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Abstract

Genome-wide association studies (GWAS) of alcohol dependence (AD) have reliably identified 

variation within alcohol metabolizing genes (e.g., ADH1B) but have inconsistently located other 

signals, which may be partially attributable to symptom heterogeneity underlying the disorder. We 

conducted GWASs of DSM-IV AD (primary analysis), DSM-IV AD criterion count (secondary 

analysis), and individual dependence criteria (tertiary analysis) among 7,418 (1,121 families) 

European American (EA) individuals from the Collaborative Study on the Genetics of Alcoholism 

(COGA). Trans-ancestral meta-analyses combined these results with data from 3,175 (585 

families) African American (AA) individuals from COGA. In the EA GWAS, three loci were 

genome-wide significant: rs1229984 in ADH1B for AD criterion count (p=4.16E-11) and Desire 
to cut drinking (p=1.21E-11); rs188227250 (chromosome 8, Drinking more than intended, 
p=6.72E-09); rs1912461 (chromosome 15, Time spent drinking, p=1.77E-08). In the trans-

ancestral meta-analysis, rs1229984 was associated with multiple phenotypes and two additional 

loci were genome-wide significant: rs61826952 (chromosome 1, DSM-IV AD, p=8.42E-11); 

rs7597960 (chromosome 2, Time spent drinking, p=1.22E-08). Associations with rs1229984 and 

rs18822750 were replicated in independent datasets. Polygenic risk scores derived from the EA 

GWAS of AD predicted AD in two EA datasets (p<0.01; 0.61-1.82% of variance). Identified novel 

variants (i.e., rs1912461, rs61826952) were associated with differential central evoked theta power 

(loss minus gain; p=0.0037) and reward-related ventral striatum reactivity (p=0.008), respectively. 

This study suggests that studying individual criteria may unveil new insights into the genetic 

etiology of AD liability.

Keywords

alcohol dependence; DSM-IV alcohol dependence criterion; DSM-IV criterion count; DSM-IV 
individual criteria; item response analysis; genome-wide association study; meta-analysis; 
polygenic risk score; Event-Related Theta Oscillations (ERO); functional Magnetic Resonance 
Imaging (fMRI)

INTRODUCTION

Alcohol dependence (AD), characterized by excessive drinking and diagnosed using features 

such as loss of control over drinking and excessive consumption despite negative 

consequences, is one of the most common and costly public health problems worldwide 1. In 

the United States (U.S.), 12.5% of the population meets criteria for DSM-IV AD1,2. AD is a 

complex disease with both genetic and environmental underpinnings and an estimated 

heritability around 50% 3. Identification of loci associated with AD liability could provide 
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new insights into the biological mechanisms underlying this serious disorder and lead to new 

therapeutic pathways.

Individual genome-wide association studies (GWAS) of AD have been relatively modest in 

size (but see a recent large publication using International Classification of Disease codes4) 

and have failed to identify consistently replicable loci 5, with the exception of variants 

within the alcohol metabolizing genes, notably ADH1B, and to a lesser degree, ADH1C. A 

recent large GWAS meta-analysis of 14,904 AD cases and 37,944 controls, which includes 

some of the samples used in this study, also only detected genome-wide significant (GWS) 

association with rs1229984 (Europeans) and rs2066702 (African-Americans); both SNPs are 

in ADH1B6. However, when examining a broader definition of alcohol use disorders from 

medical records, loci in additional genes have recently been identified4. We have previously 

conducted GWAS of AD-related phenotypes in smaller subsets of the data used in the 

present study, but results have eluded replication and power to detect rs1229984 has been 

low (e.g., for AD in a subset of 1884 unrelateds7, for AD, criterion count and criteria in 

2010-2,322 individuals from 118 families8,9).

One possible challenge to identification of novel loci contributing to AD susceptibility may 

be the heterogeneity underlying the diagnosis of AD. Meeting criteria for DSM-IV AD 

requires that an individual endorse any three (or more) of the seven DSM-IV criteria 

(Tolerance; Withdrawal; Drinking more than intended; Desire to cut drinking; Giving up 
activities; Time spent drinking; Drinking despite problems) during the same 12-month 

period. However, psychometric literature points to the differential severity and contribution 

of individual criteria10. An approach to reduce diagnostic heterogeneity may be the analysis 

of individual DSM-IV criteria in addition to the overall AD diagnosis. Twin studies have 

suggested that the individual criteria that comprise the AD diagnosis are heritable 11-13. For 

instance, Kendler and colleagues showed the heritability of individual criteria ranged from 

36% (Desire to cut drinking) to 59% (Time spent drinking) 14. Another study found that 

heritability of individual criteria (in a subset of the data used here) were between 29% 

(Tolerance) and 59% (Drinking more than intended) 9. Genomic data also support this 

variability with Palmer et al reporting a SNP-based heritability ranging from 13% (Time 
spent drinking) to 34% (Tolerance) 15. The variability across these estimates likely arises 

from ascertainment (e.g., ascertained for addiction vs. twin epidemiologic sample) and the 

analytic approach (e.g., using SNPs vs. family relatedness). In addition, in one study, the 

observed associations with ADH1B loci were also differentially attributable to Tolerance, 

Withdrawal, Drinking more than intended, and Time spent drinking, relative to other criteria 
16.

