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Introduction 

The work presented in this thesis is the result of investigations of electronic Raman 

scattering by trivalent rare earth ions, in the form of either diluted or concentrated tetrago

nal rare earth phosphate crystals. Electronic Raman scattering allows the observation and 

measurement of the frequencies and linewidths of low lying crystal field states that are not 

immediately accesible by other means. A number of interesting effects are explored that 

are dependent on both the particular rare earth crystal used and the excitation energy 

of the incident laser radiation, which is provided by an argon-ion laser. The purposes of 

the experiments are twofold; first, to use electronic Raman scattering to study the interac

tions between the lanthanide ion and its host lattice; second, to study the mechanisms of 

the interaction between the lanthanide ion and the radiation field. The intensities of the 

transitions provide insights into these problems. 

Rare earth ions have rather unique luminescent properties. This comes from the fact 

that their visible radiative transitions occur within their unfilled (4f)N electronic shell. The 

optical transitions thus have narrow lineshapes characteristic much more of atoms or ions 

in the gas phase than metals or semiconductors. This leads to a number of interesting 

technological applications for rare earth crystals, in particular lasers. The goal here is to 

explore the basic linear and nonlinear optical properties of these systems and gain a better 

understanding of the mechanisms that govern these properties and how these depend on 

the particular ion or crystal host. 

The starting point for these studies is provided by the electronic energy level structure of 

the lanthanide ions. It is as necessary as the map is to the geographer. The energy levels of 

the ions are basically atomic multiplets split by the electrostatic field of the lattice ions which 

surround the lanthanide ion. Theses split levels are known as crystal field levels. They are 

obtained from absorption and fluorescence studies (one-photon studies) and also two-photon 

studies such as electronic Raman scattering and two photon absorption. The electronic 

energy level structure is systematized by means of a crystal field fit and described by a 

semi-empirical Hamiltonian. The crystal field fit predicts fairly accurately the positions of 
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energy levels that have not been observed experimentally and are in the energy range of the 

fitted experimentally observed levels. This subject is reviewed in Chapter 1. The electronic 

energy level structures for the ions of interest here have been summarized in Appendix 

A, along with information from the crystal field fit. Due to practical considerations, this 

information is given only over selected energy ranges. 

This thesis consists of three separate but interdependent efforts to understand electronic 

Raman scattering in rare earth doped phosphate crystals and its implications for the inter

action between the ion and the lattice on the one hand and the ion and the radiation field on 

the other, and how these two are linked. Chapters 2 and 3 serve as a general introduction 

and background review of Raman scattering, and contain detailed information pertaining to 

electronic Raman scattering in rare earth ions. The experimental technique is summarized 

in Chapter 2. Chapter 3 collects in one place various elements necessary to the interpre

tation and analysis of the spectra, namely the generic characteristics of the experimental 

Raman spectra, the differentiation of the electronic and phonon Raman transitions, and 

the theory of electronic Raman transitions within the framework of the Judd-Ofelt model 

of lanthanide ion radiative transitions. The Judd-Ofelt theory is an attempt to explain the 

intensities of radiative transitions in lanthanide ions and has been fairly successful in ex

plaining one-photon transition intensities (absorption, fluorescence) and lifetimes, but has 

only recently been tested for two-photon transitions. 

The first effort of this thesis is directed towards observing and measuring the electronic 

Raman transitions of the ions Tm3+, Er3+, and Ho3+, in both pure and diluted tetragonal 

rare earth phosphate crystals. The spectra for H0 3+ are the first reported observations 

of electronic Raman scattering for this ion. The measurement of the experimental elec

tronic Raman transition intensities for Tm3+, Er3+, and Ho3+ is an important test of the 

Judd-Ofelt theory applied to two-photon transitions. Chapter 4 describes the experimental 

Raman spectra obtained for Tm3+ , Er3+, and Ho3+. Chapter 5 compares the experimen

tal and calculated relative electronic Raman intensities for these three ions, for transitions 

between individual crystal field states, and discusses the implications for the Judd-Ofelt 

theory. It is shown that electronic Raman scattering can help to pick out the relevant in

termediate states that serve in mediating the Raman transition; and to test the accuracy 

of the wavefunctions used for the initial and final states. The character of the intermediate 

states can be picked out in particular by measuring the asymmetry of the electronic Raman 

• 



.. 

'. 

3 

transitions under interchange of the polarizations of the incident and scattered photons. 

This asymmetry is a rather unique feature of electronic Raman scattering, A surprising 

result discussed in Chapter 5 is that wavefunctions with g orbital character, which in the 

free ion are so high in energy as to be of negligible importance as intermediate states in 

two photon transitions, appear to contribute significantly for the ions in the crystaL This 

is indicated by all three ions Tm3+ , Er3+, and Ho3+, to varying degrees. Even taking into 

account the presence of g orbitals, several discrepancies remain between the calculated and 

observed relative electronic Raman transition intensities. A main conclusion of this work 

is that the atomic viewpoint of a lanthanide ion in a crystal has serious limitations. Even 

though the crystal field provided by the solid state environment is a small perturbation on 

the energy level structure, it appears to influence the optical properties of the ion to a great 

degree. 

Chapters 6 and 7 describe the second effort, which is directed towards the studies of the 

electronic Raman transitions of Er3+ under resonant excitation. This experiment is possible 

due to the near coincidence in energy between the 488.0 nm line of the argon-ion laser and 

the intra-4fN transitions" 11S/ 2 -- "F7 /2 of Er3+. The resonance enhancement factors of 

the electronic Raman transitions are observed to be in the range 10 to a 100. A number of 

mixed crystals ErzLul-zPO" with x ranging from 0.01 to 1 were studied. The variation of 

the resonant intensities are also studied as a function of temperature, with the main effect 

appearing to be the self-absorption by the crystal of the scattered Raman radiation. 

The resonance enhancement depends on both the strength of the "forbidden" electric 

dipole matrix elements of the "ltS/2 -- "F7/ 2 crystal field transitions (assumed to be inde

pendent of the erbium concentration) and the precise position in energy of these transitions 

relative to the 488.0 nm line. Since the actual mix of erbium and lutetium delicately shifts 

the crystal field levels, the mixed crystals allow a quantitative study of the relative in

tensities of the resonant electronic Raman transitions. The study of the enhancement of 

electronic Raman scattering is a useful guide to enhancing higher order optical processes, 

such as four wave mixing, in lanthanide ion doped crystals. 

Quantum mechanical interference is observed between the resonant and nonresonant 

pathways that contribute to the amplitude of the transitions. It is shown that a simple 

calculation can be made of the electronic Raman transitions under resonant excitation that 

agrees well with the experimental data and predicts how the relative electronic Raman 

.: , 
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intensities would vary if the excitation were tuned across the resonant transitions. These 

calculations can be found in Chapter 7. These experiments also open the way to better 

understanding the problem of differentiating between resonance Raman scattering and flu

orescence, in particular from the time resolved point of view. It is shown how an estimate 

of the dephasing time T2 can be obtained by comparing the Raman intensities in the mixed 

crystals without resorting to time-resolved measurements, although these are an essential 

complement to these studies. T2 is calculated to be at least on the order of 0.1 nsec. 

The third and last part of the thesis, chapter 8, presents and discusses the experimen

tal Raman spectra of the pure crystal YbP04 and the mixed crystals YbzLul-zP04 for 

x = 0.25, 0.50, 0.75. For these crystals the electronic and vibrational Raman transitions can 

no longer be considered to be independent. 

In the semiclassical picture, the Raman transitions come from the radiation emitted by 

the harmonically oscillating electronic and vibrational polarizations of the medium which are 

driven by the incident radiation field. These polarizations can couple via a resonance type 

interaction. Thus if a phonon and an electronic Raman transition are almost degenerate 

in energy they will repulse each other (the anticrossing effect) and the transitions actually 

observed will correspond to hybrid polarizations or excitations of the material that are linear 

combinations of electronic and vibrational polarizations or excitations, and which exhibit a 

split mode spectrum with a lifting of the near energy degeneracy. 

In the ytterbium phosphate crystals, this phenomenon occurs very markedly in the 

300 cm- 1 wavenumber region, where two electronic and one phonon transition coexist in 

the Eg symmetry spectra (the symmetries of the excitations need to be identical for the 

coupling to be allowed). At 4.2 K the coupled mode spectrum is spread over roughly 90 

cm-1
, which indicates extremely strong coupling strengths. The spectra are dependent on 

the temperature and the ytterbium concentration. The temperature shift of the spectra is 

interpreted by invoking the thermal depopulation of the ground state and the broadening of 

the electronic components of the transitions. While the YbP04 spectra are relatively simple 

and can be described semi-quantitatively, those of the mixed crystals are more complex and 

are treated only qualitatively. 

The first approach used is to treat the system using a simple two by two or three by 

three Hamiltonian with off-diagonal elements that constitute phenomenological coupling 

parameters. This approach gives a fairly accurate account of the line positions and their 
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variation as a function of temperature. The coupling strengths are empirically determined 

parameters. The second and subsequent approach which seeks to also explain the asym

metric coupled mode lineshapes involves the Greens function techniques and assumes that 

the transitions are coupled harmonic oscillators with damping constants that determine 

the linewidths. The parameters of the model are determined by making a least squares fit 

of the calculated to the observed spectrum as a function of frequency. This works fairly 

well in the temperature range 4.2 to 160 K using a three level coupled system consisting of 

two electronic and one vibrational excitation, but cannot be easily extended to the higher 

temperature range where the spectra are extremely broad and suggest rather a two level 

coupled system. 

To summarize, the organization of the thesis is as follows: 

1. A core unit which reviews the optical properties of lanthanide ions (Chapter 1) and 

discusses the general properties and results of electronic and vibrational Raman scat

tering in lanthanide phosphate crystals (Chapters 2 and 3). 

2. A description of the experimental electronic Raman spectra of Tm3+ , Er3+ , and Ho3+ 

in pure and diluted phosphate hosts (Chapter 4), and a theoretical chapter that an

alyzes and interprets the results with respect to the intensities of the transitions 

(Chapter 5). 

3. A description and discussion of the experimental resonant electronic Raman spectra 

of Er3+ in pure and diluted erbium phosphate crystals (Chapter 6), and a calcula

tion of the relative intensities of the transitions that highlights quantum mechanical 

interference between the nonresonant and resonant intensity channels (Chapter 7). 

4. A description and analysis of the coupled mode spectra of ytterbium phosphate crys

tals in the 300 cm- 1 region in Eg symmetry (Chapter 8). 



Chapter 1 

Fundamental Properties of Trivalent 

Lanthanides 

This chapter serves as a review of the atomic properties and optical spectra of trivalent 

lanthanide (rare earth) ions. The unique characteristics of the 4f orbitals of lanthanide 

ions are introduced first, as they are crucial to understanding the optical properties of both 

the free ions and those doped into crystals. The semi-empirical Hamiltonian and crystal 

field model, important in systematizing the electronic energy lev~l structure of the ions, are 

discussed. Finally, a description is given of the various one-photon and two-photon processes 

in the visible spectrum of trivalent lanthanide ions and their application in spectroscopic 

investigations. 

1.1 Atomic Theory of Trivalent Lanthanides in Crystalline 

Hosts 

1.1.1 Introduction - The discovery of 4f orbitals 

The periodic table in its conventional form sets aside the rare earth series, separating 

it from the rest of the elements. This is necessary because of the difference between the 

chemical properties of the rare earths and those of the atoms that precede it in the periodic 

table. This difference originates in their electronic configuration, which is characterized by a 

valence shell consisting of f electrons. To date, two f electron series have been identified and 

studied; the lanthanides, elements 57 through 71, and the actinides, elements 89 through 

103. The names employed are somewhat of a misnomer, since the rare earths are neither 

6 
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rare nor hidden (the Greek lanthan08 means hidden). Lanthanides, in their trivalent state, 

form the object of this study. 

The beginning of the study of the rare earths dates back to the work of J. Becquerel 

in the early 1900's [1,2,3]. He observed sharp absorption lines in the visible region of the 

spectrum of rare earth salts cooled to below lOOK, and found that these lines were split 

by a magnetic field. Quantum mechanics is needed to explain the spectral structure of the 

absorption and emission patterns, since these are atomic in nature and resemble those of 

atoms in the gas phase. It was later realized that these sharp lines came from "forbidden 

electric-dipole" transitions within the 4f shell of the electronic configuration of the rare 

earth atom. 

The theoretical underpinning of the atomic theory of the 4f group was provided by 

Maria Mayer in 1941 [4]. Even though the 4f shell is being filled with electrons as the 

atomic charge Z runs from Z=57 to Z=71, it is an inner orbital in the sense that the 4f 

radial eigenfunction is localized within the full 5s25p6 shells. The contraction of the 4f shelL 

occurs abruptly at Z=57. Mayer explained this by considering the effective radial potential 

in the Thomas-Fermi model: 

VCr) = _ e
2 

[1 + (Z _ 1)~ (~)] + _h_2_ . .....:./(/_+-::-1-,-) 
r /J 811"2m r2 

(1.1) 

which is the Coulomb potential energy plus the centrifugal potential energy, ~ (~) being 

the Thomas-Fermi function. For f electrons 1 is equal to 3. The radial eigenfunction is 

determined by the radial part of the Schrodinger equation with V (r) as the effective potential 

energy. The behavior of VCr) as a function of Z is very enlightening. For low values of Z 

there is only one minimum of VCr), situated at roughly 6A. At higher values of Z there 

is also a second minimum of V (r) at a small value of r. When this inner potential well 

becomes deep and large enough, the 4f eigenfunction collapses to an inner orbital with 

a tight binding energy. Mayer's model predicts that this will occur at Z=60, in practice 

this occurs for lanthanum, element 57. The scenario is quite similar for the 5f electrons of 

the actinides and the nd (n=3,4,5) electrons of the transition elements. Modern studies, 

which involve self-consistent Hartree-Fock calculations performed by computer, give more 

accurate predictions of the wavefunctions and the one-electron binding energies [5,6]. In 

addition, as one progresses along the rare earth series the average radius of the f orbitals 

slowly decreases. This is the so called lanthanide contraction, which is examplified by a 
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10% decrease in ionic radius between Ce3+ and Lu3+ [7, p. 2]. 

The electronic configuration of neutral lanthanide atoms is of the form (Xe )4fN
1 

6s2 or 

(Xe)4fNI-1Sd6s2 , where (Xe) represents a xenon core. The 4f electrons have less binding 

energy than the electrons of the Ss2Sp6 shell of (Xe), however their average radius of 0.7 

Bohr radius is smaller than that of the Ss2Sp6 electrons. The ionization of the lanthanides 

to their trivalent state involves first the removal of the two loosely bound 6s electrons, and 

then that of either a 4f or a Sd electron. The trivalent lanthanides, which is the most 

common oxidation state of these elements, thus have the electronic configuration (Xe)4fN. 

The energy range of the ground configurations of neodymium ions and their ionization 

potentials are displayed in Figure 1.1, which is taken from Cowan [S, p. 602]. Even though 

it is an f electron which is added last to the rare earth atom as its electronic shells are built 

up following the aufbau principle, the first stage of ionization involves the removal of a 6s 

electron and not that of the f electron that was just added. This is because during the 

ionization the nuclear charge does not change and as a result the minimum energy state 

(which incorporates the effect of the interactions between the electrons) is that for which a 6s 

electron is removed. The fact that the f electrons extend so little into their environment and 

are shielded by the Ss2Sp6 electrons, is paramount to explaining the atomic-like properties 

of lanthanides doped into solids. Figure 1.2 shows the radial distribution functions of the 4f, 

Ss, Sp, Sd, and Sg orbitals for the Pr3+ free ion as obtained from Hartree-Fock calculations 

[8]. The radial distribution function is defined as the square of the radial wavefunction 

times the squared radius. The mean radial position of a 4f electron is seen to be closer to 

the nucleus than that of a Ss or Sp electron. In contrast, the Sd and Sg orbitals, which 

belong to the excited configurations 4fN- l Sd and 4fN- 1Sg, are spread out over a broad 

range relatively far from the nucleus. The free ion wavefunctions will expand slightly when 

the ion is placed in a crystal. This is known as the nephelauxetic effect [9]. 

Figures 1.3 and 1.4 show the extent of the 4fN configuration and the onset (or extent 

when available) of the three lowest excited configurations, 4fN- 1Sd, 4fN- 16s, and 4fN- 16p, 

for the various trivalent lanthanide free ions. Figures 1.3 and 1.4 are drawn from several 

different sources [10,11,12,13,14]. It should be noted that when trivalent lanthanide ions 

are placed into solids and subjected to the crystal field of the lattice ions surrounding it, 

the 4fN- l Sd configuration drops in energy by about 10,000 cm- 1 relative to the ground 4fN 

configuration, as compared to its free ion value. The ionization energies of the trivalent rare 
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earth free ions range from 296,000 cm-1 for Ce3+ to 365,000 cm-1 for Lu3+ [13]. 

The environment provided by crystalline hosts destroys the spherically symmetric en

vironment that rare earth atoms enjoy in the vapor phase. Thus the degeneracy of the 

atomic states will be lifted to some degree. The crystal lattice, or more appropriately the 

crystal field produced by the ions at the lattice points, provides a certain symmetry at 

the sites occupied by the lanthanide ion. This site symmetry can be classified by one of 

the 32 crystal point grou_ps. This was recognized by Bethe, who in 1929 showed how the 

crystal-field splitting of the free ion levels could be characterized group theoretically [15J. 

This paved the way for a fuller understanding of the multitude of absorption lines that 

appear in the visible spectra of lanthanide doped crystals. These transitions occur between 

the crystal field states of the unfilled 4f shell and are as a consequence not allowed in the 

electric dipole approximation, since the parity must change in a dipole transition (Laporte 

rule). Nevertheless, these transitions are "forbidden electric dipole" in nature, with small 

oscillator strengths. Their presence was explained in 1937 by Van Vleck, who referred to 

this problem as "The Puzzle of Rare Earth Spectra in Solids" [16J. The principal mechanism 

is the admixture into the 4fN configuration of a small amount of excited opposite parity 

configurations. 

The necessary conceptual foundation for the study of the visible spectra of rare earth ions 

was thus established by 1941 and qualitatively, the spectra were reasonably well understood, 

if one took into acount the fact that both the atomic physics of the 4f shell and the group 

theoretical symmetry of the host crystal were needed to explain the observed pattern of 

visible absorption and emission lines. Quantitative studies were made possible by the atomic 

and crystal field models [7,9]' which use the mathematical techniques developed by G. Racah 

in the 1940's [17,18,19]. The state of the spectroscopic investigations or rare earth ions in 

crystals was summarized up to 1968 by Dieke [20J. Hiifner's work [7J is a briefer but more 

recent exposition. 

1.1.2 Semi-Empirical Atomic and Crystal Field Hamiltonian 

The configurations of the atomic electrons of the lanthanide ions are specified by a set of 

one-electron orbitals. Since the closed shells are assumed to be inert with respect to optical 

excitations, they will not be referred to and only the ground and excited configurations of the 

4f electrons will be used to specify the states. The Hamiltonian operator H that determines 
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the wavefunctions of the 4f electrons contains terms that describe the atomic interactions 

of the free ion (which might be modified by the presence of the surrounding ligands), and 

terms that describe the interaction of the electrons with the crystal field produced by the 

surrounding charges. For such high atomic number systems as the rare earths, it is extremely 

unwieldy to calculate H and the 4f energy levels from first principles. Rather, H is written 

in a parameterized form and the parameters are then found by adjusting them to obtain 

the best fit of calculated to experimental energy levels. The Hamiltonian oper_ator for the 

4f electrons is written as follows [7,9]: 

H = Hatomie + He! (1.2) 

where 

and 

He! = L B;Cfc)(i) (1.4) 
lc,q,l 

Hatomie is the free ion Hamiltonian in the central field approximation. N is the number of 4f 

electrons, Z· e is the effective nuclear charge (which takes into account the closed shells that 

lie between the nucleus and the 4f electrons), and )(ri) the spin-orbit coupling function. The 

first two terms of Hatomic, which represent the kinetic energy and the Coulomb interaction 

of the nucleus with the 4f electrons, are spherically symmetric and do not lift the degeneracy 

of the 4fN configuration. However the third and fourth terms, which represent the mutual 

Coulomb repulsion and spin-orbit interactions of the 4f electrons, are responsible for the 

spread of the 4fN free ion levels over tens of thousands of wavenumbers. He! is the crystal 

field Hamiltonian where the summation over i is over all the 4f electrons of the ion. The 

B; are constants, and the C~Ic) are proportional to the spherical harmonics: 

(1.5) 

There a.re several schemes for describing the states of a many-electron system. For 

rare earth ions, it is customary to use Russell-Saunders, or S L, coupled states. To write 

Russell-Saunders states, one first couples the orbital angular momenta ~ to form a resultant 

total orbital angular monentum L, and similarly for the spins Si to form a total spin §. 
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land § are then coupled to form J, the total angular momentum. Thus a state of the 

4fN configuration will be described by the ket 14fN as LJ J z), where a refers to the other 

quantum numbers needed to label the state. These kets form a complete set. One calculates 

the matrix elements of H between these states and diagonalizes H to obtain the eigenvall:les 

and eigenvectors. 

When the mutual electrostatic repulsion of the electrons is much stronger than the spin

orbit coupling, the eigenfunctions are nearly pure S L coupled states. The electrostatic 

interaction splits the configuration into terms 2S+1 L, and the spin-orbit interaction lifts 

the degeneracy with respect to J and splits the terms into levels 2S+1 LJ. In the case of 

lanthanide ions, it is not quite correct to consider the electrostatic and spin-orbit interac

tions as successively smaller perturbations. The actual eigenstates of the system are linear 

combinations of 2S+1 LJ states, since these form a complete set of functions for functions 

of the angular variable. The only caveat to this statement is that for some configurations 

the seniority quantum number or a group theoretical label are needed in addition to the 

Russell-Saunders label to uniquely specify a state. In general, when one refers to a 2S+1 LJ 

level of a lanthanide ion, it constitutes the leading term in the expansion of the state in 

Russell-Saunders coupled states. 

Similarly, it is not a good approximation to use a spin-orbit interaction of the form 

Ai· S, since this operator has no off-diagonal elements in Land S, whereas Ei i; . 8i does. 

For rare earth ions there is substantial S L mixing, an effect which grows stronger as the 

atomic number increases. This is due to the fact that the spin-orbit interaction increases 

faster than the mutual electrostatic repulsion between the 4f electrons, as one moves up the 

lanthanide series [S, p. 2381. 

There still remains a degeneracy with respect to J z, since spherical symmetry has not 

been broken by Hatomic. The crystal field removes that symmetry by the non-spherically 

symmetric distribution of charge surrounding the free ion. For 4f electrons, the crystal field 

Hamiltonian is a small perturbation compared to the electrostatic and spin-orbit interac

tions, since it is roughly a 100 times smaller in magnitude. In contrast, the crystal field 

splittings of the excited configurations are quite large, on the order of 20,000 em-I, since 

the excited orbitals (e.g. Sd or Sg) are not shielded as the 4f orbitals are. 

Figure 1.5, a chart originally drawn by Dieke [21], is the energy level diagram of the. 

low-lying fN states of the trivalent lanthanide ions doped into LaCI3, the multiplets being 
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labeled by the leading 25+1 LJ component. The widths of the multiplets show the extent of 

the crystal field splitting. Since the crystal field of the host lattice is usually such a small 

perturbation, the Dieke chart is an accurate representation of the fN electronic energy level 

structure for trivalent rare earth ions doped into most ionic insulating crystals. 

A number of other terms are added into the Hamiltonian in an attempt to correct the 

simplistic assumptions that underlie it and model some of the more complex effects that 

can occur in many-electron systems. In its full glory, the Hamiltonian used in fitting the 

energy levels of the rare earth ions doped into phosphate hosts is written [22]: 

H = L Fk{nf,nf)", + ~'Iaso + aL{L + 1) + ,BG(G2) + jG(R7) 
k=O,2,4,6 

8 

+ETktk+ L Mkmk+ L pkPk+LB:CJk)(i) 
k=2 k=O,2,4 k=2,4,6 k,q,i 

We briefly discuss the origin of these various terms. 

(1.6) 

• The expression for the electrostatic interaction of two 4f electrons i and j can be 

calculated from the identity 
2 00 k 
~ = '" ~C(k)(i). C(k)(j) 
r·· ~ r k+1 
" k=O > 

(1.7) 

where r< and r> are respectiv~ly the lesser and greater ofri and rio For a configuration 

of N equivalent 4f electrons the matrix element of the Coulomb interaction separates 

into two parts [7,9]. The first factor is a radial integral involving r< and r> and the 

4f radial eigenfunctions. This is the term Fk(nf, nf) which can be calculated ab initio 

if the eigenfunctions are known, but is usually treated as a parameter. The second 

factor is the matrix element of a product of spherical harmonics, taken between S L 

states. It can be calculated using standard tensor operator techniques. These angular 

matrix elements have been tabulated for the various fN configurations [23] . 

• The spin-orbit matrix elements can also be calculated using tensor operator methods 

[9,19]. The spin-orbit operator is found to be proportional to V(ll), the unit tensor of 

rank one in both spin and orbital angular momentum space. The matrix elements of 

V(ll) are also well known [23]. The part of the matrix element that depends on the 

radial variable is incorporated into the spin-orbit coupling constant ~'I defined by 

~'I = f R;,(r)dr)dr. (1.8) 

As with the Fk, it is treated as a parameter. 
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Figure 1.5: Energy level diagram of the low-lying 4fN states of trivalent lanthanide Ions 

doped into LaCI3 . 
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• aL(L + 1) + ,8G(G2 ) + ')'G(R7) models the correction to the electrostatic interaction 

due to two body Coulombic interactions between the ground 4fN configuration and 

excited configurations [9,24,25]. It is derived using the assumption that the higher 

lying configurations are distant in energy, so that one can apply the closure theorem 

in angular space to the states of the excited configurations when calculating the second 

order correction to the electrostatic interaction between 4f electrons. L(L+ 1), G(G 2 ), 

and G(R7) are the eigenvalues of Casimir's operators for the groups SO(3)' G2 and 

R7 , respectively. The irreducible representations of the groups SO(3), G2 , and Rr , are 

used to classify the states of the 4fN configuration [26, section 12]. G(G2 ) and G(Rr) 

can be can be found in Wybourne [9]. 

• The Tic, introduced by Judd, are needed to describe the correction to the electrostatic 

interaction by three body configuration interactions [27]. They come into play when 

the number of 4f electrons is larger or equal to 3. The appearance of the two-body 

and three-body configuration interaction corrections can be made more transparent by 

using the second-quantized form of the electrostatic operator [26, sections 15,16,17]. 

• The remaining interactions are of a magnetic type [28] and do not have a large effect on 

the energy levels. They are relativistic in origin. The MIc (k = 0,2,4) are the Marvin 

integrals and take into account the spin-spin and spin-other orbit interactions within 

the 4fN configuration. The correction to the spin-orbit interaction by the electrostatic 

interaction of the 4fN ground configuration with higher excited configurations are 

taken into account by the pic (k = 2,4,6). 

• The form in which the crystal-field Hamiltonian has been written is merely a statement 

that the spherical harmonics are a complete set of functions insofar as the angular 

variables are involved. The summation over i is over all the 4f electrons of the ion. 

The method for calculating the matrix elements of is given by Why bourne [9, Chapter 

6]. Only a few of the B; are non-zero. For f electrons the Wigner-Eckart theorem 

imposes k ~ 6. The point group symmetry at the site where the rare earth ion is 

located further restricts the number of non-zero B; [7,9]. 

A modern review of the various atomic effects associated with complex spectra is given 

by Judd [26]. 
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1.1.3 Energy Level Fitting and Validity of the Semi-Empirical Hamil

tonian 

The semi-empirical Hamiltonian that was introduced in the previous section contains 

a large number of effective operators. These operators were added in a piecemeal fashion 

as the art of fitting complex spectra advanced throughout the 1960's. The reason that 

this parameter based method has remained so prevalent is heuristic in nature, in the sense 

that with a relatively small number of parameters one can reasonably accurately reproduce 

observed spectra. In practice, one performs a least-squares fit of the ,calculated energy 

levels to the observed energy levels, or more appropriately to the observed transitions. 

The accuracy of the fit is characterized by the reduced root-me an-square energy deviation, 

defined as 

( ~2)! 
iT= E_i-

. m-n • 
(1.9) 

where the ~i are the differences between the observed and calculated energy levels, m being 

the number of levels and n the number of free parameters. The prototypical example of the 

use of this type of Hamilto~ian in systematizing the 4fN spectra of the trivalent lanthanides 

is the work of Carnall, Crosswhite, and Crosswhite, using the host crystals LaF3 and LaCL3 

[29]. 

Typically, 50 to 150 energy levels up to 50,000 cm- l are assigned and can be fit with 10 

to 20 parameters, yielding rms energy deviations in the range 10 to 30 cm- l . This is quite 

good if one considers that the 4fN configuration can go up to 200,000 cm- 1 in energy so 

that iT is on the order of 0.1-0.01% of the spread in energy of the configuration. However, 

experimentally these energies can be found to within 0.1 cm- 1 accuracy, so that there is 

still quite a lot of room for the theory to improve. A more modern approach would be to 

use the orthogonalized operators of Judd [30,31,32,33]. 

The present work uses the energy level fits of the ions Yb3+, Tm3+, Er3+, and Ho3+, 

doped in LuPO. and YPO. [34,35]. The energy levels, wavefunctions, and atomic and 

crystal field parameters determined by these fits are listed and discussed in Appendix A. 
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IG2 One-Photon Spectroscopy of Trivalent Lanthanides in 

Crystalline Hosts 

1.2.1 The Character of 4fN -+ 4fN Optical Transitions 

Several mechanisms come into play to give the forbidden electric dipole transitions small 

but significant amplitudes [5]. A brief description is given of these mechanisms. Peacock 

has given a review which covers through 1975 [36]. 

• In cases where the site symmetry is not a center of inversion, the crystal field Hamile 

tonian can contain odd-parity terms. These terms introduce into the 4f wavefunctions 

small components of opposite parity higher energy configurations, such as 4fN - 15d. 

The intensity of a particular transition is then determined by the amount of opposite 

parity configurations which have been mixed into the initial and final states. 

• Crystal vibrations of oddesymmetry can also admix odd-parity 4fN - 1nl configurations 

into the 4fN manifold. For a centro-symmetric crystal, this is the only source of 

"forbidden electric dipole" transitions. 

• Magnetic dipole transitions are allowed since no change in parity is needed for t~is 

process. The intensities of magnetic dipole transitions are usually weaker then the 

"forbidden electric dipole" transitions (for non centro symmetric crystals). There are 

fewer magnetic dipole transitions since they must satisfy the selection rules 

I:::AJ = 0, ±1, I:::AL = 0, 6.8 = 0, J = 0 - J = 0 transitions forbidden. 

Most of the intensity calculations have centered only on the rare-earth ion, using its 

wavefunctions in the free-ion sense. More recent work has taken into consideration 

the surrounding ligands as active participants in the interaction between the radiation 

field and the solid [37,38,39]. In this picture the f electrons of the rare-earth ion are 

considered to polarize the charge clouds of the surrounding ions, which then interact 

with the radiation field via a non-zero total dipole moment (if the rare earth ion is not 

situated at a center of inversion). These effects are usually called ligand polarization 

effects. 
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1.2.2 Intensities of one-photon transitions and the Judd-Ofelt Theory 

The bulk of experimental evidence supports Van Vleck's conjecture, namely that the 

mechanism responsible for the sharp line optical absorption and emission transitions in rare

earth compounds is "forbidden electric dipole" in nature. The oscillator strengths of these 

transitions, being on the order of 10-6 , are too weak to be allowed 4f -+ 5d transitions. 

Electric quadrupole transitions are predicted to be even weaker and have not yet been ob

served. Magnetic dipole transitions are observed only under very favourable circumstances 

due to the selection rules. Thus the major part of the 4f -+ 4f one-photon lanthanide inten

sities have their origin in static or dynamic admixtures of opposite parity configurations. 

The static admixture is caused by odd terms in the crystal field potential (for a non centro

symmetric rare-earth site), and the dynamic part by odd parity vibrations. An order of 

magnitude estimate for the amount of admixture of the opposite parity configurations can 

be obtained from perturbation theory by the ratio: 

(1.10) 

where B: is on the order of a few hundred cm- l and the configuration energy difference 

E(4fN-Inl) - E(4fN) is on the order of 100,000 cm- l for the next highest configuration, 

4fN- I Sd. As a consequence, we expect that the 4fN- I Sd configuration will contribute only 

0.1 % to the composition of the ground configuration. For energy level calculations, this 

effect can be neglected and the ground configuration assumed to be pure 4fN. Insofar as 

intensity calculations are concerned, this tiny admixture becomes extremely important. An 

order of magnitude estimate of the oscillator strength of the 4f -+ 4f transitions is obtained 

by squaring equation (1.10), which yields the value 10-6 • 

The theory of the intensities of rare-earth one-photon 4fN transitions was cast into a 

mathematical framework by Judd and Ofelt, and has become known as the Judd-Ofelt the

ory [40,41]. The wavefunction for a particular state is written using first order perturbation 

theory: 

Ii} = L (14fN aSLJJz) + L 1f/I'}(~'IVOddI4~aSLJJz}) 
SLJJz . .p' E(f/I) - E(4f aSLJJz) 

(1.11) 

where Vodd represents the odd parity part of the crystal field and If/I'} represents the pos-

sible intermediate states of the system. The matrix element of the electric dipole operator 

15 between the states Ii} and If} of the 4fN configuration will thus involve a sum over 



intermediate states of the form 

(/!15!1/I')(1/I'! Vodd !i) 
~ E(1/I') - E(4fNaSLJJz) 
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(1.12) 

where the states !i) and If) are written in zeroth order. Barring some drastic simplification, 

this infinite sum is mathematically intractable. The idea, originally due to Griffith [42], is to 

approximate the energy denominator by an average denominator, which then allows use of 

the closure relation E"" !1/1')(1/1'! = 1 to dispense with the sum over intermediate states. The 

details of the calculation, which makes extensive use of tensor operator techniques, can be 

found in Judd [40]. The excited configurations which enter equation (1.12) as intermediate 

states are 4fN-lnd, 4fN- 1ng, 4fN+lnd- 1 , and the continuum d and g configurations. Several 

points can be made about the derivation and its underlying assumptions [36]: 

• The closure is performed over each individual excited configuration. As such it is 

not a. full quantum mechanical closure over a complete set of eigenfunctions of the 

SchrOdinger equation. Rather, it is a closure over the angular variables only. The 

assumption here is that the sp~ead in energy of the excited configuration is small 

compared to the average difference in energy between that configuration and the 

ground 4fN configuration. This is not a very good approximation for rare-earth ions 

for which the 4fN - 1Sd configuration does not lie very much higher in energy than the 

4fN ground configuration. 

• The J udd-Ofelt theory involves three parameters, usually labeled 02,04 ,06 • They 

parameterize the oscilla.tor strengths for the absorption and fluorescence transitions 

between various multiplets of the 4fN configuration. The Ok are usually calculated to 

provide the best fit to the experimental data. The scheme has met with good success, 

considering the approximations involved. Except for the case of the hypersensitive 

transitions [43,44,36]' it is a good phenomenological model. 
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1.3 Two-Photon Spectroscopy of Trivalent Lanthanides in 

Crystalline Hosts 

1.3.1 Two-Photon Spectroscopy as a Complement to One-Photon Spec

troscopy 

Electric dipole transitions are allowed only if there is a change in parity between the 

initial and final states, since the electric dipole operator is of odd parity. This is the cause 

of the weakness of the intra-4fN absorption and fluorescence lines, whic~ are allowed only 

by the small admixture of higher energy opposite parity configurations. For two-photon 

transitions, such as two-photon absorption and electronic Raman scattering, the situation 

is different. In this case, the parity selection rule is that the parities of the initial and final 

states must be equal, since now two electric dipole operators intervene between the initial 

and final states. Hence two-photon transitions between the 4CN states are allowed by the 

parity selection rule and should be observable. 

The quantum mechani~al amplitudes for two-photon transitions are calculated by stan

dard second-order perturbation theory. The derivation follows the same lines as the one

photon Judd-Ofelt 'calculation [45]. The intermediate states involved are again 4fN- 1nd, 

4fN- 1ng, and 4fN+1nd-1 , since the electric dipole operator is a tensor of rank one in or

bital angular momentum space. The difference lies in the fact that for two-photon tran

sitions the second matrix element is that of an electric dipole operator, while for the one

photon case it is the matrix element of the odd-parity crystal field. In oscillator strength 

units, the two-photon transition probability is on the order of (~xi) = (~) 2 = 10-10 . 

This is 104 times smaller than the one-photon transition probabilities. However, with the 

high intensities provided by laser sources, the two-photon process is readily observable 

[46,47,48,49,50,51,52,53,541· 

Two-photon spectroscopy can be seen to complement one-photon spectroscopy in a very 

convenient manner: 

• The group-theoretical selection rules are different for two-photon transitions as op

posed to one-photon transitions. Additional levels can thus be observed and identified . 

• In the case of two-photon absorption, the ultraviolet region of the optical spectrum 

can be studied, since sufficiently intense radiation of frequency w will explore the 
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absorption region at 2w. As an example, one of the notable achievements of the two

photon absorption experiments has been the observation of the 4f2 state ISO of Pr3+ 

doped in LaCh, which is 47,000 cm- 1 above the ground state and embedded within 

the 4fN - 15d configuration [55J. In some cases, two-photon transitions between the 

4fN configuration and the 4fN - 15d configuration can also be observed although they 

are electric dipole forbidden [56J. 

• Electronic Raman spectroscopy explores the infrared region of the optical spectra of 

the trivalent lanthanides. This again allows for the observation of transitions not 

easily acessible by one-photon spectroscopic methods [54,57J. 

• The intensities of two-photon processes can be studied in the same fashion as the inten

sities of the one-photon transitions so as to elucidate the mechanism of the interaction 

between the radiation field and the lanthanide ion in its crystalline environment. The 

Judd-Ofelt closure technique is again the starting point for a theoretical interpretation 

of the experimental intensities. It is however subjected to a more stringent test than 

in the one-photon case due to the relative paucity of adjustable parameters [49,58]. 

• Two-photon spectroscopy offers to the experimentalist the added dimension of inter

mediate resonances, whereby one of the two photons is very close in energy to one of 

the states of the ion. This can dramatically alter and amplify the spectrum that was 

obtained in a non-resonant configuration, and provide additional information on the 

energy level structure and the two-photon inelastic light scattering process [59]. 

1.3.2 TW<rPhoton Absorption and the Judd-Ofelt Theory Revisited 

The first experimental demonstration of two-photon absorption in a physical system was 

performed in 1961, with the rare-earth ion Eu2+ doped in CaF2 [60J. However, the technique 

attracted the attention of very few rare-earth spectroscopists. Starting in 1981, the work 

of Downer and Bloembergen on two-photon 4£1 - 4£1 transitions, and their discovery of 

new mechanisms of interaction between the radiation and the rare-earth ion, revitalized 

the field [49,50,61,62,63,641. The Judd-Ofelt closure technique can be easily applied to the 

two-photon process, as recognized by Axe in 1964 [451, and yields quantitative predictions 

regarding the two-photon transition probabilities. 

• 
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For the Judd-Ofelt two-photon transition intensities, there are only two adjustable pa

rameters, ai and a~ in Axe's nomenclature. In the case of two-photon absorption where 

both photons come from the same input beam, the parameter ai does not appear and the 

intensities are all proportional to a~. As a consequence, the relative intensities of the tran

sitions between the crystal-field components of various multiplets are uniquely determined 

with no parameter available to fit the theoretical predictions to the experimental intensities. 

This is a very stringent test of the assumptions that underlie the Judd-Ofelt theory [49]. 

The angular momentum selection rules for two-photon absorption are well known to be 

l:l,J :$ 2, AL :$ 2, l:l,S = o. These selection rules were found to be strongly violated in 

Downer's experiments on Gd3+ in LaF3 [62], in which he observed "forbidden" transitions 

characterized by AS = 1, and AL and AJ ranging in value up to 6. These discrepancies were 

subsequently explained by the inclusion of third and fourth order terms in the perturbation 

expansion for the radiative process, involving spin-orbit and crystal field interactions in the 

higher 4fN - l nd and 4fN - l ng configurations [63J. This idea is originally due to Judd and

Pooler [65J. We consider for example the form of the third-order term 

L (fIE. 15lr) (rl V Is) (siE . 15l i ) 
(nw . - nw)(nw . - nw) r.. rt ... 

(1.13) 

where V is a perturbing potential which. in the work of Downer is taken to be Hao (the 

spin-orbit interaction) or He!, and 15 is the electric dipole operator. The states rand· 

s are assumed to belong to the lowest excited configuration, 4fN - 15d. An extra energy 

denominator, on the order of 105 em -1, is present. However the extra matrix element, 

(rl V Is), which represents interactions within the excited configuration, can be quite large. 

In the case where V = He! this matrix element is on the order of 104 cm- 1 as the excited d 

orbital is not shielded and sees the full effect of the crystal field. If the second-order term is 

forbidden by a selection rule, then the third order term provides the amplitude responsible 

for the transition. Since Hao and He! carry spin and orbital angular momentum, it is easy 

to see that the inclusion of the third order terms extends the angular momentum selection 

rules to l:l,S :$ 1 and l:l,L, l:l,J :$ 6. A full treatment of these effects can be found in Downer's 

doctoral thesis [64J. 
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1.3.3 Electronic Raman Spectroscopy 

The experimental observation of electronic Raman scattering preceded by many years 

that of two-photon absorption. Rasetti, in 1932, observed the 2II1/ 2 -+ 2II3/ 2 electronic 

Raman transition in the NO molecule [66J. The weakness of the lines made the technique 

experimentally difficult, and not much use was made of it. In 1963 Elliott and Loudon 

predicted that impurity ions, transition metal or lanthanide, would be suitable candidates 

for electronic Raman scattering [67J. This was followed shortly after by Hougen and Singh's 

observation of electronic Raman transitions in Pr3+ in a PrCl3 crystal, using a mercury 

lamp as the source of excitation [68J. The advent of the laser, and the high monochromatic 

intensities it offered, gave a major impetus to the field. The bulk of the laser Raman 

spectroscopic studies of the lanthanide ions can be attributed to Koningstein, beginning in 

1966 [51,52,53,54,69J. Some work was also done by Wadsack et al [70J. Transition metal 

ions have also been studied in this fashion [71,72,73,74]. The field is reviewed to 1982 by 

Clark and Dines [57J. 

The advantage of electronic Raman spectroscopy lies in its ability to identify and char

acterize the low-lying energy states of the lanthanide ions. Since the initial and final states 

correspond to irreducible representations of the site symmetry group, the electronic Raman 

process has well defined selection rules relative to the polarizations of the incident and scat

tered photons. A measurement of the intensities of the transitions in various polarization 

combinations allowed by the scattering geometry thus gives important clues as to the levels 

involved and their interaction with the radiation field. The transition amplitudes are char

acterized by the Raman scattering tensor Otpu , where p and 0' are cartesian coordinates and 

are, respectively, the polarizations of the scattered and incident photons [75]. 

One of the central features of electronic Raman scattering is the appearance of asymmet

ric transitions for which Ot pu =f Otup [76,77J. The nonresonant vibrational Raman spectrum 

is well known to be symmetric, so that for phonon peaks Otpu = Otup • For electronic Raman 

peaks there is, however, a significant change in intensity when the polarizations of the inci

dent and scattered photons are interchanged. This is one of the most intriguing features of 

electronic Raman scattering. A measurement of the amount of asymmetry of the intensities 

gives important clues as to what virtual intermediate states are involved in the second order 

process. A theoretical discussion of antisymmetric light scattering has been given by Barron 

and Svendsen [78]. Chapters 4 and 5 of this thesis describe the observation of asymmetric 
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electronic Raman scattering in rare earth phosphate crystals and analyze its importance in 

determining light scattering mechanisms in rare earth ions. 
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Chapter 2 

Experimental Aspects 

2.1 Experimental Setup for CW Raman Spectroscopy 

The experimental arrangement for the Raman work described in this thesis is shown 

in Figure 2.1. The excitation is provided by a cw. argon-ion laser. The scattered light is 

collected at an angle of 900 with respect to the input beam direction and dispersed by 

a spectrometer. The signal level is measured by a photomultiplier tube employed in the 

photon counting mode, and recorded on a str~p chart recorder. The spectra can be digitized 

for eventual computer analysis. 

20101 Laser 

The laser used in the Raman scattering experiments is a Coherent model CR-8 argon

ion laser. Its spectral output consists of a number of discretely spaced laser lines, which 

are selected by a prism located within the laser cavity. The laser lines used were in the 

blue and green regions of the spectrum. There are other laser lines in other regions of the 

spectrum, however, which for the CR-8 laser are too weak in intensity to be of any use. 

Half of the power output of the laser is concentrated in the two lines at 514.5 nm (19429.8 

cm -1) and 488.0 nm (20486.7 cm -1) which were used for the majority of the results reported 

in this study. Other lines were also used to verify that the non-resonant electronic Raman 

intensities did not depend on the excitation wavelength, and to excite fluorescent transitions 

in some of the samples investigated. The wavelengths and wavenumbers of the argon-ion 

laser lines in the blue and green region regions of the spectrum are given in Table 2.1. 

The wavenumbers of the laser lines are given in both air and vacuum, the wavelengths in 

air only. The electronic energy levels of the lanthanide ions are usually listed in vacuum 

32 



Ar+ Laser 

polarization 
rotator 

spike 
filter 

Photon Counting 
Electronics 

polarization 
analyzer ... -----...., 

PMT 

SPEX 1403 

Double 
Monochromator 

33 

Dewar 

polarization 
scrambler 

Figure 2.1: Experimental arrangement for CW Raman spectroscopy 
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wavenumbers. The excitation power at the samples was usually in the range 20 to 50 mW. 

Table 2.1: Wavelengths and wavenumbers of argon-ion laser lines. 

Wavenumber (cm- l ) 
. 

