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ABSTRACT OF THE DISSERTATION 

 

Essays on Regional and Firm-Level Productivity, Military Spending, and Technology 

by 

Bryan Daniel Goudie 

Doctor of Philosophy in Economics 

University of California, San Diego, 2008 

Professor Valerie A. Ramey, Chair 

 

 The aggregate response of labor productivity to changes in technology and 

government spending has been analyzed and documented by many economists. However, 

much less is known about the response of regional and firm-level labor productivity. 

Therefore, the first chapter of this dissertation examines the regional effect of an 

aggregate technology shock. The second and third chapters use firm-level and regional 

data to explore how labor productivity and technology react to changes in government 

spending through military contracting. These regional and firm-level responses can help 

to increase our understanding of aggregate economic fluctuations.  

 Chapter 1 of this dissertation estimates the response of state-level labor 

productivity to a technology shock as measured by aggregate utility patent applications. 



 xiv

The state-level responses, estimated with a vector autoregression, have considerable 

spatial variation. In some states, the responses are significantly positive shortly after the 

shock. However, in other states the productivity responses are initially negative followed 

by an eventual positive response. To explain why the U.S. states respond differently, the 

responses are regressed against a variety of state-level demographic, economic, and 

policy factors. These cross-sectional regression results indicate that high-skilled labor, 

density, and industrial specialization are important shortly after a technology shock.  

 Chapter 2, which is co-authored with Lone E. Christiansen, examines whether 

changes in government spending, through military prime contract awards, leads to the 

development of new technology and analyzes the effects on firm-level productivity. 

Though it is most often assumed that government spending does not affect technological 

progress, the results from this chapter show that indeed firm-level patenting, a proxy for 

technology, increases in response to a military contract award. Firm-level sales per 

employed worker, and research and development are also shown to respond positively.  

 Chapter 3, co-authored with Lone E. Christiansen, follows the approach in 

Chapter 2 but examines the effects of military prime contracts at the regional level. The 

analysis shows that at the regional level, military prime contracts lead to the development 

of new technology. However, labor productivity at the regional level is only affected 

insignificantly. 



 1 

Chapter I  

Regional Effects of Technology Shocks 
 

 
Abstract 

 This chapter estimates the response of state-level labor productivity to a 

technology shock as measured by aggregate utility patent applications. The state-level 

responses, estimated with a vector autoregression, have considerable spatial variation.  In 

some cases, such as New York, Arizona, and Illinois, the responses are significantly 

positive shortly after the shock. However, in other states, such as Kentucky, Oregon, and 

Tennessee, the productivity responses are initially negative followed by an eventual 

positive response within ten years. Chapter I also combines state-level demographic, 

economic, and policy factors, such as population density, education, and income tax, with 

the cross-section of labor productivity responses to explain the differential state responses 

to a technology shock. The cross-sectional results indicate that high-skilled labor is 

important shortly after the shock, while less-skilled workers become important at the 

longer horizon. Also, the results suggest that regions that are denser and more 

specialized, as measured by industrial diversity, tend to have a higher short-run 

productivity response following a technology shock. 

 

 
I would like to thank Valerie Ramey, Garey Ramey, Gordon Hanson, Giacomo Rondina, Takeo Hoshi, 
John Sporing, and especially Lone Christiansen for their very helpful comments. 
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I.A. Introduction 

 After two decades of relatively low productivity growth, the U.S. economy finally 

observed a sustained increase in labor productivity growth in the mid-1990s. This 

happened after large investments were made in the information technology sector. 

However, there are substantial economic differences across the U.S. regions.  Depending 

on the initial economic conditions in the contiguous states, the labor productivity in these 

areas may not have responded symmetrically to technology shocks. 

 This chapter of the dissertation examines the regional effects of an aggregate 

technology shock in the U.S. The aggregate technology shock is identified through the 

use of total utility (invention1) patent applications in the U.S. This takes into account that 

states may be affected by technology developed in other regions and not exclusively 

within the state itself. Chapter I argues for the strengths of using aggregate patent data to 

measure technological progress instead of state-level patent application data, which do 

not capture all new patents that are important for any given state. Additionally, this 

chapter shows that the results are robust to including many different conditioning 

variables.  

 This chapter also estimates the state effects using research and development 

(R&D) as an alternative measure of technological progress. Employing R&D data as the 

measure of technological progress leads to results that strengthen the findings from the 

patent analysis. Furthermore, important differences between the R&D and patent results 

                                                 
1 The United States Patent and Trademark Office (USPTO) naming convention for invention patents is 
utility patents. 
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arise corresponding to the lag from when R&D is performed and until technologies are 

created and patents applications are filed. 

 The response of productivity to a technology shock is shown to differ at the state 

level. These differences are examined carefully with a collection of state-level economic, 

demographic, and policy characteristics. The selection of factors includes the level of 

education, industrial diversification, and state-level policy factors such as taxes on wages. 

Carlino and DeFina (1998) mention that a different mix in large versus small firms may 

be important in explaining differential effects of monetary policy. Similarly, this chapter 

explores if establishment size is important in explaining the differential effects of 

technology shocks. 

 The structure of this chapter of the dissertation is as follows. Section I.B. reviews 

the relevant existing literature in order to identify the gap in the literature that this chapter 

fills. Section I.C. presents the data and discusses advantages of using patent data as a 

measure of technological progress. Section I.D. contains an overview of the methodology 

used for the empirical estimates, and Section I.E. presents the empirical results from 

state-level vector autoregressions. The vector autoregressions show how the effects of a 

technology shock slowly spread across the U.S. Section I.F. analyzes why states are 

affected differentially by a technology shock and identifies factors that help explain the 

different short-run effects. Section I.G. concludes. 

I.B. Relevant Literature 

 Many papers in the macroeconomics literature have explored the aggregate effects 

of technology shocks, using a variety of identification methods. Gali (1999), Francis and 
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Ramey (2004), and Christiano, Eichenbaum, and Vigfusson (2003) use long-run 

restrictions in order to identify a shock that is the sole source of permanent effects on 

productivity. This shock is labeled a technology shock. However, changes in factors such 

as human capital and nutrition may also lead to permanent effects on productivity. If this 

is the case, then the identifying assumption used to isolate the technology shock could 

result in a series that contains movements unrelated to technology. When this series is 

then used in analysis, it might cause short-run effects of the shock to be misleading and 

unreliable. 

 Basu, Fernald, and Kimball (2006) avoid using long-run restrictions by 

constructing a purified total factor productivity (TFP) series that accounts for varying 

utilization, non-constant returns to scale, imperfect competition, and aggregation effects. 

However, their cleaned TFP series may also capture other factors than technology, such 

as human capital.  

 An alternative to long-run restrictions and purified TFP is to use a direct measure 

of technological progress. Alexopoulos (2006), Christiansen (2008), and Shea (1998) all 

take this approach. Alexopoulos (2006) introduced an index for technology based on the 

number of new book titles in the field of technology and computer science. Though her 

novel series is very interesting, it may be capturing the diffusion of technology more than 

innovation as many new books become published when a given technology becomes 

widely adopted.  

 This chapter of the dissertation uses the total number of utility patent applications 

as the measure of technological progress in order to avoid imposing long-run restrictions 

or identifying a technology shock based on a cleansed measure of total factor 
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productivity as in Basu, Fernald, and Kimball (2006). This chapter lies the closest to 

Christiansen (2008) and Shea (1998) in its choice of technology variable as they also use 

patent statistics as a measure of technological progress. Shea (1998) performs an industry 

analysis and finds that a positive patent shock leads to an increase in input use in the 

short run. However, he does not find significantly positive effects on measured total 

factor productivity. In addition, several problems are associated with distributing patent 

statistics at the industry level, as there is no clear methodology for distinguishing between 

the industry that creates the patent and the industry that utilizes the patent.  

 Christiansen (2008) showed using patent application data from 1889-2002 that a 

technology shock can result in labor productivity falling below trend temporarily. At the 

aggregate level she found this to be the case in the pre-WWII era, whereas she did not 

find evidence of productivity slowdowns during the post-WWII period. Although the 

aggregate post-1948 effects do not indicate a temporary slowdown in productivity growth 

as a result of the arrival of new technology, there may be differential effects at the 

regional level. Depending on the initial economic and structural conditions of a given 

state, it may experience a temporary slowdown or an initial increase in labor productivity 

growth in response to a technology shock.  

 Carlino and DeFina (1998, 1999) find that monetary policy shocks affect U.S. 

regions differentially. Performing a regional analysis of the effects of technology shocks 

can give further insights into the aggregate effects found in the literature. 

 If the arrival of new technology can lead to temporary adverse effects on 

productivity, it is important to isolate factors that can explain this phenomenon. Indeed 

some papers have focused on finding explanations for why productivity can fall below 
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trend temporarily as a result of a technology shock. Among these are Greenwood and 

Yorukoglu (1997) and Hornstein and Krusell (1996). It is argued in these papers that 

learning and compatibility problems between the existing and the new technologies are 

among factors that may explain temporary adverse effects. 

 Regardless of factors that may result in temporary adverse effects on productivity 

of a technology shock, the microeconomic literature has provided thorough evidence that 

new technologies are being adopted slowly across time throughout the economy. Papers 

that have provided evidence thereof include David (1990), Hall (2004), and Rogers 

(1995). They argue that the adoption and diffusion of technologies is not immediate and 

that diffusion of technology follows an S-shaped curve with low adoption initially 

followed by a rapid rate of adoption and then tapering off as the technology is fully 

integrated into the economy. As explained in Christiansen (2008), there is thereby no 

reason to expect large positive effects of a technology shock immediately upon arrival of 

the new technological advances. However, at the regional level there may be states that 

adopt new technologies more rapidly than others, thereby leading to differential labor 

productivity responses. Analyzing these regional differences can give additional 

understanding into the aggregate effects.  

 At the spatial level of aggregation, several papers in the microeconomic literature 

have explored the regional patterns of patenting and citations of patents. Varga (1999) 

refers to the fact that “innovational activities have a predominant tendency to cluster 

spatially”. Acs, Anselin, and Varga (2002) compare an innovation output indicator, 

developed by the U.S. Small Business Administration, to patent data from the United 

States Patent and Trademark Office at the regional level. They find that the two measures 
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of technological progress provide similar results, and their findings thereby support the 

use of patent counts when examining technological change. Furthermore, Anselin, Varga, 

and Acs (1997) have examined the local geographic spillovers between university 

research and high technology innovations. They found a positive relationship between 

university research and innovative activity. 

 Varga (2000) found, using U.S. metropolitan areas, that local academic 

knowledge transfers were positively affected by agglomeration, and that concentration of 

high technology employment is an important agglomeration factor in promoting 

knowledge transfers. Further, Varga and Schalk (2004) empirically investigate the role of 

localized factors of technological change in macroeconomic growth using Hungarian 

data. They argue that the economic spatial structure is an important factor in 

macroeconomic growth. 

 Kouparitsas (2002) explores whether regional business cycles are driven primarily 

by common or region specific shocks. Kouparitsas finds that spillovers of region-specific 

shocks across regions account for a relatively small fraction of business cycle variations, 

but that common shocks account for a large and significant fraction of regional business 

cycle variations. The fact that common shocks are important supports the approach in this 

chapter of considering the effects of an aggregate technology shock. Keller (2002) finds 

in a cross-country study that diffusion is geographically localized such that the effects of 

R&D on productivity decline with geographic distance. In addition, Jaffe, Trajtenberg, 

and Henderson (1993) find that knowledge spillovers are geographically localized in the 

sense that patent citations are more likely to come from the same geographic area as the 
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cited patents. However, geographic localization is found to fade slowly over time, and 

basic inventions are not found to diffuse more rapidly than other inventions.  

 Other papers of interest include Audretsch and Feldman (1996), Carlino and Sill 

(2001), Rauch (1993), and Lin (2007). The first explores spillovers from research and 

development, while the second examines the importance of common trends and common 

cycles in regional data. Rauch (1993) finds a strong connection between productivity 

gains and human capital at the city level. The cross-sectional analysis in Lin (2007) 

explores the factors that create advantages for regions in attracting new occupations. 

Interestingly, he finds that regions with highly educated individuals and a broad industrial 

base are more likely to attract new work. 

I.C. Data 

 Technological progress in this chapter of the dissertation is measured by the 

number of total annual utility2 patent applications filed in the U.S. from 1963 to 2005. 

Christiansen (2008) employs these data in an aggregate analysis. Her paper argues that 

problems with using patent data as a direct measure for technological progress are not 

severe. This chapter differs from the analysis in Christiansen (2008) by examining the 

regional effects of technology shocks, which may differ importantly from the aggregate 

results. 

                                                 
2 The USPTO also reports plant and design patents. The former is granted to an inventor who has invented 
or discovered and asexually reproduced a distinct and new variety of plant, other than a tuber propagated 
plant or a plant found in an uncultivated state. The latter consists of the visual ornamental characteristics 
embodied in, or applied to, an article of manufacture. It is a matter of appearance, as in the shape of a 
classic Coca-Cola bottle. In 2005, 417,508 patents were applied for and 93% of them were utility (or 
invention) patent applications.  
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 One potential drawback of the analysis may arise if patent data are only a noisy 

measure of technological progress as a result of patent law changes across time which 

may have affected the incentive to apply for a patent. Particularly, there was a surge in 

the number of U.S. patent applications in the mid-1980s. This surge was analyzed by 

Kortum and Lerner (1998). They found that the surge in patenting was not specific to the 

U.S. but that it was also seen in the U.S. patenting numbers abroad. The surge in 

international patent statistics leads them to conclude that the jump in U.S. patenting is 

related to a burst of innovation. These findings support the assumption in this chapter that 

the important source of fluctuation in the patent application series relates to the arrival of 

new technology and not to institutional changes.3  

 The total number of patent applications sorted by the state of the primary patent 

author is also available from the United States Patent and Trademark Office (USPTO). 

However, important new technologies are assumed to affect all regions and not only the 

state that the patent author cites.  Using the state-level patent series would thereby leave 

out information important for the state-level analysis. Thus, the aggregate patent series is 

preferred for the identification of technology shocks.  

 Although all patents are not of equal importance, a new invention with wide 

applicability and importance such as a general purpose technology (GPT) should lead to a 

surge in patent applications as many new inventions will occur in response to the new 

GPT. As fluctuations in the patent series indicate economically important technological 

change, the patent shock, which will be identified in this chapter, is important not only 

                                                 
3 To check the robustness of the patent results this chapter also employed data on R&D as an alternative 
measure of technological progress. 
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for the industry or region of technological origin but also for industries and geographical 

areas that employ the new technology as an input to production. For example, the 

financial industry in New York may be importantly affected by innovations in 

information technology developed elsewhere. As such, it is important not to rely on 

patent statistics that are sorted by industry or region but to allow for the full country-wide 

effect.4  

 At the aggregate level, an alternative to using total patent applications filed in the 

U.S. is to use the number of patents granted, sorted by application year. Using these data 

would exclude patent applications that are never granted as a result of not fulfilling the 

requirement of being useful, novel, and non-obvious. However, data on patents granted, 

sorted by application year suffers from truncation problems as there is a lag from the date 

of application till the date of grant. Patents that are applied for in 2005 but not granted 

until 2008 or later will therefore not be included in the dataset. Figure I-1 plots the 

natural logarithm of total patent applications together with the natural logarithm of 

patents granted, sorted by application year and sorted by grant year. The series on patents 

granted, sorted by application year, is only reliably reported starting in 1966, and as a 

result of the truncation problem in the end of the sample cannot reliably be used after 

1999. The figure clearly shows the fall in the number of patents granted, sorted by 

application year, which illustrates the truncation problem. As the analysis is based on 

                                                 
4 This chapter did try to estimate productivity effects of an aggregate patent shock, controlling in the vector 
autoregression for the number of state-level patent applications. However, state-level patent applications 
are available only from 1969 to 1996. Using this series therefore severely limits the time series dimension 
of the analysis, leading to less precise parameter estimates. Additionally, impulse response functions after 
including state-level patents, although more jagged than the benchmark results for the full sample, follow 
the same overall pattern as the benchmark results. This indicates that controlling for state-level patent 
applications in the analysis is not important. 
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annual data, excluding nine years of data may influence the precision of the estimates. 

Therefore, the data on total patent applications are used for the benchmark analysis.  

 Concerns with using total utility patent applications instead of patents granted 

sorted by application year should not be severe as the two series are very much positively 

correlated. Indeed, the correlation coefficient between the annual growth rates of the two 

series from 1967 to 1999 is 0.7. As such, the two patent series follow the same pattern. 

Furthermore, as a robustness check the impulse response functions were also computed 

based on the shorter sample of patents granted, sorted by application year. Although more 

results tend to be insignificant as a result of the reduction in degrees of freedom, the 

estimates of the impulse response functions did not lead to different conclusions. 

 Christiansen (2008) and Hall, Jaffe, and Trajtenberg (2001) note that data on 

patents granted, sorted by grant date, which are also illustrated in Figure I-1, are affected 

by a varying application-grant lag. Budgetary and staffing concerns at the USPTO, which 

are unrelated to technological progress, can result in such effects on the application-grant 

lag. Data on patents granted by grant date are therefore not used as a measure of 

technological progress.5 

 One potential caveat that this chapter faces is that different patents may be 

important for different industries. A surge in patenting therefore can affect the states 

differentially, depending on the industry mix in any given state. To alleviate this issue, 

this chapter will introduce a variable that captures the industry mix at the state level.  

                                                 
5 For more information regarding patent statistics as economic indicators refer to Griliches (1990). Also, 
refer to Hall, Jaffe, and Trajtenberg (2001) for information regarding the NBER patent data file. 



 

 

12

 Data on gross domestic product by state (GDPS) is collected from the Bureau of 

Economic Analysis (BEA) and is converted from nominal to real terms using the GDP 

deflator. Aman, Downey, and Panek (2005) introduced new methodology for estimating 

the regional product.  As a result, a jump in the regional product was introduced starting 

in 1997.6 In the analysis below, the data are spliced in 1997 in order to take this change 

into account.7 Non-farm employment by state is from the Bureau of Labor Statistics 

(BLS) Current Employment Survey. Labor productivity by state is then computed as real 

GDPS per employed worker. The natural logarithm is taken of these variables. In Section 

I.F., this chapter explores the regional variation in the response of labor productivity to an 

aggregate technology shock. The data from that cross-sectional analysis will be presented 

in Section I.F. However, a detailed account of all data is presented in this chapter’s 

Appendix which is contained within Section I.I. 

 Table I-1 contains information on the extent to which different states contribute to 

the U.S. economy. Alaska, the District of Columbia, and Hawaii have been left out of the 

analysis as their economic and demographic characteristics often differ substantially 

when compared to the 48 contiguous regions.8 The table shows that average annual labor 

productivity growth varies considerably from state to state. Montana and North Dakota 

have the lowest average productivity growth while Connecticut has the highest. 

                                                 
6 Under the Standard Industrial Classification system (1963-1997), regional product does not include the 
statistical discrepancy. However, the North American Industry Classification (1997-2005) does incorporate 
the discrepancy to align regional product more closely with gross domestic product. 
7 This chapter also tried estimating the impulse response functions without splicing the data, instead 
including a dummy variable starting in 1997. Results from this procedure were very similar to the ones 
reported in this chapter and it did not change the overall conclusions. 
8 Also, the distance between the satellite states and the mainland is rather large which could unduly 
influence their response to an aggregate technology shock. Furthermore, an earlier version of this chapter 
included them in the analysis and it showed that the major conclusions of this chapter were robust to adding 
the outliers.  



 

 

13

Additionally, the correlation between growth rates of state and U.S. aggregate 

productivity series differ substantially from state to state. Table I-1 also shows that the 

size of each state economy differs considerably. In 2000, California, New York, and 

Texas constitute nearly 29 percent of total gross domestic product, while Wyoming, 

Montana, and North Dakota account for no more than 0.6 percent.  

 Figure I-2 plots aggregate U.S. labor productivity together with the average state 

labor productivity and its standard error bands. The U.S. aggregate productivity series 

lies above the state average, indicating that the states that are most important for the 

aggregate series tend to have slightly higher productivity. However, the aggregate 

productivity series lies well inside the standard error bands of the state average. 

Importantly, as labor productivity growth differs between states it is also likely that state 

productivity responds differentially to technology shocks, depending on the region. The 

contribution of this chapter is therefore very important in understanding these differences. 

 Table I-2 examines the stationarity underlying the data. Both Augmented Dickey-

Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are performed. 

Generally, if the data display properties close to a unit root, while still stationary, it is 

often hard to reject the assumption of a unit root. Table I-2 shows that for many states 

both the KPSS null hypothesis and the ADF null hypothesis are difficult to reject. Since 

stationarity is assumed under the KPSS null and a unit root under the ADF null, it is often 

difficult to determine the order of integration for the productivity series.9 In order not to 

over-difference, this chapter decides to treat the data as stationary around a deterministic 

                                                 
9 The length of sample, frequency of the data, and overall power of the unit root tests under consideration 
may be contributing to the consistency by which these tests fail-to-reject the null. 
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trend. However, time series estimations have also been performed in differences, 

assuming a unit root. Although this lead to more persistent response functions, the overall 

results were similar to the ones from the trend stationary statistical model. 

I.D. Methodology 

 First, vector autoregressions (VARs) for each state are estimated, and 

orthogonalized impulse response functions are computed in order to estimate the 

response of state productivity to an aggregate technology shock. The reduced-form VAR 

can be expressed as follows: 

 (1) itpitipitiitiiiit YYYtY εαα +Φ++Φ+Φ++= −−− L221110 . 

Here, Yit is a vector of variables associated with state i at time t, and αi0 is a constant 

term. αi1 is the coefficient on a deterministic time trend, and Φij for j  = 1,…, p are 

matrices of coefficients on lags of the endogenous variables. εit is a vector of errors. 

 The patent variable (PAT) is ordered first in the recursive ordering, while regional 

productivity is ordered second. This allows the patent shock to affect productivity 

contemporaneously. Orthogonalized impulse response functions are then estimated based 

on a short-run Cholesky decomposition. As a robustness check this chapter also tried the 

reverse ordering to obtain identification of the shock. Ordering PAT last among the 

variables does not allow for a contemporaneous response of productivity to a patent 

shock, and changing the ordering did not affect the overall shape of the impulse response 

functions. Therefore, these results are not reported below. 
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 The standard errors of the response functions were constructed using standard 

Monte Carlo simulation methods presented in Hamilton (1994).  For each set of standard 

errors, this chapter used 2000 draws from a multivariate normal.   

 Following estimation of the vector autoregressions and corresponding response 

functions, the state impulse responses are collected. Subsequently, this chapter follows 

the methodology of Carlino and DeFina (1998) who examined the differential regional 

effects of monetary policy. For this present analysis, Chapter I regresses the impulse 

response functions at a given horizon on a set of state economic factors. The following 

cross-sectional equation is estimated: 

 (2) ihiih uWLPF += β . 

LPFih indicates the impulse response function of productivity to a patent shock at horizon 

h in state i. Wi is a vector of economic indicators in state i together with a constant term, 

while uih is an error term. β is a vector containing the coefficients of interest. 

I.E. Empirical Evidence 

 This section contains the results from estimating the benchmark equation (1), 

followed by robustness checks of the results. 

I.E.1 Benchmark Results 

 The impulse response functions of productivity to a patent shock for the 48 states 

are depicted in Figure I-3. The parameter estimates are based on patents and productivity 

in their log levels, a constant and a time trend. Data for the period 1963 to 2005 are used, 

and p = 3 lags are included. The Akaike Information Criterion for some states indicated 
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that the number of lags be less than three, however, the overall shape of the response 

functions are robust to the choice of the lag length. As cross-state comparisons are 

important to this chapter of the dissertation, three lags were chosen for all regions.10 The 

impulse response functions are depicted together with 90% confidence intervals. 

 Figure I-3 shows how state-level labor productivity differs in its responses to the 

aggregate technology shock. The vertical axis is in percent and the horizontal axis 

delineates the time periods following the technology shock. To avoid confusion it should 

be noted that time period 1 is the period in which the technology shock occurs. That is, 

the recursive identification used to isolate the orthogonal technology shock together with 

having patents ordered first allows productivity to respond contemporaneously.  

 States such as Arizona, Delaware, Illinois, Nevada, Rhode Island, New York, 

North Carolina, Pennsylvania, and Washington show a significant increase in 

productivity after a technology shock with no significantly negative short-run effect. 

Other areas (for example Arkansas, Indiana, Iowa, Kentucky, Mississippi, Nebraska, 

New Mexico, Oregon, and Tennessee) depict an initial decline in labor productivity as a 

result of the shock, followed by a later increase. In addition, some states that quickly 

respond positively to shocks revert to trend faster than several states in the second group 

which have postponed positive responses. 

 For comparison, Figure I-4 displays the response of U.S. aggregate productivity to 

a patent shock. At the aggregate, no significantly negative response is found for this 

period. Instead, labor productivity slowly increases above its trend level. Figure I-4 also 

                                                 
10 If the true lag length is less than three, then given a large enough sample size the estimates of the higher 
order lags would be near zero. Indeed precision of the estimates is sacrificed for uniformity across the 
regional VARs.  
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displays the response of patents to a patent shock using the national labor productivity 

data as the second variable in the VAR. That response is significantly positive and 

persistent, indicating that an orthogonal patent shock has a long-lasting effect on patents. 

