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Microbial Ecology of the Cystic Fibrosis Lung 
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Professor Cristal Zúñiga, Co-chair 

 

Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations 

to the Cystic Fibrosis Transmembrane-conductance Regulator (CFTR) gene, that 

leads to the buildup of thickened mucus in the lungs that are chronically infected by 

bacteria (often antibiotic resistant) and fungi. These chronic infections periodically 

flare in acute events called pulmonary exacerbations which leads to scarring of the 

lung and permanent decline in pulmonary function. This work presents a model of CF 
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lung disease that incorporates the taxonomic diversity observed in the CF lung into 

ecological guilds based on their role in the CF sputum environment, resulting in the 

proposal of four functional groups called the Brewers (fermenting microbes), 

Drunkers (biofilm building consumers of fermentation products), Putrifiers (anaerobic 

biofilm dwelling bacteria) and Nihilists (lone wolf pathogens of the lung). Another 

model of the CF lung microbiome, found in this dissertation, predicts the succession 

of bacteria in CF sputum based on the concentration of succinate found in the 

sputum environment, which is known to be substantially higher than sputum from 

people without CF. The second model is based on the differential succinate flux 

values predicted by GEnome scale metabolic Models (GEMs) for the 29 most 

prevalent bacterial species in the CF lung, and observations of in vitro growth data of 

a mock community of four CF isolated strains of bacteria. The results of which 

support the existence of two distinct consortia of bacteria in the CF lung, consortium 

1 made up of typical CF pathogens which can metabolize succinate and consortium 2 

which contains bacteria associated with the human oral cavity that do not metabolize 

succinate and are likely inhibited by succinate at high concentrations. Lastly, with the 

aim to address the issue of treating antibiotic resistant bacterial infections in patients 

with CF or otherwise, this dissertation presents two engineered tailocins 

MobyWanKenobi and John Henry, that bind to and kill CF isolated strains of 

Stenotrophomonas maltophilia and both Staphylococcus aureus and Serratia 

odorifera respectively.
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INTRODUCTION 

Cystic fibrosis is an autosomal recessive disorder caused by mutations to the 

cystic fibrosis transmembrane conductance regulator gene that result in no protein 

production or the generation of a dysfunctional protein. One of the results of the lack 

of this functioning protein is the buildup of thick mucus in the lower airways (Riordan 

et al., 1989). Diverse microbes inhabit the lungs of People with Cystic Fibrosis 

(pwCF), forming complex communities that influence the health of each CF patient. 

Although these microbes have been identified and cataloged over decades of 

research (Thornton et al., 2023), CF researchers are still learning what each 

microbial species does in the lung and how their actions affect lung function and 

patient health. It is known that certain microbial species in CF lungs perform similar 

functions, and can affect each other’s functioning, though the precise mechanisms 

underlying such interactions are unclear.  

In addition, Cystic Fibrosis investigators need to adapt to the widely adopted 

and successful use of Cystic Fibrosis Transmembrane conductance Regulator 

(CFTR) modulator (trikafta) therapy (Fajac & Sermet-Gaudelus, 2021). This change 

to the CF patient population indicates that a shift to personalized medicine for the 

estimated 10% of non-responder CF patients is now a real possibility and will likely 

require the participation of the research community. This will require using multi-

omics data to inform physicians of the disposition of the microbes in the patient’s 

airways (Cobián Güemes et al., 2019a; Silveira et al., 2021) and second, the actual 
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production of novel personalized treatments (Bradley et al., 2023; Passi et al., 2022). 

To address the first example of researcher-physician collaboration towards 

personalized medicine, chapter one of this dissertation proposes a microbial guild-

based model of CF airway disease. Chapter 1 posits that the field of CF lung 

researchers would benefit from a transition from a taxonomy-based model of CF 

microbial ecology to a guild-based model that incorporates many taxa into groups 

based on resource utilization, production, metabolite exchange and niche 

construction.  Four distinct guilds are described according to their metabolic function 

in the CF lung as well as which niche each guild exploits as well as the niche that 

each guild constructs for the other microbes of the CF lung.  

Chapter 2 of this work focuses on the fact that the lungs of people with cystic 

fibrosis have high concentrations of succinate, which has been shown to support 

growth of the CF pathogen Pseudomonas aeruginosa (Riquelme et al., 2019) and 

how this high concentration of succinate affects the microbial ecology of the CF lung. 

Chapter 2 tested whether succinate was able to support growth of additional CF 

microbes and identified two bacterial consortia differentially affected by the presence 

of succinate. Results from analyzing metagenomic sequences from over 20 patients, 

genome-scale metabolic modeling, and in vitro growth experiments suggest that 

succinate concentrations may dictate microbial dynamics in the CF lung, where a 

succinate-utilizing community depletes succinate, enabling growth of a succinate-

intolerant community. This work updates the Climax-Attack Model of CF lung 
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microbial ecology (D. Conrad et al., 2013a) that posits two distinct communities of 

bacteria inhabit the CF lungs and differentially affect patient health. 

In chapter three this work proposes engineered tailocins that kill antibiotic 

resistant pathogens of the CF airways as the second way that the CF research 

community can provide potentially better options to physicians treating patients that 

are not eligible for trikafta. Tailocins are bacteriophage tail remnants that have 

potential as targeted bactericidal therapeutics (D. W. Jr. Martin et al., 2010; Ritchie et 

al., 2011; Scholl et al., 2009; Scholl, 2017; Williams et al., 2008). Two tailocins, Moby-

WanKenobi and John Henry, were engineered to target Stenotrophomonas 

maltophilia and gram-positive and gram-negative bacteria, respectively. These 

tailocins were engineered by fusing the tail spike from myophage Moby or the human 

Carbohydrate Recognition Domain of Mannose-Binding Lectin, respectively, with the 

Pseudomonas aeruginosa R2 pyocin tail fiber. This fusion approach, developed to 

engineer the E. coli O157:H7-specific tailocin Avidocin (Scholl et al., 2009), shows 

great promise for targeted tailocin design. 
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CHAPTER 1 A guild model of CF Airway Microbial Ecology 

 

It’s time to pivot our approach to CF airway microbial ecology. 

Cystic fibrosis transmembrane conductance regulator (CFTR) modulator 

therapies (Trikafta, elexacaftor-tezacaftor-ivacaftor) have dramatically changed the 

medical outcome of CF lung disease, with an estimated 90% of people with CF 

(pwCF) eligible for Highly Effective Modulator Therapy (HEMT) therapy (Cystic 

Fibrosis Foundation, 2021; Fajac & Sermet-Gaudelus, 2021). Even with this dramatic 

shift, pervasive microbial infection and inflammation of the airways continues to be 

the leading cause of death in pwCF. Over the last decade, microbial ecologists have 

generated large multi-omic datasets of CF airway microbes, attempting to understand 

the relationship between disease state and the microbiome, and to provide clinically 

relevant advice on how to avoid pulmonary exacerbations and improve quality of life 

(Boucher, 2004; Castner et al., 2021; K. Chen & Pachter, 2005; Cobián Güemes et 

al., 2019b; D. Conrad et al., 2013b; D. J. Conrad et al., 2017; D. J. Conrad & Bailey, 

2015; Cuthbertson et al., 2020; Flynn et al., 2016; Garg et al., 2017; Lim, Schmieder, 

Haynes, Furlan, et al., 2013; Lim, Schmieder, Haynes, Willner, et al., 2013; Lim et al., 

2014; Lu et al., 2020; Melnik et al., 2019; Quinn et al., 2014, 2015a; Quinn, Lim, et 

al., 2016; Quinn, Phelan, et al., 2016; Quinn, Whiteson, et al., 2016; Quinn et al., 

2018, 2019; Sahu & Lynn, 1978; Scoffield & Silo-Suh, 2016; Sriramulu et al., 2005; 

Stressmann et al., 2011; Stuart Elborn et al., 2015; Tavernier et al., 2017; Theilmann 
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et al., 2016; Whiteson, Bailey, et al., 2014; Whiteson, Meinardi, et al., 2014a; Willner 

et al., 2009; Willner, Haynes, Furlan, Hanson, et al., 2012; Willner, Haynes, Furlan, 

Schmieder, et al., 2012; Worlitzsch et al., 2002; Zarei et al., 2012, 2014). This work 

proposes a conceptual shift in how researchers assess the CF airway microbiome 

that still holds relevance in the era of HEMT (C. Martin et al., 2023), moving away 

from prior, largely taxonomical approaches, towards a guild-based model. Ecological 

guilds are groups of taxonomically distinct entities that utilize the same class of 

resources from their environment (Simberloff & Dayan, 1991). Guilds of microbes are 

defined by the functional character of their protein coding sequences (Rivas-

Santisteban et al., 2023). A guild model for CF airway ecology relies on the ecological 

function of each microbe and considers the role that the organism plays in the 

context of the wider community and environment. We propose four guilds to which 

the microbes are broadly classified: 1) Brewers, which are largely facultative 

anaerobic or microaerobic organisms that metabolize mucins and produce 

fermentation products, 2) Drunkers, are opportunistic pathogens, which exploit the 

metabolic niche built by the Brewers, consuming the fermentation products and 

secreting exopolysaccharides to build biofilms, 3) Putrifiers are opportunistic 

pathogens, which are anaerobic bacteria that produce toxic compounds that lead to 

local inflammation and tissue necrosis, and 4) Nihilists are specialist pathogens, 

which are characterized by intracellular or lytic lifecycles and the production of 

cytotoxic proteins. By considering function and the broader community context, we 

can build a more informed understanding of airway ecology and apply that 

knowledge to improve the care of pwCF (Cobián Güemes et al., 2019b). 
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1.1 What needs to change to make this possible? 