Wavelength (nm) Air Vacuum 

514.53 19,435.1 19,429.7 

501.71 19,931.6 19,926.0 

496.51 20,140.6 20,135.0 

487.99 20,492.4 20,486.7 

476.49 20,986.9 20,981.0 

472.69 21,155.6 21,149.7 

465.79 21,468.7 21,462.7 

457.94 21,837.1 21,831.0 

A spectral analysis of the light emitted by the argon-ion laser operating in the single 

line regime reveals that besides the strong laser line there are a number of weak auxiliary 

peaks which correspond to radiative transitions of the argon ions. These so-called plasma 

lines appear as extraneous peaks in the Raman spectra since the light collection system 

employed detects very weak signals. For the excitation lines at 514.5 and 488.0 nm spike 

filters are placed immediately after the collimating lens (see Fig. 2.1). These are narrow 

band Fabry-Perot filters which remove the unwanted plasma lines in a spectral region of 

± 2,000 cm-1 about the laser line. Beyond that region, or for other excitation lines where 

no spike filter is used, the plasma lines are simply catalogued by analyzing the spectrum 

of the laser light scattered by stainless steel or copper, since these materials do not exhibit 

any sharp Raman or fluorescent transitions in the visible region. 

The linewidth of an argon-ion laser line is given by the Doppler width of the argon ion 

levels, which is approximately 3500 MHz, or 0.1 cm- I . An etalon can be placed in the laser 

cavity which will produce a single-mode output and thus reduce the linewidth. This was 

not necessary for this work since 0.1 cm-1 is already much smaller than the inhomogeneous 

linewidths of the rare-earth ion electronic energy levels. 
... 



35 

2.1.2 Cryostat and Sample Mount 

The observation of electronic Raman transitions necessitates the cooling of the crystal 

sample to liquid helium and liquid nitrogen temperatures. This is accomplished by mounting 

the sample at the tip of a Janis Research "Supertran" cold-finger dewar. The advantage 

of this dewar is that the sample is surrounded by vacuum, so that there is none of the 

scattered light that would arise if the sample were immersed directly in liquid helium. The 

disadvantage is that the sample temperature is not very accurately known or controlled, 

since the sample temperature depends on the thermal conductivity of the sample and that 

of the agent which binds it to the copper tip of the dewar. 

The sample mount is made out of oxygen-free copper and fixed with screws onto the 

bottom of the cold finger. The crystal is glued onto the bottom of the mount with silver 

epoxy. In most cases the long axis of the crystal, which i~ the crystallographic Z axis, is 

mounted vertically. The length of the mount is determined by the fact that the crystal 

needs to be centered with respect to the dewar windows through which the incident and 

scattered light passes. 

An estimate of the temperature of the sample can be made by comparing the intensities 

of the Stokes and anti-Stokes peaks of a specific nonresonant Raman transition, since their 

ratio is directly proportional to the Boltzmann factor (and a possible asymmetry factor 

for certain electronic Raman transitions as discussed in Chapter 5). This temperature can 

then be compared to the value given by the Si diode temperature sensor which is mounted 

on the copper tip of the cold finger. For nonresonant scattering this ratio shows that the 

sample temperature is accurately given by the Si diode temperature sensor down to about 

15 K. Below that temperature the anti-Stokes intensities are too weak to allow an accurate 

measurement of the temperature. We estimate, however, that when the sensor readout is 

at 4.2 K the sample temperature is in the range 5-12 K. In the resonance experiments, 

where there is absorption by the sample, laser heating can occur and the temperature is 

probably higher than in the nonresonance case. The temperature uncertainty is ± 2 K, 

except between 5 and 12 K where the temperature sensor might not be giving an accurate 

readout of the temperature at the sample. Variable temperature operation between 4.2 K 

and 300 K is achieved by supplying current to a nichrome wire wound around the copper 

block of the cold finger tip. This feature was used' quite extensively. 
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2.1.3 Focusing and Collection Optics 

The primary purpose of the optics is to produce and collect the largest amount of Raman 

scattered light relative to the Rayleigh scattered light and specularly reflected stray light. 

In this way a high signal to noise ratio is achieved. The focusing optics consist of the spatial 

filter, the collimating lens L1 , an optional spike filter to reject plasma lines, and the focusing 

lens L2. The spatial filter is a Newport Research Corporation model 900, with a 0.5 cm 

focal length microscope objective and a 25J.t pinhole. The purpose of the spatial filter is 

two-fold: first, to clean up the intensity profile of the laser beam and reduce scattered light 

from the crystal; second, to expand the laser beam to a larger diameter which then allows a 

tighter focus on the sample. Collimating lens Ll is an achromatic doublet lens with a focal 

length of 14.5 cm. The beam diameter at Ll is 2.0 cm. After passing through the optional 

spike filter the beam is then stepped up horizontally by two right-angle prisms. Lens L2 is 

identical to Ll and has a focal length of 14.5 cm. 

The collection lens L3 is a Canon FD camera lens with focal length 50 mm and an 

f-number of 1.2. The sample is at the focal point of L3 which is chosen to collect the 

largest amount of scattered light. The beam is then focused on to the entrance slits by 

lens L.. L. is an achromatic doublet with a focal length of 330 mm. L. is chosen so as 

to achieve maximum illumination of the spectrometer grating. The spectrometer has an 

entrance f-number of 7.8, so that lens L. is ideally suited to image the light collected by 

lens L3 over the entire spectrometer grating. The scattered light has an aperture of 40 mm 

at L., so that L. has an effective f-number of 330/40 = 8.2 which matches well the entrance 

f-number of the spectrometer. The Dove prism placed after L. effects a 90° rotation of the 

scattered light so that it is now parallel to the entrance slits. This is necessary because the 

trace of the incident beam in the crystal is a horizontal line and the entrance slits of the 

spectrometer are vertical. It was found that use of the Dove prism increased the signal by 

at least a factor of 5. 

The choice of the collection optics is dictated by the need to collect the largest amount of 

scattered light and to image it into the spectrometer so as to completely fill the diffraction 

grating. The focusing optics can be chosen to maximize the amount of Raman scattered 

light, given the magnification of the collection optics (which is 6.6 in our case) and the di

mensions of the entrance slit of the spectrometer. The relevant parameters of the excitation 

beam are its diameter, D, and the focal length f of the focusing lens L2 . Since the beam 
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is expanded to fill the spike filter and minimize optical damage to it, we have D=21 mm. 

Schwiesow's calculations [1] then tell us that the optimum f (for the case of narrow slits) is 

then given by the expression: 

( 
vh ) t 

(f / D)opt = 14M ~ 21 (2.1) 

where M is the magnification of the collection optics. Empirically, we find that (f/D)~7 

gives us the best signal level. The reason for the discrepancy is that the focused beam 

does not have the expected Gaussian beam profile, and the focused spot size is significantly 

larger than the predicted diffraction limited value. According to Yariv [2, chapter 6], the 

beam waist of the focused spot is given by: 

Wo ~ ~ (1..) ~ 1.2Jl 
"" D . 

(2.2) 

and the confocal beam parameter of the focused beam is: 

(2.3)' 

The beam diameter is given by 2wo. Experimentally, the beam spot size and confocal 

parameter is found to be much larger. Figure 2.2 shows the results obtained when scanning 

a 10 Jl slit across the beam in the focal point region. We find that: 

and 

where (b)ezp is defined as twice the distance over which the beam diameter increases by 0. 
It is obvious that (b)ezp and (WO)ezp are not related by the Gaussian beam expression 

(2.3). The fact that the experimental beam waist and confocal parameter are so much larger 

than the expected value is most probably due to the finite divergence of the incident beam 

at L2 • Since our focused beam does not behave according to Schwiesow's assumptions it is 

understandable that his prescription for maximizing the amount of Raman scattered light 

does not work very well in our case. With a magnification factor of 6.6 the image on the 

entrance slit of the scattering volume is significantly larger than 200 Jl in width, so that 

some signal is being lost. The signal level is, however, high enough to enable the observation 

of most of the transitions of interest to this study. 
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Figure 2.2: Argon ion laser beam diameter in the focal region of lens L2 as measured with 

a 10~ slit scanned across the beam profile. The smooth curve represents the best fit of a 

Gaussian to the experimental points. 
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2.1.4 Spectrometer and Photon Counting System 

The spectrometer used to analyze the radiation scattered by the crystal is a SPEX 

Industries model 1403 double monochromator. It has a focal length of 0.85 m and an 

f-number of 7.8. The two gratings are in a modified Czerny-Turner mount. The primary 

purpose of the spectrometer is to produce a high signal to noise ratio, as the electronic 

Raman intensities are in general quite weak and can be easily swamped by too high a 

background of scattered laser light. For this reason a double monochromator is used since 

it has a very high stray light rejection ratio. Very finely ruled holographic gratings with 

1800 grooves/mm are used. These gratings produce less ghosts and scattered light than 

diamond ruled gratings. Their spectral range runs from roughly 300 to 1000 nm. The 

grating spectral response also depends on the polarization of the incident light. However, a 

polarization scrambler is placed at the entrance slits which eliminates the need to correct for 

the differ·ent polarization efficiencies. The polarization scrambler, or depolarizer, consists 

of a 2° crystal quartz wedge with a second compensating fused silica wedge. 

Standard entrance and exit slit widths for the work reported in this thesis are 200 J.' (the 

intermediate slits are also at 200 J.'). This corresponds to a spectral bandpass of roughly 2.5 

cm -::-1 in the blue and green regions of the spectrum. This is sufficient for most of the Raman 

studies reported in this work. When better resolution is required the slits are closed down 

to 80-100 J.'. The calibration of the spectrometer is performed using the lines of the mercury 

lamp, and is maintained to within ± 0.5 cm- l . Variations in the ambient temperature of 

the laboratory can result in slight shifts of the wavenumber calibration of the spectrometer 

during day to day operation. 

The light dispersed by the double monochromator is collected by an RCA C31034 pho

tomultiplier tube. This tube has both a very high gain (106) and a very low dark count 

(l0-20 counts per second when cooled). It is thus quite suitable for low light level photon 

counting experiments such as Raman scattering. The voltage across the tube is 1500V. The 

tube is placed in a Products for Research TE-I04RF refrigerated chamber which cools the 

photomultiplier down to about -25°C. It also shields against electromagnetic interference 

which would otherwise produce spurious counts. This tube operates in the spectral range 

of roughly 220 to 880 nm. 

The photomultiplier tube is operated in the photon counting mode with the SPEX 

DPC2 digital photometer system. It consists of an external preamp-discriminator which 
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converts the current pulses from the PMT into digital pulses which are then counted by the 

DPC2. The spectrometer is driven by a SPEX Compudrive. Typical scan times are in the 

range 0.05 to 0.5 cm-1 and the corresponding integration times are 5 to 0.5 seconds. The 

slower scan rates are needed to achieve a high signal to noise ratio for the weaker signals. 

The spectra. are directly recorded on a strip chart recorder. In some cases the spectra were 

digitized with a digitization pad for computer processing with a DEC VAX computer. 

2.1.5 Efficiency of the Light Collection System: 

It is useful to estimate the efficiency of the collection optics so as to be able to get an 

idea of the absolute amount of radiation scattered by the crystal. None of the elements of 

the collection system transmit 100% of the light incident upon them. In this section we 

catalogue the efficiency of these various elements for the wavelengths 514.5 nm and 488.0 

nm. The efficiency is defined as the ratio of transmitted light to incident light, and is given 

in percent. 

~ Photomultiplier tube: The RCA C31034 photomultiplier has a quantum efficiency in 

the blue-green region of the spectrum of approximately 15% [3] . 

• Double monochromator: The mirrors are assumed to be perfectly reflecting. Each 

grating has an efficiency of 65% at 514.5 nm and 55% at 488.0 nm. For two gratings 

the resulting total efficiency is 42% at 514.5 nm and 30% at 488.0 nm . 

• Collection optics: We assume that each glass surface has a 95% transmission factor. 

Overall we thus have an efficiency of 65%. In addition the sheet polarizer used to 

analyze the polarization of the scattered light has an efficiency of only about 30% in 

the blue and green regions of the spectrum. 

• Solid-angle of the collection lens: The camera lens used to gather the light scattered 

from the crystal has a diameter of 40 mm and is 50 mm away from the sample. It 

thus collects over a solid-angle of 0.5 steradians. 

The angular dependence of the Raman scattering intensity is proportional to sin20 dO, 

where 0 is the angle between the direction of observation and the axis of the induced 

dipole moment of the radiating system, and dO the solid angle into which the light is 

scattered [4,5]. For the 90° scattering geometry employed in this work 0 = 90° and 

\ 

c, 
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the scattering is maximized. Integrating the intensity per solid angle over the full 41r 

solid angle, it can be seen that the relative Raman intensity scattered into a small 

solid angle an at 0 = 90° is 8~an. For our collection lens the amount of scattered 

light collected is thus 6% of the total amount radiated. Taking into account all the 

elements of our light collection system, the overall efficiency at 514.5 nm is: 

number of collected photons = .15 x .42 x .65 x .30 x .06 = 7.410-4 

total number of radiated photons 

2.2 Absorption Measurements 

The absorption spectra of the rare earth phosphates were obtained using several dif

ferent techniques. High resolution photographic observations were made on a 3.4 m Ebert 

spectrograph with a reciprocal dispersion of about 5.2 A in the first order. Linear polariza

tion of the spectra was obtained in the directions perpendicular and parallel to the crystal 

axis, which allows the classification of the irreducible representations of the levels. The 

observations were made with sample temperatures of -4.2 and 77 K. The higher temper

ature spectra allowed the observation of some of the ground multiplet excited crystal field 

energy levels. The measurements were also done with a magnetic field of 26 kG applied to 

the sample to determine the g values of the states. Lower resolution spectra were obtained 

with a Cary model 17 spectrophotometer. Details of these measurements can be found in 

Hayhurst et al [6] and Becker et al [7]. 

The calculation of the relative resonant Raman intensities in the case of the erbium 

phosphate crystals necessitated the measurement of the absolute oscillator strengths of the 

4116/ 2 -+ 4 F7/ 2 transitions. This was performed using tunable pulsed laser absorption by 

Williams [8]. 

2.3 Crystal Samples 

The rare earth phosphates (RE)PO. are ionic insulating crystals which crystallize in 

two different forms. The rare earth phosphates with rare earths belonging to the first half 

of the lanthanide series, LaPO. to GdPO., have the monazite monoclinic structure. The 

second half of the series, TbPO. to LuPO., and also YPO. (xenotime) and ScPO., have 

the tetragonal zircon structure. In this work we have utilized only the tetragonal crystals, 
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in particular HoPO., ErPO., TmPO., YbPO., and Ho, Er, Tm, and Yb doped in varying 

amounts into LuPO. and YPO •. 

The zircon structure is a tetragonal arrangement consisting of alternating PO. tetrahe

dra and rare earth atoms [9, p. 334-335]. A unit cell contains four formula units, however, 

a primitive cell can be found which contains only two formula units since the lattice is 

body-centered cubic. The lattice space group is D!~, and the point symmetry group at the 

rare earth ion site is D2d. This has been verified directly by x-ray diffraction structural 

determinations [11,12]. All the rare earth ion sites are equivalent, as the two ions in the 

primitive cell are related by a center of inversion situated midway between the two ions. 

The immediate environment of the lanthanide ion is determined by eight 0 2- ions, arranged 

in two distinct tetrahedra centered about the rare earth ion. The oxygen ions are roughly 

2.3A from the rare earth ion. There are four other rare earth ions equidistant from each 

rare earth ion, at a distance of about 3.7 A. The cell dimensions are 6.8A x 6.8A x 6.oA (for 

LuPO.). Details of the crystallographic structure can be found in Linares et al [13], and a 

picture of the crystal structure can be found in Elliott et al [14]. 

It is interesting to note that mixed crystals containing different lanthanides, such as 

YbzLul-zPO., have exactly the same spatial structure as the pure lanthanide phosphates 

[151. This means that these crystals can be tailored to control the optical properties of the 

ions, as was done for erbium phosphates (see chapter 5) and for ytterbium phosphates (see 

chapter 6). 

The crystals were grown at Oak Ridge National Laboratory by L.A. Boatner and M.M. 

Abraham [16]. The original impetus for this effort was the search for a suitable host for 

storage of nuclear wastes [171. The crystals were grown using a flux technique initially 

described by Feigelson [18] and described in more detail by Rappaz et al [10] and Milligan 

et al [11]. 

The samples used in the Raman scattering experiments were in the form of platelets 

with typical dimensions 15 mm x 4 mm x 1 mm. Figure 2.3 shows the appearance of 

these crystals and the definitions of the crystallographic X, Y, and Z axes. Also shown are 

the x, y, and z symmetry axes of the lanthanide ion's D2d site symmetry group. The faces 

perpendicular to the X and Y axes were quite smooth and did not need polishing. The 

edges perpendicular to the Z axis were jagged, but no effort was made to polish these edges 

as the crystals were quite brittle and spectra of sufficiently high quality could be obtained 

I. 
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with the crystal in its "raw" state. 

2.4 Accuracy of the Polarization Measurements 

The determination of the electronic Raman intensities in the various polarization com

binations allowed by the experimental geometry forms an important part of this work. A 

particular problem that arises in these measurements is the leakage of intensity from one 

polarization into another. This can potentially vitiate the experimental data. It has been 

noted previously by Porto and co-workers [19,20] that such leakage can be explained for 

birefringent crystals as arising from the finite solid angle subtended by the collection lens. 

The explanation is that since the ordinary and extraordinary rays propagate at different 

velocities within the crystal, a particular ray can pick up a polarization component it did 

not have to start· out with, due to changes in interference between the ordinary and ex

traordinary rays as they propagate in the crystal. The rare earth phosphate crystals ar1, 

in fact birefringent. The crystal YP04 is known to be positive uniaxial, with the indices 

of refraction no = 1.721 and ne = 1.816 at .\ = 5893 A [21]. We expect the indices of' 

refraction for the other rare earth phosphate crystals to be quite similar. 

The extent of the polarization leakage can be readily determined by that exhibited by 

the phonons, which have well defined selection rules with respect to the polarization of the 

incident and scattered photons. Section 3.1 describes in more detail the definition of the 

polarization scattering tensors and their group theoretical form. 

It became immediately apparent that the major leakage problem exists primarily be

tween the XX, YY and XY, YX polarization combinations (between the BIg and B2g sym

metries in group theory language). This was also the observation of Elliott et al [14] for 

several rare earth phosphate and vanadate crystals. They attributed the phenomenon to 

static strains within the crystals. The study of numerous rare earth phosphate crystals 

for the purpose of the investigations reported here lead to the conclusion that the polar

ization leakage depends for the most part on the crystal alignment, the particular area of 

the crystal irradiated by the laser beam, the sample used, and in some cases the excitation 

wavelength. The birefringence effects mentioned by Porto do not seem to playa large role. 
I 

The measurements reported here were all done with the incident light propagating along 

X and the scattered light along Y. For this geometry the birefringence effects would cause 

" 
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Figure 2.3: Appearance of the rare earth phosphate crystals and definition of the crystallo

graphic X, Y, and Z axes and the local x, y, and z symmetry axes. 
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leakage between XZ and ZZ. However, in practice this leakage is negligible. Much more 

leakage is observed when the incident beam is along Z, due to the crystal imperfections at 

the ends. 

Intensity measurements were retained only for those spectra which showed polarization 

leakage of at most 10% between the BIg and B 2g symmetries, and at most 5% for all the 

other symmetries, based on the phonons. Since measurement of the electronic asymmetry 

with respect to interchange of the polarization of the incident and scattered photons is one 

of the more important goals of this work, special care was taken to ensure that the phonon 

spectrum was symmetric for the scans used for intensity determinations. 
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Chapter 3 

Basics of Raman Scattering in Rare 

Earth Phosphates 

This chapter is a collection of fundamental results necessary to the interpretation and 

analysis of the Raman spectra obtained. The group theoretical form of. the Raman scatter

ing tensors f()r both phonon and electronic Raman scattering is given. The experimental 

phonon spectrum is discussed for the tetragonal rare earth phosphate crystals. Finally, the 

amplitude of electronic Raman transitions is computed within the Judd-Ofelt framework, 

using the techniques of second quantization applied to the calculation of atomic matrix 

elements. 

3.1 Crystal Scattering Tensors 

The polarization characteristics of the vibrational or electronic Raman transitions permit 

the identification of the symmetries of the levels that participate in the process. This section 

describes the various scattering tensors for the rare earth phosphate crystals. 

3.1.1 Definition of the Scattering Tensor 

The Raman scattering process can be described by a scattering tensor, denoted as Cipo-, 

where p and (1' are either Cartesian or spherical coordinates [1]. Cipo- represents the amplitude 

of a scattering process in which an incident light wave of polarization (1' is inelastically 

scattered into a light wave of polarization p. In this work Cartesian coordinates are used, so 

that p,(1' = X,Y,Z, where X,Y, and Z are defined by the crystallographic axes of the crystals 

as shown in figure 2.3. The intensity of the Raman process is proportional to ICipo- 12 , the 

47 
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absolute square of the Raman amplitude. CY. pu can be conveniently written in the form of a 

three by three matrix: 

CY. pCf = (::: ::: ::: 1 
CY.zx CY.ZY CY.ZZ 

(3.1) 

The matrix with elements /CY. pCf /2 will be called the scattering matrix. 

A particular scattering geometry is uniquely described by listing the polarizations and 

directions of propagation of the incident and scattered photons. The notation used in this 

thesis has the form: 

with 

K. (E. Ei) Ki 

K,: direction of propagation of the scattered photon 

E.: polarization of the scattered photon 

Ei: polarization of the incident photon 

Ki: direction of propagation of the incident photon 

where the frame of reference used is defined by the crystallographic axes X, Y, and Z. For 

example, Y(XZ)X represents a Raman process with Z polarized incident photons traveling 

along X, and X polarized scattered photons traveling along Y. This is the reverse of the 

notation used by Porto et al [2]. The notation above places the incident photon on the 

right and the scattered photon on the left so as to mimic the expression for the quantum 

mechanical amplitude of the process as calculated in section 3.3: 

final state +- scattered photon +- intermediate state +- incident photon +- initial state 

since the the initial state is a ket and the final state a bra. 

The symmetry of the crystal lattice determines the selection rules for the vibrational 

and electronic Raman scattering processes. The vibrational and electronic energy levels 

are labeled by the irreducible representations of the symmetry groups which describe their 

invariance properties. As a result of the group theoretical selection rules, some of the 

elements of the scattering tensor CY.p<7 will be zero. This is described for Raman scattering 

by both phonons and electronic states. 
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3.1.2 Phonon Scattering Tensors 

The phonons are classified by the irreducible representations of the group D4h, which 

is the symmetry group of the unit cell, also known as the factor group [3]. Since there are 

two (RE)P04 molecules per primitive cell there are 3 x 2 x 6 = 36 modes of vibration with 

k = 0 of which 33 are optical modes. Using the irreducible representations of D4h, these can 

be written 2Atg + A 2g + 4Btg + B2g + 5Eg + Atu + 3A2u + Btu + 2B2u + 4Eu. Modes 

subscripted g (gerade) are of even parity while those subscripted u (ungerade) are of odd 

parity. There are a total of twelve Raman active frequencies: 2A1g + 4B1g + B 2g + 5Eg . 

The Eg modes are doubly degenerate, all the other modes being singly degenerate. The A 2g 

symmetry mode is not Raman active as the tensor which transforms as A2g is antisymmetric 

and only symmetric tensors are allowed for nonresonant Raman scattering by phonons. The 

vibrational spectrum of the zircon structure has been treated in great detail by Miller et al 

[4] and Dawson et al [5]. The polarization dependence of these Raman modes is contained 

in their respective Raman tensors listed below in Table 3.1 (from Loudon [6D. The axes 

used are the X, Y ,Z crystallographic axes. 

Table 3.1: Phonon Raman scattering tensors for the zircon structure (D4h). 

A" U 0 

n B" U 0 

n B" [: 

d 

n a -c 0 

0 0 0 

u 
0 

n u 
0 

n Eg 0 and a 
0 f 

3.1.3 Electronic Scattering Tensors 

The general form of the tensors Oipu for Raman scattering from electronic levels can be 

obtained from group theoretical considerations, as was done for the phonons. The electronic 

levels are classified by the irreducible representations of the point group D2d , which is the site 

symmetry group of the lanthanide ion in the zircon structure (RE)P04 crystal lattice. There 
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is, however, an added subtlety in the electronic case in that two of the ion's symmetry axes 

are rotated by 45° relative to the crystallographic axes. In what follows, the local symmetry 

axes of the lanthanide ion will be denoted using lower case letters, to distinguish them from 

the crystallographic axes. We assume for tbe time being that the elctronic Raman effect is 

a process involving only a single ion. 

The x and y axes, which are the two-fold C2 axes of Du, are rotated in the X-Y 

crystallographic plane by 45° relative to the X and Y axes (see figure 2.3). The z axis is 

parallel to the Z axis. Since the symmetry properties of light scattering processes involving 

the rare earth ion are derived in the local D2d symmetry (the X,y,z frame)' a transformation 

is necessary to express the results in the crystallographic X, Y ,Z frame. The crystallographic 

axes are used to label the experimental data as they are the major macroscopic axes of the 

crystal. In particular, certain scattering tensors will look different when viewed in the X,y,z 

frame as opposed to the X,Y,Z frame. A Raman scattering tensor at>.", that is calculated 

in the rotated X,y,z frame is related to the tensor atfKT expressed in the X,Y,Z frame by the 

equation: 

(3.2) 

R being the matrix of a 45° rotation about the Z axis, Rt its transpose, p,(f = X,Y,Z, and 

>',1-' = x,y,z [IJ. We have 

sin(45°) 

cos( 45°) 

o 
(3.3) 

In this work the scattering tensors are first calculated in the local x,y,z frame and then 

rotated into the X,Y,Z frame. 

The electronic scattering tensors at>.", can be either symmetric or antisymmetric, in 

contrast to the phonons, which contain only symmetric tensors (for nonresonant Raman 

processes). The form of these tensors for the various irreducible representations of D2d is 

given below in Table 3.2, in both the x,y,z and X,Y,Z axes. The notation used for the 

irreducible representations is that of Koster and Dimmock [7J. The most visible effect of 

this rotation is that some tensors having diagonal elements may be transformed into tensors 

having diagonal elements equal to zero, and vice-versa. This occurs in particular for the 

symmetries rs and r 4, which are essentially interchanged. Neglect of this effect can lead to 



Table 3.2: Electronic Raman scattering tensors for D2d. 

rs 
(symmetric) 

rs 
(antisyrnmetric) 

axes x,y,z axes X, Y,Z 

( 

: : : ] 1---+ [~e : : ] 
000 '000 

[: ::] [:: ;:] 
f 0 0 f' fl 0 

1---+ 

[ 
: : : ] [:: _g~/] 
o g 0 _g' g' 0 

[: : :] [:::: ] 
- h 0 0 - h' -h' 0 

1---+ 

[ : : ~ ] [:: ~/i/] 
o -i 0 i' _it 0 
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{ 
f' = f/V2 
g' = g/V2 

{ 
h/=h/V2 

i' = i/V2 

'," ,.~ 
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an erroneous identification of the symmetry of a transition. Also, it should be pointed out 

that since the x and y axes are equivalent (the crystal in uniaxial) one must have 

and 

since their absolute squares represent physically observable intensities which by symmetry 

are required to be equal. 

Consider an initial state labeled by the irreducible representation ri and a final state 

labeled r /. To obtain the symmetry of the Raman tensor Qpa one simply requires that the 

direct product r i ® r( QP<1) ® r / contain the identity representation. This means that the 

allowed tensors are given by the decomposition of r i ® r / into irreducible representations. 

Of particular interest are the scattering tensors of symmetry rs. Since the rs irreducible 

representation is two dimensional it actually represents the transformation properties of a 

pair of tensors. The two tensors of this pair can be written rsx and rSY for obvious reasons. 

Now, in obtaining the scattering intensity for a particular transition, it is necessary to 

first square the scattering amplitudes for each allowed symmetry, and then to add them. 

Tensors of different symmetry correspond to different initial and/or final states which is 

why quantum mechanics requires that the tensors be squared before they are added. A 

transition of some particular energy can have intensity contributions from more than one 

symmetry channel only if there are any degeneracies in either the initial or final state. 

The scattering matrix thus corresponds to an incoherent sum of the squares of the various 

symmetry scattering tensors. As shown in Table 3.2, rs represents both a symmetric and an 

antisymmetric tensor. For a transition that is rs allowed, the symmetric and antisymmetric 

tensors are added coherently, since it is impossible to distinguish experimentally between 

the symmetric amplitude channel and the antisymmetric one. This is done for both rsx 
and rSY. The final scattering matrix for a rs transition, irrespective of any rotation about 

the Z axis will thus have the form: 

o 
o 

If - hl 2 

(3.4) 

It is immediately apparent that such a transition is asymmetric. Reversing the polarizations 

of the incident and scattered photons results in a different scattered intensity. This is in 

stark contrast to phonon Raman scattering which is always symmetric (under nonresonant 
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excitation). The amount of asymmetry can be measured by the ratio: 

Ixz 
= 

Izx 
(3.5) 

the value of which depends on the relative strengths of the symmetric and antisymmetric 

contrl.butions. The observation of strongly asymmetric electronic Raman scattering pro

cesses is one of the main results of this work. As discussed in chapter 5, the measurement of 

the asymmetry ratio is a sensitive test of the theory used to predict the electronic Raman 

scattering intensities. 

3.2 Experimental Phonon Spectrum 

The phonon spectra of the tetragonal rare earth phosphate crystals do not vary much 

as the constituent lanthanide ion is changed. This is due to the fact that the ionic radii 

and atomic masses of the various trivalent lanthanides are quite similar, so that the crystals" 

have almost identical distances and restoring forces. As a result, the phonon frequencies 

. and intensities do not vary much from one tetragonal rare earth phosphate to another. 

The exception is YPO., which has markedly different phonon frequencies than the other 

crystals in the 100-200 cm- 1 region. This is not too surprising as Y has a substantially 

different atomic weight compared to the lanthanide series elements, and is not a "true" 

rare earth. This section describes the experimental phonon spectrum and catalogues the 

phonon frequencies for the different crystals studied. This knowledge is of vital importance, 

as the phonon spectrum is the backdrop against which the electronic peaks arise at low 

temperature. 

3.2.1 Phonon Spectrum of LuPO. 

The group theoretical classification of the optical phonons of LuPO. was introduced in 

section 3.1.2. There are a total of twelve Raman active phonons, which can be labeled by 

the irreducible representations of D.h. Polarized Raman scans allow the identification of 

the symmetry of each phonon observed, via the scattering tensors shown in Table 3.1. 

Figure 3.1 gives a general view of the optical phonon spectrum of LuPO., at the tem

peratures 295, 77, and approximately 4.2 K. It is typical of the phonon Raman spectra 

of any of the rare earth phosphates. The phonons are in the 0-1100 cm- 1 region. Figure 
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Figure 3.1: Un polarized. phonon Raman spectra of LuPO. at the temperatures 295, 77, and 

4.2 K_ The full scale is 50,000 counts per second for the T = 4.2 K and T = 77 K scans, 

and 5,000 counts per second for the T = .295 K scan. 
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3.1 was obtained with the incident beam polarized 50% along Z and 50% along Y and 

with no polarization analyzer at the entrance slits of the spectrometer. All the slits were 

opened to 200 jJ, and the excitation was at 514.5 nm. The incident power was 25 mW. 

The strongestphonons are those in the 1000 cm- 1 region. These phonons correspond to 

stretching modes of the (P04)3- group. Polarized scans with the polarization combinations 

(XY), (XZ), (ZY), and (ZZ) of the scattered and incident photons, are shown in Figure 

3.2 at approximately 4.2 K (see section 3.1.1 for the definition of the polarization labels). 

The experimental conditions for Figure 3.2 are the same as for Figure 3.1. The symmetry 

characteristics of the various phonons is quite clear in Figure 3.2. Polarization leakage can 

be observed in these spectra. The BIg modes which are allowed only in (XX) and (YY) 

are seen in the (XY) spectrum. This is the most prevalent leakage problem, as mentioned 

earlier. The strong phonon A~g also leaks through to the other polarizations. The amount 

of leakage is at most 10% for the spectra of figure 3.2. 

The optical phonons of LuPO. can also be classified fairly accurately according to 

whether they originate from vibrations of the phosphate tetrahedron (so called internal 

modes), or from the relative motion of the lanthanide ions and the phosphates (so called 

external modes). The external modes are lower in frequency than the internal modes as the 

groups of atoms involved are heavier and further apart. The internal modes come from the 

four vibrational modes of the PO. molecule, which have the frequencies 420, 567, 938, and 

1017 cm- I [8J. Their degeneracy is lifted first by the nonisotropic environment that the 

(PO.)3- molecules encounter when placed in the crystal lattice, and which has the sym

metry D 2d . The interaction between the two phosphate groups in the primitive cell further 

splits the phonons into g (symmetric) and u (antisymmetric) modes. The progressive lifting 

of the degeneracies involved is discussed in more detail by Miller et al [4], Dawson et al [5], 

and Lazarev et al [9J. Miller et al [41 and Dawson et al [51 also show pictures of the motions 

of the atoms for each of the vibrational modes. 

3.2.2 Frequencies of the Raman Active Phonons 

Table 3.3 lists the frequencies of the Raman active phonons of LuP04 , YbP04 , TmP04 , 

ErP0 4 , HoP04 , and YP0 4 , at the temperatures 295, 77, and approximately 4.2 K. 

The phonons are labeled by the irreducible representations of D4h. The first five phonons 

are external modes of vibration, while the last seven are internal modes [10]. The super-



56 
Y(XY)X 

82~ 

8 1
1
9 

819 

J.wx 10 
A~ 81~ -L-X 10 
~ 1 

100 200 300 400 500 600 700 800 900 1000 

E3 
Y(XZ)X E5 

9 
9 

E4 

E2 
9 

E1 9 
9 

100 200 300 400 500 600 700 800 900 1000 

E3 
Y(ZY)X E 5 

9 
9 

E4 
E2 9 

E1 9 A2 I 
9 191 8 4 i 

~ 
100 200 300 400 500 600 700 800 900 1000 

I 
:-
I 

Y(ZZ)X 
A12g 

100 200 300 400 500 600 700 800 900 1000 

cm-1 

Figure 3.2: Polarized phonon Raman spectra of LuPO. at approximately 4.2 K. The full 

scale is 50,000 counts per second for the Y(ZZ)X scan and 10,000 counts per second for all 

the other scans. 
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Table 3.3: Frequencies (em-I) and symmetries of the Raman active phonons of LuP04, 

YbP04 , TmP04, ErP04, HoP04 , and YP04 , at 295, 77, and approximately 4.2 K. 

EI 
g B~g E2 

g Big E3 
g B~g A~g E4 

g Big Aig E5 g Btg I 
LuP04 

-

295 K 133 139 186 a 305 329 488 582 666 1011 1032 1069 

77 K 133 138 186 a 305 330 488 583 665 1012 1033 1070 

4.2 K 133 140 187 a 307 329 490 583 666 1013 1034 1072 

YbP04 

295 K 133 139 186 a b 330 490 583 664 1010 1030 1068 

77 K 134 145 186 a b 330 492 583 665 1011 1033 1072 

4.2 K 134 149 187 a b 330 492 584 666 1011 1033 1072 

TmP04 

295 K 133 139 186 a 304 331 488 581 662 1006 1025 1064 

7B K 133 139 188 a 310 331 491 582 664 1009 1031 1070 

4.2 K 134 137 188 a 309 330 490 580 662 1009 1031 1071 

ErP04 

295 K 132 a 185 a 299 330 486 578 658 1003 1023 1060 

77 K 132 140 185 a 302 330 488 580 659 1004 1026 1063 

4.2 K 133 140 186 a 303 329 487 579 659 1004 1026 1064 

HoP04 

295 K 131 140 184 a 297 332 486 578 656 1000 1022 1057 

77 K 131 142 181 a 301 331 487 578 658 1003 1025 1062 

4.2 K 130 141 180 a 302 330 488 578 657 1003 1025 1062 

YP04 

295 K 157 185 210 a 299 331 484 581 660 1002 1027 1059 

77 K 157 186 211 a 303 332 485 582 661 1003 1028 1062 

4.2 K 157 187 211 a 303 332 485 582 662 1004 1029 1062 

a: not observed. 

b: in YbP04 • E; couples to electronic transitions (see chapter 8). 
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scripts distinguish different phonons with the same irreducible representation label. The 

frequencies have been averaged from several scans and have an accuracy of ±1 cm- l
. The 

room temperature values are fairly close to those reported by Begun et al [8], although a 

careful comparison between the two sets of numbers reveals that in some cases there are 

discrepancies on the order of ±3 cm- I . It should be noted, however, that some of Begun 

et al's symmetry assignments are in error, which is not surprising as their samples were in 

the form of powders. The symmetry assignments presented here agree with those of Elliott 

et al for DyPO. [10]. 

The Raman spectrum of TmPO. has been reported by Guha [11]. The phonon fre

quencies presented here agree with Guha's in the low wavenumber region. However, they 

increasingly disagree with his values from 300 cm-I up to 1100 em-I, as his data seems to 

be tainted by some kind of systematic error. 

The Big phonon is too weak to be observed. In YVO., where the phonon frequencies 

are substantially lower than in the rare earth phosphates, this phonon is reported to be at 

265 cm-1 [101. 

The phonon spectrum of LuPO. and YbPO. was taken with the green argon-ion laser 

line at 514.5 nm at the temperatures 4.2, 77, and 295 K, and also with the blue line at 488.0 

nm at 4.2 K. The Raman spectrum of YbPO. is extremely peculiar in that strong electron

phonon coupling effects seem to be manifesting themselves. This situation is discussed more 

fully in chapter 6. At room temperature the ErPO. phonon spectrum was observed only 

with the 457.9 nm line, as strong fluorescence is observed from the sample with excitation 

at 514.5 and 488.0 nm. At 77 K only the 457.9 nm line was again used. At 4.2 K, the lines 

at 457.9, 488.0, and 514.5 nm were all used. The phonon spectrum of HoPO. was measured 

with the 514.5 nm line at 295 and 77 K, and with both the 514.5 and 488.0 nm lines at 4.2 

K. For YPO., all the phonon measurements were made with the green line at 514.5 nm. 

It is found that the relative intensities of the external modes varies quite a bit from 

sample to sample and also depends on the choice of the sampling volume within the crystal. 

This does not occur for the internal modes, which suggests the presence of strains within the 

crystals that affect more the external modes. In the worst cases, it was sometimes observed 

that the external Eg modes were sometimes not symmetric with respect to interchange of 

the polarizations of the incident and scattered photons. However, for all the samples a 

strain free region of the crystal could usually be found for which the Eg phonons were "well 
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behaved". This was necessary to ensure an accurate measurement of the asymmetry of 

certain electronic Raman transitions. 

3.3 Judd-Ofelt Theory of Two-Photon Processes in Triva

lent Lanthanides 

3.3.1 Second Quantization and Atomic Theory 

The methods of second quantization can be exceedingly useful for the calculation of 

atomic matrix elements. In particular, second quantization provides a very powerful and 

elegant means for computing matrix elements that make use of the closure relation in 

angular momentum space as an intermediate step of the calculation. The application of the 

methods of second quantization to atomic calculations has been largely the work of Judd 

[12,13]. 

The technique has been found to be of particular interest in the calculation of two-photon 

matrix elements for trivalent lanthanides. Judd used second quantization to calculate the 

third-order two-photon matrix elements involving spin-orbit interactions in the intermediate 

states [14J. Similarly, Downer [15,16,17J calculated third-order and fourth-order. matrix 

elements involving both spin-orbit and crystal field interactions in the intermediate states. 

Second quantization is thus the method of choice for the calculation of the various transition 

amplitudes that are of interest in this work. Some of the basic properties of the method are 

summarized here to aid in the understanding of the calculations that follow. The reader is 

urged to consult the works of Judd for more detail and rigour. 

The principal actors of the second quantization method are the creation and annihilation 

operators a1 and ak' which create and destroy fermions specified by the quantum numbers 

k == (nlmsml) and k' == (n'I'm~mD. They obey the anticommutation rules: 

and (3.6) 

For a specific shell (nl) of fermions of spin 8 the various a1 form the components of a double 

tensor at of rank 8 in spin space and I in orbital angular momentum space. The situation 

is similar for the tensor a. In the case of the trivalent lanthanides, these tensors will be f 

and rt which annihilate and create the 14 states of an f electron, d and d t which annihilate 

and create the ten states of a d electron, and g and gt which perform the same functions 
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for the eighteen states of a g electron. The annilation and creation tensors can be coupled 

in the same fashion as other tensor operators. In so doing, they can be made to represent 

certain well known physical tensors, although the connection is not always transparent. For 

example, (ata)(10) is proportional to § and (ata)(01) is proportional to I. Note that in the 

notation (ata)(Pt), p is the rank of the coupled double tensor in spin space, and t its rank 

in orbital angular momentum space. 

3.3.2 Tensor Operator Recoupling Techniques 

The calculations that follow make extensive use of tensor operator recoupling. This is done 

with the intent of isolating certain groups of tensors, in particular conbinations of creation 

and annihilation operators, which are found to be proportional to some well known unit 

tensors. These recoupling relations are summarized here to help in the understanding of 

section 3.4.3. The techniques of operator recoupling are discussed in Judd [18] and Edmonds 

[19]. The coupling of two tensors TUd and U(h) to form a resulting tensor XU) is done 

with the Clebsch-Gordan coefficients: 

x~) = L (ilml.i2m2Iili2im) TU:)uM~) (3.7) 
"'1,"'2 

and the Clebsch-Gordan coefficients can be written in terms of the 3-J symbols: 

(i1 mli2m2Ii1i2im) = (-1)iI-i2+"'(2i + 1)~ (i1 )2 i) (3.8) 
m1 m2 -m 

The coupling of three tensor operators, or equivalently of three angular momenta iI, i2, 

i3. to form a resultant angular momentum i, takes place in two stages. One can first couple 

i1 and i2 to form in, which is then coupled with i3 to form). This would be written as 

(( 
( .) (O))(iI2) (O))U) lil)2(i12),J3,im) = T JI U J2 V 13 '" (3.9) 

The other way is to first couple hand i3 into i23, which is then coupled with )1 to form i. 

This would be denoted as 

( 
( .) ( (0) ( . )) (23)) (j) li1,.i2i3(.i23),im) = T]I U 12 V]3 m (3.10) 

The connection between the two coupling schemes is given by the relation: 

lil,)2i3()23),im) = L ((jli2)j12,i3,imli1, (i2ia);23,im) liU2(i12),i3,im) (3.11) 
il2 
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The recoupling coefficient for the coupling of three angular momenta can be written with 

the help of the 6-J symbol: 

(3.12) 

Similarly, there are two schemes for the coupling of four angular momenta, and the 

recoupling coefficient is usually written in terms of a 9-J symbol: 

((Jli2)i12, (J3i4)is4, il (Jlis)j13, ChJ4)i24,i) = 

[(2j12 + I)(2.is. + I)(2j13 + I)(2j" + I)[! { 

Jl J2 J12 

} (3.13) Js J4 iS4 

JlS i24 J 

A 9-J symbol can be reduced to a 6-J symbol if one of its elements is equal to zero [19, p. 

105]. 

Finally, the dot product of two tensors can be written as a coupled tensor of zeroth 

rank: 

T(k) . U(k) = L) -1)qTJk)U~~ = (-I)k(2k + 1) 4 (T(k)U(k)) (0) (3.14) 
q 

3.3.3 The Kramers-Heisenberg Dispersion Formula 

In its most general form, the radiative transition rate between an initial state Ii) and a 

final state If) of a material system interacting with a radiation field is written: 

2 

! = 2: (fIJI/Ii) _ ~ L (fIJl/li)(iIJlIli) + ... 
T Ii. ". Wi - Wi 

1 

(3.15) 

where )II is the material-radiation interaction Hamiltonian [20]. This equation is the result 

of time-dependent perturbation theory, and is displayed up to second order. The interaction 

Hamiltonian can be approximated, for radiation in the visible impinging upon an atomic 

system, as the sum of several terms: 

(3.16) 

where the main contribution is from the electric-dipole Hamiltonian: 

JlED = e 2: r; . E(O) = eD . i(O) (3.17) 
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The sum is over the i electrons of the atom, and the electric field is evaluated at the center 

of the atom. The rationale for these approximations is that radiation in the visible has a 

wavelength of roughly 5000 A, whereas an atom has a typical dimension of 1 A, so that 

spatially the electromagnetic field is essentially constant over the extent of the atom. In 

this approximation, the electric-quadrupole and magnetic-dipole Hamiltonians are smaller 

in magnitude than the electric-dipole Hamiltonian by a factor of a = 1;7' The electric

quadrupole Hamiltonian is: 

1 ~ ( -) ( -) - - -JlEQ = -e ~ ii· Vii· E(O) = -V· Q . E(O) 
2 . 

(3.18) 
, 

where Q is the electric quadrupole moment of the atom. The magnetic-dipole Hamiltonian 

is: 
e ... -JlMD = -J . B(O) 

2m 
(3.19) 

where j = Ei ~ = r:i(~ + 2,9i). is the total angular momentum of the atom and the 

magnetic field B is evaluated at the center of the atom. JlNL depends on the square of the 

magnetic field: 
e

2 
( _) 2 JlNL = - L ii X B(O) 

8m . , 
and is usually of negligible magnitude. 

(3.20) 

In the case of a two-photon process such as the inelastic scattering of monochromatic 

radiation of frequency w, equation (3.15) can be used to derive the following differential 

scattering cross section: 

_ L [(fIe,. DIi)Ule. Dli) + (fIe' Dlj)Ule,. Dli)j2 
. hWj - hw hWj + hw, 

1 

(3.21) 

where wand e are the frequency and unit polarization vector of the incident photon, Ws 

and e, are the corresponding quantities for the scattered photon, and liwj is the energy 

of the intermediate state. This expression is known as the Kramers-Heisenberg dispersion 

formula. It is derived assuming that only JI ED contributes significantly to the scattering 

via a second-order perturbational mechanism. The calculation is described by Loudon [20]. 

It is a fully quantum mechanical calculation in that the electromagnetic field is written in 

second quantized· form. The semi-classical calculation for spontaneous Raman scattering 

is described by Koningstein [1] and Placzek [21]. In the semi-classical picture the incident 

radiation field induces oscillating dipole moments in the material system which are then 
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assumed to radiate like classical dipoles. Raman cross sections calculated by this method 

have a factor of (w - w,)4 for the total radiated power instead of the w(w _w,)3 factor of 

equation (3.21). 

The two terms in equation (3.20) correspond to the two possible time orderings of the 

virtual absorption and emission processes. Inelastic Raman scattering can occur for both 

Ws ::; w (Stokes radiation) and for Ws ~ w (anti-Stokes radiation). Anti-Stokes radiation 

can originate only from a higher excited state of the material system, which means that 

the excited state needs to be populated, thermally or otherwise. The Kramers-Heisenberg 

formula can be applied to two-photon absorption by simply replacing WIJ with -WS. The 

scattering tensor, which represents the amplitude of the scattering of an incident photon of 

polarization (1' and energy nw into a photon of polarization p and energy nws , the atomic 

system making a transition from state Ii) to state 1/), can thus be written: 

(3.22) 

Quite often this equation is quoted in the literature without the minus sign that precedes 

it. This can lead to serious errors if interference with other amplitude channels are being 

considered. Equation (3.21) forms the starting point of our theoretical investigations. 