These aggregate results are broadly consistent with the post-WWII evidence found in 

Christiansen (2008).  The response of patents to a patent shock for each state-level model 

is not shown since the responses are similar to the national response shown in Figure I-4. 

 The state results in this chapter compare to the aggregate findings in Christiansen 

(2008) who found that the productivity response in the pre-WWII period was 

characterized by a temporary negative effect while the post-WWII era was distinguished 

by a delayed positive effect. It is of great interest for the understanding of 

macroeconomic fluctuations in the post-WWII period to find that even during the post-

WWII period, where the aggregate result depicts a slow increase to a higher productivity 

level, the regional effects differ greatly. 

 The impulse response functions in Figure I-3 are all plotted based on a VAR with 

three lags. Under this specification, not all states show significant response functions. 

However, Figure I-5 shows that if the lag length is varied between two and five lags, then 

the vast majority of states experience a significant response at some point during the 

forecast horizon. Since the shapes of the productivity responses are robust to changes in 

the lag length, it can be concluded that the insignificance of the three lag specification for 

some states is not critical for the results.  

 Figure I-6 shows how states within a given region tend to respond similarly to a 

technology shock. These impulse response functions correspond to the ones shown in 

Figure I-3 (without standard errors), however they are now sorted by the eight BEA 
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regions11. For clarification, Panel A of Figure I-6 plots the BEA regions with their 

corresponding states. Panels B through I of Figure I-6 subsequently plot the response 

functions associated with each region. States in New England tend to be positively 

affected by a technology shock in the short run, after which the responses slowly die out 

as a result of the trend stationarity in the data. Similar results are found in the Mideast. 

However, states in the Southeast, the Great Lakes, the Plains, the Southwest, and in the 

Rocky Mountains tend to have the positive responses a few periods postponed, and most 

of these have a tendency of showing a temporary negative response shortly after the 

shock. 

 With the exception of Oregon, the Far West states experience a positive response 

of productivity to a technology shock. The response of California is positive but 

insignificant. However, Section I.E.2.3 explores aggregate R&D expenditure as a proxy 

for the foundations of new technology. That analysis shows California has a significantly 

positive response following an R&D shock.  

 Figure I-7 shows 10 thematic maps, one for each forecast horizon, of the 

contiguous states. The regions are shaded with one of two colors based on the sign of the 

impulse response functions. Dark grey indicates a productivity response that is negative 

and white symbolizes those regions that have a positive response. It clearly can be seen 

how the positive effects on productivity of a technology shock slowly spread across the 

U.S. states, starting from the coasts and moving inland.  By period 7 all regions have 

experienced positive returns to the patent shock with the coastal states realizing those 

                                                 
11 The eight regions are: New England, the Mideast, the Southeast, the Great Lakes, the Plains, the 
Southwest, the Rocky Mountains, and the Far West. 
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returns earlier in the forecast horizon. At the end of the forecast horizon, the response 

functions for Connecticut and New Jersey move from positive to negative, however, the 

late arriving negative response is highly insignificant for both regions. Furthermore, the 

results from Section I.E.2.3 will show that both states respond positively to an R&D 

shock for the entire forecast horizon. 

I.E.2 Robustness of the Impulse Response Functions 

I.E.2.1 Adding Exogenous Variables 

 The impulse response functions in Figures I-3, I-4, and I-6 are based on vector 

autoregressions with a deterministic trend. However, U.S. aggregate productivity may 

have a break-in-trend in 1973. Greenwood and Yorukoglu (1997) suggest that it is related 

to technology, however, it may also be the outcome of an oil shock, a change in 

environmental regulation, or other factors. This chapter therefore also tried including a 

break in trend in 1973. This resulted in impulse response functions that are very similar to 

the ones already depicted, and they are therefore not reported.12 

 Davis, Loungani, and Mahidhara (1997) have argued that energy prices have a 

substantial influence on regional economic activity. Therefore, this chapter tried 

conditioning on the natural logarithm of a fuel producer price index relative to the overall 

producer price index (FuelPPI). The benchmark model is therefore adjusted to include the 

contemporaneous instance and one lag of the FuelPPI series.  

 (3) ittitipitipitiiiit FuelPPIBFuelPPIBYYtY εαα +++Φ++Φ++= −−− 1211110 L  

                                                 
12 Crone and Clayton-Matthews (2005) and Owyang et al. (2005) both examine the timing of region 
specific business cycles. An analysis of region specific breaks in trend is left for future work.  
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 Adding FuelPPI is not important for most states, and the results are therefore 

mainly robust to this change. However, results from a few states are affected by including 

this energy indicator. In particular, the responses of energy producing states such as 

Texas, Oklahoma, Wyoming, and Louisiana are importantly affected. Adding FuelPPI for 

these states leads to responses of productivity to a technology shock that are more 

positive than when FuelPPI is not included. A graphical comparison of the impulse 

response functions with and without including the energy indicator is contained in Figure 

I-11 of this chapter’s Appendix. Robustness of the cross-sectional results will be 

analyzed in Section I.F.2. 

I.E.2.2 Truncated Time Series Sample 

 As the methodology for computing GDPS changed in 1997, ending the sample 

period before this change can alleviate the problem that the change in data definition may 

be important in explaining the results. The productivity response functions are therefore 

recalculated based on data from 1963-1997 and are shown in Figure I-12 of the 

Appendix. The responses are similar to the results computed based on the full data set, 

although Connecticut tends to have a more positive response in the short run. A few 

states also tend to show less positive long-run response functions with the shorter sample 

period. 

I.E.2.3 Research and Development 

 As an alternative to patent data, research and development (R&D) is another 

potentially important factor that needs to be analyzed when examining the regional 

productivity response to a technology shock. R&D precedes any patents that may be 
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developed. Therefore, this section employs real R&D data as an alternative direct 

measure of technological progress. That is, Chapter I estimates the response of labor 

productivity to an R&D shock in bivariate state-level vector autoregressions, where R&D 

is ordered first and productivity second. As was the case in the patent analysis, a time 

trend is included in the regressions together with three lags of the endogenous variables. 

 The R&D expenditure data are produced by the BEA in conjunction with the 

National Science Foundation (NSF). They include private and public expenditures 

performed in the U.S. and are available from 1959 to 2004. Okubo et al. (2006) and 

Robbins and Moylan (2007) discuss the estimation procedure and the deflation 

methodology in constructing the real R&D expenditure series.   

 The individual productivity responses from the R&D analysis are depicted in 

Figure I-8. These responses show that some states13 experience a short-run response 

which becomes insignificantly negative, followed by a significantly positive response at 

the longer run. Other states, like California, Illinois, Maryland, Massachusetts, New 

Jersey, New York, Pennsylvania, Rhode Island, and Virginia exhibit positive responses 

without initial negative effects. That California’s productivity response to patents is 

insignificant while its response to R&D becomes significantly positive suggests that 

California may respond to technology with a different timing than the other states. For 

instance, if much of the U.S. R&D is performed in California, then California may lead 

the rest of the country in incorporating the aggregate technology shock into its labor 

productivity. 

                                                 
13 For example Arkansas, Florida, Idaho, Mississippi, and Nebraska. 
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 Table I-3 reports the leads and lags of the correlations between the growth rates of 

R&D and patents. This correlation analysis suggests that movements in R&D and patents 

are positively correlated with a lag of about 2-4 years, as the correlation between R&D 

growth at time t and patent growth at time t+3 is 0.409. That is, a positive movement in 

R&D (above the mean R&D growth rate) is likely to be followed by a positive movement 

in patents (above the mean patent growth rate) in about three years. This lag is intuitive 

as it may take firms more than one year to convert new R&D into a patentable 

innovation. 

 The overall results from the R&D analysis do show some differences when 

compared to the patent study. Figure I-13 in the Appendix plots the productivity 

responses from the benchmark model together with those generated using the R&D 

data.14 As there is a lag between the two series, it is expected that initial short-run 

responses may differ from one another. Interestingly, the responses of productivity to a 

patent shock tend to lead the responses from an R&D shock such that the responses from 

the patent shock start increasing from their low point sooner than those from the R&D 

shock. That is, the future positive effects of an R&D shock often show up in the 

productivity response functions with a longer lag than the positive effects arising from a 

patent shock. This exactly corresponds to the fact that R&D spending precedes any future 

patents, and provides additional confidence in the patent data. 

 Since R&D leads to new technology with a lag and much of R&D is capitalized 

knowledge of failed research, the patent series continues to be the preferred measure of 

                                                 
14 It should be noted that the sample period for the two series is not fully comparable as the R&D response 
functions are based on data ending in 2004, while the patent data end in 2005. 
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technology. That is, there is a substantial amount of research expenditure that does not 

produce tangible results. On the contrary, the patent series is the outcome of important 

R&D that has future potential value. As such, it is preferred to use the patent series as a 

measure of technological progress. 

I.E.2.4 State Wages and Salaries as a Proxy for Productivity 

 If workers are being paid their marginal product, then the real wage may suffice 

as a proxy for labor productivity. As a robustness check, this chapter estimates the effect 

of a technology shock, through utility patent applications, on state-level wage and salary 

disbursements provided by the BEA regional program. The wage data are, however, first 

deflated by the BLS Consumer Price Index. This deflation transforms the wage series into 

real wages. 

 The wage responses are constructed from a three lag bivariate VAR with patents 

ordered first and wages second. For a select group of states15, Figure I-14 of the 

Appendix plots the productivity and wage responses to a patent shock. These responses 

show that both productivity and the real wages respond similarly when faced with a 

patent shock, though the real wage response in some cases is slightly delayed relative to 

productivity. The lag may indeed be related to the estimation of wages by disbursement 

rather than by an accrual method. Nevertheless, for most states the wage and productivity 

response functions are very similar.16 As such, these results suggest that changing the 

metric for productivity will not have a substantial influence on the results. As workers 
                                                 
15 One state from each BEA area: Massachusetts, New York, Oregon, Tennessee, Utah, Texas, Illinois, and 
Iowa. 
16 There are a few states including Arizona, Florida, and Washington that have response functions which 
are different from the benchmark model, however, the impulse response functions for all these states are 
insignificant.  
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may not be paid exactly their marginal product, this chapter continues to use the 

productivity series that is calculated using real GDP and employment. 

I.E.2.5 Trivariate Analysis 

 The bivariate regression results of Figure I-3 control for lag patents and lag 

productivity. However, other variables, such as labor productivity of the surrounding 

regions, may influence the relationship between aggregate patents and state-level labor 

productivity. Therefore, this chapter tried including other potentially important 

endogenous variables in the state-level VARs. These additional variables are included 

one at a time together with patents and productivity. A trivariate VAR is thereby 

estimated. The additional variable is ordered last in the VAR and the equation is 

estimated using three lags so that the trivariate productivity impulse response functions 

can be compared to the benchmark results of Section I.E.1.  Xit in equation (4) indexes 

the third conditioning variable. 
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I.E.2.5.1 Surrounding Productivity 

  The collection of benchmark response functions in Figure I-6 suggests that 

regions that are close together respond to technology shocks similarly. One explanation 

for this is that there are region specific shocks that the benchmark model is not 

accounting for when estimating the effect of an aggregate technology shock on regional 

labor productivity. Therefore, this chapter tried including the labor productivity of the 
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surrounding regions as the third variable in the state-level VARs. As an example, the 

third variable in New York’s VAR would include the average productivity of the other 

states in the Mideast17 BEA region.  The surrounding productivity data are constructed 

using the same methodology as used in the benchmark analysis.  That is, the productivity 

numerator is surrounding GDP deflated using the GDP deflator and the denominator is 

employment. The natural logarithm is applied to the series.  

 Figure I-15 in the Appendix contains a comparison of productivity responses from 

the benchmark and the trivariate VARs where surrounding productivity is the third 

variable. This selection18 of plots show that including the spatially relevant productivity 

data in the state-level trivariate VAR has little to no effect on the productivity response 

functions from a patent shock. The other state-level responses are not shown as this result 

holds generally. That the productivity responses are robust indicates that region specific 

productivity factors are not driving the results. Section I.F. of this chapter takes a closer 

look at economic policy and demographic factors that may help explain the differences in 

response functions across the 48 states. 

I.E.2.5.2 Manufacturing Employment 

 The share of manufacturing in employment has declined over the last four 

decades. Controlling for the manufacturing share in the time series analysis may therefore 

be of potential importance in explaining the differential state response functions. This 

section therefore includes the share of manufacturing in employment as the third variable 

in the VAR. This third variable is only available for the period 1969-2005 and the 
                                                 
17 Pennsylvania, Maryland, New Jersey, and Delaware. 
18 One state from each BEA area: Massachusetts, New York, Oregon, Tennessee, Utah, Texas, Illinois, and 
Iowa. 
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response functions are therefore not directly comparable to the benchmark results. 

However, the responses of productivity to a patent shock when controlling for the  

manufacturing employment share are very similar to the benchmark response functions 

and a small selection19 of the impulse responses for this analysis are therefore deferred to 

Figure I-16 of this chapter’s Appendix. 

 As an alternative to controlling for the manufacturing share of employment, this 

chapter also tried including total non-farm state employment as the third variable. Total 

employment is available at the state level for the full sample period 1963-2005, and 

including this variable together with patents and productivity in the VAR did not change 

the results. These response functions are therefore not reported. 

I.E.2.5.3 Real GDP by State 

 The size of each states economy is another variable that potentially could explain 

the productivity differences between the 48 states. Figure I-17 in the Appendix therefore 

reports eight20 state impulse response functions from a trivariate VAR with patents, 

productivity, and real GDP. These response functions are compared to the benchmark 

bivariate responses. As was the case with employment, the time series results are robust 

to including real GDP by state in the trivariate VAR. 

I.E.2.5.4 Density 

 Controlling for changes in population may be important as the population of some 

states has increased greatly during the last several decades. In particular, the south west 
                                                 
19 One state from each BEA area: Massachusetts, New York, Oregon, Tennessee, Utah, Texas, Illinois, and 
Iowa. 
20 One state from each BEA area: Massachusetts, New York, Oregon, Tennessee, Utah, Texas, Illinois, and 
Iowa. 
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states such as California, Nevada, and Texas have experienced a dramatic change in their 

populations during the last 43 years. This change in population has resulted in 

corresponding effects on population density. 

 In order to account for the changes in population, this subsection includes density 

as a third variable in the VAR. Here, density is defined as number of people per square 

kilometer in any given state. For a selected group21 of states, a graphical comparison of 

the response functions between the benchmark model and the trivariate VAR with density 

as the third variable is displayed in Figure I-18 in the Appendix. Including density in the 

time series analysis results in impulse response functions of productivity that are very 

similar to the benchmark results. Only very few states22 have impulse response functions 

that differ from the benchmark after including density in the system. However, the cross-

sectional analysis in Section I.F. was also performed using these new impulse response 

functions, and the main results are robust to this change as will be explained later. 

I.F. Explaining Differential State Response Functions 

 The 48 contiguous states differ substantially in their economic and demographic 

characteristics. These differences may be important for explaining why regional 

productivity does not respond uniformly to a technology shock. Table I-4 summarizes 

sixteen different state-level economic, demographic and policy factors likely to affect the 

adoption and success of a given technology. In addition, Figure I-9 contains thematic 

maps and histograms that show how the U.S. states differ in their level of education, 

                                                 
21 One state from each BEA area: Massachusetts, New York, Oregon, Tennessee, Utah, Texas, Illinois, and 
Iowa. 
22 Utah and Colorado are examples of a states whose response functions are somewhat affected by the 
inclusion of density in the VAR. 
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industrial diversity, and average marginal tax rates on wages. Together, Table I-4 and 

Panels A through D of Figure I-9 show that this chapter’s state-level economic and 

demographic factors, such as the share of college educated persons over the age of 25 in 

the year 2000, exhibit a great deal of spatial variability across the U.S. 

 In order to examine why a technology shock leads to differential regional effects, 

Chapter I compares the responses of the 48 states at different forecast horizons to 

information on the level of schooling, the state industry mix, state policy variables and 

other relevant factors similar to those used in Owyang et al. (2006) and Carlino and 

DeFina (1998). Indeed, the arrival of a new technology may affect a region positively 

shortly after the shock if the area is well equipped to restructure and introduce the new 

technology in the production function. On the contrary, the same shock may have 

temporary adverse effects in a state with relatively small amounts of skilled labor which 

is necessary to quickly incorporate the new technology efficiently. 

 Jovanovic and Rob (1989) suggest that a high level of human capital will lead to 

rapid diffusion and growth of knowledge. Bartel and Lichtenberg (1987) and Nelson and 

Phelps (1966) both suggest that educated workers have a comparative advantage in 

implementing new technologies because educated individuals can more quickly 

assimilate new ideas. In order to understand the effects of education on productivity, this 

chapter considers several different education levels. One variable, EDUhs, captures the 

share of state population (over the age of 25) with at least a high school education but not 

a college degree (Panel A of Figure I-9). Another variable, EDUcoll, captures the share 

of state population (over the age of 25) with a college degree (Panel B of Figure I-9), and 
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EDUalhs contains the share of state population (over the age of 25) with at least a high 

school degree. Thereby, EDUalhs is the combination of EDUhs and EDUcoll. 

 At the short-run forecast horizon, one would expect that a population with a high 

ratio of college graduates will experience positive productivity responses to the arrival of 

new technology. On the contrary, states with few college graduates are likely to have 

short-run adverse effects as learning and implementation of technologies may be more 

costly. If this intuition is correct, then education should have a positive effect on the 

response of productivity at the short-run forecast horizon. However, this correlation may 

be reversed at longer forecast horizons. It is likely that states that quickly see positive 

productivity effects revert to trend as a result of the stationarity of the data faster than 

states with delayed positive responses. If states with low-skilled workers have positive 

effects on productivity eight years after the shock and the productivity of states with high 

skilled workers has already returned to trend, then longer-run forecasts may provide 

negative correlation between EDUcoll and the productivity response. A negative 

correlation between the response of productivity to a technology shock and the level of 

education at a forecast horizon of several years would thereby support the hypothesis that 

a high level of education is important for a quick adoption of new technology. 

 Panel A of Figure I-10 shows scatter plots for how the benchmark response 

functions at horizon two, three, eight and nine relate to EDUcoll. Table I-5 contains the 

summary correlation statistics between the factors of interest and the benchmark impulse 

response functions at different horizons. One year after the shock, there is a positive 

correlation between the state response functions and EDUcoll, while eight years after the 
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shock the correlation has become negative. Table I-5 shows how this positive correlation 

changes gradually over time from positive to negative.  

 Horizon three and nine scatter plots for EDUhs are plotted in Panel B of Figure I-

10. These plots, along with the summary correlations in Table I-5, show that indeed the 

share of high school educated individuals within a state is negatively correlated with the 

benchmark productivity responses shortly after the patent shock and positively correlated 

shortly after period four.  Similarly, factors other than education might be important.  

 Following Glaeser et al. (1992) who stress the importance of industrial diversity, 

this chapter constructs a Dixit-Stiglitz index (similar in nature to the one constructed in 

Owyang et al. (2006)), Diversity, which captures the industrial diversity for each state. 

This variable is computed as 

 (5)  
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where GDPSjit is GDPS in industry j and state i at time t. Twenty industries at the two 

digit North American Industry Classification System level are used for the data. Low 

values of Diversity indicate that production within state i is concentrated in a few 

industries; higher values indicate a more even distribution of production across sectors. 

Panel C of Figure I-10 shows that the period 3 productivity responses are negatively 

correlated with Diversity and the period 9 responses are positively correlated. The data 

for this variable are based on year 2000 values.  

 Density may also be important for explaining response function differences given 

that authors such as Glaeser et al. (1992) suggest that geographical proximity may help 

facilitate the transmission of ideas. Also, Jacobs (1969) argues that human capital 
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externalities are best bred in dense areas. If this is the case, then denser areas might 

incorporate the benefits to a technology shock faster than sparsely populated regions. The 

period 3 scatter plot in Panel D of Figure I-10 suggests that shortly after a patent shock 

the productivity responses from the benchmark analysis are positively correlated with the 

Density variable. As described in Section I.I., this variable is measured as persons per 

square kilometer.  

 Additional non-policy variables include Manufact, which captures the share of 

GDPS associated with the manufacturing sector. The decline in U.S. manufacturing has 

received a great deal of attention in the past decade. Therefore, this chapter included the 

Manufact variable to make sure that this decline is not driving the results. Other non-

policy variables that this chapter considers include: Union, Race, Establishment Size, and 

Median Age. Union contains the percentage of each state’s nonagricultural wage and 

salary employees who belong to a union.23  Union may be important since labor market 

rigidity within a state may influence the state’s ability to adapt to new technologies.  Race 

is measured by the percent of non-white individuals within a state.  Average 

Establishment Size is perhaps a contributing factor since Griliches (1990) suggests that 

small firms may be more efficient at patenting with a given amount of R&D dollars. 

Finally, the age distribution of the state may help explain cross-state differences in 

productivity responses. Therefore the states’ Median Ages are also examined. 

 Policy that is developed and implemented at the state level may also influence a 

state’s productivity response following a technology shock. Therefore, this chapter 

examined Education Spending per Student, Income Tax, Corporate Tax, Property Tax per 

                                                 
23 Details on data and methodology for Union are provided in Hirsch, MacPherson, and Vroman (2001). 
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Person, and the State Minimum Wage as explanatory variables in the cross-sectional 

regressions.  Education Spending per Student, acquired from the National Center for 

Education Statistics, may proxy for the quality of grade school education. The Income 

Tax variable, collected from the NBER, measures the average marginal state income tax 

rate on wages. Corporate Tax and Property Tax were both obtained from the Tax 

Foundation. The former measures the highest marginal corporate income tax rate24 and 

the latter estimates the average amount of property tax25 paid by a state resident. The 

State Minimum Wage, provided by the BLS, is the maximum of the federally mandated 

minimum wage and the state specific minimum wage. 

I.F.1 Benchmark Cross-Sectional Results 

 Chapter I now formally estimates the importance of these different demographic, 

economic, and policy factors at the state level by regressing the impulse responses of 

productivity to a technology shock at varying horizons for the 48 contiguous states on 

their respective state-specific economic conditions.  

 The collection of state economic data and impulse response functions results in 

cross-sectional regressions at each forecast horizon as stated in equation (2) of this 

chapter. The regression results from these equations are reported in Table I-6. Panels A 

through G of that table show the results for different mixes of the explanatory variables. 

                                                 
24 Average marginal tax rates were not available for this variable. However, since over 60% of the states 
have a single bracket for corporate income tax, lacking average marginal rates should not be an issue.  
25 Since property taxes are collected at the county level, then for each state this variable aggregates total 
property taxes across all counties and divides by the total state population.  
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A constant is included in all equations.26 The table reports the coefficient estimates along 

with their associated standard errors and T-statistics. Significance is indicated by stars. 

 Panel A of Table I-6 reports how EDUhs is significantly negative at the short-run 

forecast horizon but in the long run becomes significantly positive. In Table I-6, Panel B, 

EDUhs enters insignificantly negative in the short run and significantly positive in the 

long run. This result supports the finding that states with a relatively low-skilled 

population can experience a temporary slowdown in productivity growth shortly after a 

technology shock but then later will see the positive effects of the given new technology.  

 The education indicator in Table I-6, Panel A, only includes the share of state 

population with at least a high school degree but not a college degree. However, skilled 

labor is expected also to be important in the adoption of new technology. Panel B and C 

of Table I-6 therefore additionally include EDUcoll. In both tables, EDUcoll enters 

significantly positively in the short run, indicating how skilled labor is valuable after the 

initial arrival of new technology. At the long horizon of Table I-6, Panel B, EDUcoll 

becomes insignificantly negative. As explained above, this is likely do to the trend 

stationarity of the variables. An alternative explanation is that skilled labor is particularly 

important initially after a technology shock in order to incorporate the new technology 

into the production function. However, once this has happened and low-skilled workers 

can take over, the high-skilled workers can be moved into the development of new 

products that may in the future lead to new technology but which at the present time does 

                                                 
26 Results not shown indicate that region-specific constants are not important. To avoid unnecessary loss of 
degrees of freedom, a single constant is included instead. 
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not result in immediate productivity gains. However, these negative results are very 

insignificant. 

 This chapter also tried in Panel D of Table I-6 to include as an education factor 

the share of state population with at least a high school degree. This variable is therefore 

the combined effect of EDUhs and EDUcoll. The analysis shows that the short-run 

positive effects of high-skilled labor tend to dominate as EDUalhs has a significantly 

positive coefficient during a few periods following the technology shock. 

 Diversity is negatively correlated with the response of productivity to a 

technology shock at the short-run forecast horizon. This means that states that are more 

specialized are more likely to obtain short-run positive productivity gains than states that 

are more diverse. This result is consistent with theories that predict that knowledge 

spillovers within industries are more important than spillovers across industries. In 

addition, Table I-6, Panel A, shows that Manufact is insignificant for all forecast 

horizons. This result is consistent across the cross-sectional regression analyses 

performed in this chapter. Therefore, other results that include Manufact are not shown.  

 Panels C and D of Table I-6 show that Density enters significantly positively 

during the first periods after the shock but becomes significantly negative at the long 

forecast horizon. This result shows that a densely populated area experiences a more 

positive productivity response soon after a technology shock. One explanation for this 

result arises if knowledge spillovers are best fostered in dense areas. 

