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Article
Inferring equilibrium transition rates from
nonequilibrium protocols
Benjamin Kuznets-Speck1 and David T. Limmer2,3,4,5,*
1Biophysics Graduate Group, University of California, Berkeley, Berkeley, California; 2Chemistry Department, University of California,
Berkeley, Berkeley, California; 3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; 4Material Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California; and 5Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California
ABSTRACT We develop a theory for inferring equilibrium transition rates from trajectories driven by a time-dependent force
using results from stochastic thermodynamics. Applying the Kawasaki relation to approximate the nonequilibrium distribution
function in terms of the equilibrium distribution function and the excess dissipation, we formulate a nonequilibrium transition state
theory to estimate the rate enhancement over the equilibrium rate due to the nonequilibrium protocol. We demonstrate the utility
of our theory in examples of pulling of harmonically trapped particles in one and two dimensions, as well as a semiflexible poly-
mer with a reactive linker in three dimensions. We expect our purely thermodynamic approach will find use in both molecular
simulation and force spectroscopy experiments.
SIGNIFICANCE Biomolecules and molecular machines undergo conformational transitions that to large extent
determine how they function, though model-free estimates of intrinsic transition rates via single-molecule force
experiments and simulations are historically hard to come by. The transition rate theory we develop from stochastic
thermodynamics allows us to generically infer these intrinsic rates with statistics from the distribution of heat dissipation,
which are readily available from force-extension data.
INTRODUCTION

Extracting thermodynamic information from molecular sys-
tems through nonequilibrium processes was made possible
with the revelation of Jarzynski’s equality (1–4). However,
inference of kinetic information, such as the intrinsic rate
of molecular transitions, has remained more elusive (5).
Although useful ways of extracting transition rates from sin-
gle-molecule force data exist, they often rely on fitting to
phenomenological expressions (6) or specifying a low-
dimensional model of the underlying conformational land-
scape (7,8). Such theories also typically assume that the
driving forces are quasi-adiabatic, so that the molecule is
assumed to locally equilibrate with the experimental forces
imposed on it before a transition occurs. Here, we report that
a molecule’s bare equilibrium transition rate can be inferred
from the statistics of the excess heat released during a
nonequilibrium protocol. This result derives from expres-
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sions from stochastic thermodynamics (9) and an extension
of transition state theory into nonequilibrium regimes.

One of the most common methods for extracting rate
information from nonequilibrium experiments and simula-
tions employs Bell’s law (6). Bell’s phenomenological rate
law postulates that the speed of a molecular transition is
accelerated with an applied external force by a factor that
varies exponentially:

klzk0e
blyxy ; (Equation 1)

where kl is the rate in the presence of the external force l, k0
is the equilibrium rate, xy is the distance along the forcing

direction between the reactant state and a putative transition
state, ly is the rupture force at the transition state, and b is
the inverse temperature times Boltzmann’s constant. Evans
and Richie showed that such a form emerges from Kramers’
theory for specific model potentials within a high friction
limit (10). Dudko, Hummer, and Szabo (11) developed alter-
native rate expressions from Kramers’ theory, as well as ex-
pressions for other experimentally observable quantities,
and more recently, they introduced a model-free method
of estimating the force-dependent transition rate using
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statistics from the rupture force distribution (8). Using a
nonequilibrium response relation for reaction rates, (12)
we provide a general perspective on the origin of Bell’s
law. We explore subsequent generalizations in a number
of molecular systems with increasing complexity, and we
study the utility of model-independent rate estimates that
depend only on the statistics of the dissipation, a thermody-
namic quantity that is measurable experimentally.
MATERIALS AND METHODS

To start, we demonstrate how Bell’s law can be understood as a conse-

quence of two distinct approximations, a transition state theory approxima-

tion and a near equilibrium approximation. Within transition state theory,

the rate of a transition between two metastable states is

kl ¼ nplðxyÞ; (Equation 2)

where n is the probability flux through xy and plðxyÞ the probability to reach
a transition state, or dividing surface in phase space, starting from a meta-
stable state (13). This expression is valid for any value of l, but it is an

approximation to the rate because n in principle depends on xy, and errors

associated with this approximation can be minimized with a judicious

choice of dividing surface (14). In equilibrium, the probability to reach a

transition state is given by p0ðxyÞfexp ½ � bFðxyÞ�, where FðxyÞ is the

free energy to reach xy, resulting in the expected Arrhenius temperature

dependence.

