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Abstract In this paper, we introduce the use of interacting particle systems in the
computation of probabilities of simultaneous defaults in large credit portfolios. The
method can be applied to compute small historical as well as risk-neutral probabili-
ties. It only requires that the model be based on a background Markov chain for which
a simulation algorithm is available. We use the strategy developed by Del Moral and
Garnier in (Ann. Appl. Probab. 15:2496–2534, 2005) for the estimation of random
walk rare events probabilities. For the purpose of illustration, we consider a discrete-
time version of a first passage model for default. We use a structural model with
stochastic volatility, and we demonstrate the efficiency of our method in situations
where importance sampling is not possible or numerically unstable.
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1 Introduction

The past few years have seen an explosion in the credit markets. Subsequently, the
field of credit risk and credit derivatives research has substantially increased. As the
credit derivative products have grown in complexity, so has the need for fast and
accurate numerical methods to reliably value derivatives and quantify their risks.

In this paper, we follow the interacting particle system approach of [5], and we
adapt it to the computation of loss probabilities for large credit portfolios. Our inter-
est in this problem is motivated by the uncontrolled growth of the market of colla-
terized debt obligations (CDOs) and the lack of understanding of the risk profiles of
some of these structures. Typically, a CDO is a complex derivative that pools together
different loans (N = 125 is the size of a typical pool), and sells exposure to different
default levels of the portfolio, the so-called tranches. The trenching of the default risk
makes it possible to create derivatives with high ratings, concentrating the default risk
on the riskier lower tranches first hit by the defaults in the portfolio. Moreover, the
segmentation of the risk enables the buyer to tailor the purchase to her risk appetite.
Both features were important factors in the sudden growth of the CDO market.

The main difficulty in pricing CDOs is the high-dimensional nature of the prob-
lem. To accurately price CDO tranches, the joint distribution of the defaults is needed.
Moreover, even if this joint distribution were to be found explicitly, there would be
no guarantee that the values of the expectations needed to compute tranche spreads
could be found analytically. One has to rely on numerical schemes. Due to the high-
dimensional nature of the problem, partial differential equations based methods are
ruled out and Monte Carlo methods are heavily relied upon.

Calibration of the parameters of a model is indeed an extremely difficult prob-
lem requiring the evaluation of the pricing algorithm at many points in the parameter
space in order to optimize an error function. In practice, this is done by using super-
computer clusters. This aspect of the problem is not addressed in the present paper,
and we focus only on the innermost loop which is the pricing algorithm when the
parameters of the model are given.

While Monte Carlo methods are easy to implement, even in high dimensions, they
do suffer from slow convergence. In addition, due to the rare nature of multiple de-
faults, the computational problem is exacerbated since many Monte Carlo simula-
tions are needed to observe occurrences of the joint default of many names. There-
fore, variance reduction and efficiency become very important for these Monte Carlo
computations.

The main variance reduction technique used in Monte Carlo computations is im-
portance sampling. There have been many successful applications of importance sam-
pling in credit risk [1, 10]. However, most authors have concentrated on multi-factor
Gaussian copula models or reduced-form models, and the main difficulty with imple-
menting importance sampling remains computing the change of measure under which
random variables need to be simulated. More information about importance sampling
and its inherent shortcomings can be found in [9] and the references therein.

The use of Feynman–Kac path measures and their subsequent interacting particle
systems implementations may have their origin in the development of particle meth-
ods in stochastic filtering. Despite the difficulties in turning computational algorithms
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into rigorous mathematical theorems, the remarkable successes of the method in sit-
uations where linear techniques failed miserably granted credibility and popularity to
interacting particle systems (IPS for short). In [5], Del Moral and Garnier used a gen-
eral IPS algorithm for the computation of probabilities of rare events, and illustrated
the potential of their algorithm with the detailed analysis of random walk tail events.

In this paper we are concerned with first passage models where it is impractical,
if not impossible, to compute explicitly a reasonable importance sampling change of
measure explicitly. Examples of such situation abound, e.g. regime switching models
with many factors. For the sake of illustration, we choose to work with a first passage
model with stochastic volatility. In [6], it is shown that introducing stochastic volatil-
ity at different time scales produces realistic yields at short maturities for single-name
credit default swaps. A generalization to the multi-name case is presented in [7]. Ex-
plicit importance sampling is not an option in this case. Indeed, desirable changes of
measure favoring sample paths realizing rare events are highly unlikely to lead to an
explicit formula. Moreover, standard changes of measure à la Girsanov require the
volatility to appear in the denominator of the integrands of stochastic integrals that
need to be evaluated by numerical approximation methods, creating instabilities when
the volatility approaches zero. This happens quite often for the square-root diffusion
which we choose as a model for the stochastic volatility.

Already several papers [3, 8] appeared after the first version of this paper was
first circulated. They show the strength of IPS-based Monte Carlo computations of
small default probabilities, especially when other methods fail. The interested reader
is referred to [3] for a systematic comparison with importance sampling.