 The importance of Union, Income Tax, and Median Age are analyzed in Panels E 

through G of Table I-6. These tables consistently include EDUcoll, Diversity, and 

Density. However, the fourth covariate is Union, Income Tax, or Median Age, depending 
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on the regression.  Though Panel E shows that union membership is negatively correlated 

with the long-run productivity responses, the results are highly insignificant for all 

forecast horizons indicating that labor market rigidity is not important when explaining 

cross-state productivity response functions. The results from Panel F show that Income 

Tax is also insignificant at all forecast horizons.27 Similarly, Panel G shows that Median 

Age is unimportant, though positively correlated with the benchmark productivity 

response functions. 

 A more careful analysis of the effect of the age distribution on the productivity 

responses has also been performed, although the tables are not reported in this chapter. 

Most strata of the age distribution were not important in explaining the productivity 

response functions. However, the under-18 layer was significant and negatively 

correlated at horizons three and four.28 In addition, the portion of the distribution aged 25 

to 44 was significant and positively correlated with the responses at short horizons. This 

result suggests that states with a relatively youthful working-age population (25 to 44) 

will initially respond more positively to a technology shock than states with a smaller 

share. 

 In results not shown, Establishment Size, Education Spending, Race, Corporate 

Tax, Property Tax, and Minimum Wage were also included one at a time in an estimating 

equation with EDUcoll, Diversity, and Density. However, these variables did not change 

the regression results reported in Table I-6, Panel C. Moreover, these variables were not 

significantly different from zero.  
                                                 
27 This chapter also preformed the regression analysis while excluding those states that have zero income 
taxes.  Under that restricted sample Income Tax was also insignificant. 
28 For period 3 the population under the age of 18 is significant at the 5% level and for period 4 it is 
significant at the 10% level.  
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 On the importance of the covariates analyzed in this chapter, the inclusion of the 

education, industry diversity, and density variables, among others, leads to R2 values of 

close to 40% in Table I-6, Panel C, at the 3 year horizon. Additionally, later in the 

forecast horizon, period 9 and 10, the covariates account for nearly 33% of the variation. 

These variables can therefore account for a considerable amount of the fluctuation in the 

response of productivity to a patent shock, providing further confidence in the results. 

I.F.2 Robustness of the Cross-Sectional Results 

I.F.2.1 Excluding Oil States 

 Value added in a few states in the sample comes to a large extent from the oil 

industry. Measured labor productivity growth in these states may be confounded by 

changes in the price of oil. To take this into account, this chapter re-estimated the 

equations of interest while excluding states from the cross-sectional analysis that have a 

share of mining value added that is in excess of 5%. Therefore, the states of Louisiana, 

New Mexico, Oklahoma, Texas, West Virginia, and Wyoming were excluded.29  

 The results from estimating the cross-sectional equations with the reduced sample 

are reported in Table I-8 of this chapter’s Appendix. The overall education results from 

excluding the six oil producing states are unchanged. In particular, Panels A and B of 

Table I-8 show that EDUhs continues to have coefficients that are significantly negative 

in the short run and significantly positive in the long run. Also, Panels B and C of Table 

I-8 show that EDUcoll has significantly positive correlation with the response of 

productivity during the short-run forecast horizon. 

                                                 
29 Figure I-19 of the appendix shows a map of these states.  
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 Industrial diversity continues to be negatively correlated and have some 

importance in explaining the short-run response of productivity to a technology shock. 

Density also maintains its explanatory power and significance in the long run. Overall 

this chapter of the dissertation concludes that the results are robust to leaving out the oil 

states from the analysis. 

 As additional evidence, the cross-sectional regressions were also estimated based 

on the impulse response functions when the relative FuelPPI was included as an 

exogenous variable and using the 48 benchmark states (not show). The education results 

were mainly unchanged, EDUcoll enters significantly positive in the short run and 

EDUhs enters insignificantly but positively in the long run. In the short run, industry 

diversity is insignificantly negatively correlated with the productivity responses. 

Manufact continues to have negative coefficients in the short run, however there is now 

one short-run period that is significant at the 10% level. The main results from the 

benchmark analysis are therefore considered robust to this change. 

I.F.2.2 Shock to R&D 

 Section I.E. provided evidence that a patent shock leads to productivity responses 

that show positive patterns faster than if R&D is used as a measure of technological 

progress. The impulse response functions were overall similar in shape but were shifted 

along the horizontal axis. To further examine if skilled labor is important for the 

development and adoption of new technology, the cross-sectional analysis is now 

estimated based on impulse response functions from the R&D shock. The results are 

reported in Table I-7.  
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 Panel A of Table I-7 shows that starting in period three, EDUhs, the share of 

population with only a high school degree, enters significantly negatively as an 

explanatory variable. Table I-7, Panel B, shows that the EDUcoll is positive and very 

significant throughout the forecast horizon. That is, the response of productivity to an 

R&D shock is highly positively correlated with the amount of skilled labor. As was the 

case in the patent analysis, Diversity has a significantly negative coefficient, although the 

timing of the significance in Table I-7, Panel A, is shifted to the middle forecast horizons. 

Furthermore, the regressions that include the education variables, industrial diversity, and 

density indeed explain 42% of the cross-state variation at period 4. Overall, the results 

from the R&D analysis reinforce the short-run results from the patent analysis as is 

expected given the lag between R&D expenditures and subsequent patent applications. 

I.F.2.3 Cross-Sectional Robustness to Trivariate VARs 

 Section I.E.2.5 examined the robustness of the benchmark productivity response 

functions by including a third variable in the state-level VARs. This subsection examines 

the robustness of the benchmark cross-sectional results by using the productivity 

response functions from the trivariate analyses as dependent variables for multiple cross-

sectional regressions. Table I-9 through Table I-11 of the Appendix contains the cross-

sectional regression results for the trivariate productivity responses. The covariates in 

each regression are EDUhs, EDUcoll, Diversity, and Density. Table I-9 uses the 

productivity responses from the trivariate VARs where surrounding labor productivity is 

included as the third variable. The dependent variable from Table I-10 uses productivity 
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responses from the trivariate VARs with employment as the third variable.30 Table I-11 

makes use of the responses that have density as the third variable.   

 The results in Table I-9 through Table I-11 show that EDUcoll is significantly 

positive at the short-run forecast horizon. Also, the coefficients on EDUhs are consistent 

with the results from the benchmark analysis. Diversity is negatively correlated and in 

some cases significant at the short-run forecast horizon, and the sign and significance of 

Table I-9’s Density results are consistent with the benchmark analysis. However, for 

Tables I-10 and I-11 the significance of Density is diminished31 because the productivity 

response functions have already been conditioned on population changes. Overall, the 

main results from the benchmark analysis are considered robust to changing the 

dependent variable in the cross-sectional regressions. 

I.G. Conclusion 

 This chapter of the dissertation examined whether technological progress, 

measured by the number of U.S. patent applications, leads to differential effects at the 

state level. The chapter found that states in the Northeast region tend to see a faster 

increase in productivity immediately following a technology shock than do states in the 

Midwest. Indeed, some states are affected negatively for a few years after the shock 

before productivity eventually increases. When the response functions are plotted 

spatially for each horizon, the analysis shows that the positive effects of new technology 

slowly spreads across the U.S. states, starting from the coasts and moving inland. 

                                                 
30 The results from the manufacturing employment on total employment trivariate system are similar to the 
employment results and are therefore not reported. Also, the results that employ real GDPS as the third 
variable are very similar and are thus not reported.  
31 Though in Table I-11 Density is still significant at the 10% level. 
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 Next, this chapter explored which factors are important in explaining the 

differential state effects of technological progress. The analysis found that education, and 

to some extent industrial diversity are important factors. In particular, skilled labor is 

very important in the short run for obtaining positive effects on productivity after the 

arrival of new technology. In addition, the density of the region is important for 

explaining differences in cross-state productivity responses as knowledge spillovers may 

indeed be best cultivated in dense regions. 

 The results were also estimated using R&D expenditures as an alternative 

measure of technological progress. The lag between R&D and subsequent patent 

applications is evident in the productivity response functions. The results show that 

skilled labor is highly important in obtaining positive effects on productivity. 
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I.H. Tables and Figures 

Table I-1: State Productivity Growth and State Share of Gross Domestic Product   

States 
Productivity 

Growth 
Share of 

GDP 

Correlation 
with USA 

Productivity 
Growth States 

Productivity 
Growth 

Share of 
GDP 

Correlation 
with USA 

Productivity 
Growth 

AL 1.21% 1.18% 0.73 NE 0.72% 0.57% 0.55 
AZ 0.75% 1.63% 0.56 NV 0.71% 0.76% 0.60 
AR 1.03% 0.69% 0.67 NH 1.79% 0.45% 0.45 
CA 1.25% 13.20% 0.75 NJ 1.44% 3.54% 0.54 
CO 1.31% 1.76% 0.64 NM 0.71% 0.52% 0.08 
CT 1.84% 1.65% 0.54 NY 1.58% 7.97% 0.75 
DE 1.55% 0.43% 0.60 NC 1.22% 2.81% 0.72 
FL 1.11% 4.83% 0.53 ND 0.31% 0.18% 0.26 
GA 1.48% 2.98% 0.83 OH 0.87% 3.82% 0.88 
ID 0.75% 0.36% 0.26 OK 1.06% 0.92% 0.35 
IL 1.20% 4.76% 0.83 OR 1.15% 1.15% 0.59 
IN 0.88% 1.99% 0.84 PA 1.31% 4.00% 0.68 
IA 0.67% 0.93% 0.54 RI 1.55% 0.34% 0.56 
KS 0.85% 0.85% 0.58 SC 1.33% 1.15% 0.62 
KY 0.44% 1.15% 0.58 SD 0.84% 0.24% 0.42 
LA 1.06% 1.35% -0.06 TN 1.33% 1.79% 0.77 
ME 1.08% 0.36% 0.62 TX 1.42% 7.46% 0.38 
MD 1.30% 1.85% 0.77 UT 0.85% 0.69% 0.48 
MA 1.86% 2.82% 0.67 VT 1.18% 0.18% 0.44 
MI 0.47% 3.46% 0.79 VA 1.31% 2.67% 0.75 
MN 0.99% 1.90% 0.80 WA 0.91% 2.28% 0.45 
MS 0.78% 0.66% 0.57 WV 0.63% 0.43% 0.16 
MO 0.98% 1.81% 0.77 WI 0.79% 1.80% 0.79 
MT 0.40% 0.22% 0.30 WY 1.01% 0.18% -0.03 

Note: The Shares of GDP columns are state shares of national GDP for the year 2000. Productivity Growth 
columns indicate the average annual labor productivity growth calculated over 1963-2005. The Correlation 
with USA Productivity Growth contains the correlation coefficient of state level labor productivity growth 
with aggregated state level labor productivity growth over the years 1963 to 2005.  
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Table I-2: ADF Test and KPSS Test 

State ADF t-Test Result KPSS Result State ADF t-Test Result KPSS Result 
AL -0.70 FR 0.11 FR NE -1.97 FR 0.11 FR 
AZ -0.71 FR 0.20 R NV -0.70 FR 0.21 R 
AR -1.15 FR 0.11 FR NH -1.90 FR 0.15 FR 
CA -2.00 FR 0.17 R NJ -2.04 FR 0.16 R 
CO -0.40 FR 0.15 R NM -3.00 FR 0.06 FR 
CT -2.10 FR 0.18 R NY -1.41 FR 0.19 R 
DE -1.30 FR 0.21 R NC -1.34 FR 0.19 R 
FL -0.70 FR 0.16 R ND -2.43 FR 0.12 FR 
GA -1.62 FR 0.19 R OH -1.80 FR 0.21 R 
ID -1.36 FR 0.20 R OK -1.23 FR 0.13 FR 
IL -1.54 FR 0.21 R OR -0.60 FR 0.17 R 
IN -0.48 FR 0.19 R PA -1.46 FR 0.18 R 
IA -0.44 FR 0.12 FR RI -1.67 FR 0.19 R 
KS -1.42 FR 0.10 FR SC -2.29 FR 0.13 FR 
KY -2.32 FR 0.15 FR SD -1.96 FR 0.12 FR 
LA -1.53 FR 0.13 FR TN -1.00 FR 0.19 R 
ME -2.13 FR 0.08 FR TX -0.57 FR 0.09 FR 
MD -1.50 FR 0.18 R UT -2.31 FR 0.09 FR 
MA -2.08 FR 0.17 R VT -1.51 FR 0.15 R 
MI -1.99 FR 0.22 R VA -0.68 FR 0.18 R 
MN -0.77 FR 0.18 R WA -1.17 FR 0.19 R 
MS -0.88 FR 0.13 FR WV -2.10 FR 0.14 FR 
MO -1.69 FR 0.17 R WI -1.47 FR 0.20 R 
MT -1.35 FR 0.13 FR WY -1.56 FR 0.12 FR 

Note: The Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are 
performed on the logarithm of state labor productivity.  Labor productivity data are calculated using a 
splice at 1997 to account for the changing in data definition. The abbreviations are: Fail-to-Reject the null 
(FR) and Reject-the-Null (R). The ADF regression equation included 2 lags of the differenced variable, a 
constant and time trend. The 5% critical value for the ADF test is -3.18. The KPSS test equation includes a 
constant and time trend, and the 5% critical value is 0.15. 
 
Table I-3: Correlation between R&D Growth and Patent Growth 

h ( ) ( )( )Corr RandD PATt t h∆ ∆log , log +  

-2 0.090 
-1 0.150 
0 0.251 
1 0.308 
2 0.379 
3 0.409 
4 0.363 

Note: The contemporaneous correlation is taken using growth data from 1964 to 2004. The sample sizes of 
the asynchronous correlations are shorter depending on the value of h. 
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Table I-4: Cross-Sectional Summary Statistics 

Variable  Mean Median St. Dev. Min Max 
Average Establishment Size 15 15 2 9 19 
High School Education 58.1% 58.1% 4.1% 50.2% 66.0% 
College Education 23.7% 23.1% 4.4% 14.8% 33.2% 
At Least High School Education  81.8% 82.1% 4.3% 72.9% 88.0% 
Education Spending per Student $7,216 $6,934 $1,428 $4,674 $11,248 
Industrial Diversity 16.4 16.5 0.6 14.2 17.3 
Non-white Population 17.5% 14.9% 10.1% 2.1% 38.1% 
Union Membership 12.0% 11.4% 5.3% 3.7% 25.7% 
Manufacturing share of GDP-S 15.0% 13.9% 5.5% 3.8% 29.8% 
Persons per Square KM 62 32 82 2 373 
Population 5,828,809 4,187,966 6,258,856 494,139 34,002,756 
Income Tax 4.5% 5.0% 2.4% 0.0% 8.7% 
Corporate Tax 6.5% 7.0% 3.0% 0.0% 12.0% 
Property Tax per Person $963 $952 $382 $342 $1,948 
State Minimum Wage $5.29 $5.15 $0.35 $5.15 $6.50 
Median Age 35.6 35.9 1.9 27.1 38.9 

Note: The data are year 2000 values. Industrial Diversity is a Dixit-Stiglitz index of 2-digit NAICS GDP-S.  
Income Tax data is the average marginal tax rate for wages from the NBER. Corporate Tax is the highest 
marginal corporate income tax rate. Property Tax measures the average property tax burden for individuals 
within a given state. State Minimum Wage is the maximum of the federal minimum wage and the state 
minimum wage. St. Dev. is the standard deviation. 
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Table I-6: Benchmark Cross-Sectional Analysis 

Panel A. 
h Constant EDUhs Diversity Manufact R2 
1 4.083*** -0.0235** -0.1697** 0.0028 0.190 
 1.459 0.011 0.082 0.009  
 2.798 -2.138 -2.070 0.323  
2 6.620*** -0.0387** -0.273** -0.0107 0.189 
 2.369 0.018 0.133 0.014  
 2.794 -2.172 -2.050 -0.767  
3 8.502*** -0.0421* -0.364** -0.0042 0.186 
 2.858 0.022 0.161 0.017  
 2.975 -1.956 -2.270 -0.253  
4 5.09** -0.0127 -0.251** 0.0077 0.136 
 2.137 0.016 0.120 0.013  
 2.382 -0.787 -2.095 0.615  
5 2.5252 0.0012 -0.1387 0.0083 0.082 
 1.725 0.013 0.097 0.010  
 1.464 0.089 -1.432 0.823  
6 0.7229 0.0124 -0.0634 0.0042 0.060 
 1.421 0.011 0.080 0.008  
 0.509 1.162 -0.794 0.505  
7 -1.105 0.0212** 0.02369 -0.0011 0.108 
 1.257 0.009 0.071 0.007  
 -0.879 2.238 0.336 -0.151  
8 -2.46* 0.0271*** 0.0913 -0.0067 0.191 
 1.328 0.010 0.075 0.008  
 -1.854 2.710 1.224 -0.863  
9 -3.429** 0.0339*** 0.130 -0.0097 0.240 
 1.498 0.011 0.084 0.009  
 -2.289 3.002 1.542 -1.105  
10 -4.272** 0.0399*** 0.161* -0.0102 0.252 
 1.718 0.013 0.097 0.010  
  -2.486 3.084 1.673 -1.013   

Note: h indicates the impulse response function forecast horizon. EDUhs is the share of high school 
educated in a given state; Diversity is the Dixit-Stiglitz index of industrial diversity; and Manufact is the 
share of manufacturing in a given state. The coefficient estimates are in bold; the standard errors are 
directly underneath the coefficient estimates; and the T-statistics are underneath the standard errors.  
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-6 (Continued): Benchmark Cross-Sectional Analysis 
 
Panel B. 
h Constant EDUhs EDUcoll Diversity R2 
1 3.51** -0.017 0.01267 -0.176** 0.211 
 1.514 0.012 0.011 0.077  
 2.320 -1.365 1.117 -2.294  
2 3.7325 -0.0206 0.0414** -0.230* 0.269 
 2.364 0.019 0.018 0.119  
 1.579 -1.096 2.339 -1.928  
3 5.131* -0.0152 0.056*** -0.339** 0.299 
 2.787 0.022 0.021 0.141  
 1.841 -0.683 2.677 -2.405  
4 3.80* 0.0042 0.0299* -0.270** 0.190 
 2.174 0.017 0.016 0.110  
 1.750 0.243 1.837 -2.448  
5 1.940 0.0122 0.0180 -0.161* 0.105 
 1.790 0.014 0.013 0.090  
 1.084 0.858 1.345 -1.777  
6 0.0366 0.0215* 0.016 -0.073 0.099 
 1.462 0.012 0.011 0.074  
 0.025 1.846 1.465 -0.988  
7 -1.8167 0.0267*** 0.012 0.0297 0.136 
 1.301 0.010 0.010 0.066  
 -1.397 2.577 1.189 0.452  
8 -3.240** 0.0293*** 0.0076 0.114 0.187 
 1.399 0.011 0.010 0.071  
 -2.316 2.624 0.727 1.612  
9 -4.198*** 0.0338*** 0.0047 0.161** 0.222 
 1.593 0.013 0.012 0.081  
 -2.635 2.664 0.394 2.001  
10 -4.79*** 0.0373** -0.0002 0.193** 0.234 
 1.827 0.015 0.014 0.092  
  -2.622 2.561 -0.016 2.094   

Note: h indicates the impulse response function forecast horizon. EDUhs is the share of high school 
educated in a given state; EDUcoll is the share of college educated within a state; and Diversity is the 
Dixit-Stiglitz index of industrial diversity. The coefficient estimates are in bold; the standard errors are 
directly underneath the coefficient estimates; and the T-statistics are underneath the standard errors.  
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-6 (Continued): Benchmark Cross-Sectional Analysis 
 
Panel C. 
h Constant EDUhs EDUcoll Diversity Density R2 
1 0.1756 0.0058 0.0120 -0.0732 0.11175** 0.277 
 2.228 0.016 0.011 0.090 0.056  
 0.079 0.357 1.091 -0.811 1.988  
2 -3.1295 0.0251 0.0400** -0.0199 0.2298*** 0.376 
 3.359 0.024 0.017 0.136 0.085  
 -0.932 1.029 2.417 -0.146 2.712  
3 -2.9042 0.0384 0.0542*** -0.0923 0.2691*** 0.400 
 3.965 0.029 0.020 0.161 0.100  
 -0.732 1.334 2.775 -0.575 2.691  
4 -1.1067 0.0369 0.0289* -0.1184 0.1645** 0.262 
 3.192 0.023 0.016 0.129 0.081  
 -0.347 1.595 1.838 -0.916 2.042  
5 -0.6603 0.0296 0.0175 -0.0810 0.0871 0.138 
 2.702 0.020 0.013 0.109 0.068  
 -0.244 1.508 1.314 -0.741 1.278  
6 -0.4126 0.0245 0.0160 -0.0592 0.0150 0.100 
 2.247 0.016 0.011 0.091 0.057  
 -0.184 1.503 1.441 -0.651 0.265  
7 0.1166 0.0138 0.0120 -0.0296 -0.0647 0.169 
 1.962 0.014 0.010 0.079 0.049  
 0.059 0.971 1.239 -0.372 -1.308  
8 0.4325 0.0048 0.0084 0.0014 -0.123** 0.284 
 2.019 0.015 0.010 0.082 0.051  
 0.214 0.326 0.841 0.017 -2.415  
9 0.2468 0.0042 0.0056 0.0248 -0.1489*** 0.327 
 2.279 0.017 0.011 0.092 0.057  
 0.108 0.254 0.500 0.269 -2.589  
10 -0.0466 0.0057 0.0008 0.0479 -0.1589** 0.324 
 2.640 0.019 0.013 0.107 0.067  
  -0.018 0.295 0.058 0.448 -2.385   

Note: h indicates the impulse response function forecast horizon. EDUhs is the share of high school 
educated in a given state; EDUcoll is the share of college educated within a state; Diversity is the Dixit-
Stiglitz index of industrial diversity; and Density is the persons per square kilometer. The coefficient 
estimates are in bold; the standard errors are directly underneath the coefficient estimates; and the T-
statistics are underneath the standard errors.  
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-6 (Continued): Benchmark Cross-Sectional Analysis 
 
Panel D. 
h Constant EDUalhs Diversity Density R2 
1 -0.3219 0.0105 -0.0606 0.1267*** 0.275 
 1.782 0.010 0.083 0.040  
 -0.181 1.033 -0.730 3.200  
2 -4.3239 0.0365** 0.0104 0.2657*** 0.370 
 2.694 0.015 0.126 0.060  
 -1.605 2.373 0.082 4.440  
3 -4.1719 0.0505*** -0.0602 0.3072*** 0.396 
 3.177 0.018 0.148 0.071  
 -1.313 2.785 -0.407 4.353  
4 -0.4636 0.0308** -0.1347 0.1451** 0.260 
 2.552 0.015 0.119 0.057  
 -0.182 2.118 -1.132 2.559  
5 0.3069 0.0204* -0.1055 0.0580 0.130 
 2.167 0.012 0.101 0.048  
 0.142 1.649 -1.045 1.205  
6 0.2719 0.0180* -0.0765 -0.0055 0.095 
 1.800 0.010 0.084 0.040  
 0.151 1.753 -0.913 -0.139  
7 0.2646 0.0124 -0.0333 -0.0692** 0.169 
 1.567 0.009 0.073 0.035  
 0.169 1.390 -0.456 -1.988  
8 0.1447 0.0075 0.0086 -0.1144*** 0.283 
 1.613 0.009 0.075 0.036  
 0.090 0.816 0.115 -3.190  
9 0.1334 0.0053 0.0277 -0.1454*** 0.327 
 1.820 0.010 0.085 0.040  
 0.073 0.508 0.327 -3.597  
10 0.3460 0.0019 0.0380 -0.1707*** 0.323 
 2.110 0.012 0.098 0.047  
  0.164 0.160 0.386 -3.641   

Note: h indicates the impulse response function forecast horizon. EDUalhs is the share of people with at 
least a high school education; Diversity is the Dixit-Stiglitz index of industrial diversity; and Density is the 
persons per square kilometer. The coefficient estimates are in bold; the standard errors are directly 
underneath the coefficient estimates; and the T-statistics are underneath the standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-6 (Continued): Benchmark Cross-Sectional Analysis 
 
Panel E. 
h Constant EDUcoll Diversity Union Density R2 
1 0.7898 0.0107 -0.0855 -0.0001 0.0980** 0.275 
 1.448 0.011 0.085 0.009 0.042  
 0.546 1.016 -1.008 -0.006 2.329  
2 -0.5489 0.0340** -0.0685 0.0028 0.1661*** 0.361 
 2.205 0.016 0.129 0.014 0.064  
 -0.249 2.114 -0.530 0.204 2.594  
3 0.9465 0.0445** -0.1613 0.0075 0.1678** 0.378 
 2.618 0.019 0.153 0.016 0.076  
 0.362 2.325 -1.051 0.464 2.206  
4 2.5509 0.0192 -0.1822 0.0087 0.0651 0.226 
 2.120 0.015 0.124 0.013 0.062  
 1.204 1.240 -1.466 0.670 1.057  
5 2.3159 0.0100 -0.1347 0.0054 0.0095 0.097 
 1.794 0.013 0.105 0.011 0.052  
 1.291 0.766 -1.281 0.491 0.182  
6 2.1137 0.0102 -0.1070 0.0025 -0.0469 0.055 
 1.494 0.011 0.088 0.009 0.043  
 1.415 0.932 -1.222 0.270 -1.080  
7 1.6023 0.0091 -0.0598 -0.0006 -0.0973*** 0.151 
 1.287 0.009 0.075 0.008 0.037  
 1.246 0.969 -0.793 -0.070 -2.604  
8 1.0601 0.0081 -0.0153 -0.0040 -0.1297*** 0.287 
 1.308 0.010 0.077 0.008 0.038  
 0.811 0.850 -0.200 -0.496 -3.413  
9 0.8928 0.0060 0.0050 -0.0066 -0.1510*** 0.334 
 1.470 0.011 0.086 0.009 0.043  
 0.607 0.560 0.058 -0.730 -3.535  
10 0.8047 0.0012 0.0222 -0.0083 -0.1625*** 0.332 
 1.702 0.012 0.100 0.010 0.049  
  0.473 0.093 0.223 -0.788 -3.287   

