility whereby performance is
either improved or reduced with increasing flexibility, depending on the material’s pore size
characteristics. However, the selectivity of a material with the pore size and chemistry that
already maximizes selectivity in the rigid approximation is continuously diminished with
increasing flexibility, demonstrating that the globally optimal separation exists within an
entirely rigid pore. Molecular simulations show that our simple model predicts performance
trends that are observed when screening the adsorption behavior of flexible MOFs. These
flexible simulations provide better agreement with experimental adsorption data in a high
performance material that is not captured when modeling this framework as rigid, an approx-
imation typically made in high-throughput screening studies. We conclude that, for shape
selective adsorption applications, the globally optimal material will have the optimal pore
size/chemistry and minimal intrinsic flexibility even though other non-optimal materials’
selectivity can actually be improved by flexibility. Equally important, we find that flexible
simulations can be critical for correctly modeling adsorption in these types of systems. This
is an unofficial adaptation of an article that appeared in an ACS publication [225]. ACS has
not endorsed the content of this adaptation or the context of its use.
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6.1 High-throughput screening of adsorption

capabilities

Metal-organic frameworks (MOFs) have garnered significant attention in the scientific com-
munity due to their potential applications ranging from gas storage and separations to catal-
ysis and sensors.[25, 30, 226–229] The diversity of applications for which MOFs are currently
being investigated arises primarily from their highly tunable chemical and geometric prop-
erties since the combinatorics of their nodal composition, consisting of secondary building
units (SBUs) and ligands, leads to an enormous number of possible structures.[13] An in-
teresting consequence of such structural diversity is that the flexibility of these materials
can be exploited in various ways to yield improved performance in a variety of applica-
tions.[230] Focusing on gas storage and separations, flexibility has been experimentally and
computationally examined in the contexts of breathing,[52, 231, 232] swelling,[17] rotatable
and flexible linkers,[233, 234] shape memory,[235] complex lattice deformation,[236] sub-
network displacement,[237] negative gas adsorption,[238, 239] and its strong influence on
diffusion,[240] all with the ultimate goal of exploiting these phenomena to obtain desirable
adsorption properties. Such breadth presents interesting challenges and opportunities for ex-
perimental and computational characterization of flexibility in MOFs and for determination
of how it can be utilized for the design of better gas adsorbents.

MOFs with dynamic constituents (i.e. rotatable and flexible ligands) [233] have pore
spaces that can change in size and/or shape while the unit cell volume and shape remains
constant. A natural question that arises is whether this phenomenon can be optimized for
specific applications in gas separations, and our work highlights how controlling this intrinsic
flexibility of MOFs can optimize these materials for shape selective adsorption. An example
of such an application is the separation of Xe/Kr mixtures where the most selective materials
have a pore size and shape commensurate with the adsorbates,[241] and thus we illustrate
our findings in the context of the widely studied Xe/Kr separations.[242, 243]

To study the effect of intrinsic flexibility on the separation of tight fitting molecules we
have developed a simple model that allows us to compute the selectivity in the Henry regime
as a function of the flexibility of a material. Our model quantitatively and systematically
demonstrates that intrinsic flexibility can either increase or decrease selectivity for a given
material based on its pore size characteristics. However, an interesting consequence will
follow: achieving the globally optimal separation performance necessitates not only having
a material with the ideal pore size and chemistry but also finding materials that simultane-
ously minimize intrinsic flexibility. Next we compare these results to Xe/Kr adsorption data
obtained from screening the CoRE MOF database [244] when each structure’s flexibility is
modeled via a classical force field (FF) recently used in the literature.[165] It is important to
note that when high-throughput computational studies are employed to elucidate structure-
property relationships,[18–21] they are almost exclusively performed using the rigid structure
approximation (see details of Ref. [245] for the only exception to our knowledge). This ap-
proximation is considered a safe assumption when thermodynamic fluctuations are assumed
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to average out the framework atoms’ locations to their initial values, and so intrinsic flexibil-
ity is assumed to have no effect. However, by relaxing this approximation and using flexible
simulations to screen a database of MOFs, we observe that flexibility has the same impact
on adsorption behavior trends as shown by the analytical model. We then select several
MOFs from the screening to study in further detail the effect of flexibility on each mate-
rial’s performance in Xe/Kr separations and finally show that flexibility is necessary to yield
better agreement with experimental adsorption data of a high performance MOF system
known as SBMOF-1.[243] Thus we not only quantitatively and systematically demonstrate
the impacts of flexibility on shape selective adsorption through models and simulations but
are able to answer the more fundamental question of whether controlling intrinsic flexibility
can optimize material performance in this type of separation application.

6.2 Analytical model for adsorption selectivity as a

function of flexibility

The effects of intrinsic flexibility in MOFs on Henry regime adsorption are elucidated by an
analytical model of a flexible pore and direct simulations of flexible MOF materials. The
details of the direct simulations are explained in the subsequent Methods section. For our
analytical model, we construct a spherical pore of radius Rp consisting of a wall of carbon
atoms. The visualization of this model is presented in Fig. 6.1. A continuum approximation
[246] is invoked such that an adsorbate does not interact with discrete atomic centers but

rather with a uniform surface density of atoms, η = 1 atom /(π∗1.2Å
2
). This surface density

is chosen to be a slightly higher than that of graphene since adsorbates can interact with
atoms beyond the pore wall in real MOF materials. This approximation will permit an
integrable expression for the Henry coefficient, or the measure of a material’s affinity for an
adsorbate in the limit of infinite dilution.[183]
The adsorption energy of one adsorbate within the spherical pore is dependent only on the
r coordinate due to spherical symmetry as shown in Fig. 6.1. Determination of this energy
requires an integration of the host-adsorbate interaction across the pore surface, which in
turn requires an expression for the distance between the adsorbate and any point on the
surface, given by dw in Eqn. 6.1.

dw(r, φ,Rp) =
√
R2
p + r2 − 2Rprcos(φ) (6.1)

When the interactions between the adsorbate and the pore wall are computed by a
pairwise Lennard-Jones potential and smeared across the entire surface of the sphere rather
than computed by discrete pairwise distances (as is the case in a direct simulation), the total
adsorption energy takes the form of the integral in Eqn. 6.2,
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r=0

r = Rp

r = r’
dw(r’, 𝜙, Rp) 𝜙

Figure 6.1: Visualization of a cross-section of the spherical pore model. The blue circle
represents the adsorbate and the grey spheres represent the pore wall carbon atoms whose
interaction energies are ”smeared” across the surface of the sphere with uniform density
η. Due to the spherical symmetry, the total adsorption energy of an adsorbate at a given
location r’ is simply an integral over the azimuth angle φ.

Utot(r, Rp) = 2πηR2
p

∫ π

0

dφ sin(φ)4εij

[(
σij

dw(r, φ,Rp)

)12

−
(

σij
dw(r, φ,Rp)

)6
]

(6.2)

where εij is the depth of the potential energy well and σij is the distance between the
adsorbate and the wall at which the potential energy is zero. Using this expression for
the adsorbate interaction energy, we can now calculate the Henry coefficient, which is often
computed in simulations via the expectation value in Eqn. 6.3,[183]

KH = β
〈
exp(−βU+)

〉
(6.3)

where β is (kBT )−1 and U+ is the total interaction energy of a randomly inserted ghost
adsorbate. This expectation value can be rewritten as an integral over the pore volume by
substitution of Eqn. 6.2 for U+. The resulting Eqn. 6.4 yields an integrable formula for the
rigid pore Henry coefficient, KH,r, for a given radius Rp with spherical volume Vp.

KH,r(Rp) =
4πβ

Vp

∫ Rp

0

dr r2 exp(−βUtot(r, Rp)) (6.4)

Next, flexibility is introduced into the model by allowing Rp to change according to a
Gaussian distribution. Now the flexible Henry coefficient, KH,f , is a function of the mean
pore radius, 〈Rp〉, and the width of the Gaussian distribution of the radius, σp, as shown in
Eqn. 6.5.
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KH,f (〈Rp〉 , σp) =

∫ Rmax

Rmin

dR
1√

2πσ2
p

exp

(
−(R− 〈Rp〉)2

2σ2
p

)
·KH,r(R) (6.5)

The pore radius is bounded between Rmin and Rmax. Note that in the limiting case as σp
approaches 0, the Gaussian distribution becomes a delta function, δ(〈Rp〉), and we recover
the rigid pore approximation such that KH,f (〈Rp〉 , 0) = KH,r(〈Rp〉). Hence the KH,f can be
calculated over a range of average pore radii and distribution widths to demonstrate how
the Henry coefficient depends on both the average size and strength of fluctuations inside
a flexible pore. KH,f is calculated for both Xe and Kr (KXe

H,f and KKr
H,f , respectively) and

the infinite dilution selectivity of the flexible model, Sf follows as the ratio of these two
quantities in Eqn. 6.6. The selectivity of the rigid model is just the ratio of the rigid Henry
coefficients in Eqn. 6.7.

Sf (〈Rp〉 , σp) =
KXe
H,f (〈Rp〉 , σp)

KKr
H,f (〈Rp〉 , σp)

(6.6)

Sr(Rp) =
KXe
H,r(Rp)

KKr
H,r(Rp)

(6.7)

6.3 Simulation techniques to perform

high-throughput screening of flexible structures

In addition to the analytical model, direct simulations are employed using various compu-
tational techniques to demonstrate the effects of intrinsic flexibility on the Henry regime
adsorption properties in MOFs. Ideally one would like to exclusively use ab initio calcula-
tions to describe such flexibility, but these are prohibitively expensive for large systems and
long simulation times that are required to obtain sufficiently accurate results for these ma-
terials. Therefore we rely on force field based molecular simulations and corroborate their
performance with ab initio methods on a computationally feasible system. We elaborate
the details of these simulation techniques starting with the description of the force fields
used for classical molecular dynamics (MD) simulations of flexible materials, followed by a
description of ab initio MD based on density functional theory (DFT). Finally we describe
how the Henry coefficients are evaluated in these flexible materials, as well as the calculation
of geometric properties which are necessary to evaluate how the pore sizes change in MOFs
between the rigid approximation and flexible simulations.

