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orientation-independent reference frame10. 
Although the term allocentric was applied to 
place cell representations, O’Keefe recognized 
early on that these representations may rely 
“on the fact that information about changes 
in position and direction in space could be 
calculated from the animal’s movements.”10 
Yet it was not until the discovery of head 
direction cells in the 1980s5–7 and the realiza-
tion that these cells were indeed performing 
integration of head angular velocity18 that the 
concept emerged, in the 1990s, that the entire 
hippocampal formation might be using an 
idiothetic reference frame—or path integra-
tion—as a basis for its coordinate system19. 
The possibility of a path-integration mecha-
nism outside the hippocampus proper3,20,21 
was reinforced at this time by studies showing 
that, unlike place cells, spatially modulated 
cells in the entorhinal cortex and subiculum 
had environment-independent spatial firing 
patterns22,23. Today it is generally recognized 
that path integration plays a fundamental role 
in spatial coding in the hippocampal forma-
tion, although there continues to be contro-
versy as to whether path integration is the 
primary determinant of place cell and grid 
cell firing or whether it plays an equal or sub-
ordinate role to the integration of information 
from external stimuli24–26.

Finally, a discussion of model shifts would 
not be complete without some realization of 
the role that technology has played (Fig. 4). 

represent quantum jumps in our understand-
ing that there is a system in the brain that has 
evolved to produce a representation manifold 
that can be linked to position (grid cells), an 
inertial compass (head direction cells), and 
a system for mapping external features and 
events onto internal and, at least locally, met-
ric coordinates (place cells). In broad terms, 
these components and their interactions were 
predicted by O’Keefe in 1976 (ref. 10).

Also key to the emergence of a model 
for spatial representation was a gradual 
understanding of the role played by different 
spatial reference frames and their interactions. 
Space can be represented in three reference 
frames: egocentric (defined in relation to a 
body part axis), allocentric (based on spatial 
relationships to or among external features), 
and inertial or idiothetic (relative location and 
orientation based on direction and distance 
moved from an arbitrary reference point). 
Navigation in an idiothetic reference frame is 
often referred to as ‘path integration’, a process 
by which animals use self-motion cues (such 
as motor efference, optical flow, and vestibular 
information) to keep track of their own loca-
tion relative to a starting point11–14. Decades 
of investigation have shown that egocentric 
space is not represented primarily in the hip-
pocampal formation but rather in parietal 
cortex and associated regions15–17. O’Keefe’s 
studies showed from the outset that, instead, 
place cells encode an animal’s location in an 

Although the study of the cellular and circuit 
mechanisms of spatial representation in the 
brain today is centered on the hippocampal 
and parahippocampal formation, the study of 
spatial coding did not begin there, but rather 
began with the parietal cortex, in the form of 
early observations on patients with parietal 
damage1,2; in many respects, one takes a risk 
in attempting to limit the discussion to the 
hippocampal formation3. Nevertheless, in 
studies of spatial coding, some of the most 
‘paradigm-shifting’ discoveries and ideas 
have come from recordings within the greater 
network of the hippocampal formation, par-
ticularly the dorsal parts of hippocampus, 
entorhinal cortex, presubiculum, and parasu-
biculum, where cells exhibit place-dependent 
activity independently of the animal’s behav-
ior or the task that it is performing (Fig. 1). 
Key among these insights were the discover-
ies of place cells (Fig. 2)4, head direction cells 
(Fig. 3)5–7, and grid cells8,9, each of which 
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to path integration, we are forced to leave out 
contributions and research directions that 
have contributed critically to the broader 
understanding of place cells and hippocam-
pal systems function, beyond the representa-
tion of self-location. First of all, the more than 
four decades of hippocampal spatial mapping 
studies have developed alongside an equally 
productive line of investigations, using a 
variety of methodological approaches, into 
the basis of memory in the same brain sys-
tem3,41–47. The focus of this review is on the 
coding of space, but, as we will acknowledge, 
this does not rule out a broader participation 
of hippocampal neurons and place cells in 
representation of experience48–50. In shying 
away from the memory functions of the hip-
pocampus, we shall also pass over the vast 
and growing literature on how replay and pre-
play of firing sequences may enable consoli-
dation and storage of hippocampal memory 
through interactions with neocortical neural 
networks51–54, and we shall not discuss the 
important but separate question of whether 
or how place cells are used for goal-directed 
navigation and route planning55–59. We have 
also left out dozens of pioneering studies of 
temporal coding and network oscillations, 
including theta rhythms, that have shaped 
our current understanding of hippocam-
pal function beyond the representation of 
space49,60–62. Finally, this review is dominated 
by work in rats and mice, reflecting the use 
of freely moving rodents as subjects in nearly 
all studies of spatially modulated cells in the 
hippocampal formation (see Box 1 for exten-
sions to the primate brain).

The origin of the spatial signal
In 1971, O’Keefe and Dostrovsky observed 
that neurons in the rat hippocampus had 
what appeared to be spatial receptive fields4 
(Fig. 2a,b). In their 1971 paper, the number 
of place cells and evidence for localized firing 
was limited, but much more substantial data 
were presented by O’Keefe in 1976 (ref. 10). 
By this time, after thorough study of hippo-
campal activity in unrestrained rats29, Ranck 
had also seen place cells63. The O’Keefe paper 
showed that place cells fired whenever the rat 
was in a certain location in the local environ-
ment. Different cells had different place fields, 
such that at all locations investigated in the 
hippocampus, the animal’s location could, in 
principle, be inferred from the joint activity of 
a fairly small sample of neurons10 (for direct 
demonstration, see ref. 33 and Fig. 4c,d). Based 
on this observation and inspired by Tolman’s 
proposal that navigation is guided by internal 
cognitive maps64, O’Keefe and Nadel65 sug-
gested that place cells are the basic element 

understanding of spatial coding in the hip-
pocampal formation. This task is daunting 
for several reasons, not the least of which is 
that the number of important experimen-
tal and theoretical contributions has risen 
(and continues to rise) almost exponentially 
since 1971, when O’Keefe and Dostrovsky, 
after recording in freely behaving rats from 
what today would be considered a very small 
sample of CA1 units, made the bold claim 
that the hippocampus might construct a 
spatial map4 (Fig. 2). Length restrictions 
have forced us to focus the review on one 
particular set of ideas that has inspired the 
investigation of hippocampal representa-
tions of space almost since the beginning of 
studies of place cells, namely that spatially 
localized firing to a large extent reflects the 
dynamic integration of self-motion—or path 
integration—as animals move around in the 
environment. We shall demonstrate how 
the idea of a path-integration input explains 
many fundamental properties of place cells 
and how this, in turn, led investigators in the 
single-cell recording field to identify a path-
integration-dependent neural system consist-
ing of multiple functionally specialized cell 
types in the parahippocampal cortices.

We shall demonstrate that path integra-
tion appears as a leitmotif that follows the 
history of spatial representation in the hip-
pocampal formation across generations of 
investigators. Yet by directing our spotlight 

Key technical advances have been the shift 
from recording single cells in restrained, 
usually anesthetized, animals to recording 
in freely behaving ones4,27–29; the devel-
opment of quantitative video-tracking 
methods for rodents during hippocampal 
recording experiments30,31; the invention 
of stereo (tetrode) recording32 (Fig. 4a) and 
its extension to large neuronal ensembles33 
(Fig. 4b–d); the development of microma-
chined silicon electrode arrays34; new cell-
type-specific optical and chemical methods 
for stimulation35–37; and, most recently, the 
development of large-scale Ca2+ cellular 
imaging in both freely moving animals38 and 
in restrained animals locomoting in virtual 
reality environments39,40. The importance of 
recording from substantial numbers of cells 
in interpreting coding dynamics for the hip-
pocampus or any other neural system cannot 
be overemphasized. Apart from the obvious 
computational and statistical analysis power 
enabled by collecting data from large num-
bers of simultaneously active neurons, it is 
clear that many results that we now under-
stand as across-trial variations in popula-
tion dynamics may have been attributed to 
differences in single neuron classes in early 
single-neuron recording studies.

We have taken on the task of trying to 
present, in a relatively small space, an his-
torical overview of some of the paradigm-
shifting developments that led to our current 
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Figure 1  Selection of historical milestones in the study of spatial coding in the hippocampal formation.
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frame defined by a reward box that moved 
relative to the laboratory reference frame and 
the lab reference frame itself73,74; the location 
and orientation of place fields followed the rat 
when the rat was rotated independently of the 
environment75,76; place cells and head direc-
tion cells exhibited coordinated drift error 
in a cylindrical environment77,78; the size of 
place fields was almost completely indepen-
dent of local cue density, spatial frequency, or 

external cues and rotated to maintain regis-
tration with them when the cues were rotated 
between sessions68,71.

The foregoing studies were soon fol-
lowed by a number of observations that cast 
further doubt on the external sensory origin 
of place fields: most place fields had asym-
metric firing fields in an environment with a 
symmetric cue configuration72; place fields 
could dynamically shift between a reference 

of a distributed allocentric cognitive map of 
the animal’s environment (Fig. 2c). The spa-
tial relations between landmarks provided by 
this map were thought to enable animals to 
find their way independently of local view or 
movement trajectories, using what O’Keefe and 
Nadel called a locale strategy. This contrasted 
with route strategies, which do not take into 
account the relationship between landmarks. 
The latter strategies included a spectrum of 
routines from simple beacon navigation to 
more complex action sequences. O’Keefe and 
Nadel’s proposal represented a major land-
mark in the conceptualization of hippocampal 
function. Their book, The Hippocampus as a 
Cognitive Map, synthesized and reinterpreted 
decades of discordant experimental studies 
using a range of experimental approaches, 
particularly lesions, and put these studies into 
a coherent theoretical framework organized 
around the concept of place cells as the cellu-
lar basis for representation of space as well as 
events and experiences associated with space. 
The book proposed a neural implementation 
of Tolman’s concept of the cognitive map, with 
visionary perspectives on how such a map 
might enable a breadth of cognitive functions 
in higher species, including humans. Today, 40 
years after its publication, The Hippocampus as 
a Cognitive Map remains the theoretical pillar 
on which nearly all subsequent study of spatial 
coding in the hippocampal formation rests.