Note: h indicates the impulse response function forecast horizon. EDUcoll is the share of college educated 
individuals within a given state; Diversity is the Dixit-Stiglitz index of industrial diversity; Union is the 
share of the states employment that is unionized; and Density is the persons per square kilometer. The 
coefficient estimates are in bold; the standard errors are directly underneath the coefficient estimates; and 
the T-statistics are underneath the standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-6 (Continued): Benchmark Cross-Sectional Analysis 
 
Panel F. 
h Constant EDUcoll Diversity Density IncomeTax R2 
1 0.6044 0.0096 -0.0772 0.0989** 0.0159 0.289 
 1.423 0.010 0.083 0.040 0.017  
 0.425 0.924 -0.927 2.454 0.912  
2 -0.4106 0.0349** -0.0755 0.1692*** -0.0047 0.361 
 2.188 0.016 0.128 0.062 0.027  
 -0.188 2.183 -0.589 2.731 -0.176  
3 1.1435 0.0458** -0.1723 0.17695** 0.0025 0.375 
 2.605 0.019 0.152 0.074 0.032  
 0.439 2.403 -1.131 2.400 0.080  
4 2.7794 0.0207 -0.1950 0.0758 0.0031 0.219 
 2.114 0.015 0.124 0.060 0.026  
 1.315 1.340 -1.576 1.267 0.121  
5 2.5293 0.0114 -0.1459 0.0157 -0.0042 0.093 
 1.784 0.013 0.104 0.051 0.022  
 1.418 0.875 -1.397 0.312 -0.194  
6 2.2437 0.0110 -0.1136 -0.0442 -0.0047 0.054 
 1.483 0.011 0.087 0.042 0.018  
 1.513 1.014 -1.309 -1.052 -0.261  
7 1.6248 0.0092 -0.0606 -0.0982*** -0.0034 0.152 
 1.276 0.009 0.075 0.036 0.016  
 1.273 0.990 -0.812 -2.719 -0.218  
8 0.9873 0.0076 -0.0109 -0.1347*** -0.0042 0.284 
 1.301 0.010 0.076 0.037 0.016  
 0.759 0.803 -0.143 -3.660 -0.261  
9 0.7568 0.0051 0.0131 -0.1593*** -0.0056 0.327 
 1.467 0.011 0.086 0.042 0.018  
 0.516 0.476 0.152 -3.837 -0.310  
10 0.6443 0.0001 0.0319 -0.1729*** -0.0078 0.324 
 1.699 0.012 0.099 0.048 0.021  
  0.379 0.007 0.321 -3.597 -0.374   

Note: h indicates the impulse response function forecast horizon. EDUcoll is the share of college educated 
within a state; Diversity is the Dixit-Stiglitz index of industrial diversity; Density is the persons per square 
kilometer; and IncomeTax is the average marginal tax rate for wages. The coefficient estimates are in bold; 
the standard errors are directly underneath the coefficient estimates; and the T-statistics are underneath the 
standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-6 (Continued): Benchmark Cross-Sectional Analysis 
 
Panel G. 
h Constant EDUcoll Diversity Density MedianAge R2 
1 0.8522 0.0107 -0.0864 0.0982** -0.0014 0.275 
 1.792 0.010 0.085 0.041 0.023  
 0.475 1.022 -1.016 2.397 -0.059  
2 -1.2308 0.0351** -0.0620 0.1660*** 0.0164 0.363 
 2.724 0.016 0.129 0.062 0.036  
 -0.452 2.211 -0.480 2.667 0.462  
3 -1.6009 0.0479*** -0.1337 0.1642** 0.0594 0.404 
 3.175 0.019 0.151 0.073 0.041  
 -0.504 2.588 -0.887 2.264 1.436  
4 0.8020 0.0224 -0.1676 0.0665 0.0431 0.247 
 2.589 0.015 0.123 0.059 0.034  
 0.310 1.482 -1.364 1.124 1.278  
5 1.5072 0.0118 -0.1297 0.0116 0.0208 0.103 
 2.214 0.013 0.105 0.051 0.029  
 0.681 0.915 -1.235 0.229 0.722  
6 1.2545 0.0113 -0.0977 -0.0481 0.0200 0.068 
 1.836 0.011 0.087 0.042 0.024  
 0.683 1.058 -1.121 -1.146 0.836  
7 0.4589 0.0098 -0.0426 -0.1031*** 0.0241 0.177 
 1.568 0.009 0.074 0.036 0.020  
 0.293 1.073 -0.573 -2.878 1.181  
8 0.0251 0.0080 0.0044 -0.1386*** 0.0196 0.297 
 1.608 0.009 0.076 0.037 0.021  
 0.016 0.853 0.058 -3.774 0.934  
9 0.0676 0.0052 0.0250 -0.1618*** 0.0134 0.331 
 1.825 0.011 0.087 0.042 0.024  
 0.037 0.485 0.288 -3.879 0.563  
10 0.1572 -0.0002 0.0416 -0.1743*** 0.0085 0.324 
 2.120 0.012 0.101 0.048 0.028  
  0.074 -0.014 0.414 -3.597 0.308   

Note: h indicates the impulse response function forecast horizon. EDUcoll is the share of college educated 
within a state; Diversity is the Dixit-Stiglitz index of industrial diversity; Density is the persons per square 
kilometer; and MedianAge is the median for the age distribution with a state. The coefficient estimates are 
in bold; the standard errors are directly underneath the coefficient estimates; and the T-statistics are 
underneath the standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-7: Research and Development Cross-Sectional Analysis 

Panel A. 
h Constant EDUhs Diversity Manufact R2 

1 1.3731 0.0189 -0.1276 0.0151 0.153 
 1.802 0.014 0.101 0.011  
 0.762 1.390 -1.261 1.425  

2 2.8703 0.0138 -0.1908* -0.0110 0.084 
 1.873 0.014 0.105 0.011  
 1.533 0.981 -1.814 -0.998  

3 5.333*** -0.0232* -0.223** -0.0126 0.173 
 1.817 0.014 0.102 0.011  
 2.935 -1.693 -2.182 -1.184  

4 6.482*** -0.037*** -0.248** -0.0026 0.239 
 1.883 0.014 0.106 0.011  
 3.443 -2.621 -2.348 -0.234  

5 6.309*** -0.0375** -0.2306* 0.0083 0.206 
 2.108 0.016 0.118 0.012  
 2.993 -2.362 -1.947 0.671  

6 5.817*** -0.0319* -0.208* 0.0106 0.167 
 2.165 0.016 0.122 0.013  
 2.687 -1.957 -1.712 0.834  

7 5.101** -0.0248 -0.1782 0.0075 0.118 
 2.133 0.016 0.120 0.013  
 2.391 -1.546 -1.487 0.598  

8 4.329** -0.0169 -0.1523 0.0034 0.077 
 2.028 0.015 0.114 0.012  
 2.135 -1.107 -1.337 0.289  

9 3.419* -0.0089 -0.1221 0.0002 0.039 
 1.996 0.015 0.112 0.012  
 1.713 -0.593 -1.089 0.017  
10 2.3618 -0.0006 -0.0867 -0.0019 0.013 

 2.043 0.015 0.115 0.012  
  1.156 -0.039 -0.756 -0.154   

Note: The response functions are based on a bivariate VAR with R&D and productivity. h indicates the 
impulse response function forecast horizon. EDUhs is the share of high school educated in a given state; 
Diversity is the Dixit-Stiglitz index of industrial diversity; and Manufact is the share of manufacturing in a 
given state. The coefficient estimates are in bold; the standard errors are directly underneath the coefficient 
estimates; and the T-statistics are underneath the standard errors.  
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-7 (Continued): Research and Development Cross-Sectional Analysis 
 
Panel B. 
h Constant EDUhs EDUcoll Diversity Density R2 
1 1.8402 0.0284 0.0299** -0.20984* -0.0455 0.206 
 2.821 0.020 0.014 0.114 0.071  
 0.652 1.386 2.152 -1.837 -0.639  
2 1.3922 0.0218 0.0376*** -0.1850 -0.0401 0.202 
 2.823 0.020 0.014 0.114 0.071  
 0.493 1.066 2.702 -1.619 -0.563  
3 1.3636 0.0025 0.0535*** -0.1624 0.0099 0.411 
 2.479 0.018 0.012 0.100 0.063  
 0.550 0.139 4.378 -1.618 0.158  
4 2.5248 -0.0063 0.0477*** -0.1952* 0.0376 0.423 
 2.650 0.019 0.013 0.107 0.067  
 0.953 -0.329 3.649 -1.820 0.563  
5 2.0762 0.0006 0.0392** -0.1734 0.0812 0.317 
 3.159 0.023 0.016 0.128 0.080  
 0.657 0.026 2.518 -1.356 1.019  
6 0.9209 0.0113 0.0337** -0.1262 0.1175 0.265 
 3.286 0.024 0.016 0.133 0.083  
 0.280 0.474 2.078 -0.949 1.417  
7 -0.1331 0.0188 0.0337** -0.0812 0.1232 0.237 
 3.208 0.023 0.016 0.130 0.081  
 -0.041 0.807 2.131 -0.625 1.523  
8 -0.3296 0.0205 0.0338** -0.0666 0.0970 0.203 
 3.047 0.022 0.015 0.123 0.077  
 -0.108 0.927 2.253 -0.540 1.262  
9 -0.3372 0.0205 0.0335** -0.0583 0.0622 0.153 
 3.027 0.022 0.015 0.123 0.076  
 -0.111 0.932 2.244 -0.476 0.814  
10 -0.4463 0.0209 0.0311** -0.0449 0.0318 0.101 
 3.151 0.023 0.016 0.128 0.079  
  -0.142 0.915 1.999 -0.352 0.400   

Note: The response functions are based on a bivariate VAR with R&D and productivity. h indicates the 
impulse response function forecast horizon. EDUhs is the share of high school educated in a given state; 
EDUcoll is the share of college educated within a state; Diversity is the Dixit-Stiglitz index of industrial 
diversity; and Density is the persons per square kilometer. The coefficient estimates are in bold; the 
standard errors are directly underneath the coefficient estimates; and the T-statistics are underneath the 
standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Figure I-1: Utility Patents 
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Figure I-2: Variation in State Labor Productivity around National Labor Productivity 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent.  Time Series: 1963-2005. 
 
Figure I-3: Response of Productivity to a Patent Shock 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2005. 
 
Figure I-3 (Continued): Response of Productivity to a Patent Shock 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2005. 
 
Figure I-3 (Continued): Response of Productivity to a Patent Shock 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2005. 
 
Figure I-3 (Continued): Response of Productivity to a Patent Shock 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2005. 
 
Figure I-3 (Continued): Response of Productivity to a Patent Shock 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2005. 
 
Figure I-3 (Continued): Response of Productivity to a Patent Shock 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2005. 
 

Figure I-4: Response of Productivity and Patents to a Patent Shock, National  

 

 
 

Figure I-5: Significance of the Benchmark Labor Productivity Response Functions 
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Panel A. 

 
 
 
 
Panel B. 

 
Note: The vertical axis indicates the percent change in the forecast of labor productivity. 
 
Figure I-6: Responses of Productivity to a Patent Shock, sorted by BEA regions 
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Panel C. 

 
Note: The vertical axis indicates the percent change in the forecast of labor productivity. 
 
 
 
Panel D. 

 
Note: The vertical axis indicates the percent change in the forecast of labor productivity. 
 
Figure I-6 (Continued): Responses of Productivity to a Patent Shock, sorted by BEA regions 
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Panel E. 

 

 
Note: The vertical axis indicates the percent change in the forecast of labor productivity. 
 
Figure I-6 (Continued): Responses of Productivity to a Patent Shock, sorted by BEA regions  
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Panel F. 

 
Note: The vertical axis indicates the percent change in the forecast of labor productivity. 
 
 
 
Panel G. 

 
Note: The vertical axis indicates the percent change in the forecast of labor productivity. 
 
Figure I-6 (Continued): Responses of Productivity to a Patent Shock, sorted by BEA regions 
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Panel H. 

 
Note: The vertical axis indicates the percent change in the forecast of labor productivity. 
 
 
Panel I. 

 
Note: The vertical axis indicates the percent change in the forecast of labor productivity. 
 
Figure I-6 (Continued): Responses of Productivity to a Patent Shock, sorted by BEA regions 
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Note: Period 1 is the time of the shock. The states are shaded according to the sign of the labor productivity 
response function: White indicates a positive response and dark grey indicates a negative response. Time 
Series: 1963-2005. 
 
Figure I-7: Productivity Responses to an Aggregate Patent Shock 
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Note: The states are shaded according to the sign of the labor productivity response function: White 
indicates a positive response and dark grey indicates a negative response. Time Series: 1963-2005. 
 
Figure I-7 (Continued): Productivity Responses to an Aggregate Patent Shock 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2004. 
 
Figure I-8: Productivity Responses to an R&D shock, 1963-2004 



 

 

70

 

  

  

  

  
Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2004. 
 
Figure I-8 (Continued): Productivity Responses to an R&D shock, 1963-2004 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2004. 
 
Figure I-8 (Continued): Productivity Responses to an R&D shock, 1963-2004 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2004. 
 
Figure I-8 (Continued): Productivity Responses to an R&D shock, 1963-2004 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2004. 
 
Figure I-8 (Continued): Productivity Responses to an R&D shock, 1963-2004 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-2004. 
 
Figure I-8 (Continued): Productivity Responses to an R&D shock, 1963-2004 
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Panel A. High School Education 

 
 
 
 
Panel B. College Education 

 

 

 
Figure I-9: State Economic Factors: Histograms and Quintile Maps 
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Panel C. Industrial Diversity  

 
 
 
Panel D. Marginal Tax Rate on Wages 

 
 
Figure I-9 (Continued): State Economic Factors: Histograms and Quintile Maps 
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Panel A. College Education 

  

  
Note: These figures display the linearity between the share of college educated individuals in the state 
population and the response of labor productivity to an aggregate patent shock at horizon 2, 3, 8 and 9, 
respectively. EDUcoll is based on year 2000 values. 
 
Panel B. High School Education 

  
Note: These figures display the linearity between the share of high school educated individuals in the state 
population and the response of labor productivity to an aggregate patent shock at horizon 3 and 9, 
respectively. EDUhs is based on year 2000 values. 
 
Figure I-10: Scatter Plots: Benchmark Productivity Responses vs. State-level Economic Factors 
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Panel C. Industrial Diversity 

  
Note: These figures display the linearity between industrial diversity variable and the response of labor 
productivity to an aggregate patent shock at horizon 3and 9, respectively. Diversity is based on year 2000 
values. 
 
Panel D. Density 

  
Note: These figures display the linearity between the density of the state population and the response of 
labor productivity to an aggregate patent shock at horizon 3 and 9, respectively. Density is based on year 
2000 values. 
 

Figure I-10 (Continued): Scatter Plots: Benchmark Productivity Responses vs. State-level Economic 
Factors 
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I.I. Appendix 

I.I.1 Data 

I.I.1.1 Time series Data 

Labor Productivity: 
- Gross Domestic Product  by State (GDPS) is from the Bureau of Economic 

Analysis (BEA) 
- State non-farm employment is from the Bureau of Labor Statistics (BLS) 

Current Employment Statistics (CES) Annual Observations. 
- The productivity data are spliced in 1997 by multiplying the post-1997 data 

with the ratio of 1997 SIC value to the 1997 NAICS value. 
Patent Data: 

- Total annual utility patent applications in the U.S. from the United States 
Patent and Trademark Office (USPTO). 

- NBER Patent Data File contains applications that eventually were granted. 
See Hall, Jaffe, and Trajtenberg (2001) for details on the data. 

R&D Data: 
- BEA Research and Development Satellite Account. Real values are available 

from 1959 to 2004. See Robbins and Moylan (2007). 
Manufacturing Employment Data: 

- BEA state-level manufacturing employment and total BEA state-level 
employment. The data are available from 1969-2005. 

State-Level Wage and Salary Disbursements: 
- BEA State and Local Area Personal Income Data. 

Fuel PPI Relative to the PPI: 
- BLS Producer Price Index. 

Consumer Price Index: 
- BLS Inflation and Consumer Spending. 

Gross Domestic Product Deflator: 
- BEA National Income and Product Accounts. 
 

 

I.I.1.2 Cross-Sectional Data 

Education High School (EDUhs) 
- Decennial Census data that contains the share of the population over the age 

of 25 with at least a high school education but not a college degree 
Education College (EDUcoll) 
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- Decennial Census data that contains the share of the population over the age 
of 25 with at least a college education 

Education Combined (EDUalhs) 
- Decennial Census data that contains the share of the population over the age 

of 25 with at least a high school education 
Education Spending per Student (EDUSpend) 

- The data are from the National Public Education Financial Survey run by the 
National Center for Education Statistics. 

Industrial Diversity (Diversity) 
- Dixit-Stiglitz Index of BEA GDP by state data at the two digit industrial level. 
- 20 industries are used for the NAICS data 

Average Establishment Size (Establishment Size) 
- Establishment size distribution from the Census County Business Pattern data. 

Union Membership (Union) 
- This data represent the percentage of each state's nonagricultural wage and 

salary employees who are union members.  Estimates are based on the 1983-
2006 Current Population Survey (CPS) Outgoing Rotation Group (ORG) 
earnings files, the 1973-81 May CPS earnings files, and the BLS publication 
Directory of National Unions and Employee Associations, various years.  
Details on data and methodology are provided in Hirsch, MacPherson, and 
Vroman (2001). 

Manufacturing (Manufact) 
- Share of BEA State GDP associated with the manufacturing sector. 
- Nominal State Manufacturing GDP divided by Nominal State GDP. 

Density 
- BEA population estimates divided by the area of each state in square 

kilometers. 
Income Tax 

- NBER estimates of average marginal state income tax rate on wages using a 
nationally representative sample from 1995. 

Corporate Tax 
- Corporate income tax rates reported by the Tax Foundation 

(www.taxfoundation.org). 
- This variable contains the highest marginal tax rate. 

Property Tax per Person 
- These estimates are from the Tax Foundation (www.taxfoundation.org) who 

use Census information to aggregate county level property tax data to the state 
level and then calculate the average property tax paid by a state resident. 

State Minimum Wage 
- BLS data on the maximum between the state minimum wage and the federally 

mandated minimum wage.   
Median Age 

- The median age within a state is gathered from the decennial Census age 
distribution data from the American Fact Finder.  



 

 

81

I.I.2 Additional Figures 

  

  

  

  
Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are the response functions that condition on the relative price 
of fuel. The dotted lines are 90% confidence bands. The Y-axis is in percent. Time Series: 1963-2005. 
 
Figure I-11: Comparing Responses of Productivity to a Patent shock: With and Without 
Conditioning on the Relative FuelPPI. 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are the response functions that condition on the relative price 
of fuel. The dotted lines are 90% confidence bands. The Y-axis is in percent. Time Series: 1963-2005.  
 
Figure I-11 (Continued): Comparing Responses of Productivity to a Patent shock: With and Without 
Conditioning on the Relative FuelPPI 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are the response functions that condition on the relative price 
of fuel. The dotted lines are 90% confidence bands. The Y-axis is in percent. Time Series: 1963-2005.  
 
Figure I-11 (Continued): Comparing Responses of Productivity to a Patent shock: With and Without 
Conditioning on the Relative FuelPPI 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are the response functions that condition on the relative price 
of fuel. The dotted lines are 90% confidence bands. The Y-axis is in percent. Time Series: 1963-2005. 
 
Figure I-11 (Continued): Comparing Responses of Productivity to a Patent shock: With and Without 
Conditioning on the Relative FuelPPI 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are the response functions that condition on the relative price 
of fuel. The dotted lines are 90% confidence bands. The Y-axis is in percent. Time Series: 1963-2005.  
 
Figure I-11 (Continued): Comparing Responses of Productivity to a Patent shock: With and Without 
Conditioning on the Relative FuelPPI 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are the response functions that condition on the relative price 
of fuel. The dotted lines are 90% confidence bands. The Y-axis is in percent. Time Series: 1963-2005.  
 
Figure I-11 (Continued): Comparing Responses of Productivity to a Patent shock: With and Without 
Conditioning on the Relative FuelPPI 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-1997. 
 
Figure I-12: Productivity Responses to a Patent Shock, 1963-1997 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-1997. 
 
Figure I-12 (Continued): Productivity Responses to a Patent Shock, 1963-1997 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-1997. 
 
Figure I-12 (Continued): Productivity Responses to a Patent Shock, 1963-1997 
 



 

 

90

 

  

  

  

  
Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-1997. 
 
Figure I-12 (Continued): Productivity Responses to a Patent Shock, 1963-1997 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-1997. 
 
Figure I-12 (Continued): Productivity Responses to a Patent Shock, 1963-1997 
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Note: The solid red line is the response function and the dotted black lines are 90% confidence intervals. 
The shock occurs in period 1 and the y-axis is in percent. Time Series: 1963-1997. 
 
Figure I-12 (Continued): Productivity Responses to a Patent Shock, 1963-1997 
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Note: The red-smooth lines correspond to the benchmark labor productivity response functions from the 
patent shock analysis. The blue-marked lines are results from the R&D analysis based on 1963-2004 data. 
The dotted lines are 90% confidence bands. The Y axis is in percent.  
 
Figure I-13: Comparison of Productivity Responses to Patent and R&D Shocks 
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Note: The red-smooth lines correspond to the benchmark labor productivity response functions from the 
patent shock analysis. The blue-marked lines are results from the R&D analysis based on 1963-2004 data. 
The dotted lines are 90% confidence bands. The Y axis is in percent.  
 
Figure I-13 (Continued): Comparison of Productivity Responses to Patent and R&D Shocks 
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Note: The red-smooth lines correspond to the benchmark labor productivity response functions from the 
patent shock analysis. The blue-marked lines are results from the R&D analysis based on 1963-2004 data. 
The dotted lines are 90% confidence bands. The Y axis is in percent.  
 
Figure I-13 (Continued): Comparison of Productivity Responses to Patent and R&D Shocks 
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Note: The red-smooth lines correspond to the benchmark labor productivity response functions from the 
patent shock analysis. The blue-marked lines are results from the R&D analysis based on 1963-2004 data. 
The dotted lines are 90% confidence bands. The Y axis is in percent.  
 
Figure I-13 (Continued): Comparison of Productivity Responses to Patent and R&D Shocks 
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Note: The red-smooth lines correspond to the benchmark labor productivity response functions from the 
patent shock analysis. The blue-marked lines are results from the R&D analysis based on 1963-2004 data. 
The dotted lines are 90% confidence bands. The Y axis is in percent.  
 
Figure I-13 (Continued): Comparison of Productivity Responses to Patent and R&D Shocks 
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Note: The red-smooth lines correspond to the benchmark labor productivity response functions from the 
patent shock analysis. The blue-marked lines are results from the R&D analysis based on 1963-2004 data. 
The dotted lines are 90% confidence bands. The Y axis is in percent.  
 
Figure I-13 (Continued): Comparison of Productivity Responses to Patent and R&D Shocks 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are state wages and salary response functions from a patent 
shock. The dotted lines are 90% confidence bands. The Y axis is in percent. Time Series: 1963-2005. 
 
Figure I-14: Comparison of the Response of Productivity and the Response of State Wages to a 
Patent Shock 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are productivity response functions from trivariate VARs with 
surrounding labor productivity as the third variable. The dotted lines are 90% confidence bands. The Y axis 
is in percent.  Time Series: 1963-2005. 
 
Figure I-15: Comparison of Benchmark and Trivariate Productivity Responses: Surrounding 
Productivity as the Third Variable 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis using 1963-2005. The blue-marked lines are productivity response functions from 
trivariate VARs with BEA manufacturing employment over total BEA employment as the third variable. 
The time series for the trivariate VAR is 1969-2005. The dotted lines are 90% confidence bands. The Y 
axis is in percent. 
 
Figure I-16: Comparison of Benchmark and Trivariate Productivity Responses: Manufacturing 
Employment on Employment as the Third Variable 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are productivity response functions from trivariate VARs with 
real GDP by State as the third variable. The dotted lines are 90% confidence bands. The Y axis is in 
percent. Time Series: 1963-2005. 
 
Figure I-17: Comparison of Benchmark and Trivariate Productivity Responses: Real GDP by State 
as the Third Variable 
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Note: The red-smooth lines correspond to the labor productivity response functions from the benchmark 
patent shock analysis. The blue-marked lines are productivity response functions from trivariate VARs with 
Density as the third variable. The dotted lines are 90% confidence bands. The Y axis is in percent. Time 
Series: 1963-2005. 
 