Another strategy to improve the ability to detect variants contributing to DSM-IV AD is to 

consider the severity of the AD. One approach is to analyze a quantitative variable 

representing the total number of criteria that a person endorses. Although multiple 

combinations of criteria and study characteristics may result in a similar criterion count 17, 

especially when fewer criteria are endorsed 18, this proxy for AD severity has been 

successfully employed in previous studies 19,20 as it makes no assumptions about the cut-off 

of three or more criteria as an index of “affection status” nor does it equate individuals with 

1-2 criteria with those who endorse no criteria during their lifetime.
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In this study, we sought to harness the phenotypic richness of the high density alcohol 

dependent families recruited as part of the Collaborative Study on the Genetics of 

Alcoholism (COGA) to perform a series of complementary analyses designed to identify 

variation contributing to the risk of AD. Our primary GWAS focused on DSM-IV AD 

diagnosis, a clinically validated measure of pathological drinking that is commonly used in 

GWAS 6. We also conducted secondary GWAS of AD severity defined as the count of these 

criteria (range 0-7), as this quantitative phenotype has been shown to facilitate identification 

of GWS loci over the binary diagnostic measure of DSM-IV AD (e.g.,21). In tertiary 

analyses, we conducted exploratory GWASs of the seven individual DSM-IV AD criteria, in 

order to assess which criteria were the most significant contributors to the overall findings 

observed for DSM-IV AD diagnosis and criterion count, and further, examine whether novel 

loci emerged for individual criteria. To identify common variants associated with these 

phenotypes, a GWAS was performed in the European American (EA, n=1,114 families; “EA 

GWAS”) subsample of COGA, followed by a trans-ancestral genome-wide meta-analysis of 

the EA and African American (AA; N=585 families) subsamples. GWS (p<5E-8) findings 

were tested for replication in three independent datasets (Study of Addiction: Genetics and 

Environment (SAGE)22, Alcohol Dependence GWAS in European and African Americans 

(Yale-Penn)21, and the Australian Twin-family Study of Alcohol Use Disorder (OZALC)23, 

which included EA (OZ-ALC, SAGE) and AA (SAGE, Yale-Penn) individuals. Polygenic 

risk scores (PRS) were created from the COGA EA GWAS and used to predict AD in EAs 

from SAGE and OZ-ALC. We also performed gene based analyses using COGA EA GWAS. 

Lastly, to probe the potential neural correlates of the GWS variants associated with aspects 

of AD, we tested whether GWS variants identified in the primary (DSM-IV AD), secondary 

(AD criterion count) or tertiary (individual criteria) analyses were associated with two 

reward-related neural phenotypes, one within a subset of young individuals from COGA 
24and another within the independent Duke Neurogenetics Study 25. The overall design of 

this study is shown in Figure 1.

MATERIALS AND METHODS

Collaborative Study on the Genetics of Alcoholism

Sample: COGA recruited AD probands from inpatient and outpatient AD treatment 

facilities in seven sites. Community-based families were also recruited from a variety of 

sources26. Institutional review boards from all seven sites approved the study and all 

participants provided informed consent. COGA participants were administered the Semi-

Structured Assessment for the Genetics of Alcoholism (SSAGA), a poly-diagnostic 

interview 27,28. Individuals below age 18 were administered the child version of the SSAGA, 

the C-SSAGA. If an individual was interviewed more than once, data from the interview 

with the maximum total number of endorsed DSM-IV AD criteria were utilized.

Measures: To avoid the inclusion of individuals with high genetic risk who do not drink 

for personal, social or cultural reasons, only individuals who reported ever drinking at least 

one full drink of alcohol in their lifetime were included in analyses (EA: N=7,418; AA: 

N=3,175).
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The primary phenotype in this study was diagnosis of DSM-IV AD29. Individuals meeting 

criteria for DSM-IV AD at age 15 or older were coded as affected. Individuals were coded 

as unaffected if they met all of the following criteria: 1) ≥ 21 years; 2) endorsed < 2 criteria 

for DSM-IV dependence or abuse for alcohol, and 3) endorsed < 2 criteria for DSM-IV 

dependence or abuse for cocaine, opioids, marijuana, sedatives, and stimulants. Affected 

individuals <15 years of age and unaffected individuals <21 years of age were excluded. 