The early years of research on place cells, 
in the late 1970s and 1980s, were dominated 
by attempts to prove that the place signal was 
indeed spatial and, given this, to understand 
what caused place cells to fire where they did, 
based on the idea that it was some constella-
tion of external sensory cues, rather than a 
single cue or some other cause (for example, 
ref. 66). Two salient observations in this 
period that both advanced knowledge and 
increased perplexity were the findings that 
place cells appeared to be completely direc-
tion-dependent when animals ran repeatedly 
on restricted paths30 but were unaffected by 
head direction during free foraging in a large 
cylinder67. Perplexity about the mechanism 
of place cells was further increased by the 
fact that place cells had a sort of ‘memory’: 
they rotated their fields when external cues 
were rotated but continued to fire in relation 
to the last-seen cue location when the cues 
were removed68,69. Indeed, early studies indi-
cated not only that place cells continued to 
fire in the ‘correct’ location in total darkness 
but also that fields could be formed when ani-
mals were introduced to an environment in 
darkness and were minimally affected when 
the lights were subsequently turned on70. 
Nevertheless, place fields became linked to 

Figure 2  Place cells. (a) First place cell described4. Arrows and letters mark positions at which the 
animal was restrained as it was pushed or coaxed around the test platform. Firing rate of the unit is 
illustrated by the frequency histograms in the middle of the figure. Letters correspond to positions, and 
lines indicate periods of restraint. Bottom lines show spikes at the onset of the unit response at A (1) 
and during the absence of a response at D (2). Calibration bar, 400 ms. Note that the cell responds 
selectively at only a few positions. O’Keefe and Dostrovsky reported 8 units of 76 recorded hippocampal 
cells that responded solely or maximally when the rat was situated in a particular part of the testing 
platform and facing in a particular direction. Note that the single-electrode technology available to the 
authors at the time likely precluded regular good isolation of cells, which may have limited the number 
of clear ‘place’ responses observed. (b) A place field as typically displayed today. Top: rat’s trajectory in 
gray; spike locations superimposed as black dots. Bottom: color-coded rate map; dark red is maximum 
rate; blue is silence. Regions not visited in black. (c) Left: the book by John O’Keefe and Lynn Nadel 
was long a ‘bible’ in the study of spatial coding in the hippocampal formation. Right: Nadel (left) and 
O’Keefe (right) during preparation of the book. Photo taken by Dulcie Conway around 1975, reproduced 
here courtesy of John O’Keefe264. Panel a reproduced with permission from ref. 4, Elsevier.
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the basic properties of head direction cells did 
not appear until 1990, in joint work by Ranck, 
Taube, and Muller6,7. By that time, it was 
already recognized that the basis of the head 
direction signal was likely integration of head 
angular velocity, and the outline of a model for 
how this integration was performed using con-
junctive head direction × head angular veloc-
ity cells (observed in dorsal presubiculum and 
parietal cortex) was proposed18.

To many investigators, the foregoing 
observations collectively pointed almost 
inescapably to the hypothesis that the pri-
mary determinant of the cognitive map is 
some form of coordinate system in which 
head angular velocity and linear velocity are 
integrated over time to express displacement 
and orientation from a starting point (path 
integration)19–21,90,91 (Fig. 5). According to this 
view, the path-integration mechanism assigns 
place fields based on motion integration.  
In the absence of external stationary input, 
errors from noise in the self-motion integra-
tion process accumulate, and place fields (and 
head direction tuning curves) would start to 
drift. However, in environments with salient 
cues, rapidly formed associations between 
cues and place cells enable stabilization of the 
firing fields, and previously formed maps can 
be recalled from session to session10,19–21,90, 
possibly cued by landmark information con-
veyed through the dorsal presubiculum92. 
Nevertheless, there is also some support for the 
idea that place cells are formed by integration of 
salient sensory inputs, independently of move-
ment. One of the main observations presented 
in favor of this concept is that place fields could 
be seen to expand71 or stretch93 in response to 
corresponding distortions of the enclosure in 
which recordings took place. However, such 
distortions do not occur when the animal is 
introduced ab initio into the distorted envi-
ronment, only when the animal has first expe-
rienced the undistorted version. Stretching or 
expanding can thus be seen as a result of the 
external inputs attempting to correct the path 
integrator based on prior associations90.

During the past decade, virtual envi-
ronments have enabled investigators to 
dissociate with increased rigor the relative 
contributions of self-motion inputs and 
stationary landmarks. Typically, head-fixed 
mice or rats run on an air-cushioned ball or 
a circular treadmill while visual flow is pro-
jected onto an immersive screen at a rate that 
directly reflects the animal’s running speed 
and direction, emulating the sensory-motor 
coupling of the real world39,40. When the 
virtual environment is linear, as on a tread-
mill, hippocampal place cells exhibit firing 
fields that depend on distance moved94,95 or 

began to focus on how place cells might be 
synthesized as higher-order integrators of 
sensory data, perhaps endowed with memory 
properties. However, this sensory-integration 
approach changed, literally overnight, when 
James Ranck brought a video of a recorded 
head direction cell to the 1984 Society for 
Neuroscience meeting87 (Fig. 3). Head direc-
tion cells are cells that fire specifically when the 
animal faces a certain direction5–7 (Fig. 3a,b).  
Ranck first encountered these cells in the dor-
sal presubiculum—almost by accident, in an 
experiment in which electrodes targeted to the 
subiculum went astray87—but they were later 
observed across a wide network of cortical and 
subcortical regions88,89. In the same way that 
place cells covered all locations of an environ-
ment, the preferred firing directions of head 
direction cells were distributed evenly around 
angular space, enabling precise read-out of 
head direction in neural networks down-
stream of head direction cells. If the brain was 
endowed so clearly with an internal compass, 
as suggested by Ranck’s 1984 movie, the idea 
that it also had a map became much more pal-
atable. However, the first full publication on 

salience79 but varied systematically along the 
septotemporal axis of the hippocampus80,81; 
in rats with age-related memory impair-
ment82 or with NMDA receptors blocked83, 
place fields appeared perfectly normal in a 
novel environment but could be completely 
rearranged when the animals were returned 
to the same environment after even a short 
delay; the place field map as a whole dynami-
cally expanded when motor and vestibular 
information about movement speed was dis-
rupted, in the absence of changes in landmark 
inputs84; place cells shut off completely when 
animals were restrained from locomotion85; 
and finally, the variation in scale of place 
fields along the hippocampal septotemporal 
axis was strongly correlated with the gain of 
physiological speed signals86.

In spite of gradually accumulating evidence 
for an, in many ways, nonsensory origin of 
spatial receptive fields in the hippocampus, 
the lack of proper quantification prevented a 
general acceptance of this idea, and much of 
the initial effort was thus spent on proving that 
the signal was indeed spatial. As this skepti-
cism was gradually overcome, investigators 
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Figure 3  Head direction cells6. (a) Firing rate as a function of head direction for two representative 
cells from two different animals. (b) A head direction cell firing rate in polar coordinates. Peak firing 
rate, in the left orientation, is 6 Hz. (c) Jeffrey Taube (left) and James B. Ranck Jr. (right), at SUNY 
Downstate Medical Center in Brooklyn., N.Y., in 1987. Photo courtesy of Jeffrey Taube. Panel a 
reproduced with permission from ref. 6, “Head-direction cells recorded from the postsubiculum in 
freely moving rats. I. Description and quantitative analysis,” J.S. Taube, R.U. Muller & J.B. Ranck Jr., 
1990, in Journal of Neuroscience, Vol. 10, pages 420–435.
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path-integrator coordinates likely remain con-
sistent, changes in external input or, indeed, 
internal variables such as motivation, working 
memory, or action plans, can result in dramatic 
changes in firing rate while firing location 
remains unaltered107–110. Leutgeb et al. sug-
gested that rate remapping might be the cause 
of apparent partial remapping or direction 
dependency on linear tracks. The role of the 
path-integrator coordinates in governing rate 
versus global remapping was fairly decisively 
demonstrated by Colgin et al.111, who showed 
that when environmental shape was gradually 
morphed between a circle and a square, abrupt, 
global remapping only occurred if the rats had 
previously been allowed to locomote between 
a circle and a square via a connecting tunnel. 
When rats were pretrained on the two shapes 
in the same location, only rate remapping was 
observed. Thus, it was the path integrator that 
determined whether global or rate remapping 
was observed.

is often seen when the animal is placed in 
nonuniform environments104,105 or in cases 
of deficient plasticity as discussed above82,83. 
The concept of remapping was clarified con-
siderably by several experiments that followed. 
In 2005, Leutgeb et al. showed that, when the 
cues in the recording chamber or its shape were 
radically changed between sessions that took 
place in the same physical location, CA1 and 
CA3 place cells underwent substantial changes 
in their firing rates, without changing their 
firing locations106 (Fig. 6c). These changes 
could be sufficient to make a field appear to be 
present in only one condition, unless the rate 
map graphs were rescaled. In contrast, when 
the recordings took place in identical appara-
tus located in two separate rooms, the place 
field distributions became completely uncor-
related. Leutgeb et al. made the distinction 
between ‘rate remapping’ for the former situa-
tion and ‘global remapping’ for the latter. Thus, 
it appears that, under conditions in which the 

stationary cues on the screen94, with some 
variation between cells94. Reducing the gain 
of ball-to-virtual-scene movement causes 
place fields to move toward the start of the 
virtual track, as expected if firing locations 
are determined by self-motion, but the shift 
is generally smaller than expected from 
movement distance alone, pointing to an 
additional role for visual inputs94. The dual 
dependence on self-motion cues and external 
cues confirms earlier studies in which these 
sets of inputs were disentangled in real envi-
ronments73,74,93. However, when the virtual 
environment is made two-dimensional and 
movement of the head remains restricted, 
localized firing breaks down, although a 
small influence of distance traveled is detect-
able96. In contrast, when body and head rota-
tion is unconstrained, stable position coding 
persists97. Together these studies point to 
vestibular signals (which are impoverished 
during head fixation) as a critical source for 
integrating velocity and direction signals into 
a coherent two-dimensional representation, 
in agreement with earlier work showing that 
place fields are disrupted following inactiva-
tion or lesions of the vestibular system98,99.

