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Abstract 
	

An	Exploration	of	Meso-scale	Plasticity	
	

by	
	

Daniel	Silversmith	
	
	
	

Specialized	 sensorimotor	 systems	 allow	 us	 to	 perform	 dexterous,	 graceful	

movements	 in	 complicated,	 dynamic	 environments.	 One	 remarkable	 feature	 of	 the	

sensorimotor	 system	 is	 its	 ability	 to	 learn	 new	 skills.	 The	 neural	 underpinnings	 of	

sensorimotor	 learning	 have	 traditionally	 been	 studied	 at	 two	 levels:	 low-level	 changes	

between	individual	neurons,	and	high-level	changes	in	behavior.	Directly	connecting	these	

distant	 levels	of	study	is	challenging.	In	this	thesis,	 I	 try	to	bridge	this	gap	by	focusing	on	

plasticity	 at	 an	 intermediate	 level	 that	 considers	 how	 neuron	 populations	 change	 with	

respect	to	each	other,	i.e.,	meso-scale	plasticity.	

In	 Chapter	 2,	 I	 study	 changes	 in	 meso-scale	 connectivity	 in	 response	 to	

neurostimulation.	 A	 large-scale	 optogenetic	 interface	 enabled	 us	 to	 simultaneously	

stimulate	and	record	population	activity	across	primary	somatosensory	(S1)	and	primary	

motor	 (M1)	 cortex.	 We	 tracked	 two	 measures	 of	 network	 connectivity—one	 based	 on	

responses	 to	 focal	 stimulation	 and	 the	 other	 based	 on	 spontaneous	 activity	 patterns.	

Within	 minutes	 of	 stimulation,	 the	 inter-area	 functional	 connectivity	 strengthened.	 At	 a	

finer	scale,	stimulation	led	to	heterogeneous	changes	across	the	network,	which	reflected	

the	 correlations	 introduced	 by	 stimulation-evoked	 activity,	 consistent	 with	 Hebbian	

models	of	 synaptic	plasticity.	This	work	extends	Hebbian	plasticity	models	 to	meso-scale	
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circuits.	

In	Chapter	3,	I	connect	low-level	changes	in	M1	spiking	structure	to	two	meso-scale	

oscillations—spindles	 and	 slow	 oscillations	 (SOs),	 which	 are	 thought	 to	 support	

sensorimotor	 learning	 and	 memory	 consolidation.	 During	 spindles,	 individual	 neurons	

fired	at	a	preferred	phase	of	spindle	cycles	and	neuron	pairs	synchronized	activity	during	

spindle	 peaks,	 signifying	 an	 increase	 in	 pairwise	 correlations	 and	 local	 functional	

connectivity.	We	 found	 a	 direct	 relationship	 between	 the	 temporal	 proximity	 of	 SO	 and	

spindles	 (which	 are	 thought	 to	 interact),	 and	 changes	 to	 the	 distribution	 of	 spike	

correlations;	 closer	 oscillations	 were	 associated	 with	 narrowing	 of	 the	 distribution	 of	

correlations,	 with	 a	 reduction	 in	 low-	 and	 high-correlation	 pairs.	 Such	 narrowing	 is	

consistent	with	exploration	of	novel	neural	 states	 and	may	be	a	key	mechanism	 through	

which	the	interaction	of	meso-scale	oscillations	can	support	sensorimotor	consolidation.	

Throughout	this	thesis	I	advocate	for	studying	and	modeling	neuron	populations.	I	

provide	insight	into	meso-scale	plasticity	through	a	direct	study	of	meso-scale	connectivity	

changes	and	by	relating	the	meso-scale	to	coordinated	spiking	activity.	
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1.1 Synaptic Plasticity 
Historically,	 much	 of	 the	 progress	 that	 has	 been	made	 studying	 connectivity	 and	

learning	 in	the	brain	has	circumvented	the	complexity	of	 the	nervous	system	by	focusing	

on	 changes	 in	 synaptic	 efficacy.	 In	 these	 experiments,	 performed	 in	 slice	 and	 in	 vivo,	

researchers	focused	on	a	single	neuron	or	even	a	single	synapse	at	a	time,	exerting	precise	

control	over	the	structure	of	inputs	and	outputs	at	specific	synapses.	This	approach	muted	

much	 of	 the	 complexity	 that	 arises	 in	 an	 interconnected	 network	 during	 learning	 and	

enabled	 researchers	 to	 model	 precise,	 low-level	 learning	 rules.	 Despite	 their	 apparent	

simplicity,	 the	 plasticity	 rules	 that	 this	 body	 of	 work	 has	 discovered	 reflect	 important	

principles	for	understanding	connectivity	and	learning	at	all	levels	of	the	nervous	system,	

including	the	meso-scale.	With	the	goal	of	extrapolating	 from	synaptic	plasticity	to	meso-

scale	plasticity	 in	mind,	 I	 go	 through	several	 seminal	 synaptic	plasticity	experiments	and	

then	draw	broad	conclusions	from	this	work,	which	I	will	use	as	a	framework	to	investigate	

and	understand	changes	in	meso-scale	connectivity.	

1.1.1 Measuring Synaptic Strength 

Experimentalists	 have	 enlisted	 a	 few	 methods	 to	 determine	 synaptic	 efficacy	 or	

strength.	 The	 most	 widely	 used	 methods	 are	 direct	 measures	 of	 synaptic	 strength	 and	

require	simultaneous	recordings	from	presynaptic	spiking	and	postsynaptic	currents	(e.g.,	

Bi	&	Poo	1998;	Song	et	al.	2000).	These	currents	are	often	measured	in	short	time	windows	

following	presynaptic	 spikes	 (spontaneous	 spikes	 or	 induced	with	 electrical	 stimulation)	

and	can	be	depolarizing	or	hyperpolarizing	depending	on	 the	 synapse	 type.	Postsynaptic	

currents	 have	 consistent	 responses	 (G.	 Q.	 Bi	 &	 Poo,	 1998),	 and	 researchers	 have	
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characterized	 these	 currents	 in	 terms	 of	 their	 size	 and	 timing	 after	 presynaptic	 spikes.	

Often	 the	 maximum	 amplitude	 is	 used	 as	 a	 proxy	 for	 synaptic	 strength,	 but	 slope—a	

measure	that	takes	into	account	both	amplitude	and	timing—is	also	used	as	a	measure	of	

synaptic	strength	(G.	Bi	&	Poo,	2001;	G.	Q.	Bi	&	Poo,	1998;	S.	Song	et	al.,	2000).	

	
Figure	 1.1	 –	 Cartoon	 of	 Synaptic	 Strength	 Measurement.	 After	 presynaptic	 spikes,	 an	 excitatory	
postsynaptic	current	is	characterized.	The	amplitude	or	slope	of	this	current	is	used	as	a	measure	of	synaptic	
strength.	

1.1.2 Synaptic Plasticity Rules 

Cellular	plasticity	has	long	thought	to	be	driven,	in	part,	by	an	associative	process	in	

which	the	consistent	contribution	of	one	neuron	to	another	neuron’s	spiking	leads	to	their	

strengthening	 (Hebb,	 1949).	 This	 type	 of	 associative	 learning	 is	 often	 referred	 to	 as	

Hebbian	 learning	 or	 Hebbian	 plasticity,	 since	 it	 was	 first	 proposed	 by	 Hebb	 in	 1949.	

Scientific	 investigation	 into	 Hebbian	 plasticity	 took	 hold	 several	 decades	 later;	 this	

exploration	initially	discovered	that	short,	 tetanic	bursts	of	stimulation	for	a	 few	minutes	

could	 strengthen	 synapses	 for	 hours	 or	 even	 days	 (T.	 V.	 P.	 Bliss	 &	 Lømo,	 1973).	

Experimentalists	 later	 determined	 that	 tetanic	 input	 stimulation	 induced	 postsynaptic	
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spikes,	and	input-output	spike	pairing	on	the	order	of	~100	ms	was	an	important	factor	in	

changing	 synaptic	 weights	 (Baranyi	 &	 Fehér,	 1981;	 Gustafsson,	 Wigström,	 Abraham,	

Huang,	&	Wigstrom,	1987).	A	few	studies	also	detected	a	consequence	of	spike	order;	these	

studies	 demonstrated	 that	 if	 presynaptic	 inputs	 preceded	 postsynaptic	 outputs	 then	

synapses	were	strengthened,	but	if	presynaptic	inputs	followed	postsynaptic	outputs	then	

synapses	were	weakened	(D	Debanne,	Gähwiler,	&	Thompson,	1994;	Dominique	Debanne,	

Gähwiler,	 &	 Thompson,	 1997;	 Levy	 &	 Steward,	 1983;	 Markram,	 Lübke,	 Frotscher,	 &	

Sakmann,	1997).	This	work	was	later	elaborated	and	characterized	(G.	Q.	Bi	&	Poo,	1998)	

and	ultimately	termed	spike	timing	dependent	plasticity	(STDP;	Song	et	al.	2000;	Bi	&	Poo	

2001).	

	
Figure	1.2	–	Holistic	View	of	Synaptic	Plasticity.	STDP,	along	with	other	factors	contribute	to	modify	the	
strength	of	synapses	across	networks	of	neurons.	
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LTD

STDP Learning Window

Firing Rates

Network

Neuromodulators

HO

HO

NH2

Contributions to Synaptic Strength

Synaptic Plasticity
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However,	 even	at	 single	 synapses,	 STDP	 is	not	 so	 simple.	Current	models	of	STDP	

incorporate	 a	 spike	 timing	 dependent	 learning	 window	 as	 one	 of	 many	 factors	 that	

influence	 synaptic	 plasticity	 (Feldman,	 2012).	 STDP	 learning	 windows	 are	 highly	

dependent	on	other	factors	such	as	firing	rates	(Markram	et	al.,	1997;	Sjöström,	Turrigiano,	

&	Nelson,	2001),	the	location	of	synapses	on	dendrites	(Sjöström	et	al.,	2001),	and	baseline	

synaptic	weights	(G.	Q.	Bi	&	Poo,	1998;	Morrison,	Diesmann,	&	Gerstner,	2008;	Sjöström	et	

al.,	 2001).	 Moreover,	 other	 network	 activity,	 neuromodulators,	 and	 brain	 states,	 all	 of	

which	are	constantly	fluctuating,	are	known	to	modify	STDP	learning	windows	(Cassenaer	

&	Laurent,	2012;	González-Rueda,	Pedrosa,	Feord,	Clopath,	&	Paulsen,	2018;	Markram	et	

al.,	1997;	McNaughton,	Douglas,	&	Goddard,	1978;	Pawlak	&	Kerr,	2008;	Seol	et	al.,	2007;	

Shen,	Flajolet,	Greengard,	&	Surmeier,	2008;	Sjöström	et	al.,	2001).	

1.1.3 Functional Connectivity & Plasticity 

Studying	synaptic	plasticity	has	traditionally	relied	on	fine	control	of	the	inputs	and	

outputs	to	an	individual	neuron	or	even	an	individual	synapse.	This	high	degree	of	control	

has	 enabled	 precise	 estimates	 of	 STDP	 learning	 windows,	 but	 these	 experiments	 are	

limited	in	some	important	ways.	The	main	downside	of	this	paradigm	is	that	maintaining	

control	 of	 a	 synapse	 tends	 to	 be	 difficult	 for	 long	 periods	 of	 time.	 This	makes	 plasticity	

experiments	 challenging,	 especially	 in	 vivo,	 as	 animals	 behave	 and	 learn	 new	 skills.	

Ultimately,	understanding	synaptic	plasticity	is	inconsequential	unless	it	can	be	connected	

to	 learning,	 development,	 and	 overall	 function.	 A	more	 practical	 approach	 is	 to	measure	

functional	connectivity	rather	than	synaptic	strength.	

Functional	 connections	 reflect	 the	 likelihood	 that	 activity	 from	 one	 recording	 site	
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influences	 activity	 at	 another	 recording	 site.	 Importantly,	 functional	 connectivity	 can	 be	

measured	at	different	levels	(e.g.,	connectivity	between	neurons	or	between	brain	regions).	

Focusing	on	the	cellular	level,	the	functional	connectivity	from	‘Neuron	A’	to	‘Neuron	B’	can	

be	defined	as	the	likelihood	that	‘Neuron	B’	spikes	whenever	‘Neuron	A’	has	just	fired.	This	

is	similar	to	the	synaptic	connectivity	between	‘Neuron	A’	and	‘Neuron	B’,	but	there	are	a	

few	 important	 differences	 that	 I	 will	 highlight.	 First,	 instead	 of	 directly	 measuring	 the	

synaptic	strength	via	intracellular	postsynaptic	currents,	functional	connectivity	infers	the	

connection	strength	by	analyzing	the	statistics	of	observed	neural	activity	(activity	can	be	

collected	during	 spontaneous	 sessions,	 responses	 to	 stimuli,	 or	 after	neural	 stimulation).	

Additionally,	the	functional	connectivity	between	‘Neuron	A’	and	‘Neuron	B’	represents	the	

aggregate	connectivity	from	many	synapses	and	can	include	alternative	paths	from	‘Neuron	

A’	to	‘Neuron	B’	(e.g.,	‘Neuron	A’	->	‘Neuron	C’	->	‘Neuron	B’).	

Despite	its	lack	of	precision,	functional	connectivity	has	proven	useful	for	studying	

neuroplasticity.	At	the	level	of	synapses,	we	have	a	clear	model	for	how	changes	in	activity	

should	 lead	 to	changes	 in	 synaptic	 strength	 (see	section	1.2.2	Synaptic	Plasticity	Rules).	A	

few	 studies	 have	 combined	 synaptic	 plasticity	 models	 and	 functional	 connectivity	

measurements	 to	 test	 plasticity	 models	 in	 vivo	 and	 examine	 the	 effect	 of	 functional	

plasticity	 on	 behavior.	 In	 some	 seminal	 work,	 Jackson	 et	 al.,	 used	 closed-loop	 electrical	

stimulation	 to	 induce	 connectivity	 between	 two	 unrelated	 recording	 channels	 on	 a	

multielectrode	array	(Jackson,	Mavoori,	&	Fetz,	2006).	In	this	study,	stimulation	at	one	site	

in	M1	was	triggered	on	the	recorded	spiking	activity	at	another	site	in	M1.	After	hours	of	

repeated	conditioning	stimulation,	they	observed	an	increase	in	the	functional	connectivity	

between	 the	 two	 sites.	 Importantly,	 their	 increased	 functional	 connectivity	 affected	 the	
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tuning	 of	 motor	 output.	 Even	 though	 functional	 connectivity	 does	 not	 necessarily	 imply	

synaptic	 connectivity,	 this	 work	 used	 synaptic	 plasticity	models	 to	 inform	 the	 timing	 of	

stimulation	and	the	changes	in	functional	connectivity	that	they	observed	were	consistent	

with	the	expected	changes	in	synaptic	connectivity.		

Other	 experiments	 have	 complemented	 this	 seminal	 study	 in	 an	 open	 loop	

paradigm,	where	 functional	 connectivity	 between	 two	 sites	was	 increased	 by	 repeatedly	

stimulating	at	the	two	cortical	sites	with	a	consistent	time	lag	(J	M	Rebesco	&	Miller,	2011;	J	

M	 Rebesco,	 Stevenson,	 Kording,	 Solla,	 &	Miller,	 2010).	 Functional	 plasticity	matched	 the	

expected	(unmeasured)	synaptic	plasticity,	and	resulted	in	a	decrease	in	sensory	detection	

thresholds,	further	linking	functional	connectivity	to	behavior.	Both	of	these	experiments,	

and	 subsequent	 ones	 using	 similar	 functional	 plasticity	 paradigms	 (Timothy	 H	 Lucas	 &	

Fetz,	2013;	Nishimura,	Perlmutter,	Eaton,	&	Fetz,	2013;	Seeman,	Mogen,	Fetz,	&	Perlmutter,	

2017),	 relied	 on	 STDP	models	 to	 inform	 the	 timing	of	 conditioning	 stimulation	 and	 then	

used	functional	connectivity	and	behavior	to	measure	neuroplasticity.	

1.2 Sensorimotor Skill Learning 
Neuroplasticity	has	been	the	focus	of	many	experiments	because	it	has	the	potential	

to	 mechanistically	 explain	 how	 animals	 and	 humans	 come	 to	 learn	 and	 adapt	 their	

behavior	 appropriately	 over	 time.	 	 There	 are	 many	 types	 of	 learning	 that	 humans	 and	

animals	are	capable	of	undertaking.	Broadly,	these	types	of	learning	can	be	organized	into	

two	categories:	declarative	 learning	and	procedural	 learning	(Dayan	&	Cohen,	2011;	L.	R.	

Squire	&	Zola,	1996;	Larry	R.	Squire,	2004;	Turner,	Crossley,	&	Ashby,	2017).	Declarative	

learning	 includes	 explicit	 spatial	 and	 episodic	 memory	 tasks	 (likely	 hippocampus-
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dependent),	 whereas	 procedural	 learning	 covers	 tasks	 that	 require	 implicit	 acquisition	

(e.g.,	 sequence	 learning	or	 small	visuomotor	 rotations;	 likely	hippocampus-independent).	

While	neuroplasticity	can	be	studied	across	a	variety	of	learning	tasks,	I	focus	on	plasticity	

during	sensorimotor	skill	learning,	which	has	been	studied	extensively	across	a	wide	range	

of	 species.	Acquiring	 sensorimotor	 skills	 likely	 relies	 on	both	declarative	 and	procedural	

learning	systems	but	may	be	biased	toward	one	or	the	other	at	different	learning	stages.	

One	of	 the	principal	 goals	 of	 the	nervous	 system	 is	 to	 aid	 in	 the	 interaction	of	 an	

organism,	 or	 more	 broadly	 a	 species,	 with	 its	 environment.	 Organisms	 need	 to	 sense	

changes	in	their	environment	and	react	to	those	changes	accurately	and	swiftly	in	order	to	

survive.	 Many	 species	 across	 the	 animal	 kingdom	 (and	 outside	 of	 it)	 have	 accordingly	

evolved	 specialized	 sensorimotor	 systems	 that	 provide	 organisms	 with	 the	 information	

and	capability	to	effectively	interact	with	their	environments	(e.g.,	Sachs	1988;	Lovejoy	et	

al.	2010;	Jones	&	Teeling	2006;	Jon	H.	Kaas	2004).	In	humans,	one	of	the	most	investigated	

sensorimotor	actions	is	the	process	of	using	one’s	hand	to	retrieve	a	nearby	object	(visually	

guided	 reaching	 and	 grasping).	 This	 seemingly	 simple	 motor	 action	 relies	 on	 multiple	

sensory	 systems	 for	 coordinated,	 dexterous	 control	 including	 visual	 feedback	 about	 the	

location	 and	 shape	of	 the	 targeted	object,	 proprioceptive	 information	on	 the	 state	 of	 the	

human	body	(in	particular	the	arm	and	hand),	and	somatosensory	feedback	when	the	hand	

touches	 and	 manipulates	 the	 object	 (for	 a	 review,	 see	 Stone	 &	 Gonzalez	 2015).	 The	

integration	of	different	sources	of	feedback	with	movement	planning	is	crucial	for	behavior	

and	 is	 an	 area	 of	 intense	 study,	 but	 our	 understanding	 of	 the	 neural	 basis	 for	 such	

sensorimotor	integration	is	still	in	its	early	stages.	
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1.2.1  Behavioral Markers of Sensorimotor Skills 

Learning	 is	 often	 task-	 or	 goal-specific,	 but	 can	be	 characterized	 across	 particular	

behaviors	as	general	 improvements	 in	accuracy,	 speed,	and	consistency	(Dayan	&	Cohen,	

2011;	 Papale	 &	 Hooks,	 2018;	 Ramanathan,	 Gulati,	 &	 Ganguly,	 2015).	 The	 overall	 time-

course	 of	 skill	 learning	 is	 relatively	 slow	 with	 task	 performance	 continuing	 to	 improve	

across	multiple	 training	 sessions;	 however,	 initial	 skill	 acquisition	 tends	 to	 be	 fast,	 with	

rapid	performance	gains	immediately	after	introduction	to	the	task.	Later	skill	acquisition,	

on	the	other	hand,	 is	slower,	with	more	modest	performance	gains.	Contributions	to	skill	

learning	can	be	split	 into	online	contributions—within-session,	or	offline	contributions—

across	or	between	training	sessions.	 Importantly,	 the	two	stages	of	skill	 learning,	and	the	

different	online	and	offline	processes	 likely	have	different	neural	bases	 (Papale	&	Hooks,	

2018).	

1.2.2 Sensorimotor Anatomy 

Even	relatively	simple	actions	are	performed	in	the	context	of	a	complex,	dynamic	

environment.	 To	 account	 for	 this	 variability,	 many	 organisms	 have	 developed	 intricate,	

complicated	 sensorimotor	 systems,	 which	 are	 distributed	 across	 a	 large,	 interconnected	

network	of	brain	regions.	In	humans,	a	large	portion	of	cortex	is	involved	in	sensorimotor	

behaviors	 including	 primary	 sensory	 cortex	 (S1),	 higher	 somatosensory	 areas	 (S2),	

primary	 motor	 cortex	 (M1),	 premotor	 cortex,	 higher	 premotor	 areas	 (e.g.,	 the	

supplementary	motor	area	and	cingulate	motor	cortex),	parietal	cortex	such	as	the	parietal	

reach	 region	 (PRR),	 and	 others,	 but	 this	 network	 also	 includes	 important	 subcortical	

regions	 such	 as	 the	 thalamus,	 striatum,	 and	 cerebellum	 (Jon	 H.	 Kaas,	 2004;	 Jon	 H	 Kaas,	
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2004;	Stepniewska,	Preuss,	&	Kaas,	1993).	

	
Figure	 1.3	 -	 Human	 Brain	 with	 some	 Sensorimotor	 Regions	 Highlighted.	 Green	 areas	 are	 nominally	
somatosensory	and	purple	areas	are	nominally	motor.	Red	arrows	reflect	a	high	degree	of	connectivity.	

Given	this	complexity,	the	full	sensorimotor	system	is	incredibly	difficult	to	study;	in	

this	work,	 I	 therefore	 focus	on	a	subset	of	 the	sensorimotor	network—S1	and	M1.	These	

areas	 both	 act	 as	 gatekeepers;	 somatosensory	 input	 primarily	 enters	 cortex	 via	 the	

thalamus	and	then	S1	(E.	G.	Jones	&	Friedman,	1982;	E.	G.	Jones	&	Powell,	1969,	1970;	Jon	H	

Kaas,	 2004),	 whereas	 the	motor	 output	 predominantly	 exits	 cortex	 through	M1	 (Fetz	 &	

Cheney,	1978;	Graziano,	Aflalo,	&	Cooke,	2005;	Jon	H	Kaas,	2004).	M1	and	S1,	like	the	rest	

of	the	sensorimotor	system,	are	highly	interconnected	(Jon	H	Kaas,	2004;	Mao	et	al.,	2011;	

Papale	&	Hooks,	 2018).	Moreover,	 both	 areas	 show	marked	neuroplastic	 changes	during	

motor	 skill	 learning	 (Greenough,	 Larson,	&	Withers,	 1985;	Kleim,	Barbay,	&	Nudo,	1998;	

Nudo,	Milliken,	 Jenkins,	&	Merzenich,	1996;	Papale	&	Hooks,	2018).	Finally,	both	of	 these	

areas	 are	 arranged	 side-by-side	 (Figure	 1.4)	 and	 are	 accessible	 across	 different	 animal	

models	(Figure	1.4).	All	of	these	properties	make	it	feasible	and	worthwhile	to	study	S1	and	

M1.	 Although	 I	 will	 focus	 on	 these	 areas,	 I	 believe	 that	 some	 of	 the	 principles	 of	
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sensorimotor	 connectivity	 and	 plasticity,	 which	 I	 explore	 in	 this	 work,	 provide	 useful	

insight	into	the	broader	sensorimotor	system.	

	
Figure	 1.4	 –	 Brains	 of	 Different	 Mammalian	 Species.	 Primary	 motor	 cortex	 (purple)	 and	 primary	
somatosensory	cortex	(green)	highlighted.	

1.2.3 Representational Plasticity in Sensorimotor Cortex 

Much	of	the	early	work	investigating	changes	 in	sensorimotor	cortex	relied	on	the	

stable	 functional	 relationships	 between	 individual	 neurons	 and	 aspects	 of	 behavior.	

Merzenich,	 and	 others,	 pioneered	 this	 work	 using	 somatosensory	 receptive	 fields	 in	 S1	

(Buonomano	&	Merzenich,	1998;	Clark,	Allard,	Jenkins,	&	Merzenich,	1988;	M	M	Merzenich	

et	 al.,	 1983;	 Michael	 M.	 Merzenich	 et	 al.,	 1984;	 Michael	 M.	 Merzenich,	 Kaas,	 Sur,	 &	 Lin,	

1978;	Michael	M.	Merzenich	&	Jenkins,	1993;	Recanzone,	Merzenich,	&	Dinse,	1992a).	Since	

it	was,	and	still	is,	difficult	to	track	neurons	over	long	periods	of	time,	initial	studies	focused	

on	gross	changes	in	receptive	field	maps	across	the	cortex.	Specifically,	they	focused	on	the	

cortical	 surface	 area	 in	 S1	 that	 responded	 to	 tactile	 stimulation	 at	 the	 periphery.	 For	

example,	they	found	the	areas	of	S1	that	responded	to	each	of	the	digits	on	the	hand.	Then	

they	intervened	by	amputating	a	digit,	cutting	afferent	peripheral	pathways,	or	sewing	two	

digits	 together.	 They	 found	 that	when	 a	 digit	was	 amputated	 or	 afferent	 pathways	were	
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transected,	 the	 neurons	 with	 interfered	 receptive	 fields	 were	 initially	 unresponsive	 but	

over	 time	 responded	 to	 the	 surrounding	 digits.	 When	 digits	 were	 sewed	 together	 they	

found	that	neurons	 that	were	 initially	responsive	 to	one	digit	became	responsive	 to	both	

digits.	 This	work	was	 replicated	 across	 other	 of	 sensory	 systems	 (J	 H	 Kaas	 et	 al.,	 1990;	

Robertson	 &	 Irvine,	 1989)	 and	 provided	 the	 basis	 for	 our	 current	 understanding	 that	

sensorimotor	 representations	 are	 not	 stable	 and	 that	 the	 neural	 modifications	 mirror	

changes	at	the	periphery	or	even	changes	in	behavior.	More	recent	work	has	followed	up	

on	 the	 Merzenich	 studies	 using	 rodent	 models	 and	 whisker	 plucking	 in	 barrel	 cortex	

(rodent	 S1).	 Intriguingly,	 these	 experiments	 demonstrated	 similar	 changes	 in	 cortical	

representation	 (Bender	 et	 al.,	 2006a;	 Feldman,	 2009;	 Li	 et	 al.,	 2009),	 but	 combined	 the	

traditionaly	methods	with	modern	pharmacological	 interventions,	which	allowed	them	to	

discover	that	these	changes	in	cortical	representation	are	STDP-dependent.	

