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Abstract 

A picosecond dye laser is used to excite electron-hole plasma of density 

between 10 18to 10 19 cm-3 in GaAs. The plasma density and distribution 

function within $ 20 psec of excitation is probed by Raman scattering. 

The lineshape of the single particle excitation spectra of the plasma 

can be explained only by assuming that the electron distribution func-

tion is in nonthermal equilibrium. 
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Photoexcited electron-hole plasma (EHP) in 
GaAs has been the subject of intensive studies 
recently using both picosicond (psec) and nano
second laser excitations. In most of these 
studies it is found that the EHP attained therm
al equilibrium within one psec of excitation and 
the subsequent behavior of the EHP can be · 
explained by its cooling and expansion. Although 
in a few studies 2 it was noted that in GaAs the 
EHP distribution did not reach thermal equilib
rium. for as long as 10 psec when the plasma 
density was higher than 1018 cm- 3, the nonequil
ibrium plasma distribution was not determined. 
In this Communication we have utilized light 
scattering from the photoexcited plasma to 
confirm that the plasma distribution was indeed 
nonequilibrium and furthermore to determine this 
nonequilibrium distribution. In addition we 
have measured parameters such as density and 
expansion velocity of the EHP. 

Our experiment was ~erformed on a 4~ thick, 
high purity (NA, No ~ 10 4cm- 3) epitaxial layer 

of GaAs oriented perpendicular to the (100) 
direction. The sample is cooled by He exchange 
gas in an optical dewar. The lattice temperat
ure as estimated from the time-resolved lumin
escence spectra is -20 K. The EHP is excited 
by· the output of a modelocked and cavity-dumped 
Rhodamine 6G dye laser. The length of the output 
pulses is typically -20 psec long and separated 
from each other by 250 nsec. The energy of the 
dye laser pulses is typically -20 nJ. Power 
density as high as 107 W/cm2 can be obtained by 
focusing the laser beam to a spot of -100~ 
diameter on the sample surface. By changing the 
focus we can vary the EHP.density from 10 18 to 
1019 cm-3. :'he same dye laser pulses which 
excite the EHP are used also to scatter from the 
EHP. Since Raman scattering occur instantan
eously there is zero time delay between the 
excite and probe pulses. As a result the Raman 
signal represents an average of the EHP behav
ior within -20 psec after excitation. The 
incident and scattered radiations are polarized 
respectively along the (010) and (001) axes. 
The backscattered Raman radiation is analysed 
first oy a Spex double monochromator and then 
detected by a gated photon counting system. By 
collecting only light scattered within 2 nsec 
of the incident laser pulse we reduce the dark 
counts by a factor of -125. 

It is well known that there are two kinds 
of elementary excitations in a plasma which can 
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scatter radiation. 3 The 'first kind are known as 
collective modes and involve collective oscill
ations such as plasmons and acoustic plasmons. 
In crystals like GaAs a slight complication 
results from the fact that the longitudinal 
electric field of the plasmon can couple to the 
corresponding field of the longitudinal optical 
(LO) phonon to form coupled plasmon-LO phonon 
modes (to be abbreviated as coupled modes). The 
second kind are known as single particle excit
ations (SPE) and involve excitations of carriers 
from a filled state to an empty state. Thus in 
principle it is possible to determine the plasma 
density from the coupled modes and the plasma 
distribution function from the SPE scattering. 
We will show that this ability of light scatter
ing to measure both the density and distribution 
function of the EHP independently is crucial to 
our conclusion that the EHP distribution is 
nonthermal equilibrium. 

We first present the coupled mode spectra 
we obtained at different excitation intensities 
in Fig. l(a). We found that when GaAs is 
strongly excited energetic carriers are created 
which produce intense photoluminescence extend
ing into the visible. 4 To minimize this hot 
luminescence we have tuned the dye laser into 
the green ( w=l7018 cm- 1 ). In the higher 
excitation spectra in Fig. l(a) a background due 
to SPE scattering appears. It has been shown 
that the coupled plasmon-LO phonon frequency is 
given by: 5 

where ~0 and wro are respectively the frequen
cies of the transverse optical (TO) and LO 
phonons and wp is the bulk plasmon frequency: 

(2) 