Although transition state theory is still applicable to systems away from

equilibrium, (12,15,16) the likelihood of reaching the transition state is not

generally known, rendering it difficult to employ. For a system initially in

equilibrium and acted upon by an external force, the nonequilibrium distri-

bution is encoded in the Kawasaki relation (17–20):

p0ðrÞ ¼ plðrÞ
�
e� bQ

�
l;r
; (Equation 3)

where p0ðrÞ is the initial equilibrium probability of full configuration r,

plðrÞ is the nonequilibrium probability, and the brackets h.il;x denote a
trajectory ensemble average evolved under the driving force l conditioned

on ending at r. The likelihood of the transition state, plðxyÞ, is the margin-

alization of the full configurational probability onto the reaction coordinate.

For any trajectory ending in rupture at time trup, the excess heat dissipated to

the environment, Q, over that from the conservative force is given by

Q
�
trup

� ¼
Z trup

0

dt _rðtÞ$lðr; tÞ; (Equation 4)

which for a single molecule pulling experiment could be inferred from the

force-extension curve.
In general, an applied time-dependent force can change the mechanism

of the transition. Even if the mechanism is conserved, both the height of

the relevant barrier as well as the location of the transition state can be

altered (11). However, if the barrier to transitioning is large, we expect

that the dominant change in the rate under an additional force is due to mod-

ulation of the transition state probability plðxyÞ, leaving the location and

flux through the transition state unchanged. Under these assumptions, we

employ the Kawasaki relationship, Eq. 3, together with transition state the-

ory, Eq. 2, to relate the transition rates in the presence and absence of l,

k0zkl
�
e� bQ

�
l;xy ; (Equation 5)

to the statistics of the dissipated heat. In this limit, the Kawasaki response

relation connects the transition rate amplification and the distribution of
excess heat dissipated to the bath. A similar rate enhancement relation

has been derived from path ensemble techniques (12). Although under

the assumption of a conserved transition state, this is the best estimate of
1660 Biophysical Journal 122, 1659–1664, May 2, 2023
the rate enhancement, converging the exponential average requires signifi-

cant data. The equilibrium rate can be approximated under an assumption of

small applied force with a cumulant expansion. Expanding the logarithm of

the relative rate for small values of the bQ,

ln k0 z ln kl � bhQi þ b2

2

�
dQ2

�
; (Equation 6)

which is our first main result. For simplicity of notation, we drop the

explicit condition on the heat averages. Eqs. 5 and 6 imply that by
measuring the rate of a rare event, as determined by a mean first passage

time kl ¼ 1=htrupi to xy, and accompanying heat statistics in a driven sys-

tem, we can infer the rate of a rare event in thermal equilibrium. These re-

sults can be considered as a nonlinear response theory for the rate, (21) in

which frenetic contributions are neglected (22). Eq. 6 is similar to higher

order corrections to Bell’s law valid for constant applied forces, (23,24)

generalized to arbitrary protocols.

Near equilibrium, bhQi(1, and for slow driving forces, _lz0, the heat

dissipated until crossing the transition state xy is well approximated by

hQil;xyzlyxy, where we have included only terms first order in l and inte-

grated Eq. 4 by parts. Such an approximation is good when the transition re-

mains activated, so the transition path time ismuch shorter than the time over

which lðtÞ varies. Substituting this approximation for the average heat into

Eq. 6 and neglecting higher order heat statistics, we find Bell’s law.
RESULTS

To understand the various rate inference expressions, we
consider a hierarchy of models with increasing complexity.
In each, we apply a simple force ramp, with constant veloc-
ity v so that lfv, and we measure the rate under this
driving protocol, kl/kv, as a mean first passage time to
an absorbing boundary condition. The first model we
consider is a simple overdamped particle trapped in a har-
monic potential in one dimension, r/x. The equation of
motion is

_x ¼ mFðxÞ þ ml þ
ffiffiffiffiffiffi
2D

p
h; (Equation 7)

where themobilitym and diffusivityD satisfy an Einstein rela-
tion bD ¼ m, F is a conservative force, and h is a Gaussian

random variable with hhi ¼ 0 and hhðtÞhðt0Þi ¼ dðt �
t0Þ. The conservative force is F ¼ � akx, and the particle
is pulled with a linear ramp at loading rate v, such that
l ¼ akvt; as depicted in Fig. 1 a. We fix k ¼ xy ¼ b ¼
m ¼ 1 and vary v ¼ f0; ::; 0:5g and a ¼ f8; 10; 12g. Simu-
lations are run from an initial condition at the origin and
stopped upon crossing xy at t ¼ trup, where kv ¼ 1=htrupi.
Time is measured in units of t ¼ k=m. Associated with the
location of the absorbing boundary condition is an increased
potential energy, equal to DUy ¼ akxy2=2. We use a time
step t ¼ 10� 2t and average over 104 trajectories.