Sensorimotor	 plasticity	 has	 also	 been	 characterized	 by	 analyzing	 changes	 in	

structure	and	spiking	as	animals	learn	sensorimotor	skills.	This	work	has	revealed	a	large	

variety	 of	 changes	 in	M1.	 For	 example,	 during	 skill	 learning,	 studies	 have	 used	 imaging	

techniques	to	find	increases	in	synaptic	growth	that	stabilize	(Xu	et	al.,	2009;	Yang,	Pan,	&	

Gan,	2009),	dynamic	changes	 in	single	neuron	variability	 (Kao,	Doupe,	&	Brainard,	2005;	

Mandelblat-Cerf,	Paz,	&	Vaadia,	2009;	Zacksenhouse	et	al.,	2007),	and	the	emergence	and	

stabilization	 of	 shared	 variability	 across	 neurons	 during	 slow	 skill	 learning	 (Athalye,	

Ganguly,	Costa,	&	Carmena,	2017).	While	learning,	population	measures	show	that	there	is	

an	 increase	 in	 the	proportion	of	shared	variability	across	neurons.	 Intriguingly,	 there	are	

also	meso-scale	markers	of	 skill	 learning.	 In	particular,	 low	 frequency	oscillations	 in	LFP	

have	been	shown	to	increase	in	power	and	stereotypy	across	trials	as	animals	learn	motor	
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tasks	(Ramanathan	et	al.,	2018).	Intriguingly,	neural	stimulation	has	been	shown	to	boost	

low	 frequency	 oscillations	 and	 improve	 task	performance	 in	 animals	 that	 are	 recovering	

from	stroke	(Ramanathan	et	al.,	2018).	

1.3 Defining the Meso-scale 

1.3.1 Recording Methods 

Before	understanding	meso-scale	plasticity,	it	is	necessary	to	define	the	meso-scale	

in	more	detail.	Neural	 activity	 can	be	 recorded	at	different	 spatial	 scales,	 and	 the	 spatial	

resolution	of	the	recording	technology	determines	the	number	of	neurons	that	contribute	

to	each	measurement.	Technologies	such	as	electroencephalography	(EEG)	record	activity	

across	~	6	cm2	of	neural	activity;	in	humans	this	corresponds	to	roughly	100	million	gyral	

neurons	(Schwartz,	Cui,	Weber,	&	Moran,	2006).	At	the	other	end	of	the	spectrum,	patch-

clamp,	whole-cell	 recordings	measure	 electrical	 fluctuations	within	 a	 single	 neuron.	 The	

range	of	common	electrophysiology	recording	methods	is	summarized	in	Figure	1.5,	which	

has	been	adapted	from	(Schwartz	et	al.,	2006).		

	

Figure	1.5	 –	Different	 Spatial	 Scales	 of	 Common	Electrophysiology	Recording	Technologies.	Adapted	
from	(Schwartz	et	al.,	2006)	to	specify	technologies	that	record	at	the	meso-scale	(highlighted	section).	
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The	meso-scale	refers	to	a	midrange	of	neural	populations	of	activity	on	the	scale	of	

organized	neural	populations.	Meso-scale	technologies	maintain	a	higher	spatial	resolution	

than	 that	 of	 EEG,	 and	 a	 lower	 resolution	 than	 that	 of	 extracellular	 single	 or	 multiunit	

recordings,	but	the	exact	cut-offs	have	been	loosely	defined.	For	our	purposes,	I	will	define	

a	 range	 of	 recording	 technologies,	 from	 extracellular	 LFP	 to	 surface-level	 ECoG,	 which	

captures	meso-scale	 activity.	 Importantly,	within	 these	 technologies	 there	 can	be	 a	 large	

degree	 of	 variability,	 particularly	 in	 ECoG	 recordings.	 ECoG	 grids	 that	 are	 used	 clinically	

have	10	mm	spaces	between	electrodes	and	 integrate	 activity	 across	more	neurons	 than	

ECoG	 grids	 that	 are	 used	 for	 research	 use	 electrode	 pitches	 of	 about	 4	 mm	 (Muller,	

Hamilton,	 Edwards,	 Bouchard,	 &	 Chang,	 2016;	 Schwartz	 et	 al.,	 2006).	 These	 different	

spatial	scales	are	all	within	the	range	of	meso-scale	plasticity	but	as	we	learn	more	about	

neural	activity	at	the	meso-scale	we	may	need	to	make	distinctions	between	these	scales	or	

even	the	different	types	of	technologies	that	are	used.	

It	 is	 important	 to	 note	 that	 the	 technologies	 mentioned	 here	 do	 not	 form	 a	

comprehensive	list	of	meso-scale	neural	recording	technologies.	Imaging	modalities	(such	

as	 function	 magnetic	 resonance	 imaging—fMRI	 or	 fiber	 photometry)	 and	 magnetic	

recording	modalities	(such	as	magnetoencephalography–MEG)	measure	population	activity	

at	 comparable	 spatial	 scales	and	can	be	used	 to	 study	meso-scale	plasticity	 (though	 they	

have	 other	 limitations).	 In	 this	work	 I	 focus	 on	 using	 electrophysiology	methods	 due	 to	

their	 high	 temporal	 resolution,	 and	 their	 similarity	 across	 different	 special	 scales.	 These	

features	 enable	 us	 to	 relate	 meso-scale	 findings	 to	 the	 well-studied	 field	 of	 synaptic	

plasticity.		
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1.3.2 Oscillatory Neural Activity 

In	our	discussion	of	synaptic	plasticity	we	have	treated	spikes	as	significant,	discrete	

events	that	influence	plasticity.	Moving	beyond	individual	neurons,	the	aggregated	activity	

across	 neural	 populations	 looks	 very	 different.	 Rather	 than	 discrete	 events,	 we	 record	

continuous	signals;	because	these	signals	are	continuous,	 it	 is	difficult	 to	extract	meaning	

from	them,	but	a	few	standardized	techniques	have	been	developed	to	identify	important	

signals	 from	background	noise.	First,	meso-scale	activity	 is	broken	down	according	 to	 its	

frequency	 content	using	 standard	 signal	 processing	 approaches.	Biological	 signals	 (as	do	

many	other	natural	phenomena)	have	a	stereotypical	noise	profile	(He,	Zempel,	Snyder,	&	

Raichle,	2010;	Miller,	Sorensen,	Ojemann,	&	den	Nijs,	2009;	Voytek	et	al.,	2015),	where	the	

signal	power	drops	with	increasing	frequency;	this	noise	is	often	referred	to	as	one-over-f	

noise,	since	the	spectral	power	can	be	modeled	according	to	the	following	equation:		

!"#$% = 1
!"#$ ! 	

Deviations	 in	 spectral	 content	 from	 this	model	 are	 typically	 used	 to	 identify	 frequencies	

containing	biological	signal.	 Importantly,	 frequency	content	in	a	signal	varies	dynamically	

across	time.	Sustained	epochs	of	increased	power	in	a	specific	frequency	band	are	referred	

to	as	neural	oscillations	and	are	useful	for	neural	markers	that	often	relate	to	other	known	

quantities	such	as	spiking	activity	and	behavior.	

Comparing	oscillations	 to	spiking	activity,	brain	states,	and	behavior	has	yielded	a	

few	 significant	 insights	 into	 the	 role	 of	meso-scale	 activity.	 First,	 oscillations	 in	 different	

frequency	 bands	 operate	 at	 different	 spatial	 gradations;	 lower	 frequency	 oscillations	 are	

far-reaching	whereas	 higher	 frequency	 oscillations	 tend	 to	 be	more	 local	 (Łęski,	 Lindén,	
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Tetzlaff,	Pettersen,	&	Einevoll,	2013;	Muller	et	al.,	2016).	High	gamma	power	(~60	–	200	

Hz)	has	even	been	shown	to	correlate	strongly	with	local	spiking	activity	(Liu	&	Newsome,	

2006).	 Despite	 the	 differing	 spatial	 scope	 across	 the	 frequency	 spectrum,	 there	 is	

organization	 within	 oscillatory	 activity;	 lower	 frequency	 oscillations	 tend	 to	 be	 coupled	

with	 higher	 frequency	 oscillations	 (Cox,	 van	 Driel,	 de	 Boer,	 &	 Talamini,	 2014;	 He	 et	 al.,	

2010).	The	power	of	different	oscillatory	components,	and	the	coupling	between	different	

frequency	 bands,	 is	 not	 stable;	 rather	 it	 changes	 with	 external	 stimuli	 (Fries,	 Schröder,	

Roelfsema,	 Singer,	 &	 Engel,	 2002;	 Liu	 &	 Newsome,	 2006),	 brain	 state	 (He	 et	 al.,	 2010;	

Voytek	et	al.,	2015),	and	long-term	factors	such	as	age	(Voytek	et	al.,	2015).	

All	of	 these	observations	have	spurred	a	contentious	debate	about	whether	meso-

scale	 oscillations	 are	 epiphenomenal	 (purely	 a	 result	 of	 spiking	 activity)	 or	whether	 the	

oscillations	 themselves	 might	 influence	 spiking	 activity	 (Buzsáki,	 Anastassiou,	 &	 Koch,	

2012).	Without	weighing	 in	on	 this	debate,	 it	 is	 important	 to	acknowledge	 that	boosting,	

inducing,	and	perturbing	ongoing	oscillations	can	have	dramatic	effects	on	spiking	activity,	

behavioral	 performance,	 and	 offline	 memory	 consolidation	 (Binder,	 Rawohl,	 Born,	 &	

Marshall,	2014;	Gulati,	Guo,	Ramanathan,	Bodepudi,	&	Ganguly,	2017;	Latchoumane,	Ngo,	

Born,	 &	 Shin,	 2017;	 Ramanathan	 et	 al.,	 2018).	 Regardless	 of	 the	 direction	 of	 causality,	

recording	and	generating	oscillations	is	useful	for	understanding	coordinated	brain	activity	

and	complements	observations	of	individual	neurons	and	single	synapses.	

1.3.3 Meso-scale Connectivity 

As	 discussed	 in	 Section	 1.1.3	 Functional	 Connectivity	 &	 Plasticity,	 functional	

connectivity	 lends	 itself	 well	 to	 studying	 connections	 at	 the	 meso-scale.	 Rather	 than	
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reporting	 large-scale	 anatomical	 or	 structural	 connections,	 which	 can	 be	 investigated	

though	methods	such	as	diffusion	 tensor	 imaging–DTI,	 functional	connectivity	 focuses	on	

co-activations	of	population	activity.	When	recording	activity	at	the	meso-scale,	functional	

connectivity	 maintains	 its	 definition	 and	 purpose—functional	 connectivity	 draws	

inferences	from	neural	activity	to	measure	the	degree	of	influence	that	recording	sites	have	

over	each	other.	When	recording	meso-scale	activity,	functional	connectivity	is	inherently	a	

measurement	of	the	influence	that	neural	populations	have	over	each	other.	

Meso-scale	connectivity	is	typically	measured	by	borrowing	a	few	more	tools	from	

the	 standard	 signal	 processing	 toolbox.	 Fundamentally,	 these	 methods	 fall	 into	 two	

categories:	measuring	activity	correlations	and	measuring	responses	to	interventions	such	

as	 stimulation.	 Activity	 correlations	 can	 be	 measured	 in	 a	 variety	 of	 ways.	 The	 most	

common	 techniques	 decompose	 time-varying	 signals	 at	 two	 recording	 sites	 into	 their	

spectral	 content	 (amplitude	 and	 phase	 across	 time).	 Then	 measurements	 of	 correlated	

power	across	time	(Fukushima	&	Sporns,	2018),	phase	locking,	or	cross-frequency	phase-

amplitude	coupling	can	be	used	to	infer	functional	connections	(Bastos	&	Schoffelen,	2015).	

More	 complicated	methods	 can	be	used	 to	 try	 and	predict	 causality	or	 account	 for	other	

observed	or	unobserved	activity	(Bastos	&	Schoffelen,	2015),	but	these	methods	still	rely	

on	models	that	are	built	using	observed	activity	correlations.	To	actually	impute	causation	

between	 recording	 sites,	 stimulation	 or	 other	 causal	 intervention	 is	 necessary.	

Neurostimulation	has	been	used	 in	 conjunction	with	 extracellular	 recordings	 to	measure	

functional	 connectivity	 between	 a	 stimulation	 site	 and	 a	 recording	 site	 (Atsushi	 Iriki,	

Pavlides,	&	Keller,	2017;	Keller	et	al.,	2014;	Matsumoto,	Kunieda,	&	Nair,	2017;	Seeman	et	

al.,	2017).	
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1.4 Thesis Goals and Chapter Previews 
The	 immense	 complexity	 of	 synaptic	 plasticity	 and	 its	 relation	 to	 sensorimotor	

learning	is	overwhelming,	and	it	is	difficult	to	imagine	how	low-level	changes	percolate	up	

to	 large-scale	network	 reorganization	 to	 support	 sensorimotor	 learning.	This	 is	why	 it	 is	

critical	to	study	plasticity	at	multiple	levels.	The	work	in	this	dissertation	is	motivated	by	

the	 following	 open	 and	 unanswered	 questions—Is	 there	 a	 set	 of	 learning	 rules	 for	meso-

scale	 plasticity?	 How	 do	 changes	 in	 meso-scale	 plasticity	 support	 sensorimotor	 learning?	

These	 questions	 are	 broad	 and	 general,	 but	 they	 are	 also	 significant	 and	 far-reaching	

inquiries	 that	 have	 inspire	 this	 work.	 While	 trying	 to	 uncover	 answers,	 there	 are	 few	

important	principles	that	previous	neuroplasticity	experiments	have	revealed,	which	I	will	

use	as	a	framework	to	think	about	and	guide	the	analysis	of	plasticity	at	the	meso-scale:	(1)	

timing	 matters	 –	 the	 precise	 timing	 of	 neural	 activity	 leads	 to	 dramatically	 different	

outcomes	in	synaptic	plasticity;	(2)	the	rest	of	the	network	matters	–	cooperativity	among	

other	 neurons	 changes	 the	 operating	 regime	 of	 STDP;	 and	 (3)	 brain	 state	 matters	 –	

neuromodulators	 and	 different	 states	 such	 as	 sleep	 vs.	 awake	 have	 a	 huge	 impact	 on	

learning	windows.	Therefore,	in	studying	plasticity	at	any	scale	it	is	crucial	to	keep	track	of	

the	precise,	relative	timing	of	neural	activity	across	 the	network	under	study.	 In	drawing	

conclusions,	 it	 is	 essential	 to	 think	 through	 the	 full	 impact	 of	 measured	 connectivity	

changes	 in	 the	 context	 of	 a	 network	 with	 many	 moving	 parts	 including	 a	 network	 that	

operates	differently	across	a	diverse	range	of	brain	states.	

With	these	guiding	principles	 in	mind,	I	will	use	two	different,	but	complementary	

paradigms	to	investigate	meso-scale	plasticity	rules.	In	Chapter	2,	I	will	explore	functional	

connectivity	 and	 plasticity	 using	 artificial	 neurostimulation;	 this	 paradigm	 is	 a	 natural	
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extension	 of	 the	 functional	 plasticity	 literature	 outlined	 in	 section	 1.2.3.	 Functional	

Connectivity	&	Plasticity.	 In	 this	work,	 I	will	measure	 functional	connectivity	at	 the	meso-

scale,	apply	conditioning	stimulation,	and	analyze	how	functional	connectivity	changes	 in	

response	 to	 the	 conditioning	 stimulation.	 I	will	 then	use	 simple,	 linear	models	 to	predict	

plasticity	 from	baseline	 connectivity	 and	 stimulation-induced	 activity	 correlations	 across	

the	 sensorimotor	 network.	 In	 Chapter	 3,	 I	 will	 switch	 gears	 and	 study	 plasticity	 in	 the	

context	 of	 natural	 motor	 learning.	 Specifically,	 I	 will	 simultaneously	 measure	 LFP	

oscillations	 and	 spiking	activity,	 and	 connect	precise	 spike	 timing	 to	ongoing	oscillations	

during	sleep.	Using	what	we	know	about	synaptic	plasticity	rules,	I	will	use	what	we	know	

about	 synaptic	 plasticity	 rules	 to	 interpret	 changes	 in	 spike	 correlations,	 and	 then	 I	will	

relate	these	changes	to	the	meso-scale	oscillations	that	are	thought	to	support	learning.	
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Chapter 2   
Using Low Frequency Stimulation to Probe Meso-scale Connectivity 
& Plasticity 
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2.1 Foreword 
In	 this	 chapter,	 I	 extend	 synaptic	 plasticity	 paradigms	 to	 the	meso-scale.	 Using	 a	

combination	 of	 optogenetic	 stimulation	 and	 micro-electrocorticography,	 we	 are	 able	 to	

simultaneously	 stimulate	 the	 brain	 while	 recording	 population	 activity	 across	 the	

sensorimotor	network.	First,	we	develop	two	methods	to	measure	functional	connectivity	

across	S1	and	M1	and	see	how	 these	measures	compare	and	contrast.	Next	we	 track	 the	

evolution	 of	 both	 measures	 of	 meso-scale	 functional	 connectivity	 during	 different	

neurostimulation	 patterns.	 The	 stimulation-induced	 changes	 are	 then	 interpreted	 in	 the	

context	 of	 synaptic	 plasticity	 models.	 Moreover,	 the	 stimulation-induced	 changes	 act	

differently	across	our	two	connectivity	measures	allowing	us	to	speculate	about	the	role	of	

plasticity	 in	 stable	 and	 unstable	 networks.	 Though	 the	 stimulation	 and	 plasticity	 in	 this	

experiment	are	artificial,	this	work	provides	critical	insight	into	how	plasticity	functions	at	

the	meso-scale.	

2.2 Introduction 
Many	 neurological	 and	 psychiatric	 disorders	 arise	 from	 dysfunctional	 neural	

dynamics	 at	 the	 network	 level,	 which	 in	 turn	 stem	 from	 aberrant	 neural	 connectivity	

(DeSalvo,	 Douw,	 Tanaka,	 Reinsberger,	 &	 Stufflebeam,	 2014;	 Edwardson,	 Lucas,	 Carey,	 &	

Fetz,	2013;	Skudlarski	et	al.,	2010;	Stam,	2014;	Wu	et	al.,	2016;	Yahata	et	al.,	2016).	The	

brain	 shows	marked	plasticity	across	a	variety	of	 learning	and	memory	 tasks	 (T.	V	Bliss,	

Collingridge,	&	Morris,	2014;	Takeuchi,	Duszkiewicz,	&	Morris,	2014)	and	during	recovery	

after	brain	injury	or	stroke	(Edwardson	et	al.,	2013;	Hara,	2015;	Murphy	&	Corbett,	2009),	

and	 many	 have	 proposed	 to	 take	 advantage	 of	 this	 innate	 plasticity	 to	 treat	 neural	
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disorders	 (Edwardson	 et	 al.,	 2013;	 Jackson	 et	 al.,	 2006;	 Timothy	 H	 Lucas	 &	 Fetz,	 2013;	

James	 M.	 Rebesco,	 Stevenson,	 Koerding,	 Solla,	 &	 Miller,	 2010).	 In	 principle,	 brain	

stimulation	protocols	can	be	designed	to	leverage	this	plasticity	in	order	to	rewire	aberrant	

neural	 connectivity,	 potentially	 curing	 these	 disorders.	 Implementing	 such	 treatments	

requires	 a	 better	 understanding	 of	 how	 stimulation-induced	 plasticity	 drives	 changes	 in	

network	connectivity	and	network	dynamics.	

The	 simple	 Hebbian	 model	 of	 plasticity	 (DO,	 1949)	 and	 spike-timing	 dependent	

versions	 of	 it	 (G.	 Bi	 &	 Poo,	 2001)	 explain	 a	 large	 body	 of	 data	 on	 activity-dependent	

plasticity,	 including	 both	 in	 vitro	 (Abrahamsson,	 Lalanne,	 Watt,	 &	 Sjostrom,	 2016;	

Massobrio,	 Tessadori,	 Chiappalone,	 &	 Ghirardi,	 2015),	 and	 in	 vivo	 (Andersen,	 Krauth,	 &	

Nabavi,	 2017;	 Feldman,	 2012;	 Shulz	 &	 Jacob,	 2010)	 studies.	 Despite	 the	 extensive	work	

studying	Hebbian	plasticity	at	the	cellular	level,	it	remains	unclear	how	synaptic	plasticity	

leads	to	large-scale	functional	reorganization.	Recently,	several	studies	have	shown	large-

scale	 plasticity	 following	 brain	 stimulation	 that	 is	 consistent	 with	 Hebbian	 mechanisms	

(Jackson	et	al.,	2006;	Lajoie,	Krouchev,	Kalaska,	Fairhall,	&	Fetz,	2017;	Timothy	H	Lucas	&	

Fetz,	 2013;	 James	 M.	 Rebesco	 et	 al.,	 2010;	 W.	 Song,	 Kerr,	 Lytton,	 &	 Francis,	 2013).	 In	

particular,	 Fetz	 and	 colleagues	 implemented	 an	 activity-dependent	 stimulation	 protocol,	

effectively	 introducing	 an	 artificial	 connection	 between	 two	 sites	 in	 the	 motor	 cortex	

(Jackson	 et	 al.,	 2006;	 Timothy	 H	 Lucas	 &	 Fetz,	 2013).	 Continuous	 reinforcement	 of	 this	

artificial	 connection	 led	 to	 a	 stable	 functional	 change	 in	 stimulation-evoked	movements,	

indicating	 that	 stimulation	 induces	 large-scale	 plasticity.	 Recently	 these	 results	 were	

reproduced	 in	 a	modeling	work	at	 the	network	 level	 (Lajoie	 et	 al.,	 2017).	 Similar	 results	

have	 been	 observed	 using	 open-loop	 stimulation	 protocols	 to	 induce	 targeted	 plasticity	
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between	two	cortical	sites	(James	M	Rebesco	&	Miller,	2011;	Seeman	et	al.,	2017).	Notably,	

these	papers	have	 reported	off-target	effects,	but	 these	were	either	 interpreted	as	global	

changes	 in	 excitability	 or	were	not	 explained.	Although	 the	 results	 from	 closed-loop	 and	

open-loop	 experiments	 suggest	 large-scale	 plasticity,	 the	 underlying	 neural	 network	

changes	remain	unexplored.	

Here,	 we	 measure	 connectivity	 across	 sensorimotor	 cortex	 and	 track	 changes	 in	

network	connectivity	in	response	to	open-loop	stimulation.	This	work	takes	advantage	of	a	

large-scale	 optogenetic	 interface	 (Yazdan-Shahmorad	 et	 al.,	 2016)	 that	 enables	 us	 to	

simultaneously	 stimulate	 populations	 of	 excitatory	 neurons	 while	 recording	 large-scale	

micro-electrocorticography	 (μECoG)	 activity	 across	 two	brain	 areas,	 S1	 and	M1.	We	 first	

establish	 and	 compare	 two	 measures	 of	 functional	 connectivity	 that	 provide	

complementary	 views	 of	 the	 mechanisms	 of	 plasticity.	 Next,	 we	 investigate	 how	

stimulation	impacts	connectivity	between	and	within	cortical	areas.	We	then	test	whether	

stimulation-evoked	activity	drives	large-scale	network	plasticity	in	a	Hebbian	manner.	The	

goal	 of	 this	 work	 is	 to	 investigate	 large-scale	 functional	 reorganization	 following	

stimulation,	which	will	inform	future	neurorehabilitation	strategies.	

2.3 Methods 

2.3.1 IACUC 

Two	adult	male	rhesus	monkeys	(Monkey	G:	8	years	old,	17.5	kg;	Monkey	J:	7	years	

old,	16.5	kg)	were	used	in	this	study.	We	used	the	same	animals	and	interface	published	in	

(Yazdan-Shahmorad	et	al.,	2016).	All	procedures	were	performed	under	the	approval	of	the	

University	 of	 California,	 San	 Francisco	 Institutional	 Animal	 Care	 and	Use	 Committee	 and	
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were	compliant	with	the	Guide	for	the	Care	and	Use	of	Laboratory	Animals.	

2.3.2 Optogenetic Interface 

Here,	we	 give	 a	 brief	 summary	 of	 our	 large-scale	 optogenetic	 interface	 (details	 in	

Yazdan-Shahmorad	 et	 al.	 2016).	We	 combined	 three	 existing	 techniques	 to	 implement	 a	

practical,	large-scale	interface	for	both	manipulation	and	recording	from	the	surface	of	the	

brain	in	two	rhesus	macaque	monkeys.	We	used	an	efficient	technique	for	infusion	of	the	

optogenetics	 viral	 vector	 (AAV5.CamKIIa.C1V1(E122T/E162T).TS.eYFP.WPRE.hGH,	

2.5×1012	 virus	 molecules/ml;	 Penn	 Vector	 Core,	 University	 of	 Pennsylvania,	 PA,	 USA,	

Addgene	number:	35499)	into	primary	somatosensory	(S1)	and	motor	(M1)	cortices	based	

on	convection-enhanced	delivery	(CED).	We	infused	200	μl	of	virus	in	four	sites	(two	in	M1	

and	two	in	S1)	in	Monkey	G	and	250	μl	in	five	sites	(two	in	M1	and	three	in	S1)	of	Monkey	J.	

Infusion	 rate	 started	 at	 1	 µl/min	 and	was	 increased	 to	 5	 µl/min.	 Following	 infusion	we	

used	 an	 artificial	 dura	 to	 protect	 the	 brain	while	maintaining	 optical	 access.	We	 verified	

expression	with	epifluorescent	 imaging.	To	 record	 the	evoked	 responses	 in	both	M1	and	

S1,	we	used	either	one	or	two	96	channel	micro-electrocorticography	(μECoG)	arrays	that	

were	designed	to	allow	minimally	attenuated	(Ledochowitsch	et	al.,	2015)	optical	access.	In	

both	animals,	we	observed	reliable	light	evoked	neural	responses	from	the	large	channel-

expressing	areas.		