3.3.4 Second Quantization Derivation of the Electronic Raman Tensor 

- Contributions of the d and g Orbitals 

To evaluate expression (3.22) for the scattering tensor, the Judd-Ofelt closure technique 

will be used, since otherwise the infinite sum would be quite intractable. The intermediate 

states that contribute the most in the sum of equation (3.22) are usually assumed to be states 

of the excited 4fN- 15d configuration. This assumption will be tested by our experimental 

results. The 4fN configuration is dropped from the sum since, except in the near resonance 

case, the forbidden electric-dipole 4fN - 4fN oscillator strengths are too small to contribute 

any appreciable amplitude. In contrast, 4fN - 4fN- l n'd and 4fN - 4fN- 1n'g matrix elements 

are electric-dipole allowed, with oscillator strengths on the order of 1 to 0.1. The opposite 

parity configuration with the lowest energy denominator is 4fN - 15d, which is why it is 

usually assumed to give the main contribution to 4f - 4f second order processes involving 

infinite sums over virtual intermediate states (in the electric dipole approximation). For 

the other opposite parity configurations, the energy denominator is significantly higher 
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than that for 4fN - 1Sd, which is why their role is usually neglected. Note that because of 

the electric-dipole selection rules, the only intermediate configurations that can a priori 

be pathways for the Raman amplitude are 4fN - l n'd, 4fN - l n'g, and 4fN +1n'd9 , this last 

configuration involving the excitation of a core d electron (n'=3,4) into the 4f shell. 

The calculation of the electronic Raman amplitude follows the steps of Judd and Pooler 

[14] and Downer [17]. There are some slight differences since the above author's treatment 

is directed towards two-photon absorption with one input beam. Also, for more generality, 

we calculate the amplitude with intermediate states that belong to either the configuration 

4fN - l n'd or the configuration 4fN - l n'g. 

In an electric dipole transition between the shell (nl) and the shell (n'L'), the electric 

dipole operator can be derived to have the following second quantized form [221: 

D=I:ii _ (_1)1(2)q(21+l)!21'+l)1!(~ ~ :) 

x (n1Irln'I') [(atb)(Ol) _ (bta)(Ol)] (3.23) 

where i denotes the electrons that participate in the transition, at and a are the creation 

and annihilation operators for the (nl) shell, and b t and b those for the (n'l') shell. This 

result can be derived using the rules prescribed by Judd for finding the second quantized 

form of an atomic one-particle operator [18J. Since our initial state belongs to the (4f) shell, 

at, a = ft ,f and I = 3: 

(3.24) 

For d electrons we have I' = 2 and the electric dipole operator is: 

(3.25) 

and for g electrons it is: 

(3.26) 

Dropping the radial integral and numerical factors, the first term on the right hand side of 

equation (3.22) is: 

4CN - 1n'I' 
nWj - nw 

(3.27) 
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The Judd-Ofelt closure approximation is then applied: 

L Ij)(jl ~ 1 L Ij)(jl = 1 
. ;"Wj - ;"W Ellf -;"w . Ellf - ;"W 

1 1 

(3.28) 

where Ellf is the average energy difference between the configurations 4fN and 4fN - 1n'I'. 

Expression (3.27) becomes: 

(3.29) 

The goal here is to pass b to the right so as to make use of the relation bli} = 0, since 

the initial state Ii} contains no (n' I') electrons. When b crosses b t, use can be made of 

the anticommutation relations (3.6). Also, note that the ranks of the tensors f, ft and b, 

bt are, respectively, (i3) and (ll'). The scalar products of equation (3.29) are written as 

tensors of zeroth rank: 

This expression can be recoupled so as to isolate b and b t: 

(e~ol}(ftb)(Ol)) (00) = 

L)O, (l, !)O, 01 (O! )r, !, 0) (1, (3/') 1,01 (13)t, 1',0) (( e~Ol)ft)(1"t)b ) (00) (3.31) 
r,t 

Notice that the recoupling is done independently in both spin and orbital angular momen

tum space. Necessarily r = !, and since t must be coupled to I' to form 0, t = I'. We find 

that both recoupling coefficients are equal to one: 

3 (e~Ol)(ftb)(Ol))'oo) (e(Ol) (btf)(Ol)) (00) = 

3 (( e~Ol)ft)( 41/)b ) (00) (( e(Ol)f) <4l/)b t )'00) (3.32) 

b and b t are now brought together: 

3 ((e~Ol)ft)W/)b)(oo) ((e(Ol)f)W/)bt) (00) = 

-3 I)O! )0, (!! )0, Ol( H)r, (!! )r, 0)((1'1')0, (1'1')0, 01 (/'I')t, (/'l')t, 0) 
r,t 

(3.33) 

The sign change comes from passing b to the right of f. We then make use of the commu

tation relation: 
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whichs says that for (Tt) "# (00), (bbt )(1't) is proportional to (btb ) (1't) , at which point 

bli) = ° can be invoked so that the only term that will remain on the right hand side 

of equation (3.29) is that in (bbt)(OO). From (3.34) (bbt)(OO) = (2)~(2/' + 1)4 and the 

recoupling coefficients can be evaluated to be respectively! and (2/' + 1)-1. We obtain: 

e(Ol) . (ftb)(Ol)e(Ol) . (btf)(Ol) = _ 3 1 (e~01)ft)(41')(e(01)f)(41')) (00) (3.35) 
II [2(2/' + 1)]2 

The final recoupling brings together f and rt, and the two electric field polarization vectors: 

_ 3 1 (e~01)ft)(41')(e(01)f)(41')) (00) = 
[2(2/' + 1)]2 

x 3 1 2:){o!H, (o!H, 01{OO)T, C!!)T, 0)(13)/', (13)/', Ol{ll)t, (33)t, 0) 
[2(2/' + 1)]"i 1',t 

X (ei01)e(01))(1't) (ftf)(1't)) (00) (3.36) 

Necessarily T = 0, so that the first recoupling coefficie.nt is equal to 1. t can only take on 

the values 0,1,2, and the second recoupling coefficient is: 

1
13/') 

({13)/', (13)1',01(1l)t, (33)t,0) = (2/' + 1)(2t + 1) 1 3 I' 

t t 0 

1 1 {I 3 I' } (-I)t(2/' + 1)2 (2t + 1)2 
3 1 t 

(3.37) 

One can derive for any set of creation and annihilation operators at and a belonging to a 

given shell (nl), the following identity: 
1 

(ata)(Ot) = _ [(~) (2t + 1)] l U(t) (3.38) 

where U(t) is the unit tensor in orbital angular momentum space. The zeroth order coupled 

tensor is converted to a dot product and one has: 

(3.39) 

Note that (eae)(Ot) = (eae)(t) only because the electric field vectors do not act in wavefunc

tion space. Interchanging ell and e in the above derivation leads quite readily to the matrix 

element in the second term on the right hand side of equation (3.22): 

(fle~01) . (ftb)(Ol)e(Ol) . (btf)(Ol)li) = - 2)2t + 1)4 (ees)(t) • U(t) 3 { 1 3 I' } 
. 2 t 3 1 t 

(3.40) 
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Using the properties of the Clebsch-Gordan coefficients, we can write: 

(3.41) 

Collecting the two terms together, and reinserting the numerical factors and radial matrix 

element of equation (3.23) we have the final expression for the electronic Raman amplitude: 

( 
3 1 I') 2 E 7(21' + 1) (4flrln'I,)2 

4fN-In'I' 0 0 0 

x Et(2t+ l)t {I 3 I' } [ 1 + (-I)t 1 (ees)(t) .U(t) (3.42) 
3 1 t En'l' - nw En'l' + nws 

The two-photon amplitude can be easily obtained from this expression by making the re

placement w. - -w •. In the case of two-photon absorption with a single input beam the 

extra factor of two should be ignored, as the Feynmann graphs which correspond to the two 

terms of equation (3.22) become indistinguishable. 

The above calculations can be retraced using the core excitation 4fN Hn' d9 configura

tions as the intermediate states. It is easy to verify that the final result is identical to that 

for 4fN - 1n'd as far as the angular variables are concerned. The only differences appear in 

the energy denominators and the radial matrix elements. 

An older version of this calculation which makes use only of tensor operator techniques 

and does not involve second quantization techniques can be found in Axe [23]. Essentially, 

Axe makes use of the closure relation derived by Judd [24, eq. 9]. 

Returning to the case of electronic Raman scattering, we make the approximations 

w ~ W II and w « Edf • The term with t = 0 contributes only to Rayleigh scattering. This 

comes from the fact that U(O) is a scalar and can only connect identical initial and final 

states. The term with t = 1 is: 

7(3)t E (21' + 1)(4flrln'I,)2 ( 3 
4e N - I n'I' 0 

1 3 I' 
(3.43) 

3 1 

and the term with t = 2 is: 

( )
2{ 3 1 I' 

7(5)t E (2/' + 1)(4flrln'I')2 
4CN - I n'I' 0 0 0 

(3.44) 

The important point to note is that due to relation (3.41) the term in t = 1 changes sign 

when the polarizations of the incident and scattered photons are interchanged whereas the 
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term in t = 2 does not. The t = 1 term is thus the antisymmetric contribution to the 

scattering tensor, and the t = 2 term the symmetric contribution. Note that the t = 1 term 

is necessarily zero if e = e", as is the case for two-photon absorption with a single input 

beam. The antisymmetric content of the scattering tensor is one of the more unique features 

of the electronic Raman effect. The antisymmetric term is roughly a factor of ;"W / El'! 

smaller than the symmetric term. For the 514.5 nm line of the Ar+ laser, and considering 

the configuration 4fN-15d, this factor is about 0.2. Experimentally, this antisymmetric 

contribution can be readily observed. 

It is interesting to compare separately the contributions of the d and g orbital configu

rations. For d orbitals, the term with t = 1 is: 

(3.45) 

and for g orbitals it is: 

(3.46) 

The d and g orbitals have contributions to the t = 1 term that are opposite in sign. A 

measurement of the amount of asymmetry thus allows the determination of the relative 

importance of the d and g orbitals in the summation over the intermediate states. 

The term with t = 2 for d orbitals is: 

(3.47) 

and for g orbitals it is: 

(3.48) 

Thus for the term with t = 2 the contributions of the d and g orbitals add constructively. 

A detailed study of the electronic Raman intensities, and a comparison of the calculated 

and observed intensities, is presented in chapter 5 for the ions Tm3+, Er3+, and Ho3+. 

3.3.5 The Fl and F2 Parameters 

It is convenient to make use of the F(l,lI) (=Ft} and F(2,1I) (=F2) parameters originally 

defined by Mortensen and Koningstein [25]. These parameters group together the numerical 
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factors, radial integrals, and energy denominators that appear in the expression for the 

electronic Raman amplitude. The general definition of Ft is: 

( 
3 1 I') 2 Ft = (_1)t L 7(2/' + 1) (4flrln'I')2 

"fN-In'I' 0 0 0 

I { 1 3 I' } [1 ( -1) t 1 x(2t + 1)~ + ~---=-
3 1 t Edf - 1i.w Edf + 1i.w 

(3.49) 

Fl represents the antisymmetric contribution to the electronic Raman tensor: 

( )
2 { } 

3 1 I' 1 3 I' 21i.w 
Fl = -7(3)~ L (21' + 1)(4flrln'I,)2 . E2 

"fN-In'I' 0 0 0 3 1 1 I'f 

(3.50) 

while F2 represents the symmetric contribution to the electronic Raman tensor: 

( )
2 { } 

3 1 I' 1 3 I' 2 
F2 = 7(5)~ L (2/' + 1)(4flrln'I')2 E 

"CN-In'I' 0 0 0 3 1 2 I'f 

(3.51) 

To compare the above expressions with those given in the references, use can be made of 

the equation: 

(3.52) 

The ratio Fl/ F2 is a measure of the amount of asymmetry for a transition that has both 

antisymmetric and symmetric contributions. The usefulness of the Fl and F2 parameters 

will become more apparent in the next section where it is shown how to calculate the 

electronic Raman tensor in spherical coordinates using intermediate coupling wavefunctions 

for the initial and final states. 

3.3.6 Calculation of the Electronic Raman Tensor With Intermediate 

Coupling Wavefunctions 

The preceding calculations have set the stage for a complete computation of the elec-

tronic Raman transition amplitudes between various initial and final states. Since the 

intermediate states have been dispensed with by means of the Judd-Ofelt closure technique, 

the only wavefunctions necessary are those of the initial and final states, which belong to 

the 4fN configuration. These wavefunctions are available from crystal field fits performed 

previously and the essential resul ts of which have been tabulated in Appendix A for the ions 
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of interest in this study. The crystal field fits are based upon absorption and fluorescence 

spectra. The wavefunctions yielded by the fit also allow the caculation of such quanti

ties as the g-values of the states and their magnetic susceptibilities. The semi-empirical 

Hamiltonian used for the crystal field fit has been described in chapter 1. The complete 

set of wavefunctions used as the basis states are the Russell-Saunders coupled wavefunc

tions 14fN cx.S £J Jz), the eigenfunctions of the semi-empirical Hamiltonian being expressed 

as linear combinations of these wavefunctions. These are the so-called intermediate coupling 

wavefunctions. We write the initial state as: 

Ii) = L a(i;4fN cx.SLJJz )14fN cx.SLJJz ) (3.53) 
OlSLJJ. 

and similarly the final state is written: 

If) = L a'(f;4fN cx.'S'L'J'J!)14CN a.'S'L'J'J!) (3.54) 
Ol'S'L'J'J! 

It will be advantageous at this point to express the electronic Raman tensor using 

spherical tensors. The electronic Raman transition amplitude given in equation (3.42) can 

be written using the Fl and F2 parameters: 

L: I: (_l)t Ft{ ee,,)(t) . U(t) (3.55) 
t 4CN - 1n'I' 

We can write the tensorial dot product as: 

(ees)(t). U(t) = L(-l)q(ee,)~t)U~J = L L(-1)q(lqllq2111tq)(e)ql(es)q2ultJ (3.56) 
q q qlq2 

and ql + q2 = -q. In spherical coordinates, the transition amplitude would be written: 

I) -1 )q+q' cx.qq, (e) -q (e s )-q' (3.57) 
qq' 

We make the relacement ql -+ -ql and q2 -+ -q2 which leads to: 

L L (-I)tFt(ees )(t),U(t) = 
t 4CN-l n'I' 

L: L L L:(-I)tFt(-l)-q(l- qll- q2111t - q)(e)-Ql(eS)-Q2UJt) (3.58) 
t 4CN-l n'l' Q QlQ2 

The Raman tensor is thus seen to be: 

cx.q1q2 = L L (_I)t Ft{l - qil - q2111t - q)UJt) (3.59) 
t 4CN-1n'I' 
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with ql + q2 = q. a qlq2 transforms as the product of two tensors of rank one. However, two 

tensors ofrank one can be coupled to form tensors ofranks 0, 1, and 2. We thus couple the 

various tensors aqlq:z to form the spherical tensors a~t) with t = 0,1,2: 

a~t) = I)IqlIq2111tq)aqlq2 (3.60) 
qlq2 

So that we now have: 

a~f) = L L L (-1)" Ft,(1 - ql I - q2111t' - q)(Iql I q21 11tq)UJt) (3.61) 
qlq2 t' "fN-In'I' 

and we use the properties of the 3-J symbols to write this as: 

a~t) - L L L (_I)t' Fe,( _I)t' (IQllq2111t'q)(IqtIq2111tq)UJt) 
qlq2 t' "fN-In'I' 

- L Ft,S(t,t')UJt) = FtUJt) (3.62) 
t' 

This very simple expression shows that a(2) represents the symmetric contribution and 

a(I) the antisymmetric contribution to the electronic Raman tensor. The Ft parameters 

carry the information regarding the excitation energy and the intermediate states involved. 

The matrix elements of the unit tensors can be readily evaluated. The electronic Raman 

amplitude for the transition between states Ii) and If) is thus given by the matrix elements 

of the spherical tensor operators: 

L a(i; 4CN aSLJ J~)a'(J; 4fN a'S' L' J' J!) 
aSLJJ. a'S'L'J'J! 

(3.63) 

Since VCt) carries no spin angular momentum, necessarily S = S'. The matrix element of 

the unit tensor can be calculated first with the Wigner-Eckart theorem: 

t J) (SL'J'IIUCt)IISLJ) 
Q Jz 

(3.64) 

The reduced matrix element in equation (3.64), which we denote as U(t), can be reduced 

further: 

U(t) = (SL'J'IIU(t)IISLJ) = 

{ 
L' J' S } (-I)s+L+JI+T[(2J'+I)(2J+I)1~ J L t (SL'IIU(t)IISL) (3.65) 
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The values of the reduced matrix elements (SL'IIU(t)IISL) are tabulated by Nielson and 

Koster [27J. In the following chapter we use the theory developed here to compare experi

mental and calculated electronic Raman transition intensities for the crystal field states of 

Tm3+, Er3+, and Ho3+ in tetragonal phosphate hosts. 

3030'T Converting from Spherical to Cartesian Tensors 

Once the spherical Raman tensors have been calculated using the method described in 

the previous section, it is easy to convert the results to the Cartesian frame of reference 

used to define the polarizations. The equations are as follows: 

a - - 1 a(O) + !a(2) + !a(2) _ -ka(2) 
xx - V3 0 2 2 2 -2 y6 0 

a - - _1 a(O) _ !a(2) _ la(2) _ ....L Q(2) 
YY - v'3 0 2 2 2 -2 v'6 0 

1 (0) 2 (2) 
a JIJJ8 = - Vi ao + \76 ao 

a - -i 1 a(l) - i !a(2) + i !a(2) 
XY - Vi 0 2 2 2-2 

a - _ 1,)1) _ L)I) _ L)2) + 1,.)2) 
xz - 2'-£1 2'-£-1 2'-£1 2 .... -1 (3.66) 

a - i la(l) - i la(l) + i !a(2) + i L)2) 
YZ - 2 1 2 -1 2 1 2,-£-1 

a = i~a(l) - i!Q(2) + i 1 a(2) 
YX y2 0 2 2 2-2 

'" _ L)I) + 1",(1) _ 1,.)2) + 1",(2) 
... zx - 2"'1 2'-£-1 2 .... 1 2,-£-1 

a - -i la(l) + i 1",(1) + t' L)2) + t' 1,.)2) 
ZY - 2 1 2'-£-1 2'-£1 2'-£-1 
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Chapter 4 

Electronic Raman Scattering in Tm3+, 

Er3+, and Ho3+ in Tetragonal Phosphate 

Crystal Hosts - Experimental Results 

This chapter presents the experimental results of electronic Raman scattering in pure 

and dilute tetragonal rare earth phosphate crystals. The ions Tm3+, Er3+, and Ho3+ are 

those under study. 

The crystal field fits of the diluted lanthanide ions in LuP04 and YP04 are a guide to 

the location of the energy level transitions that can be potentially observed by electronic 

Raman scattering. It is expected that the energy level structure of the pure phosphate 

crystals will be very similar to that of the diluted phosphate crystals, in which the optically 

active rare earth ion is replaced by Lu. The variations in the energy level values between 

the pure and diluted crystals appear to be at the most 15 cm-I, as it is the nearest neighbor 

oxygen ions which contribute the bulk of the crystal field at the rare earth ion site. As a 

consequence, replacing Lu by Tm, Er, or Ho, does not have a very large effect on the energy 

levels or their wavefunctions. Replacing Lu by Y has a somewhat larger effect on the energy 

values, but only a very small effect on the wavefunctions. 

The following chapter, chapter 5, discusses the calculation of the electronic Raman 

intensities and compares them to the experimental intensities determined from the spectra 

presented here. 

75 
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4.1 Preamble: How to Identify and Recognize Electronic 

Raman Transitions 

The high symmetry of the tetragonal rare earth phosphates and the good optical quality 

of most of the crystals makes it relatively easy to obtain Raman spectra that exhibit clearly 

recognizable electronic peaks. Several standard techniques can be used to identify these 

electronic Raman transitions. 

• The first step is to ensure that the transitions are indeed Raman peaks, and not 

fluorescence or some other extraneous transition. This is done by obtaining spectra 

with several different excitation lines of the argon ion laser. The Raman peaks should 

appear with the same frequency shift relative to the excitation frequency, irrespective 

of the excitation. The intensities might of course vary if any resonance effects come 

into play. Fluorescent transitions, which are fixed at an absolute frequency, will 

have a Raman shift that varies in a systematic way with the excitation energy. The 

appearance of an anti-Stokes Raman peak that corresponds in frequency to the Stokes 

Raman peak is also evidence that the transition is a Raman one. Of course, higher 

temperatures are needed to observe the anti-Stokes peaks since these originate in the 

excited states, as shown in figure 4.10 . 

• Temperature is an important experimental variable. The vibrational Raman spectrum 

is present at all temperatures, whereas to observe the electronic transitions tempera

tures in the range 4.2 to 100 K are needed for the majority of the crystals studied. An 

initial room temperature scan allows the identification of the phonon peaks. When the 

crystal is cooled, the electronic peaks can then be identified among the "extra" peaks 

that arise at low temperature. In addition, the electronic Raman transitions broaden 

fairly rapidly as the temperature is raised from 4.2 to 100 K, whereas the phonon 

linewidths do not increase very much between 4.2 and 295 K. The intensities of the 

electronic transitions that originate in the ground state decrease with temperature 

as the ground state depopulates and the low-lying excited crystal field states become 

thermally populated, since the intensity of an electronic transition is proportional to 

the population of the initial state. There are not very many phonons because of the 

high symmetry of the crystal, which substantially lowers the probability that a phonon 
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peak will obscure or cover up an electronic one. A range of intensities are observed for 

the electronic Raman transitions, from transitions very much weaker than the lowest 

intensity phonons, to transitions that are as intense as the extremely strong phonons 

in the 1000 cm-1 region . 

• For the tetragonal rare earth phosphate crystals studied in the present work, ab

sorption spectra and crystal field fits are available. Thus the rough locations of the 

electronic transitions are known, which facilitates the search for them. 

• The symmetries of the transitions are obtained by taking polarized spectra with all 

the polarization combinations of incident and scattered light allowed by the scattering 

geometry. The scattering tensor can then be contructed and compared to those in 

Table 3.2 to obtain its symmetry. Since the symmetry of the ground state (which 

is the initial state in most cases) is usually well known from the crystal field fit, the 

symmetry of the final state can be deduced from the scattering tensor. The crystal 

field fit predicts the symmetry of a state along with its energy value so that it is 

possible to see whether the assignment of the Raman peak agrees with the crystal 

field fit, when the latter is available. The symmetry properties of the phonon peaks 

and of the fluorescent transitions are different than those of the electronic Raman 

transitions. 

4.2 Experimental Raman Spectra of Tm3+ in Tetragonal 

Phosphate Hosts 

4.2.1 Tm3+ - Selection Rules 

Tm3+ has the open shell configuration 4f12. This configuration can be decribed as 

consisting of two holes in the f shell and as such is formally equivalent to the (l system 

Pr3+. Tm3+ has an even number of electrons so that the electronic states are labeled 

by the irreducible representations r l, r 2, r3, r4, and rs of D2d. The optical absorption 

spectrum and crystal field fit of Tm3+ doped at low concentrations (- 1%) in LUP04 and 

YP04 has been described by Becker et al [1]. The crystal field fit and energy level structure 

of Tm3+ in LuP04 is summarized in appendix A, section A2. 
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The ground multiplet of Tm3+ is 3Hs. Electronic Raman transitions were observed be

tween the crystal field states of the ground multiplet and also between the ground state and 

the crystal field states of the first excited multiplet 3Fo4 , situated roughly 5,700 cm-1 above 

the ground state. The decomposition of the ground multiplet into irreducible representa

tions is given by 2r1 + r 2 + 2rs + 2r 4 + 3rs. The 3Fo4 multiplet splits up into the states 

2r1 + r 2 + ra + r o4 + 2f5 . The ground crystal field state has the symmetry rl. We can 

calculate the selection rules for Raman transitions from the r 1 ground state to the other 

states by taking the direct product of r 1 with the irreducible representation of the final 

state. The case of TmPO. is particularly simple as r 1 is the identity representation and so 

rl ® ri = rio We summarize the selection rules for the Raman transitions originating in 

the ground state: 

transition scattering tensor 

symmetry 

rl -- r l rl 

rl -- r2 r2 

rl -- rs ra 

rl -- r. r. 
rl--rS rs 

The scattering tensors are listed in Table 3.2. 

The 3-J symbol of equation (3.64) implies that J, J', and t (where t is the rank of 

the spherical Raman tensor discussed in section 3.3.6) must satisfy the triangle rule for 

angular momenta. Since J = J' for transitions between the crystal field states of the 

ground multiplet, both Q(I) and Q(2) can contribute to the Raman amplitude of these 

transitions. Thus, asymmetric transitions with the ground state as the initial state can 

occur for rs final states belonging to the ground multiplet. For the excited multiplet 3F. 

we have J' - J = 2 so that only the Raman tensor Q(2) will contribute to the scattering 

intensity for transitions from the ground state to the 3F. multiplet. As a result the Raman 

transitions between the ground state and the SF. excited multiplet are fully symmetric with 

respect to interchange of the polarizations of the incident and scattered photons. This is 

confirmed by the experimental spectra. 
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4.2.2 Tm3+ - Experimental Raman Spectra 

The low temperature experimental Raman spectrum of TmPO" has been published 

previously by Guha [2] and Becker et al [3]. The results presented here are a more detailed 

exposition of the work reported in the latter reference. The polarized spectra obtained for 

TmPO" at ..... 4.2 K in the low wavenumber region 0-300 cm- l are shown in Figure 4.1. Four 

electronic Raman transitions are observed at 30, 86, 138, and 280 cm- l . The polarized 

spectra at -4.2 K for transitions to the 3F" multiplet are shown in Figure 4.2. Electronic 

Raman transitions are observed at 5602, 5676, 5688, and 5870 cm- l . In both Figures 4.1 

and 4.2 the excitation was with the 514.5 nm line of the argon-ion laser, with an average 

power of about 30 m W at the sample. Raman spectra taken at -4.2 K with excitation at 

488.0,476.5, and 457.9 nm for the 3Hs transitions, and at 488.0 nm for the sF" transitions, 

were identical to those shown in Figures 4.1 and 4.2. 

The (XY) transition at 86 cm-1 is the strongest electronic Raman transition observed in 

this work. It has a scattering intensity comparable to that of the phonons in the 1000 cm-1 

region. Note that in Figure 4.1 the scale of the Y(XY)X spectrum is ten times stronger 

than that for Y(XZ)X and Y(ZY)X. Three r5 transitions are observed. The weakest one at 

30 cm- 1 shows some asymmetry, whereas the two transitions at 138 and 280 cm- l appear 

to be symmetric within experimental error. The transition at 138 cm-1 is very close to 

phonon E~ but is clearly resolved. Closing down the spectrometer slits separates the two 

peaks better and allows a more accurate measurement of the intensity and linewidth of the 

138 cm- l transition. The Y(ZZ)X spectra shows no peaks except for slight leakage of the 

Eg phonons and so is not included in Figure 4.1. 

Spectra were also taken in other scattering geometries than those used for Figures 4.1 

and 4.2. However, they have a much higher scattered light background and polarization 

leakage since for those geometries the incident and scattered light does not pass through 

smooth crystal faces. The relative intensities of the electronic transitions are nevertheless 

the same as those in Figure 4.1. The other scattering geometries in which spectra were 

obtained for the sHs multiplet are X(YX)Y, X(ZX)Y, X(YZ)Y, X(ZZ)Y, Z(YZ)Y, Z(XZ)Y, 

Z(XX)Y, and Z(YX)Y. 

The identification of the electronic transitions to the 5,500 cm- l region 3F" states is 

complicated by the presence of plasma lines from the argon-ion laser, which are outside the 

operative range of the spike filter. The plasma lines seen in Figure 4.2 are labeled p. The 
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Figure 4.1: TmPO. polarized Raman spectra at ...... 4.2 K in the 0-300 cm- 1 region. The full 
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Table 4.1: Energy level values for the Tm3+ 3Hs multiplet. 

Energy (cm- l ) 

Optical Absorption Crystal field fit Electronic Raman 

Symmetry 1% Tm3+ in LuPO" 1% Tm3+ in LuPO" TmPO" 

r1 0 0 0 

rs 25 22 30 

rs 80 90 86 

rs 125 132 138 

r2 a 183 a 

rl a 248 a 

r" a 254 a 

rs a 281 280 

rs a 303 a 

r" a 321 a 

a: not observed. 

electronic transition at 5688 cm- I is very close to a plasma line, however, its identification 

is rendered unambiguous by using excitation at 488.0 nm, for which there is no near-lying 

plasma line. 

Table 4.1 summarizes the electronic energy level structure of the 3HS multiplet and lists 

the energy values from the optical absorption measurements and crystal field fits for 1% 

Tm3+ in LuPO" [1], and the values obtained for TmPO" from the electronic Raman spectra. 

For the 3H6 multiplet, the optical absorption measurements are based upon excited state 

absorption spectra taken at 77 K, so that if there are any shifts in energy between 4.2 and 

77 K, they will be reflected by the optical absorption values quoted in Table 4.1. Table 4.2 

summarizes the electronic energy level structure and measurements for the 3F" multiplet. 

The experimental error on the electronic Raman energy values is ±I cm- I . 

The electronic Raman values of Table 4.1 agree with those reported by Guha, the only 

difference being that he erroneously identified the line at 86 cm- 1 as being of symmetry r ", 
due to neglect of the 45° rotation of the D2d symmetry axes relative to the crystallographic 

axes (described in section 3.1.3). 
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Table 4.2: Energy level values for the Tm3+ sF. multiplet. 

Energy (cm- I ) 

Optical Absorption Crystal field fit Electronic Raman 

Symmetry 1% Tm3+ in LuPO. 1% Tm3+ in LuPO. TmPO. 

rs a 5587 5602 

rs 5674 5682 5688 

rl a 5700 5676 

r2 a 5735 a 

r4 5763 5769 a 

rs 5842 5844 a 

r l a 5857 5870 

a: not observed. 

Raman spectra were also taken for the crystals 20% Tm3+ in LuPO., 10% Tm3+ in 

LuPO. and YPO., and 2% Tm3+ in LuPO. and YPO.. The peaks are much weaker 

in intensity for the diluted crystals. The strong r3 line in the 80 cm- I region is clearly 

observed in all the diluted crystals. Figure 4.3 shows the Raman spectra of 20% Tm3+ in 

LuPO. at -4.2 K with excitation at 514.5 nm, with an average power of 30 m W at the 

sample. The r3 transition at 82 cm- l is very strong but broader than in the 100% crystal. 

The rs line at 286 cm-l is still visible but that at 138 cm-l is no longer present and is 

possibly obscured by phonon E~. The B~ phonon peak is leakage from the (XX) and (YY) 

polarizations. Phonon E~ is not perfectly symmetric, probably because of internal crystal 

strains (see section 3.2.2). 

Table 4.3 summarizes the line positions observed for the electronic Raman transitions 

from the ground state to the levels of the 3Hs multiplet for the various concentration crys

tals. The linewidth has been indicated in parenthesis for those transitions for which it is 

measurable to a reasonable degree of accuracy. The linewidth given is the full width at half 

maximum and has an uncertainty of ±1 em-I. Since the ground state has by definition 

zero linewidth, the linewidth of the electronic Raman transitions that originate in the initial 

state is the linewidth of the level which is the final state. The 280 cm- 1 region transition 

is quite broad and for the diluted crystals it is difficult to accurately pinpoint the center of 

.. 
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full scale is 1,000 counts per second in all polarizations and the E! and E; phonon peaks 

have been reduced in intensity by a factor of two. The spectrometer bandpass is 2.5 em-I. 
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this transition. 

Table 4.3: Frequencies and linewidths I (in parenthesis, when measurable) of the 3H 6 crystal 

field levels observed via electronic Raman scattering in Tm3+ doped phosphate crystals, in 

em-I. 

r5 r3 r5 r5 
TmPO" 30 (j = 3) 86 (j:;:: 3) 138 (j = 6) 280 (j = 8) 

20% Tm3+:LuPO" a 82 (j = 5) a 286 

10% Tm3+:LuPO" a 81 (j = 6) a 286 

2% Tm3+:LuPO" a 82 (j = 5) a a 

10% Tm3+: YPO" a 77 (j = 6) a 281 

2% Tm3+:ypO" a 76 (j = 6) a a 

a: not observed. 

The rs line in the 80 cm-1 region has a Gaussian profile at T~4.2 K for the 100, 20, and 

10% Tm3+ crystals, where its linewidth is mostly inhomogeneous. In the 2% crystals the 

line appears to be homogeneously broadened, with a L~rentzian profile. The inhomogeneous 

linewidth of an electronic line comes from variations in the crystal field from site to site. 

These have their origin either in configurational disorder, as is the case for the mixed 

crystals, or from strains and defects. Crystals with roughly the same amount of Tm3+ and 

Lu3+ should show the greatest amount of disorder induced inhomogeneous broadening of 

the electronic levels, since it is for these crystals that the environment of Tm3+ can vary 

the most. The very concentrated or very dilute crystals should show the least amount 

of disorder induced inhomogeneous broadening. The 10% and 20% crystals indeed show 

large linewidths for the r3 (80 em-I) transition, however, those of the 2% crystals are 

also observed to be quite large, albeit with a homogeneous line profile. The linewidth of 

the transition at 280 cm- l is clearly mostly homogeneous, as its lineshape is Lorentzian 

in character. It has a large homogeneous linewidth since it can decay via the emission of 

phonons to the various crystal field states that lie below it in energy, thereby reducing its 

lifetime. For a discussion of line broadening mechanisms, see Hiifner [4, chapter 4]. 

Spectra taken at higher temperatures show that the electronic Raman peaks broaden 

significantly with temperature, and also that they shift slightly in energy. Figure 4.4 shows 
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the 77 K spectra for TmPO" in the 0-300 cm- l region, taken with excitation at 514.5 

nm. The rs peak is now at 82 cm- l . The transition at 138 cm- l , which at T~4.2 K 

is noticeably stronger than phonon E~, is now a weak shoulder. A broad peak centered 

at 108 cm- l is observed in the (XY) and (ZZ) polarizations. It represents the transition 

rs(30 cm- l ) -- rs(138 cm- I ). The polarization selection rules are satisfied for this tran

sition as rs ® rs = r l + f2 + ra + r ". This peak appears only at higher temperatures since 

the 30 cm- 1 state needs to be thermally populated for the transition to take place. The 

B~ phonon, which has a frequency nearly identical to the electronic transition at 138 cm-I, 

leaks through in the ZY polarization a little bit more than in the XZ polarization. Since at 

T=17 K the electronic transition is broad and weak, the phonon leakage is clearly superim

posed upon it, giving rise to a a sharper peak in ZY polarization. At 4.2 K the 138 cm- l 

electronic transition is strong and sharp enough that the phonon leakage is a negligible perc 

turbation on its lineshape. The insets in Figure 4.4 show the 138 and 280 cm- 1 transitions 

at T=35 K. 

The strength of the TmPO" Raman transition at 86 cm-1 allows a detailed study of 

the temperature dependence of its frequency and linewidth. Figure 4.5 shows the lineshape 

of this transition at selected temperatures between -4.2 and 295 K. The intensity of the 

transition decreases with temperature as the the ground state, which is the initial state, 

depopulates and the excited crystal field states become populated. Even at room temper

ature, a faint trace of the signal is still visible as a broad bump. Figure 4.6 displays the 

linewidth of this transition, measured as the full width at half maximum, as a function of 

temperature. Figure 4.7 graphs the position of this line as a function of temperature for 

both TmPO" and 20% Tm3+ in LuPO". The vertical bars represent the experimental un

certainties on the frequencies and linewidths. It is interesting to note that while for TmPO" 

there is a marked decrease in the frequency of the line no such effect occurs for the diluted 

crystal, at least up to 140 K. Since the temperature dependence of both linewidths and en

ergy position shifts of lanthanide electronic states in crystals depend on the specifics of the 

electron-phonon coupling mechanisms, this indicates that the coupling is perhaps different 

for the concentrated and diluted crystals. 
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Figure 4.4: TmPO. polarized Raman spectra at 77 K in the 0-300 cm- l region. The full 

scale is 1,000 counts per second in all polarizations. The full scale on the 35 K insets is 500 

cps. The spectrometer bandpass is 2.5 cm- l . 
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4.3 Experimental Raman Spectra of Er3+ in Tetragonal Phos

phate Hosts 

4.3.1 Er3+ - Selection Rules 

Er3+ has the open shell configuration 4fll which is formally equivalent to the f3 system 

Nd3+. Er3+ has an odd number of electrons so that the electronic states are labeled by 

the irreducible representations r6 and r7. All the Er3+ electronic levels are thus doubly 

degenerate Kramer's states. The optical absorption spectrum and crystal field fit of Er3+ 

doped at low concentrations (- 1%) in LuPO. have been reported by Hayhurst et al [5], 

and that of Er3+ in YP04 by Kuze [61. The crystal field fit and energy level structure of 

Er3+ in LuPO. have been summarized in appendix A, section A3. 

The ground multiplet of Er3+ is .116/ 2 , Electronic Raman transitions were observed 

between the ground state and the excited crystal field states of the ground multiplet. The 

next highest multiplet is 4113/ 2 at roughly 6,500 cm-1 above the ground state. Electronic 

Raman transitions to the 4113/ 2 multiplet were searched for but were not observed (with 

nonresonant excitation). The decomposition of the ground multiplet into irreducible rep

resentations is given by 4r6 + 4r7. The ground crystal field state has the symmetry r7. 
We can calculate the selection rules for Raman transitions from the r7 ground state to the 

other states by taking the direct product of r7 with the irreducible representation of the 

final state. We obtain the following symmetries for the allowed scattering tensors: 

transition scattering tensor 

symmetry 

rs + r. + rs 
r1 + r 2 + rs 

The electronic scattering tensors for each symmetry have been listed in Table 3.2. The 

only real selection rule that arises is that r7 +---+ r7 transitions are not allowed in (ZZ) 

polarization. All the transitions will appear in the rs symmetry scattering geometries and 

can exhibit asymmetry with respect to interchange of the polarizations of the incident and 

scattered photons. 
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4.3.2 Er3+ - Experimental Raman Spectra 

The low temperature experimental Raman spectrum of ErPO. has been published pre

viously by Becker et al [3]. The spectra obtained for ErPO. at -4.2 K in the 0-300 cm- l 

region are shown in Figure 4.8. Four electronic Raman transitions are observed at 33, 53, 

105, and 145 cm- l . The excitation is with the 514.5 nm line of the argon-ion laser, with an 

average power of 40 mW at the sample. Raman spectra taken with excitation at 476.5 and 

457.9 nm are identical to those shown in Figure 4.8. Excitation with the line at 488.0 nm re

sults in strongly enhanced resonant spectra. The resonance scattering results are discussed 

in detail in chapter 5. The two transitions at 33 and 53 cm- 1 show very large amounts 

of asymmetry when the (XZ) and (ZY) spectra are compared (X and Yare equivalent so 

that XZSiiYZ and ZX=ZY). The 33 cm- 1 transition is much stronger in (XZ) than in (ZY), 

whereas the 53 cm- 1 transition is much stronger in (ZY) than in (XZ). The transition at 

145 cm- l is also asymmetric but it is very weak so that the experimental uncertainty ren

ders the measurement of its asymmetry inaccurate. The strongest transition observed in 

the ErPO. spectra is the 33 cm- 1 transition in (XY) polarization. Nevertheless, it is ten 

times weaker than the (XY) 86 cm-1 transition in TmPO •. In the 250-300 cm- 1 region 

there are some broad and weak features that might be electronic Raman transitions from 

the ground state to the three highest states of the ground multiplet. The extra peak at 284 

cm- 1 is not a Raman peak and is probably due to fluorescence, perhaps of an impurity. It 

is present in all the erbium doped samples (with excitation at 514.5 nm). Table 4.4 summa

rizes the electronic energy level structure of the 4[15/2 multiplet and lists the energy values 

from the optical absorption measurements and crystal field fits for 1% Er3+ in LuPO. [51, 

and the values obtained for ErP04 from the electronic Raman spectra. The experimental 

uncertainty of the electronic Raman frequencies is ±1 cm- 1. 

At higher temperatures excitation at 514.5 nm produces fluorescence from the ErPO. 

sample. This fluorescence obscures the real Raman signals. The temperature dependence 

of the electronic Raman peaks can, however, be tracked up to room temperature with 

excitation at 476.5 and 457.9 nm. Figure 4.9 shows the Y(XZ)X spectrum in the 0-150 

cm- 1 region at various temperatures between 4.2 and 295 K and the behaviour of the 

electronic transitions at 33 and 53 cm- 1 , with excitation at 476.5 nm. The temperature 

broadening of the electronic lines in the temperature range 0-80 K appears to be significantly 

less rapid than for TmPO •. The line positions do not appear to shift with temperature. At 
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Figure 4.8: ErP04 polarized Raman spectra at -4.2 K in the 0-300 cm- 1 wavenumber 

region. The full scale is 1,000 counts per second for the Y(XY)X polarization, and 500 cps 

for the other polarizations. The spectrometer bandpass is 2.5 cm- 1 • 
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Table 4.4: Energy level values for the Er3+ 4[15/2 multiplet. 

Energy (cm- I ) 

Optical Absorption Crystal field fit Electronic Raman 

Symmetry 1 % Er3+ in LUP04 1% Er3+ in LuP04 ErP04 

r7 0 0 0 

r6 36 36 33 

r7 53 50 53 

r7 98 101 105 

r6 a 133 145 

r6 a 230 a 

r7 a 247 a 

r6 a 287 a 

a: not observed. 

higher temperatures, a weak peak appears at 20 cm-1 in the Y(XY)X spectrum which is 

the excited state transition 33 cm-1 --+ 53 cm- I • 

Raman spectra were also taken of erbium diluted at concentrations of 50, 20, 10, and 

1% in LuPO., and 10% and 1% in YPO •. The frequencies and linewidths of the electronic 

Raman transitions from the ground state to the crystal field states of the 4[15/2 multiplet 

are given in Table 4.5. The 1% crystals are not included as the electronic Raman peaks 

are too weak to be clearly identified. The experimental uncertainty on the linewidths is ±1 
em-I. 

4.3.3 Er3+ - Anti-Stokes Raman Spectra 

Up to now we have been discussing Stokes Raman transitions, for which the scattered 

photon has a lower energy than the incident photon. In an anti-Stokes Raman transition, 

the scattered photon has a higher energy than the incident photon. This is due to the fact 

that the transition originates in an excited state and terminates in a state lower in energy 

than the initial state, usually the ground state. This is shown pictorially in Figure 4.10. 

The anti-Stokes transitions can be observed only at higher temperatures since the excited 

crystal field states need to be thermally populated for the process to occur. The anti-Stokes 
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the full scale is 250 counts per second. 
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Table 4.5: Frequencies and linewidths, (in parenthesis, when measurable) of the 4lt5/2 mul

tiplet crystal field levels observed via electronic Raman scattering in Er3+ doped phosphate 

crystals, in cm -1. 

re r7 r7 re 
ErPO" 33 (; = 2) 53 (, = 2) 105 (; = 3) 145 (, = 3) 

50% Er3+:LuPO" 33 (; = 3) 52 (; = 3) 100 (; = 6) 148 (; = 6) 

20% Er3+:LuPO" 36 (; = 3) 54 (; = 3) 100 (; = 5) 152(,=5) 

10% Er3+:LuP04 36 (; = 3) 53 (; = 3) 99 (; = 4) 152 (; = 5) 

10% Er3+: YPO. 33(,=3) 53 (; = 3) 107 145 

a: not observed. 

electronic Raman peaks were studied as a function of temperature and the results are shown 

in Figure 4.11. 

It is interesting to note that the asymmetry for the anti-Stokes transitions is reversed 

compared to that for the corresponding Stokes transition. Indeed, if we write the amplitude 

for the Stokes transition from Ii} to II} as follows: 

(4.1) 

and that for the anti-Stokes amplitude: 

(4.2) 

for a particular polarization combination(pu), then it is easy to see that the asymmetry 

has been reversed. In fact, one must have Ipq (Stokes) = Iqp (anti-Stokes) for a particular 

transition Ii) ---+ II}. Indeed, Figure 4.11 shows that in the anti-Stokes spectrum the 33 

cm- 1 transition is stronger in ZY, and the 53 cm-1 transition is stronger in XZ, which is the 

reverse of what happens in the Stokes spectrum. The actual amount of asymmetry is the 

same when measured in either the Stokes or the anti-Stokes spectrum, taking into account 

the polarization reversal. 
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4.4 Experimental Raman Spectra of HoP04 

4.4.1 Bo3+ - Selection Rules 

The electronic Raman scattering results reported here represent the first reported obser

vation of electronic Raman transitions in Ho3+. The electronic Raman peaks are, however, 

extremely weak. They are an order of magnitude less intense than in Tm3+ or Er3+. Ho3+ 

has the open shell configuration 4f10 • Ho3+ thus has an even number of electrons and the 

electronic states are labeled by the irreducible representations rl, r2, r 3, r., and rs. The 

optical absorption spectrum and crystal field fit of Ho3+ doped at low concentrations (""" 

1%) in LuPO. and YPO. have been studied by Edelstein and Shalimoff and are as yet 

unpublished [7]. Some transitions have also been reported for Ho3+ in YPO. by P.J. Becker 

[8]. The crystal field fit and energy level structure of HoS+ in LuPO. has been summarized 

in appendix A, section A4. Only the pure crystal HoPO. was available for the Raman 

scattering experiments. 

The ground multiplet of HoS+ is sIs. Electronic Raman transitions were observed 

between the ground state and the excited crystal field states of the ground multiplet. 

The decomposition of the ground multiplet into irreducible representations is given by 

3r1 + 2r2 + 2r3 + 2r. + 4rs. The ground crystal field state has the symmetry rs and is 

thus doubly degenerate. We can calculate the selection rules for Raman transitions from· 

the rs ground state to the other states by taking the direct product of rs with the irre

ducible representation of the final state. We summarize the selection rules for the Raman 

transitions originating in the ground state: 

transition scattering tensor 

symmetry 

rS-rl 

rS-r2 

rS-r3 

rs-r. 

rs-rs 

rs 

rs 

rs 

rs 

r 1 + r2 + rs + r. 