Remapping: global, partial, local, and rate
In the late 1980s, Muller and Kubie began a 
series of investigations on the effects of chang-
ing the most salient visual cues in a cylindri-
cal environment and introducing various local 
cues71,72,100–102 (Fig. 6). As alluded to above, 
cue-card rotations, changes in the size or 
color of the cue card, or even removal of the 
cue card altogether rarely changed the radial 
coordinate of the field but could change the 
angular coordinate, completely unpredictably 
in the case of complete removal of the cue card 
when the rat was not present (Fig. 6b). They 
coined the term ‘remapping’ to describe any 
manipulation-induced changes in the firing of 
place cells. These could include mild changes 
in the firing characteristics in a few cells, such 
as when new objects or walls were placed in a 
cell’s place field, up to radical changes in the 
location of firing, including the disappearance 
of a field altogether, which was sometimes 
observed when the environmental shape was 
changed or visual cues substantially altered.

Whether sets of place cells remapped 
completely or only partially depended on the 
experimental conditions. The terms ‘global’, 
‘partial’, and ‘local’ remapping were introduced 
by Knierim and McNaughton103 in an attempt 
to distinguish situations in which only fields 
near a specific, manipulated cue changed from 
situations in which there was a general (partial 
or complete) rearrangement of fields through-
out the environment. Such limited remapping 
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Figure 4  Ensemble recording technology. (a) The principle of tetrode recording proposed by McNaughton 
et al.32 exploits the variation in extracellular spike height as a function of distance to the recording  
site to resolve multiple single units in structures such as hippocampus, where the neurons are fairly  
tightly packed. Example of spike amplitude clusters from a tetrode recording showing two of the four 
spike-amplitude dimensions. The corresponding spike waveforms are shown on the right.  
(b) A 48-channel, 12-tetrode probe array (hyperdrive) from ca. 1995. This system exploited the flexibility 
of wire tetrodes, which allowed researchers to advance them by pushing them through gently curving 
tubes (like a mosquito proboscis). (c) Multitetrode recording made it possible to record from more than 
100 hippocampal neurons simultaneously. Here we show 80 firing rate maps from simultaneously 
recorded CA1 cells as the rat ran in a 70 × 70-cm arena33. Firing rate is color-coded from blue (silent) 
to red (maximum rate). Note that many CA1 cells were virtually silent in this particular arena, whereas 
about 40% had place fields. Six of the recorded cells correspond to fast-spiking cells (interneurons), 
which have much less spatial selectivity. (d) Examples of the actual (blue) spatial trajectory of the rat 
and the trajectory reconstructed from the population firing-rate vector (red). Panel a reproduced with 
permission from ref. 80, “Comparison of spatial firing characteristics of units in dorsal and ventral 
hippocampus of the rat,” M.W. Jung, S.I. Wiener & B.L. McNaughton, 1994, in Journal of Neuroscience, 
Vol. 14, page 7347–7356. Panels c and d reproduced with permission from ref. 33, AAAS.
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information storage” and that “the informa-
tion leaving the hippocampus through the 
subiculum seems to consist of much more 
highly distributed representations, con-
structed perhaps through the convergence 
and disjunction of a number of unrelated 
hippocampal place cells”137. For a long time, 
however, these ideas did not fully catch the 
attention of the place cell community, which, 
with few exceptions, retained its focus on the 
readily accessible CA1 area.

In a similar manner, until the 1990s, there 
was minimal focus on computational opera-
tions outside the hippocampus and computa-
tions underlying place-field formation were 
at risk of being erroneously attributed to 
the hippocampus itself. The focus on a hip-
pocampal origin of the place cell signal was 
further influenced by the observations of a 
relatively small set of tetrode studies in the 
entorhinal cortex, the major cortical input 
to the hippocampus. These studies showed 
that entorhinal cells were spatially modu-
lated but that their firing fields were broad 
and dispersed, with little spatial selectivity in 
standard laboratory environments, and the 
fields seemed not to remap between envi-
ronments22,137,139. This, together with the 
observation that CA1 place fields persisted 
following large lesions of the dentate gyrus140, 
pointed to the remaining associative net-
works of CA3 as one possible origin for the 
formation or learning of the sharply localized 
place signals seen in CA1. The validity of this 
interpretation was questioned, however, by 
the fact that partial inactivation of CA3 cells, 
following inhibition of septal inputs, failed to 
remove spatial firing in CA1141.

Given the uncertainty about how CA3 
contributed to the CA1 place signal, Brun 
and colleagues142 decided to record place 
cells in CA1 after the CA3 input to these cells 
had been entirely removed by excitotoxins 
or by knife cuts that completely separated 
CA1 from CA3 as well as from dentate gyrus 
and subcortical afferent regions. Retrograde 
tracer injections in CA1 verified that no input 
was spared. Confirming the interpretation 
of the septal-inactivation work141, the study 
found, in 2002, that CA1 place cells do not 
require input from CA3 to maintain reason-
ably selective spatial firing. This suggested 
either that place fields were generated within 
the limited circuitry of the CA1 itself or that 
place cells in CA1 received spatial input from 
the entorhinal cortex via temporoammonic 
projections that survived the CA3–CA1 tran-
section. These observations were made only 
a few years after theoretical studies3,21,90,143 
proposed that the path integrator might 
located outside the hippocampus—in the 

place cells that leads to robust rate-remapping 
is also strong enough in some cases to move 
the fields independently, depending on which 
type of inputs dominate the synaptic input 
vector of a given cell. The fact that this effect 
occurs predominantly in CA1, which lacks 
the potential stabilizing effects of recipro-
cal excitatory connections present in CA3, 
tends to support such a view127. A second 
possible challenge is the fact that place fields 
can be expressed in CA1 under conditions in 
which the medial entorhinal cortex (MEC) 
is completely lesioned128. This suggests that 
localized firing may itself be generated from 
alternative inputs, such as from weakly spa-
tially modulated neurons in the lateral ento-
rhinal cortex (LEC)129, which may provide 
hippocampal cells with path-integration-
independent sensory inputs necessary for 
efficient rate coding130. However, even under 
conditions in which MEC inactivation does 
not impair hippocampal place selectivity, the 
intervention causes instant remapping131,132, 
suggesting that MEC is obligatory for acti-
vating the correct place map. This does not 
preclude, of course, that place maps are also 
stored in the CA3 network (for example, the 
‘charts’ of Samsonovich and McNaughton90), 
or that, in the absence of a strong MEC input, 
CA3 attractor dynamics may result in the 
recall of some previously constructed chart 
in the novel context.

Moving from hippocampus to entorhinal 
cortex
Until the 1990s, for primarily technical rea-
sons, most recording studies had been con-
fined to CA1 of the dorsal hippocampus, in 
spite of the fact that hippocampal subfields 
may have distinct computational functions. 
David Marr had, in the early 1970s, already 
pointed to the unique properties of area CA3 
as a recurrent network capable of auto-associ-
ation, pattern formation, and pattern comple-
tion133. His work was followed by theoretical 
investigations pointing to the possible role of 
the dentate gyrus in pattern-separation pro-
cesses needed to counteract memory interfer-
ence at subsequent stages of the hippocampal 
circuit134–136. An additional, striking property 
that was discovered to differentiate between 
hippocampal subfields was coding spar-
sity. Contrary to some expectations, in the 
successive transformations from CA3 to CA1 
to subiculum, mean firing rates increased, and 
coding became less sparse and less spatially 
selective137,138. This observation led Barnes 
et al. to conclude that “discrete spatial repre-
sentations are constructed within early stages 
of the process, for some purpose intrinsic to 
the hippocampus itself, possibly that of rapid 

The presence of a nonspatial code on top 
of the place code (rate remapping) is consis-
tent with dozens of studies, starting in the 
1980s, showing that place cells encode more 
than space. Cells with clear place fields in one 
task were shown in other tasks to respond in 
a time-locked manner to various nonspatial 
features of the environment or the experi-
ence, such as odors112–114, textures115, con-
ditioned tones28,116,117, or temporal stages of 
the experiment118. However, in combination 
with the remapping studies, these observa-
tions suggest that hippocampal cells respond 
conjunctively to spatial and nonspatial vari-
ables, with the latter represented as changes 
in the rate distribution. Experience-related 
changes in rate distribution can also account 
for moment-to-moment variability of firing 
rates within place fields (overdispersion)119. 
The conjunctive nature of spatial and event-
related firing is demonstrated elegantly in a 
more recent study of hippocampal activity 
after systematic variation of location, food 
cups (objects), and color or pattern of the 
recording box (context)120. The majority of 
cells in this study fired at specific locations 
but with rates depending on context and 
objects. Thus, when location is clamped, 
unique constellations of cues give rise to 
unique rate patterns, implying that each 
experience is characterized by its own hip-
pocampal–neocortical output, even when 
those experiences occur at a fixed location. 
This uniqueness is a necessary condition for 
the widely held view that hippocampus may 
provide an index that links memory attributes 
distributed widely over neocortex121–123. The 
wide range of stimulus configurations that 
activate hippocampal firing, over and above 
space, has been taken as evidence for a broad 
involvement of the hippocampus in episodic 
memory, where space is just one of several 
attributes of the encoded representation48.

