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 8 
Abstract 9 
 10 
Improved coastal Stratocumulus (Sc) cloud forecasts are needed because traditional satellite cloud 11 
motion vectors (CMV) do not accurately predict how Sc clouds move or dissipate in time, which often 12 
results in underprediction of irradiance in the morning hours. CMV forecasts assume clouds to move in 13 
the direction of the average regional wind field, which is not necessarily the case for Sc. Sc clouds over 14 
the land form at night and typically reach maximum coverage before sunrise. During the day, heating 15 
from solar radiation at the surface and entrainment of dry and warm air from above causes Sc clouds to 16 
dissipate. A Sc cloud edge forecast using Geostationary Operational Environmental Satellite is proposed 17 
to improve the Sc cloud dissipation forecast during the day. The inland edge of Sc clouds is tracked in 18 
time and extrapolated into the future. In coastal California, the Sc inland boundary is correlated to the 19 
land elevation. Dissipation after sunrise often follows land elevation as the amount of air required to be 20 
heated to become cloud-free decreases with increasing elevation since cloud top height is fairly constant 21 
along the cloud edge. The correlation between land elevation and Sc eastern boundary is exploited by 22 
extrapolating the evolution of cloud edge elevation in time. This method is tested in central and 23 
northern California on 25 days and in southern California on 19 days. When compared to the CMV and 24 
persistence forecasts, the proposed Sc cloud edge forecasts show a reduction of 30 Wm-2 and 107 Wm-2 25 
in hourly mean absolute error (MAE) of global horizontal irradiance. Additionally, out of 11 stations the 26 
line forecast results show a higher forecast skill than CMV (persistent) at 7 (9) stations.  27 
 28 

1. Introduction 29 
 30 
Sc clouds are the most common cloud type on Earth, with an annual mean coverage of 22% for the 31 
ocean surface and 12% for the land surface (Hahn and Warren, 2007). Sc clouds strongly reflect incoming 32 
solar radiation. Since they emit a similar amount of outgoing longwave radiation as the surface due to 33 
their low cloud height, Sc clouds have a strong net negative radiative effect on the Earth radiative 34 
balance (Hartmann et al., 1992; Wood, 2012). Sc clouds form in a shallow planetary boundary layer and 35 
are capped by a strong temperature inversion. The inversion limits the vertical mixing of warm dry air 36 
above and cool moist air beneath (Klein and Hartmann, 1993), which keeps the clouds from evaporating. 37 
Geographically, the highest Sc land coverage is found in the mid-latitude coastal region next to eastern 38 
boundary currents (Wood, 2012), and the temperature inversion in this region is associated with the 39 
warm dry descending branch of the Hadley cell. 40 

Coastal California is an area of high Sc cloud coverage during the late spring and summer months when 41 
the semi-permanent North Pacific High has the greatest intensity (Clemesha et al., 2016). Sc clouds 42 
greatly influence the weather, water, and energy of the ecosystem and have been a topic of extensive 43 
research for many years (Beer and Leopold, 1947; Iacobellis and Cayan, 2013; Johnstone and Dawson, 44 
2010; Williams et al., 2015). In recent years, an aggressive renewable energy mandate in the state of 45 
California has attracted more than half a million rooftop solar photovoltaic (PV) installations. As solar PV 46 



 

 

becomes an important source of generation to the grid, it is critical for the utilities and system operators 47 
to maintain reliable service while maximizing solar energy utilization (Denholm et al., 2016). With a 48 
majority of rooftop solar PV along the densely-populated coast of California, an accurate forecast of Sc 49 
clouds during the summer months becomes important as these clouds reduce solar irradiance 50 
substantially. 51 

Two types of methods are used in solar irradiance forecasting depending on the forecast horizon. For 52 
short-term solar forecasting, imagery-based cloud advection is used. Ground-based sky imager systems 53 
are used for intra-hour forecasting (Chow et al., 2011; Huang et al., 2013; Yang et al., 2014; Peng et al., 54 
2015), while satellite cloud motion vectors (CMV) are used for forecasting up to 5-hour ahead (Perez et 55 
al., 2010). Traditional image-based cloud advection assumes “frozen” clouds to move in the direction of 56 
the regional wind field. While this assumption generally holds true for a few hours, it loses validity for 57 
longer term forecast. For longer-term solar forecasting, ranging from hours-ahead to days-ahead, 58 
physics-based numerical weather prediction (NWP) is used (Jimenez et al., 2016; Lara-Fanego et al., 59 
2012; Mathiesen and Kleissl, 2011). NWP uses current weather observations to solve a set of primitive 60 
equations and numerically integrate the weather forward in time. Forecast accuracy varies considerably 61 
depending on the time, location, and weather condition. Perez et al. (2010) found that hourly-averaged 62 
satellite CMV forecast mean bias error (MBE) and root mean square error (RMSE) range from 0.2 W m-2 63 
and 104 Wm-2 in an arid region like Desert Rock, NV to 30 Wm-2 and 159 Wm-2 in a semi-arid elevated 64 
place like Boulder, CO on an annual basis. Mathiesen and Kleissl (2011) found that NWP models generally 65 
under-predict cloudy conditions, resulting in an over-prediction of solar irradiance. Recent studies have 66 
combined satellite images and NWP to better improve short-term solar forecasting (Arbizu-Barrena et 67 
al., 2017; Lee et al., 2017). For example, in addition to using traditional CMV techniques, Arbizu-Barrena 68 
et al. (2017) uses a NWP to allow both advection and diffusion to the cloud index derived from Meteosat 69 
Second Generation. It is shown that this technique outperforms traditional CMV in areas with low 70 
topographic complexity but struggles in areas where cloud patterns are influenced by the terrain. 71 

NWP forecasts of Sc clouds in coastal California have been improved through better cloud initialization 72 
(Mathiesen et al., 2013; Yang and Kleissl, 2016) or modifying inversion base height in NWP to better 73 
represent the clouds (Zhong et al., 2017). Imagery-based cloud advection forecasts have received less 74 
attention. Traditional satellite CMV forecasts do not accurately predict how Sc clouds move or dissipate 75 
in time largely because Sc clouds do not typically follow the synoptic wind direction. Sc clouds over land 76 
often form at night and reach maximum coverage before sunrise. During the day, Sc clouds dissipate 77 
because of solar heating at the surface (and the resulting surface sensible heat flux), solar heating of the 78 
cloud, and entrainment of drier warmer air from aloft (Ghonima et al., 2016). Since dissipation of Sc 79 
clouds is not considered, frozen cloud advection in satellite CMV often under-predicts solar irradiance. 80 