The scattering tensors are listed in Table 3.2. Asymmetric transitions originating in the 

ground state will occur for all final states except those of symmetry rs. 
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4.4.2 Ho3+ - Experimental Raman Spectra 

The spectra obtained for HoPO. at ...... 4.2 K in the low wavenumber region 0-300 cm- 1 

are shown in Figure 4.12. Five electronic Raman transitions are observed at 68, 82, 92,193, 

and 251 cm-l . The Y(ZZ)X spectrum is not shown since it is featureless in the 0-300 cm-1 

region, except for some slight polarization leakage. In Figure 4.12 the excitation is with 

the 514.5 nm line of the argon-ion laser, with an average power of 40 mW at the sample. 

Raman spectra taken with excitation at 488.0 and 496.5 nm are identical to those shown in 

Figure 4.12. The transitions at 68 and 82 cm- l are seen to be very strongly asymmetric. 

They are quite intense in (XZ) polarization and totally absent in (ZY). The transition at 

193 cm- l also shows a large amount of asymmetry, however, the transition at 251 cm-1 

shows little asymmetry. 

Table 4.6 summarizes the electronic energy level structure of the 5Is multiplet and lists 

the energy values from the optical absorption measurements and crystal field fits for 1% 

Ho3+ in LuPO., and the values obtained for HoPO. from the electronic Raman spectra. 

The experimental uncertainty on the electronic Raman frequencies is ±1 cm- I . 

The low wavenumber Raman spectrum of HoPO. was also taken at 77 and 295 K with 

green excitation at 514.5 nm. The line at 488.0 nm can no longer be used at temperatures 

above 4.2 K as it excites strong fluorescence from the sample. The 68 and 82 cm-1 electronic 

Raman transitions were tracked as a function of temperature and their frequencies were 

found to vary very little between 4.2 and 80 K. Above 100 K the two lines are too weak 

and broad to be clearly identified. 

The phonon spectrum of HoPO. displays some peculiarities. The E~ phonon decreases 

in frequency from 184 cm- l at room temperature, to 180 cm- l at ...... 4.2 K. This is opposite 

to the behaviour of that phonon in the other tetragonal rare earth phosphates (see Table 

3.2). This might be an indication of coupling with the nearby electronic level at 193 cm- I . 
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Table 4.6: Energy level values for the Ho3+ sI8 multiplet. 

Energy (em-I) 

Optical Absorption Crystal field fit Electronic Raman 

Symmetry 1% Ho3+ in LuPO. 1 % Ho3+ in LuPO. HoPO. 

rs 0 0 0 

rl 72 68 a 

r. 67 72 68 

rs 81 84 82 . 
rs 89 88 92 

r. 160 150 a 

r2 188 195 193b 

r1 a 196 a 

rs a 225 a 

rs 250 245 251 

rs 279 276 a 

r2 a 277 a 

r1 a 300 a 

a: not observed. 

b: could also be assigned to r l (196 em-I). 
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Figure 4.12: HoPO. polarized Raman spectra at -4.2 K in the 0-300 cm- 1 region. The 

full scale is 2,000 counts per second in all polarizations. The spectrometer bandpass is 2.5 

cm-l. 
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Chapter 5 

Electronic Raman Scattering in· Tm3+, 

Er3+, and Ho3+ in Tetragonal Phosphate 

Crystal Hosts - Intensity Analysis 

This chapter compares the calculated and observed electronic Raman transition inten

sities for transitions between individual crystal field states for the ions Tm3+, Er3+, and 

Ho3+ in tetragonal phosphate crystals. The Judd-Ofelt closure approximation is applied to 

tWOophoton processes in lanthanide ions to obtain the predicted intensities. It is shown that 

d orbital intermediate states fail to correctly explain the data, and that intermediate states 

with g orbital character seem to playa significant role. Several discrepancies still remain, 

even with the inclusion of g orbital intermediate states. 

An important foundation of the calculations presented here is provided by the crystal 

field fits, based upon optical absorption measurements, of the ions Tm3+, Er3+, and Ho3+ 

diluted to a few percent in LuPO", and YPO",. These fits yield a precise picture of the 

electronic energy level structure along with the wavefunctions necessary for the Raman 

transition intensity calculations. Chapter 3, section 3.3, outlines the general theory of these 

intensities within the Judd-Ofelt framework. 

5.1 Comparison of Calculated and Observed Electronic Ra

man Transition Intensities 

The spherical and Cartesian scattering tensors for the transitions of interest to this 

study between the crystal field states of the ions Tm3+, Er3+, and Ho3+ are listed in 
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appendix B. The tensor elements are a function of the parameters Fl and F2, which in turn 

depend upon the nature of the intermediate states. There is only one adjustable parameter 

available, namely Fl/ F2, since once this ratio is set the intensities are all proportional to 

(F2)2. The relative intensities are then uniquely determined. 

It is interesting to compare the calculated and observed asymmetry of the rs transitions. 

As mentioned previously, the observation of such asymmetries is one of the more unique 

features of electronic Raman scattering. In addition, it is a sensitive probe of the theory 

used to calculate the transition intensities. We measure the asymmetry of a transition 

by the ratio of its intensity in XZ (= YZ) polarization to that in ZX (= ZY). Under the 

assumption that the dominant intermediate states belong to the configuration 4fN - 1Sd, we 

obtain from the calculations of section 3.3.5 the following ratio: 

1i.w 
Fl/F2 = 1.3 x =E--

4t-l5d 
(5.1) 

where 1i.w is the excitation energy and E4c-Sd the average energy of the 4fN - 1Sd configuration ,. 

relative to the ground state. The numerical factors come from the 6-J symbols, the radial 

'matrix elements having canceled out. With 1i.w -- 20,000 cm-1 and E4c-Sd -- 100,000 cm- 1 , 

this ratio is predicted to be 0.25. The following sections, which compare the observed and 

calculated intensities for Tm3+, Er3+, and Ho3+ in tetragonal phosphate hosts, will .test 

whether this assumption is correct. 

The experimental intensities are averaged from the data for different excitation wave

lengths, different crystal samples, and different crystal orientations. For each scan, the 

polarization characteristics of the phonon lines were checked to ensure that the crystal was 

properly aligned, and the intensity measurements were retained only for those scans for 

which the phonon selection rules were obeyed. In particular, the Raman tensor of the Eg 

phonon lines were checked for symmetry (Ixz = Iyz = Izx = I zy ), since the measurement 

of the asymmetry of the electronic lines is one of the more important results of this work. 

As mentioned in section 3.2, the most significant polarization leakage is between the r3 and 

r 4 symmetries. This does not affect the asymmetry measurements, which are contained 

in transitions of rs symmetry. The relative uncertainty of the experimental intensities is 

±20%, and the relative uncertainty of the experimental asymmetry ratios is ±40%. 
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5.1.1 Review of Previous Intensity Comparisons 

There has not been, to date, very much systematic work done in comparing experimental 

and calculated electronic Raman intensities. The first comparison, mainly qualitative, was 

done by Axe for multiplet to multiplet transitions in PrCl3 [1]. The agreement was good. 

Some work was also done by Koningstein [2,3]. For transitions between individual crystal 

field levels in PrCI3 , he finds some discrepancies [3]. Wadsack et al compared the intensities 

for transitions in Dy garnets and found only qualitative agreement [4]. There have been no 

detailed studies of the asymmetries of the transitions and their relationship to the intensity 

theory. Obviously, there is room for a quite a bit of work to be done in his area. 

5.1.2 Tm3+ in Tetragonal Phosphate Crystals 

The electronic Raman scattering tensors for Tm3+ are calculated using the theory de

scribed in section 3.3.6 and the wavefunctions listed in appendix A2. The necessary unit 

tensors for the transitions within the ground multiplet are: 

(3H6I1U(1) 113H6) = 2.113 

(3H61IU(2)113H6) = -1.108 

and those for transitions from the ground multiplet to the first excited multiplet are: 

(3F"IIU(1)113H6) = 0 

(3H"IIU(1)113H6) = 0 

(3F41IU(2)113H6) = -0.913 

(3H"IIU(2)113H6) = -0.046 

(5.2) 

(5.3) 

The 3F" excited multiplet has a small amount of 3H" components, which contribute only 

negligibly to the electronic Raman amplitudes. The spherical and Cartesian scattering 

tensors for the transitions from the r 1 ground state to the crystal field states of the 3H6 

and 3F4 multiplets are listed in appendix B, section B1. 

We first study the ground multiplet rs asymmetric transitions, of which there are three, 

all observed experimentally. Since the intensities are proportional to the square of Ft/ F2 , 

two values for Ft/ F'J. can be extracted from the experimental asymmetry for a particular 

transition, using the calculated scattering matrix elements. For the transition at 30 em-I, 

we have: 
I II _ {-.183F1 + .020F2)2 _ 
xz zx - {.183F

l 
+ .020F

2
)2 - 3.0 (5.4) 
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Table 5.1: Comparison of observed and predicted asymmetry ratios Ixz,zy/lzx,zy for the 

electronic Raman transitions of TmPO". 

Transition 

30 cm- l 138 cm- l 

Observed asymmetry 3.0 0.9 

Predicted asymmetry 
0.1 5.8 

with F1 / F2 = 0.25 

Predicted asymmetry 
3.1 0.8 

with FI/ F2 = -0.03 

which leads to the following possible values of F1 / F2: 

For the transition at 138 cm- l the asymmetry is: 

(.063F1 + .035F2)2 
Ixz/lzx = (_ .063F1 + .035F2)2 

while for the transition at 280 cm- l it is: 

280 cm-1 

1.2 

0.5 

1.1 

(5.5) 

(5.6)" 

(5.7) 

Experimentally, the lines at 138 and 280 cm- l exhibit no asymmetry, within experimental 

error, so that it is not possible to extract a value for Ft/ F2 from these transitions. 

In Table 5.1 we compare the calculated and experimental asymmetries for both F1/ F2 = 

0.25 (4f11 5d as the only intermediate configuration), and F1/ F2 = -.03, the more "accept

able" of the two parameters predicted by the experimental transition at 30 em-I. The value 

Ft/ F2 = - .03 works surprisingly well in predicting that the two transitions at 138 and 280 

cm- 1 will have a very small amount of asymmetry. We test this value further, as opposed to 

F1/ F2 = 0.25, by checking the relative intensities for all the transitions, given in Table 5.2. 

The calculated relative intensities are in units of (F2)2 X 10-" and the observed values are 

scaled so that the predicted and observed intensities for the 86 cm- 1 transition are equal. 

The energy levels are either the Raman values for TmPO" or, if these are not available, the 

crystal field fit values from Table 4.1. This table was published by Becker et al [5], with a 
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Table 5.2: Predicted and observed intensities of the electronic Raman transitions from the 

ground state to the crystal field levels of the 3Hs multiplet of TmP04. The calculated 

intensities are in units of (F2)2 x 10-4. 

Transition Polarization Observed Predicted Predicted 

intensity intensity intensity 

F1/F2 = 0.25 F1/ F2 = -0.03 

30 cm- 1 XZ,YZ 3.7 13.2 13.0 

ZX,ZY 1.2 86.4 4.2 

86 cm- 1 XY,YX 228.0 228.0 228.0 

138 cm-1 XZ,YZ 21.6 51.6 22.0 

ZX,ZY 24.0 7.4 27.2 

183" em-1 XY,YX a 11.1 0.2 

248" cm-1 XX,yy a 10.2 10.2 

ZZ a 41.0 41.0 

254" cm- 1 XX,YY a 47.6 47.6 

280 cm-1 XZ,YZ 23.4 11.2 17.6 

ZX,ZY 20.3 23.4 16.0 

303" cm-1 XY,YX a 0.4 0.4 

321" cm- 1 XX,YY a 7.8 7.8 

a: not observed. 

b: from the crystal field fit, Table 4.1. 

factor of two missing from the calculated values for the rs transitions. This omission was 

corrected in a later article [6]. For the experimental intensities, the excitations used were 

the 514.5, 488.0, and 476.5 nm lines of the argon-ion laser. Note that the transitions at 

248 and 245 cm- 1 were not observed experimentally. In the XX,YY polarizations the only 

electronic transition observed was leakage from the XY, YX components of the 86 em- 1 

transition. 

There is much better agreement for Fd F2 = -.03 than for Fd F2 = 0.25. Nevertheless, 

a major problem is the absence in the experimental spectrum of the transitions at 248 and 

254 cm-l. They are predicted to be extremely strong. The intensities of these transitions 
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is governed only by Fi, so that changing Fl/ F2 has no influence on the predicted intensity 

of these lines. 

The experimental and calculated electronic Raman transition intensities were also com

pared for the transitions from the ground state to the first excited multiplet 3F". Since only 

a(2) contributes to the transition amplitudes Fl does not play any role and all the inten

sities are proportional to Fi and are fixed relative to each other. The results are shown 

in Table 5.3. The scaling of the observed intensities is the same as for those of Table 5.1 

so that the intensities of the 3H6 multiplet can be directly compared to those of the 3F" 

multiplet. It was not possible to accurately measure the XX and YY intensities of the 5676 

and 5870 cm-1 lines due to polarization leakage, 

Table 5.3 is identical to Table VIII of Becker et al [5] with some corrections. A missing 

factor of two for the rs transitions has now been included. The factor of two comes from the 

double degeneracy of the r5 states which was not taken into account in [5] for the calculated 

values. The experimental intensities for the SF." transitions were normalized by a factor of 

(~)2 (wo: incident light frequency; Ws: scattered light frequency) so as to take into account 

the w~ drop in intensity of the Raman signal (see section 3.3.3) for the 3F" transitions versus 

those for 3Ha. For the sH6 multiplet transitions, it was assumed that We ~ woo Note that 

it is the relative values of /apO'/2 that are listed in Tables 5.1 and 5.3. The photomultiplier

tube is a photon counting detector and the signal it produces is proportional to the intensity-

of the light incident upon it divided by the energy of a light quantum, hence the loss of, 

one power of the frequency in the frequency dependence of the Raman signal coming from 

the photomultiplier tube. The (~)2 factor is 2.0 for the 3F." transitions. The difference in 

spectral response of the spectrometer and photomultiplier tube between the various Ws also 

needs to be taken into account and contributes a significant correction. In Table VIII of [5] 

a factor of (~)4 was assumed for the frequency dependence of the Raman signal because 

the semi-classical expression for the Raman intensity was used and also because the photon 

counting character of the detection system was not recognized. It is seen in Table 5.3 that 

the predicted intensities are quite a bit stronger than the observed intensities, except for 

the line at 5602 cm- 1 for which there is good agreement. 
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Table 5.3: Predicted and observed intensities of the electronic Raman transitions from the 

ground state to the crystal field levels of the sF. multiplet of TmP04. The calculated 

intensities are in units of (F2)2 x 10-4. 

Transition Polarization Observed Predicted 

intensity intensity 

5602 cm- 1 XY,YX 19.7 30.3 

5676 cm- 1 XX,yy a 10.9 

ZZ 4.6 43.6 

5688 cm- 1 XZ,YZ,ZX,ZY 5.0 48.0 

5735b cm- 1 XY,YX a 0.0 

5763 cm- 1 XY,YX a 2.0 

5842b cm- 1 XZ,YZ,ZX,ZY a 1.0 

5870 cm- 1 XX,yy a 13.0 

ZZ 10.5 51.8 

a: not observed. 

6: from the crystal field fit, Table 4.1. 
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5.1.3 Er3+ in Tetragonal Phosphate Crystals 

The electronic Raman scattering tensors for Er3+ are calculated with the wavefunctions 

listed in appendix A2. The necessary unit tensors for the ground multiplet transitions are: 

(4Il5/21Iu(I)114I15/2) = 2.774 

(4Il5/21IU(2) 114115/2) = -0.469 
(5.8) 

The spherical and Cartesian scattering tensors for the transitions from the r7 ground state 

to the crystal field states of the 4115/ 2 multiplet are listed in appendix B, section B2. 

All the transitions are predicted to have r5 components, since Er3+ is an odd electron 

system. The transitions at 33, 53, and 145 cm- l are experimentally observed to be asym

metric (see Figure 4.8). This is especially true for the two lines at 33 and 53 cm- 1 which 

exhibit very sharp asymmetries. The line at 145 cm- l is quite weak and the asymmetry 

is within the experimental error. The asymmetric transitions can be used to calculate the 

value of F1/ F2. For the transition at 33 em-I, we have: 

(.209F1 + .016F2)2 
.Ixz/Izx = (-.209F

l 
+ .016F2)2 = 5.3 

which leads to the following possible values of Fl/ F2: 

For the transition at 53 cm- 1 the asymmetry is: 

I /1 _ (.158F1 - .026F2)2 _ 
xz zx - (-.158F

1 
_ .026F

2
)2 - 0.2 

which leads to the following possible values of Fd F2: 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

The experimental relative uncertainty on the 145 cm- 1 line does not allow an accurate 

determination of Fd F2 , as the transition is very weak. We compare in Table 5.4 the calcu

lated and experimental asymmetries for both FI/ F2 = 0.25 (4f1l5d as the only intermediate 

configuration) and for F1/ F2 = .03, which is pointed to by the experimental asymmetries 

and actually yields a better fit to the data. It is interesting to note that again, a value of 

Fd F2 close to zero is more accurate in predicting the experimental asymmetries than the 
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Table 5.4: Comparison of observed and predicted asymmetry ratios Ixz,zy/lzx,zy for the 

electronic Raman transitions of ErP04 • 

Transition 

33 cm-1 53 cm- 1 145 cm-1 

Observed asymmetry 5.3 0.2 0.6 

Predicted asymmetry 
3.5 0.04 1.9 

with F1/ F2 = 0.25 

Predicted asymmetry 
5.2 0.5 1.1 

with F1/ F2 = 0.03 

expected value of 0.25. The relative intensities for all the transitions observed in ErPO. 

are displayed in Table 5.5. The energy levels are either the Raman values for ErPO. or, 

if these are not available, the crystal field fit values from Table 4.4. The calculated rela

tive intensities are in units of (F2)2 x 10-4 and the observed values are scaled so that the 

predicted and observed intensities for the XY,YX components of the 33 cm-1 transition 

are equal. Excitation with the 514.5, 476.5, and 457.9 nm lines of the argon-ion laser was 

used to obtain the experimental intensities. Both Fl/ F2 = 0.25 and Fl/ F2 = 0.03 are used 

for the calculated values. F1/ F2 = 0.03 gives a much better fit to the experimental data, 

especially for the 33 cm- 1 transition. The three highest states of the multiplet are included 

even though they cannot be clearly identified in the experimental spectra. This table has 

been published previously in two separate parts [5,6]. It should be pointed out that it was 

not possible to obtain good quality XX or YY spectra from the ErPO. crystals, the po

larization leakage always being to high to allow an accurate measurement of the electronic 

Raman intensities. Thus the 33 cm- 1 transition had a rather strong XX intensity (although 

less than its XY intensity) which could have been leakage from XY into XX. 
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Table 5.5: Predicted and observed intensities of the electronic Raman transitions from 

the ground state to the crystal field levels of the 4[15/2 multiplet of Er3+. The calculated 

intensities are in units of (F2)2 x 10-4 • The XX and YY intensities could not be accurately 

measured. 

Transition Polarization Observed Predicted Predicted 

intensity intensity intensity 

Fl/F2 = 0.25 FdF2 = 0.03 

33 cm- 1 XX,YY a 0.6 0.6 

XY,YX 15.2 15.2 15.2 

XZ,YZ 3.0 46.6 5.0 

ZX,ZY 0.6 13.1 0.9 

53 cm- 1 XX,YY a 0.04 0.04 

ZZ a 0.2 0.2 

XY,YX 0.9 14.6 0.2 

XZ,YZ 0.9 1.8 4.5 

ZX,ZY 6.1 42.9 9.4 

105 cm- 1 XX,YY a 2.0 2.0 

ZZ 1.5 7.8 7.8 

XY,YX a 1.7 0.02 

XZ,YZ a 0.6 0.5 

ZX,ZY a 0.4 0.5 

145 cm- 1 XX,YY a 0.2 0.2 

XY,YX 1.8 8.4 8.4 

XZ,YZ 0.6 4.9 3.8 

ZX,ZY 0.9 2.5 3.5 

a: not observed. 
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Table 5.5 (continued): 

229b cm-1 XX,yy a 4.4 4.4 

XY,YX a 0.2 0.2 

XZ,YZ a 0.8 0.04 

ZX,ZY a 0.5 5 10-6 

246b cm-1 XX,YY a 0.2 0.2 

ZZ a 0.8 0.8 

XY,YX a 0.6 0.6 

XZ,YZ a 0.3 0.3 

ZX,ZY a 0.2 0.2 

286b cm-1 XX,YY a 0.5 0.5 

XY,YX a 0.3 0.3 

XZ,YZ a 0.2 0.1 

ZX,ZY a 0.03 0.1 

a: not observed. 

b: from the crystal field fit, Table 4.4. 

5.1.4 BoH in Tetragonal Phosphate Crystals 

The electronic Raman scattering tensors for HoH are calculated using the theory de

scribed in section 3.3.6 and the wavefunctions listed in appendix A4. The necessary unit 

tensor matrix elements for the ground multiplet are: 

for U(l), and 

(5I81IU(1)WI8) = 2.86 

(3K181IU(1)USK18) = 3.77 

(3K28I1U(1)WK28) = 3.77 

(3K281IU(1)USK18) = 0 

(5I81IU(2)WI8) = 0.48 

(3K181IU(2)113K18) = -0.71 

(3K281IU(2)113K28) = -0.46 

(3K281IU(2)WK18) = 0.48 

(5.13) 

(5.14) 

for U(2). The major part of the ground multiplet wavefunctions is 518 , with smaller amounts 

of 3K18 and 3K28 (an additional quantum number is needed to distinguish the different 3Ka 
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multiplets, the notation used is that of Nielson and Koster [7]). The spherical and Cartesian 

scattering tensors for the transitions from the doubly degenerate rs ground state to the 

crystal field states of the ground sI8 multiplet are listed in appendix B, section B3. 

The asymmetry of several of the Ho3+ rs transitions is quite spectacular. The transitions 

at 68 and 82 cm-1 are present in XZ (= YZ) polarization and, within experimental error, 

absent in ZY (= ZX). Their asymmetry ratio Ixz/Izx is thus, strictly speaking, equal 

to infinity. This means that for these two transitions the symmetric and antisymmetric 

contributions to Izx must exactly cancel each other. The transition at 193 cm- 1 is also 

very asymmetric and is at least ten times stronger in ZY than in XZ. The weak transition 

at 251 cm- 1 is only slightly asymmetric. 

Using the scattering tensors listed in appendix B3, it is possible to calculate the values of 

FI! F2 predicted by the rs transitions. Since the equation for the 68 and 82 cm-1 transitions 

will be Izx = 0, we will obtain only one value of FI/ F2 from these two transitions. For the 

68 cm- 1 transition we have: 

Izx = (.084F1 + .021F2)2 + (- .095F1 - .019F2)2 = 0 

=> (.084Fl + .021F2) ~ (-.095Fl - .019F2 ) ~ 0 

which implies that: 

For the 82 cm- 1 transition we have: 

Izx = (-.094Fl - .023F2)2 + (.109Fl + .022F2 )2 = 0 

=> (-.094Fl - .023F2) ~ (.109Fl + .022F2 ) ~ 0 

which also implies that: 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

This is a very surprising but consistent result which does not agree with the assumption that 

d orbital wavefunctions are the intermediate states. The line at 193 cm- l is also strongly 

asymmetric. There are two possible lines from the crystal field fit that it can be identified 

with, namely 195 and 196 cm- l (see Table 4.6). The two lines might actually be so close 

together so as to be experimentally unresolvable. At any rate, the question of which of the 

two levels corresponds to the 193 cm-l transition is somewhat academic since both levels 
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are predicted to have almost identical Raman scattering tensors, regardless of the value of 

F1/ F2 • We arbitrarily assign the 193 cm-1 line to the transition from the ground state to 

the 195 cm-1 level. We then have for the asymmetry: 

(5.19) 

which leads to the following values of F1 / F2 : 

(5.20) 

The results are different than for the 68 and 82 cm- 1 transitions, but again the negative 

values of F1/ F2 indicates the strong presence of g orbitals. The line at 251 cm- 1 is only 

slightly asymmetric and is very weak, so that the relative uncertainty of its experimental 

intensity is too large to allow an accurate determination of F1/ F2 • 

The observed and calculated asymmetry ratios for the rs electronic Raman transitions 

of Ho3+ are shown in Table 5.6 for both Fl/ F2 = -0.22 and for Ft! F2 = +0.25 (mainly 

d orbitals for the intermediate states). It is quite clear that F1/F'J, = 0.25 fails miserably 

to explain the experimental asymmetry ratios. In contrast, Ft! F2 = -0.22 is in excellent 

agreement for the 68 and 82 cm- 1 transitions. Unfortunately it is off by a factor of ten for 

the 193 cm-1 transition, and by a factor of a hundred for the 251 cm- 1 transition. Choosing 

F1 / F2 close to zero would result in asymmetry ratios of nearly unity. 

Table 5.7 compares the experimental and calculated intensities for the three values 

Ft/ F2 = -0.22, 0, and 0.25. It was not possible, due to polarization leakage, to obtain 

accurate values for the XX and YY intensities. F1/ F2 = -0.22 is correct in predicting that 

the XZ intensities of the 68 and 82 cm-1 transitions are roughly equal. For the other lines, 

however, it has serious flaws. The 92 cm- 1 transition is experimentally 40 times stronger 

than predicted. Since its intensity is proportional to Fi, changing Ft/ F2 does not affect its 

calculated intensity. The 150 cm- 1 transition, seen at 160 cm- 1 in the 1% Ho3+:LuP04 

optical absorption spectra should be present but is not observed. The 251 cm- 1 intensities 

are not well reproduced by any of the values of Ft/ F2 • 
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Table 5.6: Comparison of observed and predicted asymmetry ratios Ixz.Y z/ Izx.zy for the 

5Is electronic Raman transitions of HoH in HoPO •. 

Transition 

68 cm-1 82 cm-1 193 cm-1 251 cm-1 

Observed asymmetry 00 00 0.15 0.75 

Predicted asymmetry 
2.1102 4.3102 0.01 0.01 

with Fd F2 = -0.22 

Predicted asymmetry 
4.910-3 6.110-3 2.3102 4.910-3 

with F1/ F2 = 0.25 

5.1.5 Comparison of the Relative Multiplet -+ Multiplet Scattering 

Strengths of TmH, ErH, and BoH 

It is interesting to compare the relative multiplet - multiplet electronic Raman scat

tering strengths from ion to ion. To accomplish this we sum the experimental intensities 

observed for all the transitions between individual crystal field states for a specific multiplet 

to multiplet transition, in all polarizations. In the second order theory, it was shown by Axe 

that this total intensity is proportional to the reduced matrix elements of the unit tensors 

U(l) and U(2) between the initial and final multiplets [1]: 

(5.21) 

We choose F1/ F2 = 0 for TmH and ErH and F1/ F2 = -0.22 for HoH, since these are the 

values indicated by the data. We also assume that the energy denominators and matrix 

elements that enter the expression for F2 are the same for the different ions. 

To obtain the experimental scattering intensities in a way that is consistent with compar

ing the scattering strengths of one ion relative to another, which requires that the differences 

in scattering efficiencies and input powers be corrected for, we reference all the intensities 

to a common scattering intensity for phonon E:. This calibrates the observed intensities 

that come from different spectra. The XX and YY intensities have not been included in 

the experimental total since they are not accurately measured, however, this should not 

induce a very large error in the experimental scattering strengths. The observed intensities 

are correct to within ±50%. As an example of the absolute scattering strengths, for the 
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Table 5.7: Predicted and observed intensities of the electronic Raman transitions from the 

ground state to the crystal field levels of the 518 multiplet of Ho3+. The calculated intensities 

are in units of (F2)2 x 10-4 • 

Transition Polarization Observed Predicted Predicted Predicted 

intensity intensity intensity intensity 

F1/ F2 = -0.22 FdF2 = 0 F1/F2 = 0.25 

68b cm- 1 all a 0 0 0 

68 cm-1 XZ,YZ 31.2 31.5 8.0 0.2 

ZX,ZY 0 0.1 10.1 45.9 

82 cm- 1 XZ,YZ 23.6 40.2 10.1 0.3 

ZX,ZY 0 0.1 10.1 45.9 

92 cm- 1 
XX,yy 

20.0 0.5 0.5 0.5 
XY,YX 

150b cm- 1 XZ,YZ a 11.0 2.9 0.02 

ZX.ZY a 0.01 2.9 12.5 

193 cm-1 XZ,YZ 6.4 0.2 7.3 28.5 

ZX,Zy 40.8 25.8 7.3 0.1 

196b cm- 1 XZ,YZ a 0.2 7.2 28.6 

XZ,ZY a 25.3 7.2 0.1 

225b cm- 1 
XX,YY 

a 4.5 4.5 4.5 
XY,YX 

251 cm-1 XZ,YZ 18.0 2.0 0.5 0.01 

ZX,Zy 23.6 7 10-5 0.5 2.3 

276b cm-1 
XX,YY 

0.3 0.3 a 0.3 
XY,YX 

277b cm- 1 XZ,YZ a 2 10-3 0.2 0.7 

ZX.ZY a 0.6 0.2 0 

300b cm- 1 all a 0 0 a 
a: not observed. 

b: from the crystal field fit, Table 4.6 



119 

Table 5.8: Comparison of the relative multiplet -+ multiplet electronic Raman scattering 

intensities, for multiplet to multiplet transitions, for Tms+, Er3+, and Ho3+ 0 

Tm3+ Tm3+ Ers+ Ho3+ 

SH6 -+ sH6 SH6 -+ SF4 4[15/2 -+ 4[15/2 5[S -+ 5[s 

calculated intensity 100 67 18 51 

observed intensity 100 12 39 4 

intensities reported here the peak height of phonon E~ is 17,000 counts per second, that 

of the Tm3+ 86 cm- 1 transition (in XY) is 18,000 counts per second, that of the Er3+ 33 

cm-1 transition (in XY) is 4,800 cps and that of the Ho3+ 68 cm- 1 transition (in XZ) is 

200 cps. 

The comparison is summarized in Table 5.8, where for convenience Tms+ has been given 

a total scattering strength of 100 for the transition sH6 - sH6 for both calculated and 

experimental values. 

The intensities for Tm3+ and Er3+ are in fairly good agreement, although the Tm3+ sHs 

-+ SF" transition is much weaker experimentally than expected. The biggest discrepancy is 

for Ho3+, which is observed to be ten times weaker than predicted. This weakness of the 

Ho3+ electronic Raman transitions probably accounts for the fact that there have been no· 

previously published electronic Raman spectra of Ho3+ in the literature. 
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5.2 Summary of the Results for Tm3+, Er3+, and Ho3+ 

In the preceding sections, a comparison was made of the experimental and calculated 

electronic Raman transition intensities of Tm3+, Er3+, and Ho3+ in the tetragonal rare 

earth phosphate crystals (RE)zLul-zPO •. For Tm3+, experimental spectra were obtained 

for z = 1, .2, .1, .01; for Er3+ z = 1, .5, .2, .1, .01; and for Ho3+ only z = 1 was used. Some 

crystals of the type (RE)z Y l-zPO.) were also studied, but the experimental spectra were of 

distinctly lower quality then the lutetium phosphate crystal hosts. Spectra were taken for all 

the polarization combinations of the incident and scattered light allowed by the scattering 

geometry, so as to construct the Raman scattering matrix lapO'l2. 
The first immediate result is that electronic Raman scattering, as a spectroscopic tech

nique, allows the measurement oC the frequencies, linewidths, and symmetries of some of the 

crystal field levels of the ground multiplet and, in some cases, of the ,first excited multiplet. 

These levels are often not observable by other means and can in addition be tracked as a 

function of temperature. 

The second interest for this study is the comparison oC the experimental and calculated 

electronic Raman transition intensities. This is a test of the second-order Judd-Ofelt theory 

applied to two-photon transitions in trivalent lanthanides, to date a relatively unexplored 

area as opposed to one-photon transitions such as absorption or fluorescence. It was found 

that Cor Tm3+, Er3+, and Ho3+ there are large discrepancies between the experimental and 

predicted Raman transition intensities Cor transitions between individual crystal field levels. 

The asymmetry of the transitions, a unique feature of electronic Raman scattering, was used 

to highlight the role of the intermediate states. The phenomenological parameter FI/ F2 , 

which governs the amount of asymmetry, was adjusted to find the best fit of the experimental 

to calculated intensities. The character of the intermediate states that contribute to the 

Raman amplitudes can be inferred from the value of FI/ F2• The usual assumption that 

the 4fN - 15d configuration is responsible for the bulk of the transition amplitude leads to 

Ft/ F2 ~ 0.25. 

For Tm3+ it was found that a value of F1/ F2 close to zero yielded the best fit for the 

asymmetries and intensities. Ft/ F2 = 0.25 was in obvious contradiction with the experimen

tal intensities. This implies that g orbitals contribute a significant portion of the electronic 

Raman amplitudes (in section 3.3.4 it was shown that d and g orbitals have opposite sign 
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contributions to the antisymmetric component of the scattering tensor). This is a surpris

ing result in view of the high energy of g orbital configurations in the free ions. Tm3+ has 

nevertheless two glaring discrepancies in the experimental absence of the two transitions at 

248 and 254 cm-1 , predicted to be very strong irrespective of the value of F1/ F2. 

For Er3+, Fd F2 ~ 0.25 gave a better fit than in the case of Tm3+, but again a value of 

Fl/ F2 close to zero gave an even better fit for both the asymmetry ratios and the relative 

intensities. With F1/ F2 = 0.03 there are no major discrepancies in the case of Er3+. 

Ho3+ provides the most intriguing results of the study. The asymmetries of the transi~ 

tions at 68 and 82 cm- l indicate a complete dominance of g orbitals for the intermediate 

states, since they predict F1/ F2 ~ -0.22. This value works noticeably less well, however, 

for the two transitions at 193 and 251 cm- l . There are other discrepancies for Ho3+, in 

particular the unexpected relative experimental strength of the 92 cm- l transition. 

The main results of the intensity studies is the experimental observation of the im

portance of g orbitals in mediating two-photon transitions. How g orbital intermediate 

configurations, or states that mimic the angular properties of g orbital states, could playa 

role in determining the electronic Raman amplitudes is still an unresolved question. The g 

orbital intermediate states need to be quite low in energy to be able to compete so effectively, 

as they do, with the d orbital intermediate states. 

The results also seem to be sensitive to the particular lanthanide ion used, which indi-. 

cates that the details of the electronic energy level structure and of the interactions with 

the host lattice are important in determining the intensities. For Tm3+ and Er3+ the study 

of the diluted crystals did not reveal any concentration dependence of the electronic Raman 

intensities, at least down to a 10% concentration of the optically active ion. The fact that 

the spectra remained the same with different excitation frequencies shows that no resonance 

effects are coming into play. 

The comparison of the multiplet -+ multiplet scattering strengths of the different ions 

studied also revealed discrepancies, notably in the case of Ho3+ where there is a discrepancy 

of one order of magnitude. It is quite possible that this is telling us that the relevant 

intermediate states are different for Ho3+ than for the other ions, or more generally that 

the transition intensities are in some way sensitive to the particular ion involved. 

In the next sections, we investigate in more detail the question of the role played by g 

orbitals and the implications for the lanthanide ion-host lattice and lanthanide ion-radiation 
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field interactions. We also briefly discuss some of the other effects that might come into 

play, such as higher order terms, ion-ion correlations, and vibronic coupling. 

5.3 The Role of g Electrons in Trivalent Lanthanide Optical 

Transition Intensities 

5.3.1 Review of the Literature for One-Photon Transition Intensities 

,There is substantial evidence that the consideration of only the 4fN- 15d configuration 

as the intermediate state for second order optical processes in trivalent lanthanide ions 

does not suffice to explain the experimental results. As discussed in section 1.2.2, one

photon "forbidden electric dipole" transitions in rare earth ions arise from a second order 

process involving the product of the matrix elements of the odd parity terms of the crystal 

field (\li'IVoddI4fN) and the matrix elements of the dipole operator (\li'IDI4fN ), weighted 

by the energy denominator E(\li') - E(4fN). The excited intermediate states l\li') belong 

to configurations of oppposite parity to 4fN, that is 4fN- l d or 4fN- l g configurations. A 

calculation of the one-photon transition intensities is parameterized by the three Judd-Ofelt 

parameters, which contain the contributions of the various intermediate states. The rest of 

the intensity is determined by the angular properties of the initial and final states and the 

values of the odd parity crystal field parameters. The intermediate configurations contribute 

to the Judd-Ofelt parameters via two separate quantities; first, through their radial matrix 

elements with the 4fN configuration, and second, through their energy difference with the 

4fN configuration. In the electric dipole approximation, an intermediate configuration \li' 

will have a contribution commensurate with the size of the quantity: 

(5.22) 

The radial matrix element is defined by the following integral: 

(5.23) 

where the Pnl(r) are the radial distribution functions defined by Cowan [8]. 

The Judd-Ofelt parameters are usually determined by making a least-squares fit of the 

calculated to the observed intensities. Except in the case of the hypersensitive transitions, 
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this usually gives an excellent account of the experimental intensities. The empirical pa

rameters can then be compared to their theoretical expressions. Quite unexpectedly, such 

a comparison reveals that g orbital wavefunctions make a large contribution to the one

photon intensities. This is very surprising, as the g orbital wavefunctions are significantly 

higher in energy than the 4fN - l Sd configuration and their overlap with the 4fwavefunctions 

considerably smaller. 

Axe [1] was the first to realize the importance of g orbital contributions in determining 

the radiative transition intensities of Eu3+ in europium ethylsulfate. From his determination 

of the Judd-Ofelt parameters necessary to accurately reproduce the observed intensities, he 

comes to the conclusion that "g orbitals make an important, if indeed not a dominant, con

tribution to the configurational mixing responsible for electric dipole transition strengths" . 

Krupke [9] studied the radiative transition transition intensities of selected rare earths 

in Y 20S and LaFs . He found that g orbitals contribute more than is expected fron the free 

ion picture, and that the 4fN - l Sd configuration contributes to the observed intensities an 

order of magnitude less than is indicated by the free ion calculations. Modifying the free 

ion radial matrix elements so as to include the effects of the lattice leads to the conclusion 

that the bulk or the Judd-Orelt parameters originates from g orbital configurations. With 

a certain amount of prescience, Krupke notes that "this conclusion is of importance in 

estimating the electronic Raman cross sections for spontaneous and stimulated scattering. 

by rare earth ions in solids" . 

P.J. Becker [10] studied the optical absorption intensities of Ho3+ in YP04 • He found 

that g orbital contributions are of the same order of magnitude as the d orbital contributions. 

This is extremely interesting in light of the fact that the Raman studies reported here 

indicate the major effect of g orbitals in also mediating the electronic Raman transitions of 

Ho3+. Surprisingly enough, Becker also calculated that the core excitation configurations, 

4fN+l3d9 and 4fN+l3d9 , outweigh the 4fN - l Sd configuration in determining the Judd-Ofelt 

parameters. 

More recently, Hasunama et al [11] investigated the fluorescence of Eu3+ in europium 

tris{bromate) enneahydrate. From their calculation of the Judd-Ofelt parameters necessary 

to fit the experimental data they found that g orbitals were responsible for most of the 

electric dipole intensities. 

The conclusion is then that the bulk of the published studies of the one-photon radiative 
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transition intensities indicates that g orbitals make a significant if not dominant contribution 

to the configurational mixing responsible for the intensities. This is extremely surprising in 

view of the fact that for the free ion the contribution of the g orbitals would be expected to 

be entirely negligible. In light of the above conclusions, it is not all too unexpected that we 

find that g orbitals contribute significantly to tw<>-photon radiative transition intensities. 

5.3.2 The Role of g Electrons in Electronic Raman Transition Intensities 

in Rare Earth Phosphate Crystals 

The study of the electronic Raman data for Tm3+, Er3+, and Ho3+, in tetragonal 

phosphate crystals, clearly highlights the importance of the role played by g orbitals in 

mediating the two-photon transitions of these ions. The data for Tm3+ and Er3+ indicates 

that d and g orbitals play comparable roles, whereas the asymmetry of the transitions in 

Ho3+ tends to indicate that g orbitals play the dominant role. 

A simple argument, originally due to Judd, can be made to justify a priori the compa

rable importance of d and g orbitals as intermediate states in the electronic Raman process. 

Consider the expression for the two-photon scattering amplitude cxPf7 for a transition from 

state Ii) to state II): 

(CX pf7 )i/ = _.!. L [UIDpli)UI Df7 li ) + UIDf7 /i)UIDpli)j 
1& i Wii - W Wi/ + W 

(5.24) 

where D is the electric dipole operator, p and q denote Cartesian coordinates, !&wii and 

hWi/ are, respectively, the energy differences Ei - Ei and Ei - E/, and W is the frequency 

of the incident radiation. This equation is equivalent to equation 3.22 if one assumes that 

Ii) is the ground state (so that !&wii = !&wi), and also uses the fact that hWi + hws = 

hWi +!&w - !&w/ = 1&wi! + !&w. 

Grouping the sum over intermediate states into a sum over intermediate configurations, 

each one of which is assumed to be at the degenerate energy E~" we have for the antisym

metric part of the scattering tensor: 

L [UIDp/i)UIDf7 li) - UIDf7 li)(iIDpli)] ;~ 
~',iin~' ~I 

(5.25) 

If we make the hypothesis that E~, is the same for all the intermediate configurations, then 

we can pull out the energy denominator from the sum and perform a full closure over both 
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angular and radial variables. The term in square brackets then becomes: 

(5.26) 

since the components of D commute with one another. An alternate way to view this would 

be with equations 3.45 and 3.46, which show that apart from the energy denominators and 

dipole matrix elements, the d and g orbitals have contributions that are identical in absolute 

value and opposite in sign. Setting E!if ~ EgJ ~ E, where E is some average energy, and 

using the fact that En/d(4flrln'd)2 = En/g(4flrln'g)2 = (4flr214f), equations 3.45 and 3.46 

then imply that the d and g orbital contributions to the antisymmetric tensor will exactly 

cancel out. The assumption that d and g orbitals are at roughly the same energy is not 

at all expected from the free ion picture and, if indeed true, indicates ~hat the presence 

of the crystalline environment substantially modifies the free ion wavefunctions and optical 

transition mechanisms. 

5.3.3 g and d Orbital Wavefunctions and Electric Dipole Matrix Ele

ments 

The free ion wavefunctions, energIes, and electric dipole matrix elements provide an 

important starting point for describing trivalent lanthanide ions in a crystal host. This_ 

section describes the results of Hartree-Fock calculations of the free ion states that can 

serve as intermediate states in a second order one-photon or two-photon transition by a 

lanthanide ion. The work presented here is the result of computer calculations performed 

by N. Edelstein. 

The lowest energy d configuration is 4fN- 15d. It is usually assumed that it is the dom

inant 4fN- l nd (n~5) configuration as far as optical transition intensities are concerned. 

The core excitation d configurations, 4fN+l3d9 and 4fN+l4d9 are very high in energy. Ta

ble 5.9 summarizes the energies of the d configurations and their dipole matrix elements 

with the 4f con~guration, from free ion Hartree-Fock calculations. Figure 5.1 shows the 

radial distribution functions for these configurations, for the ion Tm3+. 

Similar calculations can be done for the g orbital configurations. The results are shown 

in Table 5.10. Figure 5.2 shows the radial distribution functions for these configurations, 

for the ion Tm3+. 

The free ion energies and dipole matrix elements clearly indicate that the 4fN- 15d ex-
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Table 5.9: Energies and dipole matrix elements of excited d orbital configurations of Tm3+ 

(from Hartree-Fock calculations). 

Configuration W' Energy (em-I) Dipole Matrix Element 

(w'lrI4f) 

4fllSd 81,000 0.54 

4f133d9 11,956,000 0.12 

4f134d9 1,465,000 -0.57 

a: not available. 

Table 5.10: Energies and dipole matrix elements of excited g orbital configurations of Tm3+ 

(from Hartree-Fock ca.lculations). 

Configuration w' Energy (em-I) Dipole Matrix Element 

(w'lrI4fN) 

4fl1Sg 173,000 0.06 

4f118g 316,000 0.04 

4f1l 10g 326,000 0.03 
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Figure 5.1: Radial distribution functions of the 4f orbital of 4f12, and of the d orbitals of 

4f115d, 4f133d9 , and 4f134d9 . 
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Figure 5.2: Radial distribution functions of the 4f orbital of 4£12, and of the g orbitals of 

4f115g and 4f1l8g. 



129 

cited configuration must be the preponderant intermediate state for two-photon transitions 

in trivalent lanthanide ions. It has the lowest energy and the largest dipole matrix element 

of any of the excited configurations of the free ion. The bound g configurations, which have 

energies close to the ionization limit, have only negligible dipole matrix elements with 4fN 

due to the small overlap of the f and g orbitals. To bring in the first node of the g orbitals 

close enough to the nucleus to obtain a large overlap with the f orbitals requires 4fN- l g 

configurations that are well into the continuum and have very high energies. Whether these 

continuum wavefunctions are indeed playing a role in the electronic Raman transitions is 

still an unanswered question. The main conclusion of this section, and of the preceding 

ones, is that the free ion numbers fail to explain the radiative transition intensities of rare 

earth ions in crystals, even though the crystal field is only a weak perturbation on the 4fN 

states which are participating in the electronic Raman transitions. 

5.3.4 The Free Ion Picture vs. Molecular Orbitals 

The approach used so far to calculate the optical transition intensities of the lanthanide 

ions has been an atomic one, in the sense that the wavefunctions used are those of the free 

ions. In the crystal, the neighbouring ions (the ligands), are considere~ to produce only a 

small perturbation which serves to lift the degeneracy of the atomic multiplets. Clearly. 

this free ion picture is not sufficient to explain the mechanics of the two-photon transitions 

between the crystal field states. 

The ligands are usually not assumed to participate in the radiative processes of the 

lanthanide ion. This is an extremely static view of the role played by the ligands and 

is certainly not very close to reality. While for a treatment of the energy level structure 

of the ground 4fN configuration this model might be a good approximation, for the case 

of radiative transitions via highly excited virtual intermediate states this can no longer 

be true. The intermediate states, configurations such as 4fN- 1Sd, are no longer localized 

near the lanthanide nucleus as the 4fN states are, but instead overlap quite significantly 

the neighbouring ligands. As such, they can no longer be considered pure states of the 

lanthanide ion but must be combined with the wavefunctions of the neighbouring ions to 

form molecular orbitals. It is here that the free ion model breaks down and g orbital like 

wavefunctions can now acquire much more importance than in the free ion. 