CF airway microbial ecology needs to shift away from attempts to construct a 

model of CF lung disease based on bacterial taxonomy and instead transition to a 

guild-based model (Moyne et al., 2023). This requires sorting the diverse microbial 

communities of CF airway microbes into distinct guilds based on metabolism and 

function rather than genetic similarity. (Figure 1.1) Current evidence indicates that CF 

airway communities can be categorized into four broad functional groups based on 

utilization of two key resources: oxygen and mucin. Under normal circumstances, 

mucin and oxygen are both theoretically infinite resources from the microbe’s 

perspective since mucin is continually generated by the human host and oxygen-rich 

air is drawn into the lungs by breathing. However, as mucus plugs form in the CF 

lung, both of these resources become limited (Panchabhai et al., 2016). Microbes 

break down the available mucin and deplete oxygen (Quinn et al., 2015a). The chain 

of resource utilization starts with the first functional group in our model, the ‘Brewers’. 

Brewers are defined by their ability to metabolize mucin and make nutrients available 

for other microbes, either by liberating mucin glycochains or producing short chain 

fatty acids. Examples include eukaryotic opportunistic pathogens such as Candida 

spp., which produce serine proteases that can cleave mucin chains, freeing the sialic 

acid and fucose for consumption by itself and other microbes (Colina et al., 1996). 

Prokaryotic brewers can be facultatively anaerobic or anaerobic bacteria such as 

Streptococcus spp. or Staphylococcus spp. that produce nutrients such as short 
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chain fatty acids or lactate as a byproduct of their metabolism (Crouch et al., 2020; 

Marchandin et al., 2010; Yamada & Carlsson, 1975).  

A key feature of the Brewers is that they make energy available in the form of 

organic and short chain fatty acids for the second guild of microorganisms, called 

‘Drunkers’, which are biofilm-producing bacteria such as Pseudomonas spp., 

Achromobacter spp. or Stenotrophomonas spp. Drunkers exploit the metabolic niche 

built by the Brewers and in turn build another niche (a biofilm) by secreting alginate or 

other exopolysaccharides into the mucus plug. Those exopolysaccharides facilitate 

the aggregation of microbes into a complex  and densely packed matrix (A. I. Chen et 

al., 2014; Gebreyohannes et al., 2019; May et al., 1991; Scoffield & Silo-Suh, 2016; 

Sønderholm et al., 2018; Sriramulu et al., 2005; Tavernier et al., 2017). Drunkers are 

also susceptible to being induced into biofilm formation by other fermentation 

products from the Brewers such as 2,3-butanediol or ethanol (A. I. Chen et al., 2014; 

Nguyen et al., 2016; Silveira et al., 2021; Whiteson, Meinardi, et al., 2014b). Which 

can lead to increased colonization of the airways as well as persistence through 

antibiotic treatments (Gebreyohannes et al., 2019; Kandel et al., 2020).  

Once the accumulated metabolism of the Brewers and Drunkers depletes 

enough oxygen and lowers the pH, the next functional group, the ‘Putrifiers’, begins 

to proliferate. Putrifiers are bacteria characterized by anaerobic metabolism such as 

Prevotella spp. and Veillonella spp.. Anaerobic metabolism by Putrifiers results in the 

production of toxic compounds such as putrescine and spermidine, which can cause 
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local inflammation and necrosis (del Rio et al., 2019; Rogers et al., 2015). Putrescine 

has been observed between 100 - 600 µM in CF sputum around the time of 

pulmonary exacerbation, which is approximately an order of magnitude greater than 

what is reported in CF sputum during periods of clinical stability (approximately 25 

µM) (Grasemann et al., 2012; Twomey et al., 2013). Putrifiers can also cause tissue 

damage via the secretion of collagenases (Damé-Teixeira et al., 2018). Lactate has 

also been reported at elevated levels in CF sputum during exacerbation, 

approximately 400 µM compared to 26 µM in stable CF sputum (Twomey et al., 

2013). The interplay between Brewers, Drunkers, and Putrifiers described above 

results in the progressive lung damage and loss of respiratory function that 

characterizes CF.  

The final guild is a group of stand-alone pathogens, the ‘Nihilists’. This group 

is a loose collection of viruses and bacteria that are independently cytotoxic, cytolytic 

or carry out intracellular life cycles. Nihilists include adenoviruses, which lyse human 

cells as a part of their life cycle (Jiang et al., 2011), or bacteria like Streptococcus 

pyogenes, which produce hemolysins that rupture red blood cells (Kinsella & Swift, 

1918). This cohort of Nihilists is thought to be capable of instigating inflammation and 

lung damage in CF patients without the need to engage with the rest of the guilds 

present in the CF lung. Many of these pathogens can also cause pulmonary 

infections in otherwise healthy people, such as SARS-CoV-2 which can cause acute 

respiratory infections (Bar-On et al., 2020; Ciotti et al., 2019) or Bordetella pertussis 

which causes Whooping Cough (Norton & Bailey, 1931). 
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Rather than including every possible scenario of these microbial guilds’ 

actions and interactions, this work proposes a guild model as a shift in how the CF 

research community thinks about the establishment and succession of CF lung 

infections, pulmonary exacerbation, and progressive lung disease. Hopefully this 

model will provide a framework for hypothesis generation and experimental design 

for the CF research community as we move forward. Using four guilds rather than 

distinct taxonomic units can help scientists reduce the noise and dimensionality of 

their datasets, thereby enabling them to make sense of the ecological dynamics at 

play. 
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Figure 1.1: Guild model of CF lung ecology featured in a painting of the progression 
of CF lung disease. This figure seeks to use functional categories of CF pathogens 
(which are based on metabolism) to explain short and long term progression of CF 
lung disease. Panel 1,The Normal Human Airway: Is a healthy lung with mucins 
flowing freely over lung epithelial cells. Beating cilia move the mucus, which carries 
debris and microbes with it, out of the lungs. The high turnover rate of mucins 
(comprising electron donors) and the flow of mucus makes this environment difficult 
to colonize. Panel 2, Equal Opportunity Nihilists: Is an otherwise healthy lung being 
invaded by a member of the non-CF specific guild, the ‘Nihilists’. Nihilists are lone 
wolf pathogens that are characterized by intracellular lifecycles, lytic lifecycles, or the 
production of cytotoxic proteins. We are depicting a respiratory virus invading a 
healthy lung and killing the epithelial cells, causing a pulmonary exacerbation. Panel 
3, The Young CF Lung: Is the lung of a young pwCF, where the mucus is thick and 
recalcitrant due to the imbalance of divalent cations. This leads to a low mucin 
turnover rate as well as little to no mucus flow. This lung is ripe for colonization by the 
first CF-specific guild of pathogens, the ‘Brewers’. Brewers are facultatively 
anaerobic/microaerophilic microbes that can metabolize the readily abundant mucins 
and produce the fermentation products, such as propionate or acetate, that feed the 
second guild of CF-specific microbes, the ‘Drunkers’. The most common Brewers 
found in CF lungs are Staphylococcus spp., Streptococcus spp. and Candida spp. 
(yeast). Candida secretes mucolytic serine proteases, which degrade mucins, 
thereby enabling their consumption by Candida and other microbes. Yeast produce 
fermentation products, like ethanol, which induce biofilm formation in the ‘Drunkers’. 
Drunkers are biofilm-building bacteria, such as Pseudomonas spp., that secrete 
alginate and shuttle electrons from fermentation products to O2 (from air or blood) 
when available, or to alternate electron acceptors like nitrate or sulfate. Panel 4, The 
mucus plug: This image is a lung containing all three of the CF-specific guilds: 
Brewers, Drunkers and Putrifiers. Brewers are producing enough fermentation 
products to feed a large cohort of Drunkers. The Drunkers have secreted enough 
alginate to build a biofilm that is densely populated by bacteria that are lowering the 
oxygen concentrations until an anaerobic niche is built. This anaerobic niche is 
exploited by the third guild, the ‘Putrifiers’, which are anaerobic bacteria that produce 
toxic polyamines such as putrescine and spermidine as a byproduct of their 
metabolisms. These polyamines can cause inflammation and further neutrophil 
infiltration. As the neutrophils lyse to produce neutrophil extracellular traps (NETs), 
they cause a positive feedback loop of inflammation and the accumulation of human 
genomic DNA in the mucus. At high concentrations this DNA feeds the microbes and 
thickens the biofilm, thereby increasing recalcitrance.   
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1.2 Incorporating existing datasets into the new conceptual framework. 

To build out this conceptual model, a workflow is proposed in Figure 1.2 that 

outlines the analysis of sputum metagenomes. The workflow progresses from whole 

genome shotgun sequencing reads to the binning of microbes into guilds according 

to identified genes. The microbial genome uses broad brushstrokes to paint an image 

of the metabolic/energetic landscape of the cell, which is used to classify the 

organism into the categories of Brewer, Drunker or Putrifier. When 

metatranscriptomes or metabolomes are available for the same sputum sample they 

can improve guild classification by confirming the expression of key genes or the 

production of metabolic byproducts. Mobile genetic elements such as prophages and 

plasmids carry virulence genes (e.g., exotoxins, immune evasion, and antibiotic 

resistance) that allow a member of any of the primary three guilds to become 

Nihilists. For example, E. coli K12 (a laboratory strain that is generally regarded as 

safe for the production of recombinant enzymes to make cheese) could be converted 

to a high titer Shiga toxin producing strain by the prophages of an isolate of the 

notorious O157:H7 serogroup (O’Brien et al., 1984). 
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Figure 1.2: Decision tree for binning microbes into the four functional categories 
proposed by a guild model of CF lung ecology. The illustrated flowchart begins at the 
top left, where the sausage grinder represents the process of lysing all the bacteria, 
fungi and viruses found in the CF sputum in order to extract and sequence the DNA. 
Whole-genome shotgun (WGS) reads are processed and assigned to taxonomic 
units based on their identities to database sequences of known taxa. By counting 
those reads, after normalizing for genome size, one can determine the relative 
abundance of each species, this is depicted by the short pieces of DNA accumulating 
in the containers with the different volumes of liquid representing different relative 
abundances. Microbes of interest can be selected based on their relative 
abundances; their corresponding WGS reads should be binned before genome 
assembly, represented by the beakers filled with DNA. Binned reads then need to be 
assembled into contigs using their nearest relative as a scaffold, this is represented 
by the assembly-line conveyor belt with the binned reads being poured out of the 
beaker onto the assembly line.  Once assembled the genome is then annotated. 
Each microbe can then be assigned to a guild according to the predicted functions of 
genes present in its genome. 
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1.3 Novel experimental models. 

