
UCLA
Papers

Title
Using Hierarchical Location Identifiers for Scalable Routing and Rendezvous in Wireless 
Sensor Networks

Permalink
https://escholarship.org/uc/item/4w38k3ds

Authors
Bian, Fang
Li, Xin
Govindan, Ramesh
et al.

Publication Date
2005-05-05
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4w38k3ds
https://escholarship.org/uc/item/4w38k3ds#author
https://escholarship.org
http://www.cdlib.org/


Using Hierarchical Location Names for Scalable Routing and
Rendezvous in Wireless Sensor Networks

Fang Bian∗ Xin Li ∗ Ramesh Govindan∗ Scott Schenker†

Abstract

Until practical ad-hoc localization systems are developed,
early deployments of wireless sensor networks will man-
ually configure location information in network nodes in
order to assign spatial context to sensor readings. In this
paper, we argue that such deployments will use hierar-
chical location names (for example, a node in a habi-
tat monitoring network might be said to be node num-
ber N in cluster C of region R), rather than positions in
a two- or three-dimensional coordinate system. We show
that these hierarchical location names can be used to de-
sign a scalable routing system called HLR. HLR provides
a variety of primitives including unicast, scoped anycast
and broadcast, as well as various forms of scalable ren-
dezvous. These primitives can be used to implement most
data-centric routing and storage schemes proposed in the
literature; these schemes currently need precise position
information and geographic routing in order to scale well.
We evaluate HLR using simulations as well as an imple-
mentation on the Mica-2 motes.

1 Introduction

Data-centric abstractions for routing and storage have re-
ceived a fair amount of attention in the research litera-
ture. Data-centric routing systems such as Diffusion [7]
and TinyDB [12] have been used in many sensor network
deployments. A body of literature has proposed a comple-
mentary class of data-centric storage systems [23, 21, 11]
that supports the construction of distributed hash tables
and indices for scalable querying.

While many advances have been made in designing
data-centric abstractions, not much attention has been
paid to the underlying packet routing and rendezvous
primitives. Existing implementations of data-centric ab-
stractions use two kinds of packet routing primitives:
flooding and geographic routing. Anecdotal evidence
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from current deployments suggests that flooding ad-
versely impacts the performance even in networks with
tens of nodes. The alternative, geographic routing using
protocols like GPSR [8], requires assigning position infor-
mation to nodes. Such information is generally expected
to be dynamically computed using an ad-hoc localization
system [1, 5, 10], or a system that assigns virtual coor-
dinates [19, 15] for routing purposes. These systems are
currently the subject of active research, and practical de-
ployments are perhaps a few years away.

This paper considers an alternative approach to provid-
ing routing primitives for data-centric abstractions. Our
approach is based on the observation that without dynam-
ically computed nodepositions, most near- to medium-
term sensor network deployments will configure nodelo-
cations.1 Node location provides context for the data
collected from the sensor network. Such location infor-
mation is often loosely associated with geography or to-
pography. Thus, in a habitat monitoring network, a node
might be located within the “chaparral” region or within a
“riparian” region. In an in-building network, the location
of a node may be specified by floor and wing (e.g.,13th
floor, west wing). Furthermore, location names often have
a naturalhierarchy. In a habitat monitoring network, such
a hierarchy might be defined by, for example, a quadrant
of the habitat, followed by a section, and within it a partic-
ular cluster of nodes. In a building network, the hierarchy
might be defined by floors, wings and rooms. A hierar-
chical location naming scheme is more user-friendly than
a system in which nodes are manually assigned positions.
In fact, we know of at least two deployments that use such
a naming scheme to assign spatial context to sensor read-
ings.

In this paper, we consider deployments where nodes are
configured2 with hierarchical location identifiers(HLIs).
An HLI is simply a machine readable form of a hierarchi-
cal location name. Thus, a sensor node in a building might
be assigned an HLI of the form 5.4.10 where 5 denotes
the fifth floor, 4 denotes the east wing, and 10 denotes the

1We use position to denote the precise position of a node in some ge-
ometric coordinate system, and location when other forms of expressing
where a node is situated are used.

2In Section 2, we discuss mechanisms for configuring these nodes
that do not require significant manual intervention.

1



10th room on the east wing.
The central thesis of this paper is that these HLIs can

be used to build a scalable routing system (which we call
HLR) for sensor networks. Observe that the HLI hierar-
chy can be modeled as anarea hierarchy [9]. Imposing
an area hierarchy on a network is a well-studied way of
scaling routing protocols in wired and wireless networks.
In HLR, the location naming hierarchy implicitly defines
an area hierarchy; by contrast, in wired networks, other
factors such as organizational boundaries or cabling costs
might determine the design of area hierarchies. Thus, in
our example above, a node 5.4.10 is in the 5-th top-level
area, the 4-th second level area within the top-level area
and so on. Nodes in an area hierarchy maintain detailed
routing information about nodes within their area, and less
detail about nodes outside their area. In HLR, for exam-
ple, the node 5.4.10 would have a routing table entry for
all nodes within the area 5.4, one entry for each of the
sub-areas of 5, and one entry for each of the top-level ar-
eas.

HLR constructs and maintains these routing tables us-
ing a variant of the distance-vector based routing proto-
col DSDV [17]. While the basic design of HLR bor-
rows heavily from the routing literature for wired net-
works, it incorporates two novel features. The first is a
technique for automaticallyaggregatingrouting entries at
area boundaries that allows neighboring areas to maintain
summarized views of an area. The second is a mechanism
for routing to partitioned areas—classical area hierarchy
based algorithms make the assumption that areas are con-
nected.

Using the routing tables that HLR constructs, it is pos-
sible to provide a variety of packet routing primitives:uni-
castto a specified node within the network,broadcastor
anycastto a specified area,rendezvoususing arandom
hash or alocality-preservingmapping. Particularly novel
in HLR is the design of the rendezvous primitives, since
previous designs of such primitives for sensor networks
leveraged geographic positioning. These primitives can
be used for data-centric routing systems like Diffusion
and TinyDB, as well as for data-centric storage systems
like GHT [21] and DIM [11].

We have implemented HLR in TinyOS, and have im-
plemented simplified versions of data-centric routing and
storage systems that use HLR’s routing primitives. We
use extensive simulations to compare the performance of
HLR-based data-centric routing and storage to systems
that use geographic routing. We find that the performance
of the two classes of systems is comparable; while ag-
gregated route entries increase the average path length in
HLR, geographic routing based rendezvous sometimes in-
curs significant overhead in walking the outer perimeter.
We also evaluate the behavior of HLR under dynamics,
finding that route changes caused by link failures can of-

ten be constrained to a small area and are not propagated
throughout the network. Finally, we report experiences
from running HLR on a small-sized network of Mica2
motes. Taken together, these results imply that HLR is
a viable routing layer for many kinds of sensor networks
that can be immediately employed in near-term sensor
network deployments.