Lest one conclude from the foregoing that 
the phenomenon of remapping or the neces-
sity or dominance of path integration is now 
fully understood, it is necessary to consider 
some remaining flies in the ointment. First, 
Tanila, Shapiro, and Eichenbaum124,125, and 
later Knierim126, have shown that, when an 
animal is highly familiar with the local and 
distal cues in an environment, rotating these 
cue sets relative to each other can cause some 
CA1 cells to follow the local set while others 
simultaneously follow the distal set (still oth-
ers may remap). Such discordant responses 
are stronger in CA1 than CA3 (ref. 127). 
These effects are not inconsistent with a path-
integration-based origin of the place fields, if 
one assumes that the subsequent, plasticity-
dependent association between cues and 
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cells, that the firing fields of individual cells 
created a grid-like periodic hexagonal pat-
tern tiling the entire space available to the 
animal9 (Fig. 7a). These cells were designated 
as grid cells. For each cell, the grid could be 
assigned a phase (the x,y locations of the grid 
vertices), a wavelength or spacing (the dis-
tance between the vertices), and an orienta-
tion (how much the axes through the vertices 
were tilted compared to an external reference 
line). In addition, the peak firing rates varied 
between fields9,145. The spatial periodicity of 
the pattern was so striking that the authors 
were concerned, initially, that it was some sort 
of artifact. However, the grid pattern was soon 
found by other labs too129,146.

One of the most striking aspects of the 
grid cell finding was that the spatial periodic-
ity was maintained despite constant changes 
in the animal’s running speed and running 
direction. The cells fired at the same verti-
ces regardless of how much time and space 
the rat had traveled between each crossing, 
implying that grid cells had continuous 
access to information about distance and 
direction moved. The persistence of grid 
fields9 and place fields70 when rats run in 
darkness is consistent with the primary role 
that such self-motion information might 
have in determining firing locations, as is the 
fact that grid patterns unfold immediately in 
new environments9 and are expressed with 
similar phase relationships between cell 
pairs in all environments tested145. It should 
be added, for the sake of balance, that stable 

most extensively to the dorsal hippocampus, 
where the most sharply tuned place cells of 
the hippocampus are located80,81. This led us, 
eventually, after the turn of the millennium, to 
target tetrodes to the dorsal MEC, the origin 
of the majority of inputs to the dorsal hip-
pocampus8,144, a region of MEC so far not 
touched by electrodes in vivo.

Grid cells: a metric for space?
Recordings in dorsal MEC soon showed that 
cells in this region have sharply defined fir-
ing fields, much like those in CA1 of the dor-
sal hippocampus, except that each cell had 
multiple firing fields, distributed all over the 
environment8. These findings, reported in 
2004, pointed to the MEC as a key element of 
a circuit for space, but the nature of the ento-
rhinal representation remained elusive.

A striking characteristic of many spatially 
modulated MEC cells was that the distribu-
tion of the multiple firing fields of each cell 
was more regular than expected by chance8. 
When the data from MEC were presented 
at the 2004 Society for Neuroscience meet-
ing, they created considerable excitement. 
Among those who were most excited was 
Bill Skaggs, who thought he saw hexagonal 
symmetry, inspiring the Mosers and their 
students, Hafting, Fyhn, and Molden, to 
increase the size of the recording arena and 
visualize the firing pattern once and for all. 
Using a newly constructed 2-m-wide circular 
recording cylinder, these authors found, in a 
substantial fraction of MEC superficial-layer 

subiculum, the entorhinal cortex, or both—
because correlations between firing fields in 
these regions appeared to be invariant across 
contexts22,23, as might be expected for a path-
integration-based representation. At this time 
it was clear that the entorhinal cortex, the 
main cortical input to the hippocampus, was 
worth a revisit.

An important additional inspiration for 
the renewed interest in entorhinal cortex was 
Menno Witter’s extensive review of entorhi-
nal–hippocampal systems144. Witter pointed 
out that dorsal and ventral regions of the hip-
pocampus receive inputs from and project 
back to different regions of the entorhinal cor-
tex, in a topographical manner, with increas-
ingly dorsal hippocampal regions mapping 
onto areas that were increasingly closer to 
the rhinal sulcus, or increasingly more dorsal 
within the MEC. In 1990, based on his review 
and after direct consultation with Witter, two 
of us (M.-B.M. and E.I.M.) realized that in 
earlier MEC recordings for which histology 
was available22,139, cells had been recorded 
quite far outside the area of MEC that receives 
most visual–tactile information and projects 

a

c d

bFigure 5  Path integration. (a) Illustration of the 
Mittlestaedt & Mittlestaedt 1980 experiment12. 
This experiment showed that rodents can perform 
angular and linear path integration. A female 
mouse returns directly to her nest after finding a 
lost pup in total darkness but makes a heading 
error if she is rotated below vestibular threshold 
before starting the inbound journey. (b) The Skaggs 
et al. continuous-attractor model from 1995 
proposed to explain how head direction cells arise 
through integration of head angular velocity signals 
from the vestibular system18,232. Updates in the 
head direction (attractor) layer were performed by 
a hidden layer of cells conjunctive for head angular 
velocity and starting head direction, whose return 
projections to the head direction layer are offset 
according to the sign of rotation. Such conjunctive 
cells have been found in several regions of the 
brain. (c,d) The continuous-attractor model for 
path integration in two dimensions, as proposed  
by McNaughton et al. in 1996 (ref. 19) and 
simulated by Samsonovich and McNaughton in 
1997 (ref. 90). H′, head angular velocity; H′H, 
conjunctive cells; H, head direction; P, place 
cells; M, speed cells; PH×M, cells conjunctive 
for place and head direction and modulated 
by speed; V, external sensory inputs that were 
assumed to associatively bind to both H cells 
and P cells to enable correction of drift error in 
the path integrator and to enable resetting of the 
integrator upon entry to a familiar environment. 
Panel a reproduced with permission from ref. 91, 
Nature Publishing Group. Panel b reproduced with 
permission from ref. 232, MIT Press. Panels c and 
d reproduced with permission from ref. 90, “Path 
integration and cognitive mapping in a continuous 
attractor neural network model,” A. Samsonovich 
& B.L. McNaughton, 1997, in Journal of 
Neuroscience, Vol. 17, page 5900–5920.
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some conditions, grid cells appear to be 
fragmented or distorted even after extended 
training in a constantly shaped environment. 
When rats are tested in environments with 
discrete compartments156 or irregular geo-
metric shapes157, the strict periodicity of the 
grid pattern is often gone. In particular, it 
has been shown that walls exert strong local 
influences on the grid pattern157,158, caus-
ing distortions and rotations that can be 
described effectively as a shearing process158. 
The common presence of fragmented and 
distorted grids has raised questions about 
whether grid cells are useful as a source of 
metric information157. Countering these 
doubts, theoretical analyses have shown that 
precise symmetry may not be necessary for 
accurate population-based decoding of posi-
tion, distance, and direction if the grid cells 
are all distorted in the same way159. Direct 
behavioral evidence is needed, however, to 
establish how well spatial metrics can be 
decoded from distorted grid patterns.

Network properties of grid cells
Grid cells differ from place cells in more than 
one way. Not only do they have periodic firing 
fields but the relationship between the firing 
fields of different cells also follows a different 
rule. Whereas place cells often remap com-
pletely between environments and multiple 
fields can appear in large environments, with 
no more overlap in the subset of active cells 
than expected by chance106,153,160–162, the 
ensemble activity of grid cells is normally 
maintained coherently from one environment 
to the next, without changing phase or orienta-
tion relationships between cells145,163, much 
like in early recordings from MEC cells before 
grid cells were discovered22. The coherence 
of the grid map is particularly strong within 
ensembles, or modules, of similarly scaled 
grid cells154. A similar degree of coherence is 
present among head direction cells6,7,77,78,164, 
as well as in the more recently discovered 
populations of entorhinal border cells and 
speed cells165,166. The coherence of grid cells 
and head direction cells is state-independent 
and persists during sleep167–169. Collectively, 
these findings point to a fundamental differ-
ence between hippocampal and entorhinal 
spatial maps: hippocampal circuits are high-
dimensional and capable of storing a very large 
number of patterns, while MEC maps are low-
dimensional and rigid, expressing the same 
intrinsic structure in all behavioral contexts, 
as would be expected for a path-integration-
based map that keeps metric properties con-
stant across contexts and environments.

It was clear from the outset that grid cells 
come in different varieties—with different 

concluded that “place field distributions can 
best be described by a random selection with 
replacement”152. A decade later, with the new 
data from the entorhinal cortex, it was clear 
that grid cells may supply the brain’s spatial 
map with a coordinate system not available 
from place cells in the hippocampus, given the 
apparently random allocation of place fields 
to position153 and the related extreme remap-
ping across environments.