Force field computed framework dynamics

There exists a large diversity of metal-ligand chemistry in the CoRE MOF database [244]
(here we only study the materials for which density derived electrostatic and chemical, or
DDEC, charges [247] have been obtained), the entirety of which cannot be described by
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any single classical force field (Dreiding,[98] UFF,[73] BTW,[248] UFF4MOF,[249] etc.). In
order to treat all materials on equal footing, we utilize the Universal Force Field (UFF) for all
framework bonded potentials except for the coordination bonds between metals and organic
species. For bond and angle potentials that are centered on the metal ions, the equilibrium
harmonic bond length and equilibrium harmonic angle are modified to the crystallographic
values read from the structure file.[165] This approximation is quite useful in that it allows us
to simulate framework dynamics in the canonical ensemble, i.e. constant number of particles,
volume, and temperature (NVT), for a vast majority of the CoRE MOF structures without
significant aphysical distortions in the framework resulting from poor fits to UFF geometries.
In a previous work we have demonstrated that this approximation is even sufficient to capture
bulk moduli trends as calculated by DFT in various MOFs.[165] This force field is henceforth
referred to as UFF-fix-metal (UFF-FM) and details on its implementation are presented in
Appendix C.

To benchmark our classically generated dynamics using the UFF-FM approximation, we
additionally performed an in-depth investigation of framework dynamics for one particular
MOF, known as SBMOF-1 [250] with reference code KAXQIL in the Cambridge Structural
Database (CSD) that displays excellent Xe selectivity.[243] We implement an additional
classical force field which models metal-ligand coordination solely through Lennard-Jones
interactions and electrostatics whereby dummy cation beads serve to delocalize the charge
of the metal ion and preserve the octahedral geometry of the Ca2+ ions in the framework.
While the model was originally developed to simulate solvation of cations,[251] recent work
has illustrated this model’s applicability in simulating MOF dynamics and deformation.[236]
All potentials other than the metal-ligand interactions were modeled with standard UFF
potentials, and the model is henceforth referred to as the UFF-cationic-dummy-model (UFF-
CDM) with additional implementation details provided in Appendix C.

For generating an ensemble of structures from a molecular dynamics (MD) run over which
the Henry coefficient can be computed, each CoRE MOF from Ref. [244] was simulated with
UFF-FM in the NVT ensemble using the open source LAMMPS software package (http:
//lammps.sandia.gov).[252] The Nose-Hoover thermostat was used with a temperature of
298 K, and the structure was equilibrated for 30 ps, followed by a production run of 30 ps.
During the production run, a framework configuration was saved every ps to give a total of
30 snapshots upon which the Henry coefficients could be calculated via the ensemble average
in Eqn. 6.3. Justification for the number of snapshots necessary is elaborated in the Porosity
characterization section. The same MD methods were used to simulate SBMOF-1 with UFF-
CDM. Charges for UFF-FM simulations were taken from Ref. [244], while charges for UFF-
CDM were derived from electronic structure calculations (see the subsequent section) and
calculated according to the procedure discussed in Appendix C. Each MOF was simulated
with periodic boundary conditions and a cutoff radius of 12.5 Å was imposed for non-bonded
interactions. Supercells were generated such that the perpendicular components of the cell
vectors were at least two times the cutoff radius.
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Ab initio computed framework dynamics

All DFT calculations have been performed using the CP2K code, which uses a mixed
Gaussian/plane-wave basis set.[68, 69] We employed double-ζ polarization quality Gaus-
sian basis sets [253] and a 400 Ry plane-wave cutoff for the auxiliary grid, in conjunction
with the Goedecker-Teter-Hutter pseudopotentials.[70, 71] All DFT calculations, including
single point energies, geometry/cell optimizations and ab initio molecular dynamics simu-
lations (AIMD), were performed using the PBE functional,[63] with Grimme’s D3 van der
Waals correction (PBE+D3).[64] This method was shown to give very good agreement with
experimental structural data on several MOFs which we studied previously [67, 93] and on
rare gas dimers and trimers.[64, 254] The counterpoise method [255] was used to correct
for basis set superposition errors in all binding energy calculations. Ab initio molecular
dynamics simulations within the Born-Oppenheimer approximation were performed in the
canonical (NVT) ensemble at the PBE+D3 level of theory. A time step of 0.5 ps was used
for the integration of the equation of motion. Different supercell sizes were considered for
the AIMD simulations, and each AIMD simulation was performed for a duration of 10 ps
(20,000 MD steps following 2,000 MD steps of equilibration run with a strong thermostat
coupling) and at a temperature of 298 K, which was controlled by the canonical sampling
through velocity rescaling thermostat [256] using a time constant of 50 fs. The initial struc-
ture was taken from the experimentally resolved crystal structure of SBMOF-1 and geometry
optimized.[250]

For implementation of UFF-CDM, partial atomic charges are also needed (see Appendix
C). The partial atomic charge analysis was performed using the REPEAT method proposed
by Campañá et al.,[58] which was recently implemented into the CP2K code based on a
restrained electrostatic potential framework.[72] We have used charges determined from this
scheme recently in our grand canonical Monte Carlo simulations of CO2 adsorption in MOF-
74,[21, 77] and we obtained very good agreement with experiment on adsorption isotherms.

Flexible Henry coefficient calculation

The Henry coefficient, KH , was previously defined in Eqn. 6.3 as the Boltzmann weighted
average of the interaction energy of a randomly inserted ghost particle,[183] and it measures
a material’s affinity for an adsorbate in the limit of infinite dilution. This quantity can be
simulated in porous materials by the Widom insertion method,[257] and in the rigid pore
approximation the average in Eqn. 6.3 is calculated by attempting ghost particle insertions
on the single framework configuration specified by experimental single crystal X-ray diffrac-
tion or by DFT optimization. For flexible materials, however, we compute this ensemble
average over many different framework snapshots generated from a molecular dynamics sim-
ulation rather than just a single configuration. For both the rigid and the flexible framework
simulations, the same force field is used to describe the non-bonded framework-adsorbate
interactions. These non-bonded interactions are modeled with a pairwise Lennard-Jones
potential where the framework atom ε and σ parameters are taken from the Universal Force
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Field (UFF) [73] and the noble gas ε and σ parameters are taken from the force field of
Boato.[258] Individual pairwise interaction parameters are obtained by Lorentz-Berthelot
mixing rules. The Widom insertions for both the flexible and rigid Henry coefficients de-
scribed above were performed in the RASPA software package [102] at a temperature of 298
K.

Porosity characterization

A geometric description of porous materials known as the pore size distribution (PSD) was
calculated in the Zeo++ software package [74] using high accuracy settings for several se-
lected flexible CoRE MOFs. At each snapshot from the NVT simulation, one PSD calcula-
tion was performed which produces a histogram of pore sizes. The overall PSD in a flexible
material is the cumulative histogram of individual histograms from each NVT snapshot. A
probe radius of 1.2 Å (smaller than the radius of either Xe or Kr) was used to ensure that
both open pores and narrow constrictions are captured and can be visualized. In order to
correctly perform the ensemble average in Eqn. 6.3, it is evident that the PSD must be
converged, i.e. the cumulative, normalized distribution does not change with the addition of
more NVT snapshots. With the SBMOF-1 system, performing a UFF-FM simulation of 10
ps with snapshots generated every 0.5 ps for a total of 20 snapshots produces a nearly iden-
tical PSD to the longer simulation procedure described previously, hence either is sufficient
for performing the ensemble average.

The final PSD can then be mapped in a semi-quantitative way to the Gaussian variables
(σp and 〈Rp〉) used in the analytical model described previously (Eqn. 6.5 and Eqn. 6.6).
The difference is that atoms constituting the pore wall in a real MOF are not always carbon
(as is imposed in the analytical model to allow it to be solvable) nor are pores in real systems
perfectly spherical. Therefore some variation between the model and direct simulations is
always expected when atoms constituting the pore walls in a given structure have different
UFF parameters and do not form a perfectly spherical shell. Thus the limitation of the
analytical model is that it cannot be used to directly map a computed PSD to exact values
of the Henry coefficients and selectivity for a particular MOF. In other words, it does not
replace the need to actually compute the Henry coefficient with Widom insertions on the
accumulated snapshots from the NVT simulation. However, it does an excellent job of
reproducing the trends of selectivity’s dependence on flexibility as is seen in the following
discussion sections.

6.4 Understanding the interplay between adsorbent

flexibility and selectivity in chemical separations

Intrinsic flexibility effects on Henry regime adsorption behavior are discussed in five main
points:
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1. First, the analytical model is presented which quantitatively assesses the effects on
Henry regime adsorption of tight-fitting molecules as a function of pore flexibility.

2. Next, the analytical model’s results show that accounting for the systematic effects of
intrinsic flexibility are critical for the design and/or identification of the best performing
materials in this shape selective adsorption application.

3. Next, the CoRE MOF database is screened using flexible models to not only validate the
conclusions drawn from the analytical model but also to demonstrate the discrepancies
of the rigid pore approximation.

4. Next, four CoRE MOFs are selected to specifically detail the ways in which flexibility
affects a material’s potential for Xe/Kr separation.

5. Finally, the ideas developed thus far are applied to the SBMOF-1 system, and we
demonstrate the necessity of using flexibility to obtain better agreement between ex-
perimental results and computational predictions of Xe/Kr adsorption properties.

Flexibility and the analytical model

We have developed both a rigid (Eqn. 6.4) and flexible (Eqn. 6.5) pore model to obtain
insight into flexibility’s effects on Xe/Kr Henry coefficients. The dependence of KH on the
pore radius and distribution width are shown in Fig. 6.2. The most interesting consequence
of flexibility is that the pore sizes resulting in the largest KH,r are the most over-predictive of
KH,f and the pore sizes with smaller KH,r are the most under-predictive of KH,f . The size of
these over-(under-)predictions is strongly dependent on the strength of pore size fluctuations
(σp), which is shown in Fig. 6.2a (Xe) and Fig. 6.2b (Kr) when differing σp values are plotted.
The over-predictions occur since there exists a finite probability that the pore deviates from
the optimal size, even when the most probable configuration is the optimal size. The under-
predictions occur since there exists a finite probability that the pore can adopt the optimal
size, even though the most probable configuration is not the optimal size. Thus the main
observation from this analysis is that, even if relatively small fluctuations (σp < 0.4 Å) in a
flexible pore average out such that 〈Rp〉 is equivalent to Rp in the rigid approximation, the
flexible pore Henry coefficient can differ significantly. We will see in subsequent discussion
that, similar to the green curve in Fig. 6.2, σp ≈ 0.3 Å for SBMOF-1.