Our reliance on configured node addresses may seem
to be awkward, given the networking community’s ex-
perience with manual configuration in the Internet con-
text. We make two observations in our defense. First,
many Internet components (the backbone routing system,
the name system) are still manually configured. Second,
unlike the Internet which is comprised of different admin-
istrative organizations, sensor networks are likely to be
managed and deployed by one organization. Furthermore,
until precise self-localization technology is deployed, we
expect that sensor network deployments will need to be
carefully planned, with human involvement in identify-
ing each node’s position. Given this, it is a small step to
configure these positions on nodes (and techniques can be
developed to reduce the error in this configuration step).

2 Overview and Related Work

In this section, we discuss the feasibility of Hierarchi-
cal Location Identifiers(HLI) for sensor network deploy-
ments. Then, we briefly list the routing primitives HLR
provides and how we make use of HLI to build HLR. Fi-
nally, we compare HLR to the other related work.

2.1 Feasibility Discussion

A fundamental premise behind our approach is that most
sensor network deployments will need to associate nodes
with names in order to make sense of generated data. Of-
ten, these names will have location information embedded
in them. An example of such a name is: (Residence Hall
1).(Third Floor).(West Wing).(Sensor 5). Such names
have two natural properties that reflect the way humans
think about sensory data acquisition: they arehierarchi-
cal, and they contain some location information embed-
ded in them that is usually imprecise (i.e., not a position
in some coordinate system). We term the machine read-
able numeric ID translated from these hierarchical string
names as Hierarchical Location Identifiers(HLI).

In this paper, we observe that these hierarchical iden-
tifiers (HLIs) indicate approximate topological proximity
of the nodes and can therefore be leveraged to build scal-
able routing primitives for wireless sensor networks. Be-
fore we discuss how to make use of HLI to support scal-
able routing primitives, we first discuss mechanisms for
node HLI’s assignment.
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Figure 1: Example: a sensor network with HLI and routing
table of node 2.2.1 built by HLR

1.5.1

1.1

1.2 1.4

3

1

2.2.3
2.2.1

2.2.2

2

1.3.2
1.3.1

2.1.0

Figure 2: The same sensor network in Figure 1 with more
details in area 1 shown.

Consider a sensor network deployment in a building or
a habitat. We expect that most such deployments will be
planned: a domain expert will need to determine where to
place the sensors, how many to place,etc.When planning
this deployment, the network administrator needs some
way to associate the data received from a sensor node with
its location. In the absence of localization, the adminis-
trator will likely have to manually create a “database” that
maps node identifiers to human-readable location identi-
fiers. These location identifiers are often hierarchical, and
we argue that it is feasible to use this database to configure
HLIs for nodes.

This HLI configuration can be automated in several
ways.

For example, the administrator can “zap” each individ-
ual sensor device with its HLI before deployment. Alter-
natively, one can design a simple bootstrap protocol (simi-
lar to DHCP) by which a node obtains its HLI. The design
of such a protocol is well-understood but is a bit beyond
the scope of this paper. In this way, HLR simply lever-
ages the fact that most sensor network deployments will
be planned, and does not add any additional human in-
volvement beyond what will be required for such deploy-
ments anyway.

2.2 Overview

Equipped with HLIs, our work shows that scalable rout-
ing could be designed for wireless sensor networks. The
key insight behind routing using HLIs (HLR) is that one
can use HLIs automatically and dynamically build an ag-
gregated routing table that scales well with network size.
Behind this insight lies the assumption that hierarchi-
cal location naming is also approximately topologically-
congruent to node placement. That is, all nodes whose
HLIs begin with 1 are situated within some well-defined
geographic region. In our example, all such nodes would
be within Residence Hall 1. This property also applies re-
cursively, so that all nodes whose HLIs start with 1.3 are

on the 3rd floor of Residence Hall 1. In situations where
this is the case, HLR can build compact and accurate rout-
ing tables. For example, in the sensor network shown in
Figure 1, by running HLR, node 2.2.1’s routing table will
contain one entry to the whole area 1, one entry to area
3 and one entry to its sibling area 2.1 in addition to one
entry for the other nodes in the same area like 2.2.2 and
2.2.3. So, assuming the hierarchy of the network is appro-
priately designed, the size of the routing table can grow
logarithmicallywith network size.

Scalability is not the only advantage of HLR. In ad-
dition to supporting unicast, HLR could also be used to
support area-based multicast or anycast. Unicast can be
used for tasking individual nodes. Area-based multicast
enables any node in network to deliver a message to a sub-
set of nodes which shares a common prefix in their HLIs,
For example, area-based multicast can be used in TinyDB
to deliver a query to a set of nodes around a monitored
plant to start collecting data. This primitive cannot be
easily supported by any geographical location-based rout-
ing using location information.

However, that is not the only advantage of HLR. In this
paper, we also show how easily we can leverage HLR to
support rendezvous-based primitives such ashash-lookup
and data-locality preserving hashing, which are impor-
tant building blocks for data-storage systems proposed for
sensor networks. Hash lookup can be used to implement
functionality equivalent to a single key data storage sys-
tem such as the GHT [21], while the last primitive can
be used to build a locality-preserving data storage sys-
tem which supports multi-dimensional queries such as the
DIM [11].

To our knowledge, these areall the primitives that have
been proposed for use for data dissemination and querying
in sensor networks. That HLR can support them without
requiring ad-hoc localization systems is its main selling
point.

The challenges in the design of many of these primi-
tives, and in the design of HLR itself, lie in dealing with
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dynamics like route changes and partitioned areas. We
discuss in detail the design of basic HLR in Section 3 and
the design of routing and rendezvous-based primitives in
Section 4.

2.3 Related Work

In this section, we discuss related work that have inspired
the design of HLR and contrast our work to the other sen-
sor network routing proposals.

Hierarchical routing has been a subject of research for
decades [9, 26, 22]. Today’s Internet, for example, is built
on top of hierarchical routing schemes such as BGP [22]
and OSPF [14]. A hierarchical routing scheme such as
ours will provide the scalability needed by these large
scale sensor networks.

The ad hoc networks community has also been work-
ing on hierarchical network organizations [18, 16] where
the primary goal is to provide a reliable communication
infrastructure for node mobility management. For a large
class of sensor network applications, mobility is not an
issue, and HLR does not attempt to solve the dynamics
resulting from node mobility.

Clustering schemes [26, 6, 4] represent a related part
of the literature. In general, such schemes (particularly as
proposed for sensor networks) are somewhat orthogonal
to HLR, since they are explicitly focused on node energy
management. HLR clusters nodes into areas for routing
information scaling.

Geographic routing schemes [8] are complementary to
HLR. They rely on accurate position information, while
HLR relies on logical location names. Automatically de-
termining position information (localization) is still the
subject of much research. Of course, a sensor network
deployment could use configured position information,
but this might require significant manual labor, especially
in environments where GPS signals might not be readily
available.

Recently, several virtual coordinate schemes have been
proposed to support stateless location-based routing [19,
15]. It is unclear that these schemes can be used for rout-
ing without the development of another service that maps
a node’s identifier to a virtual coordinate (since a virtual
coordinate has almost no relation to the physical coordi-
nate). Such schemes cannot be used for data-centric stor-
age as well without incurring significant data migration
overhead when virtual coordinates change.