Exclusions for age removed affected individuals with early onset AD who might be 

etiologically distinct, due to the potentially stronger role of environmental than genetic 

influences 30. For unaffected individuals, exclusion of those < 21 years of age removed those 

who may not have passed through the peak period of risk for the onset of AD 31,32. Due to 

the strong evidence for shared genetic influences on alcohol and other forms of substance 

use disorders, individuals who did not meet criteria for AD but endorsed multiple abuse or 

dependence criteria for other substances were also excluded from the analysis.

The secondary phenotype in this study was the sum of endorsed criteria out of the seven 

DSM-IV AD criteria.

Tertiary phenotypes included each of the seven individual DSM-IV AD criteria. Individuals 

who drank alcohol but did not endorse that specific criterion were coded as unaffected.

Phenotypic analysis: Tetrachoric correlations (for binary phenotypes) and polychoric 

correlations (for binary and count phenotypes) were calculated using SAS9.4 (SAS Institute 

Inc. Cary, NC, USA). We conducted an item response analysis in Mplusv833, using a two-

parameter logistic model, to confirm the uni-dimensionality underlying the seven criteria 

and to examine the discrimination and difficulty associated with each criterion (see 

Supplemental Text).

Genotyping, Quality Review, Ancestry and Imputation: Four different genome-

wide genotyping arrays were used in COGA: 1. COGA case/control data were genotyped on 

the Illumina Human1M array (Illumina, San Diego, CA, USA) at the Center for Inherited 

Disease Research (CIDR), Johns Hopkins University 7; 2. COGA European American 

family data were genotyped on the Illumina Human OmniExpress 12V1 array (Illumina, San 

Diego, CA, USA) at the Genome Technology Access Center, Washington University School 

of Medicine 9,34; 3. COGA AA family data were genotyped on the Illumina 2.5M array 

(Illumina, San Diego, CA, USA) at CIDR 35; 4. The remaining samples were genotyped on 

the Smokescreen genotyping array (Biorealm LLC, Walnut, CA, USA) at Rutgers 

University. Among these arrays, two to 127 samples were genotyped on at least two different 

arrays with pairwise concordance rates all > 99.18%.

A set of 47,000 variants genotyped on all arrays and meeting the following four criteria: 

common (defined as MAF > 10% in the combined sample), independent (defined as R2 < 

0.5), high quality (missing rate < 2% and Hardy-Weinberg Equilibrium (HWE) P-values > 

0.001), were used to assess duplicate samples included on multiple arrays and also to 

confirm the reported pedigree structure. Family structures were altered as needed, and 

genotypes were checked for Mendelian inconsistencies using Pedcheck 36 with the revised 

family structure. Genotype inconsistencies were set to missing. The same set of 47,000 
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variants was also employed to calculate principal components (PCs) using Eigenstrat 37 and 

1000 Genomes (Phase 3, version 5). Based on the first two PCs, each individual was then 

assigned a race classification (AA, EA, and Other). To maximize the value of the multiplex 

family recruitment strategy of COGA, family-based analyses were performed. Families were 

assigned a family-based race, according to the majority of individual-based race in that 

family.

All samples were imputed to 1000 Genomes using the cosmopolitan reference panel (Phase 

3, version 5, NCBI GRCh37) using SHAPEIT2 38 then Minimac3 39 within each array. Only 

variants with non A/T or C/G alleles, missing rates < 5%, MAF > 3%, and HWE p values > 

0.0001 were used for imputation. Imputed variants with R2 < 0.30 were excluded, and 

genotype probabilities were converted to genotypes if probabilities >= 0.90. Pedcheck 36 

was used again to detect and clean Mendelian inconsistences for imputed variants. All 

genotyped and imputed variants with missing rates< 25%, MAF >= 1% and HWE p values > 

1E-6 were included in analyses. 8,021,023 and 6,832,792 genotyped and imputed variants 

passed QC and were included in COGA EA and trans-ancestral (EA+AA) meta-analysis 

respectively.