The objective of this paper is to improve solar irradiance forecasting during Sc days primarily through 81 
quantifying the dissipation time of Sc clouds. A Sc cloud edge forecast (hereinafter called “line forecast”) 82 
using the Geostationary Operational Environmental Satellite (GOES) is proposed to improve the cloud 83 
dissipation forecast during the day. The forecast is based on tracking the most inland edge of Sc clouds. 84 
The novelty of the method is that it can track evolution (dissipation in this case) of a stationary cloud, 85 
while standard cloud motion approaches only consider advection of frozen clouds. The method 86 
combines physical insights into lower atmospheric cloud top heights under a strong inversion with 87 
statistical methods. While applied here to Sc forecasting in California, we expect the cloud edge tracking 88 
to be equally valid for other overcast stationary clouds such as coastal Sc forecasts elsewhere and inland 89 
fog forecasts. For example, fog and low stratus in Germany pose a challenge for the transmission system 90 
operators. In addition to the low stratus risk forecast system designed for day-ahead warnings (Köhler et 91 
al. 2017), line forecasts for short-term forecasting could also help support the decision makings. 92 



 

 

This paper is organized as follows. Section 2 explains the conceptual motivation and assumptions of the 93 
line forecast (2.1), followed by a description of Sc cloud dissipation time and cloud thickness evolution 94 
(2.2 and 2.3). Then error metrics is presented in (2.4). Section 3 contains input data (3.1 and 3.2), case 95 
study setup (3.3, and validation sites and data (1.1). Section 1 contains the validation results and 96 
discussion. Validation of assumptions are investigated in 4.1, followed by validation against satellite 97 
observations (4.2) and discussion of geographical error distributions (4.3). Finally, Section 5 provides 98 
conclusions. 99 
 100 

2. Methods 101 
 102 

2.1 Cloud edge line forecast – conceptual motivation and assumptions 103 

In coastal California, the Sc eastern (inland) boundary edge elevation is typically found to be at a 104 
maximum during the early morning and then decreases in time. Conceptually, clouds thicken and spread 105 
at night due to longwave cooling, but start to thin when longwave radiative cooling is balanced by solar 106 
heating, which occurs shortly after sunrise (Akyurek and Kleissl, 2017). In southern California, the terrain 107 
rises nearly monotonically and peaks at about 1.5 km elevation 40 to 80 km inland. The eastern 108 
boundary of Sc clouds usually follows isolines of land elevation. Iacobellis and Cayan (2013) showed that 109 
the inland penetration of Sc clouds is limited by the height of the inversion base and coastal topography. 110 
In other words, Sc clouds extend inland up to where the land elevation reaches the inversion base 111 
height, and the inversion base height equals the cloud top height.  Dissipation of Sc clouds occurs after 112 
sunrise, often following land elevation as the amount of air required to be heated to become cloud-free 113 
decreases with increasing elevation.  114 

The line forecast employs the correlation between land elevation and Sc eastern boundary, by 115 
extrapolating the evolution of cloud edge elevation in time to predict future cloud edge location. The 116 
line forecasts assume: (i) constant inversion height (and cloud top height) along the cloud edge; (ii) a 117 
constant rate of decrease in the cloud edge boundary elevation, (iii) an exponential increase in 118 
normalized global horizontal irradiance (clear sky index) from sunrise to one when the clouds dissipate, 119 
and (iv) no satellite parallax effect. Assumptions (ii) and (iii) will be tested in Section 4.1. Rastogi et al. 120 
(2016) investigated the inversion base height at San Diego Miramar (NKX: 32.85⁰N, 117.11⁰W), 121 
Vandenberg Air Force Base (VBG: 34.75⁰N, 120.56⁰W), and the northern Channel Islands (approximately 122 
33.97⁰N, 119.85⁰N) during 1965—2015 using radiosonde data and the Modern-Era Retrospective 123 
Analysis for Research and Applications (MERRA)(Rienecker et al., 2011). While radiosonde data showed 124 
that inversion height is generally 100 m lower at VBG than NKX, MERRA data showed nearly identical 125 
inversion base height for the three points. Although radiosonde data showed differences between VBG 126 
and NKX, the lack of spatial coverage made it hard to determine the inversion height everywhere in the 127 
domain. As such, assumption (i) was treated as valid for this study. Since the GOES satellite is at a zenith 128 
angle of approximately 43 degrees and 50 degrees in the southern and northern end of California, the 129 
projection of the cloud edge on the surface will be displaced horizontally by tan (zenith angle) times 130 
cloud top height above ground level. However, since average cloud top heights are only 400 m above 131 
mean sea level the parallax error is small relatively to the scales of terrain elevation changes and the 132 
horizontal resolution of the satellite images. 133 

2.2 Cloud Dissipation Time 134 

The GOES visible channel captures a new image every 15-minutes. At each time step of satellite image, a 135 
visible reflectance cloud test (Iacobellis and Cayan, 2013) is performed, and the eastern boundary of Sc 136 
clouds with its corresponding land elevation are extracted. The median land elevation of the boundary is 137 



 

 

used to represent the elevation at each time step. Any missing time steps are ignored. The time stamp of 138 
the line forecast model is every 15-minute. An example of the Sc inland boundary moving towards lower 139 
land elevation is shown in Figure 1. The median land elevation of the boundary as shown in Figure 1 140 
decreases from 900 m at 0700 to 370 m at 1000 PST. Pacific Standard Time (PST) lags Coordinated 141 
Universal Time (UTC) by 8 hours and would be used for the remainder of this study. Figure 2 shows the 142 
step by step approach to issue a Sc line forecast for this day. A time series of the boundary median 143 
elevation is shown in Figure 2b. 144 

 145 
Figure 1. GOES visible images at 0700, 0800, 0900, and 1000 PST on June 14, 2016 with Sc inland 
boundary highlighted. Raw images are post-processed such that pixels within 15.5% of their clear sky 
reflectance are plotted as dark (clear), while pixels with larger than 15.5% difference are plotted in grey 
scales (cloudy). Threshold value of 15.5% was previously tested and optimized (See Text S1 in Clemesha 
et al. (2016)).  The position of the boundary advances towards the coast from 0700 to 1000 PST. Note 
that Santa Ana Mountains (33.7⁰N, 117.5⁰W) are clear because the land elevation is above the inversion 
base height. 