There is experimental proof for the importance of the ligand effects in the observation 
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of the so-called charge transfer states in absorption or emission spectra [12,13]. These 

involve the passage of a ligand electron to the lanthanide ion. In molecular orbital language 

one would say that the electron goes from a predominantly s or p orbital to a bound 

lanthanide orbital. The observed charge transfer bands lie in the same energy region as 

the 4fN _4fN - 15d transitions. The presence of these charge transfer bands with oscillator 

strengths comparable to the 4fN -4fN -15d transitions underlines the shortcomings of the free 

ion model. 

A radiative process such as electronic Raman scattering, even though it starts and ends 

on a state of the 4fN configuration, makes virtual transitions through these excited states 

or molecular orbitals. In the event that the bulk of the transition amplitude is provided 

by 4fN intermediate states this problem would not arise as much since the 4fN states in 

the crystal are still very much like the free ion states. However, for allowed electric dipole 

transitions the intermediate states must belong to excited d· or g orbital configurations. 

Electronic Raman scattering, with an excitation energy on the order of 20,000 cm- 1 thus 

serves, paradoxically enough, as a sensitive probe of physical states that lie much higher in 

energy than the lower lying 4fN states. 

The immediate surroundings of the lanthanide ion is constituted by eight 0 2- oxygen 

ions. The oxygen ions have the configuration (ls)2(2s)2(2p)6. The valence electrons of the 

oxygen ion are thus s and p electrons. When considering the construction of the molecular 

orbitals, it is thus necessary to "hybridize" [14J the nd and ng orbitals of the lanthanide 

ion on the one hand, and the 2s and 2p orbitals of the oxygen ion on the other. For the 

ground configuration 4fN one would use the 4f orbitals of the rare earth ion but since they 

have such a small overlap with the neighbouring ions, the hybridization can be expected 

to be very weak. The effect of molecular orbitals on crystal field parameters has been a 

subject of study for quite some time [15,16,17,18,19,20J. Molecular orbitals in tetragonal 

rare earth vanadates and phosphates have been considered by Gubanov at al [21,22]. An 

actual numerical calculation of the electronic Raman intensities, within the framework of 

this model, thus requires the calculation of the molecular orbitals for the lanthanide nd and 

ng orbitals, and perhaps also for the 4f states. The consideration of molecular orbitals for 

the intermediate states could presumably increase the role played by g orbitals (or orbitals 

which transform according to their symmetry properties) relative to d orbitals. A recent 

calculation of the effect of the ligands (the so called ligand polarization effects) in governing 
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the intensities of two photon transitions has been done by Sztucki and Strc;k [24], based on 

a suggestion by Reid and Richardson [25]. It would be very interesting to to apply their 

results to the electronic Raman intensity problem. 

5.4 Beyond the Single Ion 

5.4.1 The Problem of the Missing Tm3+ Electronic Raman Transitions 

The most glaring discrepancy between the calculated and observed electronic Raman 

intensities occurs for the Tm3+ rl and r" transitions predicted by crystal field calculations 

to be at 248 and 254 cm- l , respectively. Their scattering intensity is calculated to be of 

the same order of magnitude as that of the line at 86 cm-1 , which itself is comparable 

in strength to the intense 1000 cm- 1 region phonons. The 248 and 254 cm-1 transitions 

were searched for in the XX, YY, and ZZ polarizations and were found to be completely 

absent. Their experimental intensity must thus be at least lOS to 10" times weaker than " 

their predicted intensity. 

The interesting point to note about these two transitions is that their calculated intensity 

is. proportional to Fi, that is they contain no antisymmetric component. As a res~lt, the 

g electron theory outlined in the preceding sections cannot provide a direct explanation 

for the absence of these lines. The g electron theory serves principally to explain the 

values obtained for the ratio Fd F2 which governs the asymmetry of the transitions which 

have both symmetric and antisymmetric components. Changing F1/ F2 will not change the 

intensities of the 248 and 254 cm- l transitions relative to that at 86 cm- l , since all three 

are proportional to Fi (see appendix B). The inclusion of ligand polarization effects can, 

however, affect the relative intensities of these three transitions. 

One should note that the wavefunctions given in Appendix A would need to be drastically 

modified in terms of their Russell-Saunders components if one were trying to fit the intensity 

data. The calculation, for example, of the amplitude of the 248 cm- 1 electronic Raman 

intensity shows that the amplitude does not depend on the difference of two large numbers. 

It can be argued that there is no reason to expect that wavefunctions obtained from an 

energy level fit will explain optical transition intensities. This should not be taken to mean 

that their Russell-Saunders components are necessarily incorrect, rather, this should be 

interpreted as telling us that the wavefunctions are incomplete (e.g. ligand or vibronic 
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components might be missing), which has an effect on the transition intensities but not on 

the energy levels and so are not detected by the parametric Hamiltonian fitting procedure. 

The lines at 248 and 254 cm-1 are predicted to be so strong, and their absence so 

conspicuous, that one is drawn to the conclusion that perhaps some kind of unsuspected 

selection rule must be the reason for their disappearance. 

5.4.2 Third Order Terms 

The inclusion of third order terms in the perturbation expansion for two-photon pro

cesses in lanthanide ions was found by Downer to be indispensable in explaining his ex

perimental two-photon absorption data [231. The third order terms in essence correct the 

Judd-Ofelt approximation used in the second order term, but is nevertheless smaller than 

the second order term, as in any "standard" perturbation expansion. Downer's experimen

tal situation was such that the second order term was inordinately small for the lanthanide 

ions he was studying, making the higher order terms observable. In the case of the elec

tronic Raman transitions studied here the second order term is selection rule allowed and 

no higher order terms are a priori necessary to explain the experimental intensity. 

The third order term for electronic Raman scattering has the following form: 

(S.27) 

where Wl is the frequency of the incident photon, W2 that of the scattered photon, and V 

the static perturbation considered in the excited state. Clearly, the ratio of the third order 

term to the second order one is given by the size of (i:~~~)l)" 

There are three types of third order terms, depending on which perturbation is consid

ered for the intermediate states. The spin-orbit Hamiltonian is the weakest of the three and, 

barring some selection rule breakdown, can be neglected. For the 4fN - l Sd configuration the 

spin-orbit parameter is a couple of thousand wavenumbers in energy units, which is very 

small compared to the average energy denominator of 100,000 cm- l . 

Using the crystal-field perturbation in the excited intermediate states leads to a ratio of 
B(I:) (k) 

the third-order term to the second order one of roughly T' where the Bq are the crystal 
1 

field parameters for the excited states. Taking for example the 4fN - I Sd configuration, the 

crystal field parameters are on the order of 20,000 cm- 1 and the energy denominator is 

100,000 cm- 1
, which yields a value of 0.2 for the magnitude of the third-order term relative 
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to the second order one. This means that it will not have a very large effect on Raman 

transition intensities that are allowed in second order. It is perhaps of some interest to 

calculate the third-order term for electronic Raman scattering, with V being the crystal 

field Hamiltonian. We can basically extend with some slight modifications the results of 

Downer for two-photon absorption. A calculation of the third order crystal field correction 

in the case of TmPO" showed that it produced an effect of at most 10%. 

It might be expected that the strongest static perturbation in the third order term would 

be provided by the electrostatic interaction. Since the intermediate states are of the form 

4fN - 1nl, this excited configuration can be pictured as consisting of a 4fN - 1 core and an 

outer nl electron. The electrostatic interaction is then separated into two pieces; one which 

represents the repulsion between the the 4f electrons of the core, and one for the interaction 

betweeen the core and the nl electron. The electrostatic repulsion between the 4f electrons 

is quite large, on the order of the Slater FA: parameters (10,000 to 100,000 em-I). 

However, a calculation of the third order term with the electrostatic repulsion between 

the (N-l) 4f electrons of the 4fN - 1nl configuration as the middle matrix element of equation 

4. 5.27 yields identically zero. This can be shown diagramatically using many-body atomic 

theory [26]. We conclude that third order effects that involve perturbations in the interme

diate states, and thus attempt to correct for the closure approximation, do not appear to 

have a bearing on the problems discussed here. 

5.4.3 Vibronic Effects 

A further improvement upon the theory considered so far is the inclusion of the lattice 

and its vibrational modes as participants in the radiative process. There are two distinct 

regimes of vibromic effects; the strong coupling case and the weak coupling case. It is 

usually the weak coupling case that is assumed for lanthanide ions doped in crystals, and 

we will treat this case first. There is growing experimental evidence for strong coupling and 

this case will be discussed in turn at the end of this section. 

The wavefunctions are written in the Born-Oppenheimer approximation as the product 

of an electronic wavefunction and a vibrational wavefunction: 

Ii} = Ig}lm} (5.28) 

where Ig} is an electronic state and m represents vibrational quantum numbers, as the vi-
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brational quantum states can be classified by the phonon occupation numbers. A transition 

between two states thus involves a change in either the electronic state or the vibrational 

state, or both. It is common to use the notation n-m for a particular electronic transition 

to specify the phonon occupancy numbers of the initial and final states. The phonon occu

pancy numbers should be thought of in the general sense as being the ocupation numbers for 

all the phonon modes allowed by symmetry. The vast majority of the rare earth phosphate 

4f-4f absorption and emission lines observed are 0-0 lines, that is they are purely electronic 

lines and do not involve any phonon excitations. The transitions from the 4fN- l Sd to the 

4fN states, however, can involve the excitation of one or more phonons. This comes from the 

fact that the 4fN states, which have strong atomic identity, have a relatively weak coupling 

with the phonons, but excited configurations such as 4fN- l Sd have a large overlap with the 

neighbouring ligands and have significant vibronic coupling. 

The effect of vibronic coupling can be visualized best by means of the configuration 

coordinate model [27]. The effect of the lattice vibrations is represented by a harmonic 

oscillator potential for the electronic states, which is a function of the generalized coordinates 

Q of the ions of the lattice. The potential energy minima of the 4fN states are all at about 

the same normal coordinate, whereas the potential minima of the excited configurations 

are then shifted relative to those of the ground state. The Franck-Condon principle then 

implies that transitions between ground and excited configurations involve the excitation 

of one or more vibrational quanta. This is the cause of the large Stokes shift between 

absorption and fluorescence frequencies in 4f-Sd rare earth ion transitions and the presence 

of strong vibronic sidebands. More detailed discussions of vibronic effects in lanthanide ion 

one-photon spectra can be found in Imbusch and Kopelman [27] and Englman [28]. 

The calculation of the Raman transition amplitudes in the framework of the Born

Oppenheimer approximation is well known, at least in the formal sense [29]. It makes use 

of the expansion of the dipole operator of the electronic system as a function of the normal 

coordinates of the lattice ions (the Hertzberg-Teller expansion). The importance of the 

vibronic effects is measured by the size of 8aIfi, where D p is the dipole operator and Q 

represents the normal coordinates of the ions. It turns out that because of the sum over 

intermediate states that occurs in the expression for the Raman amplitude, closure can be 

performed over the vibrational wavefunctions and thus in zeroth order the effects of vibronic 

coupling in the intermediate states, characterized for example by the displacement in the 
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potential energy minima between 4fN and 4fN -lSd states, have no effect on the Raman 

amplitudes [29] . .AJJ a result, vibronic coupling in the excited states is not an explanation 

for the unexpected electronic Raman intensities obtained for Tm3+, E3+, and H0 3+ in the 

tetragonal phosphate crystals. Only a difference in vibronic coupling between initial and 

final states will produce an effect (in zeroth order). This is not expected to occur for 4fN 

states. 

The higher order terms in the Raman amplitude result in vibroelectronic Raman transi

tions that involve the simultaneous change in both electronic and vibrational states. These 

would appear in the Raman spectra as sidebands akin to the sidebands observed in fluo

rescence or absorption. No vibroelectronic Raman peaks were observed in this study. The 

electronic Raman transitions are thus of the 0-0 type which is not to surprising since the 

one-photon 4fN transitions are of the 0-0 type. 

The above discussion tends to indicate that vibronic coupling effects can be neglected 

for 4fN states. On the other hand, there is growing indication of strong electron-phonon ~. 

coupling that involves specific 4fN crystal field electronic states and phonons, in a number 

of rare earth crystals. The first example of this is provided by the cooperative' Jahn

Teller transitions in the rare earth vanadates [301. Another category of effects are the 

magetoelastic and anticrossing effect studied by Schaack and his collaborators over the 

years [31,32,33,34,351. Chapter 6 of the present work provides evidence for extremely strong 

electron-phonon coupling in YbPO". The conclusion is that in spite of the atomic nature 

of the 4fN states there can nevertheless be strong coupling between the electronic and 

. vibrational states. Whether this occurs on a localized or delocalized scale, and why it 

occurs only for certain crystals and certain states is still a matter for speculation. 

The wavefunctions of such strongly coupled states must be treated according to the 

precepts of quantum mechanics for strongly interacting states, i.e. a Hamiltonian needs to 

be diagonalized, perturbation theory is no longer valid, and the new eigenstates are hybrid 

modes that can no longer be called electronic or phonon modes. As far as our calculated 

Raman intensities are concerned, this means that our wavefunctions are missing components 

that arise out of this hybridization. These components contribute to the transition intensity 

quite drastically since the phonons have such strong Raman scattering strengths, but not 

very much to the energies, at least not on the scale of a crystal field fit. One could for 

example hypothesize that since phonon scattering is symmetric the effect of the coupling 
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might be to "symmetrize" the electronic Raman transitions. This could hold for the 138 

and 280 cm-1 transitions of Tm3+ and the 193 and 251 cm- 1 transition of Ho3+ which are 

near Eg phonons (of the right symmetry for coupling to rs electronic transitions). Only in 

the case of phonon E~ of Ho3+ is there any indication of the anomalous frequency shifts 

(of either the electronic or vibrational states) that are direct evidence of electron-phonon 

coupling. 

5.4.4 Concentration Effects and Ion-Ion Correlations 

Concentration effects are well known to be extremely important in rare earth systems. 

Fluorescence quenching and cooperative phenomena are two examples of these types of 

phenomena [15,36]. It is important to note that so far our approach has dealt only with 

single ions, which is the most natural conceptual starting point. It has been found that 

the forbidden electric dipole matrix elements of trivalent lanthanide ions do not vary much 

with concentration, so it is not unreasonable to expect the same of the Raman transition in

tensities. The observed nonresonant relative intensities of the electronic Raman transitions 

studied in Tm3+:LuPO. and Er3+:LuPO. were found to remain the same, within experi

mental error, when the optically active lanthanide ion of the rare earth phosphate crystal 

was diluted from a 100% constituent to 10%. 1% Tm3+ in LuPO. was also studied and did 

not contradict the data of the higher concentration crystals in that the missing lines at 248 

and 254 cm-1 did not appear, even though the 86 cm- 1 transition was clearly observable 

and the missing lines are predicted to be of the same order of magnitude as that line. 

When the interaction between neighbouring ions is sufficiently strong, then transfer of 

electronic excitation can occur from ion to ion and these excitations, no longer localized 

on a specific ion, are more appropriately called ezcitons. Electronic Raman scattering 

probes excitons with wavevector q = o. The symmetry properties of the excitons can be 

treated in a similar fashion as that of the phonons. Their symmetry is determined by the 

crystal space group. At q = 0 the appropriate group to describe either the vibrational or 

electronic excitations is the factor group, which is the point group of the crystal. The factor 

group is also the invariance group of the primitive cell. Since there are two ions in the 

primitive cell, the passage' from the site symmetry group to the factor group is the result 

of "turning on" the interaction between the two ions. The interaction splits into two the 

excited single ion states, the splitting being known as the Davydov splitting [37]. For rare 
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earth ions the Davydov splitting of the 4fN states is usually quite small as the interaction 

between neighbouring lanthanide ions is weak. This originates from the small overlap of 

their respective 4f orbitals. 

The factor group for the tetragonal phosphate crystals is D4h, which can be considered 

to be the direct product of D2d and the inversion group. Each irreducible representation of 

D2d now has a label that indicates whether it has even or odd parity under the inversion 

operation. The wavefunctions of the coupled ions are thus symmetric and antisymmetric 

linear combinations of the products of the wavefunctions for each of the two ions. The only 

new selection rule that has been introduced by this is that the electronic Raman transition 

must conserve parity. No group theoretical selection rule has arisen that would forbid the 

248 and 254 cm- 1 transitions. Thus it is not immediately apparent how ion-ion correlations 

would solve the problem of the missing lines. However, since the experiments were not 

done in extremely dilute crystals which would prevent ion-ion coupling from occuring, the 

possibility of a concentration effect cannot be completely ruled out. ,.,. 

5.5 Future Directions 

It is clear that electronic Raman scattering has uncovered a new perspective on optical 

transition mechanisms in rare earth ions in crystals. The fact that orbitals with g electron_ 

characteristics can play an important role in gove'rning these transitions seems to recur in ,. 

a number of experiments. It would be worthwhile to do electronic Raman scattering in a 

different type of crystal, LaF3 for example, and see whether changing the ligands has any 

kind of influence on the Raman intensity pattern. From the experimental point of view, it 

might be advantageous to attack the problem using a technique such as stimulated Raman 

scattering. 

Another interesting avenue of research would be to use the excited state Raman effect 

[38,39,40]. One can populate an excited state and observe Raman scattering from it, and 

. repeat the intensity calculations for transitions that originate considerably higher in energy 

than the ground state and are closer to the possible intermediate states. 
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Chapter 6 

Resonant Electronic Raman Scattering in 

Erbium Phosphate Crystals -

Experimental Results and Discussion 

This chapter describes and analyzes the observation of resonance enhancement factors 

of 10 to 100 of the electronic Raman transitions within the ground 4115/ 2 multiplet of Er3+ 

in concentrated and dilute erbium phosphate crystals [11. The energy of the 488.0 nm 

argon-ion laser line which is used for the excitation is almost coincident in energy with 

the transitions between the crystal field levels of the 4F7/2 excited multiplet and the 4115/ 2 

ground level. Particular attention is paid to demonstrating the point that in ErP04 one 

is observing resonance Raman scattering and not fluorescence. The spectra of ErP04 and 

10% Er in LuP04 are compared and contrasted. 

6.1 Introduction - Resonance Enhancement of Electronic 

Raman Scattering in Rare Earth Crystals 

The enhancement of electronic Raman scattering transitions can occur via different 

types of resonances. Usually, the resonance enhancement of a nonlinear optical process is 

mediated by an allowed electric dipole transition. In the case of trivalent lanthanide ions, 

this implies that strong resonance enhancement of electronic Raman transitions occurs for 

excitation very close in energy to that of a 4fN - 4fN- I Sd transition. This requires 

ultraviolet excitation, an experimental complication, since most tunable lasers operate in 

the visible region of the spectrum. Resonance enhancement in the visible can occur via a 

141 
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4fN --+ 4fN transition, however, since the oscillator strengths of such transitions are very 

weak, the effect is expected to be quite small. 

The Raman scattering tensor that arises in the second order calculation of the Raman 

transition amplitude between 4fN states has the form: 

( ). = _ " [(lIDpli)UIDO'li) + (lIDO'li)(iIDpli)] 
Qpu " ~ E .. - 1iw + ir . E-f + 1iw + ir· i l' :/:/ 1 

(6.1) 

for a transition from state Ii) to state 11), where Dp is the electric dipole operator, p 

and q are Cartesian coordinates, Ii) is the intermediate state, and r j is a damping factor 

that is inversely proportional to the dephasing lifetime of the radiative state [2,3J. The 

damping factor is necessary to prevent the expression from going to infinity in cases where 

the excitation energy exactly or almost exactly matches the transition between two states 

of the system. The damping factor is usually small compared to the real part of the energy 

denominator and can be neglected unless the excitation is very close to resonance. In the 

nonresonant situations discussed in chapters 4 and 5, no damping factors are needed and 

the intermediate states are all considered to belong to excited configurations of opposite 

parity to 4fN. However, if the energy of the exciting radiation is very close to that of a 

~fN _4fN transition, then the energy denominator of the first term of equation 6.1 is very 

small and this compensates for the weakness of the 4fN_4fN matrix elements. Therefore, 

one may expect a noticeable change to occur in the electronic Raman intensity pattern with 

respect to the polarizations of the incident and scattered photons, as opposed to the pattern 

with nonresonant excitation. 

A simple order of magnitude estimate can be made of the resonance enhancement that 

such a mechanism will produce [4J. We consider first the nonresonant contribution of the 

higher energy opposite parity configurations. For the sake of simplicity the 4fN - 15d con

figuration will be used as the dominant intermediate state. The first term of the Raman 

tensor can be symbolically represented as: 

(II D p I4fN
- 1Sd) (4fN - 1SdIDO' Ii) 
E5d4f - 1iw 

(6.2) 

where E5d4f is the average energy difference between the 4fN and 4fN- l Sd configurations. 

The product of the two matrix elements in the numerator is proportional to the oscillator 

strenth of 4f-5d transitions, which since they are electric dipole allowed are on the order of 

0.1 to 1. In units of oscillator strength per cm- 1 the order of magnitude of the nonresont 
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10-
1 

to 1 = 10-6 to 10-5 
105 
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(6.3) 

Now, for a resonance with a 4f-4f transition we might have an energy mismatch of 1 to 10 

cm-1 between the excitation energy and that of the transition, and the oscillator strengths 

of the 4f-4f forbidden electric dipole are known to be about 10-6 to 10-7. The order of 

magnitude of the Raman tensor is then estimated to be (only the first term in equation 5.1 

is important with resonant excitation): 

10-
6 

to 10-
5 

= 10-7 to 10-5 
1 to 10 

(6.4) 

The resonant contribution is seen to be comparable in amplitude to the nonresonant con

tribution, especially if the excitation is only a few wavenumbers away from the transition. 

Nevertheless, with the exception of the work of Nicollin and Koningstein [5] and of Wad

sack and Chang [6], there are few reports of resonance electronic Raman scattering in triva

lent rare earth doped crystals. In the resonance Raman studies noted above, enhancement 

factors that were of the order of 5 at most were reported, whereas in the erbium phosphate 

studies reported here the enhancement factors are on the order of 10. to 100. Somewhat 

similar resonance effects have been observed for other nonlinear optical processes, such as 

four wave mixing phenomena [7,8], in rare earth crystals. 

6.2 Overview of the Situation in Erbium Phosphate Crys

tals 

6.2.1 Electronic Energy Level Structure of Er3+ 

The absorption studies and crystal field fits performed on 1% Er3+ doped in LuPO. and 

YP04 allow the construction of the electronic energy level diagram of the erbium ion. The 

atomic multiplets are split into crystal field levels characterized by the irreducible represen

tations of D2d according to which they transform. This diagram is shown in Figure 6.1 for 

the energy range 0 to 27,000 em-I. The atomic multiplets are labeled by their dominant 

Russell-Saunders components and their widths represent the crystal field splitting. It is 

based on the data of Hayhurst et al [9] and on wavefunction calculations using the parame

ters they report. Also indicated is the 488.0 nm line of the argon ion laser which is resonant 

with the 4[15/2 --+ 4F7/2 transitions. 
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Figure 6.1: Electronic energy level diagram of ErH doped in LuPO., from 0 to 27,000 em-I. 

The widths of the manifolds indicate the crystal field splittings. The resonant excitation 

488.0 nm line of the argon-ion laser is shown. 
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6.2.2 Absorption Studies of the Resonant 4F7/2 Multiplet 

The precise locations of the crystal field levels of the 4F7/2 and 4[15/2 multiplets need to 

be known for an accurate understanding of the resonance Raman phenomena in the erbium 

phosphate crystals. For the 4F7/2 multiplet there are four levels, two of ra symmetry and 

two of r7 symmetry. The levels were located by taking absorption spectra at both 4.2 and 

77 K, this last temperature allowing the observation of the excited crystal field states of the 

ground state, with photographic plates taken with a 3.4 m Ebert spectrograph (see Chapter 

2). Figure 6.2 shows the energies of the crystal field levels of the 4F7/ 2 multiplet of the Er3+ 

ion for the various crystals ErzLul-zP04, with x = 1;0.5;0.2;0.1;0.01, and also for 1% Er3+ 

in YPO •. The spectrometer has an accuracy of ±O.l cm-1 , however the levels have a certain 

breadth and the centers of the lines need to be estimated. As a result, the uncertainty of 

the energy values given in Figure 6.2 is ±0.25 cm- I . The lower r7 level (20,485 cm- I in 

ErPO.) is somewhat more uncertain since only in the case of ErPO. and 1% Er3+ in LuPO. 

was it directly observed in the absorption spectra. For the other concentration crystals it 

is too close to the lower ra level which has extremely strong absorption intensities. For the 

10%, 20%, and 50% Er3+ in LuPO. crystals the value of the lower r7energy level needs to 

be inferred from T=77 K absorption transitions that originate in excited crystal field levels 

of the ground multiplet. It is usually averaged from three different transitions and has an 

uncertainty on the order of ±0.5 cm- I . The energy values of the 4[15/2 excited crystal field 

levels are listed as the need arises in tables in the following sections. 

Unfortunately, the photographic plates do n?t give the linewidths of the states since the 

plates do not have a linear response to the amount of light incident upon them. To determine 

these linewidths, which play an important role in determining the resonant electronic Raman 

spectra, absorption measurements were taken with a tungsten lamp. These measurements 

were also repeated with a pulsed dye laser [101. The tungsten lamp output was loosely 

focussed on the crystal and the transmitted light was analyzed with the SPEX double 

monochromator and the collection optics used for the Raman experiments (see chapter 2). 

The current supplied to the tungsten lamp was kept low to prevent heating of the sample. 

The output of the tungsten lamp is relatively flat over the 100 cm- 1 span of the 4F7/2 

multiplet. To measure the narrower linewidths it was necessary to take spectra with the 

spectrometer entrance and exit slits closed down to 35Jl. The tungsten lamp absorption 

spectra of ErP04• taken at T~4.2 K (the temperature is measured at the tip of the cold 
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Figure 6.2: Crystal field levels of the 4F 7/2 manifold of Er3+ for varying concentration erbium phosphate crystals. All 

energy values are in vacuum wavenumbers. The 4880 nm line of the argon-ion laser is at 20,486.7 cm- 1 (in 

vacuum). -~ 
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finger), are shown in Figure 6.3. This figure gives a clear picture of the relative intensities 

of the various absorption transitions. It is important to notice that for the lower rs and 

r7 levels, which are the ones directly involved in the enhancement process, the oscillator 

strength of the transition to the rs level is much stronger than that to the r7 level. The 

lower r 6 level will thus play the dominant role in the enhancement of the electronic Raman 

transitions. Tungsten lamp absorption measurements taken at higher temperatures allow 

the observation of transitions that originate in excited crystal field states of the ground 

multiplet. It was also observed that the crystal transmits roughly twice as much light in 11' 

polarization (Z polarized light) as opposed to 0' (X,Y polarized light) polarization, which is 

due to the fact that the crystal is birefringent and has two different indices of refraction. 

The linewidths, measured as the full width at half maximum, are listed in Table 6.1. The 

main problem is that the absorptions are so strong that the crystal usually absorbs 100% 

of the light incident'upon it in a small wavelength region near the peak of the absorption. 

This can artificially distort the lineshapes and broaden the lines. The ErP04 sample was 

available as a very thin platelet so that its spectra appeared to be much more distortion free 

than those of the 10% Er3+ in LuP04 crystal which was comparatively thick. The problem 

is more acute in 0' polarization then in 11' polarization since the absorption is significantly 

stronger in the former. When possible, the 11' polarization absorptions are used to measure 

the linewidths. Linewidths that are potentially overestimated by a one or two cm- t are 

indicated in Table 6.1 by a dagger. The other linewidths are accurate to ±0.5 cm- t and 

those of the 1% Er3+ doped crystal are accurate to ±0.25 cm- t . Even though the lower r7 
level could not be observed with the tungsten lamp absorption measurements its linewidth 

can be estimated to be at the most 1 cm- t (from photographic plates and pulsed dye laser 

absorption) . 

6.2.3 Fluorescence Studies of Erbium Doped Phosphate Crystals 

The fluorescence spectrum of the Er3+ manifolds can be studied by exciting the crystal 

with one of the argon-ion laser lines. For the multiplets of interest here we use the lines 

that lie above the 488.0 nm line (476.5 nm, etc.). The main conclusion of these studies is 

that the "F7/ 2 and 2Hu/2 multiplets fluoresce extremely weakly whereas the 483/ 2 and 4F9/ 2 

multiplets fluoresce extremely strongly. This is similar to the findings of Reed and Moos [11] 

in their study of multiphonon relaxation of excited states of rare earth ions in YP04 (see 
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Figure 6.3: Absorption spectra at T,::::j4.2 K of the 4FT/2 multiplet of ErS+. The crystal 

sample is ErP04 . The spectrometer slit settings are 35-100-100-35 p, and the spectral 

bandpass is 0.5 em-I. 
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Table 6.1: Linewidths in cm-1 of the 4F7/ 2 multiplet crystal field levels as measured photo

metrically. See Figure 6.2 for the energy level values for the crystals listed. 

. 
higher higher lower lower 

r7 level r6 level r6 level r7 level 

ErP04 5.5t 2.5 2.5 1.5 

10% Er3+ 8.5t 3.5 6.5t not 

in LuP04 observed 

1% Er3+ 1.5 1.0 1.0 not 

in LuP04 observed 

t: Could be overestimated due to strong absorption. 

in particular their Figure 2). The physical processes that are thought to be occuring are 

depicted in Figure 6.4. Ions excited to the 4F7/ 2 and 2Hu/2 manifolds decay nonradiatively 

in cascade fashion to the 483/ 2 and 4F9/2 states, with a fast enough decay rate that the 

4F7/2 and 2Hu/2 states can fluoresce only weakly. Very strong fluorescence then occurs from 

the 483/ 2 and 4F9 / 2 multiplets. The energy gap between the 4F7/ 2 multiplet and the 483/ 2 

multiplet can be bridged almost exactly with two 1000 cm-1 region optical phonons, which 

is perhaps one of the reasons that the nonradiative decay between those two multiplets is so 

strong. The fluorescence spectrum of ErP04 excited with the 476.5 nm line of the argon-ion 

laser is shown at four different temperatures in Figure 6.5 across the spectral range from 

21,000 to 15,000 cm- l . The relative intensity of the phonon and fluorescent peaks can be 

clearly followed. The fluorescence spectrum of 1% Er3+ in LuP04 excited at 476.5 nm 

is quite similar, the transitions from the 483/ 2 and 4F9/ 2 multiplets decreasing in absolute 

intensity by one or two orders of magnitude relative to ErP04. The only differences are 

that in the 1% crystal there is a slight change in the relative intensities of these fluorescent 

transitions. For both ErP04 and Er3+ diluted in LuP04 some extraneous fluorescent peaks 

that appear to be due to Pr3+ and/or Eu3+ impurities can be observed in the spectra. 

A study was made of the fluorescence from the 4F7/ 2 multiplet using the 476.5 nm 

exciting line and the ErP04 crystal. It is several orders of magnitude weaker than the 483/ 2 

and 4F9/2 fluorescence. The spectra obtained are shown in Figure 6.6. The fluorescence 

observed at 4.2 K is from the rs level at 20,493 cm- 1 to the two excited levels at 33 and 
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53 cm- l . These are the two lines at 20,466 and 20,446 cm- l (air values directly measured 

from the spectrometer). It is important to notice that the line at 20,466 disappears at T~7 

K, whereas the line at 20,446 cm- l disappears by T~15 K. It seems reasonable to infer 

that the fluorescence is being quenched by inter-ionic energy transfer or reabsorption of the 

emitted light by a neighbouring ion (see Figure 6.7(e) and the accompanying discussion in 

the text), which of course occurs at a lower temperature for the transitions involving the 33 

cm-1 state since it needs less thermal energy to be populated as opposed to the 53 cm-1 

state. The actual values of the temperature at which the quenching takes place are slightly 

different than those listed in Figure 6.6 since the temperature is measured at the tip of the 

cold finger and not at the sample, which causes errors at low temperature. 

Instead of fluorescent peaks one can often see at higher temperatures dips in the spec

trum which correspond to absorption of scattered light at the frequencies corresponding to 

the energies of the transitions from the "F7/ 2 levels to the levels at 33 and 53 cm -I, For 

transitions involving the ground state these absorption dips can be seen at 4.2 K. This 

effect is most pronounced in XY polarization. We conclude that resonant inter-ion energy 

transfer quenches the fluorescence that might occur from the "F7/ 2 multiplet and which is 

already quite weak due to nonradiative relaxation to the lower multiplets. 

6.2.4 Light Scattering Mechanisms Under Resonant Excitation 

The light scattering that is of interest here is the inelastic scattering of a monochromatic 

light wave with the appearance of lanthanide ion dependent peaks in the frequency spectrum 

of the scattered light. The two main mechanisms of light scattering that enter into play in 

this study are fluorescence and Raman scattering. A number of different processes enter one 

of these two categories, their relevance depending on the nature of the electronic energy level 

structure and phonon density of states of the rare earth crystal, the excitation wavelength of 

the incident light, and also the temperature. It is important to distinguish which particular 

process is responsible for the observed light scattering spectrum. The various mechanisms 

that are important are depicted pictorially in Figure 6.7 and are briefly described here. 

References are given to previous studies of these processes, in which much more detailed 

information can be found. For the sake of simplicity, only a few levels are depicted. The 

real situation is of course much more complicated. 

Figure 6.7(a) shows the process of fluorescence with nonresonant excitation. The excita-
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tion is not necessarily directly populating the initial level of the fluorescent transition, and 

there has been loss of phase relationship between the incident and scattered light waves. 

To conserve energy in this process, another excitation needs to be created or destroyed. In 

the case of rare earth crystals it is usually a phonon which assists the process, depicted 

in Figure 6.7 by a broken arrow. This mechanism allows one to observe fluorescence from 

many levels that are not resonant with the exciting radiation. This is well known to occur 

for rare earth crystals and both Stokes and anti-Stokes fluorescence can be observed from 

levels that are several thousands of wave numbers away from the exciting line. Figure 6.7(a) 

shows a Stokes process since the fluorescence is of a lower energy than the excitation. The 

intensity of this process depends on the temperature, the phonon density of states, and the 

position of the exciting line relative to the energy levels. Usually it can be characterized 

by the fact that the polarization properties of the fluorescent light are independent of the 

polarization of the incident light, since the assistance of the phonon essentially negates the 

selection rules that exist for the direct absorption process. Studies of this type of light 

scattering are especially due to Auzel [12,13]. The intensity of the fluorescence depends on 

the rate at which the level is being populated and the strength of the· various radiative and 

nonradiative decay channels. 

Figure 6.7(b) depicts fluorescence with resonant excitation. This process is also some

times referred to as hot luminescence. There is loss of phase relationship between the 

incident and emitted light wave, which is indicated by the horizontal broken arrow. How

ever, there are now strict selection rules for the absorption of the incident light, and there is 

a. selection rule dependent relationship between the polarizations of the incident and scat

tered light beams. The intensity of the fluorescence depends on the absorption strength 

and the competition between the various decay channels. 

Figure 6.7(c) depicts Raman scattering with nonresonant excitation. Comparing it with 

Figure 6.7(b) it is clear that there is a frequency difference between fluorescent and Raman 

transitions to the same final level. The polarization and parity selection rules are different 

for the two processes. Also, for Raman scattering, the phase of the scattered light is fixed 

relative to that of the incident light wave. 

Figure 6.7(d) depicts Raman scattering with resonant excitation. Resonant Raman scat

tering is usually much stronger in intensity than nonresonant Raman scattering. There is 

now, however, a problem in distinguishing the scattered resonant Raman light from the 
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fluorescent light of Figure 6.7(c), since they are of the same frequency. Distinguishing reso

nance Raman scattering from hot luminescence has been the subject of heated debate in the 

literature. Of particular interest is the theoretical work of Shen [2] and the experimental 

work of Yu and Shen [14] followed by that of Weiner [IS] on semiconductors, and that of 

Rousseau et 410n molecular systems [16]. Basically, the two processes can be distinguished 

by their different time evolution patterns. The Raman light decays with a lifetime governed 

by the T2 dephasing lifetime and the fluorescent light decays with the Tl lifetime of the 

initial state, which is convoluted from its radiative and nonradiative decay rates. The differ

ence between the two temporal evolution patterns was illustrated for the case of electronic 

energy levels in rare earth crystals by Nicollin and Koningstein [51. 

Figures 6.7(e) and 6.7{f) show several energy loss mechanisms that can impact the 

intensities of the radiative transitions. Figure 6. 7{ e) depicts a nonradiative transition from 

the populated upper level to a nearby lower level. The transition involves the emission of a 

phonon. In general there can be a number of levels available as pathways for nonradiative 

relaxation. There is an extensive wealth of literature on nonradiative transitions in rare 

earth crystals [17,18,19,20,211. The important variables are the temperature and the phonon 

density of states. The nonradiative decay rate from an upper level to a lower level has the 

functional dependence: 

WNR = WtR(1 _ exp( _ hw))" with WtR oc exp( _ tiE) 
kT nw (6.5) 

where n is the number of phonons of energy needed to bridge the energy gap tiE between 

the two levels [221. Nonradiative decay rates in the phosphate crystals are significantly 

higher than in most other crystals since the maximum phonon energy in the phosphates is 

1070 cm -1 as opposed for instance to 175 cm -1 for LaBr3, 260 cm -1 for LaCl3, and 350 

cm- 1 for LaF3 , so that less phonons are required to bridge a given energy gap. 

Figure 6.7(f) is a trapping mechanism that operates by resonant inter-ion energy trans

fer. The deexcitation of ion 1 is accompanied by the excitation of ion 2. Such mechanisms 

"capture" the energy available for the radiative transition in the form of an itinerant elec

tronic excitation. Note that this process can occur in a variety of ways (dipole-dipole 

interaction, phonon exchange, absorption by ion 2 of the photon emitted by ion I, etc.). 

This process depends on both the temperature and the rare earth ion concentration. Note 

that if the final state of the deexcitation transition is an excited state, then it needs to be 

" J 
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thermally populated for ion 2 to be able to resonantly absorb that energy. There is a large 

amount of literature on energy transfer and its various embodiments for rare earth ions 

[22,23,24,25,26,27]. The mechanism shown in Figure 6.7(f) appears to be the most relevant 

for the erbium phosphate crystals studied here. 

6.2.5 Importance of the Inhomogeneous and Homogeneous Linewidths 

- Site Selective Fluorescence 

The energy levels of rare earth ions in crystals do not have Dirac delta-function lineshapes. 

In Figure 6.7 the levels are drawn with with zero width only for the sake of simplicity. 

In fact, as in any other quantum system, the energy levels have a finite linewidth. There 

are two types of line broadening. The inhomogeneous linewidth of a particular level comes 

from the distribution of slightly different sites that the ion can occupy in the crystal. These 

sites have approximately the same site symmetry, but have microscopic differerices in the 

positions of the ligands and the resulting crystal field parameters. The slight changes in the 

crystal field parameters between these different sites, which oc-cur because the crystal is not 

perfectly homogeneous, are responsible for the inhomogeneous spread of the energy levels, 

with a Gaussian lineshape. The homogeneous linewidth is the naturallinewidth of the level 

for an individual site. It is determined by the lifetime of the state and its dephasing time. 

The homogeneous lineshape is a Lorent~ian curve. In general, for the lowest energy level of 

a crystal field split multiplet of a lanthanide ion in a crystal, the inhomogenous linewidth 

is quite a bit larger than the homogeneous linewidth, as shown in Figure 6.8. 

The inhomogeneous linewidth can be resolved by the technique of site selective fluores

cence or fluorescence line narrowing. This was first applied to impurity ions in solids by 

Szabo [28] in his study of ruby and was followed by a large amount of work on rare earth 

ions doped in various concentrations in insulating crystals [29,30,31]. If the excitation is of 

narrow enough bandwidth (significantly smaller than the inhomogeneous linewidth) then 

only the ions that have an energy within the bandwidth of the excitation will absorb the 

radiation and be excited to their excited state. Their subsequent fluorescence will then only 

exhibit a homogenous broadening. Barring spectral diffusion from ion-ion energy transfer 

or phonon assisted transfer, this technique allows the isolation of a small set of identical 

sites occupied by the rare earth ions in the crystals, among the whole collection of sites 

responsible for the inhomogeneous linewidth. The linewidth of the argon ion laser is 0.1 
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cm- 1 so that excitation within the inhomogeneous linewidths of the 4P7/2 energy levels, 

which appear to be at least 1 cm- 1 , can definitely excite site selective fluorescence from 

these levels. The intensity of this fluorescence will depend on the competition between the 

the !,adiative and nonradiative decay channels. 

6.2.6 Amplitude Interference Effects in the Resonant Raman Spectrum 

The intensities of the electronic Raman transitions will not be the same under resonant 

excitation as opposed to nonresonant excitation. The amplitude of the Raman transition 

is the sum of the amplitudes contributed by the different quantum mechanical channels via 

which the process can take place. These channels are shown in Figure 6.9. The nonresonant 

contribution to the amplitude, which was studied in detail in Chapter 4, arises from the high 

energy intermediate configurations 4fN - 1nd, 4fN - 1ng, and core excitation d configurations. 

These are the dominant nonresonant intermediate states since they have parity allowed 

electric dipole matrix elements with the 4fN states. The resonant contribution to the Raman 

amplitude comes from the "forbidden electric dipole" matrix elements between the 4F7/2 and 

"[15/2 states, that come into play only because the exciting laser line is so close in energy 

to these transitions. We write the total amplitude for the electronic Raman transition from 

state In) to state Ik) as the sum of the nonresonant and resonant amplitudes: 

(6.6) 

where the sum in the resonant term is over the crystal field states I r) belonging to the 4F7/2 

multiplet. Only the first term of equation (5.1) has been kept for the resonant term since 

it is the only one that is enhanced by the resonance effect. The r r damping constant is 

inversely proportional to the T2 lifetime of the state r [2,3]. The intensity of the Raman 

transition is proportional to the absolute square of this Raman amplitude: 

2 

1 ,,(kIDplr)(rIDuln) ( ) 
nk ex - ~ E _ hw +'r + Q pu nonre6. 

4'" rn 1 r 
'"7/2 

(6.7) 

There can thus be interference between the terms that contribute to the intensity. There 

can be interference between the the resonant amplitude and the nonresonant amplitude and 

there can also be interference between the individual terms that contribute to the resonant 
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amplitude. This is a purely quantum mechanical effect which arises from the fact that we 

cannot distinguish between the various intermediate states via which the process can take 

place. This is exactly similar to the problem of electron diffraction by a double slit [32]. 

Since the resonant energy denominator is extremely sensitive to the difference Ern -hw, the 

amplitudes and interferences will be different for the different concentration Er3+ crystals. 

A glance at Figure 6.2 shows that the energy levels actually cross the laser line somwhere 

around 50% Er3+ doped LuPO., resulting in a change in sign of the energy denominator 

and a reversal of the interference! This shows up in the experimental spectra as a significant 

change in the relative intensities of the electronic Raman transitions as the doping amount 

of Er3+ is changed. 

One final point needs to be made, which is that the intensity we have just written is valid 

only for a single site. Since the crystal has imperfections, there is actually a distribution 

of sites which results in an inhomogeneously broadened line for a specific transition. The 

intensity of the Raman signal from the crystal as a whole is a convolution of the signals 

from the various sites. We must thus integrate the intensity caculated above over the 

inhomogeneous linewidth. It is in this case the intensities and not the amplitudes which 

must be summed since ions at different sites can be distinguished. We denote the different 

sites by the suffix j, the frequency of the transition from state Irj} to state Inj} by wj(rn), 

the damping function at site j by rj(r), and the distribution function of sites j by g(j). We 

can write the Raman intensity in a somewhat formal fashion as: 

and the distribution function is normalized by: 

Lg(j) = 1 
j 

g(j) (6.8) 

(6.9) 

Consider the case of a single resonant line. If the line is centered at some average frequency 

Wo and hwj{rn) - hw ~ hwo - hw, and the homogeneous linewidth is the same at all the sites, 

then the energy denominator can be pulled out from the sum and replaced by the average 

value (hwo - hw + IT,.) -1. The matrix elements can also be assumed to be independent of 

the sites. The integration over the distribution function then yields one. The argument is 

easily generalized to the case of several resonant lines to give the following result, valid to 
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a good approximation when the exciting line is at least one linewidth away from the center 

of any given resonance line: 

[total = 

2 

(kILJplro) (roILJuln) - 4?; liwo(rn) -Iiw + ir,:(O) + (apu)nonre". 
rT/2 

(6.10) 

where wo{rn) is the center frequency of the transition from r to n. This calculation and the 

case where the approximations it involves break down will be discussed in more detail in the 

following chapter. It is useful for quantitative comparisons of experimental and calculated 

relative intensities. 

6.3 The Resonant Electronic Raman Spectra of ErP04 -

The Case of Near Resonant Excitation 

6.3.1 Experimental Spectra at T=4.2 K 

The experimental Raman spectra of ErPO", excited with the 488.0 nm line of the argon 

ion laser, show extremely strong enhancements of the intensities of the electronic Raman 

peaks, compared to the nonresonant spectra taken with the 514.5 or 476.5 nm lines. The 

enhancement factors of the electronic peaks are on the order of 10 to 100, depending on 

the polarizations of the incident and scattered light. The phonon peaks, however, show no 

change in intensity. Thus the increase in intensity of the electronic Raman transitions is 

due to resonance enhancement. In fact, the phonon intensities can be used to calibrate and 

correct for different scattering efficiencies (as in chapter 5) and for the absorption of the 

incident light for the strong resonance situations that occur when the excitation overlaps 

the lineshape of a. transition (which is the case for the 50%, 20%, and 10% Er3+ doped 

LuPO" crystals). The spectra at T=4.2 K are shown in Figures 6.10 and 6.11. Both 

the resonant and nonresonant spectra are simultaneously displayed so as to bring out the 

resonance enhancements. Note in particular the change in scales between the resonant and 

nonresonant spectra, and the relative intensities of the electronic and vibrational transitions. 
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6.3.2 Temperature Dependence of the Resonant Stokes Spectra 

The temperature evolution of the resonance Raman spectra can be used to explore more 

fully the mechanism of the enhancement process and also to bring out the difference between 

Raman and fluorescence transitions. In this section we study the temperature dependence 

of the Stokes spectra, more particularly the temperature quenching of the Raman peaks 

and the appearance of a resonantly enhanced transition at 20 cm- 1 originating in the 33 

cm- 1 state and terminating in the 53 cm- 1 state. 