Genome-wide association studies and meta-analysis: Discovery GWAS were 

focused on the EA subsample and a trans-ancestral meta-analysis of GWAS summary 

statistics from the COGA AA and EA subsamples (EA+AA; see Figure 1). Even though a 

GWAS was conducted in the AA subsample, results were only used in the trans-ancestral 

meta-analysis. Due to the strict definition of AD controls, the individual AA subsample was 

too small for use as a discovery sample (both cases and controls had a sample size < 1000; 

full results available upon request). For binary traits, association analysis was performed 

using a generalized estimating equation (GEE) framework (with a binomial probability 

distribution) to control for relatedness with each family treated as a cluster. For the criterion 

count measure, a liner mixed effects model was fit to continuously distributed data with 

family relationship adjusted through a kinship matrix. The R package GWAF 40 was used to 

test both models. Birth cohort (birth year: 1890-1929; 1930-1949; 1950-1969; >=1970) was 

a stronger predictor of alcohol dependence than was age (see also: Grucza et al., 2008 41), 

and hence was selected along with sex, GWAS array indicator, and the first four ancestral 

principal components (as in a prior study by 34) as covariates in the model. In GWS regions, 

conditional analyses were performed by including the most significant variant in the region 

as a covariate to evaluate whether a single locus explained the association signal. The trans-

ancestral (EA+AA) meta-analysis was performed using inverse-variance weighting in 

METAL 42. As implemented in METAL, genomic control, which was estimated by 

comparing the median test statistics to those expected by chance alone, was applied to the 

GWAS of COGA AA and COGA EA. For the trans-ancestral meta-analysis (EA+AA), 

genomic control was applied to the standard errors of the effect sizes. All genomic control 

estimations were implemented in METAL. Only GWS variants (p <5E-8) were evaluated in 

replication samples. As we tested seven individual criteria for the tertiary analyses, a matrix 

of the phenotypic correlations between these criteria in the EA participants (Supplemental 

Table 1B) was spectrally decomposed using matSpD 43,44 resulting in 3 effectively 
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independent tests and thus a revised GWS p value threshold of 1.67E-8 was used for the 

tertiary analyses.

Replication Samples

Three independent datasets from the database of Genotypes and Phenotypes (dbGaP) were 

used to replicate significant findings from primary, secondary and tertiary analyses: Study of 

Addiction: Genetics and Environment (non-overlapping individuals from SAGE, 

phs000092.v1.p1, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000092.v1.p1), Alcohol Dependence GWAS in European and African 

Americans (Yale-Penn, phs000425.v1.p1, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000425.v1.p1), and the Australian Twin-family Study of Alcohol 

Use Disorder (OZALC, phs000181.v1.p1, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000181.v1.p1). Genotypic data from these samples were 

combined with genotypic data from the COGA samples to identify identical individuals 

across all datasets; overlapping subjects were retained in the discovery GWAS in COGA but 

excluded from the replication samples. Ancestry in the combined replication sample was 

determined in a manner similar to COGA. A similar definition of AD was employed where 

unaffected individuals with alcohol abuse, or other substance dependence were excluded. 

The secondary (DSM-IV AD criterion count) and tertiary (individual criteria) phenotypes 

were also coded in an identical manner. In each replication attempt, only the identical 

phenotype was tested in the replication cohort (e.g., for a variant that was GWS for one 

criterion but not others, only association with that criterion was tested in the replication 

samples). Due to the small sizes of the individual AA and EA subsets of the replication 

datasets, only the AA subsample of SAGE (SAGE-AA), EA subsample of SAGE (SAGE-

EA), AA subsample of Yale-Penn (Yale-Penn-AA), and EA subsample of OZALC 

(OZALC-EA) were included as replication samples. Empirical kinships were estimated from 

genome-wide genotypic data using the “vcf2kinship” tool as implemented in RVTESTS, 

then mixed models adjusting for empirical kinships were fitted to the data using RVTESTS 
45. For both SAGE-AA and SAGE-EA, sex and birth cohort (as defined in COGA) were 

used as covariates, while for OZALC-EA and Yale-Penn-AA, sex and age were used, as in 

publications of the parent studies. In addition, the first three PCs were included in all 

replication analyses.

Polygenic risk scores analyses

PRS analyses were performed using PRSice-2 46. EA summary statistics for the primary 

phenotype, DSM-IV AD, were used to score individuals in SAGE-EA and OZALC-EA 

datasets. Due to their well-known roles in AD, the alcohol dehydrogenase (ADH) gene 

cluster on chromosome 4 (99,985,095bp to 100,430,930bp) and ALDH2 on chromosome 12 

(112,196,532bp to 112,276,464bp) were excluded from PRS analyses to allow for estimation 

of polygenicity attributable to loci with smaller effects. A set of unrelated individuals was 

randomly selected from each replication sample (SAGE-EA: N=1,373; OZALC-EA: 

N=1,441) as required by PRSice-2. Variants located within 500kb of the index variant and 

having r2 ≥0.25 with the index variant were clumped. PRS were derived by multiplying 

effect sizes from the EA GWAS of the primary phenotype, DSM-IV AD, with the number of 

effect alleles in each individual in the target dataset. These product terms were then averaged 
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across the total number of included variants. We only used the p-value threshold of p ≤0.05 

(i.e., SNPs associated with DSM-IV AD in the discovery EA GWAS at p ≤ 0.05) in order to 

reduce the burden of multiple testing and included the same covariates as those used in 

replication analyses in each dataset.