More interesting than just KH from an applications perspective is the infinite dilution
selectivity of Xe/Kr, which was formulated for flexible and rigid pores in Eqn. 6.6 and Eqn.
6.7, respectively. The selectivity for the flexible pore model was calculated over the bounds
2.5 Å < 〈Rp〉 < 10.0 Å and 0.0 Å < σp < 1.0 Å and mapped over this two dimensional
space as shown in Fig. 6.3. It is immediately evident from Fig. 6.3a that, since the contours
are not vertical lines, the rigid pore approximation will yield a different selectivity than a
flexible pore (i.e. when σp 6= 0). Fig. 6.3b additionally reveals extremely sharp gradients in
Sf (〈Rp〉 , σp) when 〈Rp〉 is slightly smaller than the optimal size (∼ 4.7 Å) for Xe selectivity.



CHAPTER 6. ADVANCING HIGH-THROUGHPUT SCREENING STUDIES 100

(a) (b)

Figure 6.2: Broadening of the flexible Henry coefficient profile, KH,f (〈Rp〉 , σp), is calculated
for increasing values of the pore size distribution width, σp = {0.0, 0.07, 0.31, 1.0}, for both
(a) a Xe adsorbate and (b) a Kr adsorbate.
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Figure 6.3: Selectivity of Xe to Kr mapped onto the average pore radius (x dimension) and
the distribution width of the radius (y dimension) for the fluctuating pore model. The color
scale in (a) is a linear scale of the flexible selectivity, Sf , whereas the color in (b) is the log10

scale of Sf to better emphasize the gradients that exist over small changes in 〈Rp〉 and σp.

There are three distinct situations where a flexible pore can result in significantly different
predicted selectivity than a rigid pore. First, the optimal pore for Xe selectivity in this
analytical model has 〈Rp〉 ≈ 4.7 Å and σp = 0 Å. Yet fluctuations on the order of σp ≈ 0.6
Å can reduce the selectivity of such a pore by a factor of 2. Second, a rigid pore predicted
to be Kr selective can very easily be non-selective or even Xe selective if the pore undergoes
small fluctuations (σp ≈ 0.15 Å). Third, predicted selectivity can be quite different when
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flexible and rigid 〈Rp〉 are not equivalent. If thermal fluctuations in a flexible pore do not
average out to the same value as the rigid pore, Sr can vastly over-predict Sf . For example,
if a rigid pore has Rp = 4.7 Å and overestimates the average flexible pore 〈Rp〉 by 0.6 Å, the
rigid selectivity could be reduced by a factor of 50. The sensitivity of adsorption properties
to small changes in pore sizes has been shown in the literature when different DFT methods
were used to optimize the crystal structure.[259–261] However, we are highlighting an entirely
different situation where the average pore size changes due to flexibility, an effect which we
will demonstrate for real MOF systems later on. Most interestingly, the global optimum
for selectivity as a function of flexibility occurs for an entirely rigid pore. This is discussed
further in the following section.

Flexibility and optimal separations

We have systematically demonstrated how we expect shape selective adsorption separations
to have an intricate, non-trivial dependence on intrinsic flexibility, having chosen the specific
application of Xe/Kr separations to illustrate our findings. Fig. 6.4 summarizes how this
information can be exploited for the design and prediction of better separation materials. To
construct this figure we have extracted Sf from Fig. 6.3 at constant σp and normalized the
x-axis of 〈Rp〉 by 〈Rp〉opt such that the optimal selectivity for a given σp occurs at a value of
1. The global optimum of Sf in (〈Rp〉,σp) space occurs when σp = 0.
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Figure 6.4: The flexible selectivity from the analytical model is plotted as a function of
〈Rp〉 divided by the optimal pore size, 〈Rp〉opt, such that the point of optimal selectivity
is normalized to 1 for all values of σp. This demonstrates that maximizing selectivity is
achieved not simply by having the optimal pore size but also by simultaneously minimizing
intrinsic flexibility. Although, interestingly, pore sizes that are smaller than the optimal size
can have their selectivity significantly improved with increasing flexibility.

This clearly demonstrates that designing MOFs with the optimal combination of pore
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size and chemistry is not sufficient to achieve a global optimum in performance; one must
minimize intrinsic flexibility while simultaneously realizing the optimal average pore size
to achieve the best separation. It also demonstrates that, while fluctuations reduce the
selectivity of the optimally rigid pore, sufficiently large fluctuations expand the range of
average pore sizes (or the number of MOFs) for which flexibility can improve selectivity.
Nonetheless, the global optimum in 〈Rp〉 and σp space occurs for σp = 0. In other words, if
one could design the perfectly optimal rigid pore with the ideal size and chemical composition,
increasing flexibility would only lead to worse performance. These results provide a guiding
principle in the rational design of nanoporous materials for shape selective separations and
are validated when studying the effects of flexibility on Xe/Kr adsorption in real systems,
i.e. the CoRE MOF database, which is the focus of subsequent discussion.

Flexibility in CoRE MOF screening

From the analytical model it is evident that flexibility is important when a material’s pores
approach the same size as the adsorbed molecules. For a correct screening it is therefore
important to take framework flexibility into account, and to do this we calculate Sf with
the reported CoRE MOF experimental structure as the starting framework configuration
and input for UFF-FM. Three plots are instructive for comparison with the results from the
analytical model.

Firstly, the Henry coefficient of Xe in the flexible material (KXe
H,f ) is plotted versus the

corresponding rigid Henry coefficient (KXe
H,r) in Fig. 6.5, and each material is color coded by

their largest included sphere (Di).[74] For materials with very large Di the rigid and flexible
calculations tend to give equitable results for the Xe Henry coefficient. However, for smaller
pores and those that are the optimal size for Xe selectivity, orders of magnitude discrepancy
can exist between the calculated Henry coefficients for the flexible structure and the rigid
approximation. This discrepancy is attributed to pore size fluctuations, slight changes in
〈Rp〉, or a combination of both, all of which is clearly demonstrated by the results of the
analytical model shown in Fig. 6.2 and Fig. 6.3.

Secondly, Fig. 6.6 plots the flexible selectivity versus the rigid selectivity, and data points
are color coded by the material’s KXe

H,f such that the most interesting materials in terms of
Xe affinity are colored yellow. Purple colored materials by comparison are expected to have
very low infinite dilution uptake. The rigid approximation performs decently for some struc-
tures which remain on the y = x line of parity. However, there is very noticeable scatter and
considering flexibility can result in orders of magnitude deviation. Among top performing
structures from the entire screening, Sr almost always overestimates Sf , supporting our con-
clusion that rigid pores are the globally optimal solution since, if a material already achieves
the optimal pore size for a given chemistry, fluctuations will only reduce the selectivity.
Medium performing structures tend to have both significant over-(under-)estimations, while
the lowest performing rigid structures tend to exhibit a huge underestimation of the selectiv-
ity. This systematic dependency is visualized another way in Fig. 6.6b where the histogram
shows that, among top performing structures, simulating flexibility reduces performance in
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Figure 6.5: The flexible Xe Henry coefficient, KXe
H,f , is plotted versus the rigid Xe Henry

coefficient, KXe
H,r. The color-coding of materials by their largest included sphere shows that

the rigid approximation tends to perform worse as a material’s pore size decreases.

∼95% of materials. By contrast, for the lowest performing MOFs, flexibility increases per-
formance in ∼90% of the materials. The red highlighted regions in Fig. 6.6a show where the
rigid and flexible simulations predict reverse selectivity. Thus a pore that was a good fit for
Xe can become too small (lower right region), or one that was too small can become enlarged
and favorable by intrinsic flexibility (upper left region) and result in a material with large
selectivity for Xe. This systematic behavior has already been predicted by the solution of
the analytical model shown in Fig. 6.3.

Finally, we plot the relative error of the rigid approximation (Sf/Sr) in log10 scale versus
Di in Fig. 6.7. We observe exactly what one might expect given the results of the analytical
model. The divergence of Sf from Sr increases as the pore size decreases and is very sig-
nificant in the range of Di for optimal Xe selectivity. Additionally, the analytical model is
mapped onto the screening results in Fig. 6.7 by converting 〈Rp〉 to Di via Eqn. 6.8,

Di = 2 〈Rp〉 −Dcarbon (6.8)

where Dcarbon = 3.4 Å is the Van der Waals diameter of a carbon atom. The black, red,
and purple lines represent Sf/Sr for σp values of 0.005, 0.04, and 0.35, respectively. The
trend in the screening data is captured well by the analytical model despite its simplicity
in assuming all pore wall atoms are carbon and are arranged in a perfectly spherical shell.
Superimposing the analytical model in this way also does not account for when the flexible
and rigid 〈Rp〉 are not identical for a particular material. This effect, which is demonstrated
in subsequent discussion, would additionally change how the analytical model is mapped
on Fig. 6.7. Most importantly, these analyses demonstrate that the screening results agree
with the analytical model: the best rigid approximation materials (which ignore framework
fluctuations) overestimate the selectivity when flexibility is considered.
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(a)

(b)

Figure 6.6: (a) Flexible selectivity is plotted versus rigid approximation selectivity for
screened CoRE MOFs. Highlighted regions in red demonstrate areas where the rigid ap-
proximation and the flexible simulations predict reverse selectivity of one another. Materials
are color coded by the log10 value of the flexible Xe Henry coefficient, KXe

H,f [mol (kg Pa)−1],
to highlight the best flexible materials for Xe infinite dilution uptake. (b) A histogram view
of the same data is shown. The red histogram shows that the larger the rigid selectivity
becomes (i.e. the more optimal the pore size and chemistry), the more frequently that
flexibility actually reduces the performance.

We caution that our screening calculations were not performed using a pocket-blocking
algorithm since flexibility in points of constriction in the pore network makes the accessibility
of pockets a function of time. Instead the screening results are only visualized for structures
where KXe

H,r > 1e-8 mol/(kg·Pa) as an approximate way to filter out non-porous structures.
We closely investigate and explain the performance of selected structures, for which we
manually ensure that pockets of inaccessibility do not exist, via comparison to the analytical
model in the following section.
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Figure 6.7: The relative error from the rigid structure approximation, Sf/Sr, is plotted
in log10 scale against Di. Each material is color-coded by log10[Sr]. The screening results
are compared to the analytical model where the solid black, red, and purple lines repre-
sent Sf (Di, σp = 0.005)/Sr(Di), Sf (Di, σp = 0.04)/Sr(Di), and Sf (Di, σp = 0.35)/Sr(Di),
respectively.