 

 

 
Figure 2. Steps to issue a cloud edge or the line forecast at 0800 PST for Escondido with a land elevation 
of 250 m: (a) Extract Sc inland boundary in consecutive GOES images up to 0800 PST and record the 
median land elevation under the colored lines (between 32.5⁰N and 34.5⁰N). (b) Extrapolate median 
land elevation in time using a best fit line through 0645 to 0800 PST. Cloud dissipation time is when the 
forecasted elevation intercepts with the station elevation (approximately 1030 PST). (c) Interpolate 
between current 𝑘"  at 0800 PST and clear sky 𝑘"  at cloud dissipation time using the exponential function 
described in Section 4.1. The green line in (c) is the line forecast issued at 0800 PST with a 15-minute 
time resolution. Note that the accuracy of the line forecast is limited by the number of visible images 
available. While the forecast issued at 0800 PST showed great results for this day, the line forecast would 
not be able to accurately predict the cloud dissipation time for the forecast issued at 0700 PST. As seen 
in (b), only two elevation points were available at 0700 PST, and the extrapolation of median land 
elevation would result in clouds persisting for the whole day. 

To predict when Sc clouds will dissipate at a given location, a linear regression is performed on a time 146 
series of the points corresponding to Sc eastern boundary land elevation (Figure 2b) and extrapolated in 147 
time to the elevation for the given location. A linear regression is chosen based on observation, and the 148 
assumption will be tested in the next section. The method uses a least square linear fit149 
. It is hypothesized that the time when the predicted elevation reaches the elevation of the specified 150 
location is the time when Sc clouds dissipate: 151 

 𝑡$%&'( =
𝐸+,"& − 𝑎

𝑏
, (1) 

where 𝐸+,"& is the land elevation of the site of interest, and a and b are the intercept and slope from the 152 
least square linear fit. 153 



 

 

2.3 Cloud Thickness Evolution 154 

To describe the cloud thickness evolution between forecast issue time and dissipation time, the 155 
normalized global horizontal irradiance (clear-sky index, 𝑘") is interpolated using an exponential function 156 
between forecast issue time and dissipation time to represent the thinning of Sc clouds: 157 

 𝑘"
∗(𝑡∗) = 𝑎𝑒5"∗ + 𝑐	, (2) 

where a, b, and c are constant coefficients. 𝑘"
∗and 𝑡∗are normalized 𝑘"  and time stamp, and the 158 

equations are shown later in Eq. (3) and (4). Physically, when the sun angle is low (early morning), not 159 
much heat is received at the surface and the thickness of the clouds is approximately constant. As the 160 
day progresses, solar heating increases drastically, and the cloud thickness decreases successively 161 
quicker. As such, the exponential function is chosen. 162 
 163 
The clear sky irradiance model from Perez et al. (2002) is used to compute 𝑘" . To determine the 164 
coefficients for the fitted exponential function, the coastal low cloudiness dataset from Clemesha et al. 165 
(2016) is used. The dataset was created using GOES images from 1996 to 2016 with a spatial resolution 166 
of 4 km and a temporal resolution of 30-minute. Historical days within the dataset when Sc clouds are 167 
present are identified. The corresponding SolarAnywhere (2017) data, a satellite solar irradiance 168 
product, are extracted to determine the exponential function that best describes the increase in 𝑘"  from 169 
sunrise to cloud dissipation time. SolarAnywhere data are available from 2003 to 2016, and only the 170 
overlapped time period between coastal low cloudiness dataset and SolarAnywhere are used. Note that 171 
2016 is excluded in this analysis as it will be used to validate the forecast. June and August are selected 172 
as they represent the months with most dominant marine layer cloud influence in southern and 173 
northern California, respectively. A map of southern and central and northern California domain is 174 
shown in Figure 3.  175 
 176 
Time stamps are scaled by the time difference between sunrise and cloud dissipation time: 177 

𝑡∗ = 	
𝑡 − 𝑡+9:(,+&

𝑡$%&'(,;5+ − 𝑡+9:(,+&
, for	𝑡+9:(,+& ≤ 𝑡 ≤ 𝑡$%&'(,;5+	, 

(3) 

where 𝑡$%&'(,;5+ is the first time when observed 𝑘"  is clear, and 𝑡+9:(,+&  is the time stamp at sunrise. The 178 
observed clear 𝑘"  is defined following Kankiewicz et al.(2014) where clear sky is defined as 𝑘"  greater 179 
than 0.8. Sunrise is chosen as the reference time since that is when solar heating starts to thin the cloud 180 
deck. Similarly, to normalize different starting 𝑘"  at sunrise, 𝑘"  for each individual day is scaled by 𝑘"  at 181 
sunrise: 182 

𝑘"∗ = 	
𝑘" − 𝑘"+9:(,+&
1 − 𝑘"+9:(,+&

, 
(4) 

where 𝑘"+9:(,+&  is the clear sky index at sunrise. To avoid picking earlier points where the accuracy of 𝑘"  183 
decreases because of difficulty of modeling clear sky irradiance near sunrise, the first daytime point is 184 
chosen to be when cosine of solar zenith angle is greater than 0.1. Cosine of solar zenith angles are 185 
calculated for all stations shown in Figure 3. During the month of June, 0530 PST marks the time when 186 
cos (solar zenith angle) is greater than 0.1 for stations in southern California. For central and northern 187 
California, 0600 PST marks the time when the criteria are met for early August while gradually shifting to 188 
0630 PST for late August.  189 

An example of the fitted exponential function at a single site is shown in Figure 4. For this study, two sets 190 
of coefficients are determined after repeating the analysis for multiple sites. The first set will be used to 191 
forecast 𝑘"  in central and northern California in August, and the second set will be used to forecast 𝑘"  in 192 
southern California in June. The coefficients are tabulated in Table 1 and the corresponding curves can 193 



 

 

be seen in Figure 5. The exponential growth rate is slightly higher in central and northern California 194 
(larger b in Eq. (2)), while the initial 𝑘"  is slightly higher in southern California (larger a in Eq. (2)). The 195 
stations shown in this analysis will be used as validation sites and will be discussed in greater details in 196 
Section 3.4.1. 197 