The rest of the paper is organized as follows. Section 2 gives an overview of
Feynman–Kac measures on genealogical path spaces and the associated IPS inter-
pretation. Section 3 discusses the loss process model for large credit portfolios that
we chose for the purpose of illustration. It is a discretized version of the standard first
passage model of the structural approach. We provide the algorithm and describe in
detail its implementation in the case of our stochastic volatility first passage struc-
tural model. Finally, Sect. 4 discusses the numerical results obtained using IPS. We
gather theoretical and numerical results, including a precise variance analysis, for the
single-name case in the Appendix at the end of the paper.

2 Markov chains, Monte Carlo and IPS

For the sake of completeness, we provide a quick overview of IPS inspired by the
presentation in [5], and we sprinkle our exposé with intuitive comments intended to
shed light on the characteristics of the IPS approach specific to the computation of
small probabilities.

Particle methods depend upon the existence of a background Markov chain which
we denote X = {Xn}n≥0. This chain is not assumed to be time homogeneous. In
fact, the random element Xn takes values in some measurable state space (En, En)

that can change with n. We denote by Kn(xn−1, dxn) the Markov transition kernels.
Throughout the paper, for any measurable space (E, E ) we denote by Bb(E) the
space of bounded, measurable functions.
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2.1 Feynman–Kac path expectations

We denote by Yn the history of Xn as defined by

Yn := (X0, . . . ,Xn) ∈ Fn := (E0 × · · · × En) , n ≥ 0.

{Yn}n≥0 is itself a Markov chain and we denote by Mn(yn−1, dyn) its transition ker-
nel. For each n ≥ 0, we choose a multiplicative potential function Gn defined on Fn

and we define the Feynman–Kac expectations by

γn(fn) = E

[
fn(Yn)

∏
1≤p<n

Gk(Yp)

]
.

We denote by ηn(·) the corresponding normalized measure defined as

ηn(fn) = E[fn(Yn)
∏

1≤k<n Gk(Yk)]
E[∏1≤k<n Gk(Yk)] = γn(fn)/γn(1).

A very important observation is that

γn+1(1) = γn(Gn) = ηn(Gn)γn(1) =
n∏

p=1

ηp(Gp).

Therefore, given any bounded measurable function fn on Fn, we have

γn(fn) = ηn(fn)
∏

1≤p<n

ηp(Gp).

Using the notation G−
p = 1/Gp for the reciprocal of the multiplicative potential func-

tion and the above definitions of γn and ηn we see that

E
[
fn(Yn)

] = E

[
fn(Yn)

∏
1≤p<n

G−
p (Yp) ×

∏
1≤p<n

Gp(Yp)

]

= γn

(
fn

∏
1≤p<n

G−
p

)

= ηn

(
fn

∏
1≤p<n

G−
p

) ∏
1≤p<n

ηp(Gp). (2.1)

Finally, one can check by inspection that the measures (ηn)n≥1 satisfy the nonlinear
recursive equation

ηn = Φn(ηn−1) :=
∫

Fn−1

ηn−1(dyn−1)
Gn−1(yn−1)

ηn−1(Gn−1)
Mn(yn−1, ·),

starting from η1 = M1(x0, ·). This dynamical equation on the space of measures
is known as Stettner’s equation in filtering theory. We state it to justify the selec-
tion/mutation decomposition of each step of the particle algorithm introduced below.
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2.2 IPS interpretation and Monte Carlo algorithm

Motivated by the above definitions and results, we introduce a very natural interact-
ing path-particle system. For a given integer M , using the transformations Φn, we
construct a Markov chain {ξn}n≥0 whose state ξn = (ξ

j
n )1≤j≤M at time n can be in-

terpreted as a set of M Monte Carlo samples of path-particles,

ξ
j
n = (

ξ
j

0,n, ξ
j

1,n, . . . , ξ
j
n,n

) ∈ Fn = (E0 × · · · × En).

The transition mechanism of this Markov chain can be described as follows. We start
with an initial configuration ξ1 = (ξ

j

1 )1≤j≤M that consists of M independent and
identically distributed random variables with distribution

η1
(
d(y0, y1)

) = M1
(
x0, d(y0, y1)

) = δx0(dy0)K1(y0, dy1),

i.e., ξ
j

1 := (ξ
j

0,1, ξ
j

1,1) = (x0, ξ
j

1,1) ∈ F1 = (E0 × E1) where the ξ
j

1,1 are drawn inde-
pendently of each other from the distribution K1(x0, · ). Then, the one-step transition
taking ξn−1 ∈ FM

n−1 into ξn ∈ FM
n is given by a random draw from the distribution

P
{
ξn ∈ d

(
y1
n, . . . , yM

n

)|ξn−1
} =

M∏
j=1

Φn

(
m(ξn−1)

)(
dy

j
n

)
, (2.2)

where the notation m(ξn−1) is used for the empirical distribution of the ξ
j

n−1, i.e.,

m(ξn−1) := 1

M

M∑
j=1

δ
ξ

j
n−1

.