In Fig. 1 b, we verify the relationship between the heat
and the argument of the exponential in Bell’s law. Under a
constant velocity force to lowest order in v, Qzkvtrupx

z,
which is plotted against the full expression for Q. As ex-
pected, for small v, in which bhQi(1, both estimates agree.
Note that hQi does not vary linearly with v because trup de-
pends implicitly on loading rate. Fig. 1 c illustrates the
convergence of the equilibrium rate employing different



FIGURE 1 Pulling on a harmonic molecule. (a) A cartoon of the time-

dependent potential, initial barrier height bDUy, and absorbing boundary

condition, xy. (b) The heat dissipated gives Bell’s law in the small loading

rate, long rupture time limit. Dashed curves are Bell’s law, and the solid

curves represent the excess heat for three potential stiffnesses. (c) Estimates

of the equilibrium escape rate for increasing barrier heights and a range of

pulling velocities, each with a typical heat as in (b). To see this figure in co-

lor, go online.
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estimators, for a range of pulling velocities and barrier
heights as hQi/0. The Bell’s law-like rate estimate, cor-
recting the rate with just the mean heat, approaches the
true equilibrium rate ln k0 from below. Within the validity
of transition state theory, this behavior can be understood
as a consequence of Jensen’s inequality, applied to Eq. 5.
Including additional dissipation statistics as in the full
expression in Eq. 5 yields a faster convergence to the equi-
librium rate for all barrier heights considered. Significant
deviations from Eq. 5 occur when the dissipation is compa-
rable to the size of the energy barrier, in which case the bar-
rier is degraded enough for the event to no longer be rare.
The agreement between the full exponential average of
the heat and its second order expansion is a result of the line-
arity of the model studied.

From Bell’s law, methods exist to extract the equilibrium
rate from a forced measurement or simulation. A particu-
larly accurate means of doing this is to perform maximum
likelihood estimation on a known form of the rupture force
distribution (7,25,26),

pRðlzÞ ¼ bkfit0
akv

exp

�
blzxz � kfit0

akvxz
�
ebl

zxz � 1
��
;

(Equation 8)
to extract the equilibrium rate estimate kfit0 and transition
state distance xz. Other state-of-the-art rupture force distri-
butions exist, (27) but maximizing pRðlzÞ over kfit0 and xz

is a common method of inferring k0 from single-molecule
data, and it requires the least fitting parameters. We find
kfit0 from fitting the rupture force distribution is comparable
in accuracy to estimates from Eq. 6. For this system, all es-
timators that employ corrections to Bell’s law are accurate
to within 30% across the full range of pulling speeds
studied.

We now consider a simple model often adopted in force
spectroscopy studies to understand the role of flexible
linkers. Specifically, we consider overdamped motion in
two spatial dimensions,

_r ¼ � mVUðrÞ þ ml þ
ffiffiffiffiffiffi
2D

p
h; (Equation 9)

where r ¼ fq;xg, and q is envisioned as a measured exten-
sion that is coupled to the true molecular extension, x,

through a potential

UðrÞ ¼ DUx2ðx � 2Þ2 þ klðx � qÞ2	2 þ ksr
2
	
2;

(Equation 10)

where DU denotes the height of the barrier in the molecular
coordinate, and kl and ks are stiffnesses associated with the

linker and trap, respectively (28–32). In this simplest multi-
dimensional model of a single-molecule pulling experiment,
the molecule undergoes diffusion in the 2D landscape as
shown in Fig. 2 a. We perform force ramp simulations
with an added force l ¼ kseQvt, parameterized by a pulling
vector eq ¼ fcosðQÞ; sinðQÞg determined by the angle Q
relative to the q axis. The rate of heat dissipation is
computed from l$ _r. We fix b ¼ mq ¼ 1, xy ¼ 1:5,
kl ¼ ks ¼ 5, and bDU ¼ 5 and vary v ¼ f0; ::; 0:5g
and Q. As before, we estimate averages from 10 4 trajec-
tories with an absorbing boundary condition at xy.

