
UC Irvine
UC Irvine Previously Published Works

Title
Partition Pruning: Parallelization-Aware Pruning for Dense Neural Networks

Permalink
https://escholarship.org/uc/item/4w3667c2

Authors
Shahhosseini, Sina
Albaqsami, Ahmad
Jasemi, Masoomeh
et al.

Publication Date
2020-03-13

DOI
10.1109/pdp50117.2020.00053

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4w3667c2
https://escholarship.org/uc/item/4w3667c2#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Partition Pruning: Parallelization-Aware Pruning for
Deep Neural Networks

Sina Shahhosseini, Ahmad Albaqsami, Masoomeh Jasemi++, and Nader Bagherzadeh

University of California,Irvine
{sshahhos,aalbaqsa,mjasemi,nader}@uci.com

++Jasemi@ce.sharif.edu

Abstract. Parameters of recent neural networks require a huge amount of mem-
ory. These parameters are used by neural networks to perform machine learning
tasks when processing inputs. . To speed up inference, we develop Partition Prun-
ing, an innovative scheme to reduce the parameters used while taking into consid-
eration parallelization. We evaluated the performance and energy consumption of
parallel inference of partitioned models, which showed a 7.72x speed up of per-
formance and a 2.73x reduction in the energy used for computing pruned layers
of TinyVGG16 in comparison to running the unpruned model on a single ac-
celerator. In addition, our method showed a limited reduction some numbers in
accuracy while partitioning fully connected layers.

Keywords: Parallelization ·Deep Neural Network · Pruning · Partitioning ·Hard-
ware Accelerator.

1 Introduction

Neural networks have become ubiquitous in applications that include computer vision,
speech recognition, and natural language processing. The demand for processing neural
network applications on edge devices, including smart phones, drones, and autonomous
vehicles, is increasing [1]. Meanwhile, the size of neural network models has been dras-
tically increased over time, reaching beyond the Peta scale [1]. In 1998, a handwritten
digits classifier had about 1 M parameters [2], but in 2012, an image classifier for the
ImageNet [3] dataset had more than 60 M parameters. In addition, Neural Talk, which
automatically creates proper captions for ImageNet dataset has more 230 M parame-
ters [4]. The top 5 error accuracy has been reduced by 30% each year, suggesting why
this trend drastically increases the number of layers, parameters, and operations [1].

Large deep neural networks (DNNs) models consume a significant amount of en-
ergy because they are required to be stored in DRAMs or on-chip SRAMs, and thus
are fetched every time they are processed. From 2012 to 2015, the energy efficiency of
DRAMs increased due to CMOS scaling based on Moore’s Law. As of 2015, CMOS
scaling no longer provided substantial improvements in either energy efficiency or
memory density. Because SRAM is realized using CMOS transistors, its energy effi-
ciency is typically bounded by Moore’s Law [18] [19]. Therefore, the energy efficiency
of the memory cannot keep up with the increasing size of the neural networks. This
leads to consuming more energy to accomplish the same processing tasks. Therefore,

ar
X

iv
:1

90
1.

11
39

1v
2

 [
cs

.C
V

]
 2

7
Fe

b
20

19

2 S. Shahhosseini, A. Albaqsami, M. Jasemi, N. Bagherzadeh

innovations in architectural design, algorithms development, and circuit technique are
required [5].

Both memory footprint and computational complexity lead to the need for sparsity
and/or reducing the number of parameters in a neural network. For example, AlexNet
requires 234 MB of memory space for storing parameters and requires 635 million arith-
metic operations for feed-forward processing. AlexNet’s convolutional layers are lo-
cally connected, but they are followed by fully connected layers that make up 95% of the
connections in the AlexNet network [6]. Fully connected layers are over-parameterized
and tend to overfit the training data. At the algorithm level, pruning methods were pro-
posed before deep learning became popular. Based on the assumption that many param-
eters are unnecessary, pruning methods remove these parameters, resulting in expanding
sparsity of layers [7].