From the definition of Φn, one can see that (2.2) is the superposition of a selection
procedure followed by a mutation given by the transition of the original Markov
chain. More precisely,

ξn−1 ∈ FM
n−1

selection−→ ξ̂n−1 ∈ FM
n−1

mutation−→ ξn ∈ FM
n ,

where the selection stage is performed by choosing randomly and independently M

path-particles

ξ̂
j

n−1 = (
ξ̂

j

0,n−1, ξ̂
j

1,n−1, . . . , ξ̂
j

n−1,n−1

) ∈ Fn−1,

according to the Boltzmann–Gibbs measure

M∑
j=1

Gn−1(ξ
j

0,n−1, . . . , ξ
j

n−1,n−1)∑M
k=1 Gn−1(ξ

k
0,n−1, . . . , ξ

k
n−1,n−1)

δ
(ξ

j
0,n−1,...,ξ

j
n−1,n−1)

, (2.3)

and for the mutation stage, each selected path-particle ξ̂
j

n−1 is extended via

ξ
j
n = (

ξ̂
j

n−1, ξ
j
n,n

) = ((
ξ̂

j

0,n−1, . . . , ξ̂
j

n−1,n−1

)
, ξ

j
n,n

) ∈ Fn = Fn−1 × En,
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where ξ
j
n,n is a random variable with distribution Kn(ξ̂

j

n−1,n−1, · ). In other words,
the transition step is a mere extension of the path-particle with an element drawn at
random using the transition kernel Kn of the original Markov chain. All of the mu-
tations are performed independently. But most importantly, all these mutations are
happening with the original transition distribution of the chain. This is in sharp con-
trast with importance sampling where the Monte Carlo transitions are from twisted
transition distributions obtained from a Girsanov-like change of measure. So from
a practical point of view, a black box providing random samples from the original
chain transition distribution is enough for the implementation of the IPS algorithm:
no need to know the details of such a generation.

A result of [4] reproduced in [5] states that for each fixed time n, the empirical
historical path measure

ηM
n := m(ξn) = 1

M

M∑
j=1

δ
(ξ

j
0,n,ξ

j
1,n,...,ξ

j
n,n)

converges in distribution, as M → ∞, toward the normalized Feynman–Kac mea-
sure ηn. Moreover, there are several propagation of chaos estimates that ensure that
(ξ

j

0,n, ξ
j

1,n, . . . , ξ
j
n,n) are asymptotically independent and identically distributed with

distribution ηn [4]. This justifies for each measurable function f̃n on Fn the choice of

γ M
n (f̃n) = ηM

n (f̃n)
∏

1≤p<n

ηM
p (Gp)

for a particle approximation of the expectation γn(f̃n). The main properties of the
particle approximation γ M

n are stated in the following lemma whose statement is
borrowed from [5].

Lemma 2.1 ([5]) Under the assumption

sup
(yn,ȳn)∈F 2

n

Gn(yn)/Gn(ȳn) < ∞,

γ M
n is an unbiased estimator for γn, in the sense that for any p ≥ 1 and f̃n ∈ Bb(Fn)

with ‖f̃n‖ ≤ 1, we have

E
[
γ M
n (f̃n)

] = γn(f̃n),

and in addition

sup
M≥1

√
ME

[∣∣γ M
n (f̃n) − γn(f̃n)

∣∣p]1/p ≤ cp(n)

for some constant cp(n) < ∞ whose value does not depend on the function f̃n.
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We refer to [5] for a complete proof of this result. From formula (2.1), it is clear
that starting from a function fn on Fn, we shall apply the above result to

f̃n = fn

∏
p<n

G−
p .

3 Loss distributions of credit portfolios

In this section, we explain how we use the interacting particle system approach de-
scribed in the previous section to the computation of the probabilities of rare credit
losses in a large portfolio of credit sensitive instruments modeled in the structural
approach. Since the language of continuous-time finance is commonly used in the
industry, we choose to first introduce our model in continuous time. We shall concen-
trate on the discrete-time version implemented for the purpose of computations in the
next subsection.

3.1 Credit portfolio model

We consider a portfolio of N firms. N will be typically 125 in the numerical appli-
cations presented later in the paper, and 1 for the single-name case presented in the
Appendix. The dynamics of the asset values of these N firms are given by the system
of stochastic differential equations

dSi(t) = rSi(t) dt + σiσ (t)Si(t) dWi(t), i = 1, . . . ,N, (3.1)

where r is the risk-free interest rate, σi is an idiosyncratic (non-random) volatility
factor, the correlation structure of the driving Wiener processes Wi is given by

d〈Wi,Wi′ 〉t = ρii′ dt,

and the common stochastic volatility factor σ(t) is a square-root diffusion satisfying
the stochastic differential equation

dσ(t) = κ
(
σ − σ(t)

)
dt + γ

√
σ(t) dWt , (3.2)

where κ , σ and γ are positive constants and the Wiener process W satisfies

d〈Wi,W 〉t = ρσ dt, i = 1,2, . . . ,N.