Gene based analysis

MAGMA (De Leeuw et al., 2015), which is implemented in FUMA, a web based functional 

mapping and annotation tool (Watanabe et al., 2017) was used to perform gene based 

analysis. LD was estimated using the European samples from 1000 Genomes projects.

Neural extension I: Event-Related Theta Oscillations (ERO) analysis of GWS loci in COGA 
Prospective Sample

The COGA Prospective Sample includes offspring aged 12-34 years from COGA families, 

and was designed to assess multiple domains (e.g., clinical, neurophysiological), at 2-year 

intervals, 24. Neurophysiological analyses of reward-related theta ERO data from the most 

recent assessments were carried out in a subsample of 825 COGA AA (49.9% male, 

22.12±5.21 years of age) and 1,726 COGA EA (48.8% male, 22.26±5.21 years of age) 

young adults. Further details are in Supplemental Text.

A monetary gambling task was implemented as detailed elsewhere 47. Briefly, individuals 

bet 50¢ or 10¢ in each of 172 trials, with one of four possible outcomes: lose 50¢, lose 10¢, 

gain 50¢, or gain 10¢, with equal number of loss and gain trials (Supplemental Figure 1). 

Evoked theta ERO power (3.5–7.5 Hz) during monetary loss and gain feedback were 

measured and differential reward processing (‘loss – gain’) was derived at frontal, central, 

and parietal regions (Supplemental Figure 2). Linear regression was applied to test the 

associations between the top variants and theta ERO power after adjusting for sex, age, and 

first three PCs. We did not examine rs1229984 in ADH1B in either the COGA Prospective 

Sample or the Duke Neurogenetics Study (below) due to its well-known role in the alcohol 

metabolizing process. For the remaining four GWS loci (rs61826952 and rs7597960 from 

EA+AA meta-analysis, as well as rs188227250 and rs1912461 from the EA GWAS), three 

brain regions were tested; therefore, after multiple testing correction, the significance 

threshold was p≤0.0042 (i.e., 12 tests). Further details on data acquisition and processing are 

in Supplemental Text.

Neural extension II: Reward-related functional magnetic resonance imaging analyses of 
GWS loci in the Duke Neurogenetics Study

We examined whether GWS loci identified in analyses of alcohol-related phenotypes were 

associated with reward-related brain function among non-Hispanic AA (n=118; 72% female, 

19.6 ± 1.2 years of age) and EA (n=481; 54.5% female, 19.8±1.2 years of age) 

undergraduate students who completed the Duke Neurogenetics Study (DNS; 25; see 

Supplemental Text). For rs7597960, which was unavailable in DNS imputed data, we used a 

proxy SNP, rs2418646, which is in complete LD (i.e., r2=1.0, D’=1.0) within those of 

African and European ancestries. The chromosome 8 and 15 loci were unavailable in DNS 

imputed data and no proxies were available; due to their low MAFs, they were difficult to 

impute in this smaller sample. A number guessing paradigm was used to elicit ventral 
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striatum (VS) reactivity associated with positive and negative feedback linked to monetary 

gains and losses while blood-oxygen-level dependence (BOLD) functional magnetic 

resonance imaging (fMRI) data were acquired 48. Statistical Parametric Mapping version 8 

(SPM8) software was used to extract parameter estimates for the contrast of Positive 

Feedback > Negative Feedback from maximal voxels within left and right VS regions of 

interest (ROIs). Imaging acquisition protocol, task, ROIs, and preprocessing details are 

described in the Supplemental Text. Extracted parameter estimates from VS activity in each 

hemisphere were regressed on genotype (rs61826952 coded as 1 or more copies of the minor 

allele due to sample size; rs2418646 coded using an additive model for the number of C 

alleles) while co-varying for sex, and three (AA) or two (EA) ancestral principal 

components using Full Information Maximum Likelihood in MPlus v7.349. Trans-ancestral 

meta-analysis was conducted using METAL 42. To adjust for multiple comparisons, we used 

a Bonferroni-corrected p-value threshold (p<0.0125), to account for our hypothesized 4 tests 

(i.e., rs61826952 and rs2418646 in both brain hemispheres in a trans-ancestral meta-

analysis).