Figure 6.12 shows the temperature evolution of the Stokes XY spectrum in the 10 to 

60 cm- 1 range. The temperature range is 4.2 to 60 K. The full scale is 10,000 counts 

per second. Phonon E: in ZY polarization, located at 303 cm- 1 at 4.2 K, is displayed 

at each temperature to show the increasing absorption of X and Y polarized light with 

temperature. The peak at 20 cm- 1 , which corresponds to the 33 -- 53 cm- 1 transition, 

grows steadily with temperature as the population of the 33 cm-1 state increases. The 

intensity of this transition is roughly an order of magnitude larger than with nonresonant 

excitation. Measurements of the electric dipole oscillator strengths indicate that the matrix 

elements 1 (r6(33cm- 1 )IX, Ylr6(20, 493cm- 1))l2 and 1 (r7(53cm- 1)IX, Y!f6(20, 493cm-1)) 12 

are quite large (see chapter 7). The Raman transition between the 33 and 53 cm- 1 states 

will have a resonant contribution proportional to the product of these two matrix elements 

and as a consequence the enhancement will be large. The size of the matrix elements makes 

up for the relatively large value of the energy denominator tl.E = (20,493 - 33) - 20,487 = 

- 24 cm -1. The 20 cm -1 transition is also observed in ZY polarization with a much weaker 

intensity than in XV. It is not observed in the nonresonant ZY spectra. The temperature 

evolution of the ZY spectra in the 10 to 60 cm- 1 range, from T=4.2 to T=60 K, are shown 

in Figure 6.13. 

There are two reasons for the overall decrease in scattering intensity with increasing 

temperature, quite visible for the 33 and 53 cm- 1 transitions in XY polarization. First of 

all, as the temperature is increased, it is observed that the phonon intensities drop. This 

arises from increasing absorption of the incident laser radiation. Phonon E3 was tracked as g 

a function of temperature for all the temperature evolution scans so as to be able to correct 

the electronic Raman intensities for the absorption of the incident light, since the scattered 

phonon intensity is proportional to the effective incident intensity. The absorption increases 

with temperature as the energy levels broaden with temperature and start overlapping the 
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incident frequency to a larger degree thereby increasing its absorption. Phonon assisted 

absorption will also become greater at higher temperatures. The first explanation seems 

more reasonable as the absorption of the incident light occurs preponderantly for Y polarized 

light. Thus the drop in intensity of phonon E~. is much more marked in ZY polarization 

than in XZ (where the drop in intensity is barely noticeable for ErP04 ) since the absorption 

of Z polarized light is much weaker. 

Figure 6.14 is a semi-log graph of the relative intensities of several transitions as a 

function of temperature. The temperature values should be treated with caution since the 

sample is in a cold finger dewar and the temperature is measured at the tip of the cold 

finger. In fact, there is some evidence of local heating due to the absorption of some of the 

laser radiation which increases the temperature by at least a few degrees Kelvin. The drop 

in intensity of phonon E: is seen to be much stronger in ZY than in XZ. Spectra taken at 

higher temperature show that the intensity of E: falls off at a much slower rate above 80 K 

(in ZY polarization), than the initial fast exponential decay seen in Figure 6.14 from 4.2 to 

60 K. The intensities of the electronic transitions were corrected for the absorption of the 

incident light by multiplying them by the ratio I4.2K(E~)/h(E~). 

The drop in intensity of the 33 and 53 cm- 1 transitions as the temperature is raised 

is due to reabsorption of the Raman scattered light which, as the energy levels broaden 

with temperature, is increasingly resonant with an actual transition orginating in one of 

the excited crystal field states (the reabsorption process is similar to the one shown in 

Figure 6.7(f)). For instance the electronic Raman transition at 33 cm- 1 corresponds to 

light of wavenumber 20,453.7 cm -1 which can be reabsorbed by either the transition 33 ---+ 

20,485 cm- 1 (which is the closest in energy) or the transition 33 ---+ 20,493 cm- 1. The 

situation is entirely the same for the 53 cm -1 transition. 

Figure 6.15 displays tungsten lamp absorption spectra taken at T=25 and 50 K, in both 

11" and u polarization. Transitions originating out of the excited states at 33 and 53 cm- 1 

are clearly visible and have large intensities. The Stokes peaks at 20, 33, and 53 cm- 1, 

and the anti-Stokes peak at 33 cm-1 , with resonant excitation at 488.0 nm, are shown on 

these spectra at their absolute wavenumber position so as to make apparent which peaks 

are the most affected by the reabsorption process. Most of the peaks are clearly within the 

linewidth of absorption transitions which why these Raman peaks are so affected by the 

reabsorption that occurs at higher temperatures. The 33 cm- 1 transition drops in intensity 
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before the 53 cm- 1 transition does since the 33 cm- 1 state becomes thermally populated at 

a lower temperature than the 53 cm-1 state. The reabsorption is either a direct process or 

a phonon assisted process. The direct absorption process seems to be indicated by the data 

since the 33 and 53 cm- I transitions drop off at a much slower rate in ZY polarization. The 

phonon assisted reabsorption would not distinguish between the polarizations of the Raman 

scattered radiation whereas the direct absorption does. The 53 cm- I transition drops off 

very slowly in ZY (compared to th~ 33 cm- I transition) which comes from the fact that 

the 33 --+ 20,485 cm- I transition is forbidden in Z polarization. In fact the 53 cm- 1 

(ZY) transition is the only low wavenumber transition still visible up to temperatures in 

the 100-150 K range. Figure 6.15 shows that the ZY(53 cm- I ) transition is not reabsorbed, 

which is why it persists until high temperatures. 

If the power of the laser is turned down to a very low value the XY intensity of the 33 

cm- 1 transition goes up by about 10% compared to the 53 cm- I (XY) transition which 

indicates that at higher powers there is local heating which populates the 33 cm- I state 

and allows reabsorption even at T ~ 4.2 K (measured at the cold finger tip). 

The intensity of the 20 cm- I transition increases initially as the population of the 33 

cm- I state rises with temperature. At about 30 K it begins to be reabsorbed since in 

absolute wavenumbers it is at 20,466.7 cm- I which is close in energy to the transition 

33 --+ 20,493 cm- I . The slope of the initial rise in intensity of the 20 cm-1 transition is 

slightly less than what one would expect from the Boltzmann factor governing the thermal 

population of the 33 cm -1 state. 

The 145 and 234 cm- I transitions initially rlSe In intensity from T=4.2 to 30 K by 

about 10% in XY and 30% in ZY (corrected for incident light absorption). They then start 

gradually dropping in intensity, especially in ZY. Since the 145 and 234 cm- 1 transitions 

do not start getting populated until higher temperatures, the reabsorption does not occur 

at low temperatures. The matrix elements of Z between the 145 and 234 cm- 1 states on 

the one hand, and the 20,485 cm -1 state on the other, are observed from the absorption 

spectra to be very high. When the 145 and 234 cm- 1 become thermally populated, the 

direct reabsorption process will be very efficient for Z scattered light. The temperature 

effects for the 244 and 265 cm- 1 transitions are much less pronounced. They initially rise 

slightly in intensity, then stay at roughly the same level until T ~ 150 K at which point 

they start dropping in intensity as the crystal appears to be absorbing most of the scattered 
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have been normalized to the ZY intensity of phonon E:. 
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light in the vicinity of that spectral region. 

6.3.3 Resonance Enhancement of the Anti-Stokes Spectrum 

Several strong lines are observed in the anti-Stokes Raman spectra with excitation at 

488.0 nm. The anti-Stokes spectrum in XY polarization as a function of temperature is 

displayed in Figure 6.16. The temperature range is 4.2 to 60 K, In the XY spectrum a 

transition appears at 33 cm-1 . It is slightly visible even at T~4.2 K and grows rapidly 

in intensity as the temperature is raised from T~4.2 to T=30 K, This transition is the 

resonantly enhanced anti-Stokes Raman transition corresponding to the Stokes Raman peak 

at 33 cm -1. The fact that it appears at T:::::s4.2 K (measured at the cold finger tip) supports 

the observation that the laser light is locally heating the sample and raising its temperature 

above the nominal value of 4.2 K. Its intensity as a function of temperature, corrected for 

the absorption of incident laser light, is plotted in Figure 6.14. Its initial rise in intensity 

is parallel to that of the Stokes 20 cm-1 transition, which agrees with the assumption 

that both of their intensities are proportional to the population of the 33 cm- I state. It 

starts dropping off' in intensity at T= 40 K which probably comes from the fact that it 

is being reabsorbed since it is very near in energy to the transitions 33 -- 20,556 cm- 1 

and 53 -.20,570 cm- I . A peak at 20 cm- I also appears in the XY anti-Stokes spectrum 

which corresponds to the Raman transition 53 -. 33 cm- I . It starts appearing at T=lO 

K and slowly grows in intensity. The 33 cm- 1 transition is roughly ten times stronger with 

resonant excitation than with nonresonant excitation. The 20 cm- 1 transition is actually 

not observed with nonresonant excitation. Its resonance enhancement might be coming at 

least partially from the two higher energy levels of the "F7/ 2 multiplet. 

In ZY polarization no new features are observed. The 53 cm- 1 transition appears weakly 

with a strength comparable to its nonresonant intensity. In the XZ anti-Stokes spectrum 

the 33 and 20 cm- 1 transitions are weakly observed with maximum intensity at about T=40 

K. In the ZZ anti-Stokes spectrum nothing is observed. 

6.3.4 The Problem of Raman vs. Fluorescence Transitions 

In the case of excitation very close in energy to an actual transition of the lanthanide ion 

under study, the question naturally arises whether the light inelastically scattered by that 

ion comes from an electronic Raman transition or a fluorescent one. In the case of ErPO .. , 
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Figure 6.16: Experimental anti-Stokes Raman spectra of ErPO" in XY polarization in 

the temperature range 4.2 to 60 K with resonant excitation. The full scale is 500 counts 

per second. The absorption of the incident laser light that accompanies the increase in 

temperature can be followed by tracking the intensity of phonon E!, shown in Figures 6.12 

or 6.13. 
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for which the spectra have been described and interpreted in the previous sections, several 

arguments can be made to justify the claim that resonance electronic Raman scattering is 

indeed being observed from the crystal. A glance at the tungsten lamp absorption spectra 

of Figure 6.3 and the linewidth data of Table 6.1 shows that the excitation clearly does not 

overlap the lineshapes of the two lower 4F7/2 levels. 

1. Since the excitation is not exactly resonant with an actual transition, there will be a 

difference in energy between an electronic Raman transition and an incoherent fluo

rescent transition originating in either the lower r 6 or r 7 level (a transition similar 

to that shown in Figure 6.7(a)). Fluorescent transitions are always at the same fre

quency relative to the exciting frequency and shift in absolute value as the exciting 

frequency is changed. The lower ra level at 20,493 cm- l has much stronger oscillator 

strengths for transitions to the ground multiplet than the lower r7 level at 20,485 

em -1. Fluorescence from the lower r a level would thus show up as peaks shifted by 

~ 20,493 - 20,487 = 7 cm- l from the Raman frequency. Fluorescence from the lower 

r7 level would be shifted by ~ 2 em-I, which might be hard to resolve experimen

tally, but which in any case cannot account for the strength of certain transitions, for 

instance 53 cm- 1 in XV, since the transition 20,485 --+ 53 cm- 1 is strictly forbidden 

in q polarization (X and Y polarized light) by the electric dipole selection rules. 

For the first four transitions at 33,53,105, and 145 em-I, it is found that there are 

no shifts in the Raman frequencies of these transitions to within an accuracy of ± 

0.5 cm- l
. The slits of the spectrometer were closed down to 80-150-150-80 J' and 

scans were taken of these transitions for excitation at both 514.5 nm (nonresonant) 

and 488.0 nm (resonant). Scans were simultaneously taken of phonon E~ so as to 

allow the measurement of the position of the electronic transitions relative to the 

phonon and correct for any difference in calibration of the spectrometer between the 

two spectral regions. No shifts in frequencies were observed. With resonant excitation 

at 488.0 nm, the linewidths of the two transitions were found to be respectively 1.8 

and 1.9 cm- l , with an error of ± 0.5 cm-l. The same values are obtained, within the 

experimental uncertainty, with nonresonant excitation at 514.5 nm. 

Absorption measurements were also taken at T=4.2 and 77 K on photographic plates 

using an Ebert 3.4 m spectrometer. This allowed the determination of the frequencies 
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of the 33, 53, 105, and 145 cm- 1 levels with an accuracy of ± 0.25 cm-1 , and of the 

two levels at 232 and 243 cm- 1 with an accuracy of ± 1 cm- 1 (these two levels are 

quite broad). The results agree with the frequencies measured in the resonant and 

nonresonant Raman spectra. 

We conclude that with resonant excitation the transitions at 33, 53, 105, and 145 

cm- 1 are resonantly enhanced electronic Raman peaks and not fluorescent transitions 

from the inhomogeneously broadened levels at 20,493 and 20,485 cm- t . The argument 

cannot be applied to the levels at 234, 244, and 269 cm- 1 in the resonant excitation 

spectra since these are not conclusively observed in the nonresonant Raman spectra. 

Table 6.2 summarizes the various frequencies measured from the resonant and non

resonant Raman spectra, and the frequencies measured from optical absorption data. 

2. With excitation n~ar resonance, and the known ability of lanthanide ions to efficiently 

emit Stokes or anti-Stokes luminescence (see Figure 6.7(a)), it would be expected that 

two peaks should appear, one corresponding to fluorescence and one corresponding 

to Raman. However, in the experimental spectra, only one peak is observed for each 

level of the "[15/2 multiplet. There is no evidence of any kind of doublet structure. 

Even with no resonance enhancement, the nonresonant electronic Raman intensities 

are large enough that these Raman peaks should appear with excitation at 488.0 

nm. There is no reason to expect the Raman transitions to all disappear, so the 

conclusion is that it is the fluorescent transitions which for some reason are missing. As 

discussed in section 5.2.3, the fluorescence from the "FT/ 2 multiplet in ErPO", excited 

with the argon-ion laser line at 476.5 nm, is extremely weak and and is quenched at 

low temperatures by energy transfer. Paradoxically enough, excitation at 488.0 nm 

might not even be able to excite as much fluorescence from the lower levels of the 4FT /2 

multiplet as excitation at 476.5 nm, and in any case the nonradiative relaxation to the 

lower multiplets and the energy transfer quenching appear to preclude any radiative 

transition that has a chance of occuring from these levels. Instead of producing 

observable fluorescence from the sample, it appears that the transitions between the 

lower "[15/2 crystal field levels and the 4FT /2 levels are acting as traps for radiation 

of energy equal to the energy differences between these levels. Light scattered at 
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Table 6.2: Frequencies (in cm- 1) of the electronic levels of the 4[15/2 crystal field levels, 

measured using Raman scattering with resonant excitation at 488.0 nm, Raman scattering 

with nonresonant excitation at 514.5 nm, and 77 K absorption absorption data. 

Crystal Optical Resonance Nonresonance 

Field Fit Absorption Raman Raman 

for 1% Er Measurements Measurements Measurements 

Symmetry in LuPO. ErPO. ErPO. ErPO. 

f7 0 0 0 0 

fa 36 33 33 33 

f7 50 53 53 53 

f7 101 105 105 105 

f6 133 145 145 145 

f6 230 232 234 a 

f7 247 244 246 a 

r6 287 a 269 a 

a: not observed. 
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those frequencies is reabsorbed by the crystal. The higher temperature Stokes spectra 

have evidence of absorption dips at the frequencies where the fluorescent transition is 

expected to occur. The reabsorption also explains the drop in intensity of the Stokes 

Raman lines at 33 and 53 cm- 1 as the temperature rises. The drop in intensity of these 

lines is much slower than that observed for the fluorescent transitions excited with 

the 476.5 nm line (see Figure 6.6) since the Raman lines are not in exact resonance 

with the transitions between the energy levels. 

3. The possibility of site selective fluorescence, occuring at the same frequency as the 

Raman transition, would arise if there were frequency overlap between the excitation 

bandwidth (0.1 cm- 1 for the argon-ion laser) and the inhomogeneously broadened 

line. However, as mentioned before, this does not occur for ErP04 , making it a rather 

simple system to study from the point of view of Raman scattering with the 488.0 nm 

line since site selective fluorescence is expected to be either nonexistent or extremely 

weak. 

4. The Stokes electronic Raman peaks are not the only transitions that are observed to 

be resonantly enhanced by the 488.0 nm excitation. In the Stokes spectra, the 20 

cm- 1 line is at the same frequency but ten times more intense than the corresponding 

Raman peak with nonresonant excitation. In absolute wavenumbers its position is 

20,487 - 20 = 20,467 cm- 1 which does not correspond to any fluorescent transition. 

The closest one would be 20,493 -- 33 cm- 1 which is 7 cm- 1 away in frequency. 

However, the transition 33 -- 20,493 contributes to reabsorption of the 20 cm- 1 

Stokes transition (at higher temperatures). Also, the polarization in which it appears, 

XV, is the one for which its enhancement is predicted to be the strongest. 

On the anti-Stokes side, the transition at 33 cm- 1 is also observed to be very strongly 

enhanced. In absolute wavenumbers this transition is at 20,520 em-I. The closest 

transitions are 20,556 ~ 33 (= 20,523 em-I) and 20,570 ~ 53 (= 20,517 em-I). 

The resulting 3 cm- 1 frequency shift between fluorescence and Raman is not observed 

to occur. Thus the 33 cm- l anti-Stokes transition must be the anti-Stokes Raman 

transition of the 33 cm- 1 Stokes electronic transition. Again, the XY polarization 

is the polarization in which the most resonance enhancement of this transition is 

expected to occur. However, as the temperature rises, the two direct transitions just 
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mentioned will act to quench the 33 cm- 1 anti-Stokes line, in the same fashion as 

the quenching of the 33 and 53 Stokes transitions. A resonantly enhanced anti-Stokes 

transition at 20 cm -1 is also observed in the XY spectrum. 

5. Finally, another argument for the presence of resonant Raman scattering is to observe 

more closely the relative intensity pattern of the 33 and 53 cm- 1 transitions. The 

ratios of the resonant to nonresonant scattering intensities of the 33 and 53 cm- 1 

transitions are summarized in Table 6.3. Some of the lines, for instance 33 cm-1 in 

ZY and XZ, or 53 cm -1 in XY and XZ, have greatly increased in intensity (by a factor 

of ten to a hundred) whereas 33 cm-1 in XY and 53 cm- 1 in ZY have barely increased 

in intensity. These last two transitions are actually quite strong with nonresonant 

excitation and thus have the posiibility of exhibiting significant destructive inteference 

with the resonant amplitudes, leading to a much smaller intensity for these transitions 

compared to the others such as 53 cm- 1 in XY which will have mostly a resonant 

contribution, its nonresonant amplitude being quite small. Also, if it were fluorescence 

which were taking place, one would expect that for example the 33 cm- 1 transition 

intensities sho~lld be comparable in XY and in XZ (if not larger in XY). This comes 

from the fact that the overall fluorescence intensity can be written as the product of 

the two dipole absorption and emission intensities so that the two transitions would 

differ only in that absorption of X polarized light is taking place vs. absorption of Z 

polarized light. The ion would then emit X polarized light. For the two lower levels 

of the 4F7/2 multiplet the X absorption is much stronger, in fact direct Z absorption is 

forbidden for the lower r7 level. Experimentally, one observes that the XZ component 

of the 33 cm- 1 transition is roughly twenty times stronger than the XY component. 

Any reabsorption or nonradiative decays would be exactly the same for the emitted 

light in both cases since it is of the same frequency and polarization. Thus the relative 

intensities do not at all fit the fluorescence explanation but rather the amplitude 

interference of the resonant Raman effect explanation. 

Having established the presence of strong resonance enhancement of the electronic Ra

man transitions in ErP04 , a number of interesting investigations can be pursued. Scanning 

a tunable dye laser through the 4F7/ 2 multiplet would allow a detailed study of the relative 

intensity pattern as a function of excitation frequency and would perhaps elucidate with 

.. 
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Table 6.3: Ratio of the resonant to nonresonant scattering intensities of the 33 and 53 cm- 1 

Raman transitions in various polarizations. Phonon E~ was used as an internal standard to 

normalize the spectra to a common scattering efficiency. 

Polarization 

Xy Zy xz ZZ 

33 cm- 1 

1.8 80.0 18.1 a 
transition 

53 cm- 1 

124.8 1.9 29.1 a 
transition 

a: ZZ transitions are absent or weak. 

more specificity the problem of the missing fluorescent transitions from the lower "F7 / 2 levels 

to the 33 and 53 cm- 1 levels. Another route was pursued here to allow the the continued use 

of the cw Raman photon counting system, which was to study the varying concentration 

ErzLul-zPO. crystals using the 488.0 nm line. The energy levels in these crystals shift 

relative to that line in a way that mirrors the tuning of a dye laser across a system of fixed 

energy levels. Other effects also arise that are discussed in the next sections. Finally, one 

should mention that if a pulsed dye laser is available it is possible to study the Raman peaks 

in a time resolved fashion. The laser pulse needs to be quite short since the 4F7/2 lifetimes 

appear to be extremely small. An estimate of the characteristic lifetime is made in chapter 

7. 

6.4 The Resonant Electronic Raman Spectra of 10% Er3+ 

in LuP04 - The Case of Resonant Excitation at the Half 

Maximum of the Line 

In 10% Er3+ in LuPO .. the lower r6 level is at 20,483.7 cm- 1 and has a linewidth which 

was observed to be 6.5 cm -1. This last value might be slightly overestimated due to the 

difficulty of measuring the linewidth of strongly absorbing transitions. At any rate, taking 

this linewidth as a rough estimate, this implies that the argon-ion laser excitation, 20,486.7 
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cm- l (vacuum value), is at the half maximum of the line since it is half a linewidth away 

from the center of the line. This has several important consequences: 

• There is absorption of the incident laser light. This absorption is observed to be 

stronger in X,Y polarized light than in Z polarized light, since the absorption strengths 

are larger for the former. The absorption of the incident light decreases the amount of 

light available for producing Raman scattered radiation, be it vibrational or electronic 

Raman scattering. In addition, there can be local heating of the sample due to the 

absorption. 

• Site selective fluorescence can potentially be excited from the sample and since it 

has exactly the same frequency as the Raman scattered light it is not possible to 

distinguish between the two forms of scattering with a cw Raman system. 

• A calculation of the intensities of the lines can no longer make use of the simplifying 

assumption which replaces the inhomogeneous lineshape with a Dirac delta fuction 

positioned in frequency at the center of the line. The intensity calculation must now 

be performed as an integration over the inhomogeneous lineshape and must include 

the imaginary part of the energy denominator which is proportional to the dephasing 

time T2. 

6.4.1 Experimental Spectra at T=4.2 K - Description and Interpreta

tion 

The experimental spectra observed at T=4.2 K are shown in Figure 6.17. It is apparent 

from the intensity scales indicated on the figure that the signal from the electronic peaks 

is significantly larger than that obtained for ErP04 , even though the Er3+ concentration 

has been diluted by a factor of ten. For example, the XY intensities of the 35 and 53 

cm -1 transitions are on the order of 20,000 counts per second whereas for Er P04 the same 

transitions are on the order of 10,000 cps. This translates to an increase in signal per ion 

of a factor of twenty. The intensities of the phonons are comparable for the two crystals so 

that this increase cannot be explained as coming from an experimental parameter such as 

crystal length or collection efficiency, but must have something to do with the interaction 

between the laser radiation and the Er3+ 4F7/ 2 energy levels. 
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Another interesting point is that the intensity of phonon E~ is twice as large in XZ than 

in ZY. This confirms the fact that there is now overlap between the laser frequency and 

the lower r 6 level at 20,484 cm -I. There is substantial absorption of the laser radiation 

and since the oscillator strength of the transition from the ground state to the 20,484 

cm-1 state is larger in X or Y polarized light than in Z, the ZY and XY intensities will 

be reduced compared to the XZ znd ZZ intensities. A phonon such as E~, which should 

have symmetrical Raman transition intensities, will thus produce a reduced_ signal in ZY 

polarization. As was done for the higher temperature data for ErPO .. , this polarization 

dependent reduction in phonon intensity can be used can be used to correct the electronic 

intensities for the absorption of incident light. Visually observing the laser beam after it 

traverses the crystal sample, it is apparent that the absorption of X,Y polarized light is 

larger than that of Z polarization. One can also see a yellow-green fluorescence which is the 

signature of the "53/ 2 _ .. hS/2 radiative transitions. 

In Table 6.1, the linewidth of the lower r6 state was given as 6.5 cm- I although this 

might be a slightly overestimated value as discussed in section 6.2.2. Nevertheless, if we 

consider this value as accurate, it tells us that the laser frequency is right at the half 

maximum of the line which agrees with the experimental observation that strong absorption 

is taking place. A smaller value of the linewidth would place the laser frequency at a different 

position relative to the center of the line, but at any rate it is quite clear that it is well 

within the inhomogeneous lineshape of the lower r6 level at 20,484 em-I. 

Another interesting point that can be observed in the T=4.2 K spectra is that· the 

relative intensities of the 35 and 53 cm -I transitions in various polarizations have changed 

compared to those seen in ErPO •. An obvious example is given by the XY spectrum. In 

ErPO .. the 53 cm- I transition is twice as strong as that at 33 cm- I . In the 10% Er3+ in 

LuPO .. crystal, the situation is reversed, the 35 cm- I transition is now stronger than the 

one at 53 em-I. Barring strong site selective fluorescence, this is an indication of the change 

in Raman amplitude interferences dicussed in section 6.2.6 that occurs when the resonating 

energy levels shift relative to the laser line as they do in going from the pure erbium crystal 

to the 10% one. The intensities of the 33 cm- I transition should, however, be treated with 

caution since the absorption of the laser radiation is quite strong and can result in local 

heating and hence reabsorption of the 33 cm- I Raman scattered light. 

The 35 and 53 cm- I transition line centers were measured to within ±0.5 cm- I with 
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both resonant and nonresonant excitation, usmg the slit widths 80-120-120-80 J.'. They 

were found to be at the same position relative to phonon E~, within experimental error. 

However, their linewidths appear to be 25% to 35% larger with resonant excitation. This 

might be an indication of site selective fluorescence. 

The intensities of the higher lying lines have also changed quite substantially. For the 

transitions at 152, 242, 257, and 275 cm- 1 , the ZY intensities are equal to those in ZZ. The 

per ion intensities are also two orders of magnitude larger than those for ErP04. This tends 

to support the hypothesis that these transitions are actually fluorescence resulting from the 

radiative decay of the population of the 20,483 cm- 1 level. This level absorbs roughly twice 

as much light in X than in Z. The intensity of the Z fluorescence will not depend on whether 

the incident excitation is X or Z polarized if the polarization characteristic of the absorbed 

light is lost either by phonon assisted absorption or ion-ion energy transfer. Both of these 

processes produce spectra.l diffusion of the frequency of the incident radiation and allow 

radiative transitions from sites that are not exactly resonant with the exciting frequency. 

The appearance of the strong ZZ intensities for the 152 and 242 cm- 1 transitions also 

violates the electronic Raman selection rule r7 ---+ r6 transitions forbidden in ZZ (in the 

electric dipole approximation). The only way these transitions can be allowed in ZZ is via 

magnetic dipole transitions through the intermediate states. The resonance enhancement 

might make such transitions observable, but since magnetic dipole transitions are much 

weaker than electric dipole transitions this could not account for the high strength of the 

152 and 242 cm- 1 transitions in ZZ. This again supports the argument that these higher 

transitions are actually incoherent fluorescence. Only the 152 cm -1 transition appears 

(weakly) in the nonresonant Raman spectra so that it is not possible to check whether the 

transitions are at the same Raman frequency with nonresonant excitation. 

A comparison of the XZ and XY spectra shows that there are differences between the 

relative intensities of the 33 and 53 cm- 1 in XZ versus those in XV. If these two transitions 

were fluorescent, their relative intensities would be the same in XZ as in XY, since, as 

argued in the previous paragraphs, the relative intensities of the two X polarized fluorescent 

transitions do not depend on whether the original excitation was X or Z polarized. The 

overall intensities of the two transitions might be stronger in XZ than in ZY, or vice versa, 

if there are differences in absorption between Z and Y. Thus, this is an indication that 

resonant electronic Raman transitions are participating in the lines at 33 and 53 cm -1. 
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6.4.2 Temperature Dependence of the Stokes Raman Spectrum 

The resonant Raman spectra can be recorded as a function of temperature, in a similar 

fashion to ErPO •. The results are different than those for ErPO. and are quite enlightening. 

The tenfold dilution of erbium not only shifts the energy levels but also affects the rate at 

which the Raman scattered light is reabsorbed. Thus the high temperature spectra are 

simpler to interpret than those of ErPO •. 

Figure 6.18 shows the temperature evolution of the XY and ZY spectra in the low 

wavenumber region. Phonon E: at 307 cm-1 is also shown so that the intensities at different 

temperatures can be normalized to a common scattering efficiency. The interesting point 

to note about Figure 6.18 is the shift that occurs in the XY spectrum between 100 and 150 

K. The transitions at 35 and 53 cm-1 steadily decrease in intensity from 4.2 to 100 K as 

the scattered light is reabsorbed by the crystal in the same fashion as for ErPO •. At 100 K 

slight absorption dips begin appearing that become quite strong by 150 K and render the 

35 and 53 cm- 1 transitions unobservable. At 100 K the absorption peak centers are shifted 

relative to the 35 and 53 cm- 1 transitions, which can be understood from the fact that 

the 'level which is absorbing is 3 cm- 1 away from the exciting laser line and thus shifted 

relative to the potential Raman lines. In contrast, in the ZY spectrum, the reabsorption 

is much weaker due to selection rules and small oscillator strengths so that the 35 and 53· 

cm -1 transitions are still observed all the way up to room temperature. Thus the crystal 

does not fluoresce but instead absorbs the scattered light in the 4F7/2 +---+ 4 / 15/ 2 transition 

region, with a strength that depends on the polarization of the light. One can thus reason 

that the 35 and 53 cm -1 transitions are electronic Raman transitions that are reabsorbed 

in XY but not in ZY because the erbium ion is sufficiently diluted. It is thus quite possible 

that the 10% Er3+ crystal allows the observation of resonantly enhanced electronic Raman 

transitions up to room temperature, 

6.5 Future Directions 

The next step in the resonant Raman studies of the erbium phosphate crystals is to study 

the resonance effect as the laser excitation is tuned across the levels of the 4F7/ 2 multiplet, 

It will then be easy to clearly distinguish between Raman and fluorescence transitions and 

observed quantitatively the enhancement pattern. There are also other erbium levels, such 
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as 4S3 / 2 , that are promising candidates for resonance enhancement studies of the electronic 

Raman transitions. The same types of studies can also be carried out in other rare earth 

Ions. 
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Chapter 7 

Calculatlon of the Resonant Raman 

Intensities in Erbium Phosphate Crystals 

- Interference Effects and Estimate of T2 

It is possible to estimate numerically the relative intensities of the electronic Raman 

transitions if the different quantities that enter the expression for the Raman amplitude are 

known. Expression 6.7 can be used for this purpose if values are obtained for the following 

quantities: 

• the resonant matrix element~ UIDpli}, where the crystal field states Ii} and Ii} be

long to the 4F7 / 2 and 4[16/2 multiplets, and Dp is the electric dipole operator for the 

polarization p; 

• the energy differences Eii - 1i.w where Eii is the energy difference between the inter

mediate state Ii} and the initial state Ii}, and 1i.w is the excitation energy (in vacuum 

wavenumbers) ; 

• the nonresonant amplitudes Cl p17 • 

In the following section we list the values of these quantities and the method by which 

they were obtained. The relative intensities of the resonantly enhanced electronic Raman 

transitions are then calculated using these values and compared to the experimentally ob

served intensities. This work was done only for the Stokes transitions at 33 and 53 cm- 1 

since these transitions in various polarizations in the different concentration Er3+ doped 

phosphate crystals provide a large amount of data that can be used to test the accuracy 

of the calculations performed here and the underlying asumptions. It is also fairly easy to 

obtain the relevant matrix elements involving the 33 and 53 cm- 1 states. 
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The spectra and the calculations show that strong quantum mechanical interference 

effects appear in determining the resonance Raman intensities. These interference effects 

have been observed before in various systems [1,2,3]. 

7.1 Resonant Matrix Elements 

The resonant matrix elements can be obtained via normalized absorption measurements 

as a function of frequency. For a given crystal of length I, at a frequency w where the 

absorption coefficient is a(w), the transmitted intensity is equal to: 

l(w) = Io(w) exp( -a(w)/) (7.1) 

where lo(w) is the incident light intensity. Thus if the percentage of light absorbed by the 

crystal at a particular frequency is determined experimentally one can extract the absorption 

coefficient a( w). The absorption coefficient of a particular transition is itself proportional 

to the oscillator strength of that transition which in turn is proportional to the square of 

the matrix element of the radiativ.e multi pole operator which connects the two states. In 

the transitions considered here the absorption transitions observed all appear to be electric 

dipole transitions. 

The tungsten lamp absorption measurements reported in section 6.2 for T=4.2 K and 

in section 6.3 for T=25 and 50 K give an idea of the strength of the various transitions. 

The T=4.2 K transitions originate all in the ground state, whereas the higher temperature 

spectra exhibit transitions that originate in the excited 33 and 53 cm- 1 states. Normalized 

absorption measurements of the two "F7/ 2 Iower levels in both 1% Er3+ in YPO,. and ErPO,. 

were performed with an Nd:YAG pumped pulsed dye laser [4]. The resulting oscillator 

strengths, calculated from William's data [4], are listed in Table 7.1. It is assumed that 

the oscillator strengths are the same for any given concentration of Er3+ doped in LuPO". 

This assumption is supported by absorption measurements done with photographic plates 

and a tungsten lamp on the various concentration Er3+ in LuPO,. and YPO,. crystals. All 

the transitions appear with approximately the same relative intensities for all the crystals. 

The reason for this is that the relative intensities are mainly governed by the Judd-Ofelt 

parameters, and these, like the even parity crystal field parameters which determine the 

energy levels, vary very little among the various members of the erbium phosphate family. 
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Table 7.1: Oscillator strengths of the transitions between the 0, 33, and 53 cm-1 levels of 

the 4ltS/2 multiplet and the 20,485 and 20,493 cm- 1 levels of the 4F7/ 2 multiplet of ErP04, 

from Nd:YAG pulsed laser absorption measurements. 

(r7(20,485)IZlr7(0))2 = 0 (r7(20,485)IX, Ylr7(0))2 = 0.02 

(r7(20,493)IZlr7(0))2 = 0.3 (r7(20,493)IX, Ylr7(0))2 = 0.6 

(r7(20,485)IZlr6(33))2 = 0.1 (r7(20,485)IX, Ylr6(33))2 = 1.5 

(r7(20, 493)IZlrs(33))2 = 0 (r7(20, 493)IX, Ylrs(33))2 = 5.0 

(r7(20,485)IZlr7(53))2 = 0 (r7(20, 485)IX, Y/f7(53))2 = 1.0 

(r7(20, 493)IZlr7(53))2 = 0.03 (r7(20, 493)IX, Ylr7(53))2 = 3.2 

The strongest transitions are by far those from the 33 and 53 cm- 1 states to those at 

20,485 and 20,493 cm- 1 , in X,Y polarization. This explains why the 20 cm- 1 Stokes transi

tion is so strong in XY polarization, since its resonant amplitude is proportional to the reso

nant matrix element products (53IXI20, 485)(20,485IYI33) and (53IXI20, 493)(20, 4931Y133) , 

which are the largest amplitude channels in this system of levels. 

The oscillator strengths being proportional to the squares of the matrix elements, one 

can take the square roots of the values given in Table 7.1 and obtain (in arbitrary units) the 

relative dipole matrix elements of the various transitions. The amplitudes of the resonance 

parts of the Raman tensor can be obtained by forming the products UI Dpli)(il Duli) where 

the initial state Ii) is the ground state, the final state /I) is either the 33 or 53 cm -1 state, 

and the intermediate state Ii) is the 20,485 or 20,493 cm- 1 state. These products yield 

the strengths of the two resonant amplitude channels which go through either the 20,485 

or 20,493 cm- 1 states. Table 7.2 lists the values of these amplitudes. Since there is an 

indeterminancy in the absolute phases of the matrix elements (the square root can be taken 

to be positive or negative) there is a ± in front of each value. 

Several conclusions can be drawn from Table 7.2. 

• The r1 state at 20,485 cm- 1 is an extremely weak channel for resonance amplification 

and will not contribute significantly to the resonant Raman signal unless the exciting 

line is very close in energy to that transition. 

• The strongest resonant amplitudes of the Stokes transitions that originate 10 the 
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Table 7.2: Amplitudes of the resonant matrix element products involving 4Fr/2 multiplet 

intermediate states. 

(r6(33)IXlrr(20, 485)) (rr(20, 485)IYlrr(O)) = ±O.10 

(f6(33)IZlfr(20, 485))(fr(20, 485)IYlrr(O)) = ±O.02 

(f6(33)IXlrr(20,485))(fr(20,485)IZlrr(O)) = ° 
(f6(33)IZlrr(20, 485)) (rr(20, 485)IZlfr(O)) = 0 

(fs(33)IXlf6(20, 493)) (f6(20, 493)IYlfr(O)) = ±l.O 

(f6(33)IZlf6(20, 493)) (rs(20, 493)lYlfr(O)) = ° 
(r6(33)IXlr6(20, 493))(r6(20, 493)IZlrr(O)) = ±O.71 

(rs(33)IZlr6(20, 493)) (fs(20, 493)IZlrr(O)) = 0 

(rr(53) IXI rr(20, 485)) (fr(20, 485) IYlrr(O)) d: ±O.08 

(rr(53)IZlrr(20, 485)) (rr(20, 485)IYlrr(O)) = ° 
(rr(53)IX!fr(20, 485)) (fr(20, 485)IZlrr(O)) = ° 
(rr(53)IZlrr(20,485))(rr(20,485)IZlrr(O)) = 0 

(rr(53)IX!f6(20, 493)) (r6(20, 493)lYlrr(O)) = ±O.80 

(rr(53)IZlrs (20, 493)) (rs(20, 493)IYlrr(O)) = ±O.08 

(rr(53)IX!f6(20, 493)) (r6(20, 493)IZ!rr(O)) = ±O.57 

(rr(53)IZ!f6(20, 493)) (r6(20, 493) IZlrr(O)) = ±O.05 
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ground state are those of the 33 and 53 cm- 1 transitions in XY and XZ polarization. 

This occurs via the r6(20,493 em-I) intermediate state. For these lines there can be 

significant interference between the resonant and nonresonant amplitudes . 

• The 33 cm-1 transition in ZZ polarization has zero resonance amplitude. In fact, based 

on one-photon electric dipole selection rules, the 0 to 33 cm-1 Raman transition is 

forbidde~ in ZZ polarization. This is valid for any r6 -- r7 Raman transition. Any 

ZZ intensity for this type of transition must either come from polarization leakage or 

an intensity mechanism other than an electric dipole mediated Raman transition. 

7.2 The Energy Denominators 

The values of the energy levels of the two lower crystal field states of the 4FT/'}, multiplet 

are given in section 6.2. We assume that these two states are the only ones involved 

in the resonance enhancement of the the Stokes transitions that originate in the ground 

state, since the two higher levels of the 4F7/'}, multiplet are at least 60 cm-1 away from the 

exciting laser line. The energy differences between the lower rs and r7 states of the 4FT/'}, 

resonant intermediate multiplet and the argon-ion laser line at 488.0 nm (20,486.7 cm- 1) are 

tabulated in Table 7.3, in vacuum wavenumbers. In all cases it is the center of the electronic 

line that is used to calculate the energy difference. The sign of the energy difference, or 

rather the change in sign of the energy denominator between different concentration Er3+ 

phosphate crystals, is responsible for the reversal of the Raman amplitude interference that 

results in significant variations in the relative intensity pattern of the resonant electronic 

Raman transitions in these crystals. 

1.3 The Nonresonant Amplitudes 

The nonresonant intensities can be experimentally obtained by exciting the crystal with 

the argon-ion laser lines at 514.5, 476.5, or 457.9 nm. One can then take the square root 

of these intensities to obtain the nonresonant amplitudes. The signs can be fixed by using 

the signs predicted by the theoretical calculations of Chapter 4 with Fd F'}, = 0.03. This is 

a somewhat arbitrary choice which actually does not really matter since it is the relative 

phases of the nonresonant and resonant amplitudes which are important in determining the 

I' 
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Table 7.3: Energy differences between the exciting laser line and the two lower levels of the 

4F7/2 multiplet in various concentration Er3+ doped phosphate crystals. 

Lower r6 Lower r7 
level level 

ErPO" 6.2 -1.7 

Er. lO Lu.90PO" -3.0 2.4 

Er.OlLu.ggPO" -4.1 2.4 

Table 7.4: Nonresonant Raman amplitudes for various polarizations of the incident and 

scattered light. The values are from experimental data and the signs are chosen in accor

dance with the signs predicted with F1/ F2 = 0.03. The uncertainty is ±25% and the units 
I 

are (1,000 CpS)l. 

Polarization 

XY Zy XZ ZZ 

33 cm- 1 transition 1.20 0.17 0.48 ° 
53 cm- 1 transition 0.24 -0.70 -0.28 ° 

overall scattering amplitude. The nonresonant amplitudes are tabulated in Table 1.4 for 

selected polarization combinations of the incident and scattered light. They are averaged 

from several different scans with excitation at 514.5, 416.5, and 451.9 nm, and make use 

of more data than the intensities reported in Becker et al [5]. The amplitude values are in 

the "operational" units (1,000 cps)~, where cps stands for counts per second. The intensity 

of phonon E~, which will be used as a calibration standard to estimate the resonance en

hancement, is 5,000 cps in the spectra that correspond to the amplitude values of Table 1.4. 

It is only necessary to square the amplitude values of Table 1.4 to obtain the nonresonant 

intensities. 

The uncertainty on the amplitudes is ±25%. This is unfortunate as the interference 

between the resonant and nonresonant amplitudes is extremely sensitive to the ratio between 

the two amplitudes. We should therefore not expect that our calculations of the total 

intensity under resonant excitation be very accurate. Agreement to within a factor of 
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Table 7.5: Resonant Raman intensities for ErPO •. 

Polarization 

Xy Zy xz ZZ 

33 cm-1 transition 2.60 0.23 4.17 0.10 

53 cm -1 transition 7.19 0.93 2.28 0.06 

two would be quite reasonable given the assumptions and uncertainties involved In the 

calculations. 

7.4 Experim.ental Resonant Intensities for the 100% and 

10% Crystals 

The resonant intensities can be tabulated for the various concentration erbium phos

phate crystals. To facilitate the calculations and to allow comparison with the nonresonant 

intensities, the resonant intensities are given in units of (1,000 cps), phonon E; having the 

intensity 5,000 cps, as was the case for the nonresonant amplitudes reported in Table 7.4. 

This way the resonant and nonresonant intensities (obtained by taking the square of the 

values in Table 7.4) can be directly compared. By using the phonon intensity as a calibra

tion, one can correct for possible differences in incident laser power and scattering efficiency. 

The resonant intensities for ErPO., averaged from several scans with excitation at 488.0 

nm, are given below in Table 7.5. 

Similarly, the resonant intensities for Raman scattering from 10% Er3+ doped in LuPO. 

are listed in Table 7.6. Phonon E! was normalized to 5,000 cps in the spectra that yielded 

these intensity values. Several scans using different samples were averaged to obtain the 

experimental intensities of Table 7.6. Since the concentration of Er3+ has decreased by a 

factor of ten compared to ErPO. it is necessary to multiply the intensities observed with 

the 10% Er3+ crystal by ten so as to allow a, comparison with the ErP04 signal on a per 

ion basis. The values in Table 7.6 have been multiplied by this factor of ten. 

The resonant intensity values of Tables 7.5 and 7.6 can be directly compared among one 

another since they are normalized to identical experimental conditions (scattering efficiency, 

incident power, etc.) by using the E~ phonon standard. They are also given as per ion values 
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Table 7.6: Resonant Raman intensities for 10% Er3+ in LuPO". 

Polarization 

XY Zy XZ ZZ 

35 cm- 1 transition 129.4 3.3 39.5 1.0 

53 cm- 1 transition 98.9 3.9 39.6 1.3 

so as to obtain a quantity that is indicative of the relative amplitudes of the resonant and 

nonresonant scattering channels and the dependence of the former on the location of the 

resonant energy levels. 

It is apparent that as expected, the signal is largest for the 10% crystal, for which 

the excitation energy lies within the linewidth of the strongly resonant ra line at 20,483.7 

em-I, as discussed in chapter 6. In addition, the reversal oC the interCerence that results 

from the shift oC the levels relative to the laser line will also have a significant impact on the 

relative intensities oC the resonant electronic Raman transitions. This last effect appears to 

be occuring the most dramatically for the 33 cm- 1 transition in XY polarization, which (on 

a per ion basis) differs by orders of magnitude between the 100% and 10% Er3+ crystals. 

Finally, one should be cautious in using the ZY and ZZ intensities in the 10% crystal since 

they are roughly two orders oC magnitude weaker than the XY and XZ intensities and can 

thus partly arise from polarization leakage. 

1.5 Calculation of the Resonant intensities - The Zero Linewidth 

Model 

The total Raman amplitude is the sum of the nonresonant amplitude and the resonant 

amplitude. We can write the Raman amplitude for a transition between the ground state 

10) and the final state If) in the following form: 

(a ) -(a) k[PO/(20,485Cm- 1
) Po/(20,493Cm- 1

)] 
pu 0/ - pu O/,n,. + -1.7 + 6.2 (7.2) 

where Po/(20,485 em-I) and Po/(20,493 em-I) are the matrix element products for respec

tively the 20,485 and 20,493 cm- 1 states, and the states and energy denominators are for 

Er3+ in ErPO •. The matrix element products, which determine the strengths of the various 
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resonant amplitude channels, are listed in Table 7.2. The energy denominators are from 

Table 7.3. The constant k is needed because we have determined the relative nonresonant 

amplitudes from the nonresonant experimental spectra and not from first principles, so that 

it is not clear a priori what the proportion of the resonant to nonresonant amplitudes in 

the total Raman amplitude is. The parameter k must be calculated from the experimental 

resonant data so as to give an accurate account of the intensity pattern in both the 100% 

and 10% ErH crystals. Several simplifying assumptions have been made in writing equation 

7.2: 

• The resonant levels are assumed to have zero linewidth and have been "collapsed" to 

the center of the lines. This is valid if the exiting line is removed from the line, as in 

ErP04, but not when the excitation is within the linewidth of a transition, as in the 

10% ErH crystal. Nevertheless, the shortcomings of the model in the 10% case will 

give us further clues as to the resonance enhancement mechanism. 