Flexibility in selected CoRE MOFs

Several MOFs are selected from the screening study to illustrate in greater detail the various
ways in which flexibility changes the selectivity by comparison to the rigid structure approxi-
mation. For these structures, NVT simulations show that the rigid pore approximation does
not present a good statistical representation of the PSD when the host framework fluctuates
at room temperature. Fig. 6.8 presents a visual analysis of flexibility in four selected CoRE
MOFs and demonstrates how thermal fluctuations affect the PSD and thus the Xe/Kr se-
lectivity. For each material we show the flexible/rigid PSD, as well as visualization of the
rigid structure (left image) and a snapshot of the flexible structure (right image) from the
UFF-FM MD run. The corresponding flexible and rigid Henry coefficients and selectivity
are summarized in Table 6.1.
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(a) Flexibility has no effect on selectivity: UVEXAV

(b) Flexibility degrades selectivity: FALQOA

(c) Flexibility enhances selectivity: GIYSAJ

(d) Flexibility reverses selectivity: AMUCOB

Figure 6.8: Evolution of the PSD after NVT dynamics is shown for four CoRE MOFs,
with the experimental structure (left image) and a snapshot from the flexible simulation
(right image). Sections (a-d) show specific cases for which flexibility has no effect, degrades,
enhances, or reverses the Xe/Kr selectivity, respectively.
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Table 6.1: Flexible and rigid Henry coefficients and selectivity for the four CoRE MOFs
shown in Fig. 6.8.

CSD Code
KH,f [mol/(kg·Pa)] KH,r [mol/(kg·Pa)]

Sf Sr
Xe Kr Xe Kr

UVEXAV 1.0e-2 3.5e-4 1.1e-2 3.8e-4 29 29
FALQOA 2.1e-3 4.5e-5 1.3e-2 1.6e-4 47 81
GIYSAJ 8.9e-4 3.0e-5 1.4e-3 5.3e-5 30 26
AMUCOB 4.3e-4 2.5e-5 2.9e-6 5.2e-6 17 0.56

In Fig. 6.8a, UVEXAV (MIL-120) [262] demonstrates a situation where the selectivity
remains unaffected by flexibility. The rigid PSD reveals two pores that are very close in
size, but notably the flexible PSD shows a continuous distribution with approximately the
same mean, resulting in unchanged KH and Sf ≈ Sr. Fig. 6.8b highlights FALQOA,[263]
a material for which flexibility reduces Sr. The rigid PSD demonstrates a pore that is of
very favorable size for Xe adsorption which shrinks only slightly throughout the MD run.
However, the sensitivity of the Henry coefficient to 〈Rp〉 is sufficient to lower KXe

H,f by an
order of magnitude and halve the selectivity when flexibility is considered. The most complex
PSD in this set of examples is exhibited by GIYSAJ (RPF-4) [264] as shown in Fig. 6.8c
for which flexibility serves to slightly enhance the selectivity. Flexible simulations show that
the smallest pore can essentially be blocked due to ring rotation and the large pore shifts
to a higher mean value. Both effects serve to decrease the Henry coefficients in the flexible
structure but in such a way as to slightly raise the selectivity overall. AMUCOB (BioMIL-2)
[265] in Fig. 6.8d presents arguably the most interesting behavior, as it is Kr selective under
the rigid pore approximation but very Xe selective when flexibility is considered due to an
overall increase in pore size. AMUCOB is just one of several CoRE MOFs to display this
phenomena as previously discussed with Fig. 6.6. Additionally, we note that each structure’s
flexible selectivity is higher than the experimental selectivity of SBMOF-1, a material which
is the focus of discussion in the following section.

Flexibility in SBMOF-1

The screening data and the analytical model demonstrate that when a given material already
has the optimal pore size to maximize selectivity, increasing intrinsic pore flexibility only
serves to reduce the selectivity performance. This effect can be shown in the context of a
particular well known Xe/Kr separations system. Here our flexibility calculations are bench-
marked against experimental results for the highly-performing Xe/Kr separation material,
SBMOF-1, to once again show that pore flexibility reduces the performance in selectivity of
optimal rigid materials. This system was chosen since it was identified as the best performer
from a high-throughput screening study [242] but showed a large discrepancy between exper-
imental and computational Henry coefficients when using the rigid pore approximation.[243]
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Table 6.2: Henry coefficients and selectivity in SBMOF-1 is calculated for the rigid pore
approximation and various framework dynamics methods. The ”Description” column gives
the simulation type (and number of unit cell replications used in the AIMD simulation), and
the ”Flexibility” column denotes a flexible simulation. Experimental data from Ref. [243] is
included.

Description Flexibility
KH [mol/(kg·Pa)]

SXe/Kr
Xe Kr

Experimental data N/A 3.84e-4 2.37e-5 16
KAXQIL deposited structure no 1.45e-2 2.70e-4 54
KAXQIL DFT optimized no 1.03e-2 2.20e-4 47
AIMD (1x2x1) yes 7.49e-3 1.85e-4 41
AIMD (2x2x1) yes 6.80e-3 1.77e-4 38
AIMD (1x3x1) yes 6.68e-3 1.72e-4 39
UFF-FM yes 6.24e-3 1.67e-4 37
UFF-CDM yes 3.18e-3 1.28e-4 25

Thus we focus on this structure to show how consideration of framework flexibility better
aligns computations with experiments and reduces the optimal selectivity. DFT/PBE+D3,
UFF-FM, and UFF-CDM were all used to model framework dynamics in SBMOF-1, and
the resulting Henry coefficient and selectivity calculations are summarized in Table 6.2. The
rigid structure approximation of SBMOF-1 (KAXQIL) has the optimal pore size for maxi-
mizing the Xe Henry coefficient and selectivity. However, considering flexibility reduces these
quantities and leads to better agreement with experiments. UFF-CDM generated dynamics
provide the best agreement with experiments and there exists a significant decrease in the
Henry coefficients and selectivity when compared to the rigid pore approximation.

This decrease in Henry coefficients fundamentally arises from thermal disordering in
SBMOF-1, visualized in Fig. 6.9. The impact of flexibility on the PSD for each dynamics
method is quantitatively shown in Fig. 6.10. While the rigid pores are of optimal size for
maximizing selectivity, the existence of flexibility in all cases leads to pore size fluctuations
and a shrinking of average pore size away from its optimal value. As predicted by the
analytical model, both effects can serve to reduce the Henry coefficients (of both Xe and Kr)
and the overall selectivity of the material.
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a

c

Figure 6.9: The DFT optimized cell (replicated 3x6x2) is depicted on the left while a snap-
shot from a MD trajectory generated with UFF-CDM is depicted on the right. Thermal
disordering of the structure results in a change in the PSD accessible to Xe/Kr adsorbates.
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Figure 6.10: Evolution of the PSD is shown from the rigid structure (red histogram) to
the flexible structure (green histogram). (a), (b), and (c) show the PSD for 1x2x1, 2x2x1,
and 1x3x1 AIMD, respectively, where the rigid structure corresponds to the DFT minimized
framework. (d) shows the PSD for UFF-FM with the rigid structure corresponding to the
KAXQIL experimentally resolved framework, and (e) shows the PSD for UFF-CDM where
the rigid structure is the DFT minimized framework.

For DFT/PBE+D3, only a small number of unit cell replications is computationally feasi-
ble. Interestingly, 1x2x1, 2x2x1, and 1x3x1 simulations all display different PSDs, suggesting
that the flexibly determined PSD can be system size dependent since the system is simply
too constrained when considering only one and two replications in certain crystallographic
directions. Similar finite size effects have recently been reported where multiple unit cell
replications were necessary to observe crystallographic deformations.[236] However, the key
feature is that the mean pore size always decreases leading to reduced Henry coefficients of
both adsorbates, which is accompanied by a reduction in the selectivity. The identical trend
is observed in the larger classical simulations. Thus a major finding from this analysis is that,
for all flexible simulation methods, the thermodynamic fluctuations do not average out to
the rigid pore approximation. Different methods (classical vs. ab initio) for host framework
dynamics yield similar evolution of the PSD’s from the rigid to flexible simulations, and the
computed KH,f is always in better agreement with experiments due to the decrease in 〈Rp〉.

It should be noted that the non-bonded parameters for guest-framework interactions
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also have an effect on the predicted Henry coefficients and selectivity. We find that the
Boato and UFF parameters for guest-framework interactions do not perfectly replicate the
DFT/PBE+D3 potential energy surface which is shown in Appendix C. Regardless, the data
presented here shows the large dependence of the adsorption properties on flexibly induced
changes in the pore size.

6.5 Outlook: High-throughput screening studies of

adsorption thermodynamics in flexible systems

The chemical tunability of MOFs is constantly exploited to create adsorption sites with a
high selectivity. However, in the case of shape selective adsorption separations where the pore
size and shape are commensurate with similarly sized adsorbates like Xe/Kr, the efficiency
of these adsorption sites for separations relies on subtle geometric differences, which we have
shown to be strongly influenced by flexibility. In this work we have systematically addressed
the non-trivial dependence of selectivity on intrinsic flexibility, providing a comprehensive
outlook for the design and/or identification of optimal shape selective separation materials
in the context of Xe/Kr mixtures. Quantification of the effect of flexibility on the separation
of Xe/Kr mixtures using an analytical model and molecular simulations shows that some
materials’ selectivity can be increased while others’ decreased by flexibility. However, for
those materials already displaying the optimal pore size for a given pore chemistry, increasing
pore size fluctuations serve only to further decrease selectivity. Hence the design of a globally
optimal separation must not only focus on optimizing pore size and chemistry but also
on minimizing intrinsic flexibility. From an experimental design point of view, one must
simultaneously aim for MOFs with ligands, coordination environments, and topologies that
constitute the most rigid framework possible and the optimal pore size and chemistry to
achieve maximum possible selectivity.

An equally important part of this work discusses the validity of the rigid framework
approximation in shape selective adsorption applications. In most computational high-
throughput screening studies, the MOF structure is assumed to be rigid for computational
efficiency reasons and we investigated whether this assumption has biased the selection of
optimal materials. Our results show that, among the top performing structures in the rigid
framework approximation, simulations accounting for flexibility lead to a reduction of se-
lectivity in ∼95% of these materials. Conversely, this screening also demonstrated that
fluctuations alone can cause a material to reverse its selectivity when the average pore size
is less than the optimal value for Xe adsorption. Among the lowest performing structures in
the rigid framework approximation, ∼90% of these materials had their selectivity increased
when accounting for framework flexibility. These results suggest that flexibility should be
considered in shape selective screening studies for the highest degree of accuracy possible
and to achieve the best ranking of high performance materials.