It soon turned out that if grid cells supply 
a metric, this metric is not always constant 
over time or locations. Experiments showed 
that when environments were stretched or 
rescaled, the spacing of the grid increased 
in the extended direction146,154, in concert 
with either scaling or remapping in hippo-
campal place cells155. However, these dis-
tortions of the grid pattern were recorded 
when the environment was changed after 
the animal was already familiar with it, sug-
gesting that grid maps might be formed by 
path integration but linked to external cues 
in such a way that the latter can override 
the path-integration dynamics90. Yet under 

grid fields have not yet been identified in 
darkness in mice147,148. The reason for the 
possible species difference is not known. 
Associations between path-integration coor-
dinates and stationary cues may be weaker in 
mice149, or grid fields of mice may simply be 
harder to visualize at times of increased jitter, 
given their smaller field size and shorter grid 
spacing compared to rats150.

Based on the possible role of self-motion 
information in the formation of grid patterns, 
the three of us suggested, in 2006, that grid 
cells are part of an intrinsic path-integration-
based metric for space91. A similar proposal 
was made the same year by a different group of 
investigators151. Both concepts bore similari-
ties to the mechanism proposed a decade ear-
lier from studies of place cells19,90. In fact, by 
implementing their attractor map model for 
path integration on a torus, Samsonovich and 
McNaughton90 indirectly predicted periodic 
place fields, although, at the time, the idea 
seemed to them too preposterous to publish, 
and an attempt to discover such periodicity 
in CA1 by running rats down a long hallway 

Figure 6  Remapping. (a) John Kubie and Robert Muller from SUNY Downstate Medical Center, NY.  
Picture courtesy of John Kubie. (b) Global remapping apparently induced by changing only the color of  
the recording environment100. Rate maps are shown for the same place cell recorded in a white cylinder 
(left) and a black cylinder (right). Firing rate is color-coded from yellow (no firing) to dark blue or black 
(high rate). The cell fires in different regions of the cylinder (some cells are active in only one cylinder) 
despite changing only the color of the box. We note that the authors later confirmed, anecdotally, that 
they had pretrained the animals in the white and black cylinder in two different rooms, which would have 
allowed differences in path-integrator coordinates to control the global remapping, as later shown by Colgin 
et al.111. (c) Rate remapping induced by changing the color of the recording environment while keeping 
its location constant106. The rat’s trajectory in a white box and a black box is shown for three cells, with 
spikes superimposed as red dots. Note that changing only the color of the box causes substantial change 
in the distribution of firing rates across cells, but firing locations are retained. Rate maps in a adapted with 
permission from ref. 100, Wiley. Panel c adapted with permission from ref. 265, Elsevier.
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direction cells (Fig. 7e) throughout MEC 
layers III–VI, as well as in presubiculum and 
parasubiculum189, pointing to a computational 
mechanism for imposing the angular compo-
nent of path integration on grid cells19,91.

Shortly after head direction cells were 
observed in recordings from the MEC, 
another cell type appeared on the entorhinal 
stage. These cells, named border cells, fired 
exclusively along geometric borders of the 
local environment: along one or sometimes 
several walls of the recording enclosure or 
along the edges of a platform165,190 (Fig. 7f). 
Border cells were distinct from grid cells—a 
border cell could never be transformed to a 
grid cell or vice versa—but there was overlap 
between border cells and head direction cells, 
i.e., some (conjunctive) border cells fired 
within their border fields only when the ani-
mal was running in one direction165. Border 
cells intermingled with grid cells and head 
direction cells, particularly in layers II and III 
of MEC165, suggesting that the three types of 
cells interact. However, while grid cells and 
head direction cells seemed to be confined 
to parahippocampal—and not hippocam-
pal—regions, cells with border-like firing 
fields were also observed in the hippocam-
pus191 and the subiculum192,193, raising the 
possibility that firing patterns of entorhinal 
border cells are inherited by at least subsets 
of neurons in the hippocampus and subicu-
lum93,194, or vice versa.

Border cells are sparser than grid cells and 
head direction modulated cells, and they may 
comprise less than 10% of the local principal 
cell population165, but this does not negate 
a significant role in shaping hippocampal–
entorhinal representations. The discovery 
of border-like properties in several regions 
of the hippocampal formation confirmed, to 
some extent, predictions from computational 
models dating back to the observation that the 
location and shape of place fields are deter-
mined by local boundaries of the recording 
environment93. Based on this observation, 
O’Keefe, Burgess, and colleagues proposed 
a model in which place fields are formed by 
summation of tuning curves from upstream 
‘boundary vector cells’, cells with firing 
fields tuned to the animal’s distance from a 
particular wall or boundary in the environ-
ment93,192,194. Boundary-vector-like cells, 
with distance-dependent tuning curves, were 
reported in the subiculum193, but, given the 
unidirectional wiring of the hippocampal cir-
cuit, these cells are unlikely to provide major 
input to hippocampal place cells. Such inputs 
might instead come from border cells in the 
MEC. On the other hand, border cells in MEC 
lack distance tuning, firing only along the bor-

in MEC and CA1 cells176. Alternatively, and 
more in line with the sensory-integration 
ideas of the 1980s, place fields might be 
generated from any weak spatial input, so 
long as the hippocampal circuit contains 
mechanisms for amplifying a subset of these 
inputs, either through Hebbian plasticity or 
through local recurrent networks177–180. The 
merits of these two classes of models remain 
to be determined. Experimental studies have 
shown that MEC grid cells are not necessary 
for the emergence of spatially tuned firing in 
place cells. Place fields have been reported 
to persist when the spatially periodic firing 
pattern of MEC grid cells is compromised 
by inactivation of septal inputs181,182, and 
in young animals, place cells acquire stable 
firing fields before sharp periodic firing pat-
terns emerge in grid cells183,184. Inactivation 
or damage of the MEC is not sufficient to 
disrupt place cell firing in the hippocam-
pus128,131,132,185. However, neither of these 
observations rules out grid cells as a key 
determinant of spatially selective firing in 
the hippocampus. The hippocampus receives 
input from multiple spatially tuned entorhi-
nal cell types, including not only grid cells 
but also border cells and spatially modulated 
cells with nonperiodic firing patterns186, 
as well as weakly place-tuned cells in the 
LEC129. Place fields may be formed from 
any of these inputs, by more than a single 
mechanism. Even pure rate changes among 
the MEC inputs are sufficient to completely 
alter the activity distribution among place 
cells in the hippocampus185. The mecha-
nism for grid cell to place cell or place cell 
to grid cell transformation may have many 
faces, and understanding it may require that 
circuitry is disentangled at a higher level of 
detail, possibly in terms of inputs and out-
puts of individual cells.

A zoo of cell types
Grid cells are abundant, especially in the 
superficial layers of the MEC, but not all cells 
are grid cells. As early as 2006, it was clear that 
in layers III–VI of the rat MEC, a number of 
cells respond to head direction187 (Fig. 7d),  
very much like the head direction cells 
reported in the neighboring presubiculum 
and parasubiculum years before5–7,188. The 
directional tuning curves of many entorhinal 
head direction cells were found to be broader 
than in presubiculum and parasubiculum, and 
many head direction cells responded conjunc-
tively to location, expressing grid-like firing 
fields but discharging within each grid field 
only when the rat’s face pointed in a certain 
direction187. Head direction cells intermingled 
with grid cells and conjunctive grid × head 

phases, wavelengths, orientations, and field 
amplitudes—and that the network of grid 
cells is anatomically organized according to 
some but not all of these variables8,9. While 
the phase of the grid pattern appeared to be 
distributed randomly among cells on the 
same tetrode, the scale of the grid showed 
a striking increase from dorsal to ventral 
recording locations in the MEC (Fig. 7b). 
In both respects, the organization of grid 
cells was reminiscent of that of place cells, 
which also appear to have random spatial 
relationships160,170,171 but show an increase 
in scale from dorsal to ventral80,81. In the 
hippocampus, the scale increase is strongly 
coupled with decreasing gain of self-motion 
parameters84,86. A similar gain-change may 
underlie the scale change in MEC, consistent 
with the hypothesis that the overall system 
parameters are dominated by path-integra-
tion mechanisms.

One question that was not settled by the 
earliest grid cell recordings was whether the 
scale gradients were smooth and gradual or 
instead consisted of multiple discrete maps 
with distinguishable scale and self-motion 
gain, the latter being a necessary predic-
tion of attractor-map-based models91,172. 
In 2007, Barry and colleagues showed, with 
a small cell sample, that values of grid spac-
ing were not evenly distributed146. In 2012, 
Stensola and colleagues were able to record 
activity from up to 180 grid cells in the same 
animal: enough to determine once and for all 
whether grid cells clustered in groups with 
similar properties154. Stensola et al. found 
that grid cells were organized in at least four 
modules, each with their own scale, orienta-
tion, and asymmetric distortions (Fig. 7c).  
The scale change across successive grid 
modules could be described as a geometric 
progression with a constant scale factor154, 
confirming the prior predictions91,172, as well 
as theoretical analyses pointing to nested and 
modular organizations as the most efficient 
code for representing space at the highest-
possible resolution with the lowest-possible 
cell number173,174.

The discovery of grid cells cast new light 
on the mechanisms underlying formation 
of place cells, the very question that moti-
vated the search for spatially modulated cells 
in the entorhinal cortex. The periodicity of 
the firing pattern and the variability of the 
grid scale suggested early on that place cells 
may emerge by a Fourier-like linear summa-
tion of output from grid cells with similar 
phase throughout the environment over a 
range of spatial scales91,175. This summation 
mechanism might be facilitated further by 
coordinated gamma-frequency oscillations 
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grid field locations in open spaces compared 
to locations near the walls199, as well as the 
instability of place fields in open spaces when 
spatially stable information is available only 
from border cells195, speak in favor of a refer-
ence function for environmental boundaries, 
where grid and place representations are reset 
and corrected from drift each time the animal 
encounters a salient boundary.