3 HLR Details

In this section, we discuss the details of HLR. We start
by discussing an overview of HLR performance, then de-
scribe its aggregation and robustness mechanisms in some

detail.

3.1 Overview

HLR assumes that HLIs have been configured into net-
work nodes. As discussed above, the fundamental
premise our paper makes is that deployments will, in
the absence of localization, need to maintain a map-
ping between some node identifier (perhaps drawn from
a flat name-space) and some textual description of a loca-
tion. Typically, this information will be maintained in a
database or file. HLR only requires that, in addition to (or
perhaps instead of) the textual description of location, a
network administrator assign a hierarchical location iden-
tifier (or HLI) to each node. Thus, for example, the admin-
istrator needs to translate a location identifier like “node
1 in floor 5 of building 1” into an identifier of the form
1.5.1.

When a node is assigned a HLI such as 1.5.1, we
say that it belongs to thetop-level areanumbered 1, the
second-level area 5 of the top-level area 1, and so on. We
say that the top-level area has adepthof 3. In HLR, dif-
ferent top-level areas are allowed to have different HLI
depths,e.g.,1.5.1 and 2.1.

HLR is fairly minimal in its assumptions about what
nodes need to be configured with. It only requires that
each node know its own HLI. Thus, a network can be in-
crementally deployed without having to reconfigure exist-
ing nodes.

The key insight behind HLR is that one can automati-
cally and dynamically constructaggregated routing tables
with the configured HLI at each node, using a modified
version of a distance-vector algorithm such as DSDV [17].
DSDV is a distance vector routing algorithm which asso-
ciates a sequence number with each destination to avoid
the “count to infinity” problems associated with distance-
vector protocols. In the basic DSDV, each node advertises
a route to itself, and associates that route with a monotoni-
cally increasing sequence number. Neighboring nodes pe-
riodically exchange distance vectors to each destination,
together with the sequence number of each destination.
To a given destination, a node might possess several routes
heard from each of its neighbors. Of these routes, a node
only considers routes assigned the most recent sequence
number. There may be more than one such route corre-
sponding to different paths to the destination, but the key
intuition is that all routes with the same sequence num-
ber represent aconsistentview of paths to a destination.
From these routes, each node picks the shortest, and ad-
vertises that to its neighbors. This intuition also explains
why DSDV avoids the count-to-infinity problem associ-
ated with earlier distance vector algorithms; at any instant,
the routes selected by each node to a destination taken to-
gether form a tree rooted at the destination node, which
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by definition is acyclic.
The main challenge in adapting DSDV to HLR isroute

aggregation. The goal of HLR is to scale the routing table
such that, for example, in a network as shown in Figure 2,
the node with HLI 1.3.1 should have:

• One route to each node in area 1.3, such as 1.3.2,
1.3.3, and so on.

• One route to each of the sibling areas of 1.3, such
as 1.1, 1.2, 1.4, 1.5 and so on. A route to, say, area
1.5 is said to be anaggregated route. Aggregation is
the fundamental contributor to scaling the Internet as
well as HLR.

• One aggregated route to each top level area other
than its own, such as 2, 3, and so on.

Depending upon how the HLIs are assigned, such a rout-
ing table can scale logarithmically with network size.

In HLR, we accomplish route aggregation automati-
cally using a simple modification to DSDV. The intuition
for doing this comes from the following observation. Con-
sider the network shown in Figure 2, suppose that nodes
1.3.1 and 1.5.1 are neighbors of each other. Then, the
former can create a route for the 1.5 aggregate, when it
hears a route advertisement from 1.5.1. Thus, any pack-
ets destined towardsany node in 1.5 from 1.3.1 will be
forwarded to 1.5.1. This aggregation relies on an impor-
tant property: all nodes within 1.5 (and more generally,
any area) areconnected(i.e., there exists a path between
two nodes in an area that does not exit the area). For now,
we assume that this connectivity assumption is satisfied.
Later in this section, we will discuss how HLR can be
adapted to deal with situations when an area is internally
partitioned.

For context, most of what we have discussed above is
well-known in the routing literature; area hierarchies have
been studied for a long time. However, our contribution
here is the design and implementation of a distance vector
protocol for wireless sensor networks that performsau-
tomatic route aggregation. In wired networks, link-state
protocols like OSPF perform these kinds of aggregation,
but we do not know of actual designs or prototypes of
distance vector protocols that have been augmented to au-
tomatically aggregate routes.

How does HLR perform this aggregation?
As we discussed above, instead of maintaining routes to
individual nodes, HLR conceptually maintains routes to
areas. At the boundary of an area (such as the one be-
tween 1.3.1 and 1.5.1 in our example above), nodes ag-
gregate routes to areas. A node can detect that one of its
links intersects an area boundary by comparing its own
HLI with that in the route it hears. A node may hear many
routes to an area, potentially one from each “gateway”
node (a node which has at least one link that intersects the

area boundary); if so, it picks one of these, and propagates
it to its neighbors.

Unlike DSDV which conceptually builds a tree rooted
at the destination, HLR builds, for each destination area, a
forest with trees rooted at the area’s “gateway” nodes. In
this way, it maintains DSDV’s loop-freedom and reduces
the number of routing packets since each node only needs
to join and propagate one tree for each hierarchical desti-
nation area. For example, in the network shown in Figure
2, all nodes in area 2 only need to keep track of one path
to area 1, but not necessary the same path. For instance,
node 2.2.1 and nodes in area 2.1 join the tree rooted at
node 1.3.1, while node 2.2.2 and 2.2.3 use the route to
node 1.3.2 as its path to area 1. Also, all nodes in area
2 only propagate one path to area 1 to area 3. Nodes in
subarea 1.3 of area 1 need to keep track of path to the
subareas 1.1 and 1.2 and so on.

What are the trade-offs in using HLR over vanilla
DSDV for wireless sensor networks? Clearly, maintain-
ing routes to every node in a wireless sensor network is
neither feasible nor necessary. Yet, we argue that a pro-
tocol like HLR can be very useful in wireless sensor net-
works a) because its areas mirror logical location-based
distinctions which often form the basis of user queries or
network tasking instructions (e.g., in an in-building net-
work, many queries are likely to be expressed in terms of
floors and wings), and b) HLR efficiently maintains routes
to these. As we show later, HLR can be used to efficiently
implement a variety of routing primitives in a highly scal-
able fashion, so the intuition here is that by expending a
little energy to provide a general routing substrate, we can
make the rest of the system significantly more efficient.

When used this way, HLR has one advantage and one
disadvantage. Like any protocol based on area hierar-
chies, HLR does not provide optimal paths. However,
as we will show in section 5, the performance of HLR
is often comparable to, or better than other alternatives
since those alternative often have other pathologies (e.g.,
traversing the outer perimeter in a GHT). The advantage
of HLR, and an important one from the perspective of sen-
sor networks, is that most node or link failures only affect
a small number of nodes (usually those within the failed
node’s own lowest-level area). We validate this in our sim-
ulations.

We have implemented HLR on Berkeley motes. De-
tails of our implementation and some results from a small
deployment will be discussed in section 6.