SBMOF-1, which was recently crowned as the material with the highest Xe/Kr selectivity
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from a computational screening of rigid MOFs, was re-evaluated with flexibility using both
ab initio and classical molecular dynamics calculations. This resulted in better agreement
with experimental data. Naturally the question then arises if there are materials which can
be experimentally demonstrated to have better Xe/Kr selectivity than SBMOF-1. We have
presented four structures (CSD reference codes UVEXAV, FALQOA, GIYSAJ, and AMU-
COB) identified in our screening study whose predicted Sf is higher than the experimental
selectivity of SBMOF-1 and used each structure’s PSD evolution in NVT simulations to
observe how flexibility affects Xe and Kr Henry regime uptake. Through a variety of molec-
ular dynamics methods, we demonstrated that flexibility always serves to reduce the Henry
coefficients of Xe and Kr and selectivity in SBMOF-1, bringing better alignment between
experimental results and computational predictions for this material’s adsorption properties.

The concepts developed in this work can now be applied to other shape selective sepa-
rations. Such an example would be CO2/CH4 separations where, like Xe/Kr mixtures, the
kinetic diameters of both adsorbates are of similar size. Here one would expect intrinsic
flexibility to affect the Henry regime selectivity as well. Similar to Xe/Kr separations, there
would exist an optimal pore size and chemistry that maximizes the rigid selectivity for one
of the adsorbates, but the more flexible this optimal pore is, the more the selectivity will be
reduced. And while our analytical model only accounts for isotropic pore deformations, it
would also be useful to develop another model in which an additional flexibility parameter
characterizes the degree of anisotropy of the pore deformation since is CH4 is an isotropic
particle but CO2 is not. This development of more intricate analytical models in conjunction
with a similar screening of flexible CoRE MOFs could lead to new insights regarding the
usefulness of MOFs for CO2/CH4 separations.

Finally, we re-emphasize that we have focused on predicting Henry regime selectivity.
However, both the analytical model and the flexible screening methods could be extended to
obtain selectivity at higher pressures with additional assumptions and more computational
cost, respectively. In the cases of higher pressure, the adsorption behavior will then depend
on the exact potential energy profile of the host as a function of the pore size, since less
energetically favorable conformations of the framework can be stabilized with increasing
chemical potential. Thus it is likely that new insights will be obtained for the selectivity
dependence at higher pressures. Such future work will have two major benefits. First,
we will understand if the trends observed in this work between flexibility and separation
performance hold at high pressure (where many separations are performed). Second, we will
be able to determine over what pressure ranges Henry’s law is applicable in flexible materials
and whether it differs from the Henry regime pressure range in the rigid pore approximation.
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Appendix A

Additional Characterization of
M2(DHFUMA)

A.1 Additional computational details

For all periodic density functional theory (DFT) calculations using CP2K, we employed
double-ζ polarization quality Gaussian basis sets [253] and a 600 Ry plane-wave cutoff for
the auxiliary grid, in conjunction with the Goedecker-Teter-Hutter pseudopotentials.[70,
71] For hybrid DFT calculations, we have used cpFIT3 quality auxiliary basis sets for the
Hartree-Fock exchange (HFX) calculations based on the auxiliary density matrix method
(ADMM) approach,[94] and a cutoff radius of 4 Å for the HFX calculations using the trun-
cated Coulomb potential.[266] Structural optimizations, including atomic coordinates and
cell parameters, and total energy calculations of the periodic systems, were performed at den-
sity functional theory level, using both PBE[63] and PBE0[89, 90] functionals, together with
Grimme’s D3 van der Waals correction with the Axilrod-Teller-Muto three-body terms.[64]
A convergence threshold of 5.0 × 10−6 Hartree was used for all self-consistent field (SCF)
calculations. The structural optimizations were considered converged if the maximum force
on all atoms falls below 0.534 kcal mol−1 Å−1 (4.5 × 10−4 Hartree Bohr−1). Majority of the
calculations were performed with the Γ-point approximation using a 1 × 1 × 2 multiplica-
tion of the hexagonal primitive cell. Additional calculations were performed in a 1 × 1 × 3
supercell to check the convergence of the binding geometries and energies with respect to the
supercell sizes. The counterpoise method[255] was used to correct for basis set superposition
errors (BSSEs) in all binding energy calculations.

Periodic density functional theory (DFT) calculations of the vibrational frequencies and
elastic constants of Mg2(DHFUMA) were performed using Crystal with the B3LYP func-
tional, in a rhombohedral cell with a total of 6 symmetry-inequivalent atoms. Monkhorst-
Pack k-point grids of (8 × 8 × 8) were used to sample the Brillouin zone. Gaussian-type
basis sets of 8-511d1G, 8-411d11G and 6-311d11G qualities were used for Mg, O and C,
respectively. The accuracy of the integral calculations (i.e. the TOLINTEG keyword) were
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set to ”7 7 7 7 16”, and the ”XLGRID” setting (i.e. extra large predefined grid) was used
for the numerical integration of the exchange-correlation term. The vibrational frequencies
calculations were performed at the Γ-point, and the default displacement of 0.001 Å on
each atom was used to compute the numerical second derivatives of the total energy. For
the calculation of the elastic constants, we have used the default settings on size of lattice
deformation (0.01 Å) and number of points (i.e. 3, including the central point with zero
displacement) for the numerical second derivatives calculations. We have used the default
energy and force convergence criteria for vibrational frequency and elastic constants calcu-
lations as defined by Crystal. These convergence criteria are typically tighter than separate
single point and geometry optimization calculations.
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A.2 Calculated vibrational frequencies of

Mg2(DHFUMA)

Table A.1: Calculated vibrational frequencies (in cm−1) of Mg2(DHFUMA)

0.00 0.00 0.00 51.43 102.24 134.51
145.01 145.01 151.40 155.83 155.83 179.74
179.74 183.17 183.17 197.81 198.78 203.22
203.22 208.17 214.87 214.87 227.13 227.13
236.78 236.78 257.68 265.67 265.67 278.87
283.31 283.31 289.05 324.66 333.56 333.56
336.53 340.11 363.11 371.36 371.36 375.45
392.20 392.20 399.23 399.23 423.05 423.05
453.45 459.91 473.43 473.43 483.19 483.19
503.74 503.74 503.75 517.23 519.01 519.01
532.33 532.33 533.44 543.55 548.67 548.67
629.99 649.42 649.42 763.53 763.53 763.81
766.90 771.89 771.89 814.65 816.42 816.42
825.57 826.90 826.90 884.28 888.54 888.54
985.56 991.09 991.09 1186.45 1211.43 1211.43
1266.68 1279.78 1279.78 1358.82 1358.82 1417.73
1452.92 1454.46 1454.46 1550.64 1550.64 1553.73
1579.38 1579.38 1579.71 1608.71 1611.33 1611.33
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A.3 Calculated elastic constants of Mg2(DHFUMA)

Table A.2: Calculated elastic constants (in GPa) of Mg2(DHFUMA)

59.614 47.303 26.739 -0.522 6.763 0
59.614 26.739 0.522 -6.763 0

61.869 0 0 0
38.422 0 -6.763

38.422 -0.522
6.155

Only the upper triangular part of the symmetric elastic matrix is shown. Our calculated
elastic constants satisfy all the necessary and sufficient Born stability conditions [105] as
derived by Mouhat and Coudert [106] for a rhombohedral (II) system (Laue class 3̄):

C11 > |C12|
C44 > 0
C2

13 <
1
2
C33 (C11 + C12)

C2
14 + C2

15 <
1
2
C44 (C11 − C12) ≡ C44C66
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A.4 Structure files and charges

The DFT optimized structures for Mg2(DHFUMA) and Mg2(DOBDC) are included in the
structures.zip file. The partial atomic charges derived from the REPEAT analysis in all
M2(DOBDC) and M2(DHFUMA) frameworks is presented in Table A.3. Note that the
labels of each atom type correspond to the atom types defined in the force field of Mercado
et al. (see Fig. A.2).

Table A.3: REPEAT derived partial charges for A = M2(DHFUMA) and B = M2(DOBDC)

Atom M = Mg M = Fe M = Co M = Ni M = Zn

Type A B A B A B A B A B

M 1.619 1.66 1.372 1.343 1.306 1.306 1.386 1.384 1.224 1.228
Oa -0.952 -0.921 -0.908 -0.824 -0.869 -0.797 -0.926 -0.857 -0.779 -0.72
Ob -0.734 -0.763 -0.722 -0.725 -0.711 -0.714 -0.713 -0.734 -0.648 -0.659
Oc -0.781 -0.969 -0.679 -0.814 -0.633 -0.793 -0.681 -0.844 -0.604 -0.75
Ca 0.838 0.881 1.002 0.946 0.979 0.925 0.997 0.98 0.829 0.808
Cb 0.01 -0.316 -0.065 -0.373 -0.072 -0.341 -0.063 -0.388 -0.022 -0.283
Cc — 0.478 — 0.444 — 0.415 — 0.443 — 0.377
Cd — -0.257 — -0.205 — -0.205 — -0.191 — -0.197
H — 0.207 — 0.208 — 0.204 — 0.207 — 0.196
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A.5 Additional crystallographic data for

Mg2(DHFUMA) and Mg2(DOBDC)

Additional crystallographic data for the DFT optimized Mg2(DHFUMA) and Mg2(DOBDC)
structures are summarized in Table A.4 for the reader’s convenience. All quantities were
computed in Zeo++ with high accuracy settings.