Researchers have struggled to find an effective animal model of CF, in large 

part because the models that best recapitulate the hallmarks of CF lung disease, 

such as ferrets and pigs are too expensive for large, statistically meaningful studies 

(McCarron et al., 2021). These constraints have led to the development of in vitro 

models using artificial CF sputum media, such as the WinCF model (Quinn et al., 

2015b). The WinCF model and other in vitro models have shortcomings such as not 

being chemostats, not incorporating host immune cells, and employing an imperfect 

substitute for CF sputum as the medium (Quinn et al., 2015b). It is also worth noting 

that increasingly sophisticated genome-scale metabolic models raise the possibility of 

in silico modeling of the CF lung together with its resident microbial community (Orth 

et al., 2010; Passi et al., 2022). Moving forward, CF researchers need to improve 

both our in vitro, in vivo, and in silico models to serve the personalized needs of 

pwCF (O’Toole et al., 2021). Ideally, these models would allow researchers to 

effectively and affordably test hypothetical treatments tailored towards the needs of 

each person with CF to impact their airway microbial community and improve their 

quality of life. In order to have confidence in the relevance of a model of CF, 

quantitative validation of the model in comparison to sputum from a pwCF would 

enable us to understand which parts of their model successfully recapitulate infection. 

This could be accomplished by comparing metagenomic, metatranscriptomic and 

metabolomic similarity of their model to sputum from pwCF (Cornforth et al., 2020). 
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1.4 Conclusion. 

There remains a need for practical, safe, and personalized recommendations 

to treat airway infection in pwCF. Whereas antibiotics continue to be the mainstay of 

therapy, other approaches such as phage and mRNA therapy are being explored 

(Bradley et al., 2023; Da Silva Sanchez et al., 2020; mRNA Therapy for Cystic 

Fibrosis | Cystic Fibrosis Foundation, n.d.; Rowe et al., 2023; Winzig et al., 2022). As 

CF researchers and care providers, we need to design models to understand how 

those therapies will affect CF microbial community dynamics and look for ways to 

exploit the principles of microbial ecology to reduce disease burden in individuals with 

chronic antibiotic resistant infections. This requires us to design experiments that 

assess the presence and activity of the four major guilds; the Brewers, Drunkers, 

Putrifiers, and Nihilists. This guild model is proposed to help researchers and 

physicians simplify interpretation of CF infection composition through the reduction of 

taxonomic complexity. A model community could theoretically consist of only three to 

four microbes (representing each guild), yet still allow researchers to test the effect of 

those treatments on CF microbial community dynamics. 

Chapter 1, in part, is currently being prepared for submission for publication of 

the material. Dunham, Sage J. B.; Whiteson, Katrine L.; Rohwer, Forest; Hahn, 

Andrea; Widder, Stefanie; Quinn, Robert A.; Bean, Heather D.; Klapper, Isaac; 

Thornton, Christina; Caverly, Lindsay; LiPuma, John J.; Martin, Christian; Wagner, 
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Brandie D.; Bailey, Barbara A.; Corley, Jodi M.. The dissertation author was the 

primary researcher and author of this material. 
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CHAPTER 2 Succinate metabolism partitions microbial communities into 

metabolically distinct consortia in Cystic Fibrosis lungs 

Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations 

to the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). These 

mutations disrupt normal anion transport across epithelia and in the lung result in 

thick airway mucus and decreased mucociliary clearance. This allows the growth of a 

chronic polymicrobial airway biofilm infection. This infection can flare (a CF 

pulmonary exacerbation) which causes more inflammation and accelerated airway 

scarring and loss of lung function. In addition to altered mucus, mutated CFTR 

cannot complex with the PTEN tumor suppressor protein, resulting in the 

mitochondria producing excess succinate that favors growth of Pseudomonas 

aeruginosa, and reactive oxygen species that induce inflammation in the lung airways 

(Riquelme et al., 2019). Although Gram-positive bacteria typically cannot metabolize 

succinate (Richardson et al., 2015), many Gram-negative CF pathogens, in addition 

to P. aeruginosa, are likely to use succinate as a carbon source in the lung airways.  

The Climax and Attack model (CAM) of CF lung disease applies principles of 

succession from the field of ecology to the microbial dynamics of the CF sputum. 

CAM predicts that a resident community of host-adapted microbes (Climax 

community) is displaced by a community of non-resident microbes that are more 

pathogenic and cause acute inflammation and pulmonary exacerbation (Attack 

community) (D. Conrad et al., 2013a). However, the metabolic capabilities of the 
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Climax and Attack communities, and how they may take advantage of excess 

succinate, are not known. 

To test the hypothesis that succinate contributes to niche differences that 

select for Climax versus Attack communities, metagenomic analysis, metabolic 

modeling, and in vitro growth experiments were performed. The results indicate the 

existence of two consortia within the CF lung: consortium 1, which could potentially 

function as a Climax community, metabolizes succinate to enable its community 

dominance; once succinate is locally depleted, consortium 2, the Attack community, 

increases in abundance, potentially leading to exacerbation.  

2.1 Results 

Predicted metabolism and abundance data reveal two microbial consortia in 

CF.  

The Climax-Attack Model predicts that the Climax and Attack communities of 

bacteria in the CF lung differ in their ecological function, which could include 

differences in succinate metabolism. Thus, GEnome scaled Metabolic models 

(GEMs) were used to investigate potential metabolic differences between bacteria 

commonly associated with the CF lung. A GEM simulates an organism’s metabolism 

based on niche constraints using the enzymes predicted to be encoded by the 

genome, follow-on metabolites and associated genes from all metabolic reactions. 
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The Flux Balance Analysis (FBA) uses the GEM and associated constraints to 

generate growth simulations of an organism that result in a table of predicted flux 

values for each enzymatic reaction in the model (Orth et al., 2010). An automatically-

generated metabolic model was built for each of 29 bacterial species found to be 

most common in samples of CF sputum using Kbase (Arkin et al., 2018). The 29 

most prevalent species were determined by analyzing a set of 73 randomly selected 

CF sputum metagenomes from the Sequence Read Archive (SRA) for bacterial 

species with a z-score above 2 or prevalence above 25% within the 13 most 

prevalent bacterial genera described in (Thornton et al., 2023).  Constraints used to 

perform the simulations are provided in Supplementary Table 2.1 Flux values for 

succinate and import values for oxygen were generated for each of the 29 species 

(Figure 2.1). A hierarchically clustered heatmap based on these predicted values 

showed two distinct clusters of taxa, or consortia. Consortium 1 comprised species 

that are considered typical CF pathogens, such as Pseudomonas aeruginosa, 

Staphylococcus aureus, Achromobacter spp. and Stenotrophomonas maltophilia. 

Consortium 2 featured oral cavity bacteria, including Rothia mucilaginosa, Veillonella 

spp., and Streptococcus spp. (Figure 2.1).  

To validate the relevance of those two consortia, 24 CF sputum metagenomes 

were randomly selected from the SRA for analysis (≈ 1% of available sputum 

metagenomes at the time of analysis) by randomizing a list of all available CF sputum 

metagenomes SRA accession numbers. A full description can be found in the 

methods section of this chapter under the “Metagenomics” subsection. Relative 
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abundances of the bacteria in Figure 2.2 were used to generate a hierarchically 

clustered heatmap of Spearman’s correlation coefficients (Figure 2.1). This heatmap 

shows two distinct clusters or consortia that align with the 2 consortia identified in 

Figure 2.1. Furthermore, abundances of members within each consortium were 

inversely correlated with one another more strongly than they correlated with the 

other members of their own consortium. This is what one would expect since each 

randomly selected metagenome was likely from a different individual with a different 

dominant pathogen, e.g., Pseudomonas versus Stenotrophomonas. Consortium 1 

and 2 were also recovered with smaller subsets of 5, 10 and 15 randomly selected 

sputum metagenomes from the 24 used in Figure 2.2. Thus, indicating a lack of 

sensitivity to the number of metagenomes selected for the analysis and the 

robustness of the inverse correlation between consortium 1 and consortium 2 in a 

given CF sputum metagenome. (Supplementary Figures 2.1, 2.2 & 2.3) 
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Figure 2.1: Bacterial genera cluster into two groups in a CF patient lung 
microbiome.A, Hierarchically clustered heatmap of Spearman’s correlation 
coefficients, calculated using the z-scores of predicted succinate flux values and 
oxygen import values from GEMs generated in KBase for each of the 29 most 
prevalent bacterial species in the CF lung. Genus abbreviations are as follows:   P. 
aeruginosa refers to Pseudomonas, while all other P. refer to Prevotella. R. refers to 
Rothia, V. refers to Veillonella, A. pacaensis refers to Actinomyces, and all other A. 
refer to Achromobacter, S. thermophilus, pyogenes & mutans refers to 
Streptococcus, while all other S. refer to Staphylococcus; G. adiacens & elegans 
refer to Granulicatella, all other G. refer to Gemella, H. refers to Haemophilus, B. 
refers to Burkholderia.  
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Figure 2.2: Hierarchically clustered heatmap of Spearman’s correlation coefficients, 
calculated using the relative abundances of the 13 most prevalent genera of bacteria 
of the CF lung, as shown in (Thornton et al., 2023), from 24 randomly selected CF 
sputum metagenomes from the SRA. 