2.3.3 Data Acquisition 

Optical	 stimulation	 was	 applied	 using	 a	 fiber	 optic	 (core/cladding	 diameter:	

62.5/125	um,	Fiber	Systems,	TX,	USA)	that	was	connected	to	a	488	nm	laser	(PhoxX	488-
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60,	Omicron-Laserage,	Germany)	and	was	positioned	above	the	array	(Figure	2.1).	We	used	

a	Tucker-Davis	Technologies	system	(FL,	USA)	for	µECoG	recording	and	to	control	the	laser	

stimulus.	We	chose	the	locations	of	stimulation	based	on	the	results	of	our	epifluorescent	

imaging	(see	Yazdan-Shahmorad	et	al.	2016)	and	whether	we	got	a	physiological	response	

to	 light	stimulation.	Based	on	detailed	histological	and	electrophysiological	analyses,	 (see	

Yazdan-Shahmorad	 et	 al.	 2016)	 we	 estimated	 that	 there	 was	 a	 uniform	 distribution	 of	

expression	around	our	 infusion	sites	and	at	 the	 locations	that	we	chose	to	stimulate.	The	

monkeys	were	awake	sitting	in	primate	chairs	for	the	duration	of	experiments.	To	ensure	

that	the	monkey	remained	awake,	we	provided	random	reward	as	well	as	audio	and	visual	

stimuli	 (displaying	 a	 cartoon).	 In	 addition,	we	 visually	monitored	 the	 animal	 throughout	

the	experiment.	

2.3.4 Stimulation & Recording Protocol 

Our	 stimulation	 and	 recording	 paradigms	 consisted	 of	 baseline	 recording,	 testing	

and	 conditioning	 blocks	 (Figure	 2.5A	 and	 2.12A).	 During	 baseline	 recording	 blocks	 we	

collected	5	minutes	or	30	seconds	of	baseline	activity.	In	test	blocks	we	delivered	100	light	

pulses	(5	ms	duration	at	5	Hz)	to	each	laser;	pulses	were	alternated	between	laser	sites	in	

blocks	of	10	pulses	each	in	order	to	reduce	the	effects	of	habituation.	For	the	conditioning	

blocks	we	stimulated	through	one	or	two	lasers	at	a	frequency	of	5	or	7	Hz	for	10	minutes.	

We	 repeated	 this	 protocol	 5	 times	 for	 each	 experiment.	 Our	 experiments	 consisted	 of	

single-	and	two-site	stimulation	with	different	laser	configurations:	(1)	one	or	two	lasers	in	

M1,	(2)	one	or	 two	 lasers	 in	S1	and	(3)	one	 laser	 in	M1	and	one	 laser	 in	S1.	For	two-site	

stimulation,	the	delay	between	the	two	lasers	was	10,	30,	70	or	100	ms.	We	also	included	
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control	 sessions	 in	 which	 we	 kept	 the	 structure	 of	 passive	 recording	 and	 active	 testing	

blocks,	but	did	not	stimulate	during	the	conditioning	blocks.	

	 Monkey	G	 Monkey	J	

Number	of	sessions	 37	 33	

Number	of	sessions	analyzed	 29	 15	

Number	of	control	sessions	 3	 2	

Number	of	single-site	and	long	latency	sessions	 6	 9	

Number	of	short-latency	sessions	 20	 4	

Table	2.1	-	Summary	of	Analyzed	Sessions	Broken	Down	by	Monkey.	The	data	were	collected	in	two	to	
three	week	 periods	 for	 each	 animal.	 Depending	 on	 the	 health	 of	 the	 animal	 and	 the	 quality	 of	 the	 neural	
recordings,	one	to	four	experiments	were	performed	per	day.	

2.3.5 Data Analysis 

5.2.3.1 Preprocessing 
All	processing	and	statistical	analyses	were	performed	using	custom	MATLAB	(MA,	

USA)	code.	After	signal	acquisition,	broadband	surface	potentials	(sampled	at	24kHz)	were	

visually	 inspected,	 and	 faulty	 recording	 sites	were	 removed	 from	 further	 analysis.	 Next,	

stimulation-triggered	responses	were	visually	 inspected	 for	photoelectric	artifacts,	which	

were	 characterized	 by	 their	 timing	 and	 amplitude;	 (see	 Yazdan-Shahmorad	 et	 al.	 2016;	

Ledochowitsch	 et	 al.	 2015)	 and	 subsequently	 removed	 from	 further	 analysis.	 Next,	 two	

measures	of	connectivity	were	defined	to	quantify	 the	strength	of	 functional	connectivity	

between	M1	and	S1.	

5.2.3.2 Stimulus evoked response ratio 
During	test	blocks,	we	delivered	100	stimulus	pulses	at	5	Hz	through	each	laser.	To	

capture	 high-fidelity	 timing	 of	 the	 signal	 and	 avoid	 significant	 phase	 distortions	 we	
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acausally	 band-pass	 filtered	 [0.1	 -	 500	Hz]	 the	 broadband	 signal.	We	 first	 calculated	 the	

delay	 between	 the	 onset	 of	 the	 stimulus	 pulse	 and	 the	 response	 measured	 at	 each	

electrode.	We	 calculated	 the	 delay	 from	 an	 average	waveform	 across	 the	 distribution	 of	

evoked	 responses	 (bootstrapped	 1000	 times).	 This	 bootstrapped	 averaging	 was	 less	

susceptible	 to	artifacts	and	noise	 that	 could	dominate	 the	 signal	on	 individual	 trials.	The	

average	 evoked	 response	 lasted	 no	 longer	 than	 30ms	 with	 the	 trough	 of	 the	 response	

occurring	in	the	first	5-15	ms.	We	defined	the	delay	of	the	evoked	response	as	the	time	of	

the	 trough	within	20	ms	of	 stimulation	onset	 (Figure	2A&2E).	The	distribution	of	delays	

across	 recording	 sites	 (Figure	 2B&2F)	 was	 bimodal	 with	 a	 delay	 greater	 than	 1.5	 ms	

between	 the	 modes.	 We	 manually	 set	 a	 threshold	 based	 on	 this	 delay	 distribution	 to	

distinguish	 between	 “primary”	 and	 “secondary”	 sites,	 i.e.	 those	 in	 the	 same	 area	 as	 the	

stimulation	site	and	those	in	the	other	area.	Sessions	without	a	secondary	response	were	

excluded	from	further	analysis	(see	Table	2.1).		

Next,	we	calculated	 the	amplitude	of	each	evoked	response.	We	downsampled	 the	

raw	 surface	 field	 potentials	 to	 1kHz	 (after	 applying	 a	 lowpass	 Chebychev	 filter	 for	 anti-

aliasing)	and	applied	an	acausal	band-pass	filter	to	capture	high	gamma	activity	(60	-	200	

Hz),	which	is	known	to	be	representative	of	neural	activity	of	local	cortical	columns	(Suzuki	

&	 Larkum,	 2017;	 Yazdan-Shahmorad,	 Kipke,	 &	 Lehmkuhle,	 2013).	 The	 peak	 (maximum)	

and	 trough	 (minimum)	 of	 the	 evoked	waveform	were	 identified	within	 a	 20ms	window	

after	each	laser	pulse	(Figure	2.3AE,	dashed,	inset	boxes)	and	the	peak-to-trough	difference	

was	 computed.	 The	 SERR	 was	 then	 defined	 as	 the	 average	 (across	 100	 repeated	 laser	

pulses)	of	the	ratio	of	two	peak-to-trough	amplitudes,	the	one	for	the	secondary	site	over	

the	 one	 for	 the	 stimulation	 site.	 We	 considered	 other	 measures	 for	 calculating	 SERR,	
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including	 commonly	 used	 measures	 such	 as	 the	 amplitude	 or	 slope	 of	 the	 broadband	

stimulus-evoked	response	(data	not	shown),	but	the	high	gamma	peak-to-trough	amplitude	

yielded	the	most	robust	results.	

Changes	 in	 SERR	 were	 calculated	 by	 taking	 the	 difference	 in	 SERR	 between	 the	

initial	and	final	testing	blocks	for	each	secondary	site.	A	paired,	two-sided	t-test	was	used	

to	 determine	 whether	 SERR	 changes	 were	 significant	 across	 secondary	 recording	 sites.	

Similarly,	a	paired,	two-sided	t-test	was	applied	to	determine	significance	across	sessions	

separately	 for	 controls	 (in	 which	 no	 stimulation	 was	 applied	 during	 conditioning),	

stimulation	in	M1,	and	stimulation	in	S1.	Unpaired,	two-sided	t-tests	were	used	to	directly	

compare	the	change	 in	SERR	between	all	stimulation	sessions	and	all	control	sessions.	P-

values	less	than	.05	were	considered	significant.	

5.2.3.3 Coherence 
First,	 broadband	 surface	potentials	were	downsampled	 to	1	kHz	 (after	 applying	 a	

lowpass	 Chebychev	 filter	 for	 anti-aliasing).	 Then	 pairwise	 coherences	were	 calculated	 in	

10s	Hamming	windows	in	4	Hz	frequency	bands.	The	coherence	between	channels	x	and	y	

is	defined	as:	

!!"(!) =
|!!"(!)|!

!!!(!)!!!(!)
	

where	Gxx	and	Gyy	refer	to	power	spectral	density	of	channels	x	and	y	respectively,	

and	Gxy	refers	to	their	cross-spectral	density.	For	simplicity,	in	future	equations	we	refer	to	

the	coherence	between	channels	x	and	y	as	C.	Coherence	in	the	theta	band	(4	-	8	Hz)	was	

used	in	all	analyses,	unless	otherwise	specified.		

Changes	 in	 inter-area	 coherence	 were	 calculated	 by	 taking	 the	 difference	 in	
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coherence	 between	 the	 initial	 and	 final	 recording	 blocks.	 Significant	 changes	 after	

individual	 sessions	were	 detected	with	 a	 paired,	 two-sided	 t-test	 across	 secondary	 sites.	

Across	sessions,	 changes	 in	 inter-area	coherence	 in	each	 frequency	band	were	compared	

between	 stimulation	 sessions	 and	 control	 sessions	 with	 an	 unpaired,	 two-sided	 t-test,	

applying	the	Bonferroni	correction	for	multiple	comparisons.	

5.2.3.4 Connectivity dynamics 
Both	 the	 SERR	 and	 inter-area	 theta	 coherence	 were	 measured	 for	 each	 baseline	

recording	and	each	test	block	during	the	experiment.	To	measure	connectivity	during	the	

conditioning	 block,	 the	 block	was	 sectioned	 into	 100-pulse	 segments,	 and	 the	 SERR	was	

calculated	 for	 each	of	 these	 segments.	To	understand	 the	 connectivity	 trends,	we	pooled	

experiments	 together	 and	 calculated	 the	 average	 connectivity	 measures.	 To	 account	 for	

initial	differences	in	connectivity	across	sessions	and	monkeys,	we	calculated	the	average	

changes	in	each	connectivity	measure	with	respect	to	its	 initial	value	and	computed	their	

Pearson	correlation	across	sessions	and	blocks.	

5.2.3.5 Network analysis 
Since	stimulation	evokes	a	network-wide	pattern	of	activity,	 the	coherence	during	

conditioning	 blocks	 (Cc)	 is	 different	 than	 the	 coherence	 calculated	 during	 baseline	

recording	 blocks	 (Cr).	 This	 difference,	 or	 “stimulus-evoked	 coherence”	 captures	 the	

correlations	 introduced	 through	 stimulation.	 We	 propose	 that	 these	 correlations	 drive	

plasticity	in	a	Hebbian	manner,	so	that	the	change	in	baseline	coherence	between	pre-	and	

post-conditioning	reflects	the	stimulus-evoked	coherence.	Therefore,	we	assessed	how	well	

the	change	 in	recording	coherence	 is	predicted,	across	blocks	and	electrode	pairs,	by	 the	
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stimulus-evoked	coherence	using	linear	regression,		

(!! − !!,!"#) = !
^
∗ (!!,!"#$ − !!,!"#),	

where	!
^
	are	the	fit	regression	parameters.	However,	this	simple	regression	analysis	

is	biased,	since	the	same	!! 	is	used	on	the	left	and	right	side	of	this	equation.	To	avoid	the	

spurious	correlations	that	would	therefore	arise,	we	split	the	recording	blocks	into	5s	non-

overlapping	windows	and	calculated	the	coherence	separately	for	the	odd	(α)	and	even	(β)	

windows.	We	then	averaged	the	coherence	for	each	set	of	windows	(Cr,α	and	Cr,β)	and	used	

these	as	independent	measures	of	baseline	coherence	for	the	regression,	

(!! − !!,!"#,!) = !
^
∗ (!!,!"#$,! − !!,!"#,!).	

5.2.3.6 Histology analysis 
Monkeys	 were	 deeply	 sedated	 (per	 above	 Surgical	 procedures)	 and	 perfused	

transcardially	 with	 heparinized	 phosphate	 buffered	 saline	 (PBS)	 followed	 by	 cold	 4%	

paraformaldehyde	in	phosphate	buffer.	The	brain	was	extracted	and	post-fixed	in	the	same	

fixative	for	24	hours	at	4oC	and	then	dissected	into	twelve	6	mm-thick	coronal	blocks	using	

a	custom	matrix.	After	7-10	days	incubation	in	30%	sucrose,	blocks	were	frozen	and	cut	on	

a	 cryostat	 (Microm,	 Germany)	 into	 50	 μm	 thick	 sections.	 Representative	 sections	 were	

selected	 from	 each	 block	 and	 processed	 for	 EYFP	 immunocytochemistry	 using	 a	 free-

floating	 technique.	 Sections	 were	 initially	 washed	 in	 PBS,	 incubated	 in	 3%	 hydrogen	

peroxide	in	PBS	for	10	min	to	quench	endogenous	peroxidase	activity,	and	then	rinsed	in	

two	 changes	 of	 50%	 ethanol	 followed	 by	 three	 changes	 of	 PBS	 for	 5	min	 each.	 Next	we	

incubated	the	sections	in	5%	normal	donkey	serum	in	PBS	for	1	hour	to	block	non-specific	

binding.	 Primary	 rabbit	 polyclonal	 anti-GFP	 antibody	 (Abcam,	 RRID:	 AB_303395)	 was	
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diluted	1:15,000	in	PBS	containing	0.01%	Triton	X-100	and	was	applied	to	the	tissue	for	48	

hours	 at	 4oC.	 Sections	 were	 then	 rinsed	 in	 PBS,	 incubated	 in	 biotinylated	 donkey	 anti-

rabbit	 antibody,	 (1:2,000,	 Jackson	 Immunoresearch)	 for	 12	 hours	 at	 4oC,	 rinsed	 and	

incubated	 in	 ExtrAvidin	 (Sigma-Aldrich,	 1:5,000)	 for	 5-6	 hours	 in	 room	 temperature.	

Peroxidase	 was	 detected	 using	 a	 diaminobenzidine	 (DAB)	 chromogenic	 reagent	 (Sigma-

Aldrich).	 Sections	 were	 rinsed	 in	 PBS,	 mounted	 on	 gelatin-coated	 slides,	 air-dried,	

dehydrated	 in	 graded	 alcohols,	 cleared	 in	 xylene	 and	 coverslipped	with	 D.P.X.	mounting	

media	(Sigma-Aldrich).	Additional	adjacent	sections	were	stained	with	cresyl	violet	(Nissl)	

using	standard	techniques,	to	reveal	cortical	cytoarchitecture.		

Double	 immunofluorescence	 was	 performed	 using	 the	 similar	 to	 above	 approach	

although	using	combinations	of	primary	antibodies	from	different	host	species	for	GFP	and	

for	the	interneuron	markers.	Primary	antibodies	were:	rabbit	polyclonal	anti-GFP	antibody	

(1:10,000,	 Abcam,	 GFP	 ab290);	 goat	 polyclonal	 anti-GFP	 antibody	 (1:1,000,	 Abcam,	

ab5450).	 These	 were	 paired	 with	 one	 of	 the	 following	 primary	 antibodies:	 mouse	

monoclonal	antibody	for	parvalbumin,	(1;1,000,	Sigma-Aldrich	P3088);	mouse	monoclonal	

antibody	 for	 calbindin	 (1:800	 Sigma-Aldrich	 CB-955);	 rat	 monoclonal	 antibody	 for	

somatostatin	 (1;200,	 Millipore	 MAP354);	 rabbit	 polyclonal	 anti-GAD65/67	 (1:500,	

Millipore	AB1511);	a	cocktail	of	mouse	monoclonal	antibody	for	GAD67	(1:500,	Millipore	

MAB5406)	 and	mouse	monoclonal	 antibody	 for	 GAD65	 (1:1,000,	 Sigma-Aldrich	 G1166).	

Sections	were	blocked	using	normal	donkey	serum	and	processed	for	4-6	hours	in	a	mix	of	

matching	 secondary	 antibodies;	 all	 of	 which	 were	 raised	 in	 donkey	 (Thermo	 Fisher	

Scientific,	 1:300):	 anti-rabbit	 Alexa	 Fluor	 488,	 anti-goat	 Alexa	 Fluor	 488	 (both	 for	 GFP).	

Interneuron	 markers	 were	 visualized	 using	 anti-mouse	 Alexa	 Fluor	 594,	 anti-rat	 Alexa	
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Fluor	594;	anti-rabbit	Alexa	Fluor	594.	Sections	were	mounted	using	Vectashield	 (Vector	

Labs)	and	imaged	using	Zeiss	LSM510	Meta	confocal	microscope	(Zeiss,	Germany)	and	90i	

imaging	system	equipped	with	a	CCD	camera	(Nikon,	Japan).	

2.4 Results 

	
Figure	 2.1	 -	 Stimulation	 and	 Recording	 Setup.	 Photo	 of	 the	 µECoG	 array	 placement	 over	M1	 and	 S1	 in	
Monkey	G	(left	panel)	and	the	placement	of	lasers	on	top	of	the	array	in	two	different	configurations	(middle	
panel:	Monkey	G	and	right	panel:	Monkey	J).		

We	performed	optogenetic	stimulation	via	laser	illumination	of	the	cortical	surface	

while	simultaneously	recording	surface	potentials	(µECoG)	from	about	1.5	cm2	of	primary	

somatosensory	(S1)	and	motor	(M1)	cortices	(Figure	2.1).	The	viral	vector	used	to	obtain	

opsin	 expression	 targeted	 excitatory	 neurons	 (Figure	 2.2).	 These	 neurons	 have	 strong	

projections	within	 and	 between	 the	 two	 brain	 areas	 (Kinnischtzke,	 Simons,	 &	 Fanselow,	

2014;	Murray	&	Keller,	2011;	Weiler,	Wood,	Yu,	Solla,	&	Shepherd,	2008).	Activating	these	

excitatory	cells	 should	 increase	 the	excitability	of	 the	underlying	network,	 improving	 the	

likelihood	 of	 neuroplastic	 change	 (A	 Iriki,	 Pavlides,	 Keller,	 &	 Asanuma,	 1989).	 In	 two	

macaque	monkeys	we	explored	stimulation-induced	changes	in	network	connectivity.	

Laser 1

Laser 2

M1 S1

Laser 1

Laser 2
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Figure	2.2	-	Opsin	Expression	was	Observed	Only	in	Pyramidal	Neurons.	Using	immunohistochemistry,	
we	confirmed	that	EYFP	reporter	expression	was	present	in	both	S1	and	M1.	YFP-positive	cells	in	these	areas	
were	morphologically	 identified	 as	 pyramidal	 neurons,	 and	were	 in	 layers	 II-III,	 V-VI.	 To	 confirm	 this	 we	
further	 analyzed	 the	 tissue	 using	 markers	 for	 inhibitory	 neurons	 such	 as	 parvalbumin,	 somatostatin	 and	
calbindin	as	well	as	GAD67/65	and	examined	cell	bodies	and	axonal	terminals	at	the	areas	around	the	site	of	
infusion.	 We	 found	 no	 evidence	 for	 co-localization	 between	 EGFP	 and	 any	 of	 the	 inter-neuronal	 markers	
therefore	excluding	the	possibility	for	significant	opsin	presence	in	cells	other	than	pyramidal	neurons,	and	
confirmed	that	optical	stimulation	was	selectively	activating	excitatory	pyramidal	neurons	in	M1	and	S1.	(A)	
Low	 magnification	 image	 of	 the	 coronal	 section	 processed	 anti-GFP	 antibody	 showing	 the	 medio-lateral	
aspect	 of	 YFP	 expression	 in	 the	 somatosensory	 cortex	 of	 Monkey	 J	 (areas	 1,	 2,	 3).	 The	 black	 arrowhead	
indicates	 the	 location	 of	 the	 injector	 needle	 track;	 the	 adjacent	 tissue	 (black	 frame)	 is	 microscopically	
enlarged	in	(B)	to	show	laminar	distribution	of	the	YFP-positive	cells.		In	Monkey	G	(Yazdan-Shahmorad	et	al.,	
2016),	we	saw	some	cortical	 thinning	post-mortem.	 In	contrast,	 the	histology	 for	Monkey	 J,	presented	here	
does	not	 show	change	 in	 the	 cortical	 thickness.	B:	Densely	YFP-positive	 cells	 are	 located	predominantly	 in	
layers	II-III	and	V-VI,	and	also	show	typical	pyramidal	morphology	(cells	in	white	frames	are	further	enlarged	
in	panels	C-E).	 	White	arrowheads	on	bottom	panels	C-E	point	to	typical	pyramidal	cells	 in	 layers	II-III	(C);	
layer	V	(D);	and	layer	VI	(E).	Scale	bars:	A,	2	mm;	B,	200	μm;	C-E,	100	μm.	(F)	Stained	parvalbumin	neurons	
(red)	and	YFP-expressing	cells	(green),	no	overlap	indicated	high	specificity.	Scale	bar:	30	μm.	

2.4.1 Two Measures of M1-S1 Functional Connectivity are Correlated 

We	 quantified	 inter-area	 functional	 connectivity	 between	 S1	 and	 M1	 using	 two	

different	measures—one	 based	 on	 the	 network	 response	 to	 optogenetic	 stimulation	 and	

the	other	based	on	spontaneous	neural	activity.	

The	 first	measure	 focused	 on	 how	 the	 response	 to	 optical	 stimulation	 propagates	

through	the	network.	Optogenetic	stimulation	in	S1	and	M1	evoked	responses	across	both	
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cortical	 areas,	 and	 we	 characterized	 these	 responses	 according	 to	 their	 amplitudes	 and	

delays	 (Figure	 2.3A	 &	 2.3E).	 The	 delays	 exhibited	 a	 bimodal	 distribution	with	 a	 3-6	ms	

separation	 between	 the	 early	 and	 late	 responses	 (Figure	 2.3B	 &	 2.3F).	 Classifying	 the	

responses	 across	 electrodes	 by	 delay	 recovers	 the	 spatial	 separation	 between	 the	 two	

cortical	areas—following	a	boundary	along	the	central	sulcus—with	shorter	delays	in	the	

area	being	stimulated	(S1	or	M1;	primary	responses)	and	 longer	delays	 in	 the	other	area	

(M1	or	 S1;	 secondary	 responses)	 (Figure	2.3C	&	2.3G).	The	 short	delay	of	 the	 secondary	

responses	 suggests	 close	 functional	 connectivity	between	 these	areas.	We	quantified	 this	

connectivity	 with	 the	 stimulus-evoked	 response	 ratio	 (SERR).	 SERR	 was	 defined	 as	 the	

peak-to-trough	 amplitude	 of	 the	 secondary	 responses	 (A2)	 normalized	 by	 the	 peak-to-

trough	amplitude	of	the	primary	response	(A1),	with	both	responses	measured	in	the	high	

gamma	(60	-	200	Hz)	filtered	signal	(see	dashed-line	inset	boxes	in	Figure	2.3A	&	2.3E).	The	

SERR	is	a	measure	of	the	connectivity	between	the	site	of	stimulation	and	sites	in	the	other	

cortical	area	(see	Figure	2.3D	&	2.3H).	

The	second	measure	evaluates	functional	connectivity	during	spontaneous	activity.	

We	 focused	 on	 the	 coherence	 in	 field	 potential	 recordings	 between	 electrodes,	 a	widely	

used	 measure	 of	 connectivity	 that	 captures	 the	 degree	 of	 phase	 locking	 between	 two	

signals	(Bastos	&	Schoffelen,	2015;	Lang,	Tome,	Keck,	Gorriz-Saez,	&	Puntonet,	2012).	We	

calculated	 the	 coherence	 between	 the	 site	 of	 stimulation	 and	 the	 secondary	 sites	 across	

different	frequency	bands.	
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Figure	2.3	-	Using	Evoked	Responses	to	Measure	Connectivity	across	M1	and	S1.	(A)	Primary	(blue)	and	
secondary	(orange)	evoked	responses	to	light	stimulation.	The	dark	blue	rectangle	represents	the	duration	of	
light	 stimulation.	 Shaded	areas	 show	standard	error.	The	delays	of	 evoked	 responses	 are	 calculated	as	 the	
time	difference	between	the	onset	of	stimulation	and	the	time	of	the	response	trough	(vertical	lines	at	d1	and	
d2).	(B)	Distribution	of	the	delays	color-coded	based	on	the	primary	and	secondary	light-evoked	responses.	
(C)	 Evoked	 responses	 across	 the	 array,	 color-coded	 based	 on	 the	 delays.	 As	 shown	 here	 there	 is	 a	 spatial	
separation	of	primary	and	secondary	responses	that	corresponds	to	the	locations	of	M1	and	S1.	This	suggests	
that	due	to	functional	connectivity	between	M1	and	S1,	we	see	a	delayed	(secondary)	response	in	S1	to	light	
stimulation	 in	 M1.	 (D)	 S1	 connectivity	 with	 the	 site	 of	 stimulation.	 The	 blue	 circle	 shows	 the	 location	 of	
stimulation	in	M1.	The	black	line	shows	the	location	of	central	sulcus	with	respect	to	the	recording	array.	The	
size	of	the	red	circles	represents	the	strength	of	connectivity	between	each	site	and	the	stimulation	location	
for	 the	 recording	 sites	 with	 secondary	 responses	 across	 S1.	 SERR	 Connectivity	 is	 defined	 as	 the	 peak-to-
trough	of	 filtered	high	gamma	 responses	 (60-200	Hz:	 trace	plots	 shown	on	 the	dashed	 rectangle	on	 (A)	 at	
each	 site	 (orange)	normalized	 to	 the	peak-to-trough	of	 high	 gamma	at	 the	 site	 of	 stimulation	 (blue).	 (E-H)	
Same	as	(A-D)	with	the	same	array	placement	but	S1	stimulation.	