We impose the condition γ 2 < 2κσ so that σ(t) remains positive at all times. Note
also that, in contrast to the classical Heston model, the volatility σ(t) is a square-root
process and not the square volatility. This is not an issue since we are not using ex-
plicit formulas for the Heston model which are in fact not available in the correlated
multi-dimensional case. Also, for each firm i, we assume the existence of a deter-
ministic boundary t �→ Bi(t) and the time of default for firm i is assumed to be given
by

τi = inf
{
t : Si(t) ≤ Bi(t)

}
. (3.3)
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For the sake of simplicity, we define the portfolio loss function L(t) as the number of
defaults prior to time t , i.e.,

L(t) =
N∑

i=1

1{τi≤t}, t > 0.

Since the spreads of CDO tranches are derived from the knowledge of a finite number
of expectations of the form

E
{(

L(T ) − K
)+}

,

where T is a coupon payment date and K is proportional to the attachment or de-
tachment points of the tranche, we shall restrict ourselves to the evaluation of these
expectations.

Clearly, the only interesting case is when all of the names in the portfolio are
dependent. In [12], the exact distribution of losses is derived for N = 2 from the
distributions of the hitting times of a pair of correlated Brownian motions. Unfortu-
nately, a tractable general result is not available for N > 2, let alone in the case of
stochastic volatility! Since the distribution of L(T ) is not known in the dependent
case, for N > 2, one usually relies on approximation methods. Moreover, since N is
typically very large (125 in a standard CDO contract), PDE-based methods are ruled
out.

Instead of computing the spreads of the tranches directly, we compute the proba-
bility mass function for L(T ), i.e., we calculate

P
(
L(T ) = k

) = pk(T ), k = 0, . . . ,N.

3.2 The background Markov chain

We discretize the time variable t of the above continuous-time model using a time
step �t , that will be chosen as �t = (1/20) yr in the numerical experiments reported
later in the paper. Notice that we shall also need a smaller time step δt . The latter will
be chosen to be δt = 10−3 yr in our numerical experiments. The Markov chain {Xn}n
on which we construct the IPSs used to compute small probabilities is given by

Xn =
(
σ(n�t),

(
Si(n�t)

)
1≤i≤N

,
(

min
0≤m≤n

Si(m�t)
)

1≤i≤N

)
, n ≥ 0. (3.4)

The state space of Xn is En = [0,∞)2N+1 so that this chain is (2N +1)-dimensional.
We assume a constant (i.e., time-independent) barrier Bi for each firm 1 ≤ i ≤ N , and
we define the time τi of default of firm i as

τi = min
{
n ≥ 0; Si(n�t) ≤ Bi

}
,

in analogy with its continuous-time version (3.3). In this way, the value of τi can be
read off the sequence of running minima. Notice also that with this definition of the
default times, we do not have to correct for the bias introduced by the discretization
of a continuous-time boundary crossing problem.
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The very form of the resampling distribution (2.3) shows that in order to have
more simulation paths realizing rare events corresponding to unusually high numbers
of defaults, an obvious strategy is to choose a set of potential functions becoming
larger as the likelihood of default increases. Indeed, the resampling step will select
paths with high Gibbs resampling weights, and the paths with small weights will have
a greater chance of not being selected, and hence disappear. For the purpose of our
numerical experiments we choose a parameter α > 0, and we define the multiplicative
potential functions Gp by

Gα
p(Yp) = exp

[−α
(
V (Xp) − V (Xp−1)

)]
, (3.5)

where

V (Xp) =
N∑

i=1

log
(

min
0≤m≤p

Si(m�t)
)
.

We shall drop the superscript α when the dependence upon this free parameter is
irrelevant. Notice that

Gα
p(Yp) = exp

[−α
(
V (Xp) − V (Xp−1)

)]

= exp

[
−α

N∑
i=1

log
min0≤m≤p Si(m�t)

min0≤m≤p−1 Si(m�t)

]
,

where the above logarithm is obviously less than or equal to zero. Clearly, different
choices of α give different distributions for the resampling weights, and as a result,
we expect that different choices of α will give different sets of loss levels k for which
the probability P(L(t) = k) can be computed by IPS as a positive number. For a
given value of k, in contrast to a plain Monte Carlo computation, the IPS algorithm
produces enough sample paths with k losses for the estimation procedure to be ac-
ceptable if we choose α appropriately. In the numerical computations reported below,
we use an idea which could be traced back to [5], at least in an implicit form, and
which was used systematically in [3]. Instead of choosing α and getting reasonable
estimates of P(L(t) = k) for some values of k depending upon α, we reverse the pro-
cedure, and for each k, we pick the best α. Note that in the single-name case presented
in the Appendix, since we can compare the variances of the IPS and MC estimators
over the range of k’s, we can afford to use the standard approach fixing α first.