We first consider the experimentally relevant case of
Q ¼ 0, where the q direction is slow, mq=mx ¼ 1=20,
the opposite case, when x is slow, being treatable analyti-
cally (33). Note that when Q ¼ 0, the heat is measured
along the q direction only and is therefore experimentally
accessible. Under these conditions, shown in Fig. 2 b, we
observe that similar to the harmonic system, for small
loading rates the dissipative second-cumulant estimate of
Eq. 6 converges faster to the exact equilibrium rate ln k0
than either the bare driven rate or ln k0zln kv � bhQi as
hQi/0. As before, the estimate from the mean dissipation
converges from below; however in this case the inclusion of
the second cumulant results in convergence from above. The
fit from the rupture force distribution is found to perform
better than Eq. 6 but is comparable to the exponential
average from Eq. 5, even for higher v. This is a consequence
of the nonlinear system considered in this example, where
the non-Gaussian heat statistics manifest an enhanced vari-
ance and nonvanishing higher order cumulants. Estimates
Biophysical Journal 122, 1659–1664, May 2, 2023 1661



FIGURE 2 Protocol dependence. (a) The potential energy surface in the

molecular x and observed q coordinates with absorbing boundary placed at

xy ¼ 1:5. (b) Rate estimates labeled as in Fig. 1 c. (c) Modulation of the

nonequilibrium rate with pulling velocity and angle relative to the q axis

where the reference rate is taken as pulling along the q direction. (d) Mod-

ulation of the dissipated heat with pulling velocity and angle relative to the

q axis labeled as in (c) and reference analogously. To see this figure in color,

go online.
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from both Eqs. 5 and 8 provide accuracies within 5% across
the full range of pulling velocities, as pulling orthogonally
to x does not degrade the barrier, allowing for transition state
theory to remain accurate.

In order to understand the protocol dependence of our rate
inference, we now imagine that both pulling directions are
accessible. Although this is not typically experimentally
practical, such a study provides insight into the convergence
properties of the estimators. We consider the case mq= mx ¼
1 and vary Q and v in Fig. 2 c and d. As expected, pulling
along coordinate x, Q ¼ 90o, results in a faster process
relative to Q ¼ 0o, and one that dissipates less heat as
quantified by DhQiQ ¼ hQiQ � hQi0. The rate within
the driven dynamics is maximized near Q ¼ 60o, which
is in reasonable agreement with the optimal transition state
predicted by multidimensional transition state theory (34).
For small v, near equilibrium, the dissipated heat approaches
zero independent of Q as expected for a quasi-reversible
process. These results suggest that in systems with multiple
spatial dimensions, pulling along any direction may be suf-
ficient to estimate k0, but geometries that minimize the heat
until rupture may lead to faster convergence of Eq. 5 and
Eq. 6.

As an example of a nonlinear many-particle system, we
consider stretching a semiflexible polymer with reactive
ends (35) that attract each other with a strong, short-ranged
1662 Biophysical Journal 122, 1659–1664, May 2, 2023
potential. The configuration of the polymer consists of 3N
dimensions, r ¼ fr1;.; rNg, and it evolves with under-
damped Langevin dynamics

m€ri ¼ � m� 1 _ri � ViUðrÞ þ l þ m� 1
ffiffiffiffiffiffi
2D

p
hi;

(Equation 11)

where m is the mass of a monomer. The monomers interact
through a potential that consists of UðrÞ ¼ UbðrÞþ

UaðrÞ þ UnbðrÞ; where UbðrÞ is a harmonic bond potential
between adjacent monomers,

UbðrÞ ¼ kb

2

XN� 1

i ¼ 1

ðriþ 1 � riÞ2; (Equation 12)

with stiffness kb, and UaðrÞ is a harmonic angular potential
that penalizes bending,
UaðrÞ ¼ ka

2

XN� 1

i ¼ 2



riþ 1;i$ri;i� 1

riþ 1;iri;i� 1

� 1

�2

; (Equation 13)

where ri;i� 1 ¼ ri � ri� 1 is the vector between two adja-
cent monomers, ri;i� 1 denotes its magnitude, and the poten-

tial has a stiffness ka. The nonbonding potential UnbðrÞ has a
short-ranged form,

UnbðrÞ ¼ 1

2

XN
isj ¼ 1

eij

"
5



s

ri;j

�12

� 6



s

ri;j

�10
#
;