Because	SERR	and	coherence	are	derived	independently	from	recordings	with	and	

without	 simultaneous	 stimulation,	 they	 might	 reflect	 fundamentally	 different	 aspects	 of	

network	 connectivity.	 Therefore,	 in	 each	 experiment	 we	 compared	 these	 two	 measures	

prior	 to	 conditioning	 stimulation.	 Figure	 2.4A	 shows	 two	 examples	 comparing	 SERR	 to	

coherence	 in	 the	 theta	 band	 (4	 -	 8	 Hz).	 To	 quantify	 the	 relationship	 between	 these	

measures,	we	performed	linear	regression	between	them	across	channels	(Figure	2.4B-C).	

An	 example	 showing	 a	 strong	 relationship	 between	 SERR	 and	 theta	 band	 coherence	 is	

shown	in	Figure	2.4B.	This	analysis	was	repeated	for	all	coherence	frequency	bands	and	for	

all	experiments;	 the	mean	and	standard	error	of	 the	regression	parameters	are	shown	in	
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Figure	 2.4C.	 The	 two	measures	 of	 functional	 connectivity	were	 highly	 correlated:	 across	

sessions,	 the	 distribution	 of	 regression	 slopes	 was	 significantly	 different	 from	 0	 (t-test:	

p=3.73e-06),	and	69%	of	individual	experiments	showed	significant	linear	regressions	(p	<	

0.05).	 This	 finding	 indicates	 that	 at	 baseline,	 before	 any	 conditioning,	 the	 stimulation-

evoked	response	reflects	network	dynamics	across	the	frequency	spectrum.	

	
Figure	2.4	-	Coherence	Measure	of	Inter-Area	Connectivity	Correlates	with	SERR.	(A)	S1	(top	panel)	and	
M1	(bottom	panel)	theta	coherence	and	SERR	connectivity	with	the	site	of	stimulation	in	Monkey	G.	The	blue	
circle	shows	the	location	of	stimulation.	The	black	line	shows	the	location	of	central	sulcus	with	respect	to	the	
recording	array.	The	size	of	 the	red	and	white	circles	represents	 the	strength	of	connectivity	between	each	
secondary	site	and	the	stimulation	location.	(B)	An	example	session	showing	relationship	between	SERR	and	
theta	 coherence.	 The	 black	 line	 shows	 the	 linear	 regression	 fit.	 (C)	 Linear	 relationship	 between	 evoked	
response	and	coherence	across	different	 frequencies.	Summary	data	showing	 the	mean	and	standard	error	
(shaded	region)	of	regression	parameters	(shown	in	B)	across	frequencies.	

2.4.2 Stimulation Strengthens Inter-area Connectivity 

We	used	 a	 simple	 stimulation	protocol—we	delivered	5	ms	 laser	 light	pulses	 at	 a	

frequency	 of	 5	 or	 7	 Hz	 at	 either	 one	 or	 two	 cortical	 sites	 (Figure	 2.5A).	 For	 our	 initial	

analyses,	and	unless	otherwise	noted,	when	stimulating	at	two	cortical	sites,	we	alternated	

stimulation	between	 the	 two	 light	 sources	 to	avoid	any	 interference	between	 the	evoked	

responses	from	each	light	source.	In	each	experiment,	conditioning	stimulation	was	applied	

for	50	minutes,	and	we	evaluated	functional	connectivity	every	10	minutes	during	blocks	of	

passive	 baseline	 recording	 and	 active	 testing	 (100	 light	 pulses	 delivered	 through	 each	
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laser).	We	 also	 conducted	 control	 sessions	with	 the	 same	 passive	 recording	 and	 testing	

blocks,	but	with	no	stimulation	during	the	conditioning	blocks.	

A	representative	example	experiment,	shown	in	Figure	2.5B,	shows	that	stimulation	

in	 M1	 leads	 to	 significant	 increases	 (paired	 t-test,	 p=3.88e-11)	 in	 mean	 SERR.	 Similar	

increases	in	SERR	were	observed	for	a	majority	of	experiments	(14	out	of	18	experiments)	

across	both	monkeys	(Figure	2.5C).	The	increases	in	connectivity	were	symmetric	between	

the	two	cortical	areas	(Figure	2.5D).	No	significant	change	in	mean	SERR	was	observed	in	

control	sessions	without	conditioning	stimulation	(Figure	2.5D).	Furthermore,	the	increase	

in	SERR	was	significantly	larger	for	stimulation	sessions	than	control	sessions	(unpaired	t-

test:	p=0.0036)	
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Figure	2.5	 -	 Single	 Site	 and	Long-Latency	 Stimulation	 Increase	 the	Functional	 Connectivity	between	
M1	 and	 S1.	 (A)	 Experimental	 protocol.	 Conditioning	 stimulation	was	 interrupted	 by	 periodic	 connectivity	
measurements	including	passive	recording	and	active	testing.	Either	one	or	two	non-interfering	lasers	were	
used.	 (B)	 Examples	 of	 changes	 in	 SERR	 across	 the	 recording	 array	 in	 Monkey	 G.	 Red	 circles	 show	 initial	
connectivity	and	white	circles	show	connectivity	after	50	min.	of	conditioning.	(C)	Summary	of	SERR	changes	
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across	all	experiments.	Each	symbol	represents	the	connectivity	averaged	over	all	secondary	channels	for	one	
experiment.	 Filled	 markers	 show	 significant	 changes	 (paired	 t-test;	 p<0.05).	 (D)	 Changes	 in	 SERR	 when	
stimulating	 in	either	S1	or	M1	 in	comparison	 to	control.	Error	bars	 represent	standard	error	and	asterisks	
show	 significant	 changes	 (paired	 t-test;	 Control:	 p=0.8,	 laser	 in	 S1:	 p=0.01,	 laser	 in	 M1:	 p=1.6e-04).	 (E)	
Examples	of	changes	in	theta	(4-8	Hz)	coherence	across	the	recording	array.	(F)	Summary	of	theta	coherence	
changes	across	all	experiments.	Each	marker	represents	the	connectivity	averaged	over	all	channels	for	one	
experiment.	Filled	markers	show	significant	changes	(paired	t-test;	p<0.05).	(G)	Change	in	coherence	across	
different	 frequency	bands	 in	 comparison	 to	 controls.	Asterisk	 show	significant	difference	between	 the	 two	
groups	(unpaired	t-test,	Bonferroni	corrected;	p<0.05).		(H)	Linear	relationship	between	SERR	and	coherence	
across	different	frequencies	for	pre-stim,	post-stim	and	the	change	in	both	measures.	Summary	data	showing	
the	mean	and	standard	error	(shaded	region)	of	regression	slope	and	r2	as	a	function	of	coherence	frequency	
(see	the	example	regression	for	the	theta-band	in	Fig.	2.4B).	

We	next	asked	whether	conditioning	increased	coherence-based	measures	of	inter-

area	 connectivity.	 We	 did	 observe	 increases	 in	 mean	 theta	 band	 (4	 -	 8Hz)	 coherence	

following	conditioning,	as	shown	 in	Figure	2.5E	 for	 the	same	dataset	used	 in	Figure	2.5B	

(paired	t-test,	p=0.03).	The	increase	in	theta	coherence	was	significant	for	the	majority	of	

experiments	 (13	 out	 of	 20;	 Figure	 2.5E),	 and	 the	 effect	 was	 localized	 to	 the	 theta	 band	

(Figure	2.5G;	paired	t-test,	p=0.017;	Bonferroni	correction	 for	multiple	comparisons).	We	

also	 looked	for	change	in	the	theta-band	power	as	a	result	of	stimulation	and	did	not	see	

any	 significant	 changes,	 supporting	 the	 conclusion	 that	 changes	 in	 coherence	 reflect	

changes	in	functional	connectivity	(Figure	2.6).	
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Figure	 2.6	 -	 Change	 in	 Power	 following	 Stimulation.	 Average	 change	 in	 power	 from	 pre-	 to	 post-
conditioning	 across	 monkeys	 and	 experiments.	 (A)	 Average	 change	 in	 power	 across	 secondary	 recording	
sites	 normalized	 to	 the	 change	 in	 power	 at	 the	 stimulation	 site.	 (B)	 Average	 change	 in	 power	 across	
secondary	recording	sites.	(C)	Average	change	in	power	at	the	stimulation	site.	

2.4.3 Stimulation Weakens Correlation between Connectivity Measures 

We	showed	in	Figure	2.4C	above	that	SERR	and	coherence	are	correlated	measures	

of	 functional	 connectivity	 in	 the	baseline	 condition.	Here	we	ask	how	 this	 relationship	 is	

changed	by	stimulation.	 	Figure	2.5H	replicates	the	baseline	data	 from	Figure	2.4C	(black	

lines),	along	with	new	data	showing	the	correlation	between	these	measures	at	the	end	of	

each	 experiment	 (green	 lines)	 and	 between	 their	 conditioning-induced	 changes	 (yellow	

lines).	 After	 conditioning,	 the	 cross-channel	 correlation	 between	 these	 measures	
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significantly	 decreased	 (paired	 t-test,	 p=6.3e-10),	 and	 the	 changes	 in	 connectivity	 were	

uncorrelated	 (t-test	 on	 distribution	 of	 regression	 slopes,	 p=0.85).	 This	 suggests	 that	 the	

stimulation	affects	the	two	measures	differently.		

	
Figure	 2.7	 -	 Linear	 Relationship	 between	 SERR	 and	 Coherence	 across	 Different	 Frequencies	 for	
Control	 Sessions.	 Replication	 of	 Figure	 2.5H	 for	 control	 (no	 stimulation)	 sessions.	 Linear	 relationship	
between	 SERR	 and	 coherence	 across	 different	 frequencies	 for	 pre-stim,	 post-stim	 and	 the	 change	 in	 both	
measures.	 Summary	data	 showing	 the	mean	 and	 standard	 error	 (shaded	 region)	 of	 regression	parameters	
(slope—upper,	r2—lower)	across	frequencies.	

To	further	address	this,	we	replicated	this	analysis	for	our	control	(no	stimulation)	

sessions.	 In	 this	 case,	 we	 did	 not	 see	 a	 significant	 decrease	 in	 the	 correlation	 between	

measures	after	control	sessions	(paired	t-test,	p=0.36;	see	Figure	2.7).	Additionally,	a	direct	

comparison	between	the	median	decrease	in	the	correlation	for	stimulation	versus	control	

sessions	showed	a	significant	difference	when	all	frequencies	were	considered	(p=0.0025),	

though	the	difference	was	not	significant	when	only	compared	in	the	theta	band.		Together,	

these	 results	 show	 that	 the	 stimulation-induced	 changes	 in	 these	 two	 measures	 of	
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connectivity	do	not	correlate	with	each	other	at	a	fine-scale.	This	may	reflect	the	fact	that	

the	 two	measures	 are	 not	 functionally	 equivalent	 despite	 their	 correlation;	 they	 capture	

related,	but	not	identical	aspects	of	connectivity.	

2.4.4 Stimulation Drives Increases in Inter-area Connectivity within 
Minutes 

As	shown	in	Figure	2.5A,	our	stimulation	protocol	included	5	repetitions	of	baseline	

recording,	 testing,	and	conditioning.	This	design	allowed	us	to	track	connectivity	changes	

across	 time,	 after	 each	 10	 minute	 increment	 of	 conditioning.	 Additionally,	 since	 neural	

activity	 was	 recorded	 throughout	 the	 experiment,	 we	 were	 able	 to	 measure	 changes	 in	

SERR	 during	 conditioning	 blocks.	 Figure	 2.8A	 shows	 the	 evolution	 of	 mean	 inter-area	

connectivity	 for	 both	 measures	 in	 an	 example	 session.	 To	 account	 for	 differences	 in	

network	connectivity	across	monkeys	and	sessions,	we	also	analyzed	the	changes	in	each	

measure	with	 respect	 to	 the	 baseline	 pre-conditioning	measurements	 (Figure	 2.8B).	 For	

this	example	session	(Figure	2.8A),	and	on	average	across	all	sessions	(Figure	2.8B),	there	

is	a	trend	of	increasing	connectivity	across	the	session	that	starts	within	the	first	10	minute	

conditioning	 block.	 These	 increases	 in	 inter-area	 connectivity	 measured	 with	 SERR	 and	

coherence	 (Figure	 2.8B)	 were	 correlated	 across	 time	 (Pearson	 correlation	

coefficient=0.26).	 Additionally,	 the	 rate	 of	 strengthening	 was	 consistent	 across	

conditioning	blocks;	we	detected	a	significant	increase	in	SERR	(p<0.05)	at	~4.5	minutes	of	

stimulation	 in	4	out	of	5	conditioning	blocks	(see	Figure	2.9	 for	comparison	with	control	

sessions).	
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Figure	2.8	-	Stimulation	Induces	an	Increase	in	Inter-Area	Connectivity	across	Time.	(A)	An	example	of	
the	dynamics	of	mean	inter-area	SERR	and	coherence	in	an	experiment.	Black	lines	show	linear	regression	to	
each	 conditioning	 block.	 (B)	 Dynamics	 of	 change	 in	 SERR	 and	 theta	 coherence	 with	 respect	 to	 baseline	
connectivity	across	all	experiments	(shaded	area	show	standard	error).		

Note	 that	 the	 stimulation-induced	 plasticity	 was	 not	 reinforced	 during	 baseline	

recording	 blocks.	 Given	 the	 length	 of	 the	 conditioning	 (10min)	 and	 baseline	 recording	

(5min	 in	 most	 experiments)	 blocks,	 one	 might	 expect	 that	 stimulation-induced	 changes	

would	revert	back	to	baseline.	We	did	observe	a	significant	decrease	(paired	t-test,	p=2.9e-

05)	 in	 the	SERR	between	 the	 last	100	pulses	of	 the	 conditioning	block	and	 the	 following	

test	 block,	 indicating	 some,	 but	 not	 complete,	 unlearning	 of	 the	 stimulation-induced	

connectivity	changes.	
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Figure	 2.9	 -	 Dynamics	 of	 Changes	 in	 Connectivity	 for	 Control	 Sessions.	 Replication	 of	 Figure	 5B	 for	
control	(no	stimulation)	sessions.	Dynamics	of	changes	in	SERR	and	theta	coherence	with	respect	to	baseline	
connectivity	across	all	experiments	(shaded	area	show	standard	error).	

2.4.5 Stimulation Drives Fine-scale Changes across the Network that 
are Consistent with Hebbian Learning 

We	next	evaluated	the	 fine-scale	effects	of	conditioning	across	 the	entire	network.	

Since	 SERR	 is	 restricted	 to	 connectivity	 from	 the	 stimulation	 site,	 this	 analysis	 was	

conducted	 using	 only	 changes	 in	 pairwise	 coherence.	 	 Figure	 2.10A	 shows	 data	 from	 an	

example	session,	with	connectivity	changes	represented	as	a	set	of	heatmaps:	the	heatmap	

at	each	recording	site	represents	the	change	in	pairwise	coherence	between	that	electrode	

and	 all	 of	 the	 other	 electrodes.	 A	magnified	 example	 heatmap	 is	 shown	 in	 Figure	 2.10A,	

right;	 top	 panel.	 This	 example	 shows	 heterogeneous	 changes	 in	 connectivity	 across	 the	

network.	

We	next	asked	whether	such	heterogeneous	changes	are	to	be	expected.	A	Hebbian	

plasticity	 model	 suggests	 that	 the	 fine-scale	 changes	 in	 connectivity	 should	 reflect	 the	

statistics	 of	 plasticity-inducing	 activity.	 	 In	 this	 case,	 we	 predicted	 that	
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Figure	2.10	-	Hebbian	Plasticity	Models	Explain	Stimulation-Induced	Fine-scale	Network	Connectivity	
Changes.	(A)	An	example	session	highlighting	the	similarity	between	the	stimulus-evoked	coherence	(middle	
panel)	and	the	change	in	baseline	coherence	(left	panel)	across	the	array	in	Monkey	J.	At	each	recording	site	
across	 the	 array,	 a	 heatmap	 represents	 the	 respective	 coherence	 between	 that	 location	 with	 all	 other	
recording	sites.	Enlarged	examples	for	a	single	location	are	compared	in	the	right	panel.	The	black	line	shows	
the	 location	of	central	sulcus	on	the	array	and	rectangles	show	the	location	of	the	magnified	examples.	The	
average	 value	 across	 the	 array	 was	 subtracted	 for	 visualization.	 (B)	 Linear	 regression	 between	 stimulus-
evoked	coherence	and	the	change	in	baseline	coherence	for	the	example	session	shown	in	A.	(C)	Summary	of	
regression	parameters	across	single-site	and	non-interference	experiments.	Errorbars	show	standard	error.	

correlated	 stimulation-evoked	 activity	 between	 two	 cortical	 sites	 would	 strengthen	 the	

functional	 connectivity	 between	 them,	while	 uncorrelated	 or	 anti-correlated	 stimulation-

evoked	 activity	 would	 weaken	 their	 functional	 connectivity.	 We	 quantified	 stimulation-

induced	correlations	by	measuring	 the	pairwise	 coherence	during	 the	 conditioning	block	

and	 subtracting	 out	 the	 coherence	 calculated	 during	 baseline	 recording	 (thought	 to	

be	representative	of	initial	connectivity).	We	refer	to	this	difference	as	the	stimulus-evoked	

coherence.	Indeed,	in	the	example	session	of	Figure	2.10A,	one	can	see	a	similarity	between	

the	pattern	of	changes	in	baseline	coherence	across	the	array	(left	panel)	with	the	stimulus-
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evoked	coherence	(middle	panel).		

To	quantify	this	similarity,	we	used	linear	regression	to	predict	changes	in	baseline	

coherence	across	sites	based	on	the	stimulus-evoked	coherence.	Importantly,	both	of	these	

quantities	 use	 the	 initial	 baseline	 coherence	 as	 a	 reference.	 So	 to	 avoid	 spurious	

correlations	introduced	by	subtracting	the	same	data	from	the	two	regression	variables,	we	

split	 the	 baseline	 recording	 blocks	 into	 two	 intervals	 and	 used	 the	 data	 from	 only	 one	

interval	 for	 each	 regressor	 (see	 Section	 2.3	 Methods	 for	 more	 details).	 Data	 from	 the	

example	session	in	Figure	2.10A	is	shown	as	a	scatter	plot	in	Figure	2.10B,	along	with	the	

calculated	regression	parameters.	The	plot	shows	a	strong	correlation	between	 the	 input	

coherence	and	changes	in	baseline	coherence.	This	relationship	was	consistent	across	our	

data	 (Figure	 2.10C):	 the	 distribution	 of	 linear	 regression	 slopes	 across	 experimental	

sessions	 and	 monkeys	 was	 significant	 (paired	 t-test:	 p=2.41e-19;	 101	 out	 of	 105	

experimental	 blocks	 had	 significant	 (p<0.05)	 linear	 regression	 models).	 These	 results	

support	a	Hebbian	model	for	network-wide	changes	in	connectivity.		

To	further	test	this	model,	we	conducted	some	experimental	sessions	using	a	more	

complex	 spatio-temporal	 pattern	 of	 optical	 stimulation.	 Specifically,	 by	 reducing	 the	

latency	between	the	two	light	sources	to	either	10	or	30	ms	(Figure	2.12A),	we	introduce	

interference	 between	 evoked	 responses	 from	 the	 two	 light	 sources	 (Figure	 2.12B).	 We	

repeated	 the	 analysis	 of	 mean	 inter-area	 coherence	 changes	 (c.f.	 Figure	 2.5F)	 for	 these	

sessions,	and	we	did	not	see	a	consistent	increase	in	mean	inter-area	connectivity	(Figure	

2.12C).	 	 Nevertheless,	 we	 found	 that	 stimulus-evoked	 coherence	 continued	 to	 predict	

changes	 in	 baseline	 coherence	 (paired	 t-test	 on	 the	 distribution	 of	 regression	 slopes:	

p=1.37e-28;	 linear	 regression	 slopes	with	 p<0.05:	 160	 out	 170	blocks;	 Figure	 2.12D,	 see	
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Figure	2.11	for	an	example	session).	Furthermore,	the	regression	parameters	were	similar	

to	those	obtained	with	the	simple	stimulation	patterns	(Figure	2.10C),	and	both	simple	and	

complex	 stimulation	experiments	 yielded	 regression	 slopes	 that	were	 significantly	 larger	

than	those	obtained	from	control	sessions	(long-latency	vs.	control	sessions,	ranksum	test:	

p=0.048;	short-latency	vs.	control	sessions,	ranksum	test:	p=0.037;	see	Figure	2.13).	

	
Figure	2.11	-	Short-Latency	Example	Showing	the	Relationship	between	Input	Coherence	and	Change	
in	 Baseline	 Coherence.	 (A)	 An	 example	 of	 similarity	 between	 the	 input	 coherence	 (right	 panel)	 and	 the	
change	in	baseline	coherence	(left	panel)	in	Monkey	J.	(B)	Linear	regression	between	input	coherence	and	the	
change	in	baseline	coherence	for	the	example	session	shown	in	A.	
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Figure	2.12	 -	Hebbian	Plasticity	Models	Explain	Fine-scale	Network	Connectivity	Changes	Driven	by	
Complex	 Spatio-Temporal	 Stimulation	 Patterns.	 (A)	 Same	 stimulation	 protocol	 as	 described	 in	 Figure	
2.5A.	However	here	we	reduced	 the	 latency	between	 to	 the	 two	 lasers	 to	10	ms	or	30	ms,	 creating	a	more	
complicated	 pattern	 of	 stimulation.	 (B)	 An	 example	 of	 the	 stimulus-evoked	 activity	 across	 the	 array	 from	
Monkey	G.	 Blue	 circles	 show	 the	 locations	 of	 stimulation.	 The	 inset	 shows	 the	 enlarged	 pattern	 of	 evoked	
response	 at	 the	 framed	 electrode,	 which	 is	 located	 close	 to	 both	 lasers.	 (C)	 Summary	 of	 inter-area	 theta	
coherence	 changes	 for	 all	 interference	 experiments	 across	 both	 monkeys.	 (D)	 Summary	 of	 regression	
parameters	across	all	interference	experiments.	Errorbars	show	standard	error.	
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These	 results	 demonstrate	 a	 robust	 relationship	 between	 stimulus-evoked	

correlations	 and	 changes	 in	baseline	 connectivity	 across	 the	network.	These	 findings	 are	

well	explained	by	a	Hebbian	model	of	large-scale	stimulation-induced	plasticity.	

	
Figure	2.13	-	Comparing	the	Effects	of	Stimulation	on	Network	Connectivity	between	Stimulation	and	
Controls.	Summary	of	regression	parameters	across	all	experiments.	Errorbars	show	standard	error.	

2.5 Discussion 
In	 this	 study	we	 investigated	how	 the	 functional	 connectivity	between	and	across	

sensory	 and	 motor	 areas	 changes	 in	 response	 to	 stimulation.	 With	 optogenetics,	 we	

selectively	manipulated	 local	 populations	 of	 excitatory	neurons	within	 this	 sensorimotor	

network.	We	compared	two	different	methods	to	measure	functional	connectivity	at	both	

gross-	 and	 fine-scales,	 and	 demonstrated	 how	 these	 measures	 change	 in	 response	 to	

conditioning	 stimulation.	 We	 showed	 that	 these	 changes	 are	 consistent	 with	 Hebbian	

synaptic	 plasticity	 rules,	 extending	 Hebbian	 models	 of	 stimulation-driven	 plasticity	 to	

large-scale	networks.	This	work	demonstrates	the	feasibility	of	driving	targeted	plasticity	

with	optogenetic	 stimulation.	This	 framework	 is	 a	 starting	point	 for	designing	principled	
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approaches	to	large-scale	neuroplasticity	and	stimulation-based	therapies	for	neurological	

and	neuropsychiatric	disorders.	

2.5.1 Measures of Functional Connectivity between M1 & S1 

Functional	connectivity	between	M1	and	S1	has	been	demonstrated	in	fMRI	(Matsui	

et	 al.,	 2011;	 McGregor	 &	 Gribble,	 2015),	 electrophysiology	 (A	 Iriki	 et	 al.,	 1989;	 Prsa,	

Galinanes,	&	Huber,	2017;	Yazdan-Shahmorad	et	al.,	2016),	and	anatomical	studies	(Kosar,	

Waters,	 Tsukahara,	 &	 Asanuma,	 1985;	 Petrof,	 Viaene,	 &	 Sherman,	 2015).	 To	 evaluate	

stimulation-induced	 changes	 across	 these	 areas	 we	 investigated	 two	 measures	 of	

functional	 connectivity,	 one	 based	 on	 stimulation	 and	 one	 based	 on	 natural	 neural	

processing.	Variants	of	SERR	(Feldmeyer	&	Sakmann,	2000;	Klinshov,	Teramae,	Nekorkin,	

&	Fukai,	2014;	Seeman	et	al.,	2017)	and	coherence	(Bastos	&	Schoffelen,	2015;	Lang	et	al.,	

2012)	 have	 been	 used	 previously	 to	 evaluate	 functional	 connectivity.	 However,	 to	 our	

knowledge	they	have	never	been	used	in	combination	or	compared.		

In	principle,	these	two	measures	reflect	different	aspects	of	functional	connectivity.	

SERR	 is	 a	more	direct	measure	of	 the	projections	 from	 the	 stimulation	 site.	 Importantly,	

stimulation	 likely	 evokes	 activity	 from	 both	 terminals	 and	 cell	 bodies	 located	 at	 the	

stimulation	site,	though	C1V1	does	not	express	well	down	at	the	axon	(Rajasethupathy	et	

al.,	 2015).	 Secondary	 responses	 arise	 from	 a	 combination	 of	 synaptic,	 antridromic,	 and	

indirect	(network)	effects.		That	said,	based	on	the	timing	of	the	evoked	responses	and	the	

limited	 expression	 of	 C1V1	 in	 axon	 terminals,	 we	 expect	 the	 amplitude	 of	 secondary	

responses	 normalized	 to	 primary	 response	 amplitudes	 to	 reflect	 synaptic	 connectivity.	