Previous research has sought to reduce the number of parameters. Dropping out ran-
dom connections was proposed by [11]. The Optimal Brain Damage [12] and Optimal
Brain Surgeon [13] reduced the number of connections according to the loss function.
Singular value decomposition (SVD) decreased the number of weights [14]. Another
approach , adopted by the GoogleNet model [15], exploits the convolutional layers
rather than the fully connected layers. This resulted in sparse layers that provided three
benefits [16]. First, sparse layers required less storage for space for parameters. Sec-
ond, it omitted computation of the removed edges, which reduced power consumption
and latency. Third, it required less memory bandwidth to transfer parameters from the
DRAM.

In this paper based on the insight that smart pruning can reduce the number of off-
chip accesses, we propose a new scheme to better partition and prune the inputs to each
layer. This way, we partition a large matrix into small matrices and distribute them to
multiple computational units. The proposed partitioning algorithm has three objectives:
first enhancing the parallelism among accelerators, second reducing the number of off-
chip accesses, and third maintaining the accuracy as high as the baseline. In the first
step, we formulate the problem and then enforce some constraints. We define our con-
straint in such a way that the three mentioned objectives are satisfied. .The experimental
results show that the proposed scheme can increase the speed up by 7.72x and energy
efficiency by 2.73x, respectively.

The rest of this paper is organized as follows. Section. 2 provide an overview of
the problem. Section 3 describes the proposed partition pruning algorithm followed by
Multi-core organization in Section. 4. Experimental setup and evaluation methodology
is presented in Section. 5. We discuss the result in Section. 6. And finally, we conclude
the paper in Section. 7.

2 Overview

Figure 1 illustrates a high-level diagram of the proposed framework. First, a neural
network model is trained. Section V discusses the baseline accuracy for different neu-
ral network models that were used to evaluate the framework. Then, fully connected
layers of each model were pruned using the Partition Pruning approach. Section III ex-
plains how the partitioning algorithm was applied to these layers. Then, inference was

Partition Pruning: Parallelization-Aware Pruning for Deep Neural Networks 3

Untrained Neural Network

Training

Trained Neural Network

Tiny ImageNet

Partition Pruning

P1

P2

gem5-aladdin

Accelerator

Accelerator

Fig. 1. Overview of the procedure used. Note that Partition Pruning is applied to a trained neural
network since it is dependent on the weights of the fully connected layer(s). The illustration
shows only one fully connected layer.

performed on multiple processing cores. Section IV explains multi-core architecture,
which provides the ability to run parallel matrix multiplication. Section VI evaluates
our framework in terms of performance and accuracy.

3 Partition Pruning

3.1 System Model

Our framework targets neural networks that have some or all of their nodes fully con-
nected to the subsequent nodes. The set of starting nodes, Ninitial is fully connected
to the subsequent nodes Nfinal, i.e. fully-connected layers. A link, which is a param-
eter, is a connection represented by Lij , where i is the starting node number and, j is
the connected node number within a layer. The link’s value (i.e the parameter’s weight)
is represented by wi,j . Li,j = 0 if the link is pruned, and if not, Li,j = 1. Note
that wi,j may contain any value. The set of weights, Wi, consists of links, Li, that
connect between the set of Nodes, Ni, and Nj . Figure 2a shows an example of a fully
connected layer of size 6 × 8. Figure 2b shows the matrix representation of the fully
connected layer. While Figure 2c indicates the weight matrix of the fully connected
layer. The connectedness number, C, is simply;

C =

|Ninitial|∑
i=1

|Nfinal|∑
j=1

Li,j (1)

A fully connected layer is annotated as Cfull and thus;

Cfull = |Ninitial| × |Nfinal| (2)

Therefore, the connectedness ratio, R, is:

R =
C

Cfull

(3)

Figure 3 shows an example of a 2-partition pruning of the fully connected layer
from Figure 2. Figure 4 visually illustrates the partitions of Fig 3 and the reduction of
number of weights due to that partitioning. Given that there are |P | partitions, where a