In Eq.(2) N is the density of electron-hole pair 
excited, Es is the bound electron dielectric 
constant and m* and ~ are respectively the 
effective mass~s of tHe electron and hole (both 
assumed to be isotropic for simplicity). In 
GaAs m* << ~ for the heavy eole band so wp is 
approximated by (4nNe 2 /o*£ )~. A plot of Eq.(l) 

e s 
for GaAs is shown in the inset of Fig.l(a). Our 
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result appears to contradict Eq. (1) because 
instead of observing coupled modes whose freq
uencies w+ varies with density and hence laser 
intensity-according to Eq. (1) we observe two 
peaks at wLQ and wTO whose relative height varies 
with laser 1ntensity. Our results can be under
stood if we include the spatial distribution in 
the plasma density in our analysis. The density 
distribution of the plasma is influ.enced by two 
factors: the penetration depth of the incident 
laser is only -0.2~ so the plasma is essentially 
created at the sample surface and the radial 
intensity distribution of the incident laser 
beam which is a Gaussian. As pointed out by 
Turtelli and de Castro6 the coupled mode line
shapes are influenced more strongly by ·the radial 
distribution in the plasma density. We have 
therefore assumed that the radial dependence of 
the EHP density, N(r), has the same Gaussian 
profile as the laser: 

N(r) = N exp[-(r/r ) 2 ] (3) 
0 0 

where r ~so~ is the beam size. The scattered 
0 spectra I(ll.w) can be calculated from the 

expression: ~ 

I
5

(ll.w) a: J I~_(r)n(r)2nr dr (4) 
0 

where ll.w is the Raman shift, 1.2. is the incident 
laser intensity profile and n(r) is the scatter-

. ing efficiency o.f the EHP with density N(r) 
which determines ll.w. The expression for n(r) can 
be found in Ref. 7. The calculated spectra with 
N and the plasma damping constant (fixed at 
2g0 cm- 1 for all the curves) as the only adjust
able parameters are shown in Fig. l(b). As can 
be seen the calculated curves reproduce quite 
well the experimental curves with values of N 
typically a factor of 3-5 smaller than the 

0 

nominal values N' catculated from the laser 
intensity. The good correlation between N 
determined from the coupled modes and N' w~ll be 

0 
assumed when we study the SPE spectra. 

To make it easier to measure the SPE spectra 
we have lowered the laser frequency to 15793 
cm- 1 to take advantage of the resonance enhance
ment due to the E +ll. transition in GaAs~ Two 
typical SPE spect~a 3e obtained after subtract
ing off a smooth hot luminescence background 
are shown in Fig. 2. For comparison the theor
etical SPE spectra for thermal equilibrium 
distributions of electrons are shown qualitat
ively in the inset of Fig. 2. 9 Curve (a) repre
sents the result for degenerate electron at T ~ 
0 K. Curve (b) which is essentially a Gaussian 

() 



'·J 

('': 

5 LBL-16635 

distribution is for a nondegenerate electron gas 
with a Maxwell-Boltzmann velocity distribution. 
In both cases if the plasma is expanding rapidly 
in the direction of the incident radiation, the 
expansion velocity can be determined from the 
Doppler shift of the scattering spectra. If we 
assume that the EHP distribution is in equilib
rium and its density is adjustable we find that 
the experimental SPE spectra can be f~tted 
satisfactorily by assuming that the electron 
distribution is a drifted Maxwell-Boltzmann 
corres~onding to T$500 K and a drift velocity 
of -10 em/sec. Because of the small electron 
mass in GaAs in order the EHP distribution be 
Maxwell-Boltzmann N must be less than 1017 cm- 3 
even at T-500 K. H8wever based on the laser 
intensity we expect a EHP density in excess of 
1018 cm- 3! 

To try to resolve this discrepancy we have 
considered corrections to the theoretical model 

due to spatial variation in the EHP density; 
spatial variation in the plasma temperature 
analogous to the density variation and increase 
in the plasma damping constant. 10 Details of 
these analyses will be published elsewhere. 11 

In Fig. 3 we show how the theoretical SPE spectra 
assuming thermal equilibrium distribution funct
ions compare with the experimental SPE spectra 
at the highest laser intensity. Note how the 
calculated spectra always have a· steeper edge 
on the Stokes side than the experimental spectrum 
because of the degenerate nature of ~he distrib
ution. Thus we are led to conclude that in GaAs 
the EHP has not reached thermal equilibrium 
within -20 psec after excitation at density 
larger 1018 cm-3 as found by Leheny et al.2 It 
is beyond the scope of this short article to 
discuss the reasons why_ the equilibration time 
of the EHP in GaAs, which is known to be less 
than 1 psec at low densities (<1018 cm-3) and at 
high densities (>1021 cm-3), becomes longer than 
10 psec at intermediate densities. Presumably 
this is because at these intermediate densities 
the electron density is high enough to screen 
the electron-10 phonon interaction2,12 but not 
high enough for Auger processes to occur in less 
than 1 psec. 