• The imaginary part of the denominator, ir i' has been neglected. Thus we assume that 

the homogeneous linewidth is small compared to the distance between the exciting 

line and the resonant level. This assumption is probably justified for Erp04, but 

again, probably not for 10% ErH. 

For the calculation of the resonant intensities we first determine the constant k, and then 

the relative phases of the nonresonant and resonant amplitudes. It is found that a value 

of k can be found that gives a consistent picture of the relative intensity data for the 33 

and 53 cm -1 transitions. The relative phases are calculated by looking at difference in the 

intensity predictions that result from using contructive vs. destructive interference between 

the nonresonant and resonant amplitudes. A confirmation of the following calculations can 

really only be accomplished by comparing the intensities they predict with an experimental 

excitation curve, that is a graph of the resonant intensity vs. excitation wavelength, since 

the calculations below are based on a very limited number of experimental data points. 

This necessitates a dye laser tunable in the 4F7/2 region. In one of the following sections a 

calculation is made of r and the T2 lifetime based on the resonant intensity data for the 

10% crystal using a finite linewidth model. 
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XZ Spectrum 

The XZ resonant amplitude arises only from the f6(20,493 em-I) intermediate state 

since its matrix element with the f1 ground state is electric dipole allowed in Z polarization 

whereas that of the f1(20,485 em-I) intermediate state is forbidden. This renders the 

calculation of the intensities under resonant excitation somewhat easier. The XZ relative 

intensities of the 33 and 53 cm- 1 transition in ErP04 will be used to estimate the parameter 

k. Neglecting the nonresonant contribution, the ratio of the 33 to 53 cm- 1 transition 

intensity would be simply the ratio of the oscillator strengths of the respective matrix 

elements of these states with the 20,493 cm- 1 state since the other matrix element that 

enters the Raman amplitude is that between the ground state and the 20,493 cm- I state 

which is identical for the two transitions. The ratio of the oscillator strengths is 5.0/3.2 = 1.6 

whereas the observed ratio for ErP04 is 1.8. The difference is quite small, however, it could 

come from interference between the nonresonant and resonant amplitudes. 

Requiring that k be positive we have the two following possibilities for the 33 cm-I 

transition (using the amplitude values listed in the previous tables): 

{

constructive interference: 

destructive interference: 

.48 + k x .71/6.2 = v'4.2 => k = 13.7 

.48 - k x .71/6.2 = -v'4.2 => k = 22.1 

and for the 53 cm- 1 transition we have: 

{

constructive interference: 

destructive interference : 

-.28 - k x .57/6.2 = --/2.3 => k = 13.5 

-.28 + k x .57/6.2 = -/2.3 => k = 19.5 

(7.3) 

(7.4) 

The signs of the matrix element products are chosen in accord with whether the interference 

between nonresonant and resonant amplitudes is constructive or destructive. It is interesting 

to note that the two transitions predict remarkably similar values of k. At this point a choice 

needs to be made which value of k is best. An dispersion curve of the resonance intensities 

would allow an unequivocal choice of one of the two values, however, since we do not have 

this curve a choice has to be made based on the cw Raman data. The value k = 13.6 will 

be retained for the calculations in the remainder in this section since it appears to give 

better agreement for ErP04 • The value k ~ 21 cannot be excluded until dispersion curve 

measurements are made. With k = 13.6 and constructive interference for the 33 and 53 

cm- 1 transitions we have for the predicted intensity of the 33 cm- 1 transition in XZ: 

(.48 + 13.6 x .71/6.2)2 = 4.2 (7.5) 
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and for the intensity of the 53 cm- l transition in XZ: 

Ixz(53 em-I) = (-.28 - 13.6 x .57/6.2)2 = 2.3 (7.6) 

XY Spectrum 

The XY intensity of the 33 cm- l transition is complicated to compute since the three 

amplit~des that contribute to the total Raman intensity are of the same order of magnitude. 

However. this is the reason the XY intensity is so sensitive to interference. It seems apparent 

that-in ErPO" there must be destructive interference between the amplitudes since relatively 

speaking the XY 33 cm- 1 transition in ErPO" is weak. In 10% Er3+ in LuPO" its intensity 

goes up by two orders of magnitude. The 33 cm- l intensity is given by: 

Ixy(33 em-I) = (1.2+ 13.6 x (±1.0/6.2 ± 0.10/1.7))2 = (1.2+ 13.6 x (±0.16±0.06))2 (7.7) 

The two resonant channels have comparable amplitudes so that one cannot be neglected 

in front of the other. Overall, for destructive interference with the nonresonant amplitude, 

the resonant amplitude must be negative. The resonant amplitude can thus be -0.22 or 

-0.10. The second choice predicts an intensity of zero wheareas the first predicts 3.2 which 

is quite close to the observed value. So to summarize, for the 33 cm- 1 transition we have 

the following XY intensity: 

Ixy(33 cm- l
) = (1.2 + 13.6 x (-0.16 - 0.06))2 = 3.2 (7.8) 

Note that if one had chosen constructive interference between the nonresonant and resonant 

amplitudes the intensity would have been predicted to be 17.6, an order of magnitude 

stronger. The interference effects are thus very strong. 

The 53 cm -1 transition has virtually no nonresonant amplitude. Its intensity in XY 

polarization is: 

Ixy(53 cm- 1
) = (13.6 x (±0.80/6.2 ± 0.08/1.7))2 = (13.6 x (±0.13 ± 0.05))2 (7.9). 

Again, the resonant amplitudes differ by a factor of two depending on whether constructive 

or destructive interference is chosen between the two resonant channels. The smaller energy 

denominator of the 20,485 cm- 1 intermediate state makes up to some extent for its weaker 

oscillator strengths. Constructive interference between the two yields better agreement with 

experiment. The XY intensity of the 53 em- 1 transition in ErPO" is thus predicted to be: 

Ixy(53 em-l) = (13.6 X (0.13 + 0.05))2 = 6.0 (7.10) 
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Zy Spectrum 

The resonance enhancement of the ZY intensities is not expected to be very large. 

For the 33 cm-1 line the only resonant channel is via the 20,485 cm-1 intermediate state 

and does not .have much strength, and for the 53 cm -1 line the only resonant channel is via 

the 20,493 cm- 1 state with again a relatively weak amplitude. 

The 33 cm- 1 transition has the following intensity: 

Izy(33 cm- 1) = (0.17 + 13.6 x (0 ± 0.02/1.7»2 = (0.17 ± 0.16)2 (7.11) 

Constructive interference gives an intensity of 0.10 and destructive interference gives an 

intensity of zero, so that the former choice appears to be more in line with the observed 

intensity. 

The 53 cm- 1 transition has the following intensity: 

Izy(53 cm- 1) = (-0.70 + 13.6 x (0 ± 0.08/6.2))2 = (-0.70 ± 0.18)2 (7.12) 

Constructive interference yields an intensity of 0.77 whereas destructive interference yields 

the value 0.27. In spite of the weakness of the resonant comtribution, there is a factor of 

three difference between the intensities predicted by the two different interference choices. 

Constructive interference gives a better agreement to the experimental data. 

ZZ Spectrum 

The ZZ intensities are extremely weak under resonant excitation. In fact, they are 

a only few percent of the XZ intensities and thus the slightest amount of leakage from XZ 

to ZZ polarization will affect them. The nonresonant amplitudes are zero. The resonant 

channels are both zero for the 33 em -1 transition so that it should not have any intensity. 

The reason for this is that the electric dipole selection rules forbid the Raman transition 

r7(0 em-I) --+ r6(33 em-I) in ZZ polarization. The experimentally observed intensity 

of 0.10 is only 2% of the XZ intensity and so could be leakage. Alternatively, if there is 

some small amount of magnetic dipole transition intensity between the intermediate states 

on the one hand and the initial and final states on the other, the resonance enhancement 

might compensate for the weakness of the magnetic dipole matrix elements and render the 

ZZ intensity observable. 

The 53 cm- 1 transition has only the following resonant contribution to the total inten

sity: 

/zz(53 em-I) = (±13.6 X 0.05/6.2)2 = 0.01 (7.13) 
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Table 7.1: Resonant Raman intensities for ErP04 • 

Polarization 

XY Zy XZ ZZ 

33 cm- 1 transition (observed) 2.60 0.23 4.17 0.10 

33 cm -1 transition (calculated) 3.2 0.10 4.2 0 

53 cm-1 transition (observed) 7.19 0.93 2.28 0.06 

53 cm -1 transition (calculated) 6.0 0.77 2.3 0.01 

This is smaller than the observed intensity of 0.06, which is however 3% of the XZ intensity 

and could be all leakage. 

Summary 

The agreement between calculated and observed intensities is quite good for ErPO •. 

The relative intensities of the 33 and 53 cm- 1 transitions in various polarizations in well 

accounted for with the single parameter k = 13.6 and the choice of the relative phases 

of the resonant and nonresonant amplitudes. A full confirmation of these calculations 
I 

would be to compare the predicted to observed dispersion curves of the resonant intensities 

since the preceding calculations are based on a very limited number of experimental data 

points. Table 7.7 summarizes the calculated and observed intensities of the 33 and 53 cm- 1 

transitions in ErPO. under resonant excitation. 

The calculations done above for ErPO. can be repeated for the 35 and 53 cm- 1 tran

sitions in the 10% ErH in LuPO. crystal. We assume that the matrix element products 

remain the same and that the only difference comes from the change in the energy denomi

nators which embodies the amplitude interference reversal. The intensities calculated using 

the energy denominators for the 10% crystal and the value k = 13.6 are summarized in 

Table 7.8 along with the experimentally observed intensities. It is apparent that the inten

sities calculated for the 10% crystal all underestimate the observed intensities by factors 

that range from 3 to 7 for the XY and XZ intensities. The observed intensities in ZY and 

ZZ polarization are a few percent of the corresponding XY and XZ intensities and so could 

have a non negligible polarization leakage component. There are several reasons for the 

large discrepancies in the case of the 10% crystal, which we expected would occur. 
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Table 7.8: Resonant Raman intensities for 10% Er3+ in LuPO". 

Polarization 

XY Zy XZ ZZ 

35 cm- 1 transition (observed) 129.4 3.3 39.5 1.0 

35 cm-1 transition (calculated) 39.7 0.10 7.5 0 

53 cm- 1 transition (observed) 98.9 3.9 39.6 1.3 

53 cm-1 transition (calculated) 16.6 0.10 5.3 0.05 

• The excitation energy is now well within the inhomogeneous linewidth of the r6 level, 

situated at 20,483.7 cm- 1 in the 10% crystal, with a full width at half maximum of 

roughly em-I. The zero linewidth model used in the calculations of this section thus 

totally breaks down. The real part of the energy denominator vanishes for the ions that 

have transition energies exactly at the laser line so that these ions contribute much 

more to the resonant Raman intensity than ions a few cm- 1 away from the exciting 

line. In addition, for these ions the imaginary part of the energy denominator has to 

be taken into account. 

• The possibility of site selective fluorescence is now present for those ions that are in 

exact resonance with the laser line. It is expected that this fluorescence is weak, due 

to the nonradiative decay and concentration quenching mechanisms that reduce the 

intensity of the 4F7/ 2 -4/16/ 2 radiative transitions. Nevertheless, any site selective 

fluorescence will be at the same frequency as the Raman transitions and will affect 

the relative intensities of the electronic transitions. The fluorescence and Raman 

components of a particular transition can be differentiated only by time resolved 

measurements. 

• In the event of localized heating of the sample by the absorbed laser light, then the 

intensities of the 33 cm- 1 transition can be reduced by the reabsorption of the Raman 

scattered light. 
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1.6 Calculation of the Resonant intensities-The Finite Linewidth 

Model· 

The intensities of the 35 and 53 cm-1 Raman transitions are quite different from the 

calculated values in the zero linewidth model described in the previous section. Since the 

exciting laser line is in the middle of the linewidth of the strongly resonating r s intermediate 

state it is obvious that the assumptions of the zero linewidth model are invalid for the 10% 

crystal. 

As a first attempt to understand the intensities observed in the 10% crystal, we neglect 

the nonresonant contribution to the Raman amplitude since the resonance term now pre

sumably greatly outweighs it due to the vanishing real energy denominator. The Raman 

amplitudes are then simply those arising from the single resonant intermediate channel 

re(20,483.7 cm- l ). The resonant relative intensities are then proportional to the squares 

of the matrix element products of Table 7.2. The energy denominator, or rather the inte

gral of the energy denominator over the inhomogeneous linewidth of the resonant line, is 

a common factor to all the intensities and drops out of any relative comparison. We thus 

obtain in Table 7.9 the predicted and observed resonant Raman intensities of the 35 and 

53 cm- 1 transitions in 10% Er3+ in LuPO •. It should be kept in mind that site selective 

fluorescence and reabsorption of scattered light will affect the observed values and possibly 

distort the measurement of the resonant Raman intensities. To facilitate the comparison, 

in Table 7.9 the calculated relative intensities were scaled so that observed and calculated 

values are equal for the 53 cm- 1 transition in XZ polarization. 

The agreement is fairly good. The relative intensity of the XZ(35 em-I) transition has 

been somewhat overestimated and that of the XY (53 cm- 1) transition underestimated. We 

continue by calculating in a more correct fashion the resonance amplitude of the transitions 

taking into account the overlap between the laser line and the intermediate level. 

The inhomogeneous linewidth is described by the following normalized Gaussian distri

bution function: 
1 (w - wa)2 

g(w)=--exp(- ) 
vz;r~ 2~2 

(7.14) 

where wa is the center of the line and ~ its inhomogeneous linewidth. 

We can write the Raman intensity for a transition between the ground state 10) and 

the final state If) in the following form (assuming that only the fs state contributes to the 
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Table 7.9: Relative resonant Raman intensities of the 10% crystal. 

Xy Zy xz ZZ 

35 cm-1 transition (observed) 129.4 3.3 39.5 1.0 

35 cm- 1 transition (calculated) 129.9 0 61.4 0 

53 cm- 1 transition (observed) 98.9 3.9 39.6 1.3 

53 cm- 1 transition (calculated) 78.0 0.8 39.6 0.3 

intermediate resonance): 

(7.15) 

where w, is the frequency of the laser, the parameter k is that of the previous section, 

and r is the homogeneous linewidth of the r6 intermediate levels. That this is the correct 

expression can be verified by taking the limit where ~ --+ O. The distribution function 

becomes a Dirac delta function and by neglecting r in front of the real part of the energy 

denominator we recover the result of the last section providing we use the same parameter k. 

One caveat is that this expression assumes that the laser has an infinitely narrow linewidth. 

In reality, the laser linewidth is finite and its value r, limits the measurement of r. In 

fact, it is the larger of r, and r which enters the denominator of equation 7.15. If the laser 

linewith is narrower than the homogeneous linewidth then we will be able to measure rand 

hence T 2 . 

The integration in equation (7.15) was performed for the 35 and 53 cm- 1 transitions in 

XY and XZ polarization, which allowed the determination of the homogeneous linewidth in 

the denominator of (7.15). The center of the line was taken to be at 20,483.7 cm- l and its 

linewidth ~ was set at 6 em-I. As an example, the XZ intensity of the 53 em- l transition 

is given by: 

1+00 / 0.71 /2 1 (hw - 20,483.7)2 
Ixz(53 em-I) = 0.48 + 13.6 hw 20 6 T. [;L exp( - )dw 

-00 - ,48 .7+. v21r6 18 
(7.16) 

Only one value ofT yields agreement between calculated and observed Raman intensities 

for a particular transition in a selected polarization. It was found that indeed r is equal to 

the linewidth of the argon-ion laser (::::::0.1 em-I). Thus we have obtained a lower bound for 

T 2 , and to improve this measurement we would need a narrower frequency laser. We find 

.' ... -
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that the following value: 

T2 ~ 100 X 10-12 sec = 100 psec (7.17) 

1.7 Future Directions 

The calculations that were outlined above show that strong quantum mechanical inter

ference effects determine the relative resonant Raman intensities for the 33 and 53 cm-1 

transitions. A dispersion curve of these intensities as a function of excitation energy, ob

tained by tuning a laser across the resonant energy levels, would allow a final determination 

of the signs of the interferences and a confirmation of the fact that such an effect is taking 

place. 

The erbium phosphate crystals appear to be promising candidates for a study of the 

difference between fluorescence and resonance Raman, from the time resolved point of view. 

The lower bound of 100 psec obtained for T2 is large enough that time resolved measure

mentscould be made of the Raman transitions. 
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Chapter 8 

Raman Scattering Studies of 

Electron-Phonon Coupled Modes in 

Ytterbium Phosphate Crystals 

The ytterbium phosphate crystals have a behaviour which departs considerably from 

that of the other crystals studied in this work, in terms of the Raman spectra observed 

with monochromatic laser excitation. The difference is observed in the 250 to 350 cm- 1 

region in the Eg symmetry spectra, that is with the XZ, YZ, ZX, and ZY polarization 

combinations. Figure 8.1 compares the spectra for LuPO", TmPO", and YbPO", at 295 

and 4.2 K. It is quite clear that the spectra for YbPO" differ very markedly from those of 

the other crystals. The preponderant characteristic of the YbPO" Raman transitions in the 

250-350 wavenumber region is that the narrow E~ phonon no longer appears as it does in 

the spectra of the other tetragonal lanthanide phosphate crystals. At room temperature 

a surprisingly broad transition is observed in YbPO" at approximately 303 cm- I with a 

linewidth of 50cm -I. Presumably, this transition is the Raman manifestation of phonon E~, 

however, in the other lanthanide phosphate crystals E~ is observed as a narrow transition 

with a linewidth of at most 7 cm- I (at room temperature). 

The temperature evolution of this transition in YbPO" is extremely dramatic, and again, 

different from what is seen in the other crystals. As the temperature is brought down from 

295 to 4.2 K, the transition gradually splits up into several separate peaks with central 

frequencies and linewidths which depend on temeperature. The lineshapes observed are 

asymmetric. In the other crystals E~ usually narrows down somewhat as the temperature 

drops, and if the ion does not have a full f shell the electronic Raman transitions can appear 

superimposed on the phonon spectrum, as occurs for TmPO" where a shoulder at 280 cm- I 

207 
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Figure 8.1: Experimental Raman spectra of LuPO., TmPO., and YbPO., in the Y(XZ)X 

scattering geometry in the 250-350 cm- 1 region, at T=4.2 and 295 K. 

.. 
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is observed next to E:. 

It is concluded that in YbPO. there are strong electron-phonon coupling effects taking 

place due to the presence of two electronic transitions very close in energy to phonon E:, 
leading to a resonance type interaction. This coupling affects the experimentally observed 

Raman spectra since the new eigenmodes of the system are iIo longer purely electronic or 

vibrational, but combinations of the two. There are also strong indications that the coupling 

is temperature dependent. Why this coupling occurs only in YbPO. and not in any of the 

other crystals investigated is still an unanswered question 

In this chapter, the experimental Raman spectra of the YbzLu1-zPO. crystals (x=l, 

0.75, 0.50, 0.25, 0) and their temperature evolution are described. Attempts are made to 

model the electron-phonon coupled system and their lineshapes, and to obtain values for 

the electron-phonon coupling strengths. 

A imposing body of work on electron-phonon coupling in rare earth crystals has been 

done by Schaack and his co-workers over the years [1,2,3,4,5] and by Thalmeier and Fulde 

[6]. There have also been detailed investigations of the Jahn-Teller effect (also due to 

electron-phonon coupling) by the experimental and theoretical groups at Oxford [7]. The 

only published work on YbPO. is by Nakazawa and Shionoya on cooperative luminescence 

[8]. 

8.1 Electronic Energy Level Structure of Yb3+ 

The YbH ion, an odd electron system, has the configuration f13. This is formally 

equivalent to the configuration f1 (CeH ) and is relatively easy to analyze. The energy level 

structure of the fU configuration consists of two multiplets, 2 F1/ 2 and 2 FS/ 2, separated by 

roughly 10,000 cm- l . The ground multiplet is 2 F7/ 2 (in CeH it is 2 FS/ 2 )' This ground 

multiplet consists of four Kramers doublets, two of symmetry f6 and two of symmetry f 7. 

The absorption spectra and crystal field fit of Yb3+ doped in LuPO. have been reported 

previously. The electronic energy level structure of the 2 F7/ 2 multiplet of YbH in LuPO. 

is summarized in Table 8.1 (see appendix Al for more details). 

The energy levels of YbH in YbPO. are probably much closer to those of Yb3+ doped in 

LuPO. than those of Yb3+ doped in YPO., since YbH and LuH have much closer atomic 

weights and ionic radii than YbH and y3+. We thus retain for the general information we 
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Table 8.1: Electronic energy level structure of Yb3+ in LuPO". 

I symmetry calc. obs·i 

r6 0.0 0.0 

r7 99.0 99.0 

r6 279.3 

r7 288.6 

r6 10244.7 10244.7 

r7 10271.8 10271.8 

r6 10475.5 10475.5 

need about the energy levels and waveCunctions oC Yb3 + in YbPO. the values obtained Crom 

the Yb3+ in LuPO" crystal field fit. The two higher energy levels of the 2 F7/ 2 multiplet, 

at 279 and 289 cm- 1 (predicted values from the crystal field fit which could be off by at 

most 10 to cm- l ) are quite close in energy to phonon E;. This opens up the possibility for 

coupling between the electronic transitions and the phonon via a resonance type interaction. 

8.2 ·The Experimental Raman Spectra of YbP04 

8.2.1 Experimental Raman Spectra at 295 and 4.2 K 

The experimental Raman spectra of YbPO. at room temperature in the wavenumber 

region 10 to 400 cm- l for the polarization combinations XZ and ZY are shown in Figure 8.2. 

In these polarization combinations the spectra should reveal only the Eg symmetry vibra

tional transitions since presumably at room temperature the electronic Raman transitions 

of Yb3+ are too broad and weak to be observed. Thus in this wavenumber region we expect 

to observe only the three phonons E~, E;, and E;, as shown for example in Figure 3.2 for 

LuPO". The spectra of Figure 8.2 differ markedly from those of Figure 3.2 as regards phonon 

E;. Phonons E! and E; have narrow lineshapes as in LuPO" and the other tetragonal rare 

earth phosphates, however, phonon E; is an order of magnitude broader than in any of the 

other crystals studied (LuPO", TmPO", HoPO", DyPO", and HoPO.) as measured by the 

full width at half-maximum. We assume that this broad transition is intimately connected 

with E; since its center frequency of approximately 300 cm- 1 is close to the frequency where 
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Figure 8.2: Experimental Raman spectra of YbPO. at 295 K in the Y(ZY)X and Y(XZ)X 

scattering geometries. The spectrometer bandpass is 2.5 em-I. 



212 

we expect E: to appear. Also, it appears only in the Eg symmetry spectra. The linewidth 

of roughly 50 cm- l is uncharacteristically large. The room temperature scans in the other 

polarization combinations (XY, ZZ, etc.) exhibit no unusual features. A full list of the 

phonon frequencies of YbPO. can be found in Table 3.3 for 295, 77, and 4.2 K. 

Upon cooling the sample to 4.2 K, one might perhaps expect the broad transition at 

300 cm- l to narrow down significantly. This is not the case. Figure 8.3 displays the XY, 

ZY, and XZ polarization Raman spectra of YbPO. at 4.2 K in the 20 to 380 cm-1 region. 

It is seen in the XZ and ZY polarization spectra that the broad room temperature 

transition has been replaced by two sharp and intense peaks at 250 and 346 cm-I , and 

a weak broad peak at roughly 298 em-I. This is the most surprising feature of the low 

temperature spectra. 

In the XY spectrum, an electronic Raman transition appears at 93 cm- 1 which is the 

transition from the r6 ground state to the first excited r7 state, observed at 99 cm- I in the 

Yb3+ in LuPO. absorption spectra. The XY intensities should be treated with caution as 

there seems to be some amount of polarization leakage between the XY and XX,YY spectra, 

&8 evidenc;ed by the appearance in XY of phonon Btg at 147 cm- l . The XY spectrum also 

shows a distinct rise at about 250 cm- I to a broad peak centered around 265 cm- I . The 

scattered light level level dips only slightly following that peak and does not immediately 

drop down to the background level. There is still intensity in the 300 cm- I region which 

could mean the presence of a second, broad transition near that frequency. The XY spectra 

of the mixed crystals YbzLuI-zPO. also show these features, which narrow down as the 

concentration of Yb drops. The sharp strong transition is phonon B~g. 

The transitions at 250 and 346 cm- I appear with some slight intensity in ZZ, however, 

this could be due to polarization leakage since the ZZ intensities of these two transitions 

are only about 1 % of the respective XZ or ZY intensities. 

8.2.2 Temperature Evolution of the Eg Symmetry Spectra 

It is instructive to study the Eg symmetry spectra in the 250 to 350 cm- I region as a 

function of temperature. In what fashion does the broad room temperature transition at 

300 cm- I in XZ and ZY split into the pattern observed at 4.2 K? The answer is provided by 

Figure 8.4, which shows the XZ spectra in this region at 40 K increments from 4.2 to 295 

K. Several comments can be made about the distinct temperature evolution of the spectra. 

.. 
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Figure 8,3: Experimental Raman spectra of YbPO. at 4,2 K in the Y(XY)X, Y(ZY)X, and 

Y(XZ)X scattering geometries, The spectrometer bandpass is 2,5 em-I, 
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Figure 8.4: Temperature evolution of the YbPO. spectra in the 250 to 350 cm- 1 region in 

XZ polarization. 
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• AIl the temperature is raised from 4.2 to 60 K the spectra do not change very much. 

It is in the 100 to 140 K temperature region that significant changes start occuring in 

the spectra. 

• The two sharp peaks at 250 and 346 cm-1 at 4.2 K appear to gradually move closer 

together in frequency as the temperature is raised. Thus, at 100 K, for instance, the 

250 cm- 1 peak is at 257 cm-1 and the 345 cm-1 peak is at 340 cm-1 , a relative change 

in frequency of 10 to 20%. The 250 cm-1 peak can only be clearly followed up to at 

most 160 K, whereas the 346 cm- 1 peak can be followed up to about 180 K. At this 

tempera.ture the transitions blend into a very asymmetric and broad lineshape which 

narrows down somewhat as the temperature is raised to 295 K. At room temperature 

the lineshape, still somewhat asymmetric, looks like a single broad transition. 

• AIl the temperature is raised, the two sharp outer peaks at 250 and 346 cm- 1 not only 

move closer in frequency but also broaden. This linewidth broadening with increasing 

temperature is characteristic of rare earth ion electronic transitions. 

• The intensity in the central region at 300 cm- 1 is very sma.ll at 4.2 K but builds up 

gradually with temperature. At 140 K, for example, there is a significant amount of 

intensity under that peak. It does not appear that this intensity can be explained 

by the additive effect of the overlap of the tails of the lineshapes of the two outer 

transitions which are quite broad at higher temperatures. 

8.2.3 Conclusion 

It is apparent from even a cursory inspection of the Eg symmetry spectra (the XZ, YZ, 

ZX, and ZY polarizations) that the Raman scattering has uncovered phenomena previously 

unobserved in any of the other tetragonal lanthanide phosphate crystals. The only other 

effect that is somewhat similar to this is the decrease in energy of phonon E; (close in energy 

to an electronic transition) in. HoPO", as the temperature drops (see Table 3.3) in contrast 

to all the other crystals where it increases in frequency. 

The broad linewidth of what appears to be phonon E:, and the behaviour as a function 

of temperature of this broad transition are extremely intriguing. The conclusion that one is 

naturally drawn to is that in the YbPO" crystal there are strong electron-phonon coupling 

effectsoccuring that are responsible for the surprising Raman spectra in the 250 to 350 cm- 1 
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regIon. Electron-phonon coupling effects have been observed previously in other tetragonal 

rare earth zircon like systems, and fall under the category of the cooperative Jahn-Teller 

effect [7]. However, the Raman spectra of these crystals all differ from those of YbPO" in 

one way or another. In YbPO" there is no phase transition that changes the lattice crystal 

structure, as is the case in the Jahn-Teller effect. 

In the following sections we will describe two models of the electron-phonon coupled 

system of YbPO.. The first, more simple, predicts only the eigenfrequencies of the cou

pled modes and their temperature evolution. The second, more complicated, attempts to 

quantitatively parameterize the Raman lineshapes observed experimentally. Both of these 

theories are to a large extent phenomenological. The important excitation picture of the 

Raman scattering process will be described first, since it provides the conceptual foundation 

upon which the ensuing discussion rests. 

8.3 Electron-Phonon Coupled Modes in YbP04 

8.3.1 The Excitation Picture at T=O K 

The situation in YbPO. is the following: two electronic levels, one of symmetry rs and 

one of symmetry rr, are close in energy to phonon E:. Raman transitions are allowed to 

all three of these states. In the usual case of decoupled electronic and vibrational states, 

the electronic Raman transitions are from the rs ground state (of a single ion) to the final 

electronic state of symmetry rs or r 7 • and the vibrational Raman transitions are from 

the totally symmetric ground state of the crystal lattice, where all the phonon occupation 

numbers are zero, to a final state where one phonon has been created in the crystal. The 

vibrational excitations created by the laser excitation, the phonons, belong to the crystal as 

a whole. In order to approach in a more coherent and general fashion the electron-phonon 

coupling problem, we should treat the electronic transitions on an equal footing. Thus, 

we will speak of electronic transitions without specifying whether they are localized on a 

single ion or not. This does not involve any major changes in the symmetry labeling of the 

electronic states. We merely need to use the factor group representations that correspond 

to the site symmetry group representations rs and r7. Theses are the D4h representations 

r:, ri, r;, and r1". The electronic ground state will be r: and only Raman transitions 
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to rt and rt states are parity allowed. 

The Raman scattered signal is created, in the semi-classical picture, by an oscillating 

polarization of the material. This oscillating polarization is induced by the incident laser 

radiation, which constitutes a harmonic driving field. The fluctuation-dissipation theorem 

provides the general setting for the calculation of the response of the medium to the in

cident field [9J. The induced polarizations, which also vary harmonically in time, have 

Raman shifted frequencies. Any observed Raman spectrum is produced by these oscillating 

polarizations and hence a coupled mode spectrum will be observed only if the polarizations 

are coupled. Since each Raman polarization corresponds to an excitation of the system, 

be it electronic or vibrational, one can equally well speak of coupled excitations. Thus 

the incident driving field is directly responsible for creating the excitations of the system 

and allowing them to couple. For example, when the polarization of the laser is such that 

phonon E: cannot be excited, then the electronic excitations and the corresponding polar

izations of the medium are unaffected by the coupling and appear in the scattered frequency i 

spectrum at their uncoupled position. However~ when phonon E: is excited as well as the 

electronic excitations, a coupled mode spectrum will-result. Thus the polarization of the 

laser is important in determining whether we see a coupled mode spectrum or not. This is 

an example of the quantum mechanical fact of life that any measurement inextricably links 

the outcome of the measurement with the actions of the observer. 

The symmetry of the excitations involved is thus important in determining whether 

coupling is possible, and in which polarizations it can be observed. An electronic transition 

from the rt ground state to a rt final state has the symmetry rt ® rt = rt + rt + rt. 
Thus four electronic excitations of symmetries rt, rt, and rt are produced. Similarly, in 

a transition from rt to rt the symmetries of the excitations produced are rt, rt, and rt _ 
The reason for the existence of four excitations comes from the fact that the YB3+ levels 

are Kramers doublets so that four transitions are possible at a given frequency_ 

Only the rt symmetry electronic excitations can couple to the Eg phonons (rt == Eg) 

since the symmetries of the two excitations need to be identical for the two to couple_ 

This comes from the fact that the coupling Hamiltonian must transform as the identity 

representation. Thus, of the four electronic excitations created by a rt to rt or rt to 

r:;- Raman transition, only two can couple to the phonon and produce a coupled mode 

spectrum. This occurs in the Eg symmetry spectra where both of these electronic and 
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vibrational excitations coexist. In contrast, in the Alg , A2g, BIg, and B2g spectra, only the 

uncoupled electronic excitations will appear. This is why the XY spectrum does not show 

the same scattering pattern in the 250-350 cm- l region as the XZ or ZY spectra. Thus 

the somewhat broad peaks seen at 265 and perhaps 300 cm-l , in XY symmetry, should be 

indicative of the uncoupled electronic excitations. 

8.3.2 The Excitation Picture at Finite Temperatures, or Quantum Me

chanics Revisited 

At finite temperatures, the ytterbium ions are no longer all in their ground state. There 

is a finite probability that the higher excited states of the ion are occupied. When the ion 

is in an excited state, it can be argued that a resonance type interaction will no longer take 

place between an electronic Raman excitation, which necessarily originates in that excited 

state, and the E: vibrational excitation [101. Consider for example that the ion is in the 

first excited state at 99 cm- l (see Table 8.1). Raman transitions to the rs and r7 states 

at respectively 279 and 289 cm-~ (calculated values) will correspond to excitations with 

energies 180 and 190 cm- l . These are very far from resonance with the E~ phonon at 310 

cm- l and hence a small coupling between these excitations will have a negligible effect on 

the eigenfrequencies. This situation is summarized in Figure 8.5. 

The question may then be asked; will separate Raman spectra be observed for ions in 

their ground state (resulting in a coupled mode spectrum) and ions in an excited state 

(resulting in an uncoupled spectrum), or will some kind of averaging effect occur? The ex

perimental data supports the second hypothesis, as witnessed by the temperature evolution 

of the Eg symmetry spectra of Figure 8.4. This can be understood from the fact that one 

cannot say that the ion is one state rather than another, without having made a measure

ment to determine this. Rather, one can only say that there are certain probabilities of 

occupation for each state of the ion, or that the electronic wavefunction is a superposition 

of these states. The physical mechanism by which such an equilibrium state is reached and 

attained is by the interaction of the ion with the lattice thermal bath of acoustic and opti

cal phonons. We must thus treat the finite temperature problem by means of the density 

matrix. Note that even in the case where the electronic excitations are localized on one ion, 

this single ion can be treated by means of the density matrix since it is in equilibrium with 

the lattice thermal bath. Denoting the operator of the electron-phonon operator by V, the 
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Figure 8.5: Low energy electronic and vibrational excitations in YbPO". Electronic exci

tations that originate in the first excited state are not resonant with the Eg phonon at 310 

cm- 1 and will not couple to it. 
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thermal average of V is thus given by: 

(V) = Tr(pV) (8.1) 

where p is the density matrix. Assuming that the only non-zero matrix element occurs for 

the ion's electronic ground state, then (V) is proportional to the ground state population 

Boltzmann factor. 

8.4 Phenomenological Models of the Eigenfrequencies of 

the Electron-Phonon Coupled Modes 

8.4.1 Coupled Mode Eigenfrequencies at T=4.2 K 

The wavenumber region in which appears the electron-phonon coupled modes of YbPO" 

contains two electronic excitations and one phonon excitation. A priori, one would then 

expect a three level coupled system to be the physical foundation of the Raman spectra. 

This explanation makes apparent in a simple way why the low temperature (T=4.2 K) 

spectra show three distinct peaks. However, it cannot be immediately excluded that the 

system consists .in reality of two coupled modes, one electronic and one phonon. In this 

latter case, the broad central feature at roughly 298 cm- 1 has to be explained not as one 

of the coupled modes, but by some other reason such as the crystal not being exactly pure 

YbPO". It is better to treat both cases simultaneously so as to see which one is in better 

agreement with the data. 

In what follows, we will use as basis states of the system products of the electronic 

wavefunctions and the phonon wavefunctions (defined by the phonon occupation numbers). 

The new coupled mode eigenfunctions will be linear combinations of these. The mode 

splitting occurs because of the near degeneracy of the state with an electronic ground state 

and one phonon E~ and the states with either one of the two excited electronic states in the 

300 cm- I region and no phonon. The models below are somewhat of a simplification since 

both the electronic states and the phonon are doubly degenerate. However, the coupling 

cannot lift the Kramers degeneracy since it does not lift the time reversal symmetry so that 

there is no loss of generality in our treatment. 

Consider two electronic excitations EI and E2 with frequencies WeI and W e2. These 

correspond to the transitions from the electronic ground state to the two excited states in 
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the 300 cm- l region. The frequencies Wei and We2 are known only approximately from the 
\ 

crystal field fit (see Table 8.1). The phonon frequency is Wp ~ 310 cm- l (this is known from 

the TmPO. and LuPO. spectra and is also the position of the phonon in the Yb:2sLu.75PO. 

crystal). We introduce couplings VI and V2 between the two electronic excitations and the 

phonon. These are phenomenological parameters. For a two level coupled system we keep 

only one of the electronic excitations and couple it to the phonon. The Hamiltonian matrix 

of a two level coupl~d system is as follows: 

(8.2) 

For the three level coupled system it will be: 

(8.3) 

We have assumed in his latter model that there is no direct coupling between the two 

electronic excitations. However, they will be pushed apart via their common interaction with 

the phonon. This is a phonon mediated Davydov splitting of the two electronic excitations. 

H2 and Hs need to be diagonalized to yield the eigenfrequencies and eigenfunctions of the 

new coupled modes. 

For the two level coupled system, we consider that there are two coupled mode eigenfre

quencies, w_ and W+. From the experimental Raman spectra at low temperatures, we select 

the two sharp and intense peaks at 250 and 346 cm- l as the two coupled mode transitions: 

The diagonalization of H2 then yields the following values for WeI and VI: 

{

WeI = 290 cm- l 

VI = 46 cm- l 

(8.4) 

(8.5) 

The two modes split symmetrically about their center, !eWe I +We2), and the total magnitude 

of the splitting is given by W+ - w_ = [(Wei - wp )2 + 4V2Jl/2. 

For the three level coupled system, we add to the sharp peaks at 250 and 346 cm- 1 the 

broad central peak at about 298 cm- 1 which in the three level model is considered to be 



the third coupled mode. The three coupled mode eigenfrequencies are thus: 

1 
w_ = 250 cm- l 

W+ = 346 cm- 1 

Wo = 298 cm- l 

222 

(8.6) 

There are now four parameters to be determined, Wet, We2, Vb and V2 , and only the three 

experimentally available values W+, W_, and WOo Thus, if we do not extract additional 

information from, for example, the relative intensities of the coupled mode peaks, only three 

of the four parameters mentioned above can be determined from the experimental spectra. 

Setting V1/V2 to some constant ratio allows the calculation of the electronic frequencies Wei 

and WII2 and of the coupling strengths VI and V2. The Hamiltonian matrix was diagonalized 

for various ratios V1 /V2 and the resulting values of WeI and Wd are plotted in Figure 8.6. 

The ratio V I /V2 = 1.45 is of particular interest since actual calculations of the relative 

coupling strengths between the two electronic excitations and the phonon by means of 

the electronic wavefunctions of Appendix A predict such a ratio (see next section). For 

V1 /V2 = 1.45, we obtain: 

Wei = 277 cm- l 

We2 = 301 cm- l 

VI = 37 cm- l 

V2 = 24 cm- I 

(8.7) 

It is interesting to note that values of WeI and We2 predicted in this fashion are quite close 

to the values calculated in the crystal field fit and reported in Table 8.1. The coupling 

strengths predicted by either the two level or three level models are very strong, in fact 

they are an order of magnitude larger than previously observed electron- phonon coupling 

strengths in other rare earth compounds. 

8.4.2 Calculation of the Relative Coupling Strengths 

The relative coupling strengths of the two electronic excitations to the phonons can be 

estimated by using the waveCunctions Cor Yb3+ given in Appendix A. We assume that the 

electron-phonon coupling Hamiltonian can be written in the Collowing COfm [1-6]: 

Hel- ph = L Gr",Qr",Or", 
r", 

(8.8) 

.. 
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Figure 8.6: Energy values of the electronic excitations of YbPO. (in cm- 1) as a function of 

VI/V2 , determined by the diagonalization of the three level energy matrix. 
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where the summation is over all the irreducible representations r and the suffix Q is for 

the cases where the representations are degenerate. Q is the phonon amplitude and 0 is 

a quadrupolar electronic operator. The G are coupling constants. This expression comes 

from the differentiation of the crystal field Hamiltonian with respect to the ligand positions. 

In its above form it represents a local interaction, however, it can be summed over all the 

sites in the primitive cell if one wishes to extend the interaction to the level of the primitive 

cell. We consider only Eg symmetry, since this is where the coupling is taking place, and 

we have: 

{ 

0EII(X) = JxJz + JzJx 

0E,(Y) = JyJz + JzJy 
(8.9) 

where we have used X and Y to distinguish the two modes of Eg symmetry. The matrix 

elements of these operators were calculated using the wavefunctions of the states of Ybs+ , 

given in Appendix A, and it was found that the ratio of the coupling strength of the ra 
level to that of the r7 level is 1.4 

8.4.3 Temperature Evolution of the Coupled Mode Eigenfrequencies 

The conceptual reasoning underlying the temperature shift of the coupled mode eigen

frequencies, observed in Figure 8.4, was discussed in section 8.2.2. It now remains to be seen 

whether this temperature evolution can be incorporated into the phenomenological models 

with meaningful results. In section 8.2.2 it was argued that he electron-phonon coupling 

strength is proportional to the electronic ground state population factor. We thus have: 

1 
(V)T = (V)o Z (8.10) 

where (Vh is the coupling stregth at temperature T, (V)o its value at T=O K (we will 

assume (V)o = (V) •. 2), and Z is the partition function. For a single Yb3+ ion we have: 

93 279 289 
Z = 1 + exp(--) + exp(--) + exp(--) 

kT kT kT 
(8.11) 

where kT is in wavenumber units, 93 cm- 1 is the observed value of the first excited elctronic 

level of Yb3+ in YbPO. (from the electronic Raman spectra), and the two higher excited 

energy levels are taken from Table 8.1. The small differences between the actual energy 

values and those of Table 8.1 have a very weak impact upon the value of Z so that the 

above expression is accurate enough for our purposes. It is the 93 cm- 1 line which has 
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the main effect on the temperature dependence. Figure 8.7 is a normalized plot of the 

splitting between the two sharp peaks at 250 and 346 cm- 1 (at T=4.2 K), as a function of 

temperature. 

The experimental splitting is shown up to T=160 K. Above that temperature the peaks 

are too broad. to make an accurate measurement of their center feasible. The theoretical 

temperature evolution for two coupled modes is shown in Figure 8.7; it tends to falloff 

more rapidly than the experimental curve at low temperatures. The three level model 

curves are for V1/V2 = 1.5; 1.3; 1.0. The partition function of equation 8.9 was used to 

calculate the temperature evolution. The three level model curves are somewhat closer 

to the experimental one than that for the two level model, with the curve for V1/V2 = 1.3 

offering perhaps the best average agreement in the low temperature and higher temperature 

regions. 

Remarkably enough, the theoretical and experimental curves of Figure 8.7 are generally 

In good agreement. The experimental splitting starts showing a significant temperature; 

decrease around T=120 K, which is the temperature at which we expect noticeable amounts 

of the ground state population to start appearing in the first excited electronic state at 93 

em-I. Figure 8.7 thus confirms the arguments of section 8.2.2. Increasing the temperature 

effectively decreases the elctron-phonon coupling strength since on average the ion spends 

less time in its ground state and has a lower probability of creating an excitation resonant 

in energy with the phonon. This whole effect is profoundly quantum mechanical, since it is 

intimately linked with the experiment being performed and whether or not a measurement 

is made. 

8.5 Phenomenological Models of the Raman Lineshapes of 

the Coupled Modes 

8.5.1 Greens Functions and Response Theory of the Raman Lineshapes 

The two level and three level phenomenological models described in the previous sec

tions predict only the eigenfrequencies and eigenfunctions of the new coupled modes which 

are hybrid modes with both electronic and vibrational components. However, they do not 

say anything about the linewidths of the excitations involved or about the lineshapes of the 

Raman spectra. It is quite apparent from the spectra, especially those at higher tempera-
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ture, that the Raman spectra are not the superposition of delta-function like peaks. The 

broadness of the spectral features stem from the large linewidths of the electronic excita

tions, which are in the range 1(}'20 cm- l based on the observations made in other rare earth 

phosphate crystals. It is thus quite an oversimplification to reduce the interaction between 

a phonon at 300 cm-1 and an electronic excitation centered at 295 cm- l with a linewidth of 

20 cm- l to a simple 2x2 energy matrix model like that of section 8.4.1 since the lineshape 

of the elec~ronic excitation actually overlaps the phonon. This situation is somewhat akin 

to that of Fano resonances in solids, studied extensively in the 1970's [11,12,13]. 

The way to treat the interaction of broad and narrow excitations is to use the Greens 

function method [14][p.38], which actually dates back to the work of Barker and Hopfield 

[151. Each excitation is treated as a harmonic oscillator with a complex energy which 

incorporates both its frequency and its natural linewidth. The harmonic oscillators are 

then coupled by phenomenological coupling parameters. For a system of coupled oscillators 

the Raman lineshape Sew) as a function of frequency can be written: 

SeW) = new, T)Im(E Gii(w)aiai) 
i.i 

(8.12) 

where n is the Bose distribution function, the summation runs over the various modes that 

constitute the coupled system, the at are the scattering amplitudes of the modes, and G ii is 

the Greens function matrix. For three coupled modes, Gii is given by the following matrix: 

[ 

w;l -w2 +irlw 

Gijl(w) = 0 

VI 

o 
(8.13) 

where two electronic modes of frequencies We! and We2, and linewidths r l and r2, have 

been coupled to a phonon of frequency wp assumed to have negligible linewidth. The model 

now incorporates the large linewidths of the electronic excitations, by means of r l and r2. 

These linewidths will affect the positions of the peaks in the spectrum. 

The lineshape model involves a fairly large number of phenomenological parameters; 

WeI, We2, rl, r2, VI, V2, ai, a2, and a3. Actually, since the Raman spectra intensities are in 

relative units only a1/a3 and a2/a3 need to be determined. All the parameters need to be 

fitted from the experimental spectra. However, we can use as a general guideline the values 

of WeI and We2 obtained from the simple eigenfrequency model discussed previously, and 
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also require that ai/as and a2/as be small since the phonon Raman scattering strength is 

presumably much stronger than the electronic ones. 

8.5.2 Application to the YbPO. Spectra 

The Greens function model was applied to the three level system and fitted to the 

YbPO. spectra at T~4.2 K. The agreement is quite good, as shown by the experimental 

and calculated curves of Figure 8.8. 