To produce a time series of forecasted 𝑘" , forecast issue time and future time stamps are scaled 198 
following Eq. (3), and cloud dissipation time is calculated following Eq. (1). These scaled time stamps are 199 
then plugged into Eq. (2) to retrieve 𝑘"∗. Lastly, 𝑘"∗ is transformed back to 𝑘"  by rearranging Eq. (4) and 200 
replacing 𝑘"+9:(,+&  as 𝑘"  at forecast issue time to: 201 

𝑘" = 	 𝑘"∗A1 − 𝑘",BC +	𝑘",B	. (5) 

This 𝑘"  model has the benefit that points that are falsely flagged as cloudy by the line forecast at the 202 
forecast issue time (e.g. land elevation is lower than the median land elevation of the boundary yet the 203 
pixel is initially clear), are automatically corrected to clear because future 𝑘"  is an interpolation between 204 
current 𝑘"  (𝑘",B = 1 in this case) and clear 𝑘"  (i.e. 𝑘" = 1). In other words, these points will not be 205 
changed to lower 𝑘"  and will remain clear. 206 

 207 

 
Figure 3: Map of elevation and validation sites. Specific site elevation is given in the legend. The cut-off 
for southern California and central and northern California is around Pt. Conception, all southern 
California stations are shown in the inset. 



 

 

 208 

 209 

Figure 4. Scaled time 𝑡∗ and scaled clear sky index 𝑘"∗ for Sc cloud days in August from 2003 to 2015 at 
Santa Rosa, CA. The average of the 𝑘"∗ for individual days (red line) are used to fit the exponential 
function (blue line). Negative 𝑘"∗ during the day indicates a decrease of 𝑘"  from sunrise. 

 

Table 1 Coefficients of the average of the fitted exponential function in Eq. (2) for central and northern 
California and southern California (black dashed lines in Figure 5) for different sunrise time. 

Location a b c 
Central and northern California 

(sunrise at 0600 PST) 0.003 5.959 0.022 
Central and northern California 

(sunrise at 0630 PST) 0.006 5.041 0.022 
Southern California 

(sunrise at 0530 PST) 0.005 5.238 0.014 



 

 

 

 
Figure 5. The fitted exponential function at each individual station and their average for central and 
northern (left) and southern California (right). The corresponding coefficients can be found in Table 1. 

2.4  Error metrics 210 

The error metrics used for validation are mean bias error (MBE), mean absolute error (MAE), and 211 
forecast skill (FS):  212 

 
𝑀𝐵𝐸 ≡

1
𝑁
I𝑥: − 𝑥:;5+
K

:LM

 (6) 

 
𝑀𝐴𝐸 ≡

1
𝑁
IO𝑥: − 𝑥:;5+O
K

:LM

	 
(7) 

 𝐹𝑆 ≡ 1 −
𝑀𝐴𝐸

𝑀𝐴𝐸R&(+,+"&:$&
	, (8) 

where  𝑥: is the nth forecast GHI, and 𝑥:;5+ is the nth observation GHI. To further quantify the skill of Sc 213 
line forecast, the FS defined by Coimbra et al. (2013) and modified by Yang and Kleissl (2016) is used to 214 
intercompare line forecasts against persistence forecasts. Positive values of FS indicate that line forecasts 215 
have a lower MAE than persistence forecasts. The maximum value of FS is 1. 216 

 217 

3. Data and Validation 218 
 219 
3.1 Elevation data 220 

Land elevation data are obtained from General Bathymetric Chart of the Oceans (GEBCO, 2017) at 30 221 
arc-second intervals (or approximately 1 km). At each time stamp, the land elevation at the cloud 222 
boundary is retrieved. Land points below the median cloud boundary elevation are assumed to be 223 
cloudy, and the median cloud boundary land elevation is assumed to be decreasing during the day. In 224 
other words, non-negative slope b in Eq. (1) are not considered, but such cases are limited to early 225 



 

 

morning, presumably because solar heating is still weaker than longwave cooling at large solar zenith 226 
angles, leading to initial increase in cloud cover and/or thickness (Akyurek and Kleissl, 2017). On most 227 
days, the elevation eventually drops to sea level, representing a complete clearing of Sc clouds for the 228 
coastal land area. Cloud boundaries over the ocean are ignored as the focus of this paper is solar 229 
irradiance forecast over the land. 230 

Further constraints on the domain are required to avoid assigning far inland points as cloudy because 231 
they have a land elevation below the median Sc cloud edge elevation. The topography of coastal 232 
California rises steeply near the coast, but then drops to near sea level across the coastal mountain range 233 
in the Central Valley and Imperial Valley. In reality, Sc clouds seldom penetrate that far inland as the 234 
mountain ranges act as barriers to the airmasses that support Sc clouds. The inland valleys represent arid 235 
climates and are mostly clear throughout the summer. To constrain the domain to areas where Sc clouds 236 
commonly occur, we filter the points using the 20 year summertime California coastal low cloudiness 237 
dataset from Clemesha et al. (2016). Land points with no low cloud occurrence in the 20-year low cloud 238 
dataset are removed from the cloud mask. Doing so also assures that the extrapolation of boundary 239 
elevation will not include land points with the same land elevation but too far inland (e.g. a land point 240 
can be at sea level but located a few hundred kilometers away from the coast). The final coastal domain 241 
is can be seen in Figure 6.  242 

 243 

Figure 6. California coastal low cloudiness (Clemesha et al., 2016) occurrence is averaged between 0600 
to 0800 PST over 20-year for June in southern California and August for central and northern California. 