Table A.4: Theoretical crystallographic data for Mg2(DHFUMA) and Mg2(DOBDC). Ac-
cessible quantities are computed for a probe radius of 1.65 Å

Property Units DHFUMA DOBDC

Crystal density [g/cm3] 1.358 0.880
Cell volume [Å3/unit cell] 2120 4121
Accessible Surface Area [m2/g] 1043 1782
Accessible Surface Area [m2/cm3] 1416 1568
Accessible Surface Area [Å2/unit cell] 272 646.3
Accessible Volume [cm3/g] 0.0945 0.350
Accessible Volume [cm3/cm3] 0.130 0.308
Helium Void Fraction [dimensionless] 0.484 0.716
Accessible Volume [Å3/unit cell] 272 1271
Largest Included Sphere [Å] 7.6 11.8
Largest Free Sphere [Å] 6.3 11.1

2 nm

Figure A.1: An segment of the periodic supercell of Mg2(DHFUMA) is drawn to scale next
to bundle of (n=5,m=5) SWNTs

We note that the channel geometry of Mg2(DHFUMA), as well as each metal analog of
this framework, exhibits a striking similarity to the size and shape of carbon nanotubes.
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Fig. A.1 illustrates a to-scale representation of a periodic superlattice of Mg2(DHFUMA)
adjacent to a bundle of (n=5,m=5) single wall carbon nanotubes (SWNTs) which were
generated by TubeGen Online [http://turin.nss.udel.edu/research/tubegenonline.html ]. Yet
the similarities between the two end with the pore shape and channel dimensionality, since
the MOF structure has diverse chemical functionality (i.e. open metal sites) along the
channel walls and the pore network is perfectly aligned in one dimension due to the chemical
bonding between adjacent channels.
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A.6 Force field parameterization details

All force field parameters and the polarizable model of Pham et al. were used to model
H2 adsorption in Mg2(DHFUMA) and Mg2(DOBDC).[88] Several minor differences exist
between our RASPA2 simulation and the implementation of Pham et al. that may describe
the small discrepancy in the simulated isotherms for Mg2(DOBDC). Firstly, the partial
atomic charges of all framework atoms were taken from our REPEAT analysis (see Section
A.4) which are not identical to those of Pham et al. Secondly, we accounted for quantum
nuclear effects by a second order Feynmann-Hibbs correction term to the Lennard-Jones
potential (equation A.1) as implemented in RASPA2, whereas Pham et al. used the fourth
order correction term (equation A.2). Thirdly, Pham et al. utilize a modified dipole field
tensor to damp dipole-dipole interactions that exhibit short range divergences. Finally,
back polarization was not accounted for in our simulation. Our H2 charges, H2 Lennard-
Jones parameters, framework Lennard-Jones parameters, and static point polarizabilities
were identical to Pham et al.

UFH = U +
βh̄2

24µ
(U

′′
+

2

r
U

′
) (A.1)
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′
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βh̄4

1152µ2
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′′′′
+

4

r
U

′′′
+

15

r3
U

′
) (A.2)

Figure A.2: Atom types assigned for DOBDC ligand as defined by Mercado’s FF (left) and
atom types assigned for DHFUMA ligand (right) in this work.

For modeling H2O and CO2 in the M2(DHFUMA) and M2(DOBDC) series, the Buck-
ingham potential and force field parameters of Mercado et. al. were used.[87] We refer the
reader to this publication for all force field parameters and details on its derivation and
implementation. Each atom type in the DHFUMA ligand was assigned the analogous type
to the DOBDC ligand, shown in Fig. A.2.
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A.7 CO2 force field transferability

Force field parameterizations of adsorbate interactions in nanoporous materials are often
validated by their ability to reproduce ab initio or experimentally determined adsorbate
binding energies and configurations. The agreement in the simulated binding energy between
our ab initio calculations and the parameterized classical force field of Mercado et al. is shown
in Table A.5.

Table A.5: Ab initio vs classical calculation of CO2 binding energies [kJ/mol] in M2(DOBDC)
and M2(DHFUMA) structures

Metal DHFUMA DOBDC
Ab initio FF % Diff. Ab initio FF % Diff.

Mg -50.1 -54.6 5 -41.3 -43.3 9
Fe -40.9 -47.0 19 -30.0 -35.8 14
Co -41.1 -49.8 16 -29.3 -34.1 21
Ni -46.1 -49.1 5 -34.8 -36.5 6
Zn -37.6 -39.1 1 -31.3 -31.7 4

Figure A.3: Two dimensional elemental probability density plots of CO2 taken from snap-
shots throughout a GCMC simulation at 313 K at approximate loadings of (a) 1 CO2 molecule
per unit cell; (b) 9 molecules per unit cell which corresponds to 0.5 molecules per open metal
site; and (c) 15 molecules per unit cell which corresponds to saturation loading. Black repre-
sents Carbon and red represents Oxygen. The element with the higher normalized probability
of occupation at that particular pixel determines the coloring.

This agreement is particularly important for accurate computation of gas adsorption
behavior in the Henry and low-pressure regimes which are the most important regimes for
CO2 adsorption in the DHFUMA analog series. All DHFUMA analogs display significantly
stronger binding than their DOBDC counterpart, a direct result of the optimized binding
geometry afforded by the proximity of adjacent open metal sites. The same binding geometry
is observed in the CO2 probability density map generated by extracting various snapshots
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of adsorbate configurations throughout the course of a GCMC in Mg2(DHFUMA). These
probability density maps are shown in Fig. A.3 and demonstrate that an Oxygen atom is most
likely to be adjacent to an open metal site, whereas Carbon is most likely to be found directly
between two oxygen atoms which are each bound to an open metal site. This agreement
of CO2 binding energies and binding geometries between classical GCMC simulations and
ab initio simulations suggests that Mercado et al.’s classical force field parameterization
is indeed transferable to this system and can reasonably reproduce the ab initio potential
energy surface of CO2 in the DHFUMA system.
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A.8 CO2 isotherms for M2(DHFUMA) and

M2(DOBDC)

GCMC computed (T = 313 K and T = 400 K) CO2 isotherms for all metal analogs of the
DOBDC and DHFUMA variants of MOF-74 are presented, plotted in units of molecules CO2

per unit cell and moles CO2 per kg framework on normal-normal and log-log scales. The log-
log plots particularly demonstrate the enhanced CO2 uptake in the Henry and low-pressure
regimes.
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Figure A.4: CO2 isotherms at T = 313 K for Mg2(DOBDC) and Mg2(DHFUMA)
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Figure A.5: CO2 isotherms at T = 400 K for Mg2(DOBDC) and Mg2(DHFUMA)
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Figure A.6: CO2 isotherms at T = 313 K for Fe2(DOBDC) and Fe2(DHFUMA)
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Figure A.7: CO2 isotherms at T = 400 K for Fe2(DOBDC) and Fe2(DHFUMA)
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Figure A.8: CO2 isotherms at T = 313 K for Co2(DOBDC) and Co2(DHFUMA)
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Figure A.9: CO2 isotherms at T = 400 K for Co2(DOBDC) and Co2(DHFUMA)
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Figure A.10: CO2 isotherms at T = 313 K for Ni2(DOBDC) and Ni2(DHFUMA)
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Figure A.11: CO2 isotherms at T = 400 K for Ni2(DOBDC) and Ni2(DHFUMA)
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Figure A.12: CO2 isotherms at T = 313 K for Zn2(DOBDC) and Zn2(DHFUMA)
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Figure A.13: CO2 isotherms at T = 400 K for Zn2(DOBDC) and Zn2(DHFUMA)
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A.9 H2O isotherms for M2(DHFUMA) and

M2(DOBDC)

GCMC computed (T = 313.0 K and T = 400.0 K) H2O isotherms for all metal analogs of
the DOBDC and DHFUMA variants of MOF-74 are presented. While DHFUMA condenses
H2O at a much lower external pressure than DOBDC due to the reduced pore size, the
condensation point can be dramatically increased by raising the reservoir temperature. For
example, the condensation pressure in Mg2(DHFUMA) increases by almost three orders of
magnitude when increasing the reservoir temperature from T = 313 K to T = 400 K. It is
worth noting that at a temperature of T = 400 K, a majority of the DHFUMA analogs exhibit
water condensation in the H2O partial pressure range that could be reasonably achieved by
drying a typical coal-fired flue gas (on the order of 1 mol% H2O).

By utilizing the force field of Mercado et al., we are able to simulate the adsorption of H2O
in the M2(DOBDC) and M2(DHFUMA) frameworks to obtain a reasonable estimate of the
pressure at which the step in this isotherm occurs. We assume the H2O force field parameters
are transferable as is the case with CO2, yet we note that accurate molecular simulation of
water is a challenging feat and an ongoing topic of research for decades. Simulation of
water in confined spaces (such as the channels of DOBDC and DHFUMA) is also extremely
challenging and extremely dependent of water model and force field parameters, as evidenced
by a dearth of agreements between experimental and theoretical results for water adsorption
in zeolites, MOFs, etc.[267] We expect three major trends to exist in the water adsorption
isotherms for M2(DOBDC) and M2(DHFUMA). Firstly, we expect the condensation to occur
in DHFUMA analogs at a lower pressure than their DOBDC counterpart since the pore
channel is smaller and enhanced cooperative adsorption is stronger. Secondly, we expect
the metal with strongest H2O binding energy to exhibit a step at the lowest H2O pressure.
This trend matches the DFT binding energies of H2O with the exception of the reversal of
Mg2(DHFUMA) and Ni2(DHFUMA). Thirdly, the H2O pressure at which the adsorption
step occurs must increase with increasing temperature since higher temperatures shift the
chemical potential of the external reservoir. Fig. A.14 demonstrates these three major trends
that are at minimum qualitatively correct but in the best case would exactly reproduce the
experimental adsorption trends across all metals in each structural series.

Despite the difficulties associated with molecular simulation of H2O, Fig. A.14 demon-
strates the the most important trend regarding our discussion of CO2 adsorption in the
presence of H2O: high temperature adsorption increases the condensation pressure of H2O
in the M2(DOBDC) and M2(DHFUMA) frameworks.

The same binding configuration of H2O is predicted by the Mercado force field and
ab initio calculations. Fig. A.15 shows the elemental probability density map of H2O in
Mg2(DHFUMA) generated from snapshots throughout a GCMC simulation (P = 0.5 Pa, T
= 313 K), which corresponds to an average loading of about 30 H2O molecules/UC (or ∼1.5
molecules/Mg2+). The density map clearly demonstrates that the dominant binding mode
is that of one Oxygen per open metal site.
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This configuration agrees closely with the binding geometry of H2O as calculated from
our DFT optimization, shown in Fig. A.16.

Figure A.14: Absolute H2O adsorption in M2(DOBDC) and M2(DHFUMA) at (a) 313 K
and at (b) 400 K. The pressure region in red corresponds a broad partial pressure range of
H2O (P = ∼0.01-0.1 bar) that one might expect in the scrubbed exhaust gas from a coal
fired power plant.