The values obtained for the various parameters are: 

Wei = 273 cm- l 

We2 = 301 cm- l 

rl = 14 cm- 1 

r 2 = 37 cm- 1 

al = a2 = O.las 

VI = 1510s 

V2 = 2310s 

These values are all quite reasonable. Wei and W e2 are very close to those obtained 

from the simple eigenCrequency model. The linewidths are in good agreement with the XY 

spectrum transitions, the large value of r2 explaining why the We2 transitions is so broad 

in that symmetry. Vl and V2 are comparable as was the case in the simple eigenfrequency 

model (although here Vl is smaller than V2). The two level model does not adequately 

predict the lineshapes for the YbPO. low temperature spectra, since it cannot reproduce 

the central bump at 298 cm- l . By increasing the linewidths r 1 and r2 with temperature, 

the three level model just outlined tracks fairly well the Raman lineshapes up to about 160 

K at which point the values of the parameters begin to become unreasonable if one wishes to 

obtain a good fit to the experimental spectra. In fact, the broad peak at room temperature 

cannot be fitted in the three level model without using outlandishly large values of r 1 and 

r 2 • The two level model can, however, replicate fairly well the room temperature spectra. 

The conclusion is that the three level model works well at low temperatures, but breaks 

down at high temperatures where the two level model seems to fit better. The theory 

just outlined is somewhat simple compared to the complexity of the system under study, 

especially at high temperatures where a multitude of interactions occur, so that we should 

not be surprised that it is only qualitatively correct over the full range of temperatures. 
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8.6 Spectra of the Mixed Ytterbium Lutetium Crystals 

Raman spectra were taken of the mixed crystals YbzLul-zP04, with x = 0.25; 0.50; 0.75. 

These spectra were taken at -4.2 K and also as a function of temperature in Eg symmetry 

in the 300 cm- 1 region. The XZ polarization spectra at 4.2 K in the 300 cm-1 region are 

compared for all the crystals in Figure 8.9. 

For LuP04 of course only the sharp phonon E~ is present. It is then very interesting 

to see the evolution of the spectra as the concentration of Yb3+ is increased. As the 

proportion of Yb3+ to Lu3+ present in the crystal rises, two simultaneous effects start 

occuring. First, the intensity of phonon E~ drops but it is nevertheless present. Second, 

the coupled modes begin appearing and start rising in intensity. Thus, it seems as if two 

spectra are present at the same time, which is somewhat reminiscent of the two mode phonon 

spectrum of alloy systems. One spectrum is just the "normal" phonon E:. and the other is 

the coupled mode spectrum. This suggests that the electron-phonon interaction is localized 

and that spatial regions of the crystal that contain Lu3+ contribute to the "normal" E~ 

phonon spectrum, and regions with Yb3+ contribute to the coupled mode spectrum. It is 

interesting to compare and contrast the effects of temperature vs. concentration on these 

Raman spectra. Whereas the temperature produces an averaging effect, the concentration 

seems to result in a superposition effect. 

The temperature evolution of the XZ spectra for the 25%, 50%, and 75% Yb3+ crystals, 

in the 300 cm- 1 region, is shown in Figures B.lO,8.U,and 8.12. At room temperature only 

one broad peak is present, and in Figure 8.13 the linewidth of that peak has been plotted 

as a function of Yb3+ concentration. The linewidth is roughly linearly proportional to the 

Yb3+ concentration. 

The spectra of the mixed crystals are difficult to analyze in detail, since there are many 

lines wth overlapping lineshapes. In addition, these crystals have a configurational disorder. 

Thus, strictly speaking, they do not have translational symmetry and Raman scattering can 

occur from points in the Brillouin zone other than k = o. 

8.1 Future Directions 

The spectra of the ytterbium phosphate crystals seem to be extremely rich from both 

the experimental and the theoretical viewpoint. One experiment that naturally comes to 
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mind is to perform the Raman scattering with the crystal in a magnetic field. The coupled 

mode spectrum should then split according to the g values of the electronic states and 

their relative presence in the spectrum. It should also be very interesting to compare and 

contrast fluorescence and absorption spectra with the Raman spectra. The most important 

question, though, is why this electron-phonon coupling has occured with such strength in 

YbP04. 
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Appendix A 

Crystal Field Fits and Energy Level Structure of 
Yb3+, Tm3+, Er3+, and Ho3+, in LuP04 and YP04 

This appendix maps out the electronic energy level structure of the trivalent lan

thanides of interest in this study, and provides the wavefunction information that is indis

pensable for a calculation of the electronic Raman transition intensities. The ions Yb3+, 

Tm3+, Er3+, and H03+, are treated, respectively, in sections Al through A4. For each ion 

is provided: 

• A complete list of the atomic and crystal field parameters obtained from a fit of the 

calculated to the energy levels. 

• A list of the calculated and observed electronic energies and g values. 

• A list of the wavefunctions of the states. 

For the first three ions the host matrix is LuPO", for Ho3+ it is YPO". Except for Ho3+, 

the results presented here have been reported previously in the literature. The published 

fits usually present the wavefunction content in percentages. This wipes out the sign of the 

coefficients of the expansion of the eigenfunctions in terms of the states 14fN , 0:8 LJ Jz) and 

does not allow the calculation of quantities such as electronic Raman transition intensities. 

The tables presented here include the signs of these coefficients. Only the wavefunctions of 

the multiplets investigated by Raman scattering have been listed. 
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Appendix Al Yb3+ 

The crystal field fit and absorption spectrum of Yb3+ in LUP04 and YP04 was 

reported by P.C. Becker tt ai, J. Chern. Phys. 81,2872 (1984). We present here the results 

for Yb3+ in LuPO •. Since 88 many parameters 88 there are observed transitions are varied, 

the rms energy deviation between calculated and observed energies is zero. The parameters 

are quite close to those for Tm3+ in LUP04, and the predicted Zeeman patterns are in 

excellent agreement with the experimental data. 

Atomic and crystal field parameters (cm-1 ) 

~ -2903.2 

B5 255.7 

B4 
0 14.2 

B4 
4 -608.0 

Bg -704.8 

B~ 15.6 
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Energy levels and gvalues 

Energy (em-I) gil Ig..L1 

symmetry calc. obs. mer. calc. obs. calc. obs. 

re 0.0 0.0 0.0 -1.6 -1.3 3.2 3.2 

r1 99.0 99.0 0.0 1.1 3.5 

rs 279.3 3.9 3.2 

r1 288.6 5.8 1.1 

re 10244.7 10244.7 0.0 -0.4 1.8 

r1 10271.8 10271.8 0.0 -0.9 2.6 

rs 10475.5 10475.5 0.0 2.1 1.8 



r 6 Eigenfunctions 

Energy (em-I) Eigenvector composition 25+1L(2J,2Jz ) 

calc. obs. 

0.0 0.0 -.893 2F(7, -3) + 0.4S0 2F(7, S) 

279.3 

-.OOS 2F(S, S) + O.OOS 2F(S, -3) 

-.893 2F(7, 5) - .450 2F(7, -3) 

+0.013 2F(5, -3) - .004 2F(S, S) 

10244.7 10244.7 0.825 2F(5, -3) - .565 2F(5, S) 

+0.012 2F{7, -3) + 0.008 2F(7, 5) 

10475.5 10475.5 0.825 2F{S, S) + 0.S6S 2F{5, -3) 

+0.005 2F(7,5) 

f7 Eigenfunctions 

Energy (em-I) Eigenvector composition 25+1 L(2J, 2Jz ) 

calc. obs. 

99.0 99.0 -.871 2F(7, -1) + 0.491 2F{7, 7) 

-.016 2F{S, -1) 

288.6 0.871 2F(7,7) + 0.4912F(7, -1) 

-.002 2F(S, -1) 

10271.8 10271.8 0.999 2F{S, -1) - .013 2F{7, -1) 

0.009 2F(7, 7) 

240 
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Appendix A2 

The crystal field fit and absorption spectrum of Tm3+ in LuPO" and YPO" was 

reported by P.C. Becker et ai, J. Chern. Phys. 81,2872 (1984). We present here the results 

for Tm3+ in LuPO •. The rms energy deviation between calculated and observed energies 

is 10 cm- l . 
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Atomic and erystal field parameters (em-I) 

) 2628.90 

F2 101250.00 

F" 70753.65 

F6 50051.16 

B5 202.86 

B~ 116.56 

B" " 
-672.95 

Bg -704.81 

B: 15.65 

a 17.52 

f3 -635 

'1 2200.00 

UO 4.93 

M2 2.72 

M" 1.37 

p2 729.60 

p4 547.00 

p6 364.00 
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Energy levels and g values 

Energy(cm-1 ) gil 

symmetry calc. abs. mer. calc. abs. 

rl 0.0 0.0 0.0 

r5 21.9 25.2 -3.3 -4.6 -3.3 

rs 89.9 80.1 9.8 

r5 131.8 124.8 7.0 -6.7 -7.7 

r2 182.6 

rl 248.2 

r. 254.4 

r5 281.2 4.3 

r3 303.0 

r. 321.4 

r3 5587.0 

r5 5682.1 5674.0 8.1 1.5 

rl 5700.2 

r2 5735.3 

r. 5769.3 5763.0 6.3 

r5 5844.4 5842.0 2.4 3.0 

rl 5856.7 

r2 8222.6 8227.0 -4.4 

r5 8257.7 8262.0 -4.3 

r. 8277.8 8279.0 -1.2 

r1 8321.9 8326.0 -4.1 

r2 8384.7 8381.0 3.7 

rs 8396.4 8395.0 1.4 

r3 8425.2 

rs 8444.6 8441.0 3.6 
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Energy( em -1 ) gil 

symmetry calc. obs. mer. calc. obs. 

rl 12537.0 12530.8 6.2 

rs 12544.1 12535.2 9.0 3.7 3.7 

rs 12672.6 12657.2 15.4 -0.1 

ra 12676.8 

r2 12704.7 

r1 12723.3 

r. 12782.6 12778.2 4.4 

rs 14404.6 14402.3 2.2 4.3 5.4 

rs 14429.8 14435.3 -5.5 0.0 

r. 14438.4 14454.2 -15.8 

ra 14452.2 

r2 14497.3 

r. 14976.7 14964.0 12.7 

Ts 15080.5 15087.8 -7.2 -1.5 

r1 15080.5 

ra 15083.8 

ra 20991.9 20983.0 8.9 

rs 21133.6 0.9 

r1 21178.9 

r2 21257.5 

r. 21267.5 21278.3 -10.8 

rs 21381.7 21394.1 -12.4 3.0 

r1 21389.5 

ra 27755.7 27749.7 5.9 

r. 27793.6 27785.0 8.6 

rs 27818.8 27838.9 -20.1 -2.3 

r1 27837.6 
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Energy(cm-1 ) gil 

symmetry calc. cbs. mer. calc. cbs. 

r. 34576.2 34579.0 -2.8 

rs 34595.4 34595.0 0.4 0.9 

r1 34613.4 

r2 34834.3 

rs 34834.6 

rs 34846.4 34842.0 4.4 0.2 

r. 34911.9 

rs 34940.2 

r1 34951.7 

rs 34974.0 -7.1 

rl 35224.9 35238.0 -13.1 

r2 36216.9 

rs 36276.5 36266.0 10.5 -3.0 

r. 37862.0 

rs 38049.4 38045.0 4.4 -2.6 

r1 38049.5 

rs 38091.4 

r1 73579.9 



r 1 and r 2 Eigenfunctions 

Energy(cm-1 ) Eigenvector composition 2S+lL(J,Jz) 

calc. obs. 

0.0 0.0 0.845 SH(6,0) + 0.371 SH(6,4) 

+0.371 SH(6, 4) 

182.6 -.704 SH(6, 4) + 0.704 SH(6, -4) 

248.2 0.598 SH(6, -4) + 0.598 SH(6, 4) 

-.526 SH(6,0) 

5700.2 -,499 SF(4,4) - ,499 SF(4,-4) 

-.365 SF(4,0) - .337 to(4,4) 

-.337 to(4, -4) - .248 to(4,0) 

0.175 SH(4,4) + 0.175 SH(4, -4) 

0.130 SH(4,0) 

5735.3 -.564 SF(4, -4) + 0.5643F(4,4) 

-.378 ,to(4, -4) + 0.378 to(4, 4) 

+0.195 SH(4, -4) - .1951 SH(4,4) 

5856.7 0.712 SF( 4,0) + 0,471 to( 4,0) 

-.261 SF(4,4) - .261 SF(4, -4) 

-.241 SH(4,0) - .172 b(4,4) 

-.172 b(4, -4) 
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r 3 and r 4 Eigenfunctions 

Energy(cm-1 ) Eigenvector composition 2S+lL(J,Jz) 

calc. ohs. 

89.9 80.1 0.695 3H(6, -2) + 0.695 3H(6, 2) 

0.113 3H(6, -6) + 0.113 3H(6, 6) 

254.4 -.565 3H(6, 2) + 0.565 3H(6, -2) 

• 0.420 3H(6, -6) - .420 3H(6, 6) 

303.0 -.695 3H(6, -6) - .695 3H(6, 6) 

+0.113 3H(6, -2)0.113 3H(6, 2) 

321.4 0.565 3H(6, 6) - .565 3H(6, -6) 

-.420 3H(6, 2) + 0.420 3H(6, -2) 

5587.0 -.556 3F(4,2) - .556 3F(4,-2) 

-.386 Jo(4, 2) - .386 Jo(4, -2) 

+0.204 3H(4, 2) + 0.204 3H(4, -2) 

5769.3 5763.0 -.562 3F(4, -2) + 0.562 3F(4, 2) 

-.380 Jo(4, -2) + 0.380 IG(4, 2) 

+0.197 3H(4, -2) - .197 3H(4, 2) 
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r 5 Eigenfunctions 

Energy(cm-1) Eigenvector composition 2S+1L(J,Jz ) 

calc. ahs. 

21.9 25.2 0.7396 3H(6, -1) + 0.587 3H(6, -5) 

+0.317 3H(6, 3) 

131.8 124.8 0.790 SH(6, -5) - .457 SH(6, -1) .. 
-.397 SH(6,3) 

281.2 -.856 3H(6, 3) + 0.486 3H(6, -1) 

-.149 SH(6, -5) 

5682.1 5674.0 -.601 3F(4, -1) - .517 SF(4,3) 

-.4101(;(4, -1) - .3491(;(4,3) 

. +0.·215 3H(4, -1) + 0.182 SH(4, 3) 

5844.4 5842.0 -.611 SF(4, 3) + 0.519 SF(4, -1) 

-.4021(;(4,3) + 0.346 Jc(4, -1) 

0.205 SH(4,3) - .178 SH(4,-1) 
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Appendix A3 

The crystal field fit and absorption spectrum of Er3+ in was reported by Hayhurst 

et al (J. Chern. Phys. 74, 5449 (1981». We present here the results for Er3+ in LuPO •. 

The rms energy deviation between calculated and observed energies is 13 cm -1. 
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Atomic and crystal field parameters (cm-1 ) 

S" 2366 

F2 97015 

F4 69141 

F6 48232 

B5 146 

B~ 68 

B: -760 

B6 
0 -643 

B6 
" 

-89 

Q 15.9 

f3 -632.0 

i 2017.0 

UO 4.5 

M2 2.5 

M4 1.7 

p2 667.0 

p4 500.3 

p6 333.5 

T2 157.5 

T3 48.0 

T4 18.0 

T6 -342.0 

T7 214.0 

T8 449.0 
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Energy levels and g values 

Energy(cm-1) gil g.l. 

symmetry calc. obs. mcr. calc. obs. calc. obs. 

e' rr -0.8 0.0 6.8 6.4 4.9 5.0 

r6 34.8 36.1 -1.3 3.3 7.9 

r7 48.8 52.9 -4.1 -7.1 4.0 

r7 99.7 97.6 2.1 16.0 0.7 

r6 132.4 -5.8 5.9 

r6 229.4 -7.2 0.5 

r7 245.9 -1.3 9.3 

ra 286.0 14.4 1.5 

ra 6548.0 6534.7 13.3 2.7 6.9 

r7 6555.7 6544.2 11.5 4.0 5.0 

r7 6608.3 6601.6 6.7 -5.3 4.4 

ra 6619.4 6614.8 4.6 8.6 2.8 

ra 6646.5 6641.1 5.4 2.2 1.9 

r7 6687.2 6682.1 5.1 -2.0 7.1 

ra 6697.3 6694.8 2.5 -9.0 2.1 

r6 10198.4 10206.0 -7.6 1.3 5.4 

r7 10211.0 10220.7 -9.7 3.6 3.4 

ra 10239.9 10243.8 -3.9 -5.8 2.2 

r7 10245.6 10252.3 -6.7 -1.5 1.4 

ra 10256.8 10256.2 0.6 -4.4 3.2 

r7 10271.7 10273.7 -2.0 -4.9 3.8 

ra 12362.5 12371.6 -9.1 2.6 3.1 3.5 3.1 

r7 12428.9 12441.9 -13.0 -7.0 -8.2 1.1 3.3 

ra 12432.1 12432.2 -0.1 -0.9 1.6 3.5 3.2 

r7 12508.1 12531.2 -23.1 1.5 0.8 
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Energy(cm-1 ) gil g.l. 

symmetry calc. obs. mer. calc. obs. calc. obs. 

rr 12577.9 12586.4 -8.5 2.7 2.6 

rr 15260.5 15235.4 25.1 4.1 3.0 

rs 15290.0 15270.9 19.1 1.2 1.9 5.2 

r1 15301.5 15277.1 24.4 -7.4 2.1 

r1 15335.6 15319.6 16.0 -0.1 0.4 4.8 

rs 15378.0 15363.2 14.8 1.0 5.2 

fs 18367.2 18363.9 3.3 -5.2 -5.3 0.0 0.2 

fr 18395.8 18404.3 -8.5' -1.7 -2.0 3.4 3.4 

fs 19102.1 19077.8 24.3 2.3 3.1 6.2 6.0 

f7 19135.0 5.0 2.8 

fs 19164.5 19139.9 24.6 -11.0 -10.0 0.6 0.5 

r1 19189.7 19178.3 11.4 -3.1 6.3 0.8 0.3 

rs 19192.8 19197.9 -5.1 -1.4 0.1 5.6 5.8 

fr 19222.9 -5.3 4.7 

rs 20493.0 20482.6 10.4 -2.7 -2.9 2.5 2.0 

fr 20503.7 8.4 0.0 

fs 20560.0 20553.8 6.2 5.1 2.5 

fr 20565.3 20560.7 4.6 -1.0 4.8 

rs 22148.9 22154.0 -5.1 3.5 1.5 

fr 22175.7 22182.4 -6.7 -1.1 3.1 

rs 22177.1 22192.1 -15.0 -1.4 1.9 

rs 22521.8 -2.2 0.4 

fr 22537.4 22541.3 -3.9 -0.8 1.4 

rs 
... 

24487.3 24491.9 -4.6 3.3 5.0 4.2 2.0 

fr 24539.5 24538.7 0.8 -8.5 1.2 

rs 24547.4 24529.5 17.9 -1.1 4.2 

rr 24601.2 24619.8 -18.6 2.4 0.8 
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Energy(cm-1 ) gil gl. 

symmetry calc. obs. incr. calc. obs. calc. obs. 

symmetry calc. obs. mcr . calc. obs. calc. obs. 
• r7 24665.5 24652.7 12.8 2.8 3.3 

rs 26294.7 26294.1 0.6 0.9 1.0 6.4 5.8 

r1 26317.9 26316.8 1.1 2.8 5.1 5.3 

rs 26357.2 26342.9 14.3 -11.5 -10.6 0.0 

r1 26393.2 26396.3 -3.1 -4.1 -6.3 4.1 

rs 26439.8 26458.9 -19.1 -0.1 6.4 

r7 26459.0 26477.7 -18.7 -2.1 6.1 

r7 27343.5 27346.0 -2.5 4.2 2.7 

rs 27349.7 27357.3 -7.6 1.6 4.1 5.2 

r7 27357.7 -5.7 1.6 

rs 27382.7 27401.6 -18.9 0.7 3.3 5.0 

r7 27385.6 27397.8 -12.2 -2.0 4.3 



Energy(cm-1) Eigenvector composition 2S+1L(2J,2Jz) 

calc. obs. 

34.8 36.1 .826 41(15,5) + 0.476 41(15, -3) 

132.4 

229.4 

286.0 

.184 41(15, -11) + 0.163 41(15, 13) 

-.144 2K(15, 5) 

-0.675 41(15, -11) + -0.547 41(15, -3) 

+0.438 41(15,5) + 0.146 4[(15, 13) 

+0.118 2K(15, -11) 

-.6884 41(15, -11) + 0.651 41(15, -3) 

-.196 41(15,13) + -0.183 41(15,5) 

.120 2K(15, -11) + -0.114 2K(15, -3) 

0.939 41(15,13) - 0.250 41(15,5) 

-.165 2K(15, 13) + 0.138 4[(15, -3) 

f7 

Energy(cm-1) Eigenvector composition 2S+1L(2J, 2Jz ) 

calc. obs. 

0.0 0.0 -0.845 4[(15,7) - 0.306 4[(15, -1) 

-0.292 4[(15,15) - .279 4[(15, -1) 

+0.147 2K(15, 7) 

48.8 52.9 -.887 4[(15, -9) + 0.291 4[(15,7) 

+0.227 4[(15,15) - .213 4[(15, -1) 

+0.155 2K(15, -9) 

99.7 97.6 0.911 4[(15, 15) - .330 41(15,7) 

-0.159 2K(15, 15) + 0.148 4[(15, -9) 

245.9 -0.907 41(15, -1) + 0.287 41(15, -9) 

0.251 41(15,7) + 0.159 2K(15, -I) 

254 
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Appendix A4 

The crystal field fit and absorption spectrum of Ho3+ is for Ho3+ in YP04 • It is the 

result of unpublished work by N. Edelstein. The rms energy deviation between calculated 

and observed energies is 12 cm- l . For the crystal field fit reported here, the zero of the 

energy level structure was calculated to be at 2.7 cm- l . To reference the energy level values 

to a zero energy ground state, it is necessary to subtract 2.7 cm- l from the calculated energy 

values reported here. The calculated values listed in other parts of this thesis (chapter 4, 

appendix B) are referenced to a ground state of energy zero. 
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Atomic and crystal field parameters (cm-1 ) 

~ 2134 

F2 93668 

F" 66113 

F6 49312 

B2 
0 352 

B~ 67 

B: -613 

Bg -757 

B6 
" 

-3.7 

Q 18.9 

P -611.0 

i 2013.0 

UO 3.0 

M2 1.7 

M" 1.1 

p2 528.0 

P" 396.0 

p6 264.0 

T2 248.6 

T3 37.0 -' 
T" 98.0 

T6 -316.0 

T7 440.0 

T8 372.0 
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Energy levels and g values 

Energy(cm-1) gil 

symmetry calc. obs. mer. calc. obs. 

rs 2.7 0.0 2.7 -17.3 -16.7 

rl 71.1 71.7 -0.7 

r. 74.4 66.6 7.8 

rs 86.5 80.9 5.7 

rs 90.5 89.2 1.3 2.6 1.6 

r .. 153.2 160.4 -7.3 

rz 198.1 188.1 10.0 

rl 198.8 

rs 227.3 9.6 

rs 247.9 250.2 -2.3 

rs 279.3 279.3 0.0 -4.9 

r2 279.7 

r1 302.3 

rs 5147.0 5153.2 -6.2 

r. 5152.4 5158.6 -6.2 

rs 5159.5 1.2 

r2 5163.2 

rs 5166.7 -11.0 

rs 5194.3 

rs 5202.5 2.3 

r1 5212.9 

rz 5255.3 

rs 5256.1 5264.5 -8.4 -1.8 
""' 

r .. 5256.2 

r .. 8647.1 .. 
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Energy(cm-1 ) gil 

symmetry calc. abs. mer. calc. abs. 

rs 8648.6 

rl 8670.2 

rs 8670.8 8670.7 0.1 -3.3 

r4 8679.5 

r2 8687.2 

rs 8700.8 8708.4 -7.6 7.8 

rs 8732.7 

rs 8748.8 8746.5 2.3 2.2 

r1 8757.4 

rs 11213.8 8.4 

rs 11231.6 -3.5 

rs 11238.8 

r2 11248.6 

r1 11261.0 

r4 11282.5 

rs 11290.4 0.8 

r2 11309.9 

r. 13240.0 

rs 13242.5 -3.2 

r2 13291.5 

r. 13325.7 

r. 13360.4 

rs 13370.9 0.2 

rs 13461.1 

rs 15445.2 15432.1 13.1 

rs 15452.4 15452.3 0.1 -1.2 

r2 15463.6 15463.7 -0.1 
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Energy(cm-1 ) gil 

symmetry calc. abs. mer. calc. abs. 

symmetry calc. abs. incr. calc. abs. 

rs 15532.7 15532.8 -0.1 6.2 

r 1 15538.3 15536.3 2.1 

r. 15548.3 15539.0 9.3 

rs 15562.3 15557.0 5.3 3.1 

r2 15575.6 15567.3 8.4 

rs 18426.4 18437.3 -10.9 

r1 18430.8 18443.8 -13.0 

rs 18433.6 18446.3 -12.7 3.3 

r. 18446.7 18461.9 -15.3 

r1 18523.0 18518.9 4.1 

rs 18547.2 18545.9 1.4 -2.8 

rs 18575.2 18571.5 3.7 -2.2 

rs 18596.7 18593.3 3.3 

r2 18618.7 18619.7 -1.0 

r. 18623.5 18620.1 3.4 

r1 18624.7 18625.0 -0.3 

rs 20588.3 20584.0 4.3 0.7 

r. 20600.7 20601.8 -1.2 

r2 20650.2 20644.3 5.9 

rs 20673.8 20688.7 5.1 -5.6 

r3 20685.9 20675.6 10.4 

r3 21059.6 21049.4 10.2 

r1 21080.5 21078.0 2.5 

rs 21083.7 21083.4 0.3 2.3 



r 1 and r 2 Eigenfunctions 

Energy(cm-1) Eigenvector composition 2S+1L(J,Jz) 

calc. abs; 

71.1 71.7 -0.917 5[(S, 0) + 0.21S 5[(S, -4) 

+0.21S 5[(S, 4) + 0.20S 3K2(S, 0) 

19S.1 lSS.l 0.703 5[(S, -S) - 0.649 5[(S, S) 

19S.S 

279.3 

302.3 

-0.160 3K2(S, -S) + 0.14S 3K2(S, 8) 

0.706 5[(8,8) + 0.652 5[(8, -8) 

-0.161 3K2(S, S) - 0.145 3K2(S, -S) 

0.676 5[(S, -4) - 0.676 5[(S, 4) 

-0.155 3K2(S, -4) + 0.155 3K2(S, 4) 

0.645 5I(S, 4) + 0.645 5I(S, -4) 

0.303 5[(S,0) - 0.14S 3K2(S,4) 

-0.14S 3K2(S, -4) 

260 



261 

r 3 and r" Eigenfunctions 

Energy(cm-1 ) Eigenvector composition 2S+l L(J, Jz) 

calc. obs. 

74.4 66.6 -0.593 5[(S, 6) + 0.592 5[(S, -6) 
~ 

0.342 5[(S, 2) - 0.342 5[(S, -2) 

0.134 3K2(S,6) - 0.134 3K2(S, -6) 

S6.5 80.9 0.66S 5[(S, -6) + 0.668 5[(S, 6) 

-0.152 3K2(S, -6) - 0.151 3K2(S, 6) 

-0.14S 5[(S, -2) - 0.14S 5[(S, 2) 

153.2 160.4 -0.592 5[(8,2) + 0.592 5[(8, -2) 

-0.342 5[(8,6) + 0.342 5[(8, -6) 

0.135 3K2(8, 2) - 0.135 3K2(S, -2) 

247.9 250.2 0.667 5[(S, -2) + 0.667 5[(8, 2) 

-0.153 3K2(S, -2) - 0.153 3K2(S, 2) 

0.148 5[(S, -6) + 0.148 5[(8, 6) 

.,", 
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r 5 Eigenfunctions 

Energy(cm-1) Eigenvector composition 2S+1L(J,Jz) 

calc. abs. 

2.7 0.0 0.962 5[(S, -7) - 0.217 3K2(S, -7) 

+0.114 3K1(S, -7) 

90.5 S9.2 -0.S79 5[(S, 1) + 0.295 5[(S, 5) 

0.26S 5[(S, -3) + 0.200 3K2(S, 1) 

227.3 -0.SS7 5[(S, 5) + 0.329 5[(8, -3) 

0.203 3K2(8, 5) - 0.195 5[(8,1) 

279.3 279.3 -0.S63 5[(S, -3) - 0.352 5[(S, 1) 

-0.246 5[(S, 5) + 0.19S 3K2(S, -3) 
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Appendix B 

Spherical and Cartesian Electronic Raman 
Scattering Tensors for Tm3+, Er3+, Ho3+, and 
Yb3+ .. 
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This appendix contains the spherical and cartesian Raman scattering tensors for the 

ions studied in this work. The wavefunctions used were those of Appendix A. The results 

presented here are particularly valuable for chapter 5. 

The states are all listed by their energy, which, for convenience are the calculated values 

from the crystal field fits (in LuPO" for Tm3+, Er3+, and Yb3+, and in YPO" for Ho3+). 

The rs states, used for the even electron systems Tm3+ and Ho3+, are doubly degenerate, 

and the two components have been listed as (X) and (Y), this label being placed after 

the energy value. Appendix A lists the wavefunctions of the (X) components. The (Y) 

component wavefunction is obtained by making the replacement Jz -+ -Jz in the basis 

states that appear in the expansion of the (X) wavefunction. To obtain the total Raman 

scattering matrix for a transition involving a rs state, the (X) and (Y) component matrices 

are added incoherently. This has been done in the matrices reported here. 

In the odd electron systems Yb3+ and Er3+ all the levels are doubly degenerate Kramers 

doublets. The wavefunctions of Appendix A list the wavefunctions of only one member of 

the doublet. The other member of the doublet has the wavefunction: 

W(K) = LajJ.(-l)J-J·IJ - Jz) 
JJ. 
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where the first component has the wavefunction: 

II' = I: aJJzlJ Jz) 
JJz 

(see Hufner, Optical Spectra of Transparent Rare Earth Compounds, Academic Press, New 

York, 1978, p. 78). In what follows, the Kramers conjugate states of those listed in appendix 

A are labeled by the expression (K) following the energy value. The Cartesian scattering 

tensor for a doublet to doublet transition in the odd electron systems is the incoherent sum 

of the four possible transitions between the two Kramers doublets. 

The Cartesian scattering tensors are listed in the crystallographic X,Y,Z frame. 

.. 



Appendix Bl Tm3+ 

Spherical Electronic Raman Scattering Tensors 3H6 ----+ 3H6 

0.0 ---. 22 cm- l (X) 

a:l = .366F1 

a:' l = .040F2 

0.0 ---. 90 cm- l 

a~ = -.ISIF2 

a:'2 = -.151F2 

0.0 ---. 132 cm- l (X) 

a: l = -.125Fl 

a:'l = .070F2 

0.0 ---. 182.6 cm- l 

a6 = -.188F1 

a6 =0 

0.0 ---. 248.2 cm- 1 

a6 = 0 

a6 = -.079F2 

0.0 ---.254.4 cm- 1 

a~ = .069F2 

a:'2 = -.069F2 

0.0 --I- 22 cm- l (Y) 

at = -.366Fl 

ai = .040F2 

0.0 ---. 132 cm- l (Y) 

at = .125Fl 

ai = .070F2 
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0.0 ---+ 281 cm- 1 (X) 

a:l = .042Fl 

a:'l = .057 F2 

0.0 __ 303.0 cm- 1 

a:'2 = - .006F2 

a~ = -.006F2 

0.0 ---+ 321.4 cm- 1 

a:'2 = -.028F2 

a~ = .028F2 

0.0 __ 281 cm- 1 (Y) 

a~ = -.042F1 

at = .057F2 
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Cartesian Electronic Raman Scattering Tensors 3H6 ---+ 3H6 

laxzl2 = lay Zl2 = (-.183Fl + .020F2)2 

lazxl2 = lazyl2 = (.183Fl + .020F2)2 

0.0 cm- l -- 132 cm- 1 

laxzl 2 = lay zF~ = (.063Fl + .035F2)2 

lazxl2 = lazyl2 = (-.063Fl + .035F2)2 

0.0 cm- l -- 248 cm- l 

laxxl 2 = layyl2 = (.032F2)2 

lazzl 2 = (-.064F2)2 

0.0 cm- 1 -+ 254 cm- 1 

0.0 cm- 1 -+ 281 cm- l 

laxzl 2 = lay Zl2 = (-.021Fl + .029F2)2 

lazxl 2 = lazy 12 = (.021Fl + .029F2)2 

0.0 cm- 1 -+ 303 cm- l 

0.0 cm- 1 -+ 321 cm- 1 
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Spherical Electronic Raman Scattering Tensors 3H6 ~ 3F4 

0.0 __ 5587 cm- 1 

a:a = .055F2 

a~ = .055F2 

0.0 -- 5682 cm- 1 (X) 

a:l = -.097 F2 

0.0 -- 5700 cm-1 

a5 = .081F2 

0.0 -- 5735 cm- 1 

all tensor elements are zero 

0.0 -- 5769 cm- 1 

a:2 = -.014F2 

a~ = .014F2 

0.0 -- 5844 cm- 1 (X) 

a:l = .015F2 

0.0 -- 5857 cm- 1 

a5 = -.088F2 

0.0 ~ 5682 cm-1 (Y) 

aI = -.097F2 

0.0 -- 5844 cm-1 (Y) 

aI = .015F2 
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Cartesian Electronic Raman Scattering Tensors 3HS -+ 3F4 

0.0 cm- 1 --+ 5587 cm- 1 

0.0 cm- 1 --+ 5682 cm- 1 

loxzl 2 = loyzl2 = 2(-.049F2)2 

lozxl2 = lozYI 2 = 2(-.049F2)2 

0.0 cm- 1 --+ 5700 cm- 1 

loxxl 2 = loYyl2 = (-.033F2)2 

lozzl2 = (.066F2)2 

0.0 cm- 1 --+ 5769 cm- 1 

loxxl 2 = (.014F2)2 

loyyl2 = (-.014F2)2 

0.0 cm- 1 --+ 5844 cm- 1 

loxzl2 = loy Zl2 = 2(.007 F2)2 

lozxl 2 = lozyl2 = 2(.007F2)2 

0.0 cm- 1 --+ 5856 cm- 1 

loxxl 2 = loyyl2 = (.036F2)2 

lozzl2 = (-.072F2)2 
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Appendix B2 

Spherical Electronic Raman Scattering Tensors 4115/ 2 - 4115/ 2 

o ---j> 36 cm- 1 

a:1 = .032F2 

a:l = -.419F1 

o ---j> 36(K) cm- I 

a:2 = - .047 F2 

a~ = -.031F2 

o ---j> 50 cm- 1 

a~ = .OO5F2 

aA = -.217Fl 

o --+ 50(K) cm- 1 

a~ = .052F2 

at = -.316Fl 

o -- 101 cm- 1 

a5 = .034F2 

a6 = -.075Fl 

o ---+ 101(K) cm- 1 

ai = -.OI4F2 

at = -.003Fl 

o ---+ 133 cm- 1 

a:l = .037F2 

a: 1 = -.025F1 

O(K) ---j> 36 cm- 1 

a:2 = .031F2 

ai = .047F2 

O(K) ---j> 36(K) cm- 1 

a~ = -.032F2 

at = -.419F2 

O(K) -- 50 cm- I 

a:l = .052F2 

a:l = .316FI 

O(K) ---j> 50(K) cm- 1 

a5 = .OO5F2 

aa = .217 Fl 

O(K) ---+ 101 c~-I 

2 -a_I = -.OI4F2 

a:l = .OO3F1 

O(K) ---+ 101(K) cm- 1 

a5 = .034F2 

aa = .075F1 

O(K) ---+ 133 cm- I 

a:2 = -.033F2 

a~ = -.024F2 
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o --+ 133(K) cm- 1 O(K) --+ 133(K) cm-1 

a:2 = .024F2 ai = - .037 F2 

ai = .033F2 a} = - .025F1 

o --+ 230 cm-1 O(K) --+ 230 cm-1 

a:1 = -.001F2 

a~l = .061F1 

o --+ 230(K) cm- 1 

a:2 = -.025F2 

ai = .017 F2 

o --+ 247 cm- 1 

ag = .OllF2 

a5 = -.044Fl 

o ---+ 247(K) cm- 1 

a~ = -.OllF2 

at = -.003Fl 

o --+ 287 cm- 1 

a:' 1 = .006F2 

a: 1 = .OllFI 

o ---+ 287(K) cm- 1 

a:2 = -.012F2 

ai = .OOlF:: 

a:2 = -.017F2 

a~ = .025F2 

O(K) --+ 230(K) cm- 1 

at = .OOlF2 

ai = .061F2 

O(K) --+ 247 cm- 1 

0::1 = -.OllF2 

O:~l = .OO3F1 

O(K) --+ 247(K) cm-1 

a5 = .OllF2 

0:5 = .044F1 

O(K) --+ 287 cm- 1 

a:2 = -.OOlF2 

a~ = .012F2 

O(K) ---+ 287(K) cm- 1 

ai = -.OO6F2 

at = .OllFl 
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Cartesian Electronic Raman Scattering Tensors 4]15/2 ---+ 4115/ 2 

laxxl2 = layyl2 = (.008F2)2 

laxyl2 = layxl2 = (.039F2)2 

laxzl2 = layzl2 = (.209F1 + .016F2)2 

lazxl2 = lazyl2 = (-.209Fl + .016F2)2 

laxxl2 = laYYl2 = (.002F2)2 

laxy 12 = layxl2 = (.153FI)2 

laxzl2 = lay Zl2 = (.158F1 - .026F2)2 

lazxl 2 = lazyl2 = (-.158Fl - .026F2)2 

lazzl 2 = (.004F2)2 

laxxl2 = layyl2 = (.014F2)2 

laxYl2 = layxl2 = (.053Fd 2 

laxzl2 = lay Zl2 = (.002Fl + .007 F2)2 

lazxl 2 = lazyl2 = (-.OO2Fl + .007F2)2 

lazzl 2 = (.028F2)2 

0.0 cm- 1 ---+ 133 cm- 1 

laxxl2 = layy 12 = (.004F2)2 

laxyl2 = layxl2 = {.029Ft}2 

laxzl 2 = lay Zl2 = (.013F1 + .019F2)2 

lazxl2 = lazy 12 = (-.013Fl + .0l9F2)2 
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0.0 cm- 1 --+ 230 cm- 1 

laxxl2 = laYYl2 = (.021F2)2 

laxyl2 = layxl2 = (.004F2)2 

laxzl2 = layzl2 = (.031Fl + .001F2)2 

lazxl2 = lazyl2 = (-.031Fl + .001F2)2 

0.0 cm- 1 --+ 247 cm- 1 

laxxl2 = layyl2 = (.004F2)2 

laxYl2 = layxl2 = (.031Ft}2 

laxzl2 = layzl2 = (.002Fl + .00SF2)2 

lazxl2 = lozyl2 = (-.002Fl + .00SF2)2 

lozzl2 = (.009F2)2 

0.0 cm- 1 --+ 287 cm- 1 

laxxl2 = layyl2 = (.007F2)2 

laxYl2 = layxl2 = (.00SF2)2 

loxzl2 = lay Zl2 = (.OOSFI + .003F2)2 

lozxl2 = lozyl2 = (-.OOSFI + .003F2)2 
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Appendix B3 

Spherical Electronic Raman Scattering Tensors 518 -I> 518 

0.0 (X) ~ 68 cm- 1 (X) 0.0 (X) ~ 68 cm- 1 (Y) 

all tensor elements are zero all tensor elements are zero 

0.0 (X) ~ 72 cm- l 

at = -.169Fl 

ai = .041F2 

0.0 (X) ~ 84 cm- 1 

at = -.188Ft 

ai = .047F2 

0.0 (Y) ~ 72 cm- l 

a: l = -.191Fl 

a:'l = -.037 F2 

0.0 (Y) ~ 84 cm- l 

a: l = .218Fl 

a:' l = .043F2 

0.0 (X) ~ 88 (X) cm- l 0.0 (Y) ~ 88 (X) cm- l 

all tensor elements are zero 2 010 '" a_2 = . .£'2 

0.0 (X) ~ 88 (Y) cm- 1 0.0 (Y) ---+ 88 (Y) cm- l 

a~ = .01OF2 all tensor elements are zero 

0.0 (X) ---+ 150 cm- l 

al = -.103Fl 

ai = .024F2 

0.0 (X) ---+ 195 cm- l 

a: l = .146Fl 

a:'l = - .041F2 

0.0 (X) -- 196 cm- 1 

a: 1 = .132Ft 

a:' l = -.038F2 

0.0 (Y) ~ 150 cm- l 

a:l = -.103Fl 

a: l = -.024F2 

0.0 (Y) ~ 195 cm- l 

at = .154Fl 

ai = .034F2 

0.0 (Y) ~ 196 cm- l 

a} = -.168Fl 

aI = -.037 F2 
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.... 

0.0 (X) -+ 225 (X) cm-1 

all tensor elements are zero 

0.0 (X) --+ 225 (Y) cm- 1 

o:~ = -.030F2 

0.0 (Y) --+ 225 (X) cm-1 

0::'2 = -.030F2 

0.0 (Y) --+ 225 (Y) cm- 1 

all tensor elements are zero 

0.0 (X) --+ 245 cm- 1 0.0 (Y) -+ 245 cm-1 

o:t = -.046F1 0:~1 = .046F1 

o:i = .010F2 0::'1 = .010F2 

0.0 (X) --+ 276 (X) cm- 1 0.0 (Y) -+ 276 (X) cm- 1 

all tensor elements are zero 0::'2 = - .008F2 

0.0 (X) --+ 276 (Y) cm- 1 0.0 (Y) --+ 276 (Y) cm-1 

o:~ = -.008F2 all tensor elements are zero 

0.0 (X) --+ 277 cm- 1 0.0 (Y) --+ 277 cm- 1 

0:~1 = .023F1 0:1 = .023F1 

0::'1 = - .006F2 o:i = .006F2 

0.0 (X) -- 300 cm-1 0.0 (Y) --+ 300 cm- 1 

all tensor elements are zero all tensor elements are zero 
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Cartesian Electronic Raman Scattering Tensors 3H6 -4 3H6 

0.0 cm- 1 -- 68 cm-1 

scattering matrix is zero 

0.0 cm- 1 -- 72 cm- 1 

laxzl2 = layzl2 = (.084Fl - .021F2)2 + (.095Fl - .019F2)2 

lazxl2 = lazyl2 = (-.084Fl- .021F2)2 + (-.095Fl- .019F2)2 

0.0 cm;:/ -- 84 cm-1 

laxzl2 = lay Zl2 = (.094F1 - .023F2)2 + (-.109Fl + .022F2)2 

lazxl2 = lazy 12 = (-.094Fl - .023F2)2 + (.109F1 + .022F2)2 

0.0 cm- 1 -- 88 cm- 1 

0.0 cm- 1 -- 150 cm- 1 

laxzl2 = lay Zl2 = 2(.052Fl - .012F2)2 

lazxl2 = lazyl2 = 2(-.052Fl - .012F2)2 

0.0 cmcl -- 195cm-1 

laxzl2 = lay Zl2 = (-.073Fl - .021F2)2 + (-.077 Fl - .017 F2)2 

lazxl 2 = lazyl2 = (.073F1 - .021F2)2 + (.077Fl - .017F2)2 

0.0 cmet -- 196 cm- 1 

laxzl 2 = layzl2 = (-.066Fl - .019F2)2 + (.084Fl + .019F2)2 

lazxl 2 = lazyl2 = (.066Fl - .019F2)2 + (-.084Fl + .019F2 )2 

0.0 cm- 1 
-- 225 cm- 1 

0.0 cm- 1 -- 245 cm- 1 

·l axzl 2 = layzl2 = 2(.023Fl - .005F2 )2 

lazxl 2 = lazy 12 = 2( -.023F1 - .005F2)2 

0.0 cm- 1 -- 276 cm- 1 
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') 

0.0 cm- 1 _ 277 cm-1 

laxzl2 = layzl2 = 2(-.012Fl - .003F2)2 

lazxl2 = lazyl2 = 2(.012Fl - .003F2)2 

0.0 cm- 1 _ 300 cm- 1 

scattering metrix is zero 
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Appendix B4 

Spherical Electronic Raman Scattering Tensors 4115/ 2 -+ 4115/ 2 

';\l 

0--.99 cm- 1 O{K) --. 99 cm- 1 

ai = -.035F2 a~ = -.132F2 

a1 = -.238F1 a:'2 = .171F2 

o --+ 99{K) cm- 1 O{K) --. 99{K) cm- 1 

ai = -.171F2 a: 1 = .035F2 

a:2 = .132F2 a:1 = - .238F1 

o --. 279 cm- 1 O{K) --+ 279 cm- 1 

a6 = .055F2 ai = -.197F2 

aa = -.150Fl a1 = .136Fl 

o --+ 279{K) cm- 1 O{K) --+ 279{K) cm- 1 

a: 1 = -.197 F2 a5 = .055F2 

al = -.136F1 aa = .150Fl 

0--> 288 cm- 1 O{K) --. 288 cm- l 

ai = .137 F2 a~ = -.059F2 

af = .044F1 a:'2 = -.097F2 

o --> 288{K) cm- 1 O{K) --+ 288{K) cm- 1 

a~ = .097 F2 a: 1 = - .137 F2 

a:'2 = .OS9P2 a:1 = .044P1 -.: 
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Cartesian Electronic Raman Scattering Tensors 2F7/ 2 ----+ 2F7/ 2 

0.0 cm- l --+ 99 cm- l 

laxxl2 = layyl2 = (.152F2)2 
<* 

laxYl2 = layxl2 = (.020F2)2 

laxzl2 = lay Zl2 = (.119Fl + .018F2)2 
(I, 

lazxl2 = lazyl2 = (-.119Fl + .018F2)2 

0.0 cm- 1 --+ 279 cm- l 

laxxl 2 = layyl2 = (.022F2)2 

laxYl2 = layxl 2 = (.106Fd2 

laxzl2 = layzl2 = (-.068Fl + .098F2)2 

lazxl2 = lazyl2 = (.068Fl + .098F2)2 

lazzl 2 = (.045F2)2 
•• '1~" 

0.0 cm- 1 --+ 288 cm- 1 
~.i. 

laxxl 2 = layy 12 = (.019F2)2 

laxYl2 = layxl2 = (.078F2)2 
~. 

laxzl2 = lay Zl2 = (.022Fl + .068F2)2 

lazxl2 = lazyl2 = (-.022Fl + .068F2)2 
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