Coherence,	on	the	other	hand,	measures	the	broader	effects	of	network-wide	dynamics.			
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Despite	these	differences,	we	saw	that	the	measures	are	robustly	correlated	across	

channels	at	the	beginning	of	our	experiments.	This	would	be	expected	in	a	network	where	

stability	was	maintained	with	a	Hebbian	mechanism.	In	other	words,	direct	connectivity,	as	

reflected	 in	 SERR,	 drives	 correlated	 activity,	which	 is	 reflected	 in	 coherence;	 conversely,	

correlated	 activity	 drives	 changes	 in	 connectivity	 (see	 Network	 effects	 and	 Network	

stability).	 These	 coupled	 mechanisms	 lead	 the	 network	 to	 a	 stable,	 steady	 state	 (Fox	 &	

Stryker,	2017;	Toyoizumi,	Kaneko,	Stryker,	&	Miller,	2014;	Zenke	&	Gerstner,	2017).		

Notably,	 however,	 our	 conditioning	 protocol	 caused	 the	 two	 measures	 of	

connectivity	to	become	less	correlated	across	electrodes.	This	might	seem	surprising	given	

that	conditioning	led	to	a	significant	mean	increase	in	connectivity	between	S1	and	M1	for	

both	measures	and	that	the	changes	in	coherence	were	robustly	predicted	by	the	stimulus-

evoked	coherence.	However,	 this	decrease	 in	 the	correlation	between	 the	measures	after	

conditioning	seems	to	be	limited	to	high	frequencies	and	may	reflect	a	transient	instability	

of	the	network	due	to	the	stimulation-induced	perturbations	in	connectivity.	

2.5.2 Stimulation Changes the Functional Connectivity between M1 & 
S1 

Previous	 work	 has	 demonstrated	 that	 either	 activity	 dependent	 (Jackson	 et	 al.,	

2006;	Timothy	H	Lucas	&	Fetz,	2013;	Nishimura	et	al.,	2013;	James	M.	Rebesco	et	al.,	2010;	

W.	 Song	 et	 al.,	 2013)	 or	 paired	 electrical	 stimulation	 (James	M	 Rebesco	 &	Miller,	 2011;	

Seeman	et	al.,	2017)	can	lead	to	plastic	changes	in	both	primate	and	rodent	cortex.	Here	we	

demonstrated	that	optogenetic	stimulation	at	even	a	single	location	strengthens	inter-area	

functional	 connectivity	 between	brain	 areas.	 A	 similar	 observation	was	 reported	 for	 one	



	 52	

session	of	single-site	electrical	stimulation	(Seeman	et	al.,	2017).	This	result	 is	consistent	

with	spike-timing	dependent	plasticity	(STDP)	rules	(G.	Bi	&	Poo,	2001).	In	particular,	since	

the	 time	 difference	 between	 the	 activation	 of	 the	 primary	 (pre-synaptic)	 and	 secondary	

(post-synaptic)	 responses	 to	optical	 stimulation	 is	 about	3	–	6	ms;	 repetitive	 stimulation	

should	 strengthen	 the	 connectivity	 from	 the	 site	 of	 stimulation	 to	 the	 other	 area.	While	

stimulation-induced	 long-term	 potentiation	 (LTP)	 and	 STDP	 have	 been	 observed	 within	

local	 circuits	 (Feldman,	 2012;	 A	 Iriki	 et	 al.,	 1989;	 Shulz	 &	 Jacob,	 2010),	 and	 have	 been	

posited	as	the	mechanism	of	stimulation-induced	plasticity	within	M1	(Lajoie	et	al.,	2017)	

this	 is	 the	 first	 study	 explaining	 large-scale	 changes	 across	 cortical	 networks.	 Notably,	

conditioning	drove	increases	in	coherence	between	S1	and	M1	only	in	the	theta	band	(4	–	8	

Hz).	This	result	is	difficult	to	interpret	because	the	conditioning	stimulation	frequency	(5	or	

7	Hz)	itself	lies	within	the	range	of	the	theta	band.	It	is	possible	that	Hebbian	mechanisms	

are	selectively	enhancing	connectivity	at	the	conditioning	frequency.	It’s	also	possible	that	

theta	band	coherence	best	reflects	 the	plastic	connections	between	these	areas.	Since	we	

did	 not	 vary	 stimulation	 frequency	 outside	 of	 this	 range,	 no	 strong	 conclusions	 can	 be	

drawn.	

2.5.3 Dynamics of Connectivity Changes 

The	 temporal	 dynamics	 of	 both	 measures	 reveal	 a	 trend	 of	 increasing	 inter-area	

connectivity	 throughout	 the	 experiment.	 This	 trend	 suggests	 that	 neuroplastic	 changes	

start	 almost	 immediately	 after	 the	 start	 of	 stimulation.	 Interestingly,	 we	 observed	

unlearning	of	 the	 stimulation-induced	 changes	during	passive	 recording,	 though	 some	of	

the	 stimulation-induced	 changes	 persisted.	 Previous	 studies	 have	 shown	 that	 longer	
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conditioning	 sessions	 (3	 –	 48	 hours)	 result	 in	 changes	 that	 are	 stable	 over	 timescales	

comparable	 to	 the	 length	 of	 conditioning	 (Jackson	 et	 al.,	 2006;	 Timothy	H	 Lucas	&	 Fetz,	

2013;	 Nishimura	 et	 al.,	 2013;	 James	 M	 Rebesco	 &	 Miller,	 2011;	 Seeman	 et	 al.,	 2017).	

Further	 experiments	 are	 required	 to	 estimate	 the	 stability	 of	 plasticity	 following	

optogenetic	stimulation	over	longer	time	scales.	

2.5.4 Network Effects 

Given	that	Hebbian	rules	have	been	used	extensively	to	explain	synaptic	plasticity,	

we	wanted	to	explore	the	idea	that	large-scale	stimulation-induced	changes	are	consistent	

with	 Hebbian	 plasticity.	 The	 strongest	 test	 of	 the	 Hebbian	 model	 is	 to	 compare	 the	

correlations	 directly	 induced	 by	 stimulation	 with	 the	 changes	 in	 network	 correlations	

observed	 after	 conditioning.	Our	 ability	 to	 record	 artifact-free	 signals	 during	 stimulation	

allowed	 us	 to	 perform	 this	 test.	 We	 did	 find	 a	 predictive	 linear	 relationship	 between	

stimulus-evoked	 coherence	 and	 the	 changes	 in	 baseline	 coherence	 after	 conditioning.	

Furthermore,	 the	 model	 held	 for	 both	 simple	 and	 complex	 spatiotemporal	 patterns	 of	

stimulation-evoked	activity.	

2.5.5 Network Stability 

There	are	a	few	important	observations	that	we	have	touched	upon	but	wanted	to	

highlight	here:	

1) SERR	is	a	more	direct	measure	of	connectivity	from	one	area	to	the	other.	

2) Theta	coherence	measures	how	correlated	activity	is	between	M1	and	S1.	

3) At	 the	 beginning	 of	 experiments	 SERR	 and	 theta	 coherence	 are	 correlated	
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across	electrodes	(Figure	2.4).	

4) This	correlation	decreases	during	the	experiment.	The	change	in	SERR	is	not	

correlated	to	the	change	in	theta	coherence	across	electrodes	(Figure	2.5).	

5) The	 functional	 connectivity	 between	 M1	 and	 S1	 increases	 almost	

immediately	 with	 stimulation.	 Importantly,	 these	 increases	 are	 not	

permanent.	 During	 “Recording	 Blocks”,	 in	 which	 passive	 recordings	 are	

taking	 place	 and	 stimulation	 is	 temporarily	 halted,	 the	 inter-area	

connectivity	decreases	(Figure	2.8).	

These	observations	provide	key	 insight	 into	neural	networks	and	suggest	 that	 the	

sensorimotor	 cortex	 is	 a	 stable	 network	 under	 normal	 conditions.	 A	 few	 computational	

papers	 have	 examined	 neural	 networks	with	 ongoing	Hebbian	 plasticity	 (Fox	&	 Stryker,	

2017;	 Toyoizumi	 et	 al.,	 2014;	 Zenke	 &	 Gerstner,	 2017).	 In	 these	 networks	 connectivity	

shapes	activity,	and	activity,	in	turn,	drives	changes	in	connectivity.	More	explicitly,	strong	

connections	 between	 specific	 neurons	 lead	 to	 correlated	 activity	 between	 these	 neurons	

whereas	weak	connections	do	not	generally	 lead	to	correlated	activity.	Hebbian	plasticity	

suggests	 that	 correlated	 activity	 leads	 to	 strengthening	 connections	 and	 uncorrelated	

activity	 leads	 to	weakening	 connections	 (DO,	 1949).	 In	 simulation,	 these	networks	move	

towards	 an	 equilibrium	 point	 and	 become	 stable;	 at	 this	 stable	 point,	 correlations	 are	

reflective	of	the	underlying	connectivity	in	the	network.	In	the	context	of	this	body	of	work,	

the	observation	that	SERR	and	Coherence	are	correlated	at	the	beginning	of	experiments	is	

unsurprising.	 If	Hebbian	plasticity	 is	ongoing,	 the	sensorimotor	cortex	comprises	a	stable	

network	where	correlations	(coherence)	are	reflective	of	underlying	connectivity	(SERR).	

During	 stimulation,	 activity	patterns	 change,	 and	different	 correlations	 are	 introduced	 to	
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the	 network.	 These	 correlations	 then	 drive	 connectivity	 changes	 (to	 a	 first	 order	

approximation,	this	is	a	Hebbian	process;	see	Network	analysis).	However,	the	changes	that	

are	made	cause	the	SERR	and	Coherence	to	be	less	correlated;	furthermore,	these	changes	

do	 not	 last	 indefinitely.	 This	 suggests	 that	 our	 stimulation	 protocol	 pushed	 the	 network	

from	its	stable	equilibrium	to	an	unstable	state,	and	then	the	network	was	pulled	back	to	

the	equilibrium	point	after	stimulation	ended.		

Many	 experiments	 have	 used	 targeted	 stimulation	 protocols	 to	 induce	 small	

changes	 in	 a	 network	 (G.	 Bi	 &	 Poo,	 2001;	 Jackson	 et	 al.,	 2006;	 T	 H	 Lucas	 &	 Fetz,	 2013;	

Seeman	et	al.,	2017).	These	changes	last	at	least	as	long	as	the	stimulation	itself,	and	in	the	

case	of	slice	experiments	examining	the	connectivity	at	a	single	synapse,	often	much	longer.	

However,	 changing	 targeted	 connections	 is	 different	 than	 changing	 broad	 connectivity	

across	 a	 network.	 These	 broad	 changes	 may	 be	 unstable	 without	 sufficiently	 long	

stimulation	that	pushes	the	network	to	a	new	stable	equilibrium	point.	

2.5.6 Comparison to Representational Plasticity Literature 

There	 is	 a	 large	 body	 of	 research	 on	 sensory	 cortical	 plasticity	 (Recanzone	 et	 al.,	

1992a;	 Wu	 et	 al.,	 2016).	 The	 present	 study	 differs	 from	 this	 body	 of	 work	 in	 two	 key	

dimensions.	 First,	 previous	work	 has	 largely	 focused	 on	 how	 changes	 in	 the	 statistics	 of	

sensory	input	and/or	motor	output	affect	the	cortical	representation	in	sensory	cortex.	In	

contrast,	we	have	directly	manipulated	 cortical	 circuits,	without	 a	 detailed	knowledge	of	

the	 somatotopic	 map.	 Also,	 earlier	 work	 studied	 plasticity	 on	 the	 time	 scale	 of	 days	 to	

months,	 while	 we	 are	 studying	 changes	 across	 minutes.	 Despite	 these	 differences,	 both	

appear	to	support	a	key	role	for	Hebbian	learning	in	sensorimotor	cortical	plasticity.	Still,	a	
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deeper	understanding	of	 the	 relationship	between	 these	bodies	of	work	would	 require	 a	

study	of	intermediate	time-frames	as	well,	along	with	detailed	cortical	mapping.	These	are	

important	questions	for	future	work.	

2.5.7 Limitations of the Experiment 

The	large-scale	interface	used	in	this	study	enabled	robust	estimation	of	functional	

connectivity	and	stimulation-evoked	correlations.	However,	there	are	several	limitations	in	

our	experimental	setup.	First,	surface	stimulation	combined	with	high	blue	light	absorption	

and	 scattering	 in	 tissue	 limits	 the	 depth	 of	 light	 penetration	 (Yizhar,	 Fenno,	 Davidson,	

Mogri,	 &	 Deisseroth,	 2011).	 The	 ability	 to	 target	 specific	 cortical	 layers	 would	 help	 us	

understand	 the	 anatomical	 basis	 of	 the	 plasticity	 we	 observed.	 Second,	 surface	 µECoG	

recordings	 reflect	a	 summation	of	nearby	neural	activity,	making	comparisons	 to	explicit	

synaptic	learning	rules	difficult.	Depth	recordings	would	reveal	more	detailed	information	

about	 spike	 timing,	 the	 role	 of	 different	 cortical	 layers,	 and	 the	 relationship	 between	

synaptic	and	large-scale	plasticity.	 	Lastly,	 the	µECoG	arrays	were	placed	acutely	 for	each	

experiment.	 To	 investigate	 the	 long-term	 effects	 of	 stimulation	 we	 need	 stable,	 chronic	

recordings.	

2.5.8 Clinical Applications 

Our	 results	 offer	 a	 proof-of-concept	 that	 optogenetic	 stimulation	 can	 drive	

predictable	 changes	 in	 network-scale	 connectivity.	 The	 success	 of	 optogenetics	 in	 NHP	

represents	 an	 important	 step	 forward	 for	 translational	 use	 (Doroudchi	 et	 al.,	 2011;	Han,	

2012).	The	continued	rapid	progress	in	the	field	has	the	potential	to	bring	cell-type	specific	
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neuromodulation	 therapies	 to	 the	 clinic.	 However,	 even	 where	 therapeutic	 approaches	

ultimately	wind	up	using	electrical	 stimulation,	 the	advantages	of	optogenetics	make	 it	 a	

powerful	tool	for	better	understanding	the	underlying	mechanisms	of	plasticity	and,	thus,	

for	the	development	of	therapeutic	applications	of	neuromodulation.	This	framework	also	

provides	 scientific	 insight	 into	 the	mechanisms	of	neural	plasticity.	 Future	efforts	 should	

focus	on	linking	the	plasticity	results	presented	here	with	improvements	in	motor	function	

or	 sensory	 perception,	 which	 will	 have	 important	 implications	 for	 stimulation-based	

therapies.	
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Chapter 3   
Meso-scale Oscillations Coordinate Spiking Activity to Support 
Sensorimotor Learning 
	 	



	 59	

3.1 Foreword 
In	 Chapter	 2,	 I	 used	 an	 artificial	 neurostimulation	 paradigm	 to	model	meso-scale	

connectivity	 changes	 as	 a	 function	 of	 baseline	 connectivity	 and	 stimulation-induced	

correlations.	 This	 work	 stressed	 the	 importance	 of	 induced	 correlations,	 reinforcing	

principles	attained	from	synaptic	plasticity	experiments.	In	this	chapter,	we	try	to	connect	

synaptic	plasticity	to	meso-scale	oscillations	during	natural	sensorimotor	learning.	We	take	

advantage	 of	 meso-scale	 oscillations	 that	 are	 thought	 to	 support	 sensorimotor	 learning	

(sleep	 spindles	 and	 slow	 oscillations)	 and	 measure	 the	 timing	 and	 structure	 of	 spiking	

activity	 dynamically	 during	 these	 oscillations.	 We	 the	 connect	 the	 changes	 in	 spiking	

structure	 during	 oscillations	 to	 expected	 changes	 in	 synaptic	 plasticity,	 changes	 with	

sensorimotor	learning,	and	changes	during	sleep.	Since	the	spiking	structure	is	specifically	

measured	in	relation	to	meso-scale	activity,	these	observations	provide	insight	into	the	role	

of	meso-scale	oscillations	in	plasticity.	

3.2 Introduction  
Sleep-dependent	 offline	 processing	 is	 required	 for	 the	 consolidation	 of	 new	

memories	and	skills	(Gulati	et	al.,	2017;	Latchoumane	et	al.,	2017;	Miyamoto	et	al.,	2016;	

Rasch	 &	 Born,	 2013).	 In	 particular,	 thalamocortical	 spindles,	 a	 hallmark	 of	 light	 sleep	

(Rasch	&	Born,	2013;	M.	Steriade,	2000;	M	Steriade,	McCormick,	&	Sejnowski,	1993),	have	

been	 linked	 to	 offline	 processing	 across	 a	 variety	 of	 paradigms	 ranging	 from	declarative	

memory	 tasks	 (Z.	 Clemens,	 Fabó,	 &	Halász,	 2005;	 Zsófia	 Clemens,	 Fabó,	 &	Halász,	 2006;	

Eschenko,	Molle,	 Born,	&	 Sara,	 2006;	 Gais,	Mölle,	Helms,	&	Born,	 2002;	 Logothetis	 et	 al.,	

2012;	Mölle,	Eschenko,	Gais,	Sara,	&	Born,	2009)	to	motor	learning	paradigms	(Barakat	et	
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al.,	2011;	Fogel	&	Smith,	2006;	Johnson	et	al.,	2012;	Nishida	&	Walker,	2007;	Ramanathan	

et	 al.,	 2015).	 Moreover,	 slow	 oscillations	 (SO)	 during	 NREM	 sleep	 have	 been	 linked	 to	

offline	 processing	 of	 awake	 experiences	 during	 sleep	 (Gulati	 et	 al.,	 2017;	 Gulati,	

Ramanathan,	 Wong,	 &	 Ganguly,	 2014;	 Marshall,	 Helgadóttir,	 Mölle,	 &	 Born,	 2006;	

Miyamoto	et	al.,	2016;	Molle,	Marshall,	Gais,	&	Born,	2004;	Ramanathan	et	al.,	2015;	Mircea	

Steriade	&	Timofeev,	2003).	

There	 is	 growing	 evidence	 that	 “nesting”	 of	 SO	with	 spindles	may	 be	 particularly	

important	 for	 offline	 processing.	 For	 putative	 hippocampus	 dependent	 tasks,	 the	

coordination	 of	 thalamocortical	 spindles	 (10	 –	 16	 Hz),	 cortical	 SO	 (<	 1	 Hz),	 and	

hippocampal	sharp-wave	ripples	(150	–	250	Hz)	appear	to	promote	consolidation	through	

hierarchical	nesting,	in	which	higher	frequency	oscillations	are	embedded	(“nested”)	within	

lower	 frequency	oscillations	 (Cox	 et	 al.,	 2014;	Mölle	 et	 al.,	 2009;	Mölle,	Marshall,	 Gais,	&	

Born,	2002;	Niknazar,	Krishnan,	Bazhenov,	&	Mednick,	2015;	M.	Steriade,	Contreras,	Curró	

Dossi,	&	Nuñez,	1993).	 Interestingly,	 a	 recent	 study	 selectively	 silenced	or	 induced	 sleep	

spindles	 during	 a	 contextual	 fear	 conditioning	 task	 and	 found	 concordant	 changes	 in	

behavior	(Latchoumane	et	al.,	2017),	confirming	that	nesting	plays	a	causal	role	in	learning.	

In	motor	learning	paradigms,	both	spindles	and	SO	are	correlated	with	the	reactivation	of	

awake	 experiences	 and	 offline	 performance	 gains	 (Ramanathan	 et	 al.,	 2015);	 it	 remains	

unclear,	 however,	 if	 such	 cortical	 nesting	 is	 associated	 with	 hippocampal	 sharp-wave	

ripples	(Genzel	&	Robertson,	2015).	

Despite	 the	 extensive	 work	 linking	 sleep	 spindles,	 SO,	 and	 the	 phenomenon	 of	

nesting	to	memory	consolidation,	little	is	understood	about	the	relationship	between	these	

oscillations,	 spiking	 activity,	 and	 neuroplasticity.	 In	 general,	 the	 temporal	 precision	 of	
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neural	spiking	is	important	for	regulating	changes	in	synaptic	efficacy	(G.	Q.	Bi	&	Poo,	1998;	

Hebb,	 1949),	 and	 network	 correlation	 structure	 is	 predictive	 of	 large-scale	 functional	

reorganization	(Michael	M.	Merzenich	et	al.,	1984;	Recanzone,	Merzenich,	&	Dinse,	1992b;	

Yazdan-Shahmorad,	Silversmith,	Kharazia,	&	Sabes,	2018).	A	 few	studies	have	 found	 that	

neurons	in	prefrontal	cortex	are	phase-locked	to	sleep	spindles	(Gardner,	Hughes,	&	Jones,	

2013;	Peyrache,	Battaglia,	&	Destexhe,	2011;	Sela,	Vyazovskiy,	Cirelli,	Tononi,	&	Nir,	2016).	

However,	despite	the	importance	of	neural	correlations	for	driving	synaptic	plasticity,	the	

effect	of	spindles	on	the	correlation	structure	of	neural	firing	remains	largely	unexplored.	

To	 that	 end,	we	 simultaneously	 recorded	 local	 field	 potentials	 (LFPs)	 and	 spiking	

activity	 from	 electrode	 arrays	 in	 the	 primary	 motor	 cortex	 (M1)	 of	 sleeping	 rats.	 This	

allowed	us	 to	 examine	 the	precise	 relationship	between	 spike	 timing	 relative	 to	ongoing	

spindle	oscillations	and	SO.	By	parsing	spindles	into	their	component	cycles	we	were	able	

to	analyze	 the	dynamics	of	spiking	during	 the	evolution	of	spindles.	This	analysis	 further	

revealed	 a	waxing	 and	waning	 of	 fine-scale	 structure,	 which	 featured	 increased	 spiking,	

increased	 phase	 locking,	 and	 increased	 local	 synchrony	 that	 reached	 a	maximum	 at	 the	

peak	of	spindles.	This	analysis	also	revealed	that	SO	and	spindles	interact—the	distribution	

of	spindle-induced	synchrony	narrowed	when	spindles	were	in	closer	temporal	proximity	

to	 a	 SO.	 By	 understanding	 the	 connection	 between	 spindles,	 SO,	 and	 spiking	 correlation	

structure,	we	hope	 to	 gain	 insight	 into	 the	neurophysiological	 basis	 of	 offline	processing	

driven	by	spindle-SO	interactions.	
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3.3 Methods 

3.3.1 Animals and Surgical Procedures 

This	 study	 was	 performed	 in	 strict	 accordance	 with	 guidelines	 from	 the	 USDA	

Animal	 Welfare	 Act	 and	 United	 States	 Public	 Health	 Science	 Policy.	 The	 protocol	 was	

approved	 by	 the	 San	 Francisco	 VA	 Medical	 Center	 Institutional	 Animal	 Care	 and	 Use	

Committee	 (IACUC,	 Protocol	 Number	 13–006).	 We	 used	 4	 adult	 Long–Evans	 male	 rats	

(approximately	8	wks	old).	Animals	were	kept	under	controlled	temperature	and	a	12	hr	

light/dark	 cycle	 with	 lights	 on	 at	 06:00	 A.M.	 Probes	 were	 implanted	 during	 a	 recovery	

surgery	 performed	 under	 isofluorane	 (1%–3%)	 anesthesia.	 The	 post–operative	 recovery	

regimen	 included	administration	of	buprenorphine	at	0.02	mg/kg	b.w.	 and	meloxicam	at	

0.2	 mg/kg	 b.w.	 Dexamethasone	 at	 0.5	 mg/kg	 b.w.	 and	 Trimethoprim	 sulfadiazine	 at	 15	

mg/kg	b.w.	were	also	administered	post–operatively	for	5	days.	All	animals	were	allowed	

to	recover	for	5	days	prior	to	the	start	of	experiments.	

3.3.2 Electrophysiology 

We	recorded	extracellular	neural	activity	using	tungsten	microwire	electrode	arrays	

(MEAs,	n	=	2	rats,	Tucker–Davis	Technologies	or	TDT,	FL),	tetrodes	(n	=	1	rat,	NeuroNexus,	

Michigan),	and	custom	probes	(n	=	1	rat).	We	implanted	arrays	in	the	caudal	forelimb	area	

of	the	primary	motor	cortex	(M1),	centered	at	3–4	mm	lateral,	0.5	mm	anterior	to	bregma.	

We	 recorded	 spike	 and	 LFP	 activity	 using	 a	 128–	 and	 256–channel	 TDT–RZ2	 system	

(Tucker–Davies	Technologies).	Spike	data	was	sampled	at	24,414	Hz	and	LFP	data	at	1,018	

Hz.	ZIF–clip	based	analog	headstages	with	a	unity	gain	and	high	impedance	(~1	GΩ)	were	
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used.	Only	 clearly	 identifiable	 single	units	with	 consistent	waveforms	and	high	 signal-to-

noise	 were	 analyzed.	 MEA	 recordings	 were	 sorted	 offline	 using	 PCA-based	 algorithms	

followed	by	manual	cluster-cutting	using	TDT’s	OpenSorter	software.	Tetrodes	were	sorted	

using	 the	 “UltraMegaSort”	 toolbox	 (available	 at	

https://physics.ucsd.edu/neurophysics/software.php),	 a	 set	of	MATLAB	based	 scripts	 for	

tetrode	sorting	described	in	detail	previously	(Gulati	et	al.,	2014;	Ramanathan	et	al.,	2015).	

Sorting	 on	 the	 256-channel	 custom	 probes	 was	 done	 using	 MountainSort	 (Chung	 et	 al.,	

2017).	 Briefly,	MountainSort	 is	 spike-sorting	 software	 that	 uses	 an	 automatic	 algorithm,	

which	 compares	 clusters	 of	 data	 using	 one-dimensional	 projections.	 If	 data	 along	 these	

projections	are	bimodal	then	the	clusters	are	considered	distinct.	We	used	a	consolidation	

factor	of	0.9	and	a	noise	overlap	threshold	of	0.03	to	 identify	clusters	as	single	units.	We	

performed	 a	minimal	 amount	 of	manual	merging	 and	 rejection	 of	 clusters	 to	 correct	 for	

drift	during	long	recordings.	

3.3.3 Analysis 

Data	analysis	was	performed	in	MATLAB	using	a	combination	of	custom	scripts	and	

available	 neural	 data	 analysis	 Toolboxes.	 For	 all	 analyses,	 disconnected/high	 impedance	

LFP	channels	were	removed	from	the	analysis.	