RESULTS

Phenotypic analyses:

Tables 1 (primary and secondary phenotypes of DSM-IV AD and criterion count) and 2 
(tertiary analysis of seven individual criteria) summarize the samples used in discovery and 

replication analyses. There were 7,418 (1,114 families) EA and 3,175 (585 families) AA 

individuals, respectively. In total, there were 18,586 individuals evaluated for DSM-IV AD 

in both discovery and replication samples, with 7,482 AD cases and 6,169 controls. As 

shown in Supplemental Table 1 , the primary, secondary and tertiary phenotypes were highly 

correlated with each other in both EAs and AAs, with DSM-IV AD and DSM-IV AD 

criterion count having the highest correlations with each individual criterion in both AA and 

EA subsamples (r>0.87). As shown in Supplemental Table 2, the item response analysis 

demonstrated that all criteria loaded well on a single underlying AD factor. Some criteria 

discriminated liability at the lower end of the liability distribution (e.g., Drinking more than 
intended) while others (e.g., Withdrawal, Time spent drinking, Giving up activities) 

contributed at the higher end of the severity continuum (Supplemental Text).

GWAS findings:

Regions on chromosomes 1, 2, 4, 8 and 15 reached GWS (p≤5E-8) for primary, secondary 

and tertiary phenotypes in EA and EA+AA GWAS, respectively (Table 3; Manhattan, 

quantile-quantile and regional association plots for GWS findings are in Supplemental 

Figures 3 and 4 respectively; effect sizes, standard errors and p-values for EA and AA sub-

samples and the EA+AA analysis in Supplemental Table 3). All genomic controls (lambda) 

are listed in Supplemental Table 4.

Primary phenotype (DSM-IV AD diagnosis): In EA, no GWS findings were identified. 

In the trans-ancestral meta-analysis (EA+AA), consistent with prior GWAS, rs1229984 in 

ADH1B was significantly associated with AD (p = 1.72E-8). In addition, a novel GWS locus 

was also identified on chromosome 1 (rs61826952, p=8.42E-11) in the EA+AA analysis. 
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Both the EA (p=7.73E-6) and AA (p=1.50E-07; results available upon request) subsamples 

contributed to the finding, with the same direction of effect. Conditional analyses confirmed 

that there were independent associations in the ADH1B region but not in the chromosome 1 

region (Supplemental Figure 5A, 5C).

Secondary phenotype (DSM-IV AD criterion count): Rs1229984 in ADH1B was 

associated at GWS levels in the EA and the EA+AA analysis.

Tertiary phenotypes (individual criteria): In EA, rs1229984 was associated with 

Desire to cut drinking (p=1.21E-11). Two novel regions were GWS for two individual 

DSM4 criteria: rs188227250 on chromosome 8 for Drinking more than intended 
(p=6.72E-09); rs1912461 on chromosome 15 for Time spent drinking (p=1.77E-08). For the 

trans-ancestral (EA+AA) analysis, rs1229984 was significantly associated with Desire to cut 
drinking (p = 6.01E-14) and Tolerance (p=8.06E-9). An additional GWS region on 

chromosome 2 (rs7597960, p= 1.22E-8) was noted for Time spent drinking. The regions on 

chromosome 2, 4 and 8 survived the more stringent correction for the seven criteria 

(p≤1.67E-8) while the chromosome 15 variant was GWS but did not survive the additional 

correction for multiple testing of individual criteria (i.e., p= 1.77E-8). Conditional analyses 

demonstrated that there was only one association signal in the chromosome 15 region; 

however, the possibility of a second independent signal in the chromosome 8 region could 

not be ruled out (p<0.001) (Supplemental Figures 5D and 5E). Conditional analyses also 

suggested independent associations in the chromosome 2 region (Supplemental Figures 5B).

Replication:

Rs1229984 in ADH1B was replicated in OZALC-EA for the primary AD phenotype (Table 

3); in SAGE-AA for the secondary DSM-IV AD criterion count as well as for tertiary 

phenotypes of Desire to cut drinking in SAGE-AA, SAGE-EA, and OZALC-EA, and in 

SAGE-AA, for Tolerance. Meta-analysis of all available datasets enhanced significance 

across primary and tertiary phenotypes (Table 3). The association between rs188227250 and 

Drinking more than intended was replicated in OZALC-EA and a meta-analysis of EA, 

SAGE-EA, and OZALC-EA strengthened the association (p=3.71E-09, Table 3). Although 

rs1912461 on chromosome 15 was not significantly associated with Time spent drinking in 

either the SAGE-EA or OZALC-EA samples (p> 0.12), the direction of the effect was the 

same and meta-analysis across COGA and the replication samples retained significance for 

this variant (p=2.31E-08, Table 3). Variants on chromosomes 1 and 2 did not replicate in any 

dataset (all p>0.07 or opposite direction of effects; Table 3).