(Equation 14)

where s sets the characteristic size of a monomer and εij the
interaction strength between monomer i and j. In order to

model a reactive linker, we set the two monomers on each
end to interactmore strongly than themonomers in the interior
of the polymer, and the cross interactions, between the linker
and interior monomers, are neglected.We hold the first mono-
mer fixed at the origin, so the end-to-end vector isREE ¼ rN,
andwe pull the two ends apart with l ¼ � kðREE $bx � vtÞ,
where bx is the unit vector in the x direction. Characteristic
snapshots are shown in Fig. 3 a). We adopt a unit system
with b ¼ m ¼ s ¼ 1, with a natural timescale t ¼
1=

ffiffiffiffiffiffiffiffiffiffiffi
bms2

p
. We set m ¼ 5, kb ¼ 110, ka ¼ 4:5, k ¼

5:5, end monomer interactions e1;N ¼ 4:5, and interior
monomer interactions e3;N� 3 ¼ 1:7, N ¼ 50. We employ
a time step of 10 �2t and estimate averages from 500
trajectories.

Under these conditions, the semiflexible polymer permits
two types of conformations: a folded state for small
REE ¼ jREEj; where the linker monomers are bound, and
an unfolded state for large REE; where the linker monomers
do not interact strongly. To differentiate between these two
regimes, we first computed the work to pull REE reversibly,
denoted by bDFðREEÞ. This is shown in Fig. 3 b and evalu-
ated using the Jarzynski equality (1) within a steered Brow-
nian dynamics framework (36). For the free energy
calculation, we employed the same constant v protocols,



FIGURE 3 (a) A semiflexible polymer with reactive ends, highlighted in

red, mechanically unfolded to a large end-to-end distance during a force

ramp experiment. (b) The free energy of the untethered polymer as a func-

tion of the end-to-end distance. The black dashed line denotes the absorbing

boundary condition. (c) Rate estimates, labeled as in Fig 1 c, as a function

of heat. To see this figure in color, go online.
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including all of the simulation data shown in Fig. 3 c. The
free energy exhibits a deep minimum for small end-to-end
distances and a second shallow basin for large end-to-end
distances. Under a small additional load, � kREE, the two
basins are separated by a barrier in the free energy. Using
this biased free energy, we set an absorbing boundary
condition for our pulling calculation to Ry

EE ¼ 2:5s.
We pulled the polymer at loading rates over the interval

v ¼ f0:001 � 0:2gs=t and measured the dissipative heat
and first passage time to Ry

EE. Shown in Fig. 3 c, we find
that convergence to the true equilibrium rate is fastest using
Eq. 6, and as in the 2D model the estimate converges from
above upon the approach to equilibrium. As in both previous
models, the incorporation of the variance of the heat pro-
vides an accurate estimate of the equilibrium over a range
of heats that is comparable to a significant fraction of the
native barrier, in this case as long as bhQi< 3. The first-or-
der estimate converges to the true equilibrium rate slowly
from below, and slow convergence of the exponential
average (37) in Eq. 5 prohibited its application in this
example. Over the range of pulling velocities considered,
if either the first-order estimate or the bare rate were fit
and linearly extrapolated to v ¼ 0, both would overesti-
mate the equilibrium rate by about an order of magnitude.
DISCUSSION

Our results demonstrate an underlying stochastic thermody-
namic basis for Bell’s law under nonequilibrium driving and
a useful means for going beyond it to infer equilibrium tran-
sition rates. Within the context of single-molecule force
ramp experiments, we have demonstrated a robust way to
infer unfolding rates using the statistics of the heat distribu-
tion, conditioned on ending at an absorbing transition state.
Although within transition state theory the full exponential
estimator is most accurate, we suspect that in general its
convergence will be cumbersome (37), and the perturbative
expansions illustrated here will provide an intermediate
means of rate estimation. In the future, this response method
may be used to study the rare kinetics of more detailed pro-
tein models, protein unfolding in optical tweezing and
atomic force microscopy experiments, and other rare molec-
ular transitions that can be sped up by applied force (38–41).
The nonequilibrium thermodynamic framework developed
here works not only with constant velocity force ramps,
but it could be used with more complex protocols. Indeed,
protocols can be optimized to allow for rate inferences,
(42) or could be used as a theoretical framework for under-
standing other approximate methods that use driven
dynamics to infer rates with applied force (43–46).
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