Figure I-18: Comparison of Benchmark and Trivariate Productivity Responses: Density as the Third 
Variable 
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Figure I-19: Map of Oil States 
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I.I.3 Additional Tables 

 
Table I-8: Cross-Sectional Analysis, Excluding Oil States 

Panel A. 
h Constant EDUhs Diversity Manufact R2 
1 3.664** -0.0251** -0.1346 0.0010 0.183 
 1.486 0.012 0.088 0.009  
 2.466 -2.064 -1.529 0.106  
2 5.620*** -0.0455*** -0.1806 -0.0130 0.261 
 2.086 0.017 0.124 0.013  
 2.695 -2.666 -1.463 -1.017  
3 7.193*** -0.0447** -0.2620* -0.0113 0.215 
 2.547 0.021 0.151 0.016  
 2.824 -2.143 -1.737 -0.728  
4 4.3126** -0.0104 -0.1992* -0.0004 0.121 
 1.766 0.014 0.105 0.011  
 2.443 -0.718 -1.905 -0.040  
5 2.1902 0.0038 -0.1192 0.0028 0.053 
 1.655 0.014 0.098 0.010  
 1.324 0.278 -1.217 0.276  
6 0.5928 0.0157 -0.0618 0.0003 0.056 
 1.478 0.012 0.088 0.009  
 0.401 1.298 -0.705 0.035  
7 -0.9480 0.0239** 0.0067 -0.0033 0.128 
 1.285 0.011 0.076 0.008  
 -0.738 2.276 0.088 -0.425  
8 -1.8615 0.0285*** 0.0488 -0.0070 0.207 
 1.243 0.010 0.074 0.008  
 -1.497 2.798 0.663 -0.926  
9 -2.405* 0.0341*** 0.0629 -0.0085 0.257 
 1.302 0.011 0.077 0.008  
 -1.848 3.198 0.816 -1.071  
10 -2.890** 0.0386*** 0.0761 -0.0077 0.274 
 1.409 0.012 0.083 0.009  
  -2.052 3.346 0.912 -0.891   

Note: h indicates the impulse response function forecast horizon. EDUhs is the share of high school 
educated in a given state; Diversity is the Dixit-Stiglitz index of industrial diversity; and Manufact is the 
share of manufacturing in a given state. The excluded oil states are Wyoming, New Mexico, Texas, 
Oklahoma, Louisiana, and West Virginia. Their value added originating in the mining industry is greater 
than 5% in the year 2000. The coefficient estimates are in bold; the standard errors are directly underneath 
the coefficient estimates; and the T-statistics are underneath the standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-8 (Continued): Cross-Sectional Analysis, Excluding Oil States 
 
Panel B. 
h Constant EDUhs EDUcoll Diversity R2 
1 3.2589** -0.0192 0.0099 -0.1444* 0.196 
 1.514 0.013 0.012 0.081  
 2.152 -1.435 0.794 -1.776  
2 3.2779 -0.0305* 0.0367** -0.1571 0.325 
 2.047 0.018 0.017 0.110  
 1.601 -1.687 2.182 -1.429  
3 4.559* -0.0245 0.0450** -0.2495* 0.294 
 2.482 0.022 0.020 0.133  
 1.837 -1.116 2.199 -1.872  
4 3.5603** -0.0017 0.0159 -0.2080** 0.147 
 1.787 0.016 0.015 0.096  
 1.993 -0.110 1.082 -2.166  
5 1.9316 0.0098 0.0087 -0.1349 0.061 
 1.693 0.015 0.014 0.091  
 1.141 0.652 0.625 -1.485  
6 0.1025 0.02197* 0.0110 -0.0700 0.076 
 1.503 0.013 0.012 0.081  
 0.068 1.653 0.891 -0.867  
7 -1.5051 0.0273** 0.0085 0.0134 0.138 
 1.313 0.012 0.011 0.070  
 -1.147 2.348 0.784 0.190  
8 -2.565** 0.0298*** 0.0076 0.0696 0.200 
 1.283 0.011 0.011 0.069  
 -1.999 2.622 0.718 1.010  
9 -3.219** 0.0352*** 0.0084 0.0886 0.246 
 1.347 0.012 0.011 0.072  
 -2.390 2.952 0.755 1.224  
10 -3.540** 0.0386*** 0.0057 0.1003 0.264 
 1.458 0.013 0.012 0.078  
  -2.428 2.991 0.476 1.282   

Note: h indicates the impulse response function forecast horizon. EDUhs is the share of high school 
educated in a given state; EDUcoll is the share of college educated within a state; and Diversity is the 
Dixit-Stiglitz index of industrial diversity. The excluded oil states are Wyoming, New Mexico, Texas, 
Oklahoma, Louisiana, and West Virginia. Their value added originating in the mining industry is greater 
than 5% in the year 2000. The coefficient estimates are in bold; the standard errors are directly underneath 
the coefficient estimates; and the T-statistics are underneath the standard errors. 
* denotes significance at the 10 percent level.  
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
 



 

 

107

Table I-8 (Continued): Cross-Sectional Analysis, Excluding Oil States 
 
Panel C. 
h Constant EDUhs EDUcoll Diversity Density R2 
1 1.4501 -0.0076 0.0089 -0.0871 0.0613 0.214 
 2.508 0.019 0.013 0.103 0.068  
 0.578 -0.407 0.714 -0.844 0.906  
2 0.1533 -0.0104 0.0351** -0.0580 0.1059 0.349 
 3.366 0.025 0.017 0.139 0.091  
 0.046 -0.417 2.087 -0.419 1.166  
3 0.5040 0.0016 0.0428** -0.1209 0.1374 0.323 
 4.070 0.030 0.020 0.167 0.110  
 0.124 0.054 2.103 -0.722 1.252  
4 2.3278 0.0062 0.0153 -0.1687 0.0418 0.154 
 2.981 0.022 0.015 0.123 0.080  
 0.781 0.281 1.024 -1.376 0.520  
5 1.8064 0.0106 0.0086 -0.1310 0.0042 0.061 
 2.834 0.021 0.014 0.117 0.076  
 0.637 0.503 0.610 -1.123 0.055  
6 0.9127 0.0167 0.0114 -0.0956 -0.0275 0.080 
 2.511 0.019 0.013 0.103 0.068  
 0.363 0.899 0.912 -0.926 -0.405  
7 0.9425 0.0115 0.0097 -0.0642 -0.0829 0.184 
 2.139 0.016 0.011 0.088 0.058  
 0.441 0.724 0.912 -0.730 -1.438  
8 1.3523 0.0045 0.0096 -0.0546 -0.1328** 0.313 
 1.990 0.015 0.010 0.082 0.054  
 0.680 0.305 0.969 -0.667 -2.473  
9 1.5354 0.0045 0.0109 -0.0622 -0.161*** 0.389 
 2.031 0.015 0.010 0.084 0.055  
 0.756 0.300 1.070 -0.744 -2.941  
10 1.8132 0.0041 0.0085 -0.0694 -0.181*** 0.415 
 2.176 0.016 0.011 0.090 0.059  
  0.833 0.251 0.782 -0.775 -3.090   

Note: h indicates the impulse response function forecast horizon. EDUhs is the share of high school 
educated in a given state; EDUcoll is the share of college educated within a state; Diversity is the Dixit-
Stiglitz index of industrial diversity; and Density is the persons per square kilometer. The excluded oil 
states are Wyoming, New Mexico, Texas, Oklahoma, Louisiana, and West Virginia. Their value added 
originating in the mining industry is greater than 5% in the year 2000. The coefficient estimates are in bold; 
the standard errors are directly underneath the coefficient estimates; and the T-statistics are underneath the 
standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-9: Cross-Sectional Analysis, Trivariate VAR with Surrounding Labor Productivity 

h Constant EDUhs EDUcoll Diversity Density R2 
1 0.1363 -0.0037 0.0113 -0.0411 0.1237* 0.265 
 2.675 0.019 0.013 0.108 0.067  
 0.051 -0.193 0.856 -0.380 1.832  
2 -3.5457 0.0176 0.0382** 0.0270 0.2632*** 0.393 
 3.630 0.026 0.018 0.147 0.092  
 -0.977 0.668 2.137 0.184 2.875  
3 -2.4923 0.0240 0.0547*** -0.0699 0.2803*** 0.424 
 4.127 0.030 0.020 0.167 0.104  
 -0.604 0.801 2.688 -0.419 2.692  
4 1.0340 0.0156 0.0308* -0.1785 0.1708* 0.314 
 3.602 0.026 0.018 0.146 0.091  
 0.287 0.597 1.734 -1.224 1.880  
5 1.8666 0.0031 0.0152 -0.1465 0.1044 0.202 
 3.274 0.024 0.016 0.133 0.083  
 0.570 0.128 0.942 -1.106 1.264  
6 0.8473 0.0014 0.0088 -0.0581 0.0498 0.070 
 2.852 0.021 0.014 0.115 0.072  
 0.297 0.070 0.628 -0.503 0.692  
7 1.2205 -0.0110 -0.0010 -0.0043 -0.0292 0.012 
 2.319 0.017 0.011 0.094 0.059  
 0.526 -0.651 -0.088 -0.046 -0.499  
8 1.7955 -0.0219 -0.0051 0.0201 -0.0959* 0.124 
 2.087 0.015 0.010 0.084 0.053  
 0.860 -1.444 -0.500 0.238 -1.822  
9 1.9823 -0.0222 -0.0058 0.0212 -0.1394** 0.220 
 2.172 0.016 0.011 0.088 0.055  
 0.913 -1.412 -0.539 0.242 -2.544  
10 2.1932 -0.0200 -0.0110 0.0159 -0.1676*** 0.285 
 2.371 0.017 0.012 0.096 0.060  
  0.925 -1.160 -0.937 0.166 -2.802  

Note: h indicates the productivity impulse response function forecast horizon. EDUhs is the share of high 
school educated in a given state; EDUcoll is the share of college educated within a state; Diversity is the 
Dixit-Stiglitz index of industrial diversity; and Density is the persons per square kilometer. The 
productivity responses are from state-level trivariate VARs with aggregate patents ordered first, state-level 
productivity ordered second, and surrounding productivity third. The coefficient estimates are in bold; the 
standard errors are directly underneath the coefficient estimates; and the T-statistics are underneath the 
standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Table I-10: Cross-Sectional Analysis, Trivariate VAR with Employment 

h Constant EDUhs EDUcoll Diversity Density R2 
1 -0.4581 0.0149 0.0176 -0.0611 0.0834 0.140 
 2.638 0.019 0.013 0.107 0.067  
 -0.174 0.778 1.352 -0.572 1.253  
2 -3.1325 0.0240 0.0418** 0.0157 0.1180 0.208 
 3.361 0.024 0.017 0.136 0.085  
 -0.932 0.982 2.524 0.115 1.392  
3 -1.4848 0.0221 0.0515*** -0.0670 0.0819 0.248 
 3.406 0.025 0.017 0.138 0.086  
 -0.436 0.895 3.070 -0.486 0.953  
4 1.6685 0.0053 0.0216* -0.1098 -0.0439 0.092 
 2.503 0.018 0.012 0.101 0.063  
 0.667 0.289 1.752 -1.084 -0.695  
5 0.4623 0.0093 0.0174 -0.0440 -0.0383 0.077 
 2.231 0.016 0.011 0.090 0.056  
 0.207 0.572 1.586 -0.488 -0.680  
6 -0.8062 0.0191 0.0209** -0.0199 0.0043 0.115 
 1.961 0.014 0.010 0.079 0.049  
 -0.411 1.345 2.158 -0.250 0.086  
7 -1.0209 0.0174 0.0152* 0.0045 0.0066 0.086 
 1.794 0.013 0.009 0.073 0.045  
 -0.569 1.336 1.718 0.062 0.145  
8 -0.9597 0.0134 0.0097 0.0226 -0.0017 0.049 
 1.920 0.014 0.009 0.078 0.048  
 -0.500 0.958 1.028 0.291 -0.034  
9 -0.6697 0.0144 0.0076 0.0032 -0.0039 0.043 
 2.111 0.015 0.010 0.085 0.053  
 -0.317 0.943 0.735 0.037 -0.073  
10 -0.0364 0.0154 0.0041 -0.0305 -0.0189 0.063 
 2.291 0.017 0.011 0.093 0.058  
  -0.016 0.928 0.364 -0.329 -0.327  

Note: h indicates the productivity impulse response function forecast horizon. EDUhs is the share of high 
school educated in a given state; EDUcoll is the share of college educated within a state; Diversity is the 
Dixit-Stiglitz index of industrial diversity; and Density is the persons per square kilometer. The 
productivity responses are from state-level trivariate VARs with aggregate patents ordered first, state-level 
productivity ordered second, and employment third. The coefficient estimates are in bold; the standard 
errors are directly underneath the coefficient estimates; and the T-statistics are underneath the standard 
errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 



 

 

110

 
Table I-11: Cross-Sectional Analysis, Trivariate VAR with Density 

h Constant EDUhs EDUcoll Diversity Density R2 
1 -2.2275 0.0181 0.0068 0.0486 0.0670 0.044 
 2.192 0.016 0.011 0.089 0.055  
 -1.016 1.141 0.632 0.548 1.212  
2 -5.558* 0.0351 0.0270* 0.1343 0.1345* 0.123 
 3.199 0.023 0.016 0.130 0.081  
 -1.737 1.510 1.710 1.037 1.667  
3 -3.569 0.0406* 0.0344** 0.0010 0.1325* 0.184 
 3.113 0.023 0.015 0.126 0.079  
 -1.146 1.798 2.239 0.008 1.687  
4 3.0723 0.0270 0.0092 -0.279** 0.0348 0.233 
 2.801 0.020 0.014 0.113 0.071  
 1.097 1.327 0.664 -2.457 0.493  
5 3.4686 0.0218 0.0019 -0.265** -0.0025 0.186 
 2.872 0.021 0.014 0.116 0.072  
 1.208 1.044 0.133 -2.277 -0.034  
6 0.7186 0.0265 0.0048 -0.1155 -0.0280 0.139 
 2.668 0.019 0.013 0.108 0.067  
 0.269 1.370 0.363 -1.069 -0.416  
7 -1.4580 0.0264 0.0046 0.0255 -0.0667 0.196 
 2.806 0.020 0.014 0.114 0.071  
 -0.520 1.298 0.334 0.225 -0.942  
8 -3.2099 0.0253 0.0028 0.1428 -0.0812 0.232 
 3.215 0.023 0.016 0.130 0.081  
 -0.999 1.083 0.174 1.098 -1.001  
9 -4.3871 0.0270 -0.0019 0.2148 -0.0702 0.234 
 3.587 0.026 0.018 0.145 0.090  
 -1.223 1.039 -0.109 1.479 -0.775  
10 -4.7528 0.0270 -0.0104 0.2504 -0.0591 0.203 
 4.220 0.031 0.021 0.171 0.106  
  -1.126 0.882 -0.501 1.466 -0.555  

Note: h indicates the productivity impulse response function forecast horizon. EDUhs is the share of high 
school educated in a given state; EDUcoll is the share of college educated within a state; Diversity is the 
Dixit-Stiglitz index of industrial diversity; and Density is the persons per square kilometer. The 
productivity responses are from state-level trivariate VARs with aggregate patents ordered first, state-level 
productivity ordered second, and density third. The coefficient estimates are in bold; the standard errors are 
directly underneath the coefficient estimates; and the T-statistics are underneath the standard errors. 
* denotes significance at the 10 percent level. 
** denotes significant at the 5 percent level. 
*** denotes significance at the 1 percent level. 
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Chapter II  

 

Assessing the Link between Military Spending and 

Productivity: Evidence from Firm-Level Data 

 

 

 

Abstract 

 This chapter of the dissertation examines whether changes in military prime 

contract awards lead to the development of new technology and analyzes the effects on 

firm-level productivity. The analysis is performed using firm-level military prime 

contract data from the Department of Defense together with Compustat data and data 

from the NBER patent database in panel vector autoregressions. This allows the chapter 

to take into account individual firm effects. Results show that firm-level productivity, 

research and development, and patents increase in response to a military contract award. 
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II.A. Introduction 

 An extensive literature has studied the consequences of increased government 

spending on the U.S. economy. However, economists have not reached agreement on the 

economic effects of military spending. Furthermore, it is commonly assumed in 

macroeconomic models that technological progress is exogenous to government 

spending. This assumption stands in sharp contrast to the fact that many new inventions 

originate in the defense sector and that military considerations often have led to 

government-financed support for development of new technological products. As is the 

case with the internet, which originates from federally funded defense programs, many of 

these inventions have later been used commercially in the private sector. 

 It is possible that military spending leads to an increase in privately funded 

research and development and to higher productivity. However, conflicting empirical 

evidence exists. In addition, the microeconomic literature on this topic has not 

sufficiently taken into account the dynamics between variables across time. Therefore, 

this chapter examines the effects of increased military spending on the development of 

new technology. The results have important consequences for modeling the evolution of 

a firm’s production possibility frontier and for determining the aggregate economic 

effects. 

 Military spending has varied considerably during the post-World War II period. 

This chapter focuses on the Carter-Reagan military buildup in the 1980s, which is 

considered exogenous to U.S. economic fluctuations. As described in Ramey and Shapiro 

(1998), this buildup was initiated after the Soviet invasion of Afghanistan on December 
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24, 1979. This invasion led to speculations about possible repercussions in the Persian 

Gulf oil states, and the U.S. defense buildup became a reality. In 1979, U.S. defense 

spending accounted for 5.7 percent of Gross Domestic Product (GDP), and by the time of 

the peak1 in 1986, it had risen to 7.4 percent of GDP. This accounts for an increase in real 

defense spending from 1979 to 1986 of 54.8 percent.2 Because of this large exogenous 

change in military spending, large defense contractors faced considerable increases in 

military prime contract (MPC) awards that were unrelated to aggregate productivity. 

 Although the buildup was exogenous to aggregate U.S. economic fluctuations, it 

may be that individual awards are assigned at the firm level based on individual company 

performance. However, Warf and Glasmeier (1993) note that the demand for military 

products is highly price-inelastic and military contracts often result in cost overruns. 

Further, military-related companies use political lobbying in the efforts to receive 

military contracts. For the big defense contractors, MPC awards in the period of a big 

exogenous military buildup can therefore be considered exogenous to the economic 

conditions at the firm. This chapter discusses this issue and provides evidence that only a 

few of the contracts awarded to the big defense contractors are competitively procured. 

 Motivated by a macroeconomic question, this chapter uses U.S. data to examine 

the effects of military spending on the development of new technology and productivity 

at a microeconomic level. Specifically, this chapter of the dissertation explores whether 

MPC awards result in significant changes in research and development (R&D) and 

                                                 
1 The peak in real defense spending when estimated by quantity indexes was in 1987. However, as 
measured in percent of GDP, the peak was in 1986. 
2 Calculation is based on NIPA Quantity Indexes for real national defense spending. The overall increase in 
real defense spending from 1979 to 1987 was 62.2 percent. The corresponding increase in real GDP was 
25.2 percent. 
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patenting and take into account dynamics across time through use of panel vector 

autoregressions (VARs). This chapter uses U.S. MPC data to examine whether firm-level 

productivity, stock prices, R&D, and patenting are significantly affected by increased 

demand in the form of MPC awards. The analysis covers the period from 1969 to 1993, 

which includes the large military buildup in the 1980s. With this data set, the chapter can 

assess how military demand translates into macroeconomic effects on productivity and 

can estimate the time lag until such effects are significant. These findings allow 

comments on how military demand shocks can affect the neoclassical model. 

 The analysis employs a data set of firm-level Department of Defense (DoD) 

contracts that have been created based on the DoD publications that list the top 100 

military prime contractors and completed with aggregation of the underlying source data 

of the individual contracts. This chapter then provides a thorough statistical analysis of 

the effects of MPC on the development of new technology and on productivity. 

Following a positive MPC shock, we conclude that average labor productivity, which is 

computed as average revenue product, in a bivariate system increases after immediate 

positive responses of both sales and employment. The company’s contribution to R&D 

increases a few years after the shock, indicating that MPCs lead to company efforts in 

enhancing the production of technology. The response of patents is considered separately 

for the pre- and post-1984 periods in order to account for patent policy changes that may 

have affected the incentive to apply for a patent. Consistent with the impulse response 

functions for R&D, we find that an MPC shock leads to a positive response of patent 

applications. 



 

 

119

 This chapter of the dissertation is organized as follows. In Section II.B., relevant 

existing literature on government military spending is reviewed, followed by an outline 

of the underlying theoretical framework. Section II.C. describes the data, and Section 

II.D. presents the methodology. Empirical results on productivity, stock prices, and 

research and development are provided in Section II.E., while Section II.F. examines the 

effect of an MPC shock on patenting. Section II.G. analyzes subgroups of the sample. 

Finally, Section II.H. concludes. 

II.B. Literature 

 Both macro- and microeconomic studies of the economic implications of 

government spending have been performed. The macroeconomic studies show conflicting 

evidence on the response of productivity and wages to a military spending shock, while 

the microeconomic literature has studied government support for research and 

development and found conflicting results. This section reviews some of the existing 

literature on the subject and outlines how military demand affects the neoclassical model. 

II.B.1 Related Literature 

 Among macroeconomic studies, Blanchard and Perotti (2002) employ a mixed 

structural VAR/event study approach, using institutional information from the tax system 

for identification purposes. They find that U.S. output is positively affected by increased 

government spending, while investment is negatively affected. Furthermore, when only 

considering defense spending, output continues to be positively affected. When 

considering the response of aggregate output, similar results can be found in Ramey and 

Shapiro (1998). They find that GDP increases following a military buildup that is 
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identified through a narrative approach. Furthermore, total number of hours worked in 

manufacturing increases insignificantly after an increase in defense spending, leading to a 

fall in labor productivity in the manufacturing sector, while output per hour in the 

business sector is positively affected. 

 Ramey (2007) shows how the initial anticipation effect and composition of 

government spending into defense and non-defense spending can have dramatic 

consequences for the estimated effects of a government spending shock. Similar to 

Ramey, this chapter employs military spending data to account for the composition 

effect. Furthermore, this chapter uses annual financial data, which helps in mitigating any 

potentially omitted announcement effects.  

 Other papers of interest include Rotemberg and Woodford (1992), Devereux, 

Head, and Lapham (1996), and Edelberg, Eichenbaum, and Fisher (1999). Rotemberg 

and Woodford examine the effects of aggregate military spending in autoregressive 

models. Edelberg, Eichenbaum, and Fisher incorporate the Ramey-Shapiro buildup-dates 

in a VAR and confront uncertainty about the identified buildup dates. A key difference 

between several of these papers on government spending is the response of real wages. 

Rotemberg and Woodford find that real wages increase after a positive innovation to 

government purchases while the analysis in Edelberg, Eichenbaum, and Fisher leads to 

negative responses of real wages. Devereux, Head, and Lapham find in a model with 

increasing returns and monopolistic competition that increased government spending can 

lead to higher productivity and wages. 

 The microeconomic literature has explored the connection between government 

R&D spending and technological progress. Scott (1984) performs a cross-sectional study 
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with observations from 1974 for lines of business for companies that reported to the 

Federal Trade Commission’s Line of Business program. As such, his study is not specific 

to the defense business and does not take into account variation in demand across time. 

He finds that government subsidization of R&D does not displace private R&D spending. 

 Lichtenberg (1988) estimates the effects of government contracts on private R&D 

expenditure using firm-level panel data. However, his sample only covers a time 

dimension of 6 years and does not take into account patent, productivity or stock price 

effects. Nor does his sample period cover the drawdown in military spending in the late 

1980s. With our long time dimension and estimation in a panel VAR, we are better 

equipped to approach a macroeconomic question and examine dynamics across time. 

Furthermore, the big defense contractors may act differently than small companies to a 

military prime contract award. Therefore, it is important to find the results from a study 

that mainly considers large defense conglomerates. 

 David, Hall, and Toole (1999) survey the literature that has examined the 

consequences of public R&D for private R&D. Overall, their findings are ambivalent 

since existing literature has found evidence of both complementarity and substitutability 

between public and private R&D, depending on the underlying data and methods. One 

study can be found in Lerner (1999). Lerner assesses the long-run success of firms 

participating in the Small Business Innovation Research (SBIR) program and finds that 

the superior growth of SBIR awardees mainly was seen for firms in areas with substantial 

venture capital activity. Other papers of interest include Reppy (1977), Levy and 

Terleckyj (1983), Saal (1999), and Wallsten (2000). Wallsten finds that public grants 

displace private R&D investment. 
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 The above mentioned studies lead to the conclusion that the existing literature has 

not reached agreement on the effects of defense spending on economic variables such as 

productivity, R&D, patents, and stock prices. By having a panel data set with a long time 

dimension, this chapter will add significantly to the existing micro- and macroeconomic 

literature. With firm-level data, this study provides micro evidence for the resulting 

macroeconomic effects. This chapter is therefore important for understanding how 

macroeconomic effects arise because of underlying microeconomic decisions. It is the 

goal to reach a better understanding of the effects of military spending on the U.S. 

economy. Specifically, it is possible that military prime contracts have positive effects on 

the aggregate U.S. economy if the contracts lead to increased private investment in R&D. 