 244 

3.2 GOES data and cloud edge retrieval 245 

GOES-15 Imager measurements in the visible channel at 1 km resolution are obtained from National 246 
Oceanic and Atmospheric Administration (NOAA) Comprehensive Large Array-Data Stewardship System 247 
(CLASS). Images are captured every 15 minutes. During the daytime hours, images are missing at 1515, 248 



 

 

1015, 1245, and 1315 PST. A post-launch calibration developed at NOAA’s National Environmental 249 
Satellite, Data, and Information Services (NESDIS, 2017) is applied to the images to account for sensor 250 
degradation. 251 

To retrieve clouds from the satellite images, a clear sky or background reflectance is determined by 252 
sorting the reflectance from all images at each month and hour and selecting the minimum reflectance 253 
at each pixel (Iacobellis and Cayan, 2013). Instead of using the preceding one month of data (~30 images) 254 
as was the case in Iacobellis and Cayan (2013), we use the preceding three months of data (~90 images) 255 
because it yields a better cloud detection. This method assumes that there is at least one clear day 256 
during the three-month window. After obtaining clear sky reflectance for every pixel, a binary cloud 257 
mask is turned on every time the pixel reflectance exceeds its clear sky reflectance by 15.5% (Clemesha 258 
et al., 2016). Once the cloud mask at each time stamp is determined, the longest consecutive contour 259 
line is extracted as the Sc eastern boundary.  260 

 261 

3.3 Location and time period for the case studies 262 

As mentioned in Section 2.3, June and August are the peak months of southern and northern California 263 
coastal low clouds. Therefore, the month of June and August 2016 are chosen for southern California 264 
and central and northern California for validation, respectively.  We quantify days with Sc cloud coverage 265 
using the following approach: (1) For the first visible image of the day, at least 10 % of cloud coverage in 266 
the coastal low cloudiness product are present over land in each domain. (2) Use the corresponding 267 
thermal infrared image at 10.7 µm to compute scene temperature (i.e. cloud top temperature) following 268 
Weinreb and Han (2011). Since Sc clouds are low and have relatively uniform cloud top height, the 269 
variation in cloud top temperature in the coastal domain is used to exclude days with significant amount 270 
of high clouds. After threshold testing, a standard deviation in cloud temperature of 3 % (about 8 K) 271 
among the cloudy pixels is chosen. Days with scene temperature standard deviation greater than 3 % are 272 
removed. While the standard deviation thresholding removes days with significant multi-level clouds (i.e. 273 
both low and high clouds are in the domain), there are some days when the proportion of high clouds is 274 
too small to raise the standard deviation above 3%. These days are kept in the dataset, but to avoid 275 
misclassifying the cloud edge elevation, land elevation at pixels with scene temperature lower than 280 276 
K are removed. A flowchart of when the line forecast should be used is shown in Figure 7. 277 

 278 

Figure 7. Flowchart of line forecast criteria.  



 

 

For southern California, a total of 19 days passed (June 1 to 9, 11 to 15, 23 to 25, and 29 to 30) the 279 
threshold tests.  For central and northern California, a total of 25 days passed (August 1 to 28, excluding 280 
August 18, 19, and 22). 281 

3.4 Validation 282 

3.4.1 Validation sites 283 
For the central and northern California case study, seven cities ranging from as far north as Eureka to as 284 
far south as San Luis Obispo are chosen as validation sites. Their locations and elevations are tabulated in 285 
Table 2. The sites are carefully chosen to represent the different challenges in forecasting Sc clouds in 286 
different regions.  287 

For the southern California case study with a focus in the greater San Diego area, four sites along a line 288 
from coastal to inland are chosen. These four sites are part of the San Diego Gas & Electric (SDGE) 289 
weather station network with LI-COR LI200 pyranometers measuring global horizontal irradiance (GHI) at 290 
5-minute resolution.  Their locations and elevations are tabulated in Table 3. A map of all 11 validation 291 
sites is shown earlier in Figure 3. 292 

Table 2 
Summary of validation sites in central and northern California. Median Sc burn-off time is obtained from 
20 August months (1996 — 2015) using the coastal low cloudiness product at half hour time resolution.  

Station Eureka Santa 
Rosa 

San 
Francisco 

Saratoga Salinas 
Valley 

San Luis 
Obispo 

Monterey 

Latitude [⁰] 40.798 38.447 37.752 37.262 36.427 35.283 36.583 

Longitude [⁰] -124.163 -122.709 -122.477 -122.013 -121.322 -120.653 -121.906 

Elevation [m 
MSL] 

13 59 82 141 77 127 114 

Median Sc 
burn-off time 
[HHMM PST] 

1130 0930 1230 0800 0900 0830 1130 

 

Table 3 
Summary of validation sites in southern California. Median Sc burn-off time is obtained from 20 June 
months (1996 — 2015) using the coastal low cloudiness product at half hour time resolution. 

Station Solana 
Beach 

Rancho 
Santa Fe 

Escondido Lake 
Wohlford 

Latitude [⁰] 33.007 33.033 33.159 33.178 

Longitude [⁰] -117.276 -117.189 -117.031 -116.995 

Elevation [m MSL] 1 86 252 491 



 

 

Median Sc burn-off time 
[HHMM PST] 

0900 0830 0800 0800 

3.4.2 Satellite solar resource data 293 

Clean Power Research’s SolarAnywhere (2017) data utilizes GOES images to output solar irradiance by 294 
modulating a clear sky irradiance model (Perez et al., 2002). For June 2016, SolarAnywhere data are 295 
validated against the SDGE weather stations, with an average hourly MBE of 18 W m-2, MAE of 30 W m-2, 296 
and RMSE of 57 W m-2. Jamaly and Kleissl (2012) also validated SolarAnywhere data against 52 California 297 
Irrigation Management Information System (CIMIS) ground sensors and found similar results— an 298 
average hourly MBE of 19 W m-2, MAE of 46 W m-2, and RMSE of 65 W m-2 over the year 2010. Since the 299 
accuracy is comparable to that of a typical ground sensor, accurate under typical conditions to ±5 % 300 
(CIMIS, n.d.), SolarAnywhere data will be used as observations for validation hereinafter. SolarAnywhere 301 
data at 2 km spatial resolution and 30-minute temporal resolution are retrieved for the 11 validation 302 
sites. 303 

3.4.3 Satellite cloud motion vector and persistence forecast 304 

For reference, hourly satellite CMV data (Perez et al., 2010) from 1-hour to 5-hour ahead derived from 305 
GOES images are computed for the 11 validation sites. For the 7 sites in central and northern California, 306 
data are available for 1—31 August 2016. For the 4 sites in southern California, data are only available 307 
for 5—15 June 2016. The (smart) persistence forecast uses the clear sky index (𝑘") from SolarAnywhere 308 
satellite measurements at forecast issue time and assumes fixed 𝑘"  out to 5-hour ahead.  309 
 310 