Finally, it is worth noticing that because of the special form (3.5) of the resampling
weights,

1. we only need to keep track of the last pair (Xp−1,Xp) instead of the full his-
tory Yp = (X0,X1, . . . ,Xp), thereby minimizing the storage space needed for the
implementation of the algorithm;

2.
∏

1≤k<p Gα
k (Yk) = exp[−α(V (Xp−1) − V (X0))], thereby providing a significant

simplification of the computations.
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3.3 Detailed IPS algorithm

We divide the time interval [0, T ] into n equal intervals [(p − 1)T /n,pT /n] with
p = 1,2, . . . , n. These are the times we stop and perform the selection step. We in-
troduce the chain (Xp)0≤p≤n = (X̃pT/n)0≤p≤n and the whole history of the chain is
denoted by Yp = (X0, . . . ,Xp).

Since it is not possible to sample directly from the distribution of (Xp)0≤p≤n for
N > 2, we shall have to apply an Euler scheme during the mutation stage; we let
δt denote the sufficiently small time step used. In general δt will be chosen so that
δt  �t = T/n.

Our algorithm is built with the weight function defined in (3.5). As mentioned
earlier, because of the special form of the resampling weights, instead of working
with the entire histories Yp , we need only to keep track of Xp and its parent Xp−1.
We introduce a special notation, say Ŵp , for the “parent” of Xp . So for all prac-
tical purposes, instead of being an entire historical path, yp = (x0, x1, . . . , xp), for
implementation purposes, a particle will only be a couple yp = (wp, xp).

Initialization We start with M identical copies X̂
(j)

0 , 1 ≤ j ≤ M , of the initial con-
dition X0. That is,

X̂
(j)

0 = (
σ(0),

(
S1(0), . . . , SN(0)

)
,
(
S1(0), . . . , SN(0)

))
, 1 ≤ j ≤ M,

and we define their parents by Ŵ
(j)

0 = X̂
(j)

0 . In this way we have our initial set of M

particles (Ŵ
(j)

0 , X̂
(j)

0 ), 1 ≤ j ≤ M .

Now suppose that at time p, we have a set of M particles (Ŵ
(j)
p , X̂

(j)
p ), 1 ≤ j ≤ M .

Selection stage We compute the normalizing constant

η̂M
p = 1

M

M∑
j=1

exp
[−α

(
V

(
X̂

(j)
p

) − V
(
Ŵ

(j)
p

))]
. (3.6)

Then we choose independently M particles according to the empirical distribution

ηM
p (dW̌ , dX̌) = 1

Mη̂M
p

M∑
j=1

exp
[−α

(
V

(
X̂

(j)
p

) − V
(
Ŵ

(j)
p

))]

× δ
(Ŵ

(j)
p ,X̂

(j)
p )

(dW̌ , dX̌). (3.7)

The particles that are selected are denoted (W̌
(j)
p , X̌

(j)
p ).

Mutation stage The stochastic volatility σ(t) and the correlation between Brownian
motions prevent us from knowing the transition probability of Xn in closed form and
performing the mutation in one step. We need Monte Carlo simulations based on an
approximation scheme. We choose a plain Euler scheme to make our life easier. We
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fix a time step δt  �t (as already mentioned, we choose δt = 10−3 in the numeri-
cal experiments reported below). For each of the selected particles (W̌

(j)
p , X̌

(j)
p ), we

apply an Euler scheme from time tp to time tp+1 with step size δt to each X̌
(j)
p so

that X̌
(j)
p becomes X̂

(j)

p+1. We then set Ŵ
(j)

p+1 = X̌
(j)
p . It should be noted that each of

the particles is evolved independently, and that the true dynamics of Xp , given by the
discretization of (3.1), (3.2), is applied rather than some other measure. It is this fact
that distinguishes IPS from importance sampling.

Conclusion At maturity, i.e., at time n such that n�t = T , we tally the total number
of losses for each of the M particles by computing the function f defined by

f
(
X̂

(j)
n

) =
N∑

i=1

1{X(j)
n (N+1+i)≤Bi },

where we use the last N component of Xn defined in (3.4). The estimator p̂M
k (T ) of

P(L(T ) = k) = pk(T ) is then given by

p̂M
k (T ) =

[
1

M

M∑
j=1

1{f (X̂
(j)
n )=k} exp

[
α
(
V

(
Ŵ

(j)
n

) − V (X̂0)
)]] ×

[
n−1∏
p=0

η̂M
p

]
. (3.8)

As explained earlier, this estimator is unbiased in the sense that E[p̂M
k (T )] = pk(T ).

4 Numerical results

In this section we report on numerical experiments with an implementation of the
IPS procedure described in Sect. 2 with the stochastic volatility model described in
Sect. 3.