4 S. Shahhosseini, A. Albaqsami, M. Jasemi, N. Bagherzadeh

L1,1
L1,2

L1,3

L6,8

L7,1

Ninitial
Nfinal

Ni,1

Ni,2

Ni,3

Ni,4

Ni,5

Ni,6

Nf,1

Nf,2

Nf,3

Nf,4

Nf,5

Nf,6

Nf,7

Nf,8

L1,1 L1,2 L1,3 L1,4 L1,5 L1,6 L1,7 L1,8
L2,1 L2,2 L2,3 L2,4 L2,5 L2,6 L2,7 L2,8
L3,1 L3,2 L3,3 L3,4 L3,5 L3,6 L3,7 L3,8
L4,1 L4,2 L4,3 L4,4 L4,5 L4,6 L4,7 L4,8
L5,1 L5,2 L5,3 L5,4 L5,5 L5,6 L5,7 L5,8
L6,1 L6,2 L6,3 L6,4 L6,5 L6,6 L6,7 L6,8

(b)

(a)

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8

w2,1 w2,2 w2,3 w2,4 w2,5 w2,6 w2,7 w2,8

w3,1 w3,2 w3,3 w3,4 w3,5 w3,6 w3,7 w3,8

w4,1 w4,2 w4,3 w4,4 w4,5 w4,6 w4,7 w4,8

w5,1 w5,2 w5,3 w5,4 w5,5 w5,6 w5,7 w5,8

w6,1 w6,2 w6,3 w6,4 w6,5 w6,6 w6,7 w6,8

(c)

Fig. 2. Example of a model representation of a fully connected layer. b) shows the connection’s
representation in matrix form. Note that in the above case,C = Cfull = 6 × 8 = 48 and
R = 1.

Px ∈ P , then any given Ninitial,j ∈ Px will not be in any other partition. The same
goes for nodes in Nfinal,i . More formally,

{Pi, Pj ∈ P |i 6= j, Pi ∩ Pj = ∅} (4)

Equation 4 is the constraint of the groupings of nodes in Ninitial and Nfinal. That
is, once a particular node is in a particular partition, it cannot be a member of another
partition. Another way of stating this is:

Ni ∈ Pn Then Ni 6∈ Pm, ∀m 6= n (5)

Note that there is an upper,
⌈
|Ninitial|

|P |

⌉
, and lower,

⌊
|Ninitial|

|P |

⌋
, bound to the num-

ber of Ninitial,i nodes that are members of a partition Pn. The same is true for
Nfinal,i nodes. In addition, the number of partitions that contain the upper limit
is |Ninitial| mod |P |, while the number that contain the lower limit is |P | −
(|Ninitial| mod |P |).As an example, if |Ninitial| = 22 and |P | = 5 (i.e number
of partitions), then an example of partition sizes for Ninitial, ignoring Nfinal, would
be

(|P1|, |P2|, |P3|, |P4|, |P5|) = (4, 5, 4, 4, 5)

Therefore, the example suggests that there are three partitions of size 4 and two parti-
tions of size 5. This bound description also applies to Nfinal.

3.2 Partition Pruning Overview

The objective of Partition Pruning is two-fold: pruning with the objective of having
balanced partitions, and pruning with the objective of having the least absolute weight-

Partition Pruning: Parallelization-Aware Pruning for Deep Neural Networks 5

L1,1
L1,2

L1,3

L6,8

L7,1

Ninitial
Nfinal

Ni,1

Ni,2

Ni,3

Ni,4

Ni,5

Ni,6

Nf,1

Nf,2

Nf,3

Nf,4

Nf,5

Nf,6

Nf,7

Nf,8

Nf,1 Nf,2 Nf,3 Nf,4 Nf,5 Nf,6 Nf,7 Nf,8

Ni,1 1 0 1 1 0 0 0 1
Ni,2 1 0 1 1 0 0 0 1
Ni,3 0 1 0 0 1 1 1 0

Ni,4 0 1 0 0 1 1 1 0
Ni,5 1 0 1 1 0 0 0 1
Ni,6 0 1 0 0 1 1 1 0

(b)