One advantage of the SPE spectra is that 
it is a rather direct measure of the distribution 
function. Since equilibrium distributions fail 
to explain the experimental spectra satisfact
orily, we have adopted a phenomenological 
approach of fitting the experimental curves with 
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trial nonequilibrium distributions. One class 
of distributions which we found to work rather 
well is a power law of the form: 

where A, r and E are adjustable parameters 
subject to the o&ly condition that A5l. In 

(5) 

Fig. 2 the smooth solid curves are obtained 
with a drifted nonequilibrium distribution of 
this form. The values of the parameters chosen 
are: E =BOO cm- 1 , r=2 and drift velocity=l07 

cm/sec
0
for both curves. The values of A have 

been chosen to be 0.67 and 0.22 for the two 
curves to correspond to estimated EHP densities 
of 6xl0 18 cm-3 and 2xlo 1 8 cm-3 respectively. 
The uncertainty in the choice of r is -+1. For 
example equally good fits can be obtained with 
r=3 by changing A. The significance of the 
parameters E and A is that E determines the 
width of the

0
SPE spectra and Blays the role of 

temperature in the equilibrium distribution 
while A is proportional to the plasma density. 
The cruc.;i.al feature in the nonequilibrium dist
ribution of Eq.(S) as compared to the equilib
rium·distribution is that the electrons are more 
spread out in energy. As a result even for 
densities as high as 1Ql9 cm-3 the occupancy of 
any electronic state is less than one., In other 
words the nonequilibrium distribution is nondeg
enerate so that all electrons, irrespective of 
their energy, can participate in the scattering. 
The nonequilibrium distribution we propose can 
also explain qualitatively the transmission 
Fesults of Leheny et al.2 

Finally we note that the plasma expansion 
we determine from the SPE spectra is consistent 
with previous experiments in GaAs~l3 The fact 
the plasma is expanding does not. invalidate our 
analysis of the coupled mode results. We est
imated that the plasma should expand by no more 
than -2]..1 during light scattering. This amount 
is not signifcant for the radial distribution 
of the EHP since r0~50J..l. However the expansion 
of the EHP into the bulk has the effect of low
ering the plasma density and can possibly exp
lain the difference between the density calcul
ated from the laser intensity and the density 
determined by fitting the coupled modes. A 
caveat in our calculation of the SPE spectra 
based on the nonequilibrium distribution is that 
we have assumed that the SPE scattering cross
section derived by the fluctuation dissipation 
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theorem 14 remains valid for nonequilibrium 
carrier distributions. This is still an open 
question worthy of further investigations. 
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Figure Captions 

'Fig. 1: Experimental (a) and theoretical (b) Raman spectra of the 
coupled modesofEHP in GaAs. The nominal plasma densities 
N' (in 10~ 8 cm- 3 ) calculated from the laser intensity for 
tRe four experimental curves are: 1-3.4, 2-7.0, 3-13.6 and 
4-28. · The corresponding plasma densities N (in 1018 cm- 3 ) 

used in computing the theoret~cal curves arg: 1-1.0, 2-2.5, 
3-4.6 and 4-9xl018 . The inset in (a) shows the frequencies 
of the coupled modes vs electron density calculated from 

. Eq.(2) and confirmed experimentally in Ref. 5. 

Fig. 2: Experimental (light curve with noise) and theoretical (heavy 
smooth curve) SPE Raman spectra of EHP in GaAs. The nominal 
plasma densities for the curves 1 and 2 are repectively 2.7 
x 1018cm- 3 and 2.4 x l0 19 cm- 3 • The inset shows qualita
tively the SPE spectra for a degenerate (curve a) and non
degenerate (curve b) electron gas. VTH and VF are respec
tively the thermal and Fermi velocit1es of the electron 
gas. 

Fig. 3: Two theoretical fits to the experimental SPE spectra (same as 
curve 2 i~ Fig. 2) using thermal equilibrium distribution 
functions. For theoretical curve A a Fermi-Dirac distribution 
corresponding to T=400 K, density of 2.8xl0 18 cm- 3and electron 
damping ~onstant of 560 cm- 1is assumed. For curve B the 
Fermi-Dirac distribution is further assumed to be drifting at 
6xl0 7 em/sec along the direction of observation. 
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