 

Succinate potentially shapes consortium activity.  

To validate the GEMs’ predictions of succinate and lactate being differentially 

fluxed by members of the two consortia, Achromobacter xylosoxidans, Streptococcus 

sanguinis, and Staphylococcus aureus were isolated from one sample sputum 
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sample from a single CF patient and cultured in the presence or absence of 

succinate or lactate. An additional strain of R. mucilaginosa, previously isolated from 

a different CF patient, was also included to form a model CF microbial community for 

further in vitro analysis.  

Pure cultures of consortium 1 members A. xylosoxidans and S. aureus, and 

consortium 2 members R. mucilaginosa and S. sanguinis were grown for 48 hours in 

BHI with increasing concentrations of succinate (0 mM to 500 mM; Figure 2.3 A&B). 

Consortium 1 members grew with or without supplemental succinate. A. xylosoxidans 

grew at a rate of ≈ 0.2 per hour in BHI without succinate and ≈0.12 in BHI with 125 or 

250 mM succinate. At 500 mM, however, the growth rate declined to 0.02 with a 

maximum OD600 of 0.09. S. aureus grew at a rate between 0.27 to 0.55 as the 

concentration of succinate increased from 0 to 500. In contrast, consortium 2 

members grew at a rate of ≈0.2 per hour in BHI without succinate and at rate of 0.02 

at 125 mM of succinate. These results indicate that 125 mM was sufficient to prevent 

growth of consortium 2 members. 
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Figure 2.3: Effects of succinate and lactate on growth. A, Per hour growth rates of A. 
xylosoxidans, S. aureus, R. mucilaginosa & S. sanguinis as pure cultures, in BHI 
media supplemented with increasing concentrations of succinate. Box plots display 
growth rates from five iterations of the growth experiment, each with five technical 
replicate wells per experiment. B, Maximum optical density at 600 nm wavelength of 
A. xylosoxidans, S. aureus, R. mucilaginosa & S. sanguinis as pure cultures, in BHI 
media supplemented with increasing concentrations of succinate. Box plots display 
maximum optical density values from five iterations of the growth experiment, each 
with five technical replicate wells per experiment. C, Growth curves of a co-culture of 
patient isolated A. xylosoxidans and S. aureus (Consortium 1) in BHI or BHI + 250 
mM succinate or lactate and a co-culture of CF isolated strain of R. mucilaginosa and 
the patient isolated strain of S. sanguinis (Consortium 2) in BHI or BHI + 250 mM 
succinate or lactate. Growth curves represents a single iteration of a growth 
experiment with 8 pseudoreplicate wells per condition (same colony used to 
innoculate each of the 8 replicate wells on one 96 well plate. Error bars for the growth 
curves are standard deviations of the values from the 8 replicate wells at the same 
timepoint (in most cases the deviation is too low to see the error bars).  
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Succinate as a sole carbon source supported the growth of consortium 1 

member A. xylosoxidans when cultured in M9 salts (Figure 2.4). A similar test with 

lactate showed that A. xylosoxidans was also able to use lactate as a sole carbon 

source, though its growth over 72 hours on succinate was logarithmic and reached 

OD600 = 0.8 whereas on lactate its growth was linear and reached OD600 = 0.2 

(Figure 2.4). A. xylosoxidans was unable to grow in M9 when only formate or acetate 

was available (data not shown).  

 

Figure 2.4: A. xylosoxidans can utilize succinate as a sole carbon source. Above is a 
growth curve of patient-isolated A. xylosoxidans grown in M9 salts supplemented with 
250 mM succinate or lactate. Optical density was measured every half hour for 72 
hours using 600 nm wavelength light. 
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A co-culture of consortium 1 members A. xylosoxidans and S. aureus was 

grown in BHI alone or BHI supplemented with succinate or lactate. The same culture 

conditions were used to monitor a co-culture of consortium 2 members R. 

mucilaginosa and S. sanguinis. Optical densities measured over 30 hours showed 

that both co-cultures increased in density when cultured in BHI or BHI+ lactate; 

however, only consortium 1 increased in optical density when cultured in BHI+ 

succinate while the optical density of consortium 2 remained near the time zero value 

of 0.01 (Figure 2.3C). Thus, the two consortia could likely co-exist in the presence of 

lactate but not succinate. In a separate experiment, high density overnight cultures 

were spun down and resuspended in fresh BHI with either a low concentration of 

succinate (10 mM) or a high concentration of succinate (250 mM). Optical densities 

were measured at time zero as well as at 12 hours. Consortium 1 increased in optical 

density as expected, while consortium 2 not only failed to grow but actually 

decreased, suggesting that 250 mM succinate is possibly bactericidal to consortium 2 

(Table 2.1). 
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Table 2.1: Growth of consortium 1 and consortium 2 bacteria in low or high 
concentrations of succinate. High densities of bacteria were resuspended in fresh 
BHI with supplemental succinate and incubated at 37 degrees Celsius for 12 hours to 
asses growth via OD600. N = 3, (+/-) is the standard deviation.  

Growth in BHI with succinate after 12 hrs 
 10 mM succinate 250 mM succinate 

Rothia spp. 23% +/- 1% -6%  +/- 3% 
Streptococcus spp. 41% +/- 29% -20% +/- 3% 
Achromobacter spp. 82% +/- 5% 29% +/- 28% 
Staphylococcus spp. 2% +/- 1% 2% +/- 2% 

 

2.2 Discussion 

Concentrations of succinate in CF lungs are estimated to be ≈ 37 times higher 

than those in non-CF lungs, and up to 500 mM in the BAL from a mouse model that 

has a mutation to PTEN that prevents it from complexing with the CFTR (Riquelme et 

al., 2019). It has been shown that such a high concentration of succinate supports 

growth of P. aeruginosa (Riquelme et al., 2019) and, as shown herein, A. 

xylosoxidans. In vitro experiments validated the growth of A. xylosoxidans on 

succinate as a sole carbon source and the high tolerance of succinate by the other 

consortium 1 member S. aureus.  
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These results support the conceptual model shown in Figure 2.5. This model 

describes a cycle of succinate production by the CF epithelial cells, which selects for 

the growth of a succinate utilizing/tolerant community of bacteria (i.e., consortium 1). 

As this community grows, builds a biofilm and mucus accumulates into a purulent 

mass or a mucus plug, oxygen and succinate begin to be depleted locally. This 

depletion enables S. sanguinis and/or other consortium 2 bacteria to proliferate, 

producing lactate as a main byproduct of their metabolism. Inflammation of the local 

airway in response to these bacteria results in neutrophils infiltrating the mucus 

mass. Neutrophils that are trapped in this low oxygen environment produce even 

higher concentrations of lactate (Bensel et al., 2011). Upon resolution or 

expectoration of the mucus mass, the cycle begins again. A re-analysis of longitudinal 

datasets of sputum metagenomes from (C. Martin et al., 2023) shows that consortium 

1 and 2 tend to correlate inversely with one another over time since seven of the 

eight longitudinal CF sputum metagenomic datasets had significant negative 

Spearman’s correlation coefficients. (Supplementary Figures 2.4-10) One CF dataset 

had a positive Spearman’s correlation coefficient but the p-value was not significant. 

(Supplementary Figure 2.11) The NonCF control dataset showed almost no presence 

of consortium 1, as expected (Supplementary Figure 2.12), thus lending support to 

the model in Figure 2.5. The NonCF control dataset did show the presence of 

consortium 2 bacteria, which makes sense since consortium 2 is made up of bacteria 

that are typical isolates of the human oral cavity. 
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In the context of the Climax and Attack Model of CF lung microbial ecology, 

consortium 1 is predicted to represent the Climax community that comprises resident 

microbes that can grow under high succinate concentrations; this community is likely 

dominated by a microbe that can utilize succinate to directly fuel its metabolism and 

growth. Consortium 2 is predicted to represent the Attack community, whose 

members rapidly increase in abundance as succinate is depleted and lung 

inflammation increases.  

The importance of succinate to CF lung microbial ecology may be widespread 

in the CF community since high succinate concentrations in sputum are a direct 

consequence of CFTR mutation. Moreover, the GEMs analysis of the 29 most 

common microbes in CF lungs supports the ubiquity of microbial consortia that differ 

in their ability to metabolize or tolerate succinate (O’Toole et al., 2021). The 

conditions of CF sputum would favor microbes who can take up and/or tolerate 

succinate until the succinate has been depleted. Succinate depletion below the MIC 

for the oral cavity lactic acid bacteria, perhaps ≤125-250 mM, is likely associated with 

the establishment of biofilms and mucus plugs, whose high lactate concentrations 

and low oxygen concentrations would favor the oral cavity lactic acid bacteria. Thus, 

this work predicts that succession away from the succinate community (Climax) and 

toward the oral cavity lactate community (Attack) may be associated with mucus 

plugs and inflammation, both negative indicators of lung health. Previous in vitro 

studies have shown that using succinate as an adjuvant for ciprofloxacin and 

tobramycin can enhance killing of  Pseudomonas aeruginosa (Bahamondez-Canas & 
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Smyth, 2018; Silva et al., 2020), likely due to succinate inducing bacterial growth, 

thus making the antibiotics more effective. However, it was also shown, in an in vitro 

experiment, that succinate showed cytotoxicity on human epithelial cells (Silva et al., 

2020). A trial of succinate as an adjuvant for intravenous chloramphenicol in children 

with CF showed increased inhibition of “many important nonpseudomonal pathogens” 

when compared to oral administration with or without palmitate (Dickinson et al., 