4.1 Parameters of the numerical experiments

All the computations reported in this section were done for a homogeneous portfolio
of N = 125 names. The following table gives the parameters used for the stochastic
volatility dynamics (3.2) of the process σ(t):

σ0 κ σ γ ρσ

0.4 3.5 0.4 0.7 −0.06

For the sake of simplicity (in part justified by the homogeneity of the portfolio),
we assume that the starting points of the N firm values are the same and that the
thresholds giving the default barriers are also the same. The parameters of the dy-
namics (3.1) of the asset values of the N firms used in our numerical experiments are
given by

Si(0) r ρ Bi Nsel δt

90 0.06 0.1 36 20 10−3
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Fig. 1 Loss distributions estimated from M = 105 Monte Carlo samples, of a homogeneous portfolio of
N = 125 names for maturities T = 1,2,3,4,5. The parameters used are given in the tables in the text

Fig. 2 Comparison of the
estimates of the loss distribution
(log-scale) given by plain Monte
Carlo with M = 105 samples
and M = 5 × 104 samples for
maturities T = 1 yr and
T = 5 yr. The portfolio is
homogeneous, has N = 125
names and the parameters are
given in the tables in the text

We also included in the above table the number Nsel of selections per year used
in the IPS algorithm (essentially the reciprocal of the time step �t used in the text
earlier), as well as the time step δt for the Euler steps needed for the simulation of
one mutation step.

The left pane of Fig. 1 gives a line plot of the probability distributions of the
number of losses L(T ) for maturities T = 1,2,3,4,5. Since the probability of small
losses is overwhelmingly high for T = 1, it is difficult to see the details of these distri-
butions because the scale on the vertical scale is determined by the shortest maturity.
Hence we reproduced in the right pane of Fig. 1 the loss distributions with maturi-
ties T = 2,3,4,5 in their own scale. These plots were obtained from the parameters
given in the tables above with M = 105 Monte Carlo samples with 103 Euler time
steps per year.

Figure 2 gives the line graphs of the probability densities for maturities T = 1
and T = 5. It shows clearly that for T = 5 years, there are enough losses for the
Monte Carlo simulation procedure to estimate P{L(T ) = k} for values of k going
up to k = 120, and that the increase in variance of the estimator is not dramatic
when one switches from M = 105 samples to 5 × 104 samples. However, Monte
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Fig. 3 Comparison of the
estimates of the loss distribution
(log-scale) given by plain Monte
Carlo with M = 105 samples
and IPS with M = 200 samples.
The portfolio is homogeneous,
has N = 125 names and the
parameters are given in the
tables in the text

Carlo estimates are more troublesome for T = 1 year. Indeed, the estimates are pretty
wildly oscillating for values of k above k = 70, totally unreliable for values of k above
k = 80, and one sees a significant increase in variance when one halves the number
of samples from 105.

4.2 Performance of the IPS algorithm

In this subsection, we compare the results of our implementation of the IPS algorithm
to the results obtained with plain Monte Carlo simulations, as used above to deter-
mine a benchmark estimate of the loss distributions. As already noticed, the major
shortcoming of Monte Carlo computations is the large variance of the estimator, and
the fact that to estimate the probability of the rare events in the tails of the distribu-
tions, one needs a prohibitively large number of simulations. For example, we used
M = 105 samples in the computations reported above, but despite this large number,
all the estimates of the probabilities P{L(T ) = k} for k ≥ 80 are typically 0, espe-
cially for T = 1 to which we restrict ourselves in this section.

Figure 3 illustrates the differences between estimates of the loss distribution ob-
tained by a standard Monte Carlo method and by the IPS algorithm described in the
previous sections. The distributions are plotted on a logarithmic scale in order to em-
phasize the differences which would not appear otherwise. Several comments are in
order.

Note that there is a dramatic decrease in the number of simulation samples, from
M = 105 to M = 200 in the present situation. However, in all honesty, the compu-
tational budget of each simulation is higher for the IPS because of the Nsel = 20
selection steps per year. Still, the saving is enormous because of the drastic variance
reduction of the IPS algorithm.

It is easy to see that for each value of k (or for each small range of contiguous val-
ues of k) it is possible to choose a form of the multiplicative potential V and a value
of α (and hence a set of weight functions Gi ) so that the IPS algorithm estimates
the value(s) of P{L(T ) = k} without bias, and with a significantly smaller number of
simulation samples. This fact applies as well to the computation of one expectation
E{fn(Yn)} if fn is highly concentrated on a small set of paths. This fact was advo-
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Fig. 4 Surface plot of the numbers of samples against the number k of losses at maturity T = 1 and the
value of the parameter α

cated by Del Moral and Garnier [5] in their original discussion of the rare events of
the Gaussian random walk, and despite the fact that our model is significantly more
involved and with higher dimension, it is confirmed in our situation.

However, the conclusion we draw from our numerical experiments, and which
is perfectly captured by Fig. 3, is that this positive result cannot be extended to a
large set of probabilities or expectations without paying a price. Indeed, if one tries
to restrict the IPS to a single weight potential function V , and do the fine tuning by
varying one single parameter, the number α in our case, it is very difficult to estimate
the entire distribution at once without a bias. Even though our claim is only based on
numerical circumstantial evidence, we believe that it is true and we hope to address
it with elements of solutions in a further investigation.