(a)

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8

w2,1 w2,2 w2,3 w2,4 w2,5 w2,6 w2,7 w2,8

w3,1 w3,2 w3,3 w3,4 w3,5 w3,6 w3,7 w3,8

w4,1 w4,2 w4,3 w4,4 w4,5 w4,6 w4,7 w4,8

w5,1 w5,2 w5,3 w5,4 w5,5 w5,6 w5,7 w5,8

w6,1 w6,2 w6,3 w6,4 w6,5 w6,6 w6,7 w6,8

(c)Pruned

Unpruned

Li,j =0, Pruned Li,j =1, unpruned

Fig. 3. a) indicating what links are to be pruned from the fully connected layer b) shows the
connection’s representation, with 0s representing the absence of a link. Note that in the above
case,C = Cfull = 12 and R = 0.5.

Ni,1

Ni,2

Ni,5

Nf,1

Nf,3

Nf,4

Nf,8

Ni,3

Ni,4

Ni,6

Nf,2

Nf,5

Nf,6

Nf,7

P2

P1

(a)

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8

w2,1 w2,2 w2,3 w2,4 w2,5 w2,6 w2,7 w2,8

w3,1 w3,2 w3,3 w3,4 w3,5 w3,6 w3,7 w3,8

w4,1 w4,2 w4,3 w4,4 w4,5 w4,6 w4,7 w4,8

w5,1 w5,2 w5,3 w5,4 w5,5 w5,6 w5,7 w5,8

w6,1 w6,2 w6,3 w6,4 w6,5 w6,6 w6,7 w6,8

w1,1 w1,3 w1,4 w1,8

w2,1 w2,3 w2,4 w2,8

w5,1 w5,3 w5,4 w5,8

w3,2 w3,5 w3,6 w3,7

w4,2 w4,5 w4,6 w4,7

w6,2 w6,5 w6,6 w6,7 (b)

P1

P2

Fig. 4. a) the resulting partitions shows full independence. b) shows the resulting reduction of
parameters due to the 2-partition targeted pruning.

loss. The second objective guarantees a smaller loss of accuracy, while the first allows
for maximum parallelism. Note that the number of parameters pruned is directly related
to the number of partitions desired. The connectedness ratio, in relation to the number
of partitions is R|P | = 1

|P | . Thus, for a given |P |, Partition Pruning will find the

6 S. Shahhosseini, A. Albaqsami, M. Jasemi, N. Bagherzadeh

following:
min
x

|Cfull

∑
|wi,j| −

∑
xi,j|wi,j||

subject to xi,j = 0 or 1∑
xi,j = R|P |Cfull

{Pm, Pn ∈ P |n 6= m,Pm ∩ Pn = ∅}

From the objective function, we determine which 1−R|P |Cfull parameters are pruned
for a particular fully connected layer while minimizing the cumulative weight-loss.

3.3 Input/Output

The input to the Partition Pruning algorithm is a matrix representation, Wfc,i, of the
targeted fully connected layer, i. This is exemplified in Figure 2c. Note that the fully
connected layer is assumed and asserted to be trained. That is, the parameters have
the correct values for the targeted neural network’s base accuracy. In a fully connected
layer, every element of the matrix Lfc,i is 1 (see Equation 2). After Partition Pruning,
the output will be Lpart,i and the sum of all its elements would be RCfull. This is
exemplified in Figure 3b.

3.4 Methodology

This section the methodology of selecting the links to prune, taking into consideration
the partitioning. The example of |Ninitial| = 7, |Nfinal| = 10, and |P | = 3, will
be used to describe the process. Figure 1 shows an overview of the methodology and
where Partition Pruning resides.