3.2 Automatic Route Aggregation

We now discuss, in some detail, the route selection, aggre-
gation, and route propagation rules in HLR. For simplic-
ity, in this discussion we assume that all areas are inter-
nally connected. In the next subsection, we discuss how
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HLR relaxes this assumption.
In HLR, each node periodically exchangesroutes. Each

route is associated with the HLI of a destinationnode.
This is an important point; HLR does notpropagateroutes
to an area, and routes always refer to a node within an
area. HLR does, however,computeand store routes
to an area. When a node receives multiple routes to
nodes within the same area, it picks one of those and re-
advertises it. For example, consider a node 2.2.1 which
receives five routes, one each to 1.5.1, 1.2.3, 1.3.1, 1.4.1
and 1.1.2. From the perspective of this node,all of these
routes represent paths to destinations in area1. We call
area 1 theeffective destination areafrom the perspective
of node 2.2.1. Then, node 2.2.1 picks one of these routes,
say the route to 1.3.1, and advertises that.

This is a subtle point; one would have expected HLR to
be designed such that 2.2.1 would advertise the aggregate
1 instead of the route 1.3.1.3 Doing so, however, without
violating the semantics associated with the sequence num-
bers turned out to be tricky. This behavior of HLR defines
the intuition described above: HLR maintains a forest of
trees for a given area, and different nodes “join” differ-
ent trees in this forest by picking the best available route.
However, this choice has an interesting trade-off. If it had
been possible to advertise the aggregate, then even if any
one of the five selected routes had changed, that change
would be hidden from nodes downstream of 2.2.1. Now,
however, if the selected route 1.3.1 fails, another route
will have to be selected and propagated4, so this choice
has weaker failure containment properties. In practice,
though, as our simulations show, the performance of HLR
is still quite good, and most failures affect only a small
number of nodes.

Thus, each route is associated with an HLI of a node,
a sequence number, a path metric to the destination node,
and a lifetime associated with the route. The route lifetime
is used to purge stale routes, and the sequence number
for loop avoidance. In our simulations, we use the hop
distance as the path metric. While this is known to be a
bad choice in selecting paths in wireless networks [27],
we augment this with link blacklisting (see below) in our
current implementation. Longer term, we see using other
additive path metrics that capture notions of link and path
quality [27, 2] in HLR. HLR can be easily modified to
include more sophisticated path metrics.

We now more precisely describe the route selection
and aggregation rules. From our discussion above, this
is the step in which the route aggregation isimplicitly per-
formed, since HLR does not propagate aggregates. Sup-

3Note that while 2.2.1 has 5 routes to area 1, it only re-advertises one
of them, thus maintaining the desired scaling behavior.

4Unless all the routes to area 1 fail, this change will not trigger an
instant propagation; rather, it will be propagated in the next regular ad-
vertisement.

pose that nodeA hasn different routes that it has heard
from its neighbors. It first partitions the set of routes such
that all routes in a subset share an HLI prefixh defined as
follows: if h hasl elements, then the firstl −1 elements
of h and ofA’s HLI must be the same. The intuition, of
course, is thath defines a distinct area outsideA for which
A need only maintain one route. Each subset also defines
oneeffective destination area. In our example above, the
5 routes that node 2.2.1 has defines a subset. In this case,
h is 1 andl is 1.

Now, consider a single subset. The nodeA selects ex-
actly one route from this subset using the following rule.
It further refines the subset by associating all routes to the
same HLI into one cluster. From each cluster, it picks
the lowest cost route with the most recent sequence num-
ber. Then, from within these selected routes, it picks the
lowest cost route. These rules are basically designed to
select the nearest “gateway” for the area corresponding to
that subset. Different nodes select different gateways to
a given area, and the chosen routes form a forest (as we
have described earlier).

Having selected one route to each subset (or effective
destination area), nodeA advertises these routes to its
neighbors. In this manner, HLR scales well, since it main-
tains the property of hierarchical routing protocols: more
detailed routing information about nearby nodes, and less
about nodes farther away.

3.3 Dealing with Route Changes

HLR deals with route dynamics (addition of a node, fail-
ure of a linketc.) in ways similar to other routing proto-
cols. Each route is associated with alifetime, and must
be refreshed at least once within that lifetime otherwise
it is considered to have failed. HLR uses two frequen-
cies of route advertisement. For a route that has recently
changed, nodes re-advertise their routing tables with mod-
erate frequency to allow for faster convergence. For routes
that have been relatively stable, the route advertisement
interval is set to be an order of magnitude higher. The
lifetime is set to four times this longer interval. All the
parameters are configurable in HLR.

Wireless links are known to be notoriously unstable, so
dropped route advertisements are more likely to be the
norm than the exception. Clearly, this can impact route
stability: lost advertisements might result in route expi-
rations. To avoid this, our implementation uses a simple
link-layer black-listing scheme that filters out asymmetric
links as well as highly lossy links, and paths are selected
on the rest of the topology. When a link degrades and is
marked unusable, the attached node performs the appro-
priate actions.
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3.4 Relaxing the Connectivity Assumption

In our discussions so far, we have relied on an important
property, that of the connected-ness of an area. In prac-
tice, one would expect this condition to bemostly, but
not always, satisfied. For example, in a building network,
it might be reasonable to deploy sensors such that sen-
sors within a floor are connected (using our definition in
subsection 3.1). However, given the vagaries of wireless
communication, it would be unwise torely on this prop-
erty for the correctness of the system. In this section, we
show that we can add a little machinery to HLR’s basic
mechanism in order to deal withpartitionedareas (where
the connected-ness assumption is violated). Note that in
our discussions below, we assume that while an area may
be partitioned, the entire network is connected; HLR finds
an alternate path to the sub-areas.

Our basic approach is to identify the partitioned areas
by assigning a unique identifier (termed as cluster ID) to
each connected component of the partitioned area. Nodes
external to the area then “join” two different trees, one for
each component: to them, different components look like
different areas. However, data packets destined to a given
HLI in the area are duplicated and sent tobothpartitions,
since it isa priori unclear which partition contains the
node associated with the HLI.

We now describe several details of this scheme. The
first detail is the definition of a cluster ID; in HLR, nodes
within an area settle on the lexicographically smallest HLI
of any node within an area. For example, in the sensor
network shown in Figure 2, the cluster ID of area 2 is
2.1.0. Notice that a sub-area of area 2 might have an en-
tirely different cluster ID: thus, in our example, 2.2 would
choose 2.2.1 as its cluster ID. Thus, if an area is parti-
tioned into two, the two partitions will end up choosing
different cluster IDs. We discuss below how this affects
route selection. However, note that a basic property of
HLR is that an area’s partition is not visible outside the
enclosing area as long as the latter itself is connected. In
our example, assume area 2.2 is partitioned into two parts:
one with cluster id 2.2.1, the other with cluster id 2.2.2.
As long as area 2 is still connected, nodes 2.2.1 and 2.2.2
will see same cluster ID for area 2, which is 2.1.0. And
thus the truth that area 2.2 is partitioned nodes is transpar-
ent to nodes in area 1 and area 3.