As explained earlier (see also the bullet points in the next subsection) we estimate
the entire distribution at once (as opposed to one probability at a time) by running
the IPS simultaneously for several values of the parameter α. Figure 4 gives a surface
plot of the actual numbers of simulated sample paths of the IPS against the number of
losses they produce at maturity T = 1, and the value of α used in the weights of the
selection steps of the IPS. This surface plot clearly shows the expected pattern: For
each value of α, only a small number of values of k will be reached by the paths of the
IPS. Moreover, this range of values of k moves upward as α increases. As mentioned
earlier, the idea using this loss map to relate k and α is borrowed from [3].
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4.3 Practical remarks

The following remarks emphasize the robustness and stability of the results from the
IPS algorithm.

– We varied the number Nsel of selections/mutations (between and including
Nsel = 15 and Nsel = 35), and for a given set of weight functions, we did not
see significant differences.

– Concerning the role played by the choice of the weights functions Gi , or in our case
the weight potential function V , we tried several variations on the same theme, and
whether we replace the logarithm of the running minimum by similar functions
such as the double logarithm or the square root of the logarithm, or even if we
replace the running minimum by the actual level of the value of the firm, and any
of these functions, the numerical results are qualitatively the same!

– Clearly, for a given weight potential function V , varying α changes the range of
k reached by the historical paths re-sampled during the selection steps. So for a
given function fn, one can demonstrate numerically that there is a set of values
of the parameter α reducing the variance of the estimator of E{fn(Yn)}. However,
since we chose to compute the entire loss distribution at a given maturity, we used
the method of [3] according to which one runs IPS for a wide range of α and for
each k ∈ {0,1, . . . ,N} estimates the loss probability P{L(T ) = k} using the IPS
estimator given by the best value of α, say α(k), for a simple criterion.

5 Conclusion

In this paper, we demonstrated how one can use the IPS approach of Del Moral and
Garnier [5] for the computation of rare events probabilities to the field of credit risk.
We chose a structural first passage model with stochastic volatility for the purpose of
illustration. We showed that, even for realistic portfolios of N = 125 names, for an
appropriate choice of weight function, the IPS algorithm can produce loss probabil-
ities which would require a significantly larger number of Monte Carlo simulations
(and hence higher computing time and budget) than traditional Monte Carlo methods.
This is in sharp contrast with standard importance sampling procedures plagued with
instability issues in the stochastic volatility models considered in this paper. Explicit
formulas for the asymptotic variance of the IPS estimator are derived for the single-
name case in the Appendix where more single names results are gathered. Some of
these single-name results together with informal intuitive arguments can be used in
the multi-name case to guess reasonable values of the free parameters of the weights
driving the selection stage of the IPS algorithm.
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Appendix A: The single-name constant volatility case

A.1 Default probabilities

In this subsection, we analyze the variance of the estimator (3.8) in the single-name
case. So from now on, we restrict ourselves to N = 1 and to constant determinis-
tic volatility σiσ (t) ≡ σ . Also, as before we work with a time-independent barrier,
say B . Using IPS, we compute the probability of default before maturity T , i.e.,

P B(0, T ) = P

(
min
u≤T

S(u) ≤ B
)

= E{1minu≤T S(u)≤B}.

We use the classical explicit formula for P B(0, T ) as a benchmark; it is given by

P B(0, T ) = 1 −
(

N
(
d+

2

) −
(

S0

B

)p

N
(
d−

2

))
, (A.1)

with N denoting the standard normal N (0,1) cumulative distribution function and

d±
2 = ± ln(

S0
B

) + (r − 1
2σ 2)T

σ
√

T
,

p = 1 − 2r

σ 2
.

We are only interested in values of B that make the above event rare.
We remark that it is a standard result that the variance associated with the tradi-

tional Monte Carlo method for computing P B(0, T ) is P B(0, T )(1 −P B(0, T )). We
also remark that for a single name the Markov chain (Xp)0≤p≤n defined in Sect. 3.2
simplifies to

Xp =
(
S(tp), min

u≤tp
S(u)

)
.

Then, following the IPS setup described in Sect. 2, the rare event probability
P B(0, T ) admits the Feynman–Kac representation

P B(0, T ) = γn

(
L(B)

n (1)
)
,

where L
(B)
n (1) is given by the weighted indicator function defined for any path

yn = (x0, . . . , xn) ∈ Fn by

L(B)
n (1)(yn) = L(B)

n (1)(x0, . . . , xn) = 1{minu≤T S(u)≤B}
∏

1≤p<n

G−
p (x0, . . . , xp)

= 1{minu≤T S(u)≤B}eα(V (xn−1)−V (x0))

= 1{minu≤T S(u)≤B}eα(log(minu≤tn−1 S(u)/S0)),

for our choice of multiplicative potential function (3.5). Also, notice that we have
‖L(B)

n (1)(yn)‖ ≤ 1 since log(minu≤tn−1 S(u)/S0) ≤ 0 and α > 0 by assumption. Next,
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following the IPS selection-mutation algorithm outlined in Sect. 3.3, we form the
estimator

P B
M(0, T ) = γ M

n

(
L(B)

n (1)
) = ηM

n

(
L(B)

n (1)
) ∏

1≤p<n

ηM
p (Gp). (A.2)

By Lemma 2.1, P B
M(0, T ) is an unbiased consistent estimator of P B(0, T ). While

many estimators are unbiased, the key to determining the efficiency of our estimator
is to study its variance and prove a central limit theorem.