Start: Selection of Ninitial,i, and Nfinal,j1,j2..:
In the first stage, a row in the matrix is randomly selected. That is, a random

Ninitial,i is selected for processing. Note that currently |Pn| = 0 for all n, because
no pair of nodes, has joined a partition. After choosing an Ninitial,i, a set of Nfinal

nodes is chosen, and in this case, the set size is
⌈
|Nfinal|

|P |

⌉
. The node Ninitial,i, and

the nodes Nfianl,j1,j2.. are chosen to be part of the first partition, P1. Those selected
will have their Li,j = 1, while those not selected will have their Li,j′ = 0. Note
that the links selected have the highest magnitudes (refer to Figure 5a as an example).
Figure 5b illustrates an example of the change in values and a pictorial representation
of the first partition.

Non-Start: Selection:
Moving forward, another Ninitial,i node is selected at random. The highest, non-

partition members, wi,js are sorted from the highest to the lowest magnitude, as was
done previously. The sum of the highest upper bound (or a lower bound if all upper
bound partitions are fulfilled) are compared with the sum of the magnitude of partition-
member weights/links that still have capacity (as per the upper and lower bounds of the
number of nodes of type Ninitial).

Partition Pruning: Parallelization-Aware Pruning for Deep Neural Networks 7

Fig. 5. Random selection of Ninitial,i, where i = 4 in this example. The top four weights,
in terms of magnitude, are wi,7, wi,3, wi,4, and wi,5 in descending order. Note that its top
four because of the upper bound, d|Nfinal|/|P |e = d10/3e = 4 b) P1, after partitioning,
contains four nodes (the limit) from Nfinal, and one node from Ninitial.The L matrix is
updated for row i=4

Ninitial, i

wi,1

wi,2

wi,3

wi,4

wi,5

wi,6

wi,7

wi,8

wi,9

wi,10

|wi,9|>|wi,7|>
|wi,3|>|wi,8|>
|wi,4|>|wi,1|>
|wi,6|>|wi,10|>
|wi,2|>|wi,5|

P1 P2 P3

(a) (c)

|wi,9|+|wi,8|+|wi,1|
vs

|wi,7|+|wi,3|+|wi,4|+|wi,5|

N4

Ninitial, i

Nf,3

Nf,4

Nf,5

Nf,7

P1
N4

Nf,3

Nf,4

Nf,5

Nf,7

P2
Ninitial, i

Nf,1

Nf,8

Nf,9

P3

1

2

(b)

Fig. 6. second random selection of Ninitial,i (where i 6= 4). The top three weights (1), in terms
of magnitude and are none partition members, are wi,9, wi,8, wi,1, in descending order. Note
that its top three due to the the capacity for Nfinal node type is (P1, P2, P3) = (4, 3, 3) b)
shows the situation in case of |wi,7|+ |wi,3|+ |wi,4|+ |wi,5| > |wi,9|+ |wi,8|+ |wi,1|.
c) is the case scenario.

End and Try Again:

This process is repeated until every partition Pm, is at capacity in terms of Ninitial

nodes and Nfinal nodes. Note that the partitioning is dependent on which row, i.e
Ninitial,i was selected at each iteration. Once the process is completed, the weight-
loss is recorded.

8 S. Shahhosseini, A. Albaqsami, M. Jasemi, N. Bagherzadeh

Systolic Array

SRAM
Host

System Bus

DRAM DMA

PE PE PE PEPEPE PE PE PE PEPE

PE PE PE PE PEPE

PE PE PE PE PEPE

PE PE PE PE PEPE

Accumulator

Fig. 7. Architectural template for generated accelerators.