1988). Based on the results shown here, the “important nonpseudomonal pathogens” 

are likely to be from consortium 2.  Future studies should seek to characterize the 

growth of more CF isolated strains of bacteria in the presence of succinate to validate 

the predictions of the GEMs. A longitudinal study of CF sputum that measures both 

the concentration of succinate in the samples as well as the composition of the 

microbial community would validate the predictions of Figure 2.5.  
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Figure 2.5: Model of succession from consortium 1 to consortium 2. Panel 1, high 
succinate concentrations in the mucus (provided by the CF lung epithelial cells) 
selects for consortium 1. Panel 2, then as consortium 1 proliferates and forms a 
mucus plug, succinate is locally depleted along with oxygen, allowing a consortium 2 
microbe such as Streptococcus to grow and start producing lactate. Panel 3, 
neutrophil infiltration into a mucus plug further decreases oxygen, increases lactate 
and inflammation. Panel 4, low concentrations of succinate and the increased 
concentration of lactate allow for rapid proliferation of consortium 2 microbes until the 
plug is cleared and the cycle begins again. 
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2.3 Conclusion 

Succinate concentrations in CF lungs likely favor the growth of Achromobacter 

xylosoxidans, while inhibiting sputum colonization by the oral cavity bacteria Rothia 

mucilaginosa and Streptococcus sanguinis. However, this inhibition is relieved when 

A. xylosoxidans depletes the succinate, which is predicted to lead to oscillations in 

the sputum microbial community from a succinate dependent/tolerant consortium 

(Climax community) to a succinate intolerant community of oral-derived opportunists 

(Attack community). Using these results and their predictions to improve our 

mechanistic understanding of CF lung microbial ecology has the potential to inform 

treatment decisions by helping physicians and scientists assess the efficacy of 

treatment, e.g., by using metabolomics and metagenomics to track pathogen 

metabolism and abundance over the course of treatment (D. Conrad et al., 2013a).    

2.4 Methods 

Metagenomics analysis 

Metagenomes were selected from the Sequence Read Archive (SRA), by first 

exporting the list of accession numbers of all CF sputum metagenome entries. Then 

the list was sorted according to a list of randomly generated numbers. Read 

processing and taxonomic assignment was done using BV-BRC’s (formerly 

PATRIC’s) metagenomic analysis services rely on the Kraken2 algorithm (Olson et 
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al., 2023; Wood et al., 2019). Relative abundances of Bacteria were then used to 

make the hierarchically clustered heatmap of Spearman’s correlation coefficients 

using SciPy’s .corr method (Virtanen et al., 2020) to generate the correlation matrix 

and Seaborn’s sns.clustermap function (Waskom, 2021) to generate the 

hierarchically clustered heatmap. Metagenomes that did not have any bacterial reads 

that mapped to the 13 most prevalent genera or at least 1000 fragments that were 

recruited to the bacterial clade by Kraken2 were discarded (some metagenomes only 

had fungal reads). Thirty CF sputum metagenomes were analyzed with 6 being 

discarded.  

Longitudinal datasets 

Nine longitudinal datasets of sputum metagenomes were re-analyzed from the 

Qiita repository (https://qiita.ucsd.edu/analysis/description/53908/) and published 

manuscript (Martin et al., 2023). Eight of those are from people with CF and one is 

from a non-CF patient. Relative abundances were extracted at the genus level with 

hits to each genus being taken at face value of the published analysis i.e. reads were 

not reassigned to taxonomy for this study. However, samples were normalized by 

subtracting the average number of hits for each genus found in the saline controls 

from their respective genus values found in the sputum samples. Relative 

abundances of the 13 most prevalent genera of bacteria of the CF lung, as shown in 

(Thornton et al., 2023), were then combined according to the two consortia and 

plotted over the day values provided by the authors. Meaning that if the sum of 
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consortium 1 added up to 10% of all of the bacterial reads and consortium 2 added 

up to 50% then the remaining 40% are bacterial reads that could not be classified 

down to the genus level or belong to bacterial genera outside of the 13 from 

(Thornton et al., 2023). Spearman’s correlation coefficients and p-values were 

calculated for all nine longitudinal datasets using SciPy’s spearmanr function.  

Genome-Scale Metabolic Modeling in K-Base 

Modeling the 29 most prevalent bacterial species in the CF lung. 

Metagenomes from 73 CF sputum samples were randomly selected from the ≈2700 

available in the Sequence Read Archive using BV-BRC’s microbiome analysis 

service. The results were sorted according to the 13 genera from (Thornton et al., 

2023). Species from each genus with a z-score above 2 or a prevalence over 25% 

were selected to make GEMs. For each species selected, the Refseq genome was 

uploaded to K-Base for creating metabolic models and FBAs, with gaps filled on LB. 

Gap filling is the process of adding enzymes not annotated in the genome but are 

required to grow on a given media. LB was the most complex media available on K-

Base at the time of the analysis and could support the growth of all of the bacteria 

used in the in vitro assays performed in the study (though the growth was very poor 

for S. sanguinis & R. mucilaginosa). This resulted in the production of 29 distinct 

metabolic models. Flux values for the succinate reactions and oxygen import 

reactions for each species were used to calculate a z-score matrix. That z-score 
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matrix was then used to generate a hierarchically clustered heatmap of Spearman’s 

correlation coefficients.    

 

Strain isolation using alginate beads as analogs for CF mucus plugs: 

Artificial sputum medium (Quinn et al., 2015b), inoculated directly with one 

sample of the patient’s sputum (provided prior to hospitalization), was solidified into 

roughly 2 cm diameter oblong beads by adding 1.5% sodium alginate, then pouring 

the mixture into a mold made of 2% agar with 1% calcium chloride. The calcium 

chloride ionically crosslinked the alginate to form a calcium alginate hydrogel. Once 

the mold was filled, the entire mold was submerged, at least 5 cm below the surface, 

in a bath of sterile 1% calcium chloride in water. Once the alginate beads solidified, 

the beads were separated and each bead was placed into an individual well within a 

12 well plate. Each bead was suspended in RPMI cell culture media supplemented 

with 10% Fetal Bovine Serum (FBS) and incubated for 96 hours at 37 degrees 

Celsius with 5% CO2; RPMI and FBS were replaced daily. At 96 hours the beads 

were transferred to a sterile mortar and pestle for mechanical disruption. Disrupted 

beads were then recovered into SM buffer and serial 10-fold dilutions were 

performed. A 100 uL aliquot of the 10-6 dilution was plated on 15 cm LB agar plates. 

Distinct colony morphologies were streak purified 3 times before choosing a single 
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colony for genomic DNA extraction and whole-genome sequencing to validate 

taxonomic assignment by colony morphology.  

Experimental Determination of Growth Phenotypes for Model Validation 

Brain and Heart Infusion media (BHI) (Difco) was used to grow the isolated 

strains because it supported growth of all strains used in this paper. Note that LB (the 

most complex digital media available), which was used for GEMs, did not support 

efficient growth of R. mucilaginosa or S. sanguinis and thus was not used for testing 

in vitro growth of the two consortia. Cells from overnight cultures of each bacterial 

strain were washed 4 times in M9 salts then starved overnight before being diluted 

1:250 into the media and loaded into flat-bottom clear polystyrene 96-well plates. 

Growth curves were carried out by measuring optical densities at 600 nm on a 

Versamax Absorbance Microplate reader. Plates were incubated at 37 degrees 

Celsius with optical density readings every 30 minutes; plates were shaken for 30 

seconds of the 30-minute interval, before every reading. Growth rates and maximum 

optical densities were calculated using the AMiGA analysis software, version 2.0.0 - 

2021-04-21 (Midani et al., 2021). Each growth rate or max OD600 in Figure 2.2 A or B 

represents an average of 5 biological replicates (new colony used for inoculum on a 

new day) where each biological replicate included 5 technical replicates (replicate 

wells inoculated with the same colony).  
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Chapter 2, in part, is currently being prepared for submission for publication of 

the material. Canto-Encalada, Gabriela; Julazadeh, Hana; Bailey, Barbara A.; 

Rohwer, Forest; Zúñiga, Cristal. The dissertation author was the primary researcher 

and author of this material. 
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CHAPTER 3 Novel receptor binding domains fused to the R2 pyocin tail fiber kill 

target bacteria. 

Tailocins are intact tail structure remnants of defective prophages that can no 

longer form a capsid (Ghequire & De Mot, 2015). These tail structures (contractile 

tail, baseplate and tail fibers), encoded by bacterial genomes, can still bind to and kill 

bacteria in releasing the kinetic energy stored in the tail to insert a pore in the 

bacterial membrane, causing membrane depolarization and lysis. Indeed, tailocins 

have been co-opted by bacteria to use against competing strains or species 

(Ghequire & De Mot, 2015).  

Tailocins show therapeutic potential as novel bactericidal particles because 

they bind to and kill their bacterial targets very specifically. One advantage to 

pursuing tailocins as bactericidal agents is that they do not have genomes, thus 

cannot transfer genes to, or integrate into, genomes of the target bacteria. In 

addition, tailocins cannot reproduce, and each tailocin can at maximum kill one 

bacterial cell before it becomes inert, making it feasible to control the dose. 

Engineering tailocins for therapeutic purposes is accomplished using standard 

techniques to modify host target specificity, (i.e., the receptor binding domains 

(RBDs) of an existing and well-studied tail “chassis.” One such system is called 

Avidocin, from Pylum Biosciences, which uses the R2 pyocin (tailocin) found in 

Pseudomonas aeruginosa as a chassis whose RBD can be modified using several 

techniques (D. W. Jr. Martin et al., 2010; Williams et al., 2008). The addition of the 
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tailspike from Φ V10 as the new receptor binding domain allowed the Avidocin 

(modified R2 pyocin) to bind to and kill Escherichia coli O157:H7 (Ritchie et al., 2011; 

Scholl et al., 2009). Hypothetically, as long as an RBD is compatible with the R2 tail 

fiber and confers bacterial binding, then the modified R2 pyocin should be able to kill 

the new target strain of bacteria.  