How do all the nodes within an area determine their
cluster ID? In HLR, a node whose HLI is of the forma.b.c
maintains one route to all top-level siblings of areaa, all
children ofa who are siblings ofa.b, and all nodes within
a.b. Thus, for eachlevel, just from its routing table, a node
can determine the cluster ID. If there exists a partition at a
particular level, then the connected components settle on
different cluster IDs.

When a node announces its route, it attaches its clus-

ter ID to the route. In this manner, nodesoutsidethe area
eventually see two different cluster IDs for the same ef-
fective destination area. We then need to modify HLR’s
route selection algorithm so that different partitions fall
into differentsubsets(see subsection 3.2). Then, a node
will pick one route for each partition correctly.

There are three other details to take care of. First, while
nodes in an area converge on a cluster ID, the cluster ID
visible externally might change, causing a fair bit of route
churn. To reduce the churn, a node holds down a route that
announces a change in cluster ID. Second, nodes within
one partition of an area must be able to distinguish be-
tween routes to nodes within the same partition, and nodes
from another partition of the same area. The latter routes
might “enter” the partition from another area; HLR tags
such external routes with the identifier of this external area
in order to detect this. Finally, we must augment the route
selection rules to prefer internal routes to external routes.

With these changes, HLR is able to route correctly
without the assumption of internal connected-ness.

3.5 Discussion

In this section, we have described how HLIs can be lever-
aged to build scalable routing based on a variant of DSDV.
Two questions arise when considering HLR in the context
of sensor networks.

How does HLR interact with energy management
schemes? In general, these schemes can be classi-
fied into two classes: topology control and coordinated
sleep/wakeup. Topology control schemes try to main-
tain a connected network using a (continuously varying)
fraction of the nodes. For such schemes, HLR should
work without any change. For coordinated sleep-wakeup
schemes, HLR will need to be slightly modified such that,
if a node’s next hop is currently asleep, it can buffer pack-
ets to that node until it awakes. With this modification, we
believe that coordinated sleep/wakeup does not conceptu-
ally alter the correctness of HLR, nor does it impact its
performance.

Many sensor network applications rely on nodes com-
municating with a base station: How does HLR fit in this
scenario? It is conceptually possible to design a variant of
HLR that supports this form of communication; we have
left the design of this for future work.

4 Routing and Rendezvous Primi-
tives

From a sensor network perspective, HLR enables a vari-
ety of routing and rendezvous primitives that can improve
the scalability of systems like Directed Diffusion [7] or
TinyDB [12], or enable data-centric storage systems like

7



GHT [21] even in the absence of location information. In
this section, we show how HLR can be used to provide
these primitives.

4.1 Unicast

HLR can provide “any-to-any” or unicast transmission
primitives. More precisely, any node can send a message
addressed to the HLI of any other node, and HLR attempts
to deliver the message in a best-effort manner. Such a
primitive can be useful in many contexts: monitoring the
status of a node, or tasking a node to perform a specific
action such as turning on a camera.

Achieving unicast functionality in HLR is rather
straightforward. HLR forwards unicast packets based on
the longest prefix matchof HLI. However, HLR must al-
low a packet’s address to match multiple routing table en-
tries. This functionality enables correct packet delivery
in the presence of network partitions (Section 3.4). As we
have discussed earlier, when more than one entry matches,
a separate copy of the packet is forwarded for each match-
ing entry,i.e.,one copy of each packet is delivered to each
partition of the destination area. To avoid multiple copies
delivered to each partition, the destination area of every
copy is associated with a partition cluster ID,i.e., the des-
tination of every copy of the packet is defined by the pair
(destination area, cluster ID). Since the area HLI plus the
cluster ID can uniquely identify a partition of the area, it
is guaranteed that each partition will receive exactlyone
copy of the packet. All copies but one are dropped when
they enter the lowest-level area; the partition that contains
the destination node will correctly deliver the packet to
the destination.

An alternative would have been to forward packets
along one of the entries, and either back-track (which
would involve maintaining state in the routing protocol)
or have the node “tunnel” the packet to the partition con-
taining the destination. Both these approaches are com-
plex, and we chose to trade-off some additional overhead
in packet duplication assuming partitions happen infre-
quently.

4.2 Area Broadcast and Area Anycast

HLR also provides two other powerful routing primitives:
broadcasting to all nodes within an area, or anycasting to
one node within the area. Thus, a broadcast packet ad-
dressed to an HLI prefix 1.2 would be delivered (best-
effort, of course) to all nodes within that area. Similarly,
an anycast packet (a bit in the packet header distinguishes
between anycast and broadcast packets) addressed to a
HLI prefix 1.2 would be delivered tosomenode within
that area.

The implementation of these primitives falls out quite
easily from HLR’s basic design. An area anycast is for-
warded similarly as a unicast packet until it reaches some
node within the destination area. When an area is parti-
tioned, it suffices to forward the area anycast towards one
of the partitions. Finally, when a node receives an any-
cast packet whose HLI prefix is a prefix of its own HLI, it
assumes that the packet is destined for itself.

An area broadcast is also forwarded much like a uni-
cast packet until it reaches some node within the desti-
nation area. At that point, the packet is flooded through-
out the area. Flooding within an area must be done with
care. Consider a broadcast to area 1.2. If any node outside
this area receives the packet from a node within the area,
it drops the packet to prevent further propagation of the
flooding. In the case of partitions, the broadcast packet
must, of course, be delivered to all partitions.

We argue that these primitives will help scale data-
centric routing protocols. In particular, because the areas
are aligned along “application-specific” location bound-
aries (e.g.,in an in-building network, there might be areas
corresponding to floors, and sub-areas corresponding to
wings), we expect most location-based queries will also
be well-aligned along area boundaries. Accordingly, we
expect these primitives to be used fairly frequently in a
sensor network deployment.

Finally, we believe it is also possible to implement
source-specific multicast [3] using reverse-path forward-
ing on the routing table provided by HLR. We have left
the design of this primitive to future work.

4.3 Rendezvous Based on Random Hashing

HLR also providesrendezvousprimitives that can be
used to implement data-centric storage schemes like dis-
tributed hash tables. For this, HLR basically provides
a way to consistently and randomly hash an arbitrary
key to a node in the network using a primitive called
hash-lookup(key) . This primitive is similar in prin-
ciple to the key lookup provided by distributed hash ta-
ble (DHT) systems like CAN [20] or Chord [25], but its
implementation is very different. Using this primitive,
it is possible to implement the DHT primitives such as
put(key,packet) andget(key) . Furthermore, us-
ing the lookup functions provided byhash-lookup it is
also possible to implement other rendezvous mechanisms
like the triggers proposed in [24]. We do not discuss the
details of this implementation here, but note that such trig-
gers can be very useful for actuation based on the occur-
rence of certain events within a sensor network.

Prior work [21] has proposed to implement these prim-
itives using geographic routing. HLR can achieve simi-
lar functionality without using geographic routing. HLR
provides this functionality by treating a hashed key as an
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HLI, and routing the packet containing that key to the
node whose HLI is closest to the key. Before we de-
scribe the details of the implementation, we must note that
HLR’s hashing does not necessarily maintain all the prop-
erties of DHTs. In a classical DHT, the key space is likely
to be much larger (128 or 160 bits) than the HLI space.
Furthermore, in a classical DHT, the nodes are arranged
uniformly along the key space (enabling load balancing),
while in HLR the node location in the key space is deter-
mined by the HLI assignment to nodes. To some extent,
this can be rectified by carefully assigning HLIs since this
assignment is under the control of the network adminis-
trator.