4 Multi-Core Organization

Figure 7 shows the architecture of an System on Chip (SoC) that consists of general
purpose cores, memory controllers, a DMA engine, and matrix multiplication accelera-
tors all of which are connected through the system bus. To understand how the system
level affects the accelerators’ behavior, simulation infrastructures that can model these
heterogeneous systems are needed. gem5-Aladdin system simulator is used to evaluate
the proposed architecture. This tool is an integration of a gem5 system simulator with
an Aladdin accelerator simulator. It is a pre-RTL simulation infrastructure that models
multiple accelerators and interactions with central processing units (CPUs) in an SoC
that consists of Processing Elements (PEs), fixed-function accelerators, memory con-
trollers, and interfaces. This simulator can model the accelerators’ performance, area,
and power [27][28]. Multiple matrix multiplication units are connected to the bus. In the
gem5-Aladdin system, the accelerators can invoke the DMA engine already present in
the Gem5. The DMA is used to transfer bulk data without the CPU’s intervention. The
internal SRAM stores the weights, input features, and the outputs of the matrix multi-
plication. Each accelerator uses a 32 x 32 Systolic Array (SA). The SA architecture is
a specialized form of parallel computing in which tightly coupled processing elements
are connected to a small number of their nearest neighbors in a mesh-like topology. This
architecture has a very low amount of global data transfer and can achieve a high clock
frequency. However, SA architecture suffers from scalability issues due to the shape
being fixed.

In an SA, the horizontal systolic movements are for implementing data broadcasts,
and the vertical ones are for implementing accumulations.

5 Experimental Setup

Fully connected layers are pruned by using Partition Pruning for three networks that
use a TinyImageNet [23] dataset. which consists of 100,000 training images, 10,000
validation images, and 10,000 testing images that have dimensions of 64x64x3, and

Partition Pruning: Parallelization-Aware Pruning for Deep Neural Networks 9

Table 1. System Configuration Parameters

Parameter Value
Host Clock Frequency 1 GHz

Accelerator Clock Frequency 200 MHz
Technology Width 40 nm

DRAM DDR3-1600-8x8
Number of CPU 1

Systolic Array Size 32x32
Data Type FP-32

Data Transfer DMA

Table 2. Baseline Top-5 and Top-1 accuracy for VGG16, AlexNET

Network Name Top-5 Accuracy Top-1 Accuracy
TinyVGG16 76.96% 52.41%
TinyAlexNet 72.06% 46.73%

that classify 200 labels. These images are taken from the ImageNet [3] dataset, cropped
into squares, and resized to 64x64. For each network, the fully connected layers are
partitioned to 2, 3, 4, and 5 partitions, resulting in the pruning of 50%, 66%, 75%, and
80%, of the fully connected links, respectively.

Initially, the neural networks are trained and evaluated on a TinyImageNet dataset,
as shown in Table 2. Convolutional neural networks represent the state-of-the-art in
image classification. AlexNet [24] and VGG16 [2] are well-known deep convolutional
neural networks that have previously won ImageNet competitions. TinyVGG16 and
TinyAlexNet use a 56x56x3 input image instead of 228x228x3, as do the original
VGG16 and AlexNet. Each network has three fully connected layers at the end its
structure. Partition Pruning prunes the first two of these three fully connected layers.
The omission of pruning the last fully connected layer is due to the fact that every link
is required for classification. If pruned, the classification accuracy would be affected the
considerably and detrimental to the performance of the Neural Network model. Table
2 shows the benchmarks’ baseline performances. After training the networks, Partition
Pruning is applied to two, of the three, fully connected layers. Google’s TensorFlow [25]
version 1.7 was used to model the benchmarks. Partition Pruning was implemented in
Python 2.7 and was given the NumPy matrices from the first two fully connected lay-
ers of the benchmarks. Then, the weights were updated in the TensorFlow model files
using the resulting output filters. Note that, as mentioned earlier, gem5-Aladdin is used
to evaluate the performance.