Polygenic risk score analyses:

PRS derived using the EA discovery GWAS of the primary phenotype (i.e., DSM-IV AD) 

predicted 1.82% and 0.61% of the variance in AD in SAGE-EA (p=1.32E-05) and OZALC-

EA (p=7.73E-03), respectively.
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Gene based analyses:

Supplemental Table 5 lists the results of gene based analyses. Two genes, OTOP1 
(P=8.73E-7) for DSM-IV criterion count, and BRINP1 (P=7.85E-8) for Drinking despite 
problem, were genome-wide significant.

Neural extension I: COGA Prospective Sample: Theta ERO

Rs1912461 on chromosome 15 for Time spent drinking was significantly associated with 

differential evoked theta power (loss-gain) in the Central (F1,1370=8.4346; p=0.0037) region 

(Supplemental Table 6). The minor allele carriers of rs1912461 manifested higher 

differentiation of gambling outcomes (loss-gain) at the anterior region of the brain 

(Supplemental Figure 6). Other variants did not survive the multiple testing correction.

Neural Extension II: Duke Neurogenetics Study: fMRI

Carriers of the minor (G) allele of rs61826952 had lower left, but not right, reward-related 

(positive feedback – negative feedback) VS activity when compared to non-carrier 

individuals in the combined and AA and EA samples (Left: trans-ancestral meta-analysis: 

beta=−0.041, p=0.008; AA: beta=−0.124, p=0.018; EA: beta=−0.033, p=0.041; Right: trans-

ancestral meta-analysis: beta=−0.01, p=0.570). Reward-related VS activity was not 

significantly associated with rs2418646 genotype (Left: trans-ancestral meta-analysis: beta=

−0.007, p=0.560; Right: trans-ancestral meta-analysis: beta=0.0003, p=0.97).

DISCUSSION

This large, family study of AA and EA individuals utilized a multi-pronged approach 

(Figure 1) to dissect the genetic underpinnings of alcohol dependence (DSM-IV AD). In 

addition to the primary phenotype of DSM-IV diagnosis of AD, and severity as captured by 

the AD criterion count, it is, to our knowledge, the largest GWAS of each DSM-IV AD 

criterion. We detected five regions with variants meeting traditional GWS criteria, of which 

four were novel (chromosomes 1, 2, 8, and 15). Notably, the chromosome 8 signal was 

replicated in an independent dataset, as was the well-known association with rs1229984 in 

ADH1B. Even when excluding the larger effect size associated with rs1229984, PRS derived 

from the EA GWAS predicted 0.61-1.82% of the variation in AD in independent datasets, 

underscoring significant polygenicity underlying liability to the disorder. Analyses of two 

reward-related neural phenotypes also showed associations with two GWS variants.

Consistent with several prior studies 6, rs1229984 in ADH1B was associated with DSM-IV 

AD. Although GWS was only noted in the trans-ancestral (EA+AA) analysis, as shown in 

Supplemental Table 7, rs1229984 was associated with the AD criterion count and criteria 

indexing physiological dependence and Desire to cut drinking at GWS levels, and with other 

AD criteria at nominal levels of significance. Despite the robust relationship between this 

functional variant and AD, its relatively low minor allele frequency necessitates fairly large 

samples to detect a GWS effect for a binary trait, as was shown in a recent meta-analysis of 

DSM-IV AD 6. However, for DSM-IV AD criterion count, rs1229984 was GWS in both the 

EA and EA+AA analyses. Similar to another study 16, we found that while rs1229984 was 

associated with each individual criterion (EA all p<3.61E-04; EA+AA all p<4.54E-05), the 
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association was stronger with certain DSM-IV AD criteria. Consistent with Hart et al., 

Tolerance was strongly associated with rs1229984 (p=8.06E-09 in EA+AA). However, the 

additional GWS associations with Desire to cut drinking in our study differs from the prior 

study which used a sequential regression approach to identify Withdrawal and Drinking 
more than intended as additional criteria related to rs1229984 in EA, and Time spent 
drinking in AA. However, another study of 1,130 individuals of Jewish descent reported 

associations between rs1229984 and both Tolerance and Desire to cut drinking 50. Across 

these studies, the most robust association signal for rs1229984 appears to arise from 

Tolerance, which is notably an index of excessive consumption and consistent with the role 

of ADH1B in other studies of non-problem alcohol intake 51. Plausibly, the strong findings 

with Desire to cut drinking might also support this as epidemiological studies have shown 

this criterion to index liability to less severe AD (Supplemental Table 2; Supplemental 

Figure 7), and therefore, serve as a marker of excessive drinking, rather than severe 

pathology and impairment 10,52-54. Differences in associations with other criteria could stem 

from the relative severity of individual criteria in each dataset or their relationship with 

excessive drinking.