For example, if public R&D contracts allow firms to overcome fixed R&D costs then we 

may see a positive response of private R&D to a military prime contract. On the contrary, 

it may be that federal contracts substitute for private R&D that the firm otherwise would 

have undertaken at own cost for competitive reasons. See David, Hall, and Toole (1999) 

for an overview of why private R&D expenditures may be affected by public R&D 

contracts. 

II.B.2 Theoretical Background 

 If MPCs lead to significantly more resources put into R&D, then firm 

productivity may increase over time because of the more technically advanced production 

process. However, the neoclassical model at the firm level generally assumes that a 

demand shock in the form of increased demand for defense products does not affect the 

production possibility frontier. Rotemberg and Woodford (1991) discuss the transmission 
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of aggregate demand variations to the labor market in order to reconcile how government 

spending can lead to increased real wages. 

 This section follows and builds on Rotemberg and Woodford (1991) in the 

theoretical framework below. They note that in the case of fully competitive firms with a 

standard neoclassical production function, output and employment fluctuations should be 

associated with countercyclical movements in the real wage if the production function is 

unaffected by the demand shock. However, if the analysis is extended to allow for 

imperfect competition where firms set prices at a markup over marginal cost, then labor 

demand can be expressed as 

 (1)  ( ) tttttH wzHKF µ=;, . 

Here, FH indicates the partial derivative of the production function with respect to labor 

input, Ht, at time t. Kt and zt denote capital and existing technology, respectively, while µt 

signifies the markup over marginal cost. wt denotes the real wage. With fully competitive 

firms, µt equals one. If capital and technology are taken as given, labor demand cannot 

shift in the short run because of a government spending shock. However, an outward shift 

in the labor supply curve leads to a lower real wage, corresponding to the results of 

Edelberg, Eichenbaum, and Fisher (1999). As mentioned above, Rotemberg and 

Woodford (1992) find a positive response of the real wage after increased military 

expenditures. To approach their finding, Rotemberg and Woodford allow for imperfect 

competition with varying markup. In this case, if an increase in government spending 

leads to a downward adjustment of the markup, then the real wage can respond 

positively. The labor demand curve then shifts to the right after a demand shock, and 
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equilibrium output and labor can be positively correlated with movements in the real 

wage. 

 This chapter makes an important addition to the discussion of Rotemberg and 

Woodford. Specifically, since many technologies originate in the defense sector, it is 

possible that even with a constant markup the labor demand curve can shift out. For 

example, if military spending leads to the possibility of initiating R&D projects that 

otherwise were unprofitable, then the labor demand curve shifts out as a result. 

Furthermore, if company-sponsored R&D increases after a military demand shock it is 

likely that the production possibility frontier will shift out and productivity may slowly 

increase to a permanently higher level. 

 The defense conglomerates analyzed in this chapter are not fully competitive. It is 

likely that the markup either increases or decreases during a military buildup. In addition, 

if the increased demand leads to the development of new technology, then the production 

function is directly affected. The new technology can increase the range and quality of 

goods produced. Furthermore, the increased demand may alone result in learning-by-

doing effects that increase the marginal product of each worker and thereby expands the 

production possibility frontier. 

 The optimality condition in (1) can be expanded by including other factors that 

can affect the production of goods. We allow the technology variable, zt, to depend 

positively on past R&D efforts. The condition then becomes 

 ( ) tttttH wzHKF µ=,,  where zt = Z(RDt-1). 

If the government contract includes R&D contracts, then the level of technology at the 

firm can be positively affected. 
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 The purpose of this chapter is to examine the effects of military prime contracts 

on economic factors. By examining firm-level labor productivity, sales, employment, 

stock prices, and the development of new technology, we can infer about the overall 

macroeconomic consequences of military prime contract spending. 

II.C. Data 

 The selection of firms is based on various issues of the Department of Defense 

publication “100 Companies Receiving the Largest Dollar Volume of Prime Contract 

Awards.” This publication lists the top 100 military prime contractors that receive MPC 

awards in any given fiscal year. Thus, the analysis includes firms whose main business 

relies on military prime contracts. However, several firms enter and exit the top 100 list 

over time. To create a complete time series this chapter aggregated the raw data on MPC 

awards at the firm level, collected from the Department of Defense Statistical 

Information Analysis Division website. These data contain a complete list of all 

individual contracts awarded during the sample period (1969-1993). 

 The raw data reveal that the number of contracts received by any one firm varies 

considerably among companies. In addition, a large defense company, with subsidiaries, 

may receive more than 2000 contracts annually. To find the total dollar value of contracts 

at an annual level for each firm, the contracts were aggregated for each fiscal year3. 

Chapter III of this dissertation contains a thorough description of this underlying data set, 

                                                 
3 The fiscal year for the United States government lasts from October 1 of one year through the end of 
September of the following year. For example, fiscal year 1977 covers October 1976 through September 
1977. Prior to 1977, the fiscal year was defined as July through June.  
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although that approach aggregates the data at the spatial level. In order to convert the 

military contracts into real values, the MPC data were deflated with the GDP deflator. 

 It is likely that pricing of MPCs does not grow with the rate of inflation as 

measured by the GDP deflator. Therefore, this study tried using a price index for national 

defense consumption expenditures and gross investment as an alternative deflator. 

However, this series is only available starting in 1972. As such, using this series limits 

the time dimension of the analysis. The overall results were not sensitive to using this 

deflator instead of the GDP deflator, and these estimations are therefore not shown. 

 One potential issue is that the timing of MPC awards may be important in 

explaining the results below. It is likely that companies have advance information on 

forthcoming contract awards, and the identified military shock may therefore not fully 

take into account expectations. However, the use of annual data mitigates the anticipation 

effect. Additionally, this chapter has tried including stock prices in all the computations 

below. This should account for any expectations formed prior to receiving the MPC. 

Including stock prices in the analysis did not change the conclusions, indicating that the 

timing of the MPC awards is not important in explaining the results. 

 Data on total sales, employment, stock prices, and R&D at the firm-level fiscal 

year were collected from the Compustat database. Some defense contractors are 

unavailable in Compustat, while others only have a few years of observations. To 

maximize the number of observations, the annual time series extends over the period 

1969-1993. This allows for the inclusion of the Carter-Reagan military buildup in the 

1980s. Furthermore, the analysis allows for an unbalanced panel of firms in order to 

increase the sample size as not all firms cover the full sample period. This procedure 
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yields a panel of 45 firms, which includes major defense contractors such as Boeing, 

Grumman, Lockheed, McDonnell Douglas, Northrop, and Raytheon. Table II-1 lists the 

full set of firms in the sample. 

 The aggregate real MPC value for the selected companies is depicted across time 

in Figure II-1 together with total aggregate real U.S. MPC values. The graph clearly 

shows how the firm-level data capture the overall military buildup, and the contracts for 

the selected firms account for approximately fifty percent of total U.S. MPCs. As such, 

we can be confident that the defense spending faced by these firms relates to the 

exogenous Carter-Reagan military buildup. 

 The data include the closing values of January stock prices, deflated using the 

GDP deflator. Data on value added is not directly available in Compustat. Therefore, this 

chapter uses the average revenue product as a proxy for labor productivity data. The 

average revenue product, which the chapter will refer to as labor productivity, is 

computed as nominal sales deflated by the GDP deflator and divided by the total number 

of employed workers for the given company. The chapter uses linear interpolation for the 

employment and R&D series where a few observations are missing. This is the case for 

very few observations and is not important for the analysis. Company R&D is deflated 

with the GDP deflator. It is important to note that R&D expenses account for the 

company’s contribution to R&D. Government-sponsored R&D is therefore not included 

in this variable. For a few companies, government-sponsored R&D is included in single 

years. After examining the data, we find that this issue is not the main factor in 

explaining the results. 
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 Patent data are collected from the NBER patent database, which consists of utility 

patents granted between 1963 and 1999. Hall, Jaffe, and Trajtenberg (2001) describe this 

data set. For the analysis, the patent data are sorted by application year since variation in 

budgetary resources at the United States Patent and Trademark Office (USPTO) leads to 

changes in the application-grant lag over time as explained in Christiansen (2008). Since 

we are interested in examining the effects of government spending on the development of 

new technology, using the application year corresponds to employing the data most 

closely associated with the date of invention. 

 Because of the time lag from the date of application until the date of grant, the last 

few years of the dataset contain a decrease in the patent application count because of data 

truncation. As an example, patents granted in 2000 or later but which had an application 

date in 1999 or earlier are not counted in the sample. Because the sample period ends in 

1993, this issue does not lead to severe truncation problems with the patent application 

data. In the patent analysis, firms are included if they have at least one patent application 

in every year during the given firm’s sample length. This leaves 39 companies when 

using the patent application series. 

 In 1980, President Carter changed the patent policy for small businesses, and in 

1983 this was expanded to include all firms. Before 1983, the federal government had the 

exclusive rights to patents of large businesses achieved because of federally funded 

research. Therefore, firm-level patent data in the sample may not be directly comparable 

before and after 1983. In order to account for this, the chapter also splits the sample in 

1984 when examining the response of patents to a defense shock. See Eisenberg (1996) 

for a discussion of this change in patent policy. 
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 Collection of the mentioned variables results in an annual unbalanced panel of 

data on MPCs, R&D spending, productivity, employment, sales, patents, and stock prices 

over the period 1969-1993 for up to 45 firms. The natural logarithm is taken of all 

variables. A few firms in the underlying data set merge during the sample period. In most 

of these cases, this chapter treats the merging firms as one firm over the full sample 

period. The chapter also tried excluding big merging firms from the sample without 

affecting the conclusions. 

 It is important to address the fact that military prime contracts may be awarded at 

the firm level based on the economic performance of the firm. To examine this possibility 

we obtained data from the Center for Public Integrity. These data contain information 

about the conditions under which MPCs were awarded at the firm level during 1998-

2003. Table II-2 reports results from a selection of the large military prime contractors in 

the sample. The selection is based on the criteria that data are available from Center for 

Public Integrity and that the given firm is among the top contractors in the sample in this 

chapter. Because of data limitation, the table is based on data from 1998 to 2003. The 

chapter thereby assumes that the nature of the award method was unchanged between the 

1980s military buildup and the military spending in the late 1990s. 

 Table II-2 also shows that these firms largely receive MPCs that have not been 

put out for competitive bids - mainly a result of being the sole source for the demanded 

military product or service. Furthermore, companies that primarily have been awarded 

contracts through full and open competition receive a substantial part of the contracts 

after a bid with only one or two bidders for the contract. Oil companies (not included in 

the table) are for the most part awarded contracts through full and open competition, but 
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most often with only two bidders. These contracts are mainly fixed price contracts. 

Overall, this chapter finds strong evidence that MPC awards are given to the top military 

prime contractors primarily without strong competitive pressure. 

 One potential concern is that firms may be awarded the contracts based on 

existing ideas for new technological inventions that only will be implemented after the 

contract has been awarded. If this is the case, the military shock considered in this 

chapter may contain unresolved endogeneity. However, the analysis suggests that this 

issue is not the main driving factor behind the results. Additional evidence for this can be 

found by studying the individual firm-level time series of MPC awards. If existing 

technology at any given firm were the basis for distribution of MPC awards then we 

would expect the dollar value of MPCs for each firm to peak in very different years. 

Indeed, the vast majority of firms in the sample depict MPC award series that have either 

a local or a global maximum in the early to mid-1980s, corresponding to the aggregate 

military buildup. Figure II-2 plots a sample of the firm-level military prime contract 

series. In this figure, the dollar value of military prime contract awards peaks in the mid-

1980s. Small differences in the peak year between the firms are anticipated as it is 

expected that government demand for different military products changes across time 

during the build-up. Therefore, based on the evidence provided, the analysis concludes 

that MPC awards for the given selection of firms are exogenous to firm-level productivity 

and technology. 



 

 

131

II.D. Methodology 

 Let N denote the total number of firms in the panel and Tn the number of time 

periods for firm n. This chapter estimates an unbalanced panel vector autoregression 

(PVAR) with p lags and m variables. The basic unbalanced PVAR looks as follows: 
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wnt is an m × 1 vector of variables for firm n at time t. Φl, for l=1,..,p, is an m × m matrix 

of coefficients and c is a constant term. λt is a constant term that is common across firms 

but varies across time. This is included in order to take into account aggregate 

macroeconomic effects that may affect profitability of the firms across the business cycle. 

αn is a firm-specific effect, which is constant across time but varies across firms. This 

allows for individual effects that influence the firms differently. Lastly, εnt is a vector of 

errors. We assume homogeneity across firms such that the variance-covariance matrix, Ω, 

is common for all firms across time. Both αn and εnt have zero means and are independent 

among themselves and with each other.4 

                                                 
4 Standard errors are estimated by Monte Carlo with 2000 simulations. However, we also estimated (not 
shown) standard errors, following Cao and Sun (2006). This method takes into account that when T is 
short, the usual asymptotic results for orthogonalized impulse response functions are not applicable but 
may lead to standard error bands that are too narrow. 
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 To estimate the system, we remove the aggregate time effect and the constant 

term by subtracting the mean across firms from all observations. This yields the 

following equation: 
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 This system is estimated by OLS where the individual effects are estimated. In 

general, under the assumption of a fixed T and N → ∞, the OLS estimator is inconsistent. 

Under this assumption the system can be estimated using the Anderson-Hsiao estimator.5 

However, if we assume big T then the model can be consistently estimated by OLS. For 

our sample length of up to 25 periods, T is assumed sufficiently large to not cause 

problems with OLS inconsistency or with narrow standard error bands as discussed in 

Cao and Sun (2006).6 

II.E. Empirical Results 

 The benchmark model is a bivariate unbalanced panel VAR with Dnt and MPCnt. 

Here, Dnt indicates a variable that changes according to the measure of interest, and 

MPCnt denotes the log-level of MPC awards for firm n at time t. These variables enter the 

system in the aforementioned order. When Dnt denotes the log-level of labor productivity 

                                                 
5 We estimated the system by GMM with Anderson-Hsiao instruments. However, the restrictive moment 
conditions together with the relatively small N lead to GMM results that are sensitive to changes in the lag-
length. 
6 We consider scenarios with more than 10 years of annual data, which suggests that the Cao-Sun standard 
error adjustment is small. Indeed, preliminary results show this to be the case. 
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(LP), R&D (RD), or patents (PAT) this ordering allows for changes in productivity or 

technology to lead to MPC awards in case a contract is awarded through competitive 

bidding to the most productive firm. However, since the Cholesky short-run restriction 

may be sensitive to the ordering of the variables, the impulse response functions were 

also computed ordering the MPC variable first in the system. Other variables such as the 

number of employed workers (EMP), total sales (SALE), and stock prices (SP) were also 

included in the system in place of Dnt. The natural logarithm was taken of all variables. 

 Before estimating the system, the appropriate lag-length must be chosen. The 

Akaike Information Criterion suggests using one lag. However, since military contracts 

may last longer than one year, only including one lag may introduce omitted variable 

bias. This chapter therefore experiments with different lag lengths and chooses to include 

three lags in the benchmark analysis. 

 The impulse response functions from a bivariate model with different variables 

and 90 percent confidence intervals are illustrated in Figures II-3 through II-7, using 45 

firms for the estimation, except in the case of R&D where 43 firms are included because 

of data limitations. In a bivariate VAR with LP and MPC, an MPC shock leads to 

temporary effects on MPC awards and labor productivity increases during several years 

after the shock. Panels A and B of Figure II-3 depict results of including two and three 

lags, while Panel C presents impulse responses with MPC ordered first in the bivariate 

system. Changing the lag length does not change the overall conclusions. The very long-

lasting response functions indicate a possible expansion of the production possibility 

frontier of the firm over time. When LP is ordered first in the system, MPC awards do not 

increase significantly after a productivity shock, although ordering MPC first in the 
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PVAR does lead to a temporarily significant and positive response. With MPC placed 

first in the PVAR, productivity slowly increases to an insignificantly higher level. 

 The increase in productivity after an MPC award results from immediately 

positive and very persistent responses of both sales and employment (Figures II-4 and II-

5), over time leading to an increase in productivity as a result of the relatively stronger 

response of sales. Although the MPC in itself leads to higher sales since the contract 

payments are included in the sales measures, it is not clear that this would lead to positive 

effects on productivity as employment must be adjusted in order to account for the 

increase in production demands. The impulse response functions indeed indicate that 

MPCs over time can be very beneficial to the contracting firms. 

 With productivity increasing after an MPC shock, we expect this to be realized in 

the stock price. Indeed, Panels A and B of Figure II-6 show that stock prices with 

different orderings of the data respond positively to an MPC shock and the responses 

depict very long-lasting effects. Additionally, there is no evidence that military prime 

contracts are awarded to firms with a high stock price value, as the response of MPC to a 

stock price shock is not statistically different from zero at any horizon. This further 

supports the notion that MPCs are exogenously awarded. If military prime contracts were 

given based on the economic conditions at the firm, we would expect that a stock price 

shock, indicating an economically strong firm, would lead to MPC awards for the given 

firm. We do not find evidence of this. 

 That stock prices slowly increase to a higher level indicates that the future 

positive effects of MPC awards are not capitalized immediately. This may be a result of 

uncertainty about the development of future technology. For comparison, in the most 
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recent military buildup, stock price analysts at CNN Money7 found that a portfolio of 

defense stocks experienced a gain of about 78 percent over the two and a half years 

following the invasion of Iraq in 2003. During the same period, the S&P gained 39 

percent. That the defense stocks outperformed the market also during the Iraqi war is 

consistent with the fact that stock prices increase over several years also in this chapter’s 

analysis. 

 In a bivariate PVAR with R&D and MPC (Figure II-7), the R&D response to an 

MPC shock becomes significantly positive a few years after the shock. In addition, with 

three lags in the PVAR, there is no significant effect of an R&D shock on MPCs. 

However, this response does become significant at the long horizon for some choices of 

lag lengths (not shown). This gives an indication that MPCs to some extent may be 

awarded to firms that have spent resources into developing a new technology. The fact 

that military prime contracts, which themselves include funding for R&D, lead to an 

increase in company-financed R&D is a very interesting result. This finding adds to the 

existing literature by showing how the main response of R&D does not occur 

immediately; allowing for time dynamics, as done in this chapter, is very important. 

 Some of the results in the bivariate analysis may be affected by omitted variable 

bias if too few variables are included in the empirical model. Figures II-8, II-9, and II-10 

therefore display impulse response functions from a trivariate system of equations with 

three lags. The response of R&D to an MPC shock is unchanged when considering a 

trivariate system with R&D, LP, and MPC in Figure II-8, clearly showing how more 

resources are put into research and development when MPCs are awarded. Furthermore, 

                                                 
7 CNN Money.com, November 10, 2005. 
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any positive effects on MPC awards of labor productivity shocks are not present in the 

trivariate analysis. This provides further evidence that military prime contracts are not 

awarded to the firm with highest productivity. Interestingly, an MPC shock in the 

trivariate system in Figure II-8 only leads to insignificant effects on productivity. 

 Panels A and B of Figure II-9 shows the responses from a trivariate system with 

SP, R&D, and MPC with different lag lengths. The third columns of the figures depict 

how an MPC shock continues to lead to positive responses of SP and R&D. Additionally, 

Figure II-10 reports results from a PVAR with SP, LP, and MPC, using two (Panel A) 

and three (Panel B) lags. Here, a military prime contract shock leads to positive responses 

of both SP and LP, as was the case in the bivariate analyses. Although this chapter 

chooses to order SP first in the trivariate system, the result is robust to ordering SP last. 

 This section has shown that stock prices, R&D, and in most cases productivity 

increase significantly following a military prime contract award. Furthermore, the 

analysis supports the assumption that MPCs are not distributed based on the economic 

conditions at the firm. However, there is some evidence that firms with increased 

spending on R&D tend to receive a higher number of contracts a few years after the R&D 

expense when new technologies have become productive. 

II.F. Patenting 

 In 1980 President Carter approved the Bayh-Dole University and Small Business 

Patent Procedures Act (35 USC §§200-211). This implied a change in profitability of 

inventions from defense contracts. Before 1980, the rights to an invention made with 

federal funding belonged to the U.S. government. In 1980, it became possible for 



 

 

137

universities and small businesses to retain title to inventions that were funded under 

federal R&D contracts, assuming that the federal government is granted a non-exclusive, 

non-transferable license to practice the given invention. However, most firms in the 

sample in this analysis are large publicly traded firms. We therefore choose to split the 

sample in 1984 after President Reagan, in 1983, extended the policy to include all 

contractors, regardless of size. 

 This change in patent policy increased the incentives to invent and innovate based 

on defense contracts as inventions originating from these contracts became profitable 

through the option of collecting royalties. It is very likely that patenting at the firm level 

for these contractors changed substantially and inventive activity increased because of 

this policy change. To take this issue into account, this chapter estimates the effect of 

MPC awards on the number of patent applications in the two sub-periods of the sample. 

 The number of patents per firm in any given year varies considerably across 

firms. Table II-3 lists the number of average annual patents for the selection of firms in 

the patent sample. The average number of annual patent applications is higher in the post-

1984 period, compared to the earlier period. However, a few of the technology firms are 

very important in explaining this difference: Hewlett-Packard, IBM, Motorola, and Texas 

Instruments all experienced a big increase in patenting between the two periods. It is 

therefore not clear that the change in patent policy is important for the full sample of 

firms. 

 It should be noted that the total annual number of U.S. patent applications started 

to increase in the mid-1980s. However, Kortum and Lerner (1998) have examined this 

issue and find that the surge in patenting was not specific to U.S. patent law changes. We 
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can therefore contribute this change to an increase in overall U.S. scientific discovery. 

The finding of an increase in patenting for four of the technology companies confirms 

this result. Table II-3 also displays the annual average number of patent applications for 

the selection of companies, when we exclude the seven technology companies8 that rely 

heavily on the development of electronics. Indeed, the increase in the rate of patenting 

between the two sub-sample periods is smaller when the technology firms are excluded. 

This indicates that the change in patenting primarily is a result of a surge in the rate of 

invention and that the patent policy change did not have a significant impact on the rate 

of patenting at the firms in this chapter. This finding is consistent with the notion that the 

surge in patenting starting in the mid-1980s was related to the technological inventions of 

the Information Technology era. 

 If the overall increase in patenting after 1984 is unrelated to the patent policy 

change but is correlated with a surge in the rate of technological discovery, then it is of 

interest to examine the patent response functions also over the full sample period. In 

addition to the two sub-sample periods, the chapter therefore analyzes this scenario. Of 

the companies in the sample that are included in the NBER patent database and can be 

matched to the Compustat database, 6 companies have very few patent applications and 

have years with no patent applications. These defense contractors have been deleted from 

the sample, leaving the 1969-1993 patent analysis with 39 firms when examining the full 

sample period. The response functions from the different sample periods are illustrated in 

                                                 
8 AT&T, Computer Science Corp, Hewlett-Packard, IBM, ITT Industries, Motorola, and Texas 
Instruments. Not all of these companies experienced an increase in patenting. However, all seven are 
excluded for consistency throughout this chapter. 
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Figure II-11. Two lags are included in the analysis when considering a shorter than full 

sample period. 

 First consider the period from 1969-1983 before the Bayh-Dole Act had relevance 

for the selection of firms. Panel A of Figure II-11 illustrates how the rate of patenting 

increases insignificantly after an initial insignificant decrease. However, when 

considering the 1984-1993 period in Figure II-11, Panel B, patents start to increase right 

after the MPC shock, and for some lag lengths this result is significant (not shown). 

Similar results are seen when considering the full sample period from 1969-1993 in 

Figure II-11, Panel C. With the longer time-dimension in this panel, the figure displays a 

long-lasting significant response of patents to an MPC shock. 

 In Panels B and C of Figure II-11 there is some evidence that a patent shock 

results in MPC awards a few years after the shock. Importantly, the results from the 

patent analysis correspond to the results from the R&D analysis that an MPC shock leads 

to the development of new technology, although the evidence is strongest for the post-

1984 period. The fact that both company-financed R&D and firm level patents increase in 

response to an MPC shock is evidence that military spending not only leads to new 

technology through federal funding but also results in an increase in the amount of 

private resources made available to discovery and innovation. 

 The firms in the sample that rely mainly on the development of new technology 

may be very important in explaining the results from the patent analysis. We therefore 

perform the analysis using the full time series but excluding the technology firms. The 

results from a bivariate PVAR with the variables PAT and MPC for the remaining firms 

are depicted in Figure II-12. The results are robust to leaving out the technology firms. 
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 Additionally, Figures II-13 and II-14 display the impulse response functions from 

trivariate PVARs with PAT, LP, and MPC and with SP, PAT, and MPC, respectively. 

The results from the bivariate patent analysis remain in the trivariate systems. However, 

as was the case with the trivariate R&D analysis, the positive response of labor 

productivity to an MPC shock disappears when a technology variable is included. In 

addition, stock prices increase insignificantly over time after a military prime contract 

award. Furthermore, this chapter finds that productivity responds significantly positively 

to a patent shock, indicating that firms with newer technology are more productive. This 

result corresponds to the post-WWII findings of Christiansen (2008). 