6 Results

Table 2 shows the initial baseline accuracies, without pruning, of the TensorFlow im-
plementations of the neural network benchmarks. Figure 8 shows the resulting accuracy
losses of the Partition Pruning algorithm for TinyVGG16 and TinyAlexNet. Note that

10 S. Shahhosseini, A. Albaqsami, M. Jasemi, N. Bagherzadeh

3.45%

10.59%

23.07%

36.74%

0.69% 0.87%

10.26% 11.82%

3.97%

13.14%

24.20%

34.86%

2.97% 1.74%
3.90%

16.37%

2-Partition 3-Partition 4-Partition 5-Partition

Top-1 Loss of Accuracy for TinyVGG16 and TinyAlexnet

TinyVGG-16 Pruned

TinyVGG-16 Retrained

TinyAlexNet Pruned

TinyAlexNet Retrained

Fig. 8. Top-1 loss of Accuracy for VGG16 and Alexnet. Note that the number of links pruned is
equal within the partition group. In retraining, only the non-pruned links are retrained.

3.68

7.72

12.46

1.90 2.73 3.45

0.00

3.00

6.00

9.00

12.00

15.00

Dual Core Tripple Core Quad Core

Speed Up Energy Consumption Reduction

Pr
op

or
tio

na
l E

va
lu

at
io

n

Fig. 9. Power and performance of multi-accelerators are shown. Results are evaluated propor-
tional to result of unpruned benchmark on single core accelerator.

results for retraining are also shown. Accuracy loss increases when the number of par-
titions is increased, given that more parameters are pruned. After pruning, retraining
the models reduces the loss of accuracy. For example, in 3-Partition, retraining reduces
accuracy loss in TinyVGG16 from 10.59% to 0.87%. As Figure 7 shows, running in-
ference of partitioned TinyVGG16 layers on different accelerators speeds performance
and reduces energy consumption. These results are in comparison to running infer-
ence of the unpruned layers on signle accelerator. For example, running this benchmark
on a triple-core accelerator executes 7.72x faster while consuming 2.73x less energy.
This is because pruning reduces the size of the benchmarks by a factor correlated to
the partition number (for example, by a factor of 2x for two partitions). In addition,
running inference in parallel on multiple accelerators speeds the execution time. There-
fore, the performance speed and the energy consumed by processing partitioned models
were both improved by reducing the size of the models and using multiple hardware re-
sources. Running the same benchmarks on multiple accelerators does not increase speed
as expected. For example, running two identical workloads on two accelerators can in-
crease speed 1.8x, and on three accelerator, 2.5x. This happens because all accelerators
are connected to the same bus with one DMA, which leads to bus congestion. It is ex-
pected that using multiple large SAs, for example 256 x 256, would cause bandwidth

Partition Pruning: Parallelization-Aware Pruning for Deep Neural Networks 11

bottlenecks and sizeable bus congestion. Although using a small SA does not provide
high throughput processing, it leads to low power design because of the number of
processing elements used in each accelerator.

7 Conclusions

This paper presented Partition Pruning, an approach that prunes fully connected lay-
ers of neural network models with the aim of partitioning for parallelization in order
to improve speed and energy. The idea behind Partition Pruning approach is to target
low overall weight loss to reduce the impact on accuracy. The approach shows that by
partitioning fully dense layers of TinyVGG16 to 3-Partition and executing the model on
multiple accelerators, a speed increase of 7.72x and an energy reduction of 2.73x can be
obtained. Future work will evaluate a system that has multiple high-bandwidth memo-
ries and neural network accelerators. In addition, more optimizations will be applied to
the accelerators to minimize power consumption and increase throughput.

References

1. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216
(2018) in press.

2. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image
recognition, CoRR, vol. abs/1409.1556, 2014.

3. A. Krizhevsky I. Sutskever G. E. Hinton ”Imagenet classification with deep convolutional
neural networks” NIPS 2012

4. Karpathy, Andrej, and Li Fei-Fei. ”Deep visual-semantic alignments for generating image de-
scriptions.” Proceedings of the IEEE conference on computer vision and pattern recognition.
2015.

5. Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. (2017). Efficient Processing of Deep Neural
Networks: A Tutorial and Survey. ArXiv e-prints.