3.3.3.1 Behavior 
Prior	 to	 surgery,	 animals	were	 handled	 and	 acclimated	 to	 behavioral	 boxes.	Next,	

they	were	 oriented	 to	 the	 pellet	 tray	 for	 1	wk,	 and	 then	we	 determined	 handedness	 for	

each	rat	by	evaluating	behavior	on	10	trials	of	the	Whishaw	forelimb	reach	to	grasp	pellet	

task.	Then	we	implanted	multielectrode	arrays	into	the	forelimb	region	of	the	contralateral	
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motor	cortex.	After	five	days	of	recovery,	animals	were	food-restricted	for	2	d,	after	which	

animals	attained	a	fixed	amount	of	food	during	the	course	of	training	(2	average	sized	food	

pellets/day).	We	trained	animals	on	the	Whishaw	reach	to	grasp	task	in	a	clear	plexiglass	

chamber,	with	a	1.5	cm	slit	for	animals	to	reach	through	to	grasp	a	45	g	pellet	on	a	shallow	

dish	that	was	1.5	cm	away	from	the	behavioral	chamber.	All	reaches	were	videotaped	for	

post-	hoc	analysis	of	accuracy,	kinematics,	and	dynamics.	All	behavioral	sessions	began	in	

the	morning	and	consisted	of	a	2	h	block	of	spontaneous	recording	(to	record	a	“baseline”	

sleep	 period,	 Sleep1);	 a	 block	 motor	 skill	 learning	 (Reach1);	 and	 a	 second	 2-h	 block	 of	

spontaneous	 recording	 (Sleep2).	 Differences	 between	 Sleep1	 and	 Sleep2	 can	 be	 used	 to	

assess	learning-related	changes.	

3.3.3.2 Sleep Classification 
During	 the	 spontaneous	 sleep	 blocks,	 each	 LFP	 channel	was	 segmented	 into	 non-

overlapping	6	sec	windows.	In	each	window	the	power	spectral	density	was	computed	and	

averaged	over	 the	delta	 (0.1–4	Hz)	 and	 gamma	 (30–	60	Hz)	 frequency	bands.	 Then	 a	K-

means	classifier	was	used	to	cluster	epochs	into	two	clusters,	NREM	sleep	and	REM/awake	

(Figure	3.1).	Only	long	(>30sec)	epochs	of	sleep	were	analyzed.	The	identified	NREM	sleep	

epochs	were	verified	by	post-hoc	visual	inspection	of	the	LFP	activity.	
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Figure	 3.1	 -	 Example	 Sleep	 Classification.	 (A)	 PSD	 scatter	 plot.	 Each	 dot	 represents	 the	 power	 spectral	
density	 in	 the	delta	 (0.1–4	Hz)	and	gamma	(30–60	Hz)	 frequency	bands	during	6	sec	windows.	A	K-means	
classifier	was	used	 to	 cluster	 epochs	 into	 two	 clusters.	Blue	dots	belong	 to	 the	 cluster	 representing	NREM	
sleep	and	orange	pluses	 are	used	 for	 the	 remaining	dots.	 (B)	 Sleep	 classification	across	 time.	Average	LFP	
trace	is	plotted	across	a	2	hr	sleep	session	(blue).	Identified	sleep	epochs	are	highlighted	with	red	boxes.	

3.3.3.3 Spindle Detection 
The	spindle	detection	that	applied	here	is	similar	to	the	algorithm	used	by	(Sela	et	

al.,	2016).	Good	channels	were	first	z-scored	and	averaged	to	 form	a	virtual	LFP	channel.	

This	 signal	 was	 filtered	 in	 the	 spindle	 band	 (10-16Hz)	 using	 a	 zero-phase	 shifted,	 third	

order	Butterworth	filter.	A	smoothed	envelope	was	calculated	by	computing	the	magnitude	

of	the	Hilbert	transform	of	this	signal	then	convolving	it	with	a	Gaussian	window	(	α =2.5 ).	

Next,	 we	 determined	 two	 thresholds	 for	 spindle	 detection	 based	 on	 the	 mean	 ( µ )	 and	

standard	 deviation	 (s.d.)	 of	 the	 spindle	 band	 envelope	 during	 NREM	 sleep	 (



	 66	

		lower 	 = 	µ 	+ 	1.5	s.d. ;			upper 	 = 	µ 	+ 	2.5	s.d. ).	Epochs	 in	which	the	spindle	power	exceeded	

the	 upper	 threshold	 for	 at	 least	 one	 sample	 and	 the	 spindle	 power	 exceeded	 the	 lower	

threshold	 for	 at	 least	 500	 ms	 were	 considered	 spindles.	 Finally,	 spindles	 that	 were	

sufficiently	close	in	time	(<300	ms)	were	combined.	For	each	spindle	epoch,	the	peak	of	the	

spindle	band	LFP	was	identified.	Spindles	were	aligned	to	this	peak	for	generating	average	

spindle	waveforms,	spectrograms,	and	spike	rasters	(Figures	3.2	and	3.3).		

3.3.3.4 Spectrogram Generation 
Spindles	epochs	are	typically	0.5	to	1	sec,	though	they	can	last	up	to	3	sec.	Therefore,	

we	used	a	window	from	-4	to	+4	sec	around	each	spindle	peak	to	generate	spectrograms.	

Then	we	used	the	MATLAB	spectrogram	function	to	compute	the	spectrogram	across	the	

entire	window	(500	ms	Hamming	window,	350	ms	overlap)	during	each	spindle.	Next,	we	

subdivided	this	window	into	two	1-sec	epochs:	(1)	Baseline:	 -2.5	to	-1.5	sec	(Figure	3.2C,	

dashed	line);	(2)	Spindle:	-0.5	to	+0.5	sec	(Figure	3.2C,	solid	line).	During	each	spindle,	we	

computed	 the	 power	 for	 each	 frequency	 across	 the	 baseline	 epoch	 and	 spindle	 epoch.	

Average	power	across	 the	baseline	and	spindle	epochs	 is	plotted	 in	Figure	3.2C,	 left	plot.	

Then	we	calculated	the	%	Power	Change	from	the	baseline	epoch	for	each	frequency	band:		

% !"#$% !ℎ!"#$ = 100 ∗ (!"#$%&'( − !"#$%)/!"#$%	

The	%	Power	Change	is	shown	in	Figure	3.2C,	right	plot.	

3.3.3.5 Spike Phase Extraction 
Similar	 methods	 for	 spike	 phase	 extraction	 were	 used	 to	 assess	 the	 spiking	

structure	within	a	spindle	cycle	and	across	spindles.	For	both	analyses,	we	first	computed	

the	same	virtual	signal	used	in	spindle	detection	then	filtered	the	data	in	the	spindle	band	
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(10-16Hz).	Next	we	applied	the	Hilbert	transform	and	took	the	angle	at	each	sample	to	get	

a	 continuous	 representation	 of	 the	 relative	 spindle	 phase	 (within	 cycles).	 To	 assess	 the	

absolute	 phase	 across	 a	 spindle	 epoch,	 the	 relative	 phase	was	 unwrapped	 and	 centered	

such	that	the	phase	was	0	at	the	peak	of	the	spindle	and		10π 	after	the	5th	cycle	from	the	

peak	(Figures	3.3	and	3.4).	For	each	spindle	epoch	and	each	neuron,	the	nearest	phase	was	

collected	at	each	spike	event.	

3.3.3.6 Phase Locking Value and Preferred Spindle Phase 
We	 calculated	 the	 phase	 locking	 value	 in	 order	 to	 assess	 the	 degree	 of	 phase	

consistency	of	spiking	within	spindle	cycles.	Briefly,	 for	a	given	neuron,	across	all	spindle	

epochs,	 the	 phase	 of	 the	 spindle	 band	 LFP	 signal	was	 collected	 for	 each	 detected	 action	

potential	within	a	given	cycle	 (e.g.,	 [0	 ,	2pi])	yielding	a	distribution	of	spike	phases.	Each	

phase	value	in	this	distribution	was	treated	as	a	vector	of	magnitude	one	and	angle	equal	to	

the	phase.	

!"#$%&# !"#$% !ℎ!"# !"#$%& = !
! !∅!

!

!!!
	

The	average	phase	vector	was	computed	according	to	the	above	equation.	From	this	

vector,	we	attained	the	phase	locking	value	(vector	magnitude)	and	the	preferred	spindle	

phase	(vector	angle).	We	calculated	these	measures	for	each	neuron	and	each	spindle	cycle.	

3.3.3.7 Cross Correlation Histogram and Pairwise Synchrony 
For	 each	 spindle	 epoch	we	 segmented	 the	LFP	 into	 it’s	 individual	 cycles.	Next	we	

collected	all	spike	times	in	each	of	these	cycles.	To	compute	the	cross	correlation	histogram	

for	 a	 pair	 of	 neurons	 we	 adapted	 methods	 from	 (Engelhard,	 Ozeri,	 Israel,	 Bergman,	 &	

Vaadia,	2013).	Briefly,	both	spike	trains	were	binned	into	1ms	time	bins,	and	one	neuron	
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was	 initially	 treated	 as	 the	 trigger	 neuron.	 For	 each	 spike	 from	 the	 trigger	 neuron	 we	

generated	 a	 count	 vector	 of	 the	 other	 neuron’s	 spiking	 (t)	 relative	 to	 the	 trigger	 spikes,	

where	! ! {−50 !",+50 !"}.	 Each	 count	 vector	was	 concatenated	 into	 a	matrix.	Next	we	

swapped	 trigger	 neurons	 and	built	 a	 similar	 count	 vector	matrix,	 but	 flipped	 each	 count	

vector	(matrix	row)	to	reflect	any	asymmetries	in	firing	between	the	neurons.	The	resulting	

matrix	of	0’s	and	1’s	had	101	columns	(1	ms	time	bins	from	-50	to	+50	ms)	and	rows	equal	

to	 the	 total	 number	 of	 spikes	 from	both	neurons.	 A	Gaussian	 kernel	 (5	ms)	was	 used	 to	

smooth	 each	 row	 of	 this	 matrix	 and	 then	 the	 average	 smoothed	 count	 vector	 was	

computed.	This	count	vector	represents	the	normalized	frequency	of	co-firing	between	the	

two	neurons.	The	raw	pairwise	synchrony	was	taken	to	be	the	peak	of	this	function.	

Despite	 normalizing	 the	 cross	 correlation	 histogram,	 an	 increase	 in	 pairwise	

synchrony	can	arise	from	multiple	sources	including	true	increases	in	pairwise	correlations	

but	also	changes	in	excitability,	firing	rate,	and	others.	Since	these	first-order	effects	might	

influence	 second-order	 measures,	 we	 sought	 to	 find	 a	 method	 to	 isolate	 second-order	

changes	(Brody,	1999;	Palm,	Aertsen,	&	Gerstein,	1988).	To	accomplish	this	we	first	used	a	

shuffling	method	to	isolate	the	first-order	effects	on	synchrony	and	then	subtracted	them	

off.	As	before,	we	collected	all	spike	times	in	each	individual	spindle	cycle	and	selected	one	

neuron	within	a	given	pair	to	be	the	trigger	neuron.	However,	we	then	shuffled	the	second	

unit’s	 spindle	 epochs.	 This	maintained	 a	 consistent	 timing	 and	 phase	 relationship	 of	 the	

second	 unit	with	 the	 ongoing	 spindle,	 but	 broke	 the	 statistical	 relationship	 between	 the	

two	neurons	under	examination.	We	repeated	this	shuffling	25	times	and	then	computed	

the	same	normalized,	smoothed	count	vector	for	the	shuffled	condition.	This	count	vector	

represents	the	expected	normalized	frequency	of	the	co-firing	given	both	neurons’	average	
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spike	 rates	 and	 phase	 locking	 with	 the	 specific	 spindle	 cycle.	 Finally,	 we	 subtract	 this	

expected	 count	 vector	 (shuffled)	 from	 the	 unshuffled	 (raw)	 count	 vector,	 resulting	 in	 a	

corrected	 cross	correlation	histogram	(Figure	3.6B).	 It	 is	 important	 to	note	 that	 the	 first-

order	measures	change	as	the	spindle	progresses	(see	Section	3.4.3	Spindles	Increase	Single	

Unit	 Phase	 Locking	 and	 Figure	 3.4),	 but	 this	 shuffling	 is	 done	 within	 each	 cycle	 and	

therefore	 accounts	 for	 these	 changes	 across	 the	 spindle.	 The	 synchrony	 for	 each	 pair	 of	

neurons	was	then	taken	to	be	the	peak	of	the	corrected	cross	correlation	histogram.	

3.3.3.8 Slow Oscillation Detection 
The	 slow	 oscillation	 detection	 used	 here	 is	 similar	 to	 algorithms	 that	 have	 been	

previously	 used	 (Sela	 et	 al.,	 2016).	 To	 detect	 the	 <	 1	 Hz	 SO,	 a	 virtual	 LFP	 channel	 was	

constructed	 by	 averaging	 the	 LFP	 across	 all	 recording	 channels	 (excluding	

bad/disconnected	channels).	Next	this	virtual	signal	was	filtered	in	a	 low	frequency	band	

(2nd	order,	zero	phase	shifted,	high	pass	Butterworth	filter	with	a	cutoff	at	.1Hz	followed	by	

a	5th	order,	zero	phase	shifted,	 low	pass	Butterworth	filter	with	a	cutoff	at	4Hz).	Next,	all	

positive-to-negative	 zero	 crossings	 were	 identified	 during	 NREM	 sleep,	 along	 with	 the	

previous	 peaks,	 the	 following	 troughs,	 and	 the	 surrounding	 negative-to-positive	 zero	

crossings.	Each	identified	epoch	was	considered	a	slow	oscillation	if	the	peak	was	in	the	top	

85%	of	peaks,	the	trough	was	in	the	top	40%	of	troughs	and	the	time	between	the	negative-

to-positive	zero	crossings	was	greater	than	300	ms	but	did	not	exceed	1	sec.	

3.3.3.9 Spindle Nesting Analysis 
Each	spindle	was	binned	according	to	its	timing	relative	to	SO.	For	each	spindle,	the	

preceding	 slow	 oscillation	was	 collected.	We	 computed	 the	 time	 difference	 between	 the	
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down	state	(peak	delta	band	LFP)	and	the	spindle	(peak	spindle	band	LFP).	For	the	nesting	

analysis,	 spindles	were	characterized	as	nested	 if	 they	had	a	SO	precede	 them	within	1.5	

secs	and	unnested	otherwise.	For	the	interaction	analysis,	the	time	difference	was	binned	

in	1.5	sec	bins	with	1	sec	overlap	(Figure	3.8A-B).	Since	this	distribution	of	time	delays	is	

skewed,	there	are	more	spindles	in	the	bins	closer	to	SO	than	in	subsequent	bins.	In	order	

to	accurately	compare	the	distribution	of	pairwise	correlations	across	these	bins,	we	used	a	

subsampling	procedure	 in	which	we	randomly	sampled	the	nested,	unnested,	and	binned	

spindles	using	the	minimum	number	of	spindles	across	all	bins.	We	repeated	this	sampling	

100	 times	 in	 order	 to	 generate	 a	 bootstrapped	 distribution	 of	 pairwise	 correlations	 and	

then	used	the	mean	of	this	distribution	for	each	pair	of	neurons.	

Two	 methods	 were	 used	 to	 analyze	 differences	 in	 the	 distributions	 of	 pairwise	

correlations	across	bins.	The	first	method	was	designed	to	analyze	trends	across	bins.	We	

computed	 the	mean	and	standard	deviation	of	 the	pairwise	 correlations	 for	each	 spindle	

bin.	 Then	we	 performed	 linear	 regression,	where	 the	mean	 or	 standard	 deviation	was	 a	

function	of	 the	 time	bins.	The	 second	method	was	designed	 to	detect	 if	 the	distributions	

significantly	changed.	We	focused	on	the	differences	between	distributions	in	the	first	bin,	

[0,1.5	 sec],	 and	 the	 last	 bin	 [4.5,6	 sec].	 To	 detect	 broad	 differences	 between	 the	

distributions	we	 used	 a	 Kolmogorov–Smirnov	 test.	 If	 the	 Kolmogorov–Smirnov	 test	 was	

significant,	we	 followed	up	with	a	Shift	 test	(Rousselet,	Pernet,	&	Wilcox,	2017)	to	assess	

how	the	distributions	differed.	Briefly,	the	sextiles	of	each	distribution	are	computed	using	

the	 Harrell-Davis	 quantile	 estimator.	 Then	 differences	 in	 sextiles	 between	 the	 two	

distributions	are	computed	with	a	bootstrapped	estimate	of	confidence	intervals	 for	each	

sextile	difference.	A	multiple	comparisons	correction	was	then	used	to	account	for	the	five	
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different	estimators.	

3.3.3.10 Random Spindle Epochs 
There	 is	 a	 certain	 degree	 of	 spiking,	 phase	 locking,	 and	 synchrony	 that	would	 be	

expected	 even	 if	 neurons	 were	 not	 modulated	 by	 spindles.	 To	 account	 for	 extraneous	

measurements,	we	generated	 a	 random	spindle	distribution	 that	had	 similar	 statistics	 to	

the	 true	 spindle	 epoch	 distribution.	 Briefly,	 for	 each	 spindle	 epoch,	 a	 random	offset	was	

computed	5-10	sec	back	from	the	true	spindle	peak,	i.e.,	!~!(−10,−5).	The	nearest	peak	

in	the	spindle	band	LFP	was	taken	as	the	peak	of	the	random	spindle	epoch.	Each	analysis	

was	jointly	computed	for	the	true	spindle	epochs	(blue	in	Figures	3.3-3.7)	and	the	random	

spindle	epochs	(black	in	Figures	3.3-3.7).	

3.4 Results 

3.4.1 Neural Oscillation Detection 

We	recorded	extracellular	LFP	and	spiking	activity	from	M1	in	four	rats	(see	Section	

3.3	Methods	for	description	of	electrophysiology	and	recording	probe	details;	Figure	3.2A).	

We	intermittently	recorded	activity	during	“Sleep	Blocks”	in	which	animals	were	given	the	

opportunity	to	sleep	for	~2	hrs.	During	NREM	sleep	we	identified	ongoing	spindles	and	SO	

using	standard	algorithms	for	automatic	detection	(Sela	et	al.,	2016).	Briefly,	LFP	channels	

were	 z-scored	 to	 standardize	 activity	 levels.	 Next,	 the	 average	 activity	 across	 electrodes	

was	used	as	a	virtual	LFP	signal	(Figure	3.2B).	
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Figure	3.2	-	Recording	Setup	and	Oscillation	Detection.	(A)	Sleeping	rat	along	with	anatomical	location	of	
multielectrode	 arrays	 and	 example	 LFP	 and	 spiking	 data	 from	 one	 recording	 channel.	 (B)	 Examples	 of	
detected	 spindles	 and	 slow	 oscillations,	 highlighting	 the	 automatic	 methods	 used	 for	 detection.	 The	
broadband	LFP	(top)	is	decomposed	into	a	 low-frequency	band	for	SO	detection	(middle)	and	spindle	band	
(bottom)	components.	SO	must	have	had	sufficient	positive	and	negative	amplitudes	(black	lines;	middle)	and	
sufficiently	slow	durations	(highlighted	blue).	The	spindle	band	envelope	(purple	 line)	must	have	exceeded	
an	upper	threshold	(solid	black	line)	for	one	sample	and	a	lower	threshold	(dashed	black	line)	for	at	least	500	
ms.	The	detected	 spindle	duration	 is	highlighted	 in	purple.	 (C)	Average	 spindle-triggered	waveform	 (black	
line;	 right)	 and	 spectrogram	(heat	map;	 right).	Average	 spindle-triggered	power	 spectrum	(black	 line;	 left)	
and	baseline	power	spectrum	(gray	line;	left).	Black	and	gray	boxes	on	the	heat	map	display	the	timing	of	the	
spindle	and	baseline	periods	used	to	calculate	the	power	spectra.	

This	 signal	was	 filtered	 in	 the	 spindle	band	 (10-16Hz)	 and	a	 lower	 frequency	band	 (0.1-

4Hz).	Periods	in	which	spindle	power	exceeded	an	upper	threshold	for	at	least	one	sample	

and	 a	 lower	 threshold	 for	 at	 least	 500	 ms	 were	 identified	 as	 spindles	 (see	 Section	 3.3	

Methods;	Figure	3.2B).	 Indeed,	 the	average	spectrogram	of	 identified	spindles	 (aligned	 to	

the	spindle	peak)	revealed	a	time-frequency	specific	bump	in	spindle	power	compared	to	

random	 epochs	 (Figure	 3.2C).	 Notably,	 this	 spectrogram	 also	 shows	 a	 bump	 in	 low	
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frequency	 power,	 which	 precedes	 spindles,	 in	 line	 with	 previous	 research	 on	 the	 close	

timing	of	SO	and	spindles	(Cox	et	al.,	2014;	Mölle	et	al.,	2002;	M.	Steriade	et	al.,	1993).	To	

detect	SO,	we	identified	all	positive-to-negative	zero	crossings	in	the	delta	band	along	with	

the	previous	peak	and	 following	 trough.	The	positive-to-negative	zero	crossings	 in	which	

the	time	from	the	peak	to	the	trough	was	at	least	300	ms	were	considered	SO.	To	minimize	

false	detections,	we	focused	on	high	amplitude	SO	with	large	peaks	and	troughs	(Section	3.3	

Methods;	Figure	3.2B).	

3.4.2 Spindles Modulate Single Unit Spiking 

To	 observe	 spindle-neuron	 interactions,	 we	 aligned	 spike	 rasters	 to	 the	 peak	 of	

identified	spindles.	We	noted	that	the	average	oscillatory	firing	rate	of	the	representative	

example	 unit	 in	 Figure	 3.3A-B	 closely	matched	 (with	 a	 phase	 shift)	 the	 average	 spindle	

waveform.	The	similarity	of	firing	rate	and	LFP	during	spindles	suggested	that	spike	timing	

is	modulated	during	ongoing	spindles.	To	quantify	spindle	modulation	of	neural	spiking,	we	

extracted	 the	 spindle	 phase	 at	 each	 recorded	 action	 potential	 (Figure	 3.3C).	 To	 get	 the	

spindle	phase,	we	used	the	angle	of	the	Hilbert	spindle	band	LFP	(Figure	3.3C,	Phase	Plot).	

Then	 we	 collected	 the	 phase	 triggered	 on	 each	 spike	 occurring	 within	 one	 cycle	 of	 the	

spindle	peak	(Figure	3.3C,	highlighted	blue	portion).	This	yielded	a	spike	phase	distribution	

(Figure	 3.3D,	 upper),	 which	 was	 used	 to	 calculate	 the	 degree	 of	 phase	 locking	 for	 each	

single	unit.	Briefly,	each	spike-triggered	phase	was	converted	to	a	vector	of	unit	magnitude	

and	in	the	direction	of	the	triggered	phase.	Then	the	average	vector	was	computed	and	the	

magnitude	of	this	vector	was	taken	as	the	phase	locking	value,	whereas	the	direction	of	this	

vector	was	 taken	 as	 the	 preferred	 spindle	 phase	 (Figure	 3.3D,	 lower).	 Most	 units	 had	 a	
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preferred	spindle	phase	between		π /2 	and	π –i.e.,	during	the	second	half	of	the	downward	

component	 of	 the	 spindle	 cycle	 (Figure	 3.3D,	 upper).	 	 We	 found	 that	 neurons	 were	

significantly	 more	 phase	 locked	 to	 spindles	 compared	 to	 random	 epochs	 (Kolmogorov–

Smirnov	test,	p=1.02e-14;	Figure	3.3D,	lower).	

	
Figure	 3.3	 -	 Spindle	 Modulation	 of	 Spiking.	 (A)	 An	 example	 of	 the	 average	waveform	 for	 a	 single	 unit	
recorded	across	many	channels	using	a	custom	polytrode	probe.	Inset	shows	the	spike	waveforms	(gray)	on	
one	channel	of	many	spiking	events	along	with	the	average	waveform	(red).	This	example	unit	is	used	for	all	
panels	 in	 this	 Figure.	 (B)	 Spindle-triggered	 spiking	 for	 the	 example	 unit.	 The	 average	 spindle	 waveform	
(blue)	is	plotted	with	the	average	normalized	firing	rate	(orange).	A	raster	of	spike	times	is	displayed	below.	
(C)	Phase	extraction	methods.	Spindle	band	(10-16	Hz)	LFP	is	plotted	during	a	detected	spindle	(top)	and	is	
re-plotted	immediately	below	(2nd	from	the	top)	with	a	finer	time	resolution.	The	Hilbert	phase	of	the	spindle	

activity	 is	 plotted	 below	 (2nd	 from	 the	 bottom)	 and	 fluctuates	 between		[−π ,π ] .	 The	 spiking	 activity	 is	
displayed	on	the	bottom	(bars)	and	as	dots	in	the	spindle	band	and	phase	subplots.	The	highlighted	portion	of	

these	plots	extends	from		[−2π ,2π ] 	and	shows	spikes	that	are	used	to	compute	the	phase	locking	value	(C-
D).	(D)	The	spike	phase	distribution	for	the	example	unit,	plotted	as	a	circular	histogram	(blue).	The	average	
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phase	vector	 is	overlaid	 in	red	and	copied	below	for	clarity.	The	magnitude	and	direction	of	this	vector	are	
defined	as	the	phase	locking	value	and	preferred	spindle	phase,	which	are	collected	for	all	units.	(E)	Summary	
of	 the	phase	 locking	value	 (bottom)	and	preferred	 spindle	direction	 (top)	 for	 all	 units.	Gray	bars	 (bottom)	
represent	the	phase	locking	to	the	spindle	band	during	random	epochs.	

3.4.3 Spindles Increase Single Unit Phase Locking 

We	 next	 quantified	 changes	 in	 phase	 locking	 dynamically	 across	 spindles.	 We	

segmented	 spindles	 (Figure	3.4A,	 right)	 and	 random	epochs	 (Figure	3.4A,	 left)	 into	 their	

component	cycles	and	separately	generated	a	spike	phase	distribution	for	each	cycle.	This	

process	is	presented	for	an	example	unit	in	Figure	3.4A,	in	which	spike	phase	distributions	

were	generated	and	displayed	for	two	different	spindle	cycles,	one	at	the	peak	of	spindles	(

	[−2π ,0];	Figure	3.4B,	left)	and	one	at	the	tail	of	spindles	(	[8π ,10π ] ;	Figure	3.4B,	right).	The	

average	preferred	phase	across	neurons	did	not	 change	during	 spindles,	but	 the	average	

spike	 count	 and	 phase	 locking	 increased	 near	 the	 spindle	 peaks	 (Figure	 3.4C).	 We	

quantified	 these	 dynamics	 by	 grouping	 cycles	 into	 three	 categories:	 (1)	 RAND—the	 two	

cycles	 at	 the	 center	 of	 the	 random	 epochs;	 (2)	 TAIL—the	 two	 cycles	 farthest	 from	 the	

spindle	 peaks;	 and	 (3)	 PEAK—the	 two	 cycles	 nearest	 the	 spindle	 peaks	 (Figure	 3.4D).	 A	

repeated	measures	ANOVA	confirmed	that	these	categories	were	significantly	different	for	

spike	counts	(p=6.283e-07)	and	phase	locking	(p=1.298e-42),	but	not	for	preferred	phase	

(p=0.868).	 Post	 hoc,	 paired	 t-tests	 confirmed	 that	 spike	 counts	 were	 significantly	 larger	

near	 the	 peak	 of	 spindles	 (PEAK	 vs.	 TAIL	 t-test,	 p=2.136e-03);	 even	 at	 the	 spindle	 tails	

counts	 were	 larger	 than	 during	 random	 epochs	 (TAIL	 vs.	 RAND	 t-test,	 p=6.611e-05).	