(a) (b) (c)

Figure A.15: Elemental probability density maps of H2O taken from snapshots of a GCMC
simulation at P = 0.5 Pa and T = 313 K, which corresponds to an approximate loading of
30 molecules/UC or ∼1.5 molecules/M2+. Shown is (a) the elemental probability density of
O alone; (b) the density of H alone; and (c) the density of both O and H overlaid where
the coloring of each pixel is determined by the element with higher normalized probability
of occupation at that grid point.
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Figure A.16: DFT optimised binding configurations of H2O in (a) Mg2(DOBDC) and (b)
Mg2(DHFUMA).
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A.10 H2O:CO2 mixture analysis for M2(DHFUMA)

and M2(DOBDC)

GCMC simulations of a binary H2O:CO2 mixture at fixed total pressure of P = 0.15 bar
for all analogs at varying temperatures are summarized below. Each data point corresponds
to a single GCMC simulation with 2-components. The molar ratio of H2O:CO2 is varied at
constant total pressure to generate the mixture analysis for each structure at each tempera-
ture. A stepped decrease in the CO2 equilibrium uptake occurs at a critical mole fraction of
water (i.e. the critical pressure at which water condenses in the channels of each structure).
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Figure A.17: H2O:CO2 mixture analysis for all Mg analogs. Each data point corresponds
to one GCMC simulation at Ptotal = 0.15 bar and each subplot corresponds to a fixed
temperature of T = 313, 400, 423, 453, or 473 K where the molar composition of the
H2O:CO2 mixture is varied.
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Figure A.18: H2O:CO2 mixture analysis for all Fe analogs. Each data point corresponds
to one GCMC simulation at Ptotal = 0.15 bar and each subplot corresponds to a fixed
temperature of T = 313, 333, 353, 373, or 400 K where the molar composition of the
H2O:CO2 mixture is varied.
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Figure A.19: H2O:CO2 mixture analysis for all Co analogs. Each data point corresponds
to one GCMC simulation at Ptotal = 0.15 bar and each subplot corresponds to a fixed
temperature of T = 313, 333, 353, 373, or 400 K where the molar composition of the
H2O:CO2 mixture is varied.
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Figure A.20: H2O:CO2 mixture analysis for all Ni analogs. Each data point corresponds
to one GCMC simulation at Ptotal = 0.15 bar and each subplot corresponds to a fixed
temperature of T = 313, 333, 353, 373, or 400 K where the molar composition of the
H2O:CO2 mixture is varied.
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Figure A.21: H2O:CO2 mixture analysis for all Zn analogs. Each data point corresponds
to one GCMC simulation at Ptotal = 0.15 bar and each subplot corresponds to a fixed
temperature of T = 313, 333, 353, 373, or 400 K where the molar composition of the
H2O:CO2 mixture is varied.
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A.11 Improvements in raw material costs

A significant advantage of the M2(DHFUMA) analog series is the drastically reduced raw ma-
terials cost (RMC) in comparison to the M2(DOBDC) series. A non-bulk order price quote
from Sigma Aldrich yields a cost of $466.0/100g of ligand for DHFUMA which is signifi-
cantly cheaper in comparison to the $2412/100g of DOBDC [http://www.sigmaaldrich.com,
accessed 8 August 2016]. This ligand RMC cost dominates the expense of the metal source,
where prices range from $26.35/100g for MgCl2 to $65.00/100g NiCl2 (again taken from
non-bulk order price quotes from Sigma Aldrich). As we have predicted the increased H2

volumetric storage potential in Mg2(DHFUMA) (see Fig. 3.3 in the main article) and the
Pareto optimality of all M2(DHFUMA) analogs over their DOBDC counterparts for CO2 se-
lectivity in the presence of H2O (see Fig. 3.9) in the main article), we predict the DHFUMA
analog series to be a cheaper, higher performing nanoporous material than M2(DOBDC) for
H2 storage and CO2 capture from wet flue gas if it can indeed be synthesized.



APPENDIX A. ADDITIONAL CHARACTERIZATION OF M2(DHFUMA) 143

A.12 Proposed CO2 capture process with

M2(DHFUMA)

We graphically illustrate a simple scheme for how one might design an industrial adsorption
process if one of the top performing DHFUMA analogs were to be used for CO2 capture from
a mixture of N2/CO2 with non-trace amounts of H2O. Fig. A.22 provides a general overview
for how DHFUMA could be incorporated into an industrial scale CO2 capture process from
a coal-fired power plant flue stream. Fig. A.22(a) shows how a zeolite bed could be used to
dry the flue gas to a permissible water content for DHFUMA while CO2 adsorption occurs
in the subsequent DHFUMA bed at high temperature. Desorption is illustrated in Fig.
A.22(b) whereby the zeolite bed is heated to a high-temperature to desorb H2O, and this
desorbed water stream is cooled down just below the necessary temperature to condense
in DHFUMA and thereby desorb CO2. The ultimate result is a qualitative picture of how
CO2 capture might be performed at an industrial scale. The final amount of CO2 captured
and the amount of zeolite needed to dry the breakthrough of the stream to the minimum
necessary water content would be optimized based upon experimental pilot-scale results that
mimic the results of the section on ”Optimizing CO2 capture in binary CO2:H2O mixtures”.
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Implement several columns in parallel 
based on breakthrough times to achieve 
continuous operation

1. Zeolite bed with preferential H20 ads. 
• SLOW breakthrough H20 
• FAST breakthrough of CO2 and N2
• Column length determined by 

amount of material necessary to dry 
stream to water mol % required for 
DHFUMA

2. Heat stream to adsorption T of 
DHFUMA 

• We can have non-trace amounts of 
H20

~ 80%

~ 15%
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bar
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3. DHFUMA bed
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• CO2 adsorbs at ~ 2 mol/kg even 

with non-trace water content of ~ 
0.1 - 1 mol %

Adsorbed

Adsorbed

(a)	CO2 Adsorption

1. Zeolite heated to high T to 
desorb water 

2. DHFUMA bed cooled slightly 
BELOW condensation point of 
water in DHFUMA.  
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T = 353 K
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3. Final purification of CO2 from 
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Adsorbed
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Figure A.22: (a) CO2 adsorption. A cheap zeolite bed is utilized to reduce the water content
to the maximum threshold for the DHFUMA bed, and high temperature adsorption of CO2

occurs. (b) CO2 desorption. The water that was originally adsorbed by the first zeolite bed
is used to desorb the strongly bound CO2 in the DHFUMA bed.

A.13 Attempted synthetic procedures

Our attempts to synthesize the family of M2(DHFUMA) materials have for the moment been
unsuccessful since the tested reaction conditions lead to crystalline products other than the
desired structure. Details on the attempted synthesis procedures and the resulting products
are discussed in the supporting information of Ref. [225].
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Appendix B

Additional details on predicting 2D
zeolites

B.1 Python implementation of the Balcioglu and

Wood algorithm

A Python implementation of the Balcioglu and Wood algorithm[148] is provided in the
”Nearmincut” github repository (https://github.com/mwitman1/nearmincut.git). This
routine has been incorporated into the private version of the LammpsInterface[165] (https:
//github.com/peteboyd/lammps_interface.git) program which handles all other logis-
tics of structure processing using both Pymatgen[146] and its own internal functionality.
This new version may be publicly released in the near future, but for immediate inquiries
regarding the use of this new functionality please contact the developers of LammpsInterface.

Formal definitions of min cuts are provided in the main manuscript, but a brief overview
is provided here to understand the functionality of Nearmincut. Nearmincut accepts a Net-
workx graph and a source and target node to compute the min s-t edge cut. Denoted w(C0),
this is the sum of the weights of all edges in the cut, where a cut is a set of edges that, if re-
moved, interrupts all paths form s to t. If C0 is the min cut, then w(C0) ≤ w(C ∈ C), where
C is all possible s-t cuts. Then the algorithm of Balcioglu and Wood recursively searches for
all cuts in the set Cε whose weights have w(C) ≤ (1+ε)w(C0), where ε > 0 is a user specified
parameter that determines how ”near” a cut is to the min cut. A trivial modification was
introduced that also allows the user to output all cuts with weight w(C) ≤ k+w(C0), where
again k > 0 is a user specified parameter. A simple test script in the repository shows how
to use the basic functionality of Nearmincut.

The recursive algorithm of Balcioglu and Wood is briefly summarized here and further
details can be found in Ref. [148]. Consider the directed graph in Fig. B.1. Note that this
graph is slightly different than the example presented in the manuscript since, instead of
anti-parallel, directed edges between nodes, only a single directed edge exists. This example
represents the identification of all cuts with w(C) ≤ k + w(C0) where k = 2. Each graph
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in Fig. B.2a represents the min cut found at each step of the recursive enumeration of the
cutset, and Fig. B.2b visualizes the corresponding recursion tree. At each iteration edges
have forced exclusion (by setting the weight to infinity) or forced inclusion (by adding an
edge with infinite weight from both the source and target to both nodes in the edge). For
example, after the first min cut is identified (Iter. 1) with w(C0) = 6, e10 is excluded from
the next possible solution by setting its weight to infinity. This produces a min cut with
value of 8 in Iter. 2, which satisfies w(C) ≤ k + 6. Hence we now go one level deeper into
the recursion tree. Excluding e4 does not produce a min cut with w(C) ≤ k + 6 in Iter.
3. In Iter. 4 we must include e4 and exclude e3. In Iter. 4 one can see that the inclusion
of e4 is forced by setting w(e1) = w(e8) = inf. This again leads to a min cut with a value
greater than 8, leading to termination at this node in the recursion tree. The examples are
continued for Iter. 5 and Iter. 6. Upon completion of the recursion tree, one would find in
addition that w(e10e1) = 8, yielding four possible solutions for all (near) min cuts.

e8=8

e12=7

e11=4

e3=1

e1=5 e4=2

e5=7

e6=2
e9=1

e7=4 e10=3

s t

e2=5

Figure B.1: A sample directed graph for which we seek to find all C ∈ C with w(C) <=
k + w(C0) where k = 2.
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(a) (Near) min cuts of graphs with the enumeration of forced edge inclusion or exclusion

(b) Recursively forced inclusion and exclusion of edges to identify all (near) min cuts