4. Results and Discussion 312 
 313 

4.1 Validation of assumptions 314 
Two assumptions described in Section 2.1 are tested here. If the Sc boundary elevation decreases at a 315 
constant rate, then a linear least-square regression through the elevation points should have a 316 
coefficient of determination (r2) that is close to 1. For each validation day, boundary elevation derived 317 
from GOES images between 0630 to 1230 PST (~23 images) as shown in Figure 8 are used to fit a linear 318 
least-square regression, and the r2 is recorded. A detailed summary of each validation day can be found 319 
in Table 4. The average r2 for the 43 validation days is 0.86, indicating that the slope of boundary 320 
elevation is nearly constant. If the boundary does not advance towards the coast and moves around the 321 
inland area throughout the day, low r2 is found such as on June 11. Since the median boundary elevation 322 
is consistently higher than zero for this particular day, the least-square regression would suggest a burn-323 
off time that is days away from the forecast issue time. As a result, the line forecast acts like a persistent 324 
forecast with only a slight increase in 𝑘"  for the day.  325 
 326 
To verify that morning 𝑘"  exponentially increases to clear sky when the clouds dissipate, the exponential 327 
function with coefficients in Table 1 is applied to SolarAnywhere data during June and August 2016. 328 
Cloud dissipation time is defined as the first time after sunrise when SolarAnywhere 𝑘"  is greater than 329 
0.8. The average of the fitted exponential line is shown in Figure 9, and the hourly 𝑘"  MAE is tabulated in 330 
Table 5. Note that this analysis is not a forecast since cloud dissipation time is known. Smaller 𝑘"  MAE 331 
are found at inland stations, while stations in the immediate coast have larger errors (e.g. Solana Beach, 332 
San Francisco, and Monterey). The larger errors are due to ambiguous cloud dissipation time or clouds 333 
persisting for the whole day. For example, 𝑘"  decreases after the first clear point at San Francisco in 334 
Figure 9b, and the fitted exponential function is unable to capture any decreasing trend. Similar issues 335 
occur in Monterey. All inland stations have hourly 𝑘"  MAE less than 0.1, with Lake Wohlford and 336 



 

 

Saratoga having the minimum MAE at 0.03. Overall, the exponentially fitted curve are representative for 337 
most validation stations. 338 

 339 
 340 

 341 
Figure 8. Time series of median cloud edge elevation for 19 days from June, 2016 in a) and 25 days from 
August, 2016 in b). The median edge elevation is shown in red The cloud edge is detected using GOES 
data, and the median elevation is obtained from GEBCO. 

Table 4 
Coefficient of determination for the linear least-square regression through the Sc boundary elevation 
between 0630 for southern California or 0700 for central and northern California and 1230 PST (or until 
the land is clear, whichever is earlier). Note that June 2016 is for southern California and August 2016 is 
for central and northern California.  

 342 
 343 

Date r2 Date r2 Date r2 Date r2 Date R- r2 

1-Jun 0.93 12-Jun 0.91 1-Aug 0.93 11-Aug 0.91 24-Aug 0.83 

2-Jun 1.00 13-Jun 0.87 2-Aug 0.88 12-Aug 0.95 25-Aug 0.94 

3-Jun 0.69 14-Jun 0.97 3-Aug 0.62 13-Aug 0.76 26-Aug 0.97 

4-Jun 0.83 15-Jun 0.90 4-Aug 0.95 14-Aug 0.88 27-Aug 0.98 

5-Jun 0.93 23-Jun 0.94 5-Aug 0.97 15-Aug 0.93 28-Aug 0.86 

6-Jun 0.88 24-Jun 0.51 6-Aug 0.92 16-Aug 0.92 Average 0.86 

7-Jun 0.95 25-Jun 0.59 7-Aug 0.95 17-Aug 0.86 
  

8-Jun 0.75 29-Jun 0.97 8-Aug 0.98 20-Aug 0.97 
  

9-Jun 0.96 30-Jun 0.80 9-Aug 0.87 21-Aug 0.89 
  

11-Jun 0.30 
  

10-Aug 0.94 23-Aug 0.77 
  



 

 

 344 
Figure 9. Time series of 30-minute instantaneous 𝑘"  from SolarAnywhere averaged over all days with 
known valid cloud dissipation time (i.e. 𝑘"  is greater than 0.8). Depending on the station, there are 
approximately 25 days for (a) and (b) and 19 days for (c); days where 𝑘"  never exceeds 0.8 are removed. 
Solid lines are actual SolarAnywhere averages, and dashed lines are the averaged exponential fits using 
the coefficients in Table 1. Note that these are hindcasts with known dissipation time to illustrate the 
exponential fit function. A breakdown of the number of days when clouds did not dissipate is shown in 
Table 6.  

 

 

 

 

 

 

 

 

 

 



 

 

Table 5. Hourly MAE 𝑘"  for the exponentially fitted 𝑘"  against actual SolarAnywhere 𝑘"  data at all 
validation stations. The fitted 𝑘"  is generated with known dissipation time as the first point where 
SolarAnywhere kt > 0.8. 

Station MAE 𝑘"  [-] 
Solana Beach 0.13 

Rancho Santa Fe 0.06 
Escondido 0.04 

Lake Wohlford 0.04 
Santa Rosa 0.01 
Saratoga 0.02 

Salinas Valley 0.06 
San Luis Obispo 0.06 

Eureka 0.04 
San Francisco 0.17 

Monterey 0.12 

Table 6. Number of days when clouds did not dissipate (i.e., persisting days) in southern California in 
June 2016 and central and northern California in August 2016. 