The GWS findings for the other loci are novel and have not been previously reported for AD 

or related phenotypes, although these regions have been linked to some neuropsychiatric 

diseases/traits. The region on chromosome 1 was previously linked to cerebrospinal fluid 

biomarker level 55, migraine 56, illegal substance dependence 57, and neuroticism 58. This 

region encompasses gene RABGAP1L, with many other genes nearby (Supplemental Figure 

4A). RABGAP1L is broadly expressed in brain regions and showed association with 

cerebrospinal fluid biomarker levels55, and migraine 56. Other genes near this region seem 

interesting too, e.g. KIAA0040, which is downstream of this region, was associated with 

alcohol dependence59. The chromosome 2 region is in a gene desert (Supplemental Figure 

4B) and has been linked to cognitive test scores 60, ADHD symptom count 61, ADHD 62, 

current smoking 63, and juvenile myoclonic epilepsy 64. The region on chromosome 8 has 

been linked to bipolar disorder 65. The only gene near the chromosome 8 region is FAM84B 
(Supplemental Figure 4D), however, this gene doesn’t seem to be related any 

neuropsychiatric diseases. The chromosome 15 region harbors some non-coding RNAs 

(Supplemental Figure 4E) and was previously linked to the rate of cognitive decline 55, 

ADHD 66, and major depression 67. Thus, despite our discovery of novel loci, much further 

study is needed to investigate the role of these variants in the etiology of alcohol dependence 

and related traits.

In our data, the chromosome 1 variant showed nominal association with multiple AD criteria 

and the criterion count, but none at GWS levels. However, a highly correlated variant 

(rs1890881) was associated at GWS with a phenotype representing dependence on alcohol 

or illicit drugs (cannabis, cocaine, sedatives, stimulants, opioids) in the same sample (see 

accompanying paper by Wetherill et al). It is possible that this variant is associated with 

overall liability to AD and dependence on other drugs but to a lesser extent with AD severity 

as indexed by a single continuous criterion count. Research has noted that mere summation 

does not capture the heterogeneity underlying AD severity, where constellations of criteria 

could result in meaningful individual differences 10. Prior latent class analyses aimed to 

parse out such groups of individuals with unique sets of criteria including in a subset of 
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these data 9. However, assessment of the genomic underpinnings of such heterogeneous 

groups of individuals would require extremely large sample sizes. The chromosome 8 

variant, rs188227250, was uniquely associated with Drinking more than intended 
(Supplemental Table 7). In epidemiological studies and in COGA (Supplemental Table 2), 

this criterion is endorsed quite frequently by individuals with AD, and also by those who do 

not meet criteria for DSM-IV AD and thus, might index lower severity. Indeed, in IRT 

analyses, this criterion had the lowest difficulty as indicated by the item characteristic curves 

in Supplemental Figure 7. In contrast, the finding on chromosomes 2 and 15, while GWS for 

Time spent drinking were also associated with Giving up activities (at nearly GWS for 

chromosome 15), both highly correlated criteria indicative of high difficulty, and thus, risk 

for DSM-IV AD 9. In addition to Withdrawal, we previously found these criteria to 

distinguish a highly heritable high-risk group of individuals at risk for AD from those in 

both low and moderate-risk groups. Thus, as shown in Supplemental Figure 7, while the 

chromosome 8 finding potential maps to lower AD severity, the chromosome 2 and 15 

findings potentially indicate greater severity. However none of these loci were GWS for our 

AD criterion count measure, which is commonly used as an index of severity. These results 

are consistent with the argument that that the validity of an individual criterion, and its 

impact on impairment may rely heavily on the other criteria that are endorsed alongside it 10. 

Importantly, these results underscore that novel information can be gained from studying 

individual criteria that index differing levels of AD severity that may operate 

discontinuously.

Gene based analysis identified two genome-wide significant genes for two different 

phenotypes. OTOP1 was associated with DSM-IV criterion count. This gene is related to 

maintaining metabolic homeostasis but it is not well-studied. BRINP1 showed association 

with Drinking despite problems. This gene is mostly expressed in brain regions and has been 

linked to schizophrenia68,69; cognition disorders55, and Parkinson’s disease70. Further 

studies are needed to test its role in AD.

Previous studies indicate that AD may be related to variations in the brain’s reward system 
71, including decreased reward-network volume 72 and differential neural activity in reward 

circuitry 73-75. In the COGA Prospective Sample, minor allele carriers of rs1912461 showed 

greater differentiation in frontal evoked theta power between loss and gain feedback trials in 

an EEG-based Monetary Gambling Task. Prior studies have found lower reward-related 

theta power in alcoholics and in high-risk offspring of alcoholics than controls performing 

the same task 47,76. Frontal theta response underlies a variety of cognitive processes 77,78 

including reward processing 79-81. Moreover, it has recently been proposed that frontal