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The WARP Model of Category Learning 

Research on categorization and classification learning has 

greatly benefitted from the use of computational modeling 

which requires making all theoretical assumptions explicit 

and provides a direct means of theory evaluation by fitting 

behavioral data. The field has advanced notably through 

model comparison relative to benchmark data on human 

category learning performance. Exemplar theory has become 

a leading psychological explanation largely due to the 

success of its formal models in fitting human data across a 

number of tasks (Kruschke, 1992; Nosofsky & Palmeri, 

1997).  

The exemplar view casts categorization as based on an 

explicit calculation of similarity between the to-be-

categorized stimulus and instances stored in long-term 

memory (exemplars) associated with each category. The 

similarity is computed as an inverse exponential function of 

distance between psychological representations in a 

multidimensional space. This representational space can be 

transformed by stretching or shrinking dimensions using 

selective attention. The category with exemplars of greater 

similarity (less distance) to the stimulus is activated. This 

account has been extended in the ALCOVE model 

(Kruschke, 1992) which implements adaptive learning of 

attentional weights on the stimulus dimensions and 

association weights between each exemplar and category. 

While exemplar models have shown a high degree of 

success in fitting behavioral data, they do not provide an 

account of representation learning. These models generally 

assume that each item in the input domain has a unique 

psychological representation (estimated via 

multidimensional scaling) that remains fixed throughout the 

category learning process. Further, a strict correspondence 

holds between the category representation and the stimulus 

items known to be members of that category (note: reference 

point models can also use centroids of clusters of exemplars). 

This is in strong contrast to feedforward artificial neural 

networks that gradually learn representations to optimize task 

performance (Rumelhart, Hinton, & Williams, 1986). In 

standard connectionist models, each stimulus gets recoded at 

a “hidden” layer based on a set of optimized synapse-like 

weights that yield a distributed representation across the 

hidden nodes—which can be seen as a point in a constructed 

multidimensional space. A second set of weights connects 

these hidden nodes to an output layer of class nodes. The 

internal representations are incrementally repositioned in 

weight space via gradient descent to optimize accurate 

prediction at the output layer.  

The Weights-as-Adaptive-Reference-Points (WARP) 

model is designed to bridge the reference point similarity-

based approach of exemplar models with the flexibility and 

psychological plausibility of learned representations in neural 

networks. This merger of design principles is achieved by 

replacing the localist exemplar node representations (as in 

ALCOVE) with a layer that follows the foundational 

connectionist design principles of: 1) a forward pass that 

computes activation based on a function of the ‘net input,’ 

i.e., the input activations multiplied by their weights; and 2) 

a backward pass that modifies the weights to minimize task 

error and estimate the function to be approximated.  

On the connectionist view, the hidden nodes are 

constructed dimensions that usefully transform the values of 

a stimulus in input space to a set of values in another 

representational space. On the exemplar view, each hidden 

node is a reference point to the location of a training item in 

input space and its activity indexes the proximity of that point 

to a stimulus. We propose a new formulation that allows the 

hidden nodes to function according to connectionist 

mechanics and yet act as reference points. The result is that 

the model discovers its own reference points using task-

driven error minimization as opposed to making a 

commitment to the inputs themselves as the basis for the 

reference points.  

The WARP model functions by taking the encoding 

weights to each hidden node as its “address” or reference 

point location in input space. As the weights change via 

learning by backpropagation, each node follows a trajectory 

in weight space from its initial random location toward a 

place where its task is functionality optimized. The ‘net 

input’ is the vector multiplication between the input 

activations and the incoming weights to a node. This is a dot 

product or linear algebraic measure of similarity (i.e., the 

angle between the vectors) as opposed to a spatial distance 

metric. The critical similarity computation between stimulus 

and reference point occurs implicitly in the forward pass. To 
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make this work as intended, a simple, novel activation 

function at the hidden layer is used which takes the form of 

Equation 1: 

 

   exp[(a ∙ b) - k]     (1) 

 

where a is the vector of input activations, b is the vector of 

incoming input->hidden node weights, and k is a constant 

value set to the number of dimensions in the category 

structure. The key property of this function is this: the more 

closely the incoming weight vector for a hidden node 

approximates the values of an input vector, the greater the 

activation of the hidden node. Over the course of training, 

different hidden nodes will be repositioned to parts of weight 

space that allow them to respond to particular regions in input 

space: to get better at classifying is to move the adaptive 

reference points to useful positions. A standard association 

layer connects the hidden nodes to class nodes and a softmax 

output layer is used to determine the class probabilities  

WARP utilizes a set of connectionist-style free parameters: 

learning rate, number of hidden nodes (i.e., density of the 

implicit covering map), and range of random initialization for 

incoming weights; and can also incorporate a set of reference 

point model-style free parameters: degree of sensitivity of 

reference points and a response mapping constant for 

determining class activations. 

Preliminary testing has shown promising fits to the classic 

behavioral benchmark of the Shepard, Hovland, and Jenkins 

(1961) six types of elemental category structures (dataset 

from Nosofsky et al., 1994). This investigation also revealed 

that the WARP model discovers more parsimonious 

reference points when available: instead of always dedicating 

each hidden node to a single input, WARP can develop 

reference points that respond strongly to particular feature 

correlations or unidimensional rules. In conjunction with 

classic exemplar-style nodes, these feature detector-style 

nodes allow the model to efficiently handle various and 

complex category structures. The use of this multi-strategy 

toolkit mirrors the diversity and flexibility of human category 

learning (Ashby, Alfonso-Reese, & Waldron, 1998). 

In addition to modeling human behavior, WARP has also 

been initially tested for potential application as a classifier in 

the domain of machine learning. Different parameterizations 

of the model, while inappropriate for capturing the pace and 

nuance of human learning, show highly rapid and efficient 

performance on the iris flower benchmark dataset. 

Interestingly, the model solves the classification problem 

using discriminative prototypes that maximize distance to 

competing classes while minimizing distance to the target 

class. Continued investigations of the model are underway to 

better reveal the nature and diversity of the solutions WARP 

discovers for different types of classification problems; and 

to determine the power of the model in addressing the goals 

of psychological explanation and advancing AI. 
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