Function hash-lookup() sends a packet that has the key
as the destination HLI.In addition, the packet has a bit
indicating that it needs to be processed as hash lookup.
Assume for a moment that the network has converged, the
routing tables don’t change, and the network is not par-
titioned. Then, every node in the system has one rout-
ing entry for each top-level area. The node that issues the
hash-lookup() treats the key as an HLI and routes the
packet to the top-level area whose area identifier is clos-
est to but larger than the top-level area in the key (with
wraparound). For example, assume that there are three
top-level areas in the system: 1, 5 and 7. Then, the key
4.3.2 would first be routed towards area 5, by our rule, and
a key 8.5.1 would be routed to area 1. When the packet
reaches area 5, the same procedure is now followed, but
at the second level of the area hierarchy, until a final node
is reached.

In the presence of partitions, the cluster ID determines
which partition is “closer” to the key.

This hashing algorithm has an interesting property:
a node has enough local information to determine if it
should be the target of ahash-lookup() . It can deter-
mine if its own top-level area is closest to the key, and so
on recursively. This property is useful in maintaining the
correctness of ahash-lookup() ; if, because of rout-
ing transients a node receives a lookup not destined for
itself, it can re-route the packet.

Implementing a distributed hash table using our primi-
tive is simple. Theput() andget() primitives can be
implemented the same way ashash-lookup() . Local
replication is then simply a matter of storing an additional
copy at the node in the leaf area whose ID is thesecond
closest to that of the corresponding area ID in the key.
Triggers of the kind suggested by [24] can be similarly
implemented.

4.4 Data-Locality Preserving Hashing

In the previous subsection, we have introduced a ren-
dezvous primitive which is based on randomly hashing
a specified key. A newly introduced data-centric storage

scheme, DIM [11], uses a data-locality preserving hash.
In this section, we show that HLR can be extended to sup-
port this kind of hashing as well. The basic idea is to
map the multi-dimensional data space to HLIs so that each
HLI is assigned a hyper-rectangle of the data space such
that at any level, the hyper-rectangles assigned to all HLIs
at that level disjointly cover the entire data space. Ulti-
mately, every node is assigned a disjoint hyper-rectangle
in the multi-dimensional data space,i.e., the nodeowns
the hyper-rectangle. In this section, we discuss how HLR
can provide locality-preserving hashing, and how a sim-
plified version of DIM can be built on top of it.

Concretely, we say that HLR provides adata-space
multicast primitive send-dsm(H,p) which delivers
packetp to all the nodes that own part of the hyper-
rectangleH. (Of course, unicasting to a single point in the
data-space is a degenerate case of this primitive, so we
don’t discuss it further. We have left an exploration of an
analogous anycast primitive to future work.)

To understand how HLR implements the
send-dsm() primitive, we need to describe how
the hyper-rectangles in data-space are mapped to nodes.
We use a mapping very similar to the one used in
DIM [11], but instead of relying on geographic divisions,
we divide the HLI space, as illustrated in Figure 3.

To show the basic idea, we take a 2-d space[0,1)×
[0,1) as an example and map it to the network shown in
Figure 2. Our description here can be easily generalized
to multi-dimensional data spaces. At the top level, areas
1, 2, and 3 are divided into two sets which partition the
data space aligned with the first dimension. The result
is that area 1 is responsible for sub-space[0,0.5)× [0,1)
and areas 2 and 3 together are responsible for sub-space
[0.5,1)× [0,1). We repeat such divisions within each set
of areas and alternatively aligned with each dimension
of the data space until each set contains only one node.
For example, areas 2 and 3 equally divide the sub-space
[0.5,1)× [0,1) while the sub-space[0,0.5)× [0,1) is fur-
ther divided among the sub-areas of area 1, and so on.
Note that if the distribution of areas or the distribution of
nodes within areas are not uniform, the division of the data
space can be adjusted accordingly. For example, instead
of choosing 0.5, we can use 0.1 or 0.9 for a dimensional
division of the data space.

Given the mapping procedure above, it can be seen that
the part of the data space assigned to each node is a hyper-
rectangle in the data space and the hyper-rectangles of
all nodes disjointly cover the entire data space. Further-
more, given the hierarchy in HLIs, an inherent property
of our scheme is that the hyper-rectangles of HLIs which
share the same prefix are also close in data space. Such a
mapping enables the construction of a data-centric storage
scheme that efficiently supports range queries.

Using this mapping between nodes and the data space,
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Figure 3: Example: mapping from 2-d data space to the network
shown in Figure 2

how does HLR support thesend-dsm() primitive?
Given a hyper-rectangleH, each node can locally apply
the above mapping procedure to determine which top-
level areas might contain the nodes which would fall inH.
Using this, the node at whichsend-dsm() is invoked
will route the packets towards those top-level areas, cre-
ating copies of the packets if necessary (this is analogous
to query splitting in DIM). This same procedure is ap-
plied recursively with each area until a copy of the packet
reaches each node whose hyper-rectangle intersectsH. At
some point, whenH entirely covers the hyper-rectangle
associated with an area, HLR simply floods the packet
within that area.

For example, assume a range queryQ: [0.6,0.8)×
[0.3,0.7) is issued at node 1.1.1. Node 1.1.1 looks it up in
its routing table, and matches area 2 and 3 whose hyper-
rectangle intersectsQ. Therefore, node 1.1.1 will split
Q into two sub-queries:Q1: [0.6,0.8)× [0.3,0.5) andQ2:
[0.6,0.8)× [0.5,0.7), and sendQ1 to area 2 andQ2 to area
3. WhenQ1 reaches area 2, say node 2.1.1, it will be fur-
ther split into two sub-queries:Q11: [0.6,0.75)×[0.3,0.5)
andQ12: [0.75,0.8)× [0.3,0.5). The procedure goes on
until the hyper-rectangle of the receiving node completely
contains the sub-query. It is now easy to see how DIM
can be built on top ofsend-dsm(H,p) . A DIM data
insertion would specify aHwhich is merely a point (a de-
generate case of a hyper-rectangle). For a DIM query, the
H corresponds to the query rectangle itself. Query replies
can simply be unicast to the HLI of the query issuer.

Our description of DIM on HLR has ignored dynam-
ics such as node failure, node join, and link dynamics
which may cause changes to HLR routing tables. When
the routing table changes, the mapping between nodes
and their hyper-rectangles might change. When this hap-
pens, a DIM built on HLR needs to check whether its
hyper-rectangle has changed and whether the tuples it has
stored need to migrate to some other nodes. As with ran-
dom hashing, this check can be performed entirely locally.
When a node decides that some of its data belongs to
a hyper-rectangle that it no longer owns, it reinserts the

data.5 Finally, DIM’s local replication can also be mim-
icked in HLR; recall that DIM stores an extra copy of
the packet at a node that would have owned the hyper-
rectangle if the current owner fails. Once area partition
occurs, we need torebuild DIM locally within the par-
titioned area by treating each partition a single sub-area.
For example, when area 1.1 is partitioned due to some
node failure, the hyper-rectangle mapped to area 1.1 is re-
split among all partitions of area 1.1. In general, local
rebuilding will cause data migration among sub-areas, but
this overhead should be small assuming partitions happen
relatively infrequently.