A.2 Variance analysis

In the present situation we can prove

Theorem A.1 The estimator P M
B (0, T ) given in (A.2) is unbiased, and it satisfies the

central limit theorem
√

ME
[
P B

M(0, T ) − P B(0, T )
] M→∞=⇒ N

(
0, σB

n (α)2),
with the asymptotic variance

σB
n (α)2 =

n∑
p=1

[
E

{
e
−α log(minu≤tp−1 S(u))}

× E
{
P 2

B,p,ne
α log(minu≤tp−1 S(u))} − P B(0, T )2], (A.3)

where PB,p,n is the collection of functions defined by

PB,p,n(x) = E{1mint≤T S(t)≤B |Xp = x},
and P B(0, T ) is given by (A.1).

The proof follows directly by applying Theorem 2.3 in [5] with the weight function
that we have defined in (3.5).

In the constant volatility single-name case, the asymptotic variance σB
n (α)2 can

be obtained explicitly in terms of double and triple integrals with respect to explicit
densities. This will be used in our comparison of variances for IPS and pure Monte
Carlo in the following section. The details of these explicit formulas are given in the
Ph.D. dissertation [11].

As shown numerically in the next section the variance for IPS is of order p2 with
p = P B(0, T ) (small in the regime of interest), in contrast to being of order p for the
direct Monte Carlo simulation. This is indeed a very significant variance reduction in
the small p regime, as already observed in [5] in a different context.

A.3 Numerical results

In this subsection, we compute the probability of default for different values of the
barrier comparing IPS to the standard Monte Carlo method. Notice that in both cases,
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we implemented the continuity correction for the barrier level described in [2] to
account for the fact that we are using a discrete approximation to the continuous
barrier for both IPS and Monte Carlo. For the different values of the barrier we use,
we can calculate the exact probability of default from (A.1).

The following are the parameters we used for both IPS and Monte Carlo:

r σ S0 δt T n (# of mutations in IPS) M

0.06 0.25 80 0.001 1 20 20000

The number of simulations M is the same for IPS and Monte Carlo, and from an
empirical investigation, we chose α = 18.5 in the IPS method (note that 18.5/125
is within the range of α’s used in Sect. 4 in the case of 125 names). The results are
shown in Fig. 5.

Indeed probabilities of order 10−14 will be irrelevant in the context of default
probabilities, but the reader can see that IPS is capturing the rare events probabilities
for the single-name case whereas traditional Monte Carlo is not able to capture these
values below 10−4.

In Fig. 6 we show how the variance decreases with the barrier level, and therefore
with the default probability, for Monte Carlo and IPS. In the IPS case the variance is
obtained empirically and using the integral formulas derived in [11]. We deduce that
the variance for IPS decreases as p2 (p is the default probability), as opposed to p in
the case of Monte Carlo simulation.

Fig. 5 Default probabilities for different barrier levels for IPS and Monte Carlo
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Fig. 6 Variances for different barrier levels for IPS and Monte Carlo

Each Monte Carlo and IPS simulation gives an estimate of the probability of de-
fault (whose theoretical value does not depend on the method) as well as an estimate
of the standard deviation of the estimator (whose theoretical value does depend on
the method). Therefore, it is instructive from a practical point of view to compare
the two methods by comparing the empirical ratios of their standard deviation to the
probability of default for each method. If p(B) is the probability of default for a cer-
tain barrier level B , then the standard deviation p2(B) for traditional Monte Carlo is
given by

pMonte Carlo
2 (B) = √

p(B) ×
√(

1 − p(B)
)
,

and the theoretical ratio for Monte Carlo is given by

pMonte Carlo
2 (B)

p(B)
=

√
(1 − p(B))√

p(B)
,

which can be computed using (A.1). For IPS, the corresponding ratio is

pIPS
2 (B)

p(B)
= σB

n (α)

p(B)
,

where σB
n (α) is given in Theorem A.1. It is computed using the formula given in

[11].
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Fig. 7 Standard deviation to probability ratio for Monte Carlo and IPS

In Fig. 7 one sees that there are specific regimes where it is more efficient to use
IPS as opposed to traditional Monte Carlo for certain values of the barrier level (below
0.65 × S0). This is to be expected since IPS is well suited to rare event probabilities
whereas Monte Carlo is not.
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