3.1 Results 

Using the same tailocin modification system as the Pylum Biosciences 

Avidocin construct, two novel modified tailocins were engineered (Figure 3.1A). Both 

novel tailocins produced protein bands of the expected molecular weight of ≈100 

kilodaltons when run on SDS PAGE (Figure 3.1B). The first tailocin, 

MobyWanKenobi, was produced by fusing the R2 tail fiber with the tailspike of Φ-

Moby. Φ-Moby is a myophage (contractile tailed phage) that infects 

Stenotrophomonas maltophilia, an opportunistic pathogen found in 

immunocompromised patients that is often highly antimicrobial resistant. The R2 tail 

fiber/Moby tailspike fusion allowed MobyWanKenobi to kill stationary phase cells of a 

strain of Stenotrophomonas maltophilia isolated from a cystic fibrosis patient’s 

sputum (Figure 3.2B).  Cystic fibrosis bacterial isolates are often highly antimicrobial 

resistant due to the near constant antibiotic treatments administered to people with 

CF, and the ability of non-growing cells in the biofilms of purulent mucus masses to 

persist past the biological half-life of the administered antibiotic.  
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Figure 3.1: A, schematics depicting R2 and the modified forms. Left: R2 chassis; 
middle: MobiWanKenobi; right: John Henry. B, An SDS-PAGE image of the 
MobyWanKenobi and John Henry tailocins compared with Avidocin as a control with 
molecular weights expected to be greater than or equal to 100 kilo Daltons as shown 
in (Scholl et al., 2009). Protein bands were visualized using Sypro Ruby. *, putative 
tailocin multimer.   
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Treating a 100 uL cell suspension of E. coli O157:H7 or the S. maltophilia CF 

isolate with 100 uL of MobyWanKenobi (≈1.3 x 108 tailocins, calculated using 

equation 1) for 30 minutes showed that this tailocin is specific for S. maltophilia 

(Figure 3.2). The abundance of S. maltophilia, measured as Colony Forming Units 

(CFU), was over 3-fold lower than an carbon free M9 salts solution control (Figure 

3.2B) whereas the abundance of E. coli O157:H7 was not reduced compared to the 

carbon free M9 salts solution control (Figure 3.2A). Moreover, the Avidocin tailocin 

(Scholl et al., 2009) was able to reduce E. coli O157:H7 CFU several orders of 

magnitude (Figure 3.2A) whereas it did not affect CFU abundances of S. maltophilia 

(Figure 3.2B). 
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Figure 3.2: The tailocins MobyWanKenobi and Avidocin specifically target E. coli 
O157:H7 and S. maltophilia, respectively. Panel A shows total bacterial abundance of 
a suspension of E. coli serogroup O157:H7 after 25 minutes of treatment with carbon 
free M9 salts solution, MobyWanKenobi or Avidocin. Panel B shows total bacterial 
abundance of a suspension of S. maltophilia (CF isolate) after 25 minutes of 
treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

A 

 

B 

 

E. coli O157:H7 

S. maltophilia 



47 
 

The second tailocin, John Henry, was produced by fusing the R2 tail fiber with 

the carbohydrate recognition domain of human Mannose-Binding Lectin (MBL). MBL 

is part of the immune system’s complement cascade that recognizes the bacterial cell 

surface and recruits other proteins in the membrane attack complex. MBL binds to N-

acetylglucosamine (NAG), a Pathogen Associated Molecular Pattern (PAMP), that is 

present in both the bacterial cell membrane and the cell wall, thus allowing MBL to 

recognize both gram-positive and gram-negative bacteria lacking an S-layer. Fusing 

MBL with the R2 pyocin tail fiber may have enabled binding to a broader spectrum of 

bacterial cell surfaces, as evidenced by its ability to kill Serratia odorifera (gram-

negative) and Staphylococcus aureus (gram-positive), both of which were isolated 

from cystic fibrosis sputum.  

Nine hundred microliters of high density (> 1 OD600) Serratia odorifera and 

Staphylococcus aureus cells suspended in SM buffer (100 mM NaCl, 8 mM MgSO4 & 

50 mM Tris HCl pH 7.5) were incubated with 100 uL of a John Henry lysate, that had 

also been buffer exchanged into SM buffer, for 30 minutes, the CFU count of each 

species was reduced by the same amount ≈2.3x109 CFUs per mL (Figure 3.3). The 

bacteria were suspended in SM buffer to prevent their rapid growth from confounding 

the observations of killing since both bacteria have generation times less than the 

tailocin incubation time of 30 minutes described in (Scholl et al., 2009). Tailocins are 

only bactericidal, not bacteriostatic, meaning once a tailocin killing event is complete 

the surviving bacteria will continue to grow.  The last filtrate from the buffer exchange 

process was used as the buffer control to ensure no contaminating antibiotics or 
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mitomycin C from the tailocin production process remained active in the final lysate 

(see Methods). The tailocin treatment conditions from Figure 3.3 were observed 

every 30 minutes for a total of two hours, which showed complete recovery of the 

bacterial population to pre-treatment levels at the two-hour timepoint (Supplementary 

Figure 3.1). Since these were stationary phase cells suspended in a nutrient free SM 

buffer this is what one would expect if the observed killing were caused by a tailocin, 

since tailocins are one-shot contractile structures which become inert once triggered. 

Meaning the contents of the lysed cells were the only nutrients available for the cells 

to use for growth, thus explaining the two-hour recovery time when it would have 

taken less than 30 minutes to recover in rich media. This is similar to observations 

made in (González-Pastor et al., 2003) were B. subtilis was shown to cannibalize 

lysed cells during spore formation. Identical tailocins were also engineered to be 

produced by Serratia odorifera and Achromobacter xylosoxidans. When produced 

and isolated from these two bacteria, the tailocin resulted in a similar reduction in 

CFU of Staphylococcus aureus (not measured in case of Serratia odorifera; Figure 

3.4).  
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Figure 3.3: Tailocin John Henry reduces cfu of gram-positive and gram-negative 
bacteria by the same amount (2.3 x 109 CFU per mL). Panel A shows suspensions of 
Serratia odorifera treated with the same amount of the John Henry tailocin or the last 
filtrate from the buffer exchange process. Panel B shows suspensions of 
Staphylococcus aureus treated with the same amount of the John Henry tailocin or 
the last filtrate from the buffer exchange process. 
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Figure 3.4: John Henry tailocins produced using a different genetic construct in two 
different host bacteria (panel A: Serratia odorifera; panel B: Achromobacter 
xylosoxidans) were active against Staphylococcus aureus. These tailocins were 
induced using IPTG and arabinose rather than mitomycin C; the genetic construct did 
not induce lysis during production so the lysates were produced via sonication of the 
bacterial pellet after induction. The lysates were then cleaned of any residual 
antibiotics via ultrafiltration/buffer exchange in the same manner as for the 
experiment shown in Figure 3.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

A 

 

B 

 
Last Filtrate treatment John Henry treatment 

John Henry treatment Last Filtrate treatment 



53 
 

 

Determining the number of active tailocin particles in a given lysate is 

dependent on knowing the number of cells in a suspension before adding tailocins to 

that suspension. This is because there is a negative natural logarithmic relationship 

between the number of surviving target cells and the ratio of tailocins to the number 

of target cells before treatment, thus the number of tailocins in a given lysate is 

calculated using equation 1:  

M = -lnS                                                                  Equation 1.       

where M represents the number of tailocins per cell and S represents the 

percent surviving cells (Williams et al., 2008). This indicates that in order to reduce 

the number of cells that survive a single treatment requires that the tailocin dose 

must increase, but with dramatically diminishing returns as the value of M increases. 

This can be observed by treating multiple known concentrations of bacteria with the 

same amount of the same tailocin lysate to demonstrate the logarithmic decay in 

killing efficiency predicted by equation 1. MobyWan Kenobi closely matched the 

values of S predicted by equation 1 when observed by treating three different 

concentrations of stationary phase bacteria resuspended in M9 salts solution 

(undiluted, 1:4 dilution and 1:10 dilution), alongside Avidocin as a positive control 

(Figure 3.5). Even though there were 1.6 MobyWan Kenobi for each 

Stenotrophomonas only ≈88% of the bacteria were killed.  
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Figure 3.5: MobyWan Kenobi and Avidocin closely match the values predicted by 
equation one. This graph shows the percent of surviving bacteria (S) as a function of 
the number of tailocins per bacterial cell (M). The same volume of the same lysate 
was added at different dilutions of the same bacterial suspension in M9 salt solution. 
An error during plating led to missing observations for the undiluted bacterial 
concentration for MobyWan Kenobi. Avidocin lysate was added to E. coli O157:H7 
(Undiluted was 1.1 x 108 CFU per mL), while MobyWan Kenobi was added to 
Stenotrophomonas maltophilia (Undiluted was 6.3 x 108 CFU per mL). 

 

3.2 Discussion 

A possible therapeutic use of tailocins may be the administration of successive 

tailocin treatments at doses that would yield predicted values of M below one, while a 

bacteriostatic antibiotic is co-administered to keep the bacteria from rebounding 

between treatments. That treatment modality may allow for the most efficient use of 
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tailocins as an antimicrobial. One challenge of such a treatment strategy is that 

sudden lysis of a large number of bacterial cells can cause inflammation, as triggered 

by the sudden release of bacterial cell debris (e.g., lipopolysaccharide or LPS, 

lipoteichoic acid or LTA and peptidoglycan) (Luo & Song, 2021; Venkataranganayaka 

Abhilasha & Kedihithlu Marathe, 2021). In light of this risk two dual purpose tailocins 

were designed with enzymes as their receptor binding domains. The first such 

tailocin was designed as a fusion between the human acyloxyacyl hydrolase enzyme 

and the R2 tail fiber. Acyloxyacyl hydrolase is an enzyme expressed in macrophages 

that degrades LPS such that it is no longer recognized as a PAMP by the innate 

immune system (Pohlman et al., 1987). The second such tailocin was designed with 

lysozyme fused to the R2 tail fiber. Lysozyme is a peptidoglycan-degrading enzyme, 

and the engineered version in this work was hen’s egg lysozyme (Abraham, 1939; 

Hewitt, 1931; Ridley, 1928).  