4.5 Summary

In this section, we have described how several routing
primitives that are thought to be important for sensor
networks can be supported using HLR. We have imple-
mentedall of these primitives (as well as simplified ver-
sions of distributed hash tables and DIM) in TinyOS. In
the next section, we evaluate these primitives using simu-
lation.

5 Performance Evaluation Through
Simulations

In this section, we investigate HLR using simulations,
comparing it to other methods of implementing the rout-
ing and rendezvous primitives (e.g., using geographic
routing). Now, it is easy to see that, asymptotically
and with high enough density,noneof HLR’s primitives
are likely to outperform a geographic routing based ap-
proach. In a dense network on a 2-dimensional surface,
the asymptotic path lengths areO(

√
N), and geographic

routing based approaches will approach this performance.
Indeed, HLR will perform worse in general because route
aggregation can increase path lengths. So, our real goal
here is not to demonstrate that HLR is better than other
alternatives, but that it is no worse than other alternatives.
HLR’s usefulness, then, is that it provides equivalent func-
tionality while making fewer assumptions about available
technology (e.g.,precise localization).

We perform four sets of experiments. First, we eval-
uate the performance of HLR unicast by comparing its
average path length for all-pair communication with that
of GPSR. Second, we compare the efficacy of area broad-
cast in HLR, by evaluating a workload of diffusion queries
that are geographically scoped. We compare HLR against

5Note that this may happen often, as with a flapping route. A DIM
built on HLR needs some hysteresis mechanisms built in that would pre-
vent it from re-inserting data at every routing change. We have left the
design of this for future work.
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a version of Diffusion that uses a simple geocast mech-
anism [28]. Third, we implement a DHT and a DIM on
HLR and compare them to GHT and DIM on top of GPSR
for purpose of evaluating rendezvous primitives. Finally,
we evaluate the performance of HLR under dynamics and
measure the overhead induced network-wide by node fail-
ure.

5.1 Methodology and Metrics

We usens-2 for our simulations. We implemented HLR
(including the functionality that detects and deals with
partitions) inns-2, and all of the routing and rendezvous-
based primitives we described in Section 4. Using these
primitives, we implemented a simplified version of one-
phase pull Diffusion, GHT and DIM inns-2. The total
of HLR code for primitives and routing protocol is about
2800 lines.

An interesting methodological challenge we faced was
to randomly generate connected hierarchical topologies
for evaluating HLR. Our topology generator first com-
putes random hierarchical areas where the depth of each
area is random, and the size of the sub-areas is roughly
same. Then it lays out this topology on a 2-dimensional
surface.6 To generate a random hierarchical topology, we
first calculate the size of the network using the number of
nodes in the network, radio range and density. (In our sim-
ulations, radios have a range of 30m. We also simulate for
two different densities, 10 neighbors per node, and 20).
Then we split the network into grids such that the number
of grids is the smallest number greater than the total num-
ber of nodes. Now starting from the top-level areas, we
randomly allocate contiguous free grids to this area, such
that the number of grids equals the total number of nodes
within the area. Then in a breadth first way, each sub area
is allocated contiguous grids from its grids allocated to its
parent area. This breadth-first approach can lead to un-
satisfiable states, at which point our generator back-tracks
and repeats the re-allocation procedure. Finally, we ran-
domly pick a point within the grid as the coordinate of the
node. We generate topologies whose size ranges from 25
to 200 nodes with step size of 25 nodes.

Unless otherwise specified, our metrics are: a) themes-
saging costof implementing a particular primitive (for
unicast, this can be equivalently expressed as the average
path length), and b) thecontrol overheadof HLR routing.

For most of our experiments, we compute the scaling
behavior of the metric discussed above. We computed
our metrics for several topologies ranging from 25 to 200
nodes. For each topology size, the reported number is an
average of 5 randomly chosen topologies.7

6The reason we only use 2-D topology is simply because GPSR cur-
rently only works on 2-D. HLR doesn’t rely on this assumption.

7Resource constraints prevented us from averaging over more topolo-

5.2 Results

Unicast Routing Performance Our first experiment
simply measures the cost of unicast communication in
HLR, and compares it with the cost of unicast using
GPSR. For both these schemes, we conducted a simula-
tion where each node sends a message to all of the other
nodes. We then calculated the average path length in-
curred using either scheme. Figure 4 plots the average
path length for HLR and GPSR. This figure shows that
the average path length in HLR is often three hops longer
than that in GPSR. These results are for a network with
a density of 20, so GPSR, in most cases, does not incur
perimeter mode routing. In a network with a density of
10 (figure not shown), the gap between GPSR and HLR is
decreased to about one hop.

While this might seem somewhat pessimal, our current
understanding of sensor networks suggests that they are
not likely to be used for arbitrary point-to-point routing.
Rather, we expect other primitives like rendezvous and
area broadcast will be more likely used, since they more
naturally support querying and triggering. Thus, we now
discuss the performance of data-centric routing and data-
centric storage systems implemented on HLI.

Diffusion We implemented a simplified version of one-
phase pull Diffusion8 in ns-2. This version uses two un-
derlying routing layers, HLR and GPSR. We augmented
GPSR to supportgeocast(broadcasting to all nodes within
a rectangle). In our implementation, the packet is unicast
using GPSR until it reaches a node within the specified
region, and then flooded within the region.

Our goal in this experiment was to try to understand the
expected performance of Diffusion on these two routing
layers. Lacking traces of actual workloads, we generated
a synthetic query workload for Diffusion. We generated
interest messages of varying geographical scopes, assum-
ing that the scopes were all aligned with the HLR areas.
This assumption is not particularly disadvantageous for
GPSR, but is also the most likely kind of query in an HLR
based system (queries with un-aligned scopes can be im-
plemented as multiple area broadcasts). We assume that
the size of the geographic scope is distributed exponen-
tially: most queries are to small areas.

Again, this seems like a plausible assumption for sensor
network query workloads.

Figure 5 plots the comparison of average query delivery
cost between Diffusion using GPSR and Diffusion over
HLR. In this case, we assume that the query asks for the

gies. Recall that our topology generation algorithm employs a back-
tracking procedure to assign areas to node locations. Using our imple-
mentation, it sometimes took more than a day to generate an instance of
the topology.

8Equivalently, we can be said to have implemented the tree-building
procedure that TinyDB [13] uses.
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cost in DHT over HLR and GHT on net-
works with density 20

min over a set of sensor readings at each node within the
target areas. The results are aggregated along the return
path.9 Notice, in this case, that the performance of HLR
is much closer to that of GPSR than was the case for all-
pairs unicast. Clearly, in this case, the longer path lengths
resulting from aggregation matter less, and the flooding
costs dominate. This conclusion is true even at a lower
node density (10), the results of which we omit for brevity.

GHT How well does a DHT implemented on HLR per-
form compared to a GHT? To test this, we performed
several randomhash-lookup() s on the DHT over
HLR, and performed the equivalentput() operations in
a GHT. Figure 6 compares the messaging cost of these
two schemes.

In this particular case, we find that performance of DHT
over HLR is much betterthan that of a GHT, quite un-
expectedly given our results from Figure 4. The rea-
son is simply because nearly everyput() operation in
a GHT incurs perimeter traversal, which is pretty expen-
sive compared to greedy mode delivery. Further, some
operations incur a traversal of the outer perimeter, which
skews the average. In HLR, however, the average cost
of a hash-lookup() is the same as the average uni-
cast cost. For a lower density of 10 neighbors per node,
the plots look almost identical (omitted for brevity). At
these densities, DHT over HLR encounters longer paths,
but GHT encounters longer perimeters as well.

DIM To evaluate the efficiency of thesend-dsm()
primitive, we implemented DIM on top of HLR and com-
pared it to DIM op top of GPSR. For this comparison, we
used sensor data collected from a deployed in-building
testbed; each sensor periodically collects light, temper-
ature and humidity readings. In the dataset, there were
509765 readings. From these readings, we generate a bal-
anced insertion workload (10 insertion per node) for every

9Therefore, for each query in Diffusion, query delivery cost equals
reply delivery cost.

node in the network from the data set. And we inserted the
selected data subset into the DIM. For our query work-
load, we generated a set of 3-D range queries where the
query box size is exponentially distributed and its location
is uniformly placed.

Figure 7 plots the comparison of data insertion cost be-
tween two versions of DIM on networks with density 20.
In most cases, DIM on HLR has smaller insertion cost
than DIM on GPSR. In the latter, the existence of empty
zones [11] forces DIM to rely on GPSR’s perimeter mode
to find the owner, resulting in a longer delivery path and a
higher cost. At a lower density (10 neighbors per node),
this performance advantage decreases. In HLR, paths
become longer. However, DIM relies less on perimeter
mode than GHT (see above), hence DIM is less affected
by a decrease in density.

Finally, Figure 9 compares the query delivery cost be-
tween two versions of DIM on networks with density 20.
Here again, we see that DIM on HLR outperforms DIM
over GPSR. There are two contributors to this. One is, as
before, that DIM on GPSR encounters many more perime-
ter traversals in discovering empty zones. The other is a
more subtle point that has to do with the way the data-
locality preserving hashes for the two schemes work. In
DIM over GPSR, with 3 or higher dimensional data, a
query hyper-rectangle may actually be split across two
nodes that are far apart physically. However, in DIM over
HLR, the query hyper-rectangle owned by an area is al-
ways enclosed within the hyper-rectangle belonging to the
parent area. Thus, DIM over HLR preserves data-locality
more than DIM over GPSR, explaining the performance
improvement. At a lower density as shown in Figure 8,
the performance difference is a little more, since some of
the performance advantages come from the data-locality
properties of HLR.

Dynamics Finally, we address the important question
of HLR performance under network dynamics. Specifi-
cally, we are interested in HLR overhead caused by the
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Figure 7: Comparison of average insertion
cost in DIM on networks with density 20
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Figure 8: Comparison of average query
cost in DIM on networks with density 10
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Figure 9: Comparison of average query
cost in DIM on networks with density 20
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Figure 10: Average number of routing table changes under single
node failure on networks with size 50, 100, 150, 200 and density
20.
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Figure 11: Average number of control packets to re-converge
under single node failure on networks with size 50, 100, 150,
200 and density 20.

failure of a single node. In our experiment, we sequen-
tially fail and recover each node in the network, waiting
long enough for the network to re-converge between node
failures. Our two metrics for HLR performance are: a) the
average number of routing table changes caused by a sin-
gle node failure, and b) the number of routing messages
sent until the network converges after a single failure. For
each network size, we computed these metrics over five
instances of topology sizes.

Figure 10 plots the distribution of routing table
changes. This figure shows how well HLR localizes the
effect of failure, an important consideration for wireless
sensor networks. On average, more than 90% nodes are
unaffected by a node failure! Only when nodes at the
boundary of top-level areas fail do we see that some nodes
change their routing tables several time before conver-
gence. Even then, the magnitude of these changes is rela-
tively small even for networks of 200 nodes.

Figure 11 plots the distribution of extra overhead
caused by a single node failure. Again, this value is no-
ticeably small. In most cases, the vast majority of the
nodes are completely unaffected by a single failure and
see no routing traffic at all for a failure. In the most egre-
gious cases, some nodes see about 20 messages while the
routing protocol converges.

From our perspective, this is highly encouraging; the

impact of dynamics is very local and is one of the bigger
selling points of HLR.

6 Implementation

We have implemented the HLR routing protocols and
most of the routing and rendezvous primitives in on
Berkeley motes. Figure 12 shows the software architec-
ture of our implementation. The NeighborList module
of TinyDiffusion exports a filtered send and filtered re-
ceive interface which filters out bad quality links includ-
ing asymmetric links and fragile links. On top of this,
as discussed in Section 3, currently we just use a simple
hop-count as our path metric.

The HLR core module implements the core algorithm
of HLR which constructs and maintains the routing ta-
ble. The routing table management module helps organize
the routing table by effective destination area in order to
enable efficient route processing. The routing primitive
module implements unicast, area multicast and area any-
cast, while the rendezvous primitives module implements
the hashing lookup function and data-preserving hashing
function. As we have described in Section 4, the hashing
lookup function and data-preserving hashing make use of
the routing primitives for data delivery.

13



Routing Table
Management Anycast

Multicast
Unicast

HLR−Core

Hash−lookup Locality Preserving
Hashing

MAC

TinyDiffusion NeighborList Module

UseUpdate

Figure 12: HLR Software Architecture Figure 13: HLR Experiment Topology

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7  8

nu
m

be
r o

f m
ot

es

number of route changes

Figure 14: HLR Experiment Result with the
topology shown in Figure 13

As a proof-of-concept, we ran HLR on a network of 10
Mica-2 motes. The topology for our experiment is shown
in Figure 13 where the mote transmission power has been
reduced in order to create a multi-hop network. We let
HLR run for four hours. Figure 14 gives the number of
routing table changes during that four hour interval. As
we can see, over four hours in the worst case, a mote saw
sevenrouting table changes indicating that the routing ta-
bles might be expected to be quite stable in realistic de-
ployments. However, many aspects of HLR need to be
verified in the real world: partition recovery, better path
metrics, and dynamics in larger deployments,

7 Conclusion

In this paper, we have described a pragmatic routing layer
for sensor networks. This layer is built upon the obser-
vation that many sensor network nodes will be assigned
hierarchical location identifiers. We described the design
of HLR, a routing protocol that constructs scalable rout-
ing tables. Using HLR, it is possible to implement sev-
eral routing primitives for data-centric routing and stor-
age. Our results indicate that HLR performs well and
contains dynamics. We intend to experimentally validate
these aspects of HLR using our mote implementation.
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