6. S. Han, H. Mao, and W. Dally. Deep compression: Compressing DNNs with pruning, trained
quantization and huffman coding. arXiv:1510.00149v3, 2015a

7. R. Reed, Pruning algorithms-a survey, Neural Networks, IEEE Transactions on, vol. 4, no. 5,
pp. 740747, 1993.

8. Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature
9. Jouppi, N. P. et al. In-datacenter performance analysis of a Tensor Processing Unit. Proc. 44th

Annu. Int. Symp. Comp. Architecture Vol. 17 112 (2017)
10. Schmidhuber, Jrgen. ”Deep learning in neural networks: An overview.” Neural networks 61

(2015): 85-117.
11. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A

simple way to prevent neural networks from overfitting, The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 19291958, 2014

12. Hanson, Stephen Jose and Pratt, Lorien Y. Comparing biases for minimal network con-
struction with back-propagation. In Advances in neural information processing systems, pp.
177185, 1989

13. LeCun, Yann, Denker, John S, Solla, Sara A, Howard, Richard E, and Jackel, Lawrence D.
Optimal brain damage. In NIPs, volume 89, 1989

http://arxiv.org/abs/1510.00149

12 S. Shahhosseini, A. Albaqsami, M. Jasemi, N. Bagherzadeh

14. Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploit-
ing linear structure within convolutional networks for efficient evaluation. In NIPS, pages
12691277, 2014

15. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. arXiv preprint arXiv:1409.4842, 2014

16. Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, et al,
”Minerva: Enabling Low-Power Highly-Accurate Deep Neural Network Accelerators”, Com-
puter Architecture (ISCA) 2016 ACM/IEEE 43rd Annual International Symposium on, pp.
267-278, 2016

17. Ahmad Albaqsami, Maryam S. Hosseini,and Nader Bagherzadeh, ”HTF-MPR: A Hetero-
geneous TensorFlow Mapper Targeting Performance using Genetic Algorithms and Gradient
Boosting Regressors”. 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE)(pp. 331-336).IEEE.

18. Shahosseini, Sina, et al. ”Dependability evaluation of siso control-theoretic power managers
for processor architectures.” 2017 IEEE Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip (SoC). IEEE, 2017.

19. Shahhosseini, Sina, et al. ”On the feasibility of SISO control-theoretic DVFS for power
capping in CMPs.” Microprocessors and Microsystems 63 (2018): 249-258.

20. M. G. Augasta and T. Kathirvalavakumar, Pruning algorithms of neural networksa compara-
tive study, Central European Journal of Computer Science, vol. 3, no. 3, pp. 105115, 2013

21. Han, Song, et al. ”Learning both weights and connections for efficient neural network.” Ad-
vances in neural information processing systems. 2015.

22. B. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System
Technical Journal 49 (2) (1970) 291307

23. Hansen, Lucas. ”Tiny imagenet challenge submission.” CS 231N (2015).
24. Iandola, Forrest N., et al. ”Squeezenet: Alexnet-level accuracy with 50x fewer parameters

and¡ 0.5 mb model size.” arXiv preprint arXiv:1602.07360 (2016).
25. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, and et. al, Tensorflow: A system

for large-scale machine learning, in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016, pp. 265283.

26. Reagen, Brandon, et al. ”Minerva: Enabling low-power, highly-accurate deep neural network
accelerators.” ACM SIGARCH Computer Architecture News. Vol. 44. No. 3. IEEE Press,
2016.

27. Shao, Yakun Sophia, et al. ”Co-designing accelerators and soc interfaces using gem5-
aladdin.” Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Sympo-
sium on. IEEE, 2016.

28. Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, Aladdin: A pre-rtl, power performance
accelerator simulator enabling large design space exploration of customized architectures, in
Proceeding of the 41st

29. Pezeshkpour, Pouya, Liyan Chen, and Sameer Singh. ”Embedding multimodal relational
data.” (2017).

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07360

	Partition Pruning: Parallelization-Aware Pruning for Deep Neural Networks