 Figure II-15 depicts the results form a PVAR with R&D, PAT, and MPC 

included. Response functions with both two and three lags are depicted. The impulse 

response functions confirm the results form the bivariate analyses with R&D and patents, 

respectively. That is, a military prime contract award leads to the development of new 

technology. In Panel B of Figure II-15 (with three lags), the R&D and PAT responses to 

an MPC shock are insignificantly positive. However, if two lags are included, the 

response of PAT does become significant. Furthermore, the trivariate system supports the 

information inherent in the R&D and patent data: A shock to R&D leads to a 

significantly positive response of patent applications. 

II.G. Examination of Subgroups 

 As evidenced in Table II-1, the military prime contractors specialize in very 

different areas. This section examines if the effect of a military prime contract award 

differs between different types of companies. 
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II.G.1 Oil Companies 

 The sample of companies includes six companies whose main business is in the 

oil industry. These companies may largely be affected by periods of oil crises when other 

businesses were facing increasing costs. It is likely that these companies are important for 

the results. As a robustness check, this chapter therefore performed the analysis, 

excluding these six companies. The resulting impulse response functions are robust to 

leaving out these companies, and the impulse response functions are therefore not 

reported. 

II.G.2 Technology Firms 

 Although the firms in the present analysis all are large military prime contractors, 

several of these have a large part of their businesses outside the defense industry. Besides 

the oil companies as mentioned above, the sample also includes companies in the fields 

of technology and communication. The analysis also tried excluding these firms from the 

analysis. Leaving out seven technology companies9 did not change the conclusions. 

Furthermore, the importance for the results of the AT&T breakup, effective 1984, has 

been examined by re-estimating the impulse response functions, only leaving out AT&T 

from the sample of companies. The overall results were robust to this change. 

II.G.3 Traditional Defense Conglomerates 

 This chapter also tried only including the companies that are traditionally labeled 

as large defense conglomerates. This excludes companies with focus on subjects such as 

                                                 
9 AT&T, Computer Science Corp, Hewlett-Packard, IBM, ITT Industries, Motorola, and Texas 
Instruments. 
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oil, technology, communication, and electricity. The impulse response functions from a 

bivariate PVAR including only defense conglomerates in the sample10 continue to show a 

positive response of labor productivity to an MPC shock. However, with the small 

sample size, these impulse response functions are insignificant for some lag lengths. 

Furthermore, for this selection of companies there is no evidence that a productivity 

shock leads to the award of MPCs, indicating that firm productivity is not the 

determining factor when MPCs are being awarded. The response of R&D to an MPC 

shock is very significant with this selection of companies, independently of the ordering 

of the two variables. In addition, patents continue to respond significantly positively. 

II.G.4 Sample Length 

 The analysis so far has contained observations during the period between 1969 

and 1993. However, the Carter-Reagan buildup did not start until the late 1970s. 

Therefore, this chapter tried restricting the sample period by changing the sample length. 

The overall results from using observations only between 1974 and 1991, between 1971 

and 1988, and between 1977 and 1993 were unchanged and are therefore not reported. 

II.H. Conclusion 

 This chapter of the dissertation has argued that military prime contracts are not 

awarded at the firm level based on the level of productivity at any given firm. Using data 

on military prime contract awards at the firm level, together with bivariate panel vector 

autoregressions, this chapter found evidence that firm productivity increases over time in 

                                                 
10 This reduces the sample size to 22 companies. 
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response to a military prime contract award. This happens because of positive responses 

of both sales and employment with sales showing the strongest response. 

 Company-sponsored research and development increases after a military prime 

contract shock, indicating that defense contractors supplement federally funded research 

with own financing. Thereby, military prime contracts lead to the development of new 

technology. In support of this finding, the results showed that stock prices increase 

because of a military prime contract shock. Additionally, this fact is evidenced by the 

positive responses of patent applications to a military prime contract shock. Furthermore, 

most results remain significant when including a third variable in the panel vector 

autoregression. 

 Overall, this chapter concludes that military spending leads to the development of 

new technology. Thereby, positive effects on productivity can arise also at the aggregate 

level in the long term. If the new technologies are profitable, an implication for the 

neoclassical model is that the labor demand schedule is affected by military spending, 

leading to comovement of output, hours, and the real wage. 
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II.I. Tables and Figures 

Table II-1: Companies included in the Full Sample 

Company Name Primary Output: COMPUSTAT 

ALLIEDSIGNAL (now Honeywell) AIRCRAFT PARTS, AUX EQ, NEC 

AMERADA HESS CORP PETROLEUM REFINING 

AMOCO CORP PETROLEUM REFINING 

AT&T TELECOMUNICATIONS 

ATLANTIC RICHFIELD CO PETROLEUM REFINING 

AUTOMATION INDUSTRIES INC ENGR,ACC,RESH,MGMT,REL SVCS 

BENDIX CORP MOTOR VEHICLE PART,ACCESSORY 

BOEING CO AIRCRAFT 

CHEVRON CORP PETROLEUM REFINING 

COMPUTER SCIENCES CORP CMP PROGRAMMING,DATA PROCESS 

EATON CORP MOTOR VEHICLE PART,ACCESSORY 

EMERSON ELECTRIC CO ELECTR, OTH ELEC EQ, EX CMP 

E-SYSTEMS INC SRCH,DET,NAV,GUID,AERO SYS 

EXXON MOBIL CORP PETROLEUM REFINING 

FMC CORP CHEMICALS & ALLIED PRODS 

FORD MOTOR CO MOTOR VEHICLES & CAR BODIES 

GENCORP INC GUIDED MISSILES & SPACE VEHC 

GENERAL DYNAMICS CORP SHIP & BOAT BLDG & REPAIRING 

GENERAL ELECTRIC CO CONGLOMERATES 

GENERAL MOTORS CORP MOTOR VEHICLES & CAR BODIES 

GRUMMAN CORP AIRCRAFT 

GTE CORP PHONE COMM EX RADIOTELEPHONE 

HARRIS CORP SRCH,DET,NAV,GUID,AERO SYS 

HERCULES INC MISC CHEMICAL PRODUCTS 

Note: This table is continued on the next page. 
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Table II-1 (continued): Companies included in the Full Sample, continued from previous page 

Company Name Primary Output: COMPUSTAT 

HEWLETT-PACKARD CO COMPUTER & OFFICE EQUIPMENT 

HONEYWELL INC (pre 1999) AUTOMATIC REGULATNG CONTROLS 

INTL BUSINESS MACHINES CORP CMP PROGRAMMING,DATA PROCESS 

ITT INDUSTRIES INC PUMPS AND PUMPING EQUIPMENT 

LEAR SIEGLER INC SRCH,DET,NAV,GUID,AERO SYS 

LITTON INDUSTRIES INC SHIP & BOAT BLDG & REPAIRING 

LOCKHEED MARTIN CORP GUIDED MISSILES & SPACE VEHC 

LORAL CORP SRCH,DET,NAV,GUID,AERO SYS 

LTV CORP STEEL WORKS & BLAST FURNACES 

MARTIN MARIETTA CORP GUIDED MISSILES & SPACE VEHC 

MCDONNELL DOUGLAS CORP AIRCRAFT 

MOBIL CORP PETROLEUM REFINING 

MOTOROLA INC RADIO,TV BROADCAST, COMM EQ 

NORTHROP GRUMMAN CORP SRCH,DET,NAV,GUID,AERO SYS 

RAYTHEON CO SRCH,DET,NAV,GUID,AERO SYS 

ROCKWELL AUTOMATION ELECTRICAL INDL APPARATUS 

TEXAS INSTRUMENTS INC SEMICONDUCTOR,RELATED DEVICE 

TEXTRON INC AIRCRAFT 

TODD SHIPYARDS CORP SHIP & BOAT BLDG & REPAIRING 

TRW INC MOTOR VEHICLE PART,ACCESSORY 

UNITED TECHNOLOGIES CORP AIRCRAFT AND PARTS 
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Table II-2: Competitiveness of Military Prime Contract Awards, 1998-2003 

Panel A. Type of Contracts Awarded, % 

 Fixed Price Cost-Plus Time and 
Materials Other No 

Information 

Lockheed Martin 46.77 49.68 2.43 0.91 0.21 

Boeing 70.25 27.42 2.08 0.19 0.06 

Raytheon Co 57.94 37.53 2.98 1.21 0.35 

Northrop Grumman 49.55 42.48 2.13 2.18 3.66 

General Dynamics 60.02 38.87 0.44 0.44 0.24 

United Technologies 77.25 22.14 0.36 0.25 0 

General Electric 87.82 10.46 0.34 0.45 0.93 

TRW Inc 23.24 70.86 2.45 0.44 3.01 

Honeywell Inc-
AlliedSignal 72.44 21.52 2.69 3.02 0.34 

Textron 47.77 50.97 0.91 0.27 0.08 

Litton 55.96 35.73 2.11 1.62 4.58 

IBM 42.42 8.6 12.33 3.31 33.34 

GTE Corporation 61.36 33.04 3.21 1.3 1.09 

Source: Center for Public Integrity, “Outsourcing the Pentagon”. 
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Table II-2 (continued): Competition of Military Prime Contract Awards, 1998-2003 

Panel B. Competition: How Contractors Won the Contracts, % 
B1. Competition categories 

 Full and 
Open 

Not Full 
and Open Set-Aside Architect

-Engr Other No 
Information 

Lockheed Martin 24.95 74.11 0.03 0.00 0.56 0.35 

Boeing 39.91 59.55 0.01 0.05 0.34 0.14 

Raytheon Co 31.19 66.52 0.02 0.01 1.38 0.88 

Northrop Grumman 33.31 59.03 0.08 0.01 1.5 6.07 

General Dynamics 30.1 69.21 0.02 0.01 0.29 0.38 

United Technologies 2.67 95.28 0 0 1.69 0.36 

General Electric 8.77 88.44 0.17  1.09 1.53 

TRW Inc 70.37 24.44 0.02 0 1.85 3.33 

Honeywell Inc-
AlliedSignal 30.62 62.5 0.02 0.02 4.08 2.77 

Textron 4.67 94.62 0.05  0.36 0.3 

Litton 37.7 55.53 0.02  1.18 5.57 

IBM 34.86 15.5   2.06 47.57 

GTE Corporation 70.72 21.35 0.2  5.37 2.37 

Full and open competition generally indicates that the contracts went out to competitive bid. Not full and 
open generally don't go out to bid. Set-aside contracts are competitive, but only certified small businesses 
can bid on them. Most of the contracts with no information were awarded on the "federal schedule." 
Contractors pre-qualify to supply specific goods and services, and federal employees can order them 
without going through the bidding process. 
Source: Center for Public Integrity, “Outsourcing the Pentagon”. 
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Table II-2 (continued): Competition of Military Prime Contract Awards, 1998-2003 

Panel B (continued). Competition: How Contractors Won the Contracts 
B2. Number of Bidders in Contracts Won with Full and Open Competition, % 

 One Two Three to 
Five Six to Ten Eleven or 

More 

Lockheed Martin 8.20 54.81 24.17 11.63 1.18 

Boeing 6.74 77.63 11.89 2.90 0.84 

Raytheon Co 10.95 37.78 34.96 13.59 2.72 

Northrop Grumman 10.45 65.63 17.42 5.32 1.19 

General Dynamics 9.93 40.54 31.77 7.81 9.95 

United Technologies 21.2 27.89 45.23 2.78 2.9 

General Electric 14.61 34.16 30.48 11.3 9.45 

TRW Inc 4.26 57.32 25.15 12.92 0.36 

Honeywell Inc-
AlliedSignal 16.96 30.53 37.19 14.82 0.51 

Textron 20.94 58.36 11.55 6.33 2.81 

Litton 5.89 82.81 7.49 3.76 0.04 

IBM 33.47 14.19 30.6 5.41 16.33 

GTE Corporation 25.52 65.55 6.71 1.09 1.12 

Source: Center for Public Integrity. 
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Table II-3: Average Annual Number of Patents for a Selection of Firms 

Company Name 1969-1983 1984-1993 1969-1993 

ALLIEDSIGNAL (now Honeywell) 150.6 254.6 192.2 

AMERADA HESS CORP 0.1 0.5 0.3 

AMOCO CORP 100.9 139.6 116.4 

AT&T CORP 491.1 446.6 473.3 

ATLANTIC RICHFIELD CO 86.3 104.6 93.6 

AUTOMATION INDUSTRIES INC 9.4   

BENDIX CORP 151.5   

BOEING CO 93.1 146.6 114.5 

CHEVRON CORP 213.1 85.9 162.2 

EATON CORP 106.1 131.7 116.3 

EMERSON ELECTRIC CO 67.3 81.1 72.8 

E-SYSTEMS INC 10.5 10.4 10.5 

EXXON MOBIL CORP 249.8 232.5 242.9 

FMC CORP 124.3 75.2 104.7 

FORD MOTOR CO 168.7 236.1 195.7 

GENCORP INC 44.6 22.0 35.6 

GENERAL DYNAMICS CORP 34.5 29.9 32.6 

GENERAL ELECTRIC CO 821.9 855.9 835.5 

GENERAL MOTORS CORP 491.9 691.0 571.6 

GRUMMAN CORP 14.4 48.9 28.2 

GTE CORP 221.3 199.9 212.7 

HARRIS CORP 44.5 64.7 52.6 

HERCULES INC 52.5 43.0 48.7 

HEWLETT-PACKARD CO 54.3 268.2 139.8 

HONEYWELL INC (pre 1999) 183.4 183.8 183.6 

Note: All Companies Excl. Tech is an average over all companies in the sample, excluding the following: 
AT&T, Computer Science Corp, Hewlett-Packard, IBM, ITT Industries, Motorola, and Texas Instruments. 
This table is continued on the next page. 
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Table II-3 (continued): Average Annual Number of Patents for a Selection of Firms 

Company Name 1969-1983 1984-1993 1969-1993 

INTL BUSINESS MACHINES CORP 517.3 824.1 640.0 

ITT INDUSTRIES INC 34.9 10.8 25.2 

LEAR SIEGLER INC 21.9 9.3 19.8 

LITTON INDUSTRIES INC 52.7 62.6 56.6 

LOCKHEED MARTIN CORP 31.5 30.1 30.9 

LORAL CORP 1.3 12.3 5.7 

LTV CORP 8.9 8.5 8.8 

MARTIN MARIETTA CORP 15.9 38.3 24.9 

MCDONNELL DOUGLAS CORP 43.1 32.5 38.8 

MOBIL CORP 242.1 307.2 278.3 

MOTOROLA INC 197.5 549.7 338.4 

NORTHROP GRUMMAN CORP 15.5 24.4 19.1 

RAYTHEON CO 82.8 70.9 78.0 

ROCKWELL AUTOMATION 177.7 128.1 157.8 

TEXAS INSTRUMENTS INC 166.5 339.2 235.6 

TEXTRON INC 73.5 34.7 58.0 

TRW INC 89.3 85.2 87.6 

UNITED TECHNOLOGIES CORP 171.4 264.3 208.6 

    

ALL COMPANIES 138.0 178.1 153.6 

ALL COMPANIES EXCL. TECH 120.4 138.2 168.2 

Note: All Companies Excl. Tech is an average over all companies in the sample, excluding the following: 
AT&T, Computer Science Corp, Hewlett-Packard, IBM, ITT Industries, Motorola, and Texas Instruments. 
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Figure II-1: Aggregate Military Prime Contract Awards 
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Figure II-2: Firm-Level Real Military Prime Contracts 
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Panel A. LP and MPC Response Functions: LP Ordered First and Two Lags 
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Panel B. LP and MPC Response Functions: LP Ordered First and Three Lags 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. Year 1 is the time of the shock. 
 
Figure II-3: Bivariate PVAR with LP and MPC 
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Panel C. LP and MPC Response Functions: MPC Ordered First and Three Lags 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 45 firms are included. 
 
Figure II-3 (continued): Bivariate PVAR with LP and MPC 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals.3 lags are included. 
 
Figure II-4: Bivariate PVAR with SALE and MPC 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Figure II-5: Bivariate PVAR with EMP and MPC 
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Panel A. MPC and SP Response Functions: MPC Ordered First 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Panel B. MPC and SP Response Functions: SP Ordered First 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Figure II-6: Bivariate PVAR with SP and MPC 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 43 firms are included. 3 lags are included. 
 
Figure II-7: Bivariate PVAR with RD and MPC 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Figure II-8: Trivariate PVAR with RD, LP, and MPC 
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Panel A. Two lags 
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Panel B. Three Lags 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 
 
Figure II-9: Trivariate PVAR with SP, RD, and MPC 
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Panel A. Two Lags 
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Panel B. Three Lags 
 

Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 
 
Figure II-10: Trivariate PVAR with SP, LP, and MPC 

0 2 4 6 8 10
0

20

40
SP Shock;SP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-10

0

10
LP Shock;SP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-10

0

10
MPC Shock;SP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-10

0

10
SP Shock;LP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
0

10

20
LP Shock;LP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-2

0

2
MPC Shock;LP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-20

0

20
SP Shock;MPC Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-20

0

20
LP Shock;MPC Resp

Years

P
er

ce
nt

0 2 4 6 8 10
0

20

40

60
MPC Shock;MPC Resp

Years

P
er

ce
nt



 

 

161

Panel A. Time Period: 1969-1983 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 2 lags are included. 
 
Panel B. Time Period: 1984-1993 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 2 lags are included. 
 
Figure II-11: Bivariate PVAR with PAT and MPC 
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Panel C. Time Period: 1969-1993 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 39 firms are included. 3 lags are included. 
 
Figure II-11 (continued): Bivariate PVAR with PAT and MPC 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 34 firms included. 3 lags are included. Technology firms not included in the sample. 
 
Figure II-12: Bivariate PVAR with PAT and MPC, 1969-1993. Excluding the Technology Firms 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 39 firms are included. 3 lags are included. 
 
Figure II-13: Trivariate PVAR with PAT, LP, and MPC, 1969-1993 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Figure II-14: Trivariate PVAR with SP, PAT, and MPC, 1969-1993 
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Panel A. Two Lags 
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Panel B. Three Lags 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 
 
Figure II-15: Trivariate PVAR with RD, PAT, and MPC, 1969-1993 
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Chapter III  

 

Defense Spending, Productivity, and Technological Change: 

A Regional Approach 
 

Abstract 

 Do changes in military spending stimulate regional technological progress and 

local labor productivity? Military prime contract data together with Gross Domestic 

Product by state, regional employment, and state-level patent statistics are used to explore 

this question. Through panel vector autoregressions with the 50 states and the District of 

Columbia, this chapter of the dissertation finds that output and employment increase 

following a military spending shock, but that labor productivity only increases 

insignificantly. Results from the patent data show that military spending leads to the 

development of new technology. However, the 50 states and the district are not all 

affected similarly. States with relatively few military prime contract dollars per person 

tend to be more positively affected than traditionally large military states. 

 

 
I thank Lone E. Christiansen for co-authoring this chapter. Also, thank you to Valerie Ramey, Garey 
Ramey, Takeo Hoshi, Gordon Hanson, and Giacomo Rondina for their very helpful comments and 
suggestions. 
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III.A. Introduction 

 During the post-WWII period, military spending has experienced large and 

persistent fluctuations with buildups during the Korean War, the Vietnam War, the 

Carter-Reagan period, and most recently after September 11, 2001 and during the Iraqi 

War. The recent buildup has created renewed interest in examining the economic effects 

of defense spending.  Since aggregate economic findings occur together with variations at 

the regional level, this chapter of the dissertation explores the effect of defense spending 

while accounting for regional differences in the demand for defense products.  

 Indeed, there are real differences in the amount of military spending across the 

U.S. states. In particular, at the peak of the Carter-Reagan military buildup, California 

received $27.7 billion in military prime contracts (MPCs) or 4.8% of California GDP, 

while Delaware received only $224 million, accounting for 1.6% of Delaware GDP. 

Moreover, even when taking into account population, California continues to outperform 

most states when considering the dollar amount received because of military prime 

contracting. These spatial differences are important to take into consideration when 

exploring the effects of military spending. 

 This chapter examines the economic consequences of MPCs for labor 

productivity and the development of new technology at the U.S. regional level. Data on 

Gross Domestic Product by State (GDPS) and regional employment are used in 

calculating labor productivity data at the state level. Furthermore, patent data from the 

National Bureau of Economic Research (NBER) patent database can be sorted by the 

state of the first inventor, making it possible to perform an empirical and statistical 
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analysis of the regional effects of military spending and of how MPCs may lead to the 

development of new technology. 

 The time dimension in this chapter is limited to focus on the years around and 

during the Carter-Reagan military buildup. The event is of great interest as military 

spending was driven by factors unrelated to U.S. economic conditions. In fact, it was 

initiated after the Soviet invasion of Afghanistan at the end of 1979. The invasion started 

a burst of military related expenditure that peaked in 1986. During the seven year buildup 

government consumption on national defense increased from 5.7% to 7.4% of GDP.  For 

further details see Ramey and Shapiro (1998) who provide a thorough description of the 

event.  

 Through the use of panel vector autoregressions this chapter finds that a typical 

state experiences an increase in GDPS and employment with only insignificant effects on 

labor productivity. Interestingly, however, the number of patents increase following a 

MPC shock, indicating that new technology is being developed because of the military 

spending. In addition, the chapter finds that states respond differently depending on the 

importance of the defense sector in the given state. Areas that generally receive few 

prime contracts respond positively to an increase in contract awards while large military 

states are less significantly affected. 

 In the following section, Chapter III briefly reviews the related literature on the 

U.S. and state levels of aggregation. Section III.C. describes the data in detail and 

explores the differences in military spending across the 50 states and the District of 

Columbia. Section III.D. describes the panel vector autoregression that is used to 

compute the empirical results, which are presented in Section III.E. Section III.F. 
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examines subgroups of individual states in order to explore how historically small and 

large military states may respond differently to an increase in MPCs. Section III.G. 

concludes. 

III.B. Related Literature 

 Spatial studies have examined the effects of military spending on regional 

economic activity. Given data limitations, these papers have mainly relied on 

employment and personal income data. Of these, Mehay and Solnick (1990) and Hooker 

and Knetter (1997) find positive effects on regional employment after an increase in 

military spending, and Hooker and Knetter argue for the exogeneity of MPCs to regional 

economic activity. Markusen, Hall, Campbell, and Deitrick (1991) and Crump (1989) 

explore the spatial distribution of military expenditures in the United States. 

 Other papers of interest include Blanchard and Katz (1992) and Davis, Loungani, 

and Mahidhara (1997). Blanchard and Katz examine how U.S. states have adjusted after 

being affected by an adverse shock to employment and examine the effect on wages. 

Davis, Loungani, and Mahidhara (1997) examine how various driving forces are 

affecting movements in employment growth and unemployment rates. They consider 

changes in military expenditures and fluctuations in the price of oil and find that 

employment falls and the unemployment rate increases in response to a fall in military 

expenditures. Corresponding to the findings of Blanchard and Katz (1992), they conclude 

that migration of workers between states helps dampen the effect on state unemployment 

rates after regional shocks. Additionally, Cullen and Fishback (2006) examine the 
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implications of government spending for local economic activity during World War II. 

They find that World War II spending did not affect consumption growth rates. 

 At the macroeconomic level, some existing literature has tried to examine the 

effects of military spending on productivity. However, various conclusions have been 

reached. Edelberg, Eichenbaum, and Fisher (1999) and Ramey and Shapiro (1998) find 

that wages and labor productivity may decrease following a military buildup. On the 

contrary, Rotemberg and Woodford (1992) find evidence of positive effects on the real 

wage. More evidence is therefore needed within this area of research. 

 This chapter examines the effect of military spending on regional average labor 

productivity. As the existing literature has found conflicting evidence on the response of 

productivity to government expenditures, this analysis can provide important insight on 

this topic. In addition, by estimating a panel vector autoregression this chapter is able to 

take into account the dynamic interactions between the economic variables across time. 

See also Chapter II of this dissertation for a corresponding analysis using firm-level data 

on large military prime contractors. 

 On the subject of technological development, Acs, Anselin, and Varga (2002) 

have examined patent counts at the regional level in order to measure the production of 

knowledge. They also argue for the validity of patent counts as a measure of innovative 

activity. Indeed, they compare the regional innovation output indicator developed by the 

U.S. Small Business Administration to regional patent data from the United States Patent 

and Trademark Office (USPTO) and find that patents and the innovation indicator 

provide similar results. Their findings therefore support the use of patent counts in studies 

examining technological change. 
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III.C. Data 

 The MPC data are from the Department of Defense Statistical Information 

Analysis Division. These data give information about the dollar value of prime contracts1 

awarded to businesses, federal agencies, and non-profit and educational institutions in the 

50 states and the District of Columbia in fiscal years from 1962 to 2006. These contracts 

cover a variety of products and are not limited to combatant aircraft. Examples of 

products include rechargeable batteries, packing equipment, footwear, food services, jet 

engines, pharmaceutical drugs, and software.2 When an action report is filed for a 

contract, the prime contractor assigns the fiscal obligation to the region that is allocated 

the largest dollar portion of the contract. This region is referred to as the contract’s 

principal place of performance. Using this information, the contracts were sorted at the 

state level. This reveals how states differ in the level of annual contract dollars received. 