With the identification of head direction 
cells and border cells, it became clear that grid 
cells have local access to directional informa-
tion, needed for the angular component of 
path integration, as well as to information 
about the geometry of the environment 
needed to prevent drift in the path-integrator 
coordinates. Head velocity signals upstream 
of head direction cells, in the lateral mam-
millary nuclei200 and further upstream in the 
dorsal tegmental nuclei201,202, might enable 
head direction cells to infer direction at the 
timescale of behavior. However, if grid cells 
express path integration, they must also have 
access to information about moment-to-
moment changes in the animal’s speed. Such 
information was known early on to be present 
in the hippocampus, where both place cells 
and fast-spiking interneurons exhibit speed 
tuning30,86,203. Speed-responsive cells have 
similarly been observed in subcortical areas 
directly or indirectly connected with hippo-
campal and parahippocampal regions204–207. 
These cells might feed into the brain’s path-
integration system. Speed tuning of hippo-
campal theta rhythm amplitude is sufficient 
to enable accurate reconstruction of distance 
traveled208, and distance traveled might be 
decoded by integrating the net discharge 
rate of a population of hippocampal cells or 
afferents of the hippocampus.

The observation of speed coding in the 
hippocampus and subcortical areas moti-
vated the search for speed information 
locally within the MEC circuit. By 2006 it 
was observed that some information about 
speed is present in a subset of grid cells, 
especially in layer III and deeper187, but the 
correlations between firing rate and speed 
in these cells were weak and would require 
decoding from large cell numbers to yield 
a reliable momentary speed signal166. We 
now know that the entorhinal cortex has a 
distinct population of cells whose firing rates 
increase linearly with speed166,209. In the 
large majority of speed-tuned MEC cells166, 
firing rates increase linearly as a function of 
speed, up to 30–40 cm per s in rats. A small 
but significant number of cells have negative 
speed–rate relationships166. As in the hip-
pocampus, many of these are fast-spiking 
cells210. The rates of these cells are tuned so 

as well as the strong asymmetries in grid 
patterns caused by environmental bound-
aries157,158, point to a significant role for 
boundaries in defining the location of firing 
in place cells and grid cells, consistent with 
behavioral studies identifying geometry of the 
environment as a determinant of the animal’s 
perception of self-location13,197,198. However, 
these observations are not at variance with a 
path-integration-based account of spatial 
firing of grid cells. Boundaries may serve as 
references for path-integration-based position 
estimates, with resetting of the path integra-
tor and subsequent reduction of error taking 
place regularly near major boundaries or 
landmarks19–21,90. The increased variability of 

ders and not away from them. If border cells 
provide input to place cells, their influence 
might be limited to cells with firing fields in 
the periphery of the recording enclosure, near 
boundaries and not in open spaces. There is 
some indirect evidence for this possibility 
as, in juvenile rats, place cells with fields in 
the center of an open recording environment 
mature at the same slow rate as grid cells195, 
which acquire adult-like hexagonal symme-
try only late in juvenile development183,184. 
Place cells near the borders of the recording 
box appear at an earlier age, similarly to ento-
rhinal border cells196. Regardless of whether 
border cells fulfill criteria for boundary vec-
tor cells or not, the existence of border cells, 
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Figure 7  Grid cells and other functional cell types of the MEC. (a) Firing fields of one of the first grid 
cells reported in 2005 (ref. 9). Left: trajectory of the rat (black) with superimposed spike locations (red). 
Middle: color-coded rate map with peak rate indicated (red, peak rate; dark blue, no firing). Right: spatial 
autocorrelogram, color-coded from blue (r = –1) through green (r = 0) to red (r = 1). (b) Sagittal section 
of the rat brain showing the hippocampus and the MEC (red) and grid cells of different scales recorded 
at three locations on the dorsoventral axis (trajectories with spike locations as in a). Note the expansion 
of grid scale from dorsal to ventral MEC. (c) Grid cell modules154. Top: autocorrelation plots showing 
grid patterns at successive positions along the dorsoventral axis of MEC. Bottom: grid size, defined as 
the distance between grid vertices, as a function of position along the dorsoventral MEC axis (positions 
rank-ordered). Note that the increase in grid size is not linear but discretized, following a geometric order 
with a factor of approximately √2. Mean grid size for each module is indicated by stippled lines. Such 
modularization is an essential prediction of the attractor map theory if it is to account for variable spatial 
scaling91. (d) Head direction cell in layer V of MEC. (e) Conjunctive grid × head direction cell in layer III 
of MEC. (f) Border cell165. Color-coded rate maps showing a cell with selective firing along one of the 
walls of the recording environment. Top: open environment. Bottom: rate map following the insertion 
of a wall. Note that the border cell responds to the same side of the wall insert as the main wall in the 
environment. Panel a reproduced with permission from ref. 9, Nature Publishing Group. Panel b adapted 
with permission from ref. 91, Nature Publishing Group. Panel c adapted with permission from ref. 154, 
Nature Publishing Group. Panels d and e adapted with permission from ref. 187, AAAS. Panel f adapted 
with permission from ref. 165, AAAS.©
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The role of theory: mechanisms of place 
cells, head direction cells, and grid cells
The abundance of functionally dedicated cell 
types in the entorhinal–hippocampal system 
has prompted investigators to look for the 
neural mechanisms that enable their charac-
teristic firing patterns. Mechanisms have been 
sought in the properties of single cells as well 
as in neural networks. While details remain 
elusive, the preceding sections of this review 
have already emphasized how circumstantial 
evidence points to path-integration-based 
attractor-network properties as a key contribu-
tor to pattern formation in the entorhinal–hip-
pocampal space system.

Attractor networks have provided starting 
points for models of localized firing since the 
earliest studies of hippocampal function. In 
1949, Hebb proposed that activity may self-
sustain in networks of recurrently connected 
neurons230. In 1977, Amari took a giant 
step by showing that localized firing can be 
maintained in networks of neurons arranged 
conceptually on a ring with Mexican-hat 
connectivity231. In such architecture, each 
neuron has strong excitatory connections to 
its nearest neighbors, with excitation decreas-
ing with distance along the ring, in contrast 
to inhibition, which is maintained at longer 
distances. Almost 20 years later, Skaggs and 
McNaughton and colleagues232; Zhang233; 
and Redish, Touretzky, and colleagues234 
showed, independently, how the concept of a 
ring attractor with local (Gaussian) connectiv-
ity and global recurrent inhibition could be 
used to explain the emergence of directionally 
specific firing in head direction cells (Fig. 5b).  
The connectivity created a self-maintained 
activity bump, which could be induced to 
move around the ring in accordance with 
external angular velocity signals that were 
transmitted through a hidden layer of con-
junctive head direction × angular velocity 
cells18. The model explained a number of 
features of head direction cells, including 
the persistence of directional phase relation-
ships across conditions and environments. 
Today, more than 20 years after its proposal, 
the key concepts of the ring-attractor model 
for head direction cells remain unchallenged, 
which is remarkable for theoretical models 
in systems neuroscience, and no competing 
models have surfaced. In mammals, the recip-
rocally connected network of the dorsal teg-
mental nucleus and lateral mammillary area 
has been proposed as a location for the ring 
attractor235, and in Drosophila, the concept 
of a ring attractor for directional tuning has 
received its first experimental support in stud-
ies of central body neurons, where a circular 
anatomical arrangement has been shown to 

identity information is added after the fact, 
possibly from LEC129,130,211,212. Like rate 
remapping in place cells216, at least some of 
the CA1 object vector cells appear to require 
extended experience214.

Finally, investigators have identified a 
population of hippocampal cells with activ-
ity defined by the animal’s egocentric ori-
entation to a goal location. Sarel et al.217 
recorded from the CA1 region of flying bats, 
which have hippocampal–parahippocam-
pal spatial representations similar to that of 
rodents218–220. The investigators identified 
a set of cells that responded as a function 
of the animal’s orientation toward a salient 
goal positioned centrally in the environment. 
Although the preferred orientation of the 
cells spanned the full 360° range relative to 
the direction to the goal, a large proportion 
of the cells in this category fired when the 
animal was heading directly toward the goal, 
ramping up their firing as the bat approached 
the goal. A little more than half of the cells 
were also place cells, but a substantial fraction 
did not have any significant tuning to place. 
Cells with essentially the same characteristics 
were recently reported in posterior parietal 
cortex17. Goal-vector cells are reminiscent of 
cells reported in rats in earlier hippocampal 
studies, in which neural firing increased in 
the proximity of a goal73,221–225, and the find-
ing of goal-orientation cells in both parietal 
cortex and hippocampus begs the question 
of which region is ‘copying’ which. Future 
research may determine whether similar 
cells are also present in the MEC circuit and 
whether they remap between goals and envi-
ronments, like place cells, or maintain intrin-
sic spatial and directional relationships, like 
all medial entorhinal functional cell types 
characterized so far.