Iter. 5: w(e4e3e2)=8 Iter. 6: w(e12e4e3)=10

Figure B.2: (a) Visualization of the solution to the min cut problem at the first six iterations
in the recursion tree. Red edges represent the min cut in each particular iteration. (b) The
partially completed recursion tree where a node represents a cut and the connection to its
child shows which edges have forced exclusion (italicized) and forced inclusion (bold) in the
next iteration. The base case returns occurs when w(C) > k +w(C0) (red nodes) for k = 2.
Dashed lines indicate further exploration of the recursion tree is needed since the parent
node satisfies w(C) ≤ k + w(C0)
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B.2 Statistics of min cuts for IZA zeolites

Fig. B.3 visualizes the ranking scheme demonstrated in Table 4.1 for all IZA zeolites in a
single figure. To construct this figure, each IZA contributes one entry in each column of the
histogram. For example, MWW contributes one purple unit in the (001) column since the
(001) min cut density achieves the lowest cut density (rank R1) of all other Miller planes,
which is also shown in Table 4.1. If two Miller surfaces are symmetrically equivalent, both
are assigned the same rank for visualization purposes according to a dense ranking scheme
(each surface’s ranking number is 1 plus the number of items ranked above it that are distinct
with respect to the ranking order). Anything above a rank of R16 is included in the R16 bin
color scheme. The min cut density for each face of each zeolite, as well as the corresponding
structure file, can be found in the supplementary data. According to Fig. B.3, the majority
of structures have R1 ranks occurring for (001), (010), and (100) Miller faces, while a non-
negligible number have R1 ranks occurring for (011), (101), and (110) faces. The general
trend shows that, as might be expected, higher index Miller faces typically result in a higher
min cut density. Yet clearly there are many outlying structures which have high index Miller
faces with low ranks (R1, R2, or R3 for example). These subtleties highlight the necessity
of an automated and robust approach for zeolite surface generation and screening: various
IZA structures may require obtaining the min cut density of a relatively high index Miller
plane to find the R1 surface. This task would be extremely arduous if not impossible by
manual/visual inspection.
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Figure B.3: The tabulated ranks of all 2-maximum index Miller surfaces of each IZA zeolite.
Here the minimum cut density corresponds to a rank of R1, and the maximum density
corresponds to R16 (all surfaces with a higher density than R16 are included in the R16
color-coding).

The power of the graph theory algorithm can also be appreciated by observing when it
identifies min cuts that lead to faceted surfaces. When the min cut is formed by a highly
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faceted surface, which is especially true for high index Miller planes in the case of all silica
zeolites, it becomes visually clear that only an advanced graph theory based algorithm can
identify the solution to the min cut. Take for example several min cuts for various Miller
planes in MFI, shown in Fig. B.4. For high index Miller faces, the surface terminations
become highly faceted to minimize the number of edges that are cut, but they are so complex
that only an advanced algorithmic approach would be able to determine them.

(a)

(b)

(c)

(d)

(e)

(f)

Figure B.4: (a-f) show the min cut surface termination for the (100), (101), (201), (301),
(120), and (511) Miller planes of MFI, respectively.
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B.3 Visualization of zeolites with high potential for a

layered 2D form

The candidates with the largest δR2−δR1 values are visualized in Fig. B.5. The ranking of all
IZA materials based on this descriptor is provided in supplementary data files as described
in the following sections. Fig. B.5 displays the R1 plane horizontally and orthogonal to the
viewing page. These R1 surfaces are the predicted surfaces that would be expressed if the
zeolite can be synthesized in a layered 2D form.

CGF, R1 = (010)

JSW, R1 = (001) GON, R1 = (010)

UOS, R1 = (100)

Figure B.5: Visualization of the proposed layered precursor for the four IZA structures with
the largest δR2− δR1 values that have not yet shown experimental verification of a 2D form.
The structures are shown with the R1 Miller surface horizontal and orthogonal with respect
to the viewing.

B.4 Supporting data files

The data files associated with the min cut statistics of 2D zeolites can be found in Ref. [112]
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Appendix C

Additional details for high-throughput
screening of flexible materials

C.1 Generating simulation input files

To generate the necessary -data and -in required by LAMMPS to simulate the intrinsic
flexibility of the CoRE MOFs with the UFF-FM approximation, first clone the git repository
https://github.com/peteboyd/lammps interface. From the command line one can generate the
files for running NVT simulations (with the force field of UFF-FM as described below) at
298 K via the following:

python 〈path/to/lammps interface〉/lammps main.py --nvt --fix-metal --equilibration-
steps 30000 --production-steps 30000 --dcd 1000 〈your cif file〉.cif
The snapshots in the dcd trajectory file can then be easily converted to Crystallographic
Information Files (CIFs) using the MDAnalysis Python package,[268] from which the Henry
coefficient can be directly calculated in RASPA. Example files can be found in Ref. [225]

C.2 Additional simulation details

UFF and the ‘fix-metal’ approximation

The UFF fix-metal approximation (UFF-FM) is used to facilitate the screening of flexibil-
ity in the CoRE MOF materials by creating a force field applicable to any metal-ligand
chemistry. To modify the UFF potential such that each metal ion is preserved in its crystal
structure atomic arrangement, the harmonic bond equilibrium distance, R0, for each bonded
atom is modified to the reported crystallographic distance. Likewise, all angle potentials
between atoms that share the metal ion as a neighbor were modified such that their equilib-
rium angle, θ0, is equal to the angles found in the crystal structure, computed in the usual
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way,

θ0 = cos−1

( −→v JI · −→v JK

|−→v JI | · |−→v JK |

)
(C.1)

where −→v JI and −→v JK are the vectors pointing along the bonds from the metal ion (J) to
atoms I and K respectively. θ0 is then placed in the UFF equation for generalized non-linear
angles

Eθ = KIJK [C0 + C1cosθ + C2cos2θ] (C.2)

where,

C2 =
1

4sin2θ0

C1 = −4C2cosθ0

C0 = C2

(
2cos2θ0 + 1

) (C.3)

The only caveat is if θ0 computed in Equation C.1 is sufficiently close to 180°, in which
case the linear function of the angle potential is used. The reader is referred to Ref. [73] for
further details. The ‘strength’ of both the harmonic bonds and angles are kept the same as
specified in the UFF recipe, and are not further modified by this approximation. All other
bonded potentials (improper and dihedral torsions) in UFF have explicitly no parameters
when metal ions are included as one of the central atoms in these potentials, thus these
potentials are ignored in the ‘fixed-metal’ approximation.

UFF and the cationic dummy model

In the UFF-cationic-dummy-model (UFF-CDM) model of SBMOF-1, interactions between
Ca2+ and linker atoms are purely non-bonded. Ca2+ atoms are modeled as a cationic dummy
models parameterized by Duarte et al. which delocalizes charge in a way that imposes an
octahedral coordination environment.[251] Lennard-Jones interaction parameters between
Ca2+ atoms and linker atoms were computed using Lorenz-Berthelot mixing rules, with
contributing interactions coming from UFF and Duarte et al. for linker and Ca2+ atoms,
respectively. Because Ca2+ atoms in the SBMOF-1 structure do not carry the full 2+ charge
seen in pure ionic form, charges on both central and dummy beads were scaled from what
was presented by Duarte et al. in order to maintain the same overall charge on the entire
cationic dummy complex as the Ca2+ charge as determined by REPEAT.[58] The UFF-CDM
model of SBMOF-1 structure can capture Ca2+ ion coordination numbers of 6 or 7.

C.3 Scaling the potential energy landscape for better

experimental agreement

In this section we discuss the potential energy surface (PES) of Xe/Kr adsorbates in SBMOF-
1 as calculated by PBE+D3 and the Universal Force Field (UFF) to highlight the other
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potential source of discrepancy between experimental results and computational predictions
of adsorption properties in this system. In addition to changes in the PSD induced by
flexibility, accurately parameterizing the strength of host-adsorbate interactions contributes
to obtaining good agreement between computational and experimental Xe/Kr Henry coeffi-
cients. For the case of SBMOF-1 which is a very dense system, small errors in the potential
well-depths can be compounded due to a large number of host-adsorbate interactions. For
this reason we compared the Xe/Kr PES of SBMOF-1 when using UFF versus PBE+D3,
and the comparison is captured in Figure C.1 where the UFF energies are plotted versus the
DFT energies for 150 adsorbate locations in the void space. Interestingly, UFF over-predicts
the strength of the minimum energy binding site of both Xe/Kr by the same factor. In
order to better align the UFF PES with PBE+D3, we scale the UFF epsilon parameter of
both Xe and Kr by 0.82 such that the minimum binding energies are equivalent between the
two methods. After rescaling, the UFF binding energies are better aligned to reproduce the
PBE+D3 energies.

Figure C.1: The PES is shown by probing the void space of SBMOF-1 with 150 Xe adsorbates
in (a) and 150 Kr adsorbates in (b). Pure UFF (blue circles) overestimates the binding
energies of both adsorbates in comparison to PBE+D3. The UFF binding energy can be
universally scaled by a constant factor of 0.82 (yellow circles) to align the minimum binding
energies and provide better agreement of the PES between UFF and PBE+D3.

Using the scaled epsilon values of both Xe and Kr, the Henry coefficient calculations
were repeated which results in closer agreement of computational and experimental Henry
coefficients as would be expected since UFF overestimates the strength of Xe/Kr binding. As
has been noted in the literature, no one particular DFT recipe appears to provide consistently
better results in describing interactions between MOFs and noble gases.[269] However, this
energy re-scaling serves to show that within the approximations of the PBE+D3 method we
are able to combine both considerations of flexibility and adjustment of the UFF PES to
obtain even better agreement with experiments as shown in Table C.1.
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Table C.1: Comparison of Henry coefficients in SBMOF-1 for both AIMD and UFF-CDM
generated dynamics with (**) and without (*) epsilon re-scaling of Xe/Kr by 0.82. The rigid
structure for UFF-CDM is identical to the DFT minimized structure (and hence the rigid
structure for the AIMD entries).

Simulation Type
KH,f [mol/(kg·Pa)] KH,r [mol/(kg·Pa)]

Sf Sr
Xe Kr Xe Kr

2x2x1 AIMD (*) 6.80e-3 1.77e-4 1.03e-2 2.20e-4 38 47
2x2x1 AIMD (**) 1.52e-3 6.10e-5 2.33e-3 7.70e-5 25 30
3x6x2 UFF-DCM (*) 3.18e-3 1.28e-4 1.03e-2 2.20e-4 25 47
3x6x2 UFF-DCM (**) 7.25e-4 4.30e-5 2.33e-3 7.70e-5 17 30
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