Station Persisting days [-] 
Number of days 

considered in Figure 9 [-] 
Solana Beach 6 19 

Rancho Santa Fe 1 19 

Escondido 1 19 

Lake Wohlford 1 19 

Santa Rosa 0 25 

Saratoga 0 25 

Salinas Valley 0 25 

San Luis Obispo 0 25 

Eureka 2 25 

San Francisco 3 25 

Monterey 7 25 

 

4.2 Validation against satellite observations 345 
 346 
4.2.1 Southern California 347 
Time series of hourly-averaged GHI from June 5 to 15, 2016 are shown in Figure 10 for forecasts issued 348 
from 0700 to 1000 PST. Forecasts issued after 1100 PST are not of interest as clouds have already 349 
dissipated on most days and the line forecast would coincide with persistence forecast with a clear sky 350 
index of 1. SolarAnywhere GHI shows that Sc clouds tend to stay longer at the coastal site where land 351 
elevation is lower. This is consistent with the assumption that Sc eastern boundary moves towards the 352 
coast during the day, and the average land elevation of the boundary decreases. 353 



 

 

 354 
MBE, MAE, and FS are shown in Figure 11. The line forecast consistently performs better than satellite 355 
CMV and persistence for all forecast horizon and forecast issue times at Rancho Santa Fe, Escondido, and 356 
Lake Wohlford. For Solana Beach, the line forecast is superior to persistence forecast but slightly worse 357 
than satellite CMV. The line forecast has the lowest forecast skill for forecast issued at 0700 PST. This is 358 
likely because only three visible GOES images are available at the time of the forecast issuance. In 359 
addition, the dissipation often happens several hours after sunrise as seen in Table 2 and Table 3, making 360 
it difficult to forecast the burn-off time several hours ahead. With later forecast issue times, more images 361 
are available and the prediction of burn-off time becomes more accurate. Persistence forecasts have the 362 
worst error statistics since Sc clouds are present at the forecast issue time, fixing the clear sky index at 363 
the forecast issue time results in under-prediction of irradiance. While satellite CMV forecasts out-364 
perform persistence at all four sites, CMV forecasts under-predict the irradiance. Since Sc clouds do not 365 
follow the direction of the synoptic winds, the assumption of CMV breaks down and results in a cloudy 366 
bias.   367 

 368 
Figure 10: Hourly average of forecasted and satellite observed GHI for all days at Solana Beach, Rancho 
Santa Fe, Escondido, and Lake Wohlford. Each column represents a different forecast issue time. Note 
that each circle indicates the irradiance instantaneously at the hour, with the first circle corresponding to 
the real-time measured data, the second circle being the 1-hour ahead forecast, and the sixth circle 
being the 5-hour ahead forecast. 



 

 

 

Figure 11: Averaged MBE, MAE, and FS for forecast horizons between 1 to 5-hour ahead for all 19 days at 
Solana Beach, Rancho Santa Fe, Escondido, and Lake Wohlford. 

 369 
The coastal topography of San Diego is predominantly north-south oriented, with increasing land 370 
elevation from the coast to inland. This simple topographic elevation distribution favors line forecasts 371 
because it provides for more consistent meteorological conditions across the forecast domain. For 372 
example, (i) absorbed surface irradiance and resulting heating rates are similar due to consistent surface 373 
type, (ii) advection is similar due to homogeneous pressure gradients and surface roughness, (iii) 374 
microscale meteorological distortions such as local slope flows are avoided, (iv) a straight cloud edge 375 
provides for more consistent cloud edge erosion as detailed in the next paragraph. This consistency 376 
supports the line forecast assumptions of homogeneous land elevation at the cloud edge and 377 
homogeneous rate of change of land elevation at the cloud edge. 378 
 379 
Horizontal entrainment of dry air at the cloud edge also plays an important role in the westward 380 
movement of the edge. Crosbie et al. (2016) found that the horizontal entrainment at the interface 381 
between clear skies and the cloud edge produces evaporatively cooled downdrafts and accelerates the 382 
erosion of the cloud edge. In southern California, the cloud edge is relatively straight (north-south) 383 
because of the distribution of land elevation. Therefore, horizontal entrainment does not produce as 384 
much inhomogeneous mixing as would be the case if the cloud edge was curved and the clear region 385 
was not just on one side of the edge. Because of relatively homogeneous lateral mixing and dominant Sc 386 
dissipation due to solar heating, the line forecast exhibits significant error reductions compared to 387 
persistence and satellite CMV forecasts in southern California. 388 
 389 
4.2.2 Central and northern California 390 
The time series of hourly-averaged GHI from the 25 valid days in August 2016 is shown in Figure 12. 391 



 

 

MBE, MAE, and FS are shown in Figure 13. The line forecast performs better than persistence forecast at 392 
5 out of 7 sites, and the number drops to 4 when compared to satellite CMV forecast. Unlike the four 393 
sites in southern California (Figure 10), more complex terrain makes forecasting the dissipation time of 394 
Sc clouds using the line forecast method difficult likely because of cold ocean advection and 395 
inhomogeneous horizontal entrainment between the clear and cloudy edge. For Santa Rosa, Saratoga, 396 
Salinas Valley, and San Luis Obispo, the line forecast exhibits a similar FS as for the sites in southern 397 
California, outperforming the persistence and CMV forecasts over all forecast horizon and forecast issue 398 
times. Since these four sites are located away from the immediate coast, solar heating is likely the 399 
dominant factor that controls the burn-off time.  400 
 401 
SolarAnywhere GHI in Figure 9 indicates that Sc clouds often persist for the whole day at San Francisco 402 
and Monterey. Among the four sites in central and northern California where Sc clouds dissipate before 403 
noon, it can be seen from the area between SolarAnywhere GHI and clear sky GHI curve (Figure 12) that 404 
Saratoga is the least cloudy station. Saratoga also has the highest land elevation among these four sites. 405 
Stations in the immediate coast have larger errors (e.g. San Francisco, Monterey) due to ambiguous 406 
cloud dissipation time or clouds persisting for the whole day. This phenomenon happens more 407 
frequently in the immediate coast as cold advection from the ocean has a greater impact in this region. 408 
Ocean advection has smaller impact further inland as the coastal land acts as a barrier for the advection. 409 
In some cases, mountain ranges act as a coastal land barrier between the ocean and the station, making 410 
it very difficult for clouds to come back after the initial dissipation. For example, the Santa Cruz 411 
mountains are located immediately to the west of Saratoga. As a result, it is unusual for ocean advection 412 
to have a strong impact at Saratoga, and clear sky is expected after the initial burn-off of Sc cloud deck. 413 
Wind direction and coastline orientation also influence whether clouds would come back. The line 414 
forecast is expected to perform better at stations outside of the immediate coast as good agreements 415 
between fitted 𝑘"  and dissipation time are found in Figure 9. In practice, the performance of the line 416 
forecast depends on the accuracy of forecasted cloud dissipation time. Figure 9 indicates the best-case 417 
scenario of the line forecast (i.e. with known cloud dissipation time). 418 
 419 
In complex terrain, many different factors also control the dissipation time. Torregrosa et al. (2016) 420 
found that besides land elevation, terrain features placement relative to wind direction and length of 421 
terrain feature are important factors controlling Sc cloud coverage. For example, low-lying gaps at Salinas 422 
Valley promote inland incursions of Sc clouds. Leeward coastlines (SW-S) are less cloudy than windward 423 
(W-NW) coastlines. This is the reason Eureka is cloudier than a station to the south where the coastline 424 
changes direction from NW to SW (e.g. Mendocino, located about 150 km south of Eureka) even if both 425 
locations have the same land elevation. While taking the median land elevation of the boundary would 426 
have falsely flagged places like Mendocino as cloudy, the way the line forecast predicts future 𝑘"  427 
automatically corrects these points to clear. However, the line forecast is unable to correct the points 428 
that are falsely flagged as clear. This is evident in San Francisco and Monterey (Figure 12) where the line 429 
forecast over-predicts irradiance. In fact, satellite CMV forecasts perform better than the line forecast 430 
and persistence at these two locations. During the morning forecast issue time, the satellite CMV does 431 
not detect movement of Sc clouds, and no cloud advection is being forecasted at the coastal stations. 432 
This is the reason satellite CMV forecast behaves similarly to persistence, except that the persistence 433 
forecast often suffers from using a fixed single 𝑘"  at forecast issue time while CMV averages 𝑘"  from 434 
previous times.  435 
 436 