If these two dual purpose tailocins were administered together they would be 

able to bind to and kill gram-negative and gram-positive bacteria while also degrading 

the LPS and peptidoglycan produced by bacterial lysis, before they reach the 

bloodstream. These tailocins would also provide a single tailocin the ability to kill 

more than one bacteria, since even after the kinetic energy of the contractile tail is 

spent, the enzymes would still be active. Preliminary experiments to engineer these 

tailocins in P. aeruginosa resulted in the production of proteins of the expected 

molecular weight (Figure 3.6) but no killing activity, likely due to being prematurely 

triggered by the bacterial cells used to produce them. Growth of the production strain 
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was also poor and often resulted in premature lysis.  Future work with these tailocins 

could include moving production from bacteria to a eukaryotic host such as yeast so 

that the enzyme tailocins can be efficiently produced in the absence of their 

substrates LPS and peptidoglycan. 

 

Figure 3.6: SDS-PAGE of tailocin lysates produced in Pseudomonas aeruginosa 
strain M𝚫𝚫R stained with Coomassie Blue. Expected molecular weight of fully 
assembled tailocins is > 100 kDa, sheath proteins expected at > 50 kDa.  
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3.3 Conclusion 

The R2 pyocin has demonstrated its versatility as an engineerable protein 

construct with potential as a vehicle for the generation of both specific and broad-

spectrum antibiotics. This is evident in the successful production of two new tailocins, 

MobyWanKenobi and John Henry. MobyWanKenobi specifically kills S. maltophilia 

while John Henry appears to have a broader spectrum according to the results in this 

work. Although the extent of the target range of John Henry is not yet known, the fact 

that it killed both a gram negative and a gram positive in the preliminary experiments 

is indicative of a broad spectrum tailocin. This work adds two engineered tailocins to 

the list of potential solutions to treat antibiotic resistant infections.  

3.4 Methods 

Vector construction 

 Shuttle vectors with the R2 tail-fiber/novel RBD fusion were constructed using 

Gibson assembly to insert amplicons of the novel RBDs into the DG203 shuttle 

vector as described in (D. W. Jr. Martin et al., 2010; Scholl, 2017; Scholl et al., 2009).  

The DG203 shuttle vector provided by Pylum Biosciences contained a truncated copy 

of the R2 pyocin tail fiber fused to a truncated ΦV10 tailspike under a Ptac promoter 

and a gentamycin resistance cassette. The ΦV10 tailspike was removed using 

restriction enzyme digest with HindIII and XbaI so that new RBDs could be added to 
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the truncated tail fiber sequence via Gibson assembly. Φ Moby tailspike was 

amplified directly from a phage lysate (Vicary et al., 2020) while the carbohydrate 

recognition domain of MBL was codon optimized for expression in P. aeruginosa and 

synthesized by GenScript (genscript.com). The carbohydrate recognition domain of 

MBL was then amplified from the plasmid containing the codon-optimized sequence 

provided by GenScript.  

Transformation 

Circularized vectors were transformed into DH10Beta via Polyethylene Glycol 

(PEG), according to (Chung et al., 1989), for storage and plasmid production. 

Plasmids were extracted from the storage strain using Zymo Research BAC DNA 

Miniprep kit, and transformed into strain M𝚫𝚫R (Scholl et al., 2009), whose genome 

contains the R2 tailocin with the tail fiber gene knocked out, and thus does not 

produce a high molecular weight band characteristic of the fully assembled tailocin 

after induction with mitomycin C.  

Tailocin production 

MobyWanKenobi was produced according to the protocol in (Scholl et al., 

2009), then concentrated via PEG precipitation according to the protocol in (Kandel 

et al., 2020). Briefly, tailocin production cells were grown to OD600 0.25 before adding 
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mitomycin C to induce tailocin production, cells were incubated and shaken until the 

culture completely lysed. Then DNAse and RNAse were added to remove genomic 

and ribosomal debris as well as lower the viscosity of the lysate. Then 10% PEG 

(w/v) and NaCl to 1 M were added to the lysate, then placed on a rocker at 4 °C for 

16 hours before precipitating the tailocins via centrifugation at 16,000 g for 1 hour 

(adding Coomassie blue will make the pellet much easier to find). Protein pellets 

were then resuspended in carbon free M9 salts solution and stored at 4 °C. John 

Henry tailocin was produced and concentrated as described above but extra care 

was taken to ensure no residual antibiotics or mitomycin C would contaminate the 

resulting preparation, since there was not a negative control available for this broad 

spectrum tailocin. For this reason, John Henry tailocins were resuspended after 

precipitation, then the resuspension buffer was exchanged by ultrafiltration using 

Amicon Ultra-15 centrifugal filter units, Amicon’s 50 mL centrifuge tube format, with a 

100,000 molecular weight cutoff filter. The upper reservoir was loaded with the 

resuspended tailocins then filled to the maximum volume (15 mL) with fresh SM 

buffer (100 mM NaCl, 8 mM MgSO4 & 50 mM Tris HCl pH 7.5). This assembly was 

centrifuged at 2,000 g until 1 mL or less remained in the upper reservoir. Flow 

through in the lower reservoir was discarded, and the upper reservoir was refilled. 

This was repeated for a total of 5 iterations, to ensure that no residual antibiotics or 

mitomycin C were present. Production strains can be found in Supplementary table 

3.2. 

Tailocin killing assays 
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 MobyWanKenobi particles were added to stationary phase cells, from S. 

maltophilia or E. coli O157:H7, suspended in carbon free M9 salts solution. Avidocin 

particles were produced and added to the bacterial suspensions to act as both a 

positive control for tailocin killing of E. coli O157:H7 as well as negative control for 

killing of S. maltophilia. Mixtures of tailocins and cells were placed on a rocker for 30 

minutes before quantifying bacterial abundances via colony forming units. John 

Henry tailocins suspended in SM buffer were added to stationary phase S. odorifera 

and Staphylococcus aureus, each of them also suspended in SM buffer, and allowed 

to rock for 2 hours while sampling to quantify bacterial abundances every 30 minutes. 

Colony Forming Unit Assay: Total bacterial abundance was measured by 

sampling the mixture of tailocins and bacteria, diluting that sample (either in carbon 

free M9 salts solution or SM buffer) to 10-6, then spreading 100 uL of that dilution on 

a 15 cm LB agar plate. Plates were incubated at 37 °C for at least 16 hours before 

counting the number of colonies on the plate.  

SDS PAGE 

A 10 uL volume of each isolated tailocin was mixed with 10 uL of 2x Laemmli 

buffer (without beta-mercaptoethanol) and loaded onto a BioRad pre-cast 4-20% tris 

glycine polyacrylamide gel. The gel was run for 36 minutes at 140 volts, variable 

amps in 1X BioRad tris glycine running buffer with SDS. Gels were stained with either 
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Coomassie Blue or Sypro Ruby. Coomassie Blue stained gels were imaged with a 

camera and a light box while Sypro Ruby gels were imaged using a Typhoon FLA 

9000 gel imager. BioRad’s Precision Plus Protein Standards Dual color, catalog 

number 161-0374, was used as the protein ladder. 

Chapter 3, in part, is currently being prepared for submission for publication of 

the material. Julazadeh, Hana; Souza, Cole; Segall, Anca M.; Rohwer, Forest. The 

dissertation author was the primary researcher and author of this material.
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APPENDIX 