The multitude of functionally specialized 
cell types in the entorhinal–hippocampal 
space circuit is striking; however, equally 
striking is that many cells still express more 
than one type of information, particularly in 
the intermediate and deep layers of MEC, 
where many grid cells fire conjunctively 
for position and head direction, or posi-
tion and speed, and many border cells are 
direction-selective165,166,187,226. Conjunctive 
cells are recognized as essential ingredients 
of the ‘hidden layer’ for almost any type of 
coordinate transformation or conditional 
association network18,227–229. A challenge 
for future work will be to determine how 
this variety and mixture of differently tuned 
cell types enable a dynamic representation 
of self-position that can be read out to guide 
navigation and memory for a wide variety of 
environments.

strongly to running speed that speed can be 
decoded with extreme accuracy from just 
half a dozen cells166. Tuning profiles (slope 
and y-intercept of the speed–rate relation-
ship) vary between speed cells but remain 
constant across environments and persist in 
the absence of visual cues, pointing to speed 
cells as yet another component of a low-
dimensional path-integration-based position 
map in the MEC166. In CA1, the gain of speed 
tuning varies systematically along the septo-
temporal axis in register with the change in 
spatial scale86. This has yet to be confirmed in 
MEC, but if verified it would strongly support 
the idea that speed cells convey the necessary 
information to set the grid scale.

Taken together, these observations point 
to a network of entorhinal and hippocampal 
neurons in which position, direction, and 
distance are encoded with sufficient accu-
racy to enable dynamic representation of 
the animal’s location in an empty enclosure. 
However, most real-world environments 
differ from experimental settings, in that 
the available space is cluttered with objects. 
Salient objects may serve as references for 
navigation, but little is known about whether 
and how objects are included in the represen-
tation of self-position in the MEC. It has been 
shown that a subset of neurons in the LEC 
respond specifically at the locations of dis-
crete objects in the recording enclosure211,212. 
These neurons increase firing whenever the 
animal encounters an object at a certain loca-
tion, regardless of the exact identity of the 
object. In a subset of these object cells, firing 
even persists for minutes, days, or weeks after 
the object is removed212. Whether and how 
these cells contribute to representation of the 
animal’s own location has remained elusive. 
Theoretical models from the 1990s postu-
lated the existence of cells with place fields, 
defined by the animal’s vectorial relationship 
to salient landmarks in allocentric coordi-
nates213, and such cells are indeed found in 
small numbers in the hippocampus214. These 
cells encode direction and distance from one 
or a small number of discrete objects placed 
at different locations in the recording arena. 
Now new data suggest that a class of MEC 
cells has more general vectorial properties. 
These ‘object vector cells’ have firing fields 
defined by distance and direction from an 
object, regardless of the object’s location 
in the environment and regardless of what 
the object is215. Thus, one main difference 
between object vector cells in MEC and in 
CA1 appears to lie in their object specificity. 
Perhaps, like rate remapping of hippocam-
pal place cells, the coordinate information 
in CA1 is inherited from MEC, whereas the 
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Box 1 Questions for the future
We have listed some outstanding problems in entorhinal–hippocampal space circuits that we believe can be addressed with state-of-the-
art systems neuroscience tools.

1. Path-integration networks and mechanisms of grid cells and head direction cells
The performance of attractor network models for space relies on a unique and testable connectivity between functionally similar cells. 
With state-of-the-art tools for neural imaging, genetic tagging, and structural analysis, it may soon be possible to examine directly, in 
large MEC populations, the probability of connections between functionally identified neurons with various degrees of feature similarity 
and dissimilarity. On a longer time scale, one may hope for a direct visualization, with in vivo microscopy, of activity flow between 
connected mammalian neurons in a way that matches the animal’s movement in space (similar to refs. 236,237 in flies).

2. Development of spatial network architectures
How is the specificity of the hippocampal–entorhinal spatial neural network architectures achieved during development of the nervous 
system? Excitatory neurons from the same radial glial progenitor are known to have stronger interconnections than other cells266,267. 
Might such connectivity between clonally related cells underlie a possible preferential coupling between MEC cells with similar spatial or 
directional tuning, in the same way that cells from the same clone exhibit similarities in orientation preferences (and possibly preferential 
coupling) in the visual cortex268,269? Does the young MEC have a topographically arranged teaching layer, with connections between 
clonally related cells, that during early postnatal development gives way to the largely nontopographical9,270 grid cell network of the 
adult MEC (Fig. 8 of ref. 91)? Tools have been developed for targeted analysis of the functional identity and connectivity of discrete 
developmental cell populations, allowing these questions to be resolved in the near future271.

3. Including the entire entorhinal–hippocampal circuit
A key objective for a more complete understanding of entorhinal–hippocampal function will be to determine how cell types with different 
functional correlates map onto the variety of morphological or neurochemical cell types and their unique connectivity patterns. Recent 
data suggest that, in layer II of MEC, both stellate and pyramidal cells can be grid cells, although stellate cells may comprise the majority 
of them256,257,272–275. If so, are grid patterns created independently in these two cell classes, or does one of them inherit the grid from 
the other?

4. Read-out
Position can be decoded from grid cells and place cells, with greater accuracy in grid cells than place cells if the population is 
multimodular and scaled in particular ways159,173,174,276. Whether neural circuits decode information in the same way remains to be 
determined, however. Do neurons have access to grid cells with different phase relationships or different spacing; do they integrate 
information from grid cells with information from border cells or head direction cells? If so, where are these neurons and how do they 
communicate with neocortical regions involved in strategy formation and decision-making? Most research on the mechanisms of spatial 
coding in hippocampus has focused on the nature of the inputs that contribute to it, and less is known about the impact of hippocampal 
output on coding dynamics in the widespread regions of neocortex and other areas to which the hippocampal formation projects. The 
impact of outputs from the entorhinal–hippocampal circuit will perhaps constitute a new frontier in the study of this system.

5. Moving toward naturalistic environments
Natural environments are large, three-dimensional, compartmentalized, nested, and full of objects. Ultimately, studies of the 
hippocampal–entorhinal circuit should explore how cells map environments of shapes, sizes, and content more comparable to the 
animal’s natural habitat277. Are grid cells, head direction cells, and place cells used only for local mapping, in the range of a few 
meters, or is the entorhinal–hippocampal network used also for extended spaces, and if so, how? Is there a single continuous map, or 
are there different maps for different local spaces, as proposed by theoretical studies278, as well as observations in compartmentalized 
laboratory environments156? If the latter is true, how are the map fragments connected? And how is space coded in large and three-
dimensional environments277? In flying bats, place cells have spherical firing fields279 and head direction cells are tuned to all three 
axes of orientation220. Whether such volumetric coding extends to terrestrial animals remains unsettled, although experimental data 
suggest that, in rats, head direction is encoded not only by classical azimuth-sensitive head direction cells but also by cells in the lateral 
mammillary bodies that respond to head pitch200. Observations in rats also suggest that the tilt of a surface is factored into hippocampal 
and entorhinal representations of space280,281.

6. Representation of time
Understanding space and memory requires understanding time. Direct representation of the passage of time was not observed in 
hippocampal neurons until the Buzsáki and Eichenbaum groups showed that, when animals run for a known interval at a steady location, 
in a running wheel282 or on a treadmill283, hippocampal neurons fire successively at distinct times during the interval, following the same 
order on each trial. Cells with similar properties are present in the MEC284. Most of these ‘time cells’ have discrete place or grid fields in 
standard spatial foraging tasks. Different assemblies and sequences of hippocampal time cells are active in different task configurations283, 
suggesting that hippocampal ensembles encode temporally organized information much the same way they represent space. The observation 
of time cells is a provocative finding that may share properties with mechanisms underlying path-integration-based representation of 
location, but the temporally confined firing fields of time cells do not disappear when time and distance are decoupled by restraining

(continued)
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A second observation consistent with a path-
integration-dependent attractor architecture 
is the maintenance of a single grid-phase 
structure across environments, tasks and 
brain states145,163,168,169, which would be 
expected if MEC neurons are organized as 
strongly interconnected networks in which 
external inputs recruit the same subset of 
neurons under a wide range of starting condi-
tions. The strongest prediction of the attrac-
tor models, however, is perhaps that grid cells 
with similar grid phases have enhanced con-
nectivity. Statistical analysis of firing patterns 
in simultaneously recorded grid cells confirm 
this prediction245,246, but direct measure-
ments of connections between functionally 
verified cell types are still missing.

Attractor models do not provide the only 
possible explanation of how grid patterns 
might be created. For several years, a com-
peting class of models, based on properties 
of the hippocampal theta-frequency network 
rhythm60–62, suggested that grid patterns 
were generated as a result of wave interference 
between a constant global theta oscillation and 
a velocity-controlled cell-specific theta oscil-
lation247–250. The model can be traced back to 
O’Keefe and Recce’s observation, in the early 
1990s, that, as animals move through the place 
field of a place cell on a linear track, the spike 
times of the cell move forward across the 
cycle of background theta oscillations251. As 
the animal moves through the field, the theta 
phase of the spikes moves progressively for-
ward also in space, and is in fact more strongly 
correlated with location than with time251,252. 
This observation suggested to O’Keefe and col-
leagues that position could be calculated from 
the interference pattern between the global 

be more efficient21,239. A few years later it 
became apparent that such low-dimensional 
architecture exists in the entorhinal cortex.

When grid cells entered the research arena 
in 2005 (ref. 9), it was quite obvious that the 
dynamics proposed for localized firing in 
place cells might take place also in para-
hippocampal regions91,151,239, as alluded to 
already by Samsonovitch and McNaughton90. 
In the first models proposed after the discov-
ery of grid cells91,151, cells were arranged on a 
matrix according to the phase of the grid. A 
bump of activity was formed when cells with 
similar phases were connected through excit-
atory connections, in the presence of global 
inhibition. Competitive network interactions 
led to multiple activity bumps151, or toroidal 
connectivity caused a single bump that 
returned periodically to the same location91. 
Under certain conditions, in the presence 
of tonic excitatory input, a radius of inhibi-
tory connectivity was sufficient to generate 
hexagonally patterned firing, without intrin-
sic excitatory connections241–244.