 

 



 

 

 
Figure 12: Hourly average of forecasted and satellite observed GHI for August 2016 at seven locations in 
central and northern California. Each column represents a different forecast issue time. 



 

 

 
Figure 13: Hourly averaged MBE, MAE, and FS for forecast horizon between 1 to 5-hour ahead from 
August, 2016 at 7 sites in central and northern California. 

4.3 Geographical error distribution   437 
To exhaustively quantify the usefulness of the line forecast, hourly SolarAnywhere GHI data at a 438 
horizontal resolution of 2 km is analyzed. Figure 14 is a spatial map of the line forecast FS averaged over 439 
all forecasts issued at 0800 PST in southern California, averaged across all forecast horizons, and Figure 440 
15 is for all forecasts issued at 0800 PST in central and northern California. Note that FS has a maximum 441 
of 1, and a positive value of FS represents an improvement over persistence forecast.  442 
 443 
For southern California, positive FS is found almost everywhere in the domain, making the line forecast a 444 
competitive forecast during Sc days. The slightly negative FS around Santa Ana Mountains (33.7⁰N, 445 
117.5⁰W) is associated with its high land elevation. Land elevation is often higher than the inversion base 446 
height in this area, making it hard for Sc clouds to form (an example can be seen in Figure 1).For central 447 
and northern California, positive FS are found in regions slightly away from the coast, while negative FS 448 
are found in the immediate coast. Areas of negative FS vary along the coastline. The most negative FS is 449 
found along the coast of Monterey Bay— a region with an abundant coverage of low clouds (Clemesha 450 
et al., 2016; Torregrosa et al., 2016). Although FS is negative at the San Francisco station chosen in 451 
Section 3.4.1, a gradient of FS can be seen near the San Francisco Bay. FS becomes positive about 20 km 452 
south of the chosen San Francisco station, including San Francisco International Airport where Sc clouds 453 



 

 

often hinder the use of parallel runway due to low visibility. The spatial distribution of FS suggests the 454 
use of different forecast systems in different regions. Specific local forecast models based on machine 455 
learning and NWP may be more skilled at forecasting Sc cloud lifetime at the immediate coast where 456 
clouds tend to persist for the whole day and the line forecast FS are negative. Away from the coast 457 
where Sc clouds dissipate during the day and the line forecast FS are positive, the line forecast should be 458 
used to forecast GHI. 459 
 460 

 461 
Figure 14. Left: Forecast skill of line forecasts issued at 8 am PST, averaged over 1 to 5-hour ahead for 19 
days in June 2016 for southern California. Right: Satellite derived 𝑘"  averaged between 7 to 10 PST for 19 
days in June 2016. 



 

 

 462 
Figure 15. Forecast skill of line forecasts issued at 8 PST, averaged over 1 to 5-hour ahead for 25 days in 
August 2016 for central and northern California. Right: Satellite derived 𝑘"  averaged between 7 to 10 PST 
for 25 days in August 2016. 

 463 
5. Conclusions  464 

 465 
A Sc line forecast using GOES images is proposed and implemented in coastal California to improve the 466 
prediction of cloud dissipation time for forecast horizons between 1—5 hours ahead. The land elevation 467 
under the inland boundary of Sc clouds is used to track the cloud boundary and extrapolate it forward in 468 
time. This method assumes that solar heating is the main factor controlling the dissipation of Sc clouds 469 
during the day, and a decrease in median land elevation at the boundary after sunrise is expected. This is 470 
because a strong temperature inversion marks the cloud top height, a lower land elevation means a 471 
larger mass of air above ground, and more heat is required to become cloud-free. Validation against 472 
satellite solar resource data shows that the line forecast consistently outperforms the persistence 473 
forecast at 9 out of 11 stations. In addition, the line forecast outperforms satellite CMV forecast at 7 out 474 
of 11 stations. Supplementary validation at 2 km spatial resolution using the same satellite solar 475 
resource data shows superior performance to persistence forecasts in most places aside from the 476 
immediate coast where Sc clouds may persist for the whole day.  477 
 478 
Geographically, the line forecast shows higher forecast skills in southern California than central and 479 
northern California. The coastal topography likely plays an important role in the discrepancy in forecast 480 
skills (e.g. the simple topographic elevation distribution in San Diego favors the line forecast as it has 481 
more consistent meteorological conditions across the forecast domain). The lack of forecast skill in the 482 
immediate coast and the sharp gradient of dissipation time within a few kilometers of the coast suggest 483 
that at the immediate coast local processes are important in determining when the clouds dissipate. 484 
While satellite CMV forecast performs the best in the immediate coast, it is unable to predict the days 485 



 

 

when the clouds do dissipate. Improved Sc forecasting is important because of its broad applications 486 
such as better management of the grid for the utilities and better planning for the aviation industry. 487 
Future work will focus on understanding factors controlling whether Sc clouds would dissipate during the 488 
day in the immediate coast.   489 
 490 
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