Likewise,	phase	locking	increased	near	spindle	peaks	(PEAK	vs.	TAIL	t-test,	p=4.299e-25)	

and	was	significantly	larger	than	random	epochs	even	5	cycles	away	from	the	spindle	peaks	

(TAIL	vs.	RAND	t-test,	p=6.574e-04).	
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Figure	3.4	-	Spindle	Cycle	Analysis	of	Phase	Locking.	(A)	Generation	of	the	spike	phase	distribution	across	
spindle	 cycles.	 Spike-triggered	phases	 are	 extracted	 from	single	unit	 spiking	during	 specific	 spindle	 cycles.	
Phases	 are	 aggregated	 across	 actual	 spindle	 epochs	 (right)	 or	 random	 epochs	 (left).	 (B)	 Summary	 of	 all	
neurons’	 spike	 phase	 distribution	 statistics	 across	 spindle	 cycles.	 The	 average	 spindle	 band	waveform	 for	
each	 spindle	 cycle	 (top)	 is	 plotted	 along	 with	 the	 average	 spike	 rate	 (2nd	 from	 top),	 preferred	 spindle	
direction	 (2nd	 from	 bottom),	 and	 phase	 locking	 value	 (bottom).	 Blue	 lines	 reflect	 averages	 during	 actual	
spindle	 epochs	 and	 black/gray	 lines	 reflect	 averages	 during	 random	 epochs.	 Error	 bars	 represent	 the	
standard	error	of	the	mean.	(C)	Summary	of	spiking	dynamics.	Spike	rates,	preferred	spindle	directions,	and	
phase	 locking	 values	 are	 combined	 into	 three	 categories:	 (1)	 RAND—the	 two	 cycles	 at	 the	 center	 of	 the	
random	 epochs;	 (2)	 TAIL—the	 two	 cycles	 farthest	 from	 the	 spindle	 peaks;	 and	 (3)	 PEAK—the	 two	 cycles	
nearest	the	spindle	peaks.	The	newly	categorized	data	is	reproduced	as	bar	plots	and	significant	differences	
between	 the	 categories	 are	 highlighted	 with	 asterisks.	 (D)	 Relationship	 between	 phase	 locking	 and	 spike	
count	across	neurons.	Each	neuron’s	phase	locking	value	and	spiking	rate	in	the	PEAK	is	shown	as	a	scatter	



	 77	

plot	(left)	along	with	each	neuron’s	change	in	phase	locking	value	and	spiking	rate	(PEAK	–	TAIL;	scatter	plot,	
right).	Regression	lines	are	superimposed	on	the	scatter	plots	along	with	Pearson	correlation	coefficients	and	
associated	p-values.	

We	were	 curious	whether	 the	 neurons	 that	 increased	 their	 firing	 during	 spindles	

also	 increased	 their	 phase	 locking	 or	 if	 these	were	 two	 separate	 neural	 populations.	 To	

address	this	question,	we	ran	a	correlation	analysis	and	found	that	there	was	a	significant	

correlation	 between	 the	 change	 (PEAK	 –	 TAIL)	 in	 spike	 count	 and	 the	 change	 in	 phase	

locking	value	(Pearson’s	r=0.351,	p=3.632e-04;	Figure	3.4D,	right).	This	implies	that	there	

is	 significant	 overlap	 in	 the	 populations	 of	 neurons	 that	modulate	 their	 firing	 rates	 and	

spike	 timing	during	 spindles.	 Importantly,	 there	 is	no	 correlation	between	 the	 raw	spike	

count	 and	 the	 raw	 phase	 locking	 value	 of	 neurons	 (Pearson’s	 r=0.0121,	 p=0.905;	 Figure	

3.4D,	left),	assuaging	any	concerns	that	this	finding	is	driven	by	higher	estimation	of	phase	

locking	value	for	higher	firing	neurons,	which	is	known	to	happen	with	small	sample	sizes	

(Vinck,	van	Wingerden,	Womelsdorf,	Fries,	&	Pennartz,	2010).	

3.4.4 Spindles Increase Pairwise Synchrony 

To	quantify	pairwise	 synchrony	changes	as	 spindles	evolve,	we	 followed	a	 similar	

procedure	 of	 segmenting	 spindles	 into	 their	 component	 cycles,	 then	 independently	

generated	 a	 cross	 correlation	histogram	 (CCH)	 for	 every	pair	 of	 neurons	 in	 each	 spindle	

cycle	(Section	3.3	Methods;	Figure	3.5A	and	3.6A,	 left).	Each	bin	in	the	CCH	represents	the	

probability	of	the	two	neurons	under	examination	co-firing	with	a	specific	time	difference;	

the	peak	of	the	CCH	(Figure	3.5B	and	3.6B,	 left)	 is	a	normalized	measure	of	the	degree	of	

co-firing	 for	 a	 pair	 of	 neurons.	 Given	 the	 increase	 in	 phase	 locking	 near	 the	 peak	 of	

spindles,	 one	 would	 expect	 a	 corresponding	 increase	 in	 the	 raw	 pairwise	 co-firing	
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probability,	which	is	what	we	observed	(Figure	3.5).		

	
Figure	 3.5	 -	 Spindle	 Cycle	 Analysis	 of	 Synchrony	 Using	 the	 Raw	 Cross	 Correlation	 Histogram.	 (A)	
Generation	of	 the	cross	correlation	histogram.	For	a	pair	of	units,	 relative	spike	 times	are	extracted	during	
specific	spindle	cycles.	Relative	spike	times	are	aggregated	across	spindle	epochs.	(B)	Examples	of	the	cross	
correlation	histogram	for	 two	spindle	cycles	([−2!, 0],	 left;	[+8!,+10!],	 right).	The	peak,	and	time	of	peak	
(red	arrows)	are	collected	 for	each	pair	of	neurons	 in	each	spindle	cycle.	(C)	Summary	of	all	neurons’	CCH	
statistics	 across	 spindle	 cycles.	 The	 average	 spindle	 band	waveform	 for	 each	 spindle	 cycle	 (top)	 is	 plotted	
along	 with	 the	 average	 CCH	 peak	 (middle)	 and	 time	 of	 peak	 (bottom).	 Blue	 lines	 reflect	 averages	 during	
actual	spindle	epochs	and	black/gray	lines	reflect	averages	during	random	epochs.	Error	bars	represent	the	
standard	 error	 of	 the	mean.	 (D)	 The	 peak	 and	 time	 of	 peak	 are	 reproduced	 for	 the	 same	 categories	 as	 in	
Figure	3D	and	Figure	4D.	Significant	differences	between	the	categories	are	highlighted	with	asterisks.	

However,	changes	in	firing	rate	or	phase	locking	can	influence	this	measure,	and	we	
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wanted	 to	 know	whether	 spindles	 modulate	 any	 additional	 correlation	 structure	 across	

neurons.	We	isolated	changes	in	pairwise	correlations	during	spindles	by	using	a	shuffling	

procedure,	which	maintained	firing	rates	and	phase	locking	within	spindle	cycles	but	broke	

correlation	structure	across	neurons	(Section	3.3	Methods;	Figure	3.6A,	right).		

	
Figure	3.6	-	Spindle	Cycle	Analysis	of	Synchrony.	(A)	Generation	of	the	cross	correlation	histogram.	For	a	
pair	 of	 units,	 relative	 spike	 times	 are	 extracted	 during	 specific	 spindle	 cycles.	 Relative	 spike	 times	 are	
aggregated	 across	 spindle	 epochs	 (Raw	 CCH;	 left).	 Additionally,	 a	 shuffled	 cross	 correlation	 histogram	 is	
constructed	using	a	similar	procedure.	Relative	spike	times	are	extracted	during	specific	spindle	cycles,	but	
one	 neuron’s	 relative	 spike	 times	 are	 shuffled	 across	 spindle	 epochs	 (Shuffled	 CCH;	 right).	 (B)	 Cross	
correlation	histogram	correction.	Within	each	spindle	cycle,	the	Shuffled	CCH	is	subtracted	from	the	Raw	CCH	
to	generate	a	Corrected	CCH.	The	peak,	and	time	of	peak	(red	arrows)	are	collected	for	each	pair	of	neurons	in	
each	spindle	cycle.	(C)	Summary	of	all	neurons’	Corrected	CCH	statistics	across	spindle	cycles.	The	average	
spindle	 band	waveform	 for	 each	 spindle	 cycle	 (top)	 is	 plotted	 along	with	 the	 average	Corrected	CCH	peak	
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(middle)	and	time	of	peak	(bottom).	Blue	lines	reflect	averages	during	actual	spindle	epochs	and	black/gray	
lines	reflect	averages	during	random	epochs.	Error	bars	represent	the	standard	error	of	 the	mean.	(D)	The	
peak	 and	 time	 of	 peak	 are	 reproduced	 for	 the	 same	 categories	 as	 in	 Figure	 3.4D.	 Significant	 differences	
between	 the	 categories	 are	highlighted	with	 asterisks	 (KS	 tests,	 p<0.05).	 (E)	 The	 full	 distributions	 of	 Peak	
Cofiring	Probability	(left)	and	Time	at	Peak	Cofiring	Probability	(right)	plotted	as	CDFs.	

This	procedure	yielded	a	shuffled	CCH	(Figure	3.6B,	middle),	which	reflected	the	expected	

pairwise	 correlations	 in	 a	 spindle	 cycle	 given	 the	 firing	 rates	 and	 spindle	 phase	

relationships	 of	 the	 two	 neurons	 being	 examined.	We	 then	 subtracted	 the	 shuffled	 CCH	

from	the	raw	CCH,	to	construct	a	corrected	CCH.	The	peak	of	this	corrected	CCH	measured	

the	 degree	 of	 co-firing	 that	 exclusively	 resulted	 from	pairwise	 correlations	 (Figure	 3.6B,	

right).	

Surprisingly,	 the	corrected	pairwise	correlations	revealed	similar	dynamics	during	

spindles.	As	before,	we	compared	three	groups:	(1)	RAND—the	two	cycles	at	the	center	of	

the	 random	 epochs;	 (2)	 TAIL—the	 two	 cycles	 farthest	 from	 the	 spindle	 peaks;	 and	 (3)	

PEAK—the	two	cycles	nearest	the	spindle	peaks	(Figure	4D).	We	used	a	repeated	measures	

ANOVA	to	determine	that	there	were	differences	in	the	peak	of	the	CCH	(p=1.020e-21)	and	

the	time	of	this	peak	(p=5.617e-23)	across	the	three	categories.	From	the	TAIL	to	the	PEAK	

of	spindles	the	co-firing	probability	increased	(paired	t-test,	p=6.302e-14)	and	the	absolute	

time	 of	 peak	 co-firing	 decreased	 (paired	 t-test,	 p=2.130e-12).	 Likewise,	 both	 measures	

were	significantly	different	from	random	epochs	(RAND)	even	at	the	spindle	TAILs,	(paired	

t-tests,	peak	co-firing:	p=0.0320;	 time	of	peak	co-firing:	p=0.0055).	Taken	 together,	 these	

dynamics	 reflect	 an	 increase	 in	 pairwise	 synchrony	 during	 spindles	 that	 surpasses	 that	

expected	 from	 independent	 neuron	 changes.	 Notably,	 the	 increase	 in	 neuron	 synchrony	

was	 not	 limited	 to	 only	 highly	 correlated	 neuron	 pairs;	 rather,	 all	 pairwise	 correlations	

increase	during	spindles	(Figure	3.7).		
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Figure	 3.7	 -	 Spindles	 Increase	 Pairwise	 Correlations	 Across	 the	 Distribution	 of	 Correlations.	 The	
distributions	 of	 induced	 pairwise	 correlations	 are	 reproduced	 during	 random	 epochs	 (black;	 upper)	 and	
spindle	peaks	(blue;	upper).	Gray	lines	divide	the	distributions	into	sextiles	(upper).	The	difference	in	sextile	
dividers	is	plotted	with	95%	confidence	intervals	as	error	bars	(lower).	

3.4.5 Slow Oscillations Narrow the Distribution of Spindle-Induced 
Correlations  

A	 large	 body	 of	 work	 has	 focused	 on	 the	 relationship	 between	 spindles	 and	 SO,	

suggesting	 that	 nested	 spindles,	 which	 occur	 during	 the	 up	 state	 of	 SO,	 are	 particularly	

important	 for	 learning	 and	neuroplasticity	 (Latchoumane	 et	 al.,	 2017;	Mölle	 et	 al.,	 2009;	

Niknazar	 et	 al.,	 2015).	 This	 work	 led	 us	 to	 hypothesize	 that	 the	 spiking	 correlation	

structure	might	 be	 different	 for	 nested	 and	unnested	 spindles.	 To	 investigate	 the	 role	 of	

SO/spindle	 interactions,	we	 followed	 two	 different	 procedures.	 In	 the	 first	 approach	we	

specifically	asked	if	nested	spindles	organize	spikes	differently	than	unnested	spindles.	We	

first	investigated	the	coupling	of	SO	and	spindles	and	found	that,	triggered	on	SO	down		
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Figure	3.8	 –	Nested	 Spindles	Appear	 to	 Induce	Higher	Pairwise	Correlations.	(A)	SO	and	spindles	are	
coupled.	 Average	 SO	waveforem	 is	 plotted	with	 SO-triggered	 spindle	 frequencies	 (upper).	 Average	 spindle	
waveforem	 is	 plotted	with	 spindle-triggered	 SO	 frequencies	 (lower).	 Shaded	 region	 indicates	 an	 uptick	 in	
triggered	frequecies.	(B)	Categorization	of	spindles	as	nested	or	unnested.	Example	traces	(broadband,	delta	
band,	and	spindle	band)	are	plotted.	A	1.5	sec	window	(shaded	region)	is	generated	for	each	spindle.	In	the	
upper	plot	a	SO	was	present	in	the	window	so	the	spindle	was	categorized	as	nested	(dark	blue).	In	the	lower	
plot	a	SO	was	absent	in	from	the	window	so	the	spindle		was	categorized	as	unnested	(light	blue).	(C)	CDFs	of	
Spike	 Counts,	 PLV,	 Peak	 Cofiring	 Probability,	 and	 Time	 at	 Peak	 Cofiring	 are	 generated	 during	 the	 spindle	
peaks.	 CDFs	 are	 shown	 separately	 for	 nested	 (dark	 blue)	 and	 unnested	 (light	 blue)	 spindles.	 Asterisks	
indicate	significant	differences	in	the	distributions	(KS	tests,	p	<	.05).	

states,	there	is	an	increase	in	the	likelihood	of	spindles	for	about	1.5	secs	(Figure	3.8A).	We	

therefore	split	all	spindles	into	two	groups:	nested—spindles	within	1.5	secs	after	a	SO,	and	

unnested—spindles	 outside	 of	 this	window	 (Figure	 3.8B).	 Focusing	 on	 the	 spindle	 peaks	

(where	 spiking	 activity	 is	 the	 most	 structured)	 we	 analyzed	 whether	 there	 were	
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differences	 in	 the	distribution	of	spiking	relative	 to	 the	spindle	oscillation	and	relative	 to	

other	 neurons.	 Intriguingly,	 there	 was	 no	 difference	 in	 the	 first-order	 spiking	 statistics.	

Spike	 counts	 and	 phase	 locking	 was	 not	 significantly	 different	 between	 nested	 and	

unnested	 spindles	 (Figure	 3.8C,	 Kolmogorov–Smirnov	 tests:	 spike	 count,	 p=0.9994;	 PLV,	

p=0.5493).	However,	there	was	a	significant	difference	in	the	correlation	structure.	Nested	

spindles	 had	 increased	 peak	 cofiring	 (Kolmogorov–Smirnov	 test,	 p=4.542e-32)	 and	

different	inter-neuron	spike	intervals	(Kolmogorov–Smirnov	test,	p=0.0059).	This	result	is	

intriguing	 and	 in	 line	 with	 previous	 results	 finding	 differences	 between	 nested	 and	

unnested	 spindles.	 However,	 this	 approach	 assumes	 that	 there	 is	 a	 difference	 between	

nested	and	unnested	spindles.	We	wanted	to	use	a	 less	biased	method	to	ask	 if	 there	are	

truly	any	differences	between	nested	and	unnested	spindles.		

In	 the	 next	 approach,	 we	 binned	 spindles	 (bin	width:	 1.5	 sec;	 step	 size:	 500	ms)	

based	 on	 their	 timing	 relative	 to	 SO	 (Figure	 3.9A-B).	 The	 first	 bin	 (0-1.5	 sec)	 includes	

nested	spindles	and	subsequent	bins	do	not.	If	there	were	a	difference	between	nested	and	

unnested	spindles	 then	we	would	expect	 to	see	differences	between	 the	 first	bin	and	 the	

remaining	bins.	Accordingly,	we	examined	the	distribution	of	pairwise	correlations	(peak	

cofiring	probabilities	 of	 the	 corrected	CCH)	during	 the	 spindle	peak	 (	[−2π ,+2π ])	 in	 each	

time	bin;	these	distributions	are	plotted	as	CDFs	in	Figure	3.9C.		

Qualitatively,	 the	distributions	 appear	 to	narrow	 for	 spindles	 closer	 to	 SO	 (Figure	

3.9C).	To	quantify	trends	in	the	distributions,	we	performed	linear	regression	on	the	mean	

and	standard	deviation	of	the	pairwise	correlations	across	time	bins:	the	average	pairwise	

correlation	 did	 not	 change	 linearly	 across	 time	 bins	 (Figure	 3.9C,	 left	 inset;	 linear	

regression	 model,	 p=0.070),	 but	 the	 standard	 deviation	 of	 the	 pairwise	 correlations	
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decreased	 across	 time	 bins	 (Figure	 3.9C,	 right	 inset;	 linear	 regression	 model,	!.!.=

0.00041 ∗ !"#$%&'#() + 0.0065,	p=7.52E-08).		

	
Figure	3.9	–	Interaction	of	SO	and	Spindles.	(A)	Timing	of	spindles	relative	to	SO.	(B)	Example	of	binning	
spindles	based	on	timing	relative	to	SO	in	one	animal.	The	distribution	of	time	delays	is	plotted	as	a	bar	graph.	
Windows	 representing	 the	 spindle	 bin	 closest	 to	 (dark	 blue	 rectangle),	 and	 farthest	 from	 (light	 blue	
rectangle)	SO	are	overlaid.	Intermediate	window	starts	are	represented	by	blue	dots.	The	color	gets	lighter	as	
the	 window	 start	 gets	 farther	 from	 the	 slow	 oscillation.	 (C)	 The	 distribution	 of	 spindle	 induced	 pairwise	
correlations	for	each	bin.	Colors	match	the	window	colors	in	B.	The	average	pairwise	correlation	across	bins	
is	 plotted	 with	 a	 linear	 fit	 (left	 inset),	 and	 the	 standard	 deviation	 of	 pairwise	 correlations	 across	 bins	 in	
plotted	 with	 a	 linear	 fit	 (right	 inset).	 (D)	 The	 distributions	 of	 spindle	 induced	 pairwise	 correlations	 are	
reproduced	 for	 the	 bins	 closest	 to	 SO,	 [0,1.5],	 and	 farthest	 from	 SO,	 [4.5,6],	 (upper).	 Gray	 lines	 divide	 the	
distributions	into	sextiles	(upper).	The	difference	in	sextile	dividers	is	plotted	with	95%	confidence	intervals	
as	error	bars	(lower).	

Additionally,	 we	 used	 nonparametric	 statistics	 to	 detect	 differences	 in	 the	

distributions	of	pairwise	correlations	between	the	bin	closest	to	SO,	(dark	blue,	[0,1.5	sec]),	

and	the	bin	farthest	from	SO,	(light	blue,	[4.5,6	sec]).	The	CDFs	for	these	distributions	are	

reproduced	 in	 Figure	 3.9D	 for	 clarity.	 A	 Kolmogorov–Smirnov	 test	 revealed	 a	 significant	

difference	 between	 these	 distributions	 (p=3.98E-05).	 We	 then	 split	 the	 distributions	 of	
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pairwise	 correlations	 into	 sextiles	 (Figure	 3.9D,	 upper,	 gray	 lines)	 and	 computed	 the	

difference	in	the	sextile	dividers	(Figure	3.9D,	lower).	This	revealed	a	pattern	in	which	the	

lowest	 correlation	 pairs	 significantly	 increased	 during	 spindles	 near	 SO,	 but	 the	 highest	

correlation	pairs	significantly	decreased	during	spindles	near	SO.	

3.4.6 Spindle-Induced Correlations Decay During Sleep 

Many	papers	have	noted	changes	in	neurophysiology	that	occur	during	sleep.	Many	

of	 these	 studies	 have	 focused	 on	 changes	 in	 delta	 power,	 SO	 rates,	 and	 other	 oscillatory	

phenomena	(Tononi	&	Cirelli,	2003),	but	some	work	has	also	focused	on	changes	in	firing	

rates	(Levenstein,	Watson,	&	Rinzel,	2017;	Watson,	Levenstein,	Greene,	Gelinas,	&	Buzsáki,	

2016).	 We	 were	 interested	 to	 see	 whether	 higher-order	 spiking	 structure	 changes	

dynamically	 across	 sleep.	 Accordingly,	we	 split	 the	 sleep	 sessions	 into	 thirds,	 and	 asked	

whether	 there	were	 significant	 differences	 in	 spindle-induced	 spiking	 structure	 between	

the	 first	 third	 of	 sleep	 and	 the	 last	 third	 of	 sleep	 (Figure	3.10A).	We	 found	 that	 spindle-

induced	spike	counts,	phase	locking,	and	inter-neuron	spike	intervals	did	not	change	across	

sleep	(Kolmogorov–Smirnov	Tests:	spike	count,	p=0.9592;	phase	locking	value,	p=0.9574;	

time	at	peak,	p=0.3606),	 but	 the	 correlation	decreased	 (Kolmogorov–Smirnov	Test:	 peak	

cofiring	probability,	p=0.0307).	
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Figure	 3.10	 –	 Spindle	 Induced	 Structure	 Across	 Sleep.	 (A)	 Slow	 wave	 sleep	 is	 split	 into	 early	 sleep	
(orange)	and	late	sleep	(red).	(B)	Distributions	of	Spike	Counts	(left)	and	PLV	(right)	are	plotted	as	CDFs	for	
early	and	late	sleep.	(C)	Distributions	of	Peak	Cofiring	Probabiltiy	(left)	and	Time	at	Peak	Cofiring	(right)	are	
plotted	as	CDFs	 for	early	and	 late	 sleep.	For	B	and	C,	 asterisks	 indicate	 significant	differences	between	 the	
distributions	(KS	test,	p<0.05).	

3.4.7 Spindle-Induced Correlations Decrease After Learning 

We	next	asked	whether	spindles	or	spindle	induced	spiking	structure	changed	with	

learning.	To	assess	the	role	of	learning,	we	compared	baseline	sleep	blocks	to	sleep	blocks	

immediately	after	exposure	to	a	pellet	retrieval	motor	task	(Figure	3.11A).	Previously,	we	

have	 found	 that	 rats	 increase	 their	 accuracy	 and	 speed	 in	 this	 task	 (Ramanathan	 et	 al.,	

2015).	Notably,	we	demonstrated	that	sleep	supports	offline	improvements	in	speed	in	this	

task.	 Across	 ¾	 of	 the	 rats	 in	 this	 study,	 spindle	 rates	 increased	 after	 learning	 (Figure	

3.11B),	 and	 the	 rate	 of	 spindles	 nested	within	 SOs	 also	 increased	 after	 learning	 (Figure	

3.11C).	We	next	focused	our	analysis	on	changes	in	spindle	induced	spiking	structure.	We	

found	 that	 there	 was	 no	 change	 in	 spindle-induced	 spike	 counts	 (Figure	 3.11D,	 left,	
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Kolmogorov–Smirnov	 Test,	 p=0.9912),	 phase	 locking	 (Figure	 3.11D,	 right,	 Kolmogorov–

Smirnov	Test,	p=0.1457),	or	inter-neuron	spike	intervals	(Figure	3.11E,	right,	Kolmogorov–

Smirnov	 Test,	 p=0.3606),	 but	 we	 found	 a	 significant	 decrease	 in	 spindle-induced	

correlations	after	learning	(Figure	3.11E	left,	Kolmogorov–Smirnov	Test,	p=0.0307).	

	
Figure	3.11	–	Spindle	Induced	Structure	Changes	with	Learning.	(A)	Baseline	sleep	(green)	is	compared	
to	sleep	after	learning	a	motor	task	(orange)	to	assess	learning-related	changes.	(B)	Spindle	rates	detected	on	
individual	recording	channels	 in	each	rat	are	shown	as	scatter	plots,	where	x-values	represent	rates	during	
baseline	sleep	and	y-values	represent	rates	during	post-learning	sleep.	Black	lines	indicate	x=y.	(C)	Same	as	B,	
but	only	detected	the	rate	of	nested	spindles.	(D)	Distributions	of	Spike	Counts	and	PLV	are	plotted	as	a	CDFs	
for	baseline	and	post-learning	sleep.	(E)	Distributions	of	Peak	Cofiring	Probabiltiy	and	Time	at	Peak	Cofiring	
are	 plotted	 as	 a	 CDFs	 for	 baseline	 and	 post-learning	 sleep.	 For	 D	 and	 E,	 asterisks	 indicate	 significant	
differences	between	the	distributions	(KS	test,	p<0.05).	