Supplementary Table 2.1:  Kbase’s digital LB, used for all FBAs in this dissertation.  
compounds name formula minFlux maxFlux concentration 
cpd00001 H2O H2O -100 100 0.001 
cpd00007 O2 O2 -100 100 0.001 
cpd00009 Phosphate HO4P -100 100 0.001 
cpd00018 AMP C10H12N5O7P -100 100 0.001 
cpd00023 L-Glutamate C5H8NO4 -100 100 0.001 
cpd00027 D-Glucose C6H12O6 -100 100 0.001 
cpd00028 Heme C34H30FeN4O4 -100 100 0.001 
cpd00030 Mn2+ Mn -100 100 0.001 
cpd00033 Glycine C2H5NO2 -100 100 0.001 
cpd00034 Zn2+ Zn -100 100 0.001 
cpd00035 L-Alanine C3H7NO2 -100 100 0.001 
cpd00039 L-Lysine C6H15N2O2 -100 100 0.001 
cpd00041 L-Aspartate C4H6NO4 -100 100 0.001 
cpd00046 CMP C9H12N3O8P -100 100 0.001 
cpd00048 Sulfate O4S -100 100 0.001 
cpd00051 L-Arginine C6H15N4O2 -100 100 0.001 
cpd00054 L-Serine C3H7NO3 -100 100 0.001 
cpd00058 Cu2+ Cu -100 100 0.001 
cpd00060 L-Methionine C5H11NO2S -100 100 0.001 
cpd00063 Ca2+ Ca -100 100 0.001 
cpd00065 L-Tryptophan C11H12N2O2 -100 100 0.001 
cpd00066 L-Phenylalanine C9H11NO2 -100 100 0.001 
cpd00067 H+ H -100 100 0.001 
cpd00069 L-Tyrosine C9H11NO3 -100 100 0.001 
cpd00084 L-Cysteine C3H7NO2S -100 100 0.001 
cpd00091 UMP C9H11N2O9P -100 100 0.001 
cpd00092 Uracil C4H4N2O2 -100 100 0.001 
cpd00099 Cl- Cl -100 100 0.001 
cpd00107 L-Leucine C6H13NO2 -100 100 0.001 
cpd00119 L-Histidine C6H9N3O2 -100 100 0.001 
cpd00126 GMP C10H12N5O8P -100 100 0.001 
cpd00129 L-Proline C5H9NO2 -100 100 0.001 
cpd00149 Co2+ Co -100 100 0.001 
cpd00156 L-Valine C5H11NO2 -100 100 0.001 
cpd00161 L-Threonine C4H9NO3 -100 100 0.001 
cpd00182 Adenosine C10H13N5O4 -100 100 0.001 
cpd00184 Thymidine C10H14N2O5 -100 100 0.001 
cpd00205 K+ K -100 100 0.001 
cpd00215 Pyridoxal C8H9NO3 -100 100 0.001 
cpd00218 Niacin C6H4NO2 -100 100 0.001 
cpd00219 Prephenate C10H8O6 -100 100 0.001 
cpd00220 Riboflavin C17H19N4O6 -100 100 0.001 
cpd00226 HYXN C5H4N4O -100 100 0.001 
cpd00239 H2S HS -100 100 0.001 
cpd00246 Inosine C10H12N4O5 -100 100 0.001 
cpd00249 Uridine C9H12N2O6 -100 100 0.001 
cpd00254 Mg Mg -100 100 0.001 
cpd00311 Guanosine C10H13N5O5 -100 100 0.001 
cpd00322 L-Isoleucine C6H13NO2 -100 100 0.001 
cpd00381 L-Cystine C6H12N2O4S2 -100 100 0.001 
cpd00383 Shikimate C7H9O5 -100 100 0.001 
cpd00393 Folate C19H17N7O6 -100 100 0.001 
cpd00438 Deoxyadenosine C10H13N5O3 -100 100 0.001 
cpd00531 Hg2+ Hg -100 100 0.001 
cpd00541 Lipoate C8H13O2S2 -100 100 0.001 
cpd00644 PAN C9H16NO5 -100 100 0.001 
cpd00654 Deoxycytidine C9H13N3O4 -100 100 0.001 
cpd00793 Thiamine phosphate C12H17N4O4PS -100 100 0.001 
cpd00971 Na+ Na -100 100 0.001 
cpd01012 Cd2+ Cd -100 100 0.001 
cpd01048 Arsenate HAsO4 -100 100 0.001 
cpd03424 Vitamin B12 C62H91CoN13O14PR -100 100 0.001 
cpd10515 Fe+2 Fe -100 100 0.001 
cpd10516 Fe+3 Fe -100 100 0.001 
cpd11595 chromate H2CrO4 -100 100 0.001 
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SRA accession numbers for Figure 2.1: ERR5167243, SRR7080471, SRR3239231, 
SRR12184891, ERR3430918, ERR3431058, SRR12184517, ERR5167141, 
SRR10267762, SRR4081000, ERR3256635, SRR13305369, SRR13305279, 
SRR13304750, SRR13304842, SRR13304886, SRR13305134, SRR20794659, 
SRR4081102, SRR5162028, ERR5167369, ERR3431042, SRR12184331, 
ERR3430769, ERR3431054, SRR3238798, SRR5162018, SRR20794666, 
SRR12184534, SRR7080407, ERR3430826, SRR7080249, SRR13305028, 
SRR13305282, SRR13305324, ERR3430791, ERR3256615, SRR13305174, 
SRR3239237, SRR20794660, SRR12184601, SRR13305232, SRR8049279, 
ERR3430938, SRR12184633, SRR13305081, ERR3431069, SRR4081075, 
SRR13304822, SRR13304885, SRR13305254, SRR20794599, SRR13305294, 
SRR13305069, ERR3430765, ERR5167351, SRR13305154, SRR13305334, 
ERR5167350, SRR13305258, SRR8181700, SRR20794618, SRR12184620, 
ERR3256685, ERR5167242, ERR3430862, SRR20794684, ERR5167254, 
ERR5167387, ERR5167311, SRR13304824, SRR3238771, SRR12184366. 

 

 

SRA accession numbers for Figure 2.2: SRR13305069, SRR13305174, 
SRR13305282, SRR8049279, ERR3256615, SRR13305294, SRR13305254, 
SRR13305232, SRR7080407, SRR13305081, SRR7080249, SRR13305028, 
SRR13305324, SRR20794599, SRR3239237, SRR12184534, SRR12184601, 
SRR20794666, SRR13304822, SRR13304885, SRR20794660, SRR4081075, 
SRR12184620, SRR13305154. 
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Supplementary Figure 2.1: Hierarchically clustered heatmaps of Spearman’s 
correlation coefficients calculated using the relative abundances of a subset of five of 
the CF sputum metagenomes from Figure 2.2.  
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Supplementary Figure 2.2: Hierarchically clustered heatmaps of Spearman’s 
correlation coefficients calculated using the relative abundances of subset of 10 of 
the CF sputum metagenomes from Figure 2.2.  
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Supplementary Figure 2.3: Hierarchically clustered heatmaps of Spearman’s 
correlation coefficients calculated using the relative abundances of subset of 15 of 
the CF sputum metagenomes from Figure 2.2. 

 

 

 

 

 

Achromobacter spp. 

Pseudomonas spp. 

Staphylococcus spp. 

Stenotrophomonas spp. 

Veillonella spp. 

Gemella spp. 

Haemophilus spp. 

Streptococcus spp. 

Rothia spp. 

Prevotella spp. 

A
ch

ro
m

ob
ac

te
r s

pp
. 

P
se

ud
om

on
as

 s
pp

. 

S
ta

ph
yl

oc
oc

cu
s 

sp
p.

 

S
te

no
tro

ph
om

on
as

 s
pp

. 

Ve
ill

on
el

la
 s

pp
. 

G
em

el
la

 s
pp

. 

H
ae

m
op

hi
lu

s 
sp

p.
 

S
tre

pt
oc

oc
cu

s 
sp

p.
 

R
ot

hi
a 

sp
p.

 

P
re

vo
te

lla
 s

pp
. 

 
 

 



67 
 

 

Supplementary Figure 2.4: Longitudinal dataset of sputum metagenomes from a 
single patient, CF1, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 2.5: Longitudinal dataset of sputum metagenomes from a 
single patient, CF2, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 2.6: Longitudinal dataset of sputum metagenomes from a 
single patient, CF3, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 2.7: Longitudinal dataset of sputum metagenomes from a 
single patient, CF4, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 2.8: Longitudinal dataset of sputum metagenomes from a 
single patient, CF5, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 2.9: Longitudinal dataset of sputum metagenomes from a 
single patient, CF6, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 2.10: Longitudinal dataset of sputum metagenomes from a 
single patient, CF7, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 2.11: Longitudinal dataset of sputum metagenomes from a 
single patient, CF8, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 2.12: Longitudinal dataset of sputum metagenomes from a 
single patient, NonCF, presented as stacked area plots of the relative abundance of 
bacteria belonging to each consortium as a percent of the total bacteria in that 
sample. Bacteria not assigned to one of the two consortia defined in Figure 2.1 are 
represented as the white space between 100% and the edge of consortium 2. 
Spearman’s correlation coefficient denotes the magnitude of the correlation between 
consortium 1 and consortium 2 over time as well as defining the relationship as either 
a positive or a negative correlation. 
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Supplementary Figure 3.1: Time series of bacterial abundances taken of stationary 
phase cells suspended in nutrient free SM buffer before and after treatment with 
tailocin John Henry. Error bars are the standard deviation of three replicates.         
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Supplementary Figure 3.2: Vector map of the shuttle vector used to make 
MobyWanKenobi.      

 
Supplementary Figure 3.3: Vector map of the shuttle vector used to make John 
Henry.         
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Supplementary Figure 3.4: Vector map with R2’s truncated tailfiber fused to 
acyloxyacyl hydrolase. 

         
 

Supplementary Figure 3.5: Vector map with R2’s truncated tailfiber fused to  

lysozyme. 
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Supplementary Table 3.1: Primer sequences used to make constructs used in 
chapter 3. 

John Henry Gibson Forward gactgggtgaaggaaaagctttttaaaggcaatttttactattttag 
John Henry Gibson Reverse gcctgcaggtcgactctagattatttgcaaatgaacagaaag 
MobyWanKenobi Gibson 
Forward 

gactgggtgaaggaaaagcttatgactgatcagattcatggc 

MobyWanKenobi Gibson 
Reverse 

catgcctgcaggtcgactctagattaattgagccagatttgag 

Acyloxyacyl hydrolase Gibson 
Forward 

gactgggtgaaggaaaagcttatgcagagcccgtggaaaattct 

Acyloxyacyl hydrolase Gibson 
Reverse 

gttcttctcctttactcatttacatcgcgtaaatcacaatg 

Lysozyme Gibson Forward gactgggtgaaggaaaagcttatgcgtagcctgctgattc 
Lysozym Gibson Reverse gttcttctcctttactcatttacaggcggcagccacgaatc 

 

Supplementary Table 3.2: Strains used for tailocin production. 

Tailocin Plasmid Segall lab strain 
designation 

G. species 

John Henry  DG203_MBD (mannose 
binding domain) 

B45 P. aeruginosa 

MobyWanKenobi  DG203_MobyTailSpike B49 P. aeruginosa 
Acyloxyacyl 
hydrolase  

DG203_Acyloxyacyl 
hydrolase (A.Hase) 

B43 P. aeruginosa 

Lysozyme  DG203_lysozyme (Zyme) B44 P. aeruginosa 
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