Whether a path-integration-based 
attractor-network architecture exists in 
MEC remains to be determined, but there 
is indirect evidence for this possibility. First, 
correspondence between movement and dis-
placement on the neural sheet can only be 
maintained so long as the participating grid 
cells have a common scale and orientation. 
Grid cells exist at a range of scales, suggest-
ing that, to maintain the correspondence, 
grid cells must be organized in functionally 
independent grid modules, all with their own 
spacing and orientation91,172. Experimental 
evidence suggests that such a modular func-
tional organization is indeed present146,154. 

underlie firing in neurons that represent ori-
entation relative to landmarks236,237.

Only a year after the introduction of 
velocity-driven ring attractors to models of 
head direction cells, it was acknowledged 
that a similar integration mechanism might 
apply for position mapping in two dimen-
sions, as expressed in hippocampal place 
cells19,90,233,238,239 (Fig. 5c,d). In the position 
version of the model, neurons were arranged 
conceptually according to their location of 
firing in two-dimensional space. A matrix 
of recurrent connections was generated, in 
which excitation decreased with the distance 
between neurons on the sheet. In combina-
tion with global inhibition, self-excitation 
between similarly tuned cells maintained 
localized firing. A path-integration mecha-
nism moved the activity bump across the net-
work in accordance with the animal’s position 
in the environment, using conjunctive head 
direction × place cells, in the same way that 
angular velocity inputs moved the bump in 
the ring attractor for head direction cells. The 
model was proposed to apply for any neural 
architecture of the hippocampal system, but 
with the knowledge that existed in the 1990s, 
the implementation was focused on area CA3 
of the hippocampus. This explained a num-
ber of properties of place cells but faced one 
major challenge: the subset of active hippo-
campal neurons remaps across environments 
and circumstances71,100–102. For position to 
be computed in place cells, some sort of inde-
pendent architecture for each environment 
would then be required. This is computation-
ally possible90,240 but nonetheless raises the 
question of whether a single network matrix, 
expressed in all environments, would not 

Box 1 (continued)
the animal285 or changing the speed of the treadmill286, suggesting that sequences do not exclusively reflect the number of steps at the 
task location. Certainly the relationship between representations of space and time and the role of time cells in perception and recall of 
time require further study. While time cells have firing fields in the order of a few seconds, and assemblies of time cells can represent 
events at the scale of tens of seconds, encoding of longer temporal distances may require different mechanisms. One may speculate that 
the spontaneous drift over hours and days in the firing properties of place cells in CA2 and (to a lesser extent) CA1 (refs. 287–289), as 
well as cell populations in LEC290, may possess the power to encode temporally distant events as distinguishable memories.

7. Beyond physical space
Do grid cells and other spatially modulated cells encode information beyond physical space, as suggested by O’Keefe and Nadel65? 
Evidence for such an extension of functions was reported recently in a task in which rats press a lever to alter the frequency of a sound on 
a continuous scale; in this experiment, hippocampal and entorhinal cells display frequency fields resembling place fields during navigation 
of physical space291. Further functional expansion might be expected in primates. Indeed, in monkeys, hippocampal and entorhinal cells 
fire in patterns defined not by the animal’s location in space but by where it moves its eyes on a visual scene255,292,293. This observation 
raises the possibility that place and grid cells create a map of visual space using eye movement signals instead of locomotor information to 
support coordinate transformation, without having to change any other computational elements of the circuit. In humans294,295, grid cells 
may take on functions in conceptual mapping296. The possible adoption of grid cells as a metric for navigating abstract spaces would be 
consistent with the idea that hippocampal circuits first evolved for representation of space and later acquired the capacity for imaginary 
navigation49,65,297,298. This expansion of functions would be reminiscent of the way cortices originally involved in object recognition 
formed the basis for a visual word form area during the evolution of written language processing in the human cortex299.
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IN MEMORIAM
In memoriam, Howard B. Eichenbaum (1947–
2017). The field of hippocampal and memory 
research mourns the loss of our friend and col-
league Howard, who passed away unexpect-
edly recently. Howard’s contributions to the 
field were immense, both scientifically and in 
service. His research was mostly focused on 
one of the major aspects that we have explic-
itly not covered in this review: the role of the 
hippocampus in memory. Over the years, his 
position evolved from that of an unafraid and 
much-needed devil’s advocate against the pure 
spatial map hypothesis towards what is now 
the general consensus view that spatial coding 
provides a foundation on top of which sensory 
and event-specific memory is superimposed, 
and he became a pioneer in the study of how 
time and temporal order also play a role. His 
thinking on hippocampal–cortical interac-
tions in memory organization and control is 
beautifully summarized in his 2017 Annual 
Review of Psychology article47.
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intrinsic MEC dynamics but also how external 
inputs from the hippocampus242, the medial 
septum181,182, and locomotor204–207,262 and 
head direction circuits263 contribute to the 
emergence of grid patterns (Box 1).

Perspective
The search for a hippocampal positioning 
system began with the discovery of place cells 
in 1971. We have illustrated how the next few 
decades were characterized by attempts to find 
the determinants of spatially localized firing, 
with a focus on the sensory sources. As we 
entered the 1990s, the discovery of head direc-
tion cells and the turn to population dynamics 
prepared the field for more-targeted inves-
tigation of the circuit operations underlying 
place field formation and spatial mapping. The 
1990s showed how ensembles of simultaneously 
recorded hippocampal neurons encoded func-
tions that could not be read out from the activ-
ity of individual neurons. From around 2000, 
with increasing awareness that these ensem-
bles likely extended beyond the hippocampus, 
investigators entered the entorhinal cortex, 
and an intricate circuit of grid cells and other 
specialized cell types was discovered there. The 
investigation of space has been brought to a new 
level, where it is possible to ask questions about 
how functions emerge through interactions 
within extended networks of heterogeneously 
connected cell types and subsystems.

While we will certainly learn more about 
the neural origins of spatial cognition during 
the years to come (Box 1), studies of spatial 
representation and navigation are informa-
tive about cortical functions in a wider sense. 
The ease with which spatial functions can be 
examined in the hippocampal formations of 
a number of mammals has made the study 
of the positioning system an area in which 
investigators pioneer the development and 
testing of sophisticated computational neu-
ral-network models. Few other areas of sys-
tems neuroscience have benefited so strongly 
from the interplay between computational 
and experimental neuroscience. Place cells 
and their entorhinal counterparts have 
helped open the cortex to studies of neural 
computation, allowing researchers to identify 
generic circuit motifs that may be expressed 
not only in the spatial circuits of the hip-
pocampus and entorhinal cortex but across 
widespread regions of the brain. Almost 50 
years after place cells were discovered, place 
cells and their parahippocampal counterparts 
have become one of the most powerful tools 
we have for understanding cortical computa-
tion and spatial mapping, and navigation may 
become one of the first cognitive functions to 
be understood in mechanistic terms.

theta rhythm and a velocity-dependent oscil-
lator specific to the cell. If position reflected 
peaks of the interference pattern, however, the 
firing positions should be periodic, which, for 
place cells, they were not. With the discovery 
of grid cells, the model was instantly revised 
and grid patterns were suggested to emerge 
from interference with velocity-controlled 
oscillators controlled by the projection of 
velocity in three directions separated by 60° 
intervals onto three separate dendrites247–249. 
Interference with the global oscillator led to 
a band-like spatial-activity pattern along each 
orientation, and the combination of bands 
led to a hexagonal pattern. The oscillatory 
interference models guided some of the most 
influential studies of grid formation, but in 
the end, accumulating evidence, such as the 
biophysical implausibility of independent den-
dritic oscillations253, the sensitivity to period 
irregularity254, the persistence of grid patterns 
in the absence of theta oscillations219,255, the 
presence of a ramping depolarization, and the 
absence of a theta interference oscillation, in 
intracellular recordings from MEC cells256,257, 
suggested that oscillatory interference is not 
the mechanism of the grid pattern. Yet phase 
precession is a reliable observation. Although 
it may not explain periodicity in grid cells, 
phase precession causes sequences of place 
cell activation to be replicated, in compressed 
format, within individual theta cycles, an effect 
that may be used by hippocampal circuits to 
store temporal sequences in addition to mere 
locations252. Indeed, as recognized by several 
investigators soon after phase precession was 
discovered252,258,259, theta rhythm and phase 
precession may exist precisely to enable mem-
ory for spatial and temporal sequences.

The evidence against the oscillatory-inter-
ference model did not, however, rule out sin-
gle-cell properties as determinants of the grid 
pattern. Kropff and Treves24 showed how hex-
agonally patterned firing may arise through 
competitive Hebbian plasticity in a path-inte-
gration-independent manner in feedforward 
networks in which neurons undergo neuronal 
fatigue or adaptation. Because the emergence 
of grids in this model required many iterations, 
it was proposed that the adaptation mecha-
nism contributed particularly to development 
of the network in young animals and that the 
coherence of phase and orientation relation-
ships across environments was the result of 
recurrent connections that were added as the 
cortex matured260. Thus, competitive Hebbian 
plasticity offers an alternative mechanism for 
grid formation, although this mechanism 
may coexist with attractor-network architec-
tures261. Regardless of mechanism, accounts 
of grid formation must consider not only 

Howard Eichenbaum (1947–2017). Few 
individuals have contributed more to the modern 
understanding of hippocampal memory function, 
with place cells as a key component, than Howard 
Eichenbaum, who sadly passed away, far too 
early, before the publication of this article. Photo 
credit: photographer Dan Kirksey, KDKC Photos, 
Escondito, CA.
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