3.5 Discussion 
In	 this	 study	 we	 investigated	 the	 relationship	 between	M1	 neural	 firing	 and	 LFP	

oscillations	 during	 sleep.	 We	 focused	 on	 the	 structure	 of	 neural	 spiking	 during	

thalamocortical	 spindles,	 which	 are	 thought	 to	 be	 important	 for	 consolidation	 and	 for	

promoting	neural	plasticity	after	learning	a	new	skill	(Barakat	et	al.,	2011;	Fogel	&	Smith,	

2006;	 Johnson	et	al.,	 2012;	Nishida	&	Walker,	2007;	Ramanathan	et	al.,	 2015).	We	 found	

that	 individual	neurons	 in	M1	fired	at	a	preferred	phase	of	spindle	cycles;	by	segmenting	
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spindles	 into	 their	 component	 cycles,	 we	 determined	 that	 such	 phase	 locking	was	more	

pronounced	 at	 spindle	 peaks	 (i.e.,	 around	 the	 highest	 spindle	 power).	 Moreover,	 neural	

synchrony,	 a	 measure	 of	 interneuron	 relationships,	 shared	 similar	 dynamics	 during	

spindles;	the	distribution	of	pairwise	correlations	also	reached	its	maximum	at	the	peak	of	

a	 spindle	 event.	 Interestingly,	 this	 correlation	 structure	 was	 modified	 by	 a	 spindle’s	

proximity	 to	 a	 SO.	 Spindles	 that	were	 closer	 to	 SOs	 exhibited	 a	 narrower	 distribution	 of	

correlations.	 In	 contrast,	 the	 distribution	 of	 pairwise	 correlations	 was	 broader	 during	

spindles	that	were	temporally	far	from	SOs.	

	
Figure	3.12	-	Summary	of	Spindle-Induced	Correlations	and	SO	Interactions.	(A)	Idealized	distributions	
(left,	 CDF;	 right,	 PDF)	 of	 pairwise	 correlations	 during	 random	 epochs	 (black)	 and	 spindle	 epochs	 (blue).	
Sextile	 dividers	 are	 plotted	 as	 gray	 lines	 and	 blue	 arrows	 indicate	 a	 rightward	 shift	 in	 the	 distribution	 of	
correlations	across	all	 sextiles	during	 spindles.	 (B)	 Idealized	distributions	 (left,	 CDF;	 right,	PDF)	of	 spindle	
induced	pairwise	correlations	near	SO	(dark	blue)	and	far	from	SO	(light	blue).	Sextile	dividers	are	plotted	as	
gray	lines	and	dark	blue	arrows	indicate	a	tightening	of	the	distribution	of	correlations	for	spindles	nearer	to	
SO.	

3.5.1 Spindles & Changes in Neural Synchrony 

One	of	our	key	results	 is	 that	 there	are	changes	 in	both	 the	phase	 locking	and	the	
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correlation	 structure	 of	 spiking	 during	 spindle	 cycle	 dynamics.	 We	 found	 that	 spiking	

activity	 in	 M1	 became	 significantly	 more	 structured	 with	 each	 spindle	 cycle,	 leading	 to	

maximum	 changes	 at	 spindle	 peaks.	 Spike	 correlations	 have	 long	 been	 thought	 to	 drive	

neuroplasticity	(Hebb,	1949),	and	more	recently,	spike	timing	dependent	plasticity	(STDP)	

models	(G.	Bi	&	Poo,	2001;	G.	Q.	Bi	&	Poo,	1998;	Feldman,	2012;	Markram	et	al.,	1997;	Shulz	

&	Jacob,	2010)	have	been	developed,	which	emphasize	the	role	of	precise	spike	timing	in	

neuroplasticity;	 importantly,	pairs	of	spikes	occurring	within	a	STDP	learning	window	(~	

50	ms)	lead	to	direct,	predictable	changes	in	synaptic	efficacy,	but	additional	factors	such	

as	 firing	 rates	 and	 network	 activity	 also	modify	 this	 learning	 window.	 In	 this	 study	 we	

demonstrated	that	spindles	increase	firing	rates	(Figure	3.4B-C)	and	modulate	the	precise	

(~	5	ms)	timing	of	spiking	activity	relative	to	ongoing	spindles	(Figure	3.4B-C)	and	relative	

to	other	M1	neurons	(Figure	3.6C-D,	3.12A).	This	spindle	modulation	likely	engages	known	

synaptic	plasticity	mechanisms	to	support	learning.		

The	reported	changes	in	neural	synchrony	during	spindles	are	also	consistent	with	

previous	 findings	 in	 which	 spindles	 are	 linked	 to	 reactivations	 of	 task-related	 neural	

activity	 patterns	 (Ramanathan	 et	 al.,	 2015).	 However,	 we	 see	 an	 increase	 across	 the	

distribution	 of	 pairwise	 correlations	 (Figure	 3.7),	 which	 suggests	 that	 in	 addition	 to	

reactivating	specific	activity	patterns,	spindles	trigger	a	general	increase	in	local	functional	

connectivity.	 In	 support	of	 this	 local	 functional	 connectivity	 function,	 the	 rate	of	 spindles	

increases	 after	 learning.	 However,	 perhaps	 counter-intuitively,	 the	 average	 spindle-

induced	increase	in	spike	correlations	is	larger	before	learning	than	after	learning	(Figure	

3.11).	Taken	 together,	 the	 increase	 in	 local	 spindles	certainly	suggests	 that	after	 learning	

there	 would	 be	 an	 overall	 increase	 in	 local	 functional	 connectivity,	 but	 the	 role	 of	 each	
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individual	spindle	might	be	less	impactful.	

3.5.2 Sources of Spindle-Induced Synchrony 

Correlation	measurements	are	notoriously	sensitive	to	a	variety	of	factors	including	

firing	 rates,	 excitability,	 sample	 sizes,	 and	 other	 first-order	 effects	 such	 as	 spike	 timing	

relative	to	external	stimuli	or	internal	LFP	oscillations	(Barreiro	&	Ly,	2017;	Brody,	1999;	

Engelhard	et	al.,	2013;	Tchumatchenko,	Geisel,	Volgushev,	&	Wolf,	2011).	 It	 is	difficult	 to	

disentangle	second-order	correlations	from	the	impact	of	first-order	changes,	but	we	took	

several	 steps	 to	 do	 just	 that.	 First,	we	 compared	 correlations	 for	 the	 same	 neuron	 pairs	

across	conditions	(i.e.,	during	random	epochs	and	during	spindle	cycles).	Second,	we	used	a	

shuffling	procedure	that	preserved	first-order	statistics,	including	spike	counts	and	phase-

locking	 values	 of	 individual	 neurons,	 while	 eliminating	 second-order	 correlations	 across	

neuron	pairs.	This	 shuffling	procedure	allowed	us	 to	analyze	 (1)	 raw	correlations,	which	

are	 influenced	by	both	 first-	 and	 second-order	 statistics;	 (2)	 shuffled	 correlations,	which	

reflect	 the	 expected	 correlations	 given	 the	 first-order	 statistics;	 and	 (3)	 corrected	

correlations,	which	reflect	the	pure	second-order	statistics.	

These	three	correlation	measures	give	us	insight	into	the	sources	of	spindle-induced	

correlations.	The	raw	correlations	increase	during	spindles;	importantly,	these	raw	values	

reflect	 the	 true	 activity	 correlations	 that	 neurons	 experience	 and	 likely	 influence	

neuroplasticity.	 Predictably,	 the	 shuffled	 correlations	 also	 increase	 during	 spindles.	 This	

suggests	that	first-order	changes	in	spiking,	such	as	the	increase	in	firing	rates	and	phase	

locking	 (Figure	 3.6B-C),	 drive	 some	 of	 the	 increases	 in	 correlations	 during	 spindles.	

Surprisingly,	the	corrected	correlations	also	increase	during	spindles.	This	suggests	that	in	
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addition	to	the	impact	from	first-order	changes,	there	are	also	second-order	changes	that	

increase	 pairwise	 correlations.	 These	 likely	 reflect	 increases	 in	 shared	 input	 to	 the	 M1	

neurons	during	 spindles	 (Destexhe,	 Contreras,	Destexhe,	 Sejnowski,	&	 Steriade,	 1997;	M.	

Steriade,	2000;	Tchumatchenko	et	al.,	2011),	but	could	also	reflect	changes	in	brain	state	or	

synaptic	efficacy	(Tchumatchenko	et	al.,	2011).	

3.5.3 Interaction between Slow Oscillations & Spindles 

SO	are	one	of	 the	most	prominent	 signals	during	 sleep,	 and	 several	 theories	have	

been	put	forth	about	their	functional	roles	(Genzel,	Kroes,	Dresler,	&	Battaglia,	2014;	Rasch	

&	Born,	2013).	One	framework	that	connects	learning,	SO,	spindles,	and	their	interaction	is	

the	active	system	consolidation	hypothesis.	This	theory	posits	that	a	functional	role	for	sleep	

oscillations	is	to	coordinate	and	organize	spiking	activity	across	different	brain	regions	(see	

Rasch	and	Born,	2013	 for	 a	 comprehensive	 review).	This	has	mostly	been	 studied	 in	 the	

declarative	memory	 system,	where	 cortical	 SO	 nest	 thalamocortical	 spindles,	which	 nest	

hippocampal	 sharp-wave	 ripples.	 Such	 hierarchical	 nesting	 is	 proposed	 to	 coordinate	

activity	across	brain	regions,	thereby	enabling	the	transfer	of	stereotyped	spiking	patterns	

from	 short-term	 memory	 in	 the	 hippocampus	 to	 long-term	 memory	 storage	 in	 the	

prefrontal	 cortex	 (Latchoumane	 et	 al.,	 2017;	Rasch	&	Born,	 2013).	 A	 possible	 parallel	 to	

this	memory	transfer	system	has	been	found	in	the	motor	system,	where	SO	and	spindles	

have	been	shown	to	be	time-locked	to	reactivated	activity	patterns	from	recently	 learned	

motor	tasks	(Ramanathan	et	al.,	2015);	it	is	unclear	whether	this	phenomenon	is	related	to	

hippocampal	sharp-wave	ripples.	

In	 our	 study,	we	 found	 that	 SO	 and	 spindles	 are	 coupled	 (Figures	 3.2C,	 3.8B,	 and	
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3.9B),	 and	 that	 the	 temporal	 proximity	 of	 these	 oscillations	modifies	 the	 distribution	 of	

neural	correlations	(Figure	3.9C-E).	When	spindles	were	temporally	distant	from	a	SO,	the	

distribution	of	pairwise	correlations	contained	both	larger	and	smaller	values.	In	contrast,	

when	 spindles	 were	 temporally	 close	 to	 a	 SO,	 the	 distribution	 of	 pairwise	 correlations	

transiently	narrowed.		Interestingly,	there	appeared	to	be	a	linear	relationship	between	the	

exact	 temporal	 proximity	 and	 the	 extent	 of	 distribution	 tightening.	 To	 understand	 the	

functional	 role	 of	 this	 narrowing,	 it	 is	 helpful	 to	 focus	 on	 the	 tails	 of	 the	 correlation	

distribution.	Neurons	 that	 are	 rarely	 active	 together	 (low	 correlation	pairs)	 begin	 to	 fire	

together	more	often,	whereas	more	stereotyped	neural	activity	(high	correlation	pairs)	 is	

reduced.	The	effect	of	narrowing	the	correlation	distribution	is	consistent	with	exploration	

of	 novel	 neural	 activity	patterns.	 This	 novel	 exploration	 function	 is	 in	 line	with	 research	

that	 demonstrates	 a	 link	 between	 sleep	 and	 improvements	 in	 generalization	 and	 insight	

(Djonlagic	et	al.,	2009;	Ellenbogen,	Hu,	Payne,	Titone,	&	Walker,	2007;	Fenn,	Nusbaum,	&	

Margoliash,	 2003;	Wagner,	Gais,	Haider,	Verleger,	&	Born,	2004).	Mechanistically,	 SO	are	

known	to	reflect	a	depolarizing	current	that	causes	a	brief	increase	in	neural	firing	(Luczak,	

Bartho,	 Marguet,	 Buzsaki,	 &	 Harris,	 2007).	 We	 have	 confirmed	 a	 transient	 increase	 in	

spiking	after	SO	in	our	data.	Interestingly,	this	increase	is	significantly	more	substantial	for	

nested	 SO	 (i.e.,	 SOs	 that	 contain	 a	 spindle	 peak	within	 1.5s	 after	 the	 down	 state,	 Figure	

3.13).	It	is	possible	that	this	transient	depolarization	modifies	the	correlation	structure	by	

adding	energy	to	the	network,	causing	an	increase	in	new	cofiring	patterns.	In	contrast,	the	

spiking	 correlation	 structure	 during	 independent	 spindles	 likely	 reflects	 the	 ‘baseline’	

cortical	connectivity.	
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Figure	3.13	 –	 Slow	Oscillation	Triggered	 Spiking.	(A)	Average	SO	waveforms	broken	down	into	100	ms	
bins.	Waveforms	are	plotted	separately	for	nested	(dark	blue)	and	unnested	SOs.	(B)	Average	spike	counts	in	
each	 100	ms	 bin,	 also	 plotted	 separately	 for	 nested	 and	 unnested	 SOs.	 Error	 bars	 reflect	 standard	 errors	
across	all	recorded	neurons.	Shaded	region	is	a	1.5	sec	window	used	to	organize	SOs	as	nested	and	unnested.	
This	 region	 also	 reflects	 nominal	 SO	 up	 states.	 Asterisk	 signifies	 a	 significant	 difference	 in	 firing	 rates	
between	nested	and	unnested	SOs	in	the	1.5	sec	window	(paired	t-test,	p=5.8612e-06).		

Additionally,	 the	 active	 system	 consolidation	 framework	 proposes	 that	 spindles	

nested	within	SO	are	a	distinct	phenomenon	from	non-overlapping	SO	or	spindles.	Several	

studies	have	accordingly	categorized	SO	and	spindles	as	nested	or	unnested	and	observed	

significant	 differences	 between	 these	 groups	 in	 prefrontal	 cortex	 (Latchoumane	 et	 al.,	

2017;	Niethard,	Ngo,	Ehrlich,	&	Born,	2018).	Rather	than	just	using	a	binary	categorization,	

we	 decided	 to	 compare	 spindles	 across	 a	 range	 of	 time	 delays	 after	 SO.	 Using	 this	

organization	 we	 did	 not	 find	 a	 stark	 difference	 between	 nested	 and	 barely	 unnested	
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spindles;	 rather,	we	 observed	 a	 relatively	 smooth	 progression,	where	 the	 distribution	 of	

pairwise	correlations	appears	to	become	more	narrow	as	spindles	occur	closer	to	SO.	

3.5.4 Implications for Homeostasis 

In	addition	to	active	consolidation,	sleep	is	thought	to	subserve	a	homeostatic	role.	

This	 is,	 in	 part,	 based	 on	 observed	 changes	 over	 the	 course	 of	 sleep	 in	 LFP	 power	 and	

synaptic	 strength	 (González-Rueda	 et	 al.,	 2018;	 Tononi	 &	 Cirelli,	 2003).	 This	 work	 has	

emphasized	the	role	of	slow	waves	and	SO	up-states	in	synaptic	downscaling.	Recent	work	

has	demonstrated	that	the	distribution	of	firing	rates	homogenizes	during	sleep	(Watson	et	

al.,	 2016).	Watson	et	 al.	 showed	 that	 low-firing	neurons	 increase	 their	 activity	 and	high-

firing	neurons	decrease	their	activity	after	NREM	sleep	episodes,	and	this	homogenization	

of	neural	activity	is	apparent	during	SO	up-states.	

Since	SO	play	a	role	in	homeostasis,	we	wanted	to	reinterpret	our	results	within	this	

framework.	We	 focused	 on	 the	 role	 of	 SO	 in	modifying	 spindle-induced	 correlations	 and	

asked	 whether	 the	 narrowing	 of	 correlations	 that	 we	 observed	 could	 play	 a	 role	 in	

homeostasis	 during	 sleep.	 Though	 this	 is	 a	 complicated	 network,	 we	 know	 that	 spike	

correlations	drive	neuroplasticity	(G.	Bi	&	Poo,	2001;	Hebb,	1949),	and	that	there	is	strong	

evidence	 that	 spike	 correlations	 are	 positively	 correlated	 with	 neural	 firing	 rates	 (Bair,	

Zohary,	 &	 Newsome,	 2001;	 Barreiro	 &	 Ly,	 2017;	 Lin,	 Okun,	 Carandini,	 &	 Harris,	 2015;	

Schulz,	Sahani,	&	Carandini,	2015).	Given	these	observations,	the	narrowing	of	correlations	

that	we	observe	is	entirely	consistent	with	the	homogenization	of	firing	rates	during	NREM	

sleep.	Moreover,	even	in	our	relatively	short	(~2	hour	sleep	blocks)	the	measured	spindle-

induced	correlations	decrease	across	sleep.	Interestingly,	we	do	not	see	changes	in	spindle-
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induced	 firing	 rates	 during	 this	 time.	More	work	 is	 necessary	 to	 illuminate	whether	 the	

narrowing	 of	 correlations	 could	 cause	 changes	 to	 LFP	 power	 or	 firing	 rates	 outside	 the	

influence	of	spindles.	
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Chapter 4   
Conclusions 
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4.1 Summary of Contributions 
In	this	thesis,	I	had	the	sweeping	objective	of	exploring	the	neural	basis	of	how	we	

are	 able	 to	 learn	 new	 sensorimotor	 skills.	 I	 began	with	 a	 brief	 review	 of	 two	ways	 that	

neuroscientists	 have	 traditionally	 studied	 sensorimotor	 learning:	 external	 influences	 on	

synaptic	plasticity	and	behavioral	modification	during	learning.	Connecting	these	two	fields	

of	 research	 is	 critical	 to	 make	 progress	 towards	 understanding	 how	 neural	 activity	

supports	sensorimotor	learning.	At	its	essence,	this	thesis	is	an	attempt	to	try	to	bridge	the	

two	 levels	 by	 exploring	 connectivity	 and	 plasticity	 at	 the	 meso-scale	 in	 which	 neuron	

populations	 coordinate	 their	 activity	 and	 connectivity	 in	 order	 to	 support	 functional	

reorganization	 and	 sensorimotor	 learning.	 In	 this	 thesis,	 I	 use	 two	 vastly	 different	

approaches	 and	 two	 different	 animal	 models	 to	 study	 what	 functional	 reorganization	

during	learning	looks	like	at	the	meso-scale.	

4.1.1 Using Low Frequency Stimulation to Probe Meso-scale 
Connectivity & Plasticity 

In	my	 first	 set	 of	 experiments,	 I	 extended	 classic	 synaptic	 plasticity	 experimental	

methods	to	study	changes	in	functional	connectivity	in	the	sensorimotor	system.	We	used	a	

meso-scale	optogenetic	 interface	to	simultaneously	stimulate	and	record	from	population	

activity.	Little	is	understood	about	connectivity	at	this	scale.	Therefore,	our	first	endeavor	

was	 to	develop	 two	methods	 to	measure	 functional	connectivity	across	a	network.	These	

methods	 relied	 on	 both	 analyzing	 statistical	 dependencies	 in	 spontaneous	 activity	 and	

analyzing	how	activity	propagated	though	the	sensorimotor	network	 in	response	to	 focal	

stimulation.	We	 tracked	 these	measures	of	network	connectivity	while	employing	 simple	
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and	 eventually	 more	 complicated	 stimulation	 protocols.	 Within	 minutes	 of	 stimulating	

either	 area,	 the	 inter-area	 functional	 connectivity	 strengthened,	 but	 upon	 closer	

examination	 of	 the	 connectivity	 patterns,	 we	 discovered	 that	 stimulation	 led	 to	 variable	

connectivity	changes	across	the	network.	We	then	tried	to	figure	out	why	stimulation	had	

such	heterogeneous	effects.	From	the	vast	synaptic	plasticity	 literature,	we	reasoned	that	

the	neuroplasticity	that	we	observed	might	depend	on	activity-dependent	correlations.	In	

fact,	 the	 models	 that	 successfully	 predicted	 functional	 plasticity	 relied	 on	 both	 activity-

dependent	 correlations	 and	knowledge	of	 the	baseline	 functional	 connectivity	 across	 the	

network.	This	work	provides	strong	evidence	that	Hebbian	plasticity	models	can	be	applied	

to	meso-scale	circuits;	we	were	able	 to	 show	that	 the	specific	 correlations	 introduced	by	

stimulation-evoked	activity	led	to	predictable	changes	in	functional	connectivity,	consistent	

with	models	of	Hebbian	plasticity.	

4.1.2 Meso-scale Oscillations Coordinate Spiking Activity to Support 
Sensorimotor Learning 

In	my	 second	 set	 of	 experiments,	 I	 sought	 to	 study	natural	 sensorimotor	 learning	

and	 connect	 changes	 at	 the	 cellular	 level	 to	 changes	 in	meso-scale	plasticity.	 To	uncover	

this	link	I	took	advantage	of	two	neural	oscillations	that	are	known	to	support	learning	and	

consolidation	 in	 the	 sensorimotor	 system;	 during	 sleep,	 spindles	 and	 slow	 oscillations	

(SOs)	 are	 both	 thought	 to	 provide	 an	 important	 function	 in	 memory	 consolidation.	 The	

temporal	overlap	between	the	two	oscillatory	events	has	been	theorized	to	be	particularly	

important	 for	 learning	 and	 consolidation.	 Spiking	 activity	 during	 these	 meso-scale	

oscillations	has	been	characterized	at	the	level	of	individual	neurons;	however,	the	effect	of	
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spindles	 on	 the	 correlation	 structure	 of	 neural	 firing	 was	 largely	 unstudied.	 Given	 the	

known	relevance	of	neural	correlations	in	synaptic	plasticity,	we	reasoned	that	these	meso-

scale	oscillations	might	support	 learning	by	changing	 the	correlation	structure	of	 spiking	

activity.	To	 investigate	 the	 relationship	between	 the	meso-scale	and	neuron	correlations,	

we	 simultaneously	 recorded	 local	 field	 potentials	 (LFPs)	 and	 spiking	 activity	 from	

electrode	 arrays	 in	 M1	 of	 four	 sleeping	 rats.	 This	 enabled	 us	 to	 examine	 the	 precise	

relationship	 between	 spike	 timing	 relative	 to	 ongoing	 spindle	 oscillations	 and	 SO.	 By	

deconstructing	 spindles	 into	 separate	 cycles	 we	 were	 able	 to	 track	 spiking	 structure	

dynamically	 during	 the	 evolution	 of	 spindles.	 This	 analysis	 revealed	 changes	 in	 spiking	

structure	that	followed	the	waxing	and	waning	of	the	spindle	itself.	During	spindles	spike	

rates	 increased,	 timing	was	more	 phase-locked	 to	 the	 spindle	 frequency	 band,	 and	 local	

synchrony	resonated	to	a	maximum	at	the	peak	of	spindles.	This	analysis	also	revealed	that	

SO	and	spindles	interact—the	distribution	of	spindle-induced	correlations	narrowed	when	

spindles	were	modified	by	SO.	This	modification	of	the	correlation	structure	is	consistent	

with	 exploration	of	 novel	neural	 states	 and	may	be	 a	 key	mechanism	 through	which	 the	

interaction	of	meso-scale	oscillations	can	support	sensorimotor	consolidation.	

4.2 Future Directions 
To	gain	a	deeper	understanding	of	how	we	learn	to	better	interact	with	the	world,	

we	need	 to	 relate	neural	 activity	 at	 different	 levels	 to	 improvements	 in	behavior.	 In	 this	

thesis	I	attempted	to	both	connect	meso-scale	activity	to	the	activity	of	individual	neurons	

and	to	directly	model	plasticity	at	the	meso-scale.	This	work	is	important,	but	remains	far	

from	 finished.	 There	 are	 two	 critical	 next	 steps	 that	 should	 be	 taken:	 (1)	 correlation	
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analysis	 and	 causal	 perturbation	 analysis	 of	 meso-scale	 activity	 during	 behavior	 and	

throughout	learning	(2)	measure	and	track	meso-scale	connectivity	across	different	brain	

regions.	One	of	 the	dominant	 theories	 for	why	we	have	population-level	oscillations	 is	 to	

coordinate	activity	across	different	brain	areas.	Although	 I	did	relate	 functional	plasticity	

within	 and	 across	 M1	 and	 S1,	 the	 field	 of	 neuroscience	 needs	 to	 expand	 meso-scale	

measurements	 of	 coordinated	 activity	 between	more	 cortical	 areas	 and	between	 cortical	

and	subcortical	areas.	To	develop	a	more	comprehensive	view	of	the	neural	underpinnings	

of	sensorimotor	control	and	learning,	understanding	the	relationship	between	all	nodes	in	

the	sensorimotor	network	is	imperative.	

Additionally,	this	work	has	significant	implications	for	clinical	research	and	clinical	

treatment.	 In	 this	 thesis,	 we	 have	 only	 indirectly	 touched	 upon	 the	 diverse	 field	 of	

neurostimulation	for	clinical	disorders.	I’ll	briefly	mention	that	neurostimulation	has	been	

used	to	treat	a	diverse	palette	of	clinical	conditions	including	cochlear	implants	(Peterson,	

Pisoni,	&	Miyamoto,	 2010),	 stroke	 rehabilitation	 (Kubis,	 2016;	Ramanathan	 et	 al.,	 2018),	

motor	 disorders	 (Collomb-Clerc	 &	Welter,	 2015;	 Herrington,	 Cheng,	 &	 Eskandar,	 2016),	

psychological	 disorders	 (Herrington	 et	 al.,	 2016;	 Kellner	 et	 al.,	 2012;	 Oluigbo,	 Salma,	 &	

Rezai,	 2012),	 and	 a	 variety	 of	 other	 conditions.	 Notably,	 in	 many	 of	 these	 applications,	

neurostimulation	 has	 a	 small	 initial	 impact;	 rather,	 its	 effects	 evolve	 over	 the	 course	 of	

weeks	or	months,	implying	that	stimulation	is	likely	engaging	neuroplasticity	mechanisms.	

Yet,	we	have	almost	no	understanding	of	how	neural	stimulation	effects	connectivity	locally	

or	 impacts	 connectivity	 across	 brain	 networks.	 Understanding	 the	 mechanisms	 of	

neuroplasticity	in	response	to	neural	stimulation	and	during	natural	oscillations	will	enable	

researchers	and	clinicians	to	develop	more	effective,	targeted	stimulation	technologies	and	
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protocols,	which	could	have	an	immediate	and	tangible	impact	on	society.		 	
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