Indeed, some states receive on average contracts of more than $5 billion annually, while 

other states have contracts of less than $100 million on average.3  

 It should be mentioned that the MPC data do not take into account subcontracting 

outside the principal place of performance. Therefore, MPC data at the state level as used 

in this chapter may over- or underestimate the actual expenditure level in a given state. 
                                                 
1 The MPC data are Department of Defense Form 350 individual contract action reports in excess of 
$25,000. Contracts in excess of $10,000 were reported prior to 1983. However, these contracts make up a 
very small fraction of the total. Therefore, following Hooker and Knetter (1997), the time inconsistent 
censoring point is ignored. 
2 Other examples include missile components, underwater sound equipment, trash collection, architect 
services, highway maintenance, hotel services, ammunition, data analysis, tires, office space, and air 
conditioning equipment. 
3 In the State of Montana, the years 1974 and 1975 enter in the original data with a negative contract value. 
According to the Department of Defense no state should have a year with negative contracts. The raw data 
indicates a cancelled contract for the firm Kiewit Morrison Fischbach. However, the positive corresponding 
value does not enter in these years. This indicates a misreporting in the data. This chapter therefore used 
linear interpolation for these two years to estimate the actual contract value. As a robustness check, the 
analysis also tried excluding Montana from the estimations. This did not affect the overall results. 
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As such, this is a potential source of measurement error. When included in this study, 

MPC dollar values per state have been converted into real terms by deflating with the 

GDP deflator, and the natural logarithm was then taken of the series. 

 Table III-1 contains the average real dollar values of state-level MPCs in millions 

of dollars, and Figure III-1 plots these numbers in a map after normalizing with state 

population. In Figure III-1, the lightest colored states receive the highest amount of 

contracting dollars per state resident. In particular, California, Washington, and Missouri 

each receive over $747 of contracts per person whereas states such as Arkansas, South 

Carolina, and Oregon have less than $364 military contracting dollars per resident.   

 Figure III-2 uses MPC time series data, aggregated to the eight Bureau of 

Economic Analysis areas4, to confirm that there are substantial differences in the level of 

MPCs across the U.S. regions, and that individually, each of the BEA areas experience 

the Carter-Reagan buildup. The Far West region, which contains California, is clearly the 

leader in attracting contract dollars. In contrast, the Rocky Mountain region receives the 

lowest level of real MPCs. Because of these large differences in MPC values in different 

states, there may be important differences in the economic responses to a MPC shock. 

This topic will therefore be analyzed further in Section III.F.  

 Labor productivity data have been computed by taking the natural logarithm of 

real GDPS per state worker. GDPS is from the BEA and the state employment numbers 

are total non-farm employment from the Bureau of Labor Statistics Current Employment 

Statistics survey. The aggregate GDP deflator was used to convert nominal variables into 

                                                 
4 New England, Mideast, Great Lakes, Plains, Southeast, Southwest, Rocky Mountains, and Far West. 
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real terms. Population estimates, used to scale the MPC data in Figure III-1, are also 

downloaded from the BEA webpage.  

 The state-level patent data are from the NBER patent database. Hall, Jaffe, and 

Trajtenberg (2001) contain a description of this data set. These data contain all utility 

patents granted between 1963 and 1999. This chapter chooses to sort the patent data by 

application year in order to use the date most closely associated with the date of 

invention. Using the application date is superior to using the date of grant since budgetary 

resources fluctuate across time at the USPTO, which leads to budgetary variations in the 

application-grant lag. However, the application year is only reported for patents granted 

since 1967. This thereby limits the time dimension of the analysis. 

 Patents that have been applied for before 1999 but which have not been granted 

until after 1999 are not included in the NBER patent database. This can lead to potential 

truncation problems in the data. According to Hall, Jaffe, and Trajtenberg (2001), in most 

sub-periods, 95% of the patents in the database have been granted within 3 years of the 

application. To account for potential truncation problems, the sample period for this 

analysis is therefore limited to end in 1995. As such, this chapter chooses to focus on the 

sample period 1967-1995 which includes the Carter-Reagan military buildup.  

 Figures III-3 and III-4 plot the patent data. The former shows the cross-state 

variation in utility patents granted as a share of each state’s population. This quintile map 

indicates that areas such as California and Illinois have a high rate of patenting even 

though they have large populations. Other areas such as Alabama and Maine have lower 

than average patenting during the Carter-Reagan buildup. Figure III-4 shows the time 

series variation in patenting across the eight BEA regions. These data show that there are 
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substantial differences in the number of patents across regions. However, each region 

clearly follows an aggregate trend. In the analysis that follows this time series trend will 

be explicitly accounted for by demeaning the data.  

 In the analysis, EMP is used to abbreviate non-farm employment by state, LP 

denotes labor productivity and PAT stands for utility patents granted and sorted by 

application year.  

 The following analysis examines the economic effects of an increase in MPC 

awards at the state level. This is preferred to analyzing military base closures, which may 

not be exogenous to the economic conditions at the state level. On the contrary, several 

papers have argued that the allocation of MPC awards at the state level of spatial 

aggregation is uncorrelated with regional economic activity. Mayer (1991), Blanchard 

and Katz (1992), and Hooker and Knetter (1997) argue that state procurement spending is 

not distributed based on the local economic conditions. Mayer (1991) concludes on the 

politics of distribution of defense contracts by the Congress that “There is little 

systematic evidence that members vote against their policy preferences on weapon 

programs because of local economic impact; the Pentagon does not, indeed cannot, 

distribute defense contracts (as opposed to bases) for political purposes.”5 Furthermore, 

Hooker and Knetter (1997) perform Granger causality tests and find evidence supporting 

the exogeneity hypothesis. 

                                                 
5 Mayer (1991) page 210. 
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III.D. Methodology 

 The estimated system is a balanced panel vector autoregression (PVAR) with p 

lags and m variables. The system of equations can be written as follows. 
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wnt is an m × 1 vector of variables for state n at time t. Φl is an m × m matrix of 

coefficients and c is a constant term. λt is a constant term that is common across states 

but varies across time. This variable takes into account that all states may be influenced 

by aggregate macroeconomic factors that vary over the business cycle. αn is a state-

specific effect, which is constant across time but varies across regions. This allows for 

individual effects that influence the states differentially. Lastly, εnt is a vector of errors. 

The variance-covariance matrix Ω is common for all states across time, corresponding to 

the assumption of homogeneity across regions. Both αn and εnt have zero means and are 

independent among themselves and with each other. 

 To estimate the system, we remove the aggregate time effect and the constant 

term by subtracting the mean across states from all observations. This yields the 

following equation: 
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Let ynt = wnt - w•t, cn = •−ααn , and unt = tnt •− εε , then the equation can be written as 
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 The chapter estimates this system by OLS. In general, under the assumption of a 

fixed T and N → ∞, the OLS estimator is inconsistent. Under this assumption, the first 

difference of the system can be estimated by GMM with Anderson-Hsiao (or Arellano 

and Bond) instruments. However, if we assume big T then the model can be consistently 

estimated by OLS. With a sample length of 29 time periods, T is assumed sufficiently 

large to not cause problems with OLS inconsistency or with narrow standard error bands 

as discussed in Cao and Sun (2006). As such, the system of equations is estimated with 

50 states and the District of Columbia and observations from 1967 to 1995, adding up to 

a total of 1479 observations.  

 In order to estimate a panel vector autoregression, the appropriate lag length must 

be chosen. Some contracts last two or three years and including only one lag in the 

regressions may therefore introduce omitted variable bias. Therefore, the benchmark 

estimations include three lags. However, the impulse response functions are generally 

robust to changing the lag length, and many results are shown also when including only 

two lags. 

 To estimate the impulse response functions, an orthogonal shock must be 

identified. This is obtained through a short-run Cholesky decomposition. The recursive 

ordering with the MPC variable placed last in the ordering allows changes in MPCs of 

each region to be affected by contemporaneous changes in economic and technological 

indicators such as GDPS, EMP, or the technological advances made in the given area. 

Standard errors are estimated by Monte Carlo with 2000 simulations. 
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III.E. Empirical Results 

 This chapter of the dissertation now presents impulse response functions from 

bivariate PVARs. The horizontal axis of each response function corresponds to the 

forecast horizon in years, with year 1 denoting the time of the shock. The responses are 

depicted together with 90 percent confidence intervals. 

III.E.1 Bivariate Panel Vector Autoregressions 

 Figure III-5 shows that a MPC shock leads to a significant and long lasting 

increase in real GDPS a few years after the shock. This corresponds to the findings of 

Blanchard and Perotti (2002) and Ramey and Shapiro (1998) who at the aggregate 

macroeconomic level find that output is positively affected by a shock to government 

defense spending. From Figure III-5, it can also be seen that an increase in RGDPS only 

has a small positive effect on MPC awards after several years. This indicates that MPCs 

are not primarily awarded to states with good economic conditions. Specifically, there is 

no evidence of MPCs being awarded to regions with low economic output in order to 

stimulate that particular region. This result thereby confirms existing findings in the 

literature that MPCs are not allocated based on state economic activity. 

 The response of EMP to a MPC shock is depicted in Figure III-6. As was the case 

with real GDPS, MPCs lead to a significant increase in employment after four years. This 

increase in employment is consistent with results found by Hooker and Knetter (1997) 

and Davis, Loungani, and Mahidhara (1997). However, the positive effects on both real 

GDPS and EMP are similar in sign and magnitude. As a result, productivity mainly 

responds insignificantly positive to an MPC shock. This is depicted in Figure III-7, where 
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Panel A shows the results with two lags and Panel B displays the three lag response 

functions.6 Though Figure III-6 indicates that MPCs may increase in the long run after an 

increase in EMP, Figure III-7 shows that defense spending is not awarded based on state-

level productivity shocks.  

 In order to examine if MPCs lead to the development of new technology, this 

chapter estimates the system with patent application data as a measure of technological 

progress. When comparing Figure III-1 with Figure III-3 it can be seen that there is no 

clear connection between states with active patenting and those that are awarded large 

MPCs.  There are states, such as Mississippi, that do very little patenting while being 

awarded many MPCs. Others, such as California, are awarded a substantial number of 

contracts and do a great deal of patenting. The correlation between the data used in the 

two figures is 0.19, indicating a positive but small relationship between the time series 

averages.  Since the cross-state variation of prime contracts across the U.S. is relatively 

high, it is of interest to examine states with many or few military contracts separately. 

Therefore, Section III.F. below examines the empirical results when only certain 

subgroups are considered. First, however, the average aggregate results are examined. 

 To estimate the effect on the development of new technology of a military 

expenditure shock, PAT is ordered first in the system, as it is expected to take time to 

develop a new technology. This also allows MPCs to be awarded to areas with 

technologically advanced production. Panels A and B of Figure III-8 depict the results 

from estimating the PVAR with two and three lags, respectively.  Indeed, the chapter 

                                                 
6 Excluding Alaska, Hawaii, and the District of Columbia for the analysis improves the significance of the 
LP results and does not change the overall shape of the response functions.  
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finds that military spending leads to a significant increase in the arrival of new 

inventions, corresponding to the results found in Chapter II at the firm level. 

Furthermore, there is only weak evidence of contract awards being allocated to areas that 

have developed a new technology. Specifically, a patent shock only leads to small 

positive effects on MPC awards at the long horizon and this response is insignificant if 

estimated with two lags. 

 In the mid-1980s, the U.S. experienced a surge in the annual number of patent 

applications. This surge, which can be seen in Figure III-4, could potentially be 

associated with changes in the U.S. patent laws. Specifically, in 1980 the Bayh-Dole Act 

allowed universities and small businesses to retain title to patents on inventions that were 

made because of federally funded research. This was made possible as long as the patent 

holder granted a non-exclusive, non-transferable license to the federal government to 

practice the invention. Furthermore, in 1983 this patent policy change was extended to 

include large businesses. The surge in patenting in the mid-1980s could therefore be a 

result of the change in patent law and of an increase in the incentives to invent and 

innovate. However, Kortum and Lerner (1998) examined this issue. They found that the 

surge in patenting could be interpreted as a surge in overall U.S. scientific development. 

The working hypothesis in this chapter is therefore that the surge in patenting is not a 

result of patent law changes. 

 To account for possible confounding effects of patent policy changes, this chapter 

also estimated the patent impulse responses separately for the pre- and post-1984 periods. 

These response functions are depicted in Panels A and B of Figure III-9. Two lags are 

included because of the shorter sample length. The impulse responses show that the 
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patent law change is not the cause for the increase in patenting after a MPC shock. Both 

in the pre- and post-1984 periods, patents respond significantly positively to an MPC 

shock, and the positive response is longer lasting in the early part of the sample compared 

to the post-1984 results. In addition, Figure III-9 confirms that MPCs are not awarded to 

states based on the development of new technology as the lower left graphs of Panels A 

and B do not show significant responses of MPC awards to a patent shock. 

III.E.2 Trivariate Panel Vector Autoregressions 

 To take into account possible omitted variable bias, the impulse response 

functions were also computed when including three variables in the PVAR. Figure III-10 

displays the responses to an MPC shock in a PVAR with PAT, real GDPS, and MPC. 

When controlling for real GDP, the positive response of PAT to an MPC shock remains 

significant. In addition, the response of real GDPS to an MPC shock is significantly 

positive with long-lasting effects. 

 Panels A and B of Figure III-11 report the results from a PVAR with PAT, EMP, 

and MPC. Panel A reports the results using two lags and Panel B shows the response 

functions using three lags. As was the case in the bivariate systems, an MPC shock leads 

to an increase in both PAT and EMP. However, the significance of the PAT response is 

now somewhat sensitive to the number of lags included in the PVAR. In the case of three 

lags, PAT responds significantly positively immediately after the shock. However, when 

two lags are included, the response tends to increase, but is insignificant at the short-run 

forecast horizon. 
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 The corresponding results from a PVAR with PAT, LP, and MPC are shown in 

Panels A and B of Figure III-12. PAT continues to respond positively and the result is 

robust to changing the lag length. Additionally, as was the case with the bivariate 

systems, the response of LP is insignificantly positive. When three lags are included, the 

lower left response function of Figure III-12 Panel B indicates some evidence that MPC 

awards at the long horizon may be channeled to areas with new, effective technology. 

However, the response is only significant at the long horizon and is not present when the 

PVAR is estimated with two lags. 

III.F. Subgroups of States 

 As seen from Figure III-1, the 51 regions receive very different amounts in MPCs 

per person. Table III-2 organizes the states into quintiles based on the average real prime 

contracts controlling for state population. This grouping method follows Hooker and 

Knetter (1994). It can be seen that the large prime contracting states, such as California 

and Missouri, still remain in the top quintile when their MPC values are normalized by 

population.7  

 Table III-3 provides the average annual real MPC dollar values and standard 

deviations within each quintile. That table illustrates that the average annual contract 

amount per person varies considerably between quintiles. Indeed, quintile 5 receives 

contract amounts that are an order of magnitude larger than the corresponding contract 

awards in quintile 1. Additionally, the variation around the average amount of MPCs per 

person is relatively large, indicating that the panel vector autoregressions should continue 

                                                 
7 The analysis was also preformed excluding Alaska, Hawaii, and the District of Columbia, and the results 
were robust to this change. 
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to include an individual coefficient as there may be some within group variation that 

cannot be accounted for with a single intercept for all states.  

 Figure III-13 through Figure III-16 displays the responses of real GDPS, EMP, 

LP, and PAT to an MPC shock in bivariate PVARs for each quintile. With the smaller 

sample size, some responses now become insignificant. However, important information 

can still be drawn from this analysis. Figure III-13 shows how the 20 states in quintiles 1 

and 2 are positively affected by an MPC shock, while the remaining groups are not 

significantly affected at any horizon. Furthermore, the states in quintiles 1 and 2 tend to 

depict very long-lasting effects. This figure therefore shows that the aggregate effects of 

an increase in military spending, which were found in Figure III-5, mainly occurred 

because of economic consequences for the small military states.  

 Figure III-14 plots how EMP is not significantly affected at any horizon for any of 

the subgroups. This indicates that any effects on labor productivity are mainly a result of 

adjustments in output and not through changes in the number of workers employed. 

However, the response of EMP in quintile 2 does become significant in the long run if 

one, four, or five lags are included in the PVAR (not shown). This supports the finding 

that the economic conditions in states with relatively small amounts of spending per state 

capita may be positively affected by a military shock to a greater extent than large 

military states. However, these results run counter to the findings of Hooker and Knetter 

(1994) who find that small military states experience an insignificant decline in 

unemployment rates after a decrease in military spending. 

 Although output and employment only experience small adjustments, labor 

productivity defined as output per employed worker may be significantly affected. Figure 
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III-15 shows this to be the case. Labor productivity in quintile 1 increases significantly 

shortly after the MPC shock, and quintile 2 increases over time. Surprisingly, the large 

military areas tend to experience only small or negative effects on productivity of a MPC 

award, again clearly indicating how subgroups within the U.S. are affected differently. 

Figure III-16 reports the results from bivariate PAT analyses for the quintiles. Quintiles 1 

and 2 are again positively affected, indicating that new technology is being developed 

because of the prime contracts. Interestingly, the states that experience increased labor 

productivity after an increase in MPCs are also states that develop more new technology. 

For the large prime contracting states the PAT response functions are generally 

insignificant.  

 The results in this section point toward important differences in economic 

responses to increased military spending across the United States. Specifically, it is of 

interest that states that develop a significantly increased amount of new technology, 

evidenced through a significant increase in patenting, also experience a positive effect on 

labor productivity. Together with the result that employment is only insignificantly 

affected, and that the main adjustment therefore happens through positive effects on the 

production of goods, these response functions indicate that the new technology indeed 

has been introduced in the affected states. However, more evidence is needed on this area 

of research. 

 The results found in this chapter of the dissertation help to understand how 

aggregate U.S. economic effects occur because of underlying regional fluctuations. 

Existing studies that have focused on the U.S. as an aggregate have reported different 

economic effects of defense spending. Chapter III has found that not only is output 
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positively affected by military spending, but the average state has also been shown to 

develop more new technology because of defense contracting. This may partly be a result 

of the research and development contracts that are inherent in the aggregate MPC 

numbers. Furthermore, these findings correspond to the results found in Chapter II of this 

dissertation. That chapter showed that large military prime contractors increase company-

contribution to research and development after a MPC award, indicating that new 

technology is being developed. 

III.G. Conclusion 

 This chapter examined the consequences for regional productivity and 

technological progress of an increase in military spending. The data for this study 

covered the Carter-Reagan military buildup, which provided variation in the data series. 

Furthermore, the dollar amount of MPC awards varies considerably across states, as does 

the annual amount of patenting. 

 Using U.S. data on MPC awards, GDPS, employment, and patenting from 1967 to 

1995 for the 50 states and the District of Columbia, the chapter estimated a panel vector 

autoregression. From an analysis with all 50 states and the district, the study found that 

output and employment increase following a MPC shock. However, these positive 

responses are close in magnitude, leading to insignificant effects on state labor 

productivity. The number of patents increases strongly after increased military spending, 

providing evidence that new technology is being developed as a result of the increased 

expenditure. 
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 Next, this chapter divided the states and the district into quintiles in order to 

examine how states with different amounts of prime contracts responded to a military 

spending shock. Interestingly, the analysis found that states with relatively few contract 

dollars per person responded more positively to an expenditure shock than did relatively 

large military states. These results add to the existing literature by showing that U.S. 

macroeconomic effects arise based on state responses that differ across the country. 
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III.H. Tables and Figures 

Table III-1: Average Annual Dollar Value of Real MPC by State 

State Name MPC  State Name MPC 

Alabama 1,578  Montana 130 

Alaska 507  Nebraska 271 

Arizona 2,157  Nevada 163 

Arkansas 473  New Hampshire 556 

California 27,381  New Jersey 3,869 

Colorado 1,809  New Mexico 580 

Connecticut 6,172  New York 10,331 

Delaware 211  North Carolina 1,420 

District of Columbia 1,432  North Dakota 211 

Florida 4,936  Ohio 4,415 

Georgia 2,997  Oklahoma 741 

Hawaii 662  Oregon 290 

Idaho 64  Pennsylvania 4,307 

Illinois 2,030  Rhode Island 455 

Indiana 2,671  South Carolina 666 

Iowa 638  South Dakota 76 

Kansas 1,400  Tennessee 1,362 

Kentucky 505  Texas 10,655 

Louisiana 1,752  Utah 750 

Maine 710  Vermont 214 

Maryland 4,031  Virginia 6,393 

Massachusetts 7,271  Washington 3,339 

Michigan 2,445  West Virginia 211 

Minnesota 2,068  Wisconsin 1,105 

Mississippi 2,003  Wyoming 93 

Missouri 6,487      
Note: MPC denotes the average annual dollar value of military prime contracts from 1967 to 1995 in 
millions of 2000 dollars. 
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Table III-2: Grouping of States 

Quintiles by average real MPC per person 
Idaho Utah 
South Dakota New Jersey 
West Virginia Georgia 
Oregon New York 
Kentucky Colorado 
Montana Kansas 
Nebraska New Hampshire 
Nevada Maine 
Illinois Hawaii 

Quintile 1 

South Carolina 

Quintile 4 

Arizona 
Arkansas Texas 
Wyoming Mississippi 
Iowa Washington 
Wisconsin Maryland 
North Carolina California 
Oklahoma Virginia 
Michigan Alaska 
Tennessee Massachusetts 
North Dakota Missouri 

Quintile 2 
 

Delaware 

Quintile 5 

Connecticut 
Pennsylvania  
Alabama  
Ohio  
Louisiana  
New Mexico  
Vermont  
Rhode Island  
Florida  
Indiana  

Quintile 3 

Minnesota 
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Table III-3: MPC Data by Quintile 

 Average MPC per Person 

Quintile Mean Standard deviation 

1 146 43 

2 263 48 

3 440 45 

4 592 70 

5 1,213 466 

Note: Quintile 1 contains states with the lowest average dollar value of contracts, and quintile 5 contains 
states and the District of Columbia which receive the highest average dollar value of contracts. The large 
standard deviation for average MPC within quintile 5 is a result of the large contract volume in California 
as seen in table 1. 
The left hand columns are normalized by state population, and means and standard deviations are denoted 
in 2000 dollars. 
The right hand columns are not normalized by population, and means and standard deviations are here 
denoted in millions of 2000 dollars. 
 
 

 
Note: The grouping is based on average annual real MPC per person, using data from 1967 to 1995. The 
lowest quintile has one more region than the other four quintiles. 
 
Figure III-1: Regional Military Prime Contract Awards per Person 
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Figure III-2: Real Military Prime Contracts by BEA Region 

 
Note: The grouping is based on average annual number of patents, sorted by application year, per thousand people in the given state or 
district, using data from 1967 to 1995. The lowest quintile has one more region than the other four quintiles 
 
Figure III-3: Average Utility Patents Granted per One Thousand Persons 
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Figure III-4: NBER Utility Patents, sorted by Application Year, organized by the BEA Regions 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. Response is abbreviated with Resp. 
 
Figure III-5: Bivariate PVAR with Real GDPS and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. Response is abbreviated with Resp. 
 
Figure III-6: Bivariate PVAR with EMP and MPC 
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Panel A. LP and MPC: Two Lags 
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Panel B. LP and MPC: Three Lags 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp. 
 
Figure III-7: Bivariate PVAR with LP and MPC 
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Panel A: Two Lags 
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Panel B: Three Lags 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp. 
 
Figure III-8: Bivariate PVAR with PAT and MPC 
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Panel A: 1967-1983, Two Lags 
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Panel B: 1984-1995, Two Lags 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp. 
 
Figure III-9: Bivariate PVAR with PAT and MPC, Split Sample 
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Panel A: Two Lags 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp. 
 
Figure III-10: Trivariate PVAR with PAT, Real GDPS, and MPC 
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Panel B: Three Lags 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp. 
 
Figure III-10 (Continued): Trivariate PVAR with PAT, Real GDPS, and MPC 
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Panel A: Two Lags 

0 2 4 6 8 10
0

5

10

15

20
PAT Shock;PAT Resp

Years

P
er

ce
nt

0 2 4 6 8 10
0

1

2

3
EMP Shock;PAT Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-0.5

0

0.5

1

1.5
MPC Shock;PAT Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-1

0

1

2
PAT Shock;EMP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
0

1

2

3

4
EMP Shock;EMP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-0.5

0

0.5

1
MPC Shock;EMP Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-10

-5

0

5

10
PAT Shock;MPC Resp

Years

P
er

ce
nt

0 2 4 6 8 10
-10

-5

0

5

10

15
EMP Shock;MPC Resp

Years

P
er

ce
nt

0 2 4 6 8 10
0

10

20

30

40
MPC Shock;MPC Resp

Years

P
er

ce
nt

 
Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp 
 
Figure III-11: Trivariate PVAR with PAT, EMP, and MPC 
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Panel B: Three Lags 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp. 
 
Figure III-11 (Continued): Trivariate PVAR with PAT, EMP, and MPC 
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Panel A: Two Lags 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp. 
 
Figure III-12: Trivariate PVAR with PAT, LP, and MPC 
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Panel B: Three Lags 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. Response is abbreviated with Resp. 
 
Figure III-12 (Continued): Trivariate PVAR with PAT, LP, and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. Response is abbreviated with Resp. 
 
Figure III-13: Quintile Bivariate PVARs with Real GDPS and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. Response is abbreviated with Resp. 
 
Figure III-14: Quintile Bivariate PVARs with EMP and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. Response is abbreviated with Resp. 
 
Figure III-15: Quintile Bivariate PVARs with LP and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. Response is abbreviated with Resp. 
 
Figure III-16: Quintile Bivariate PVARs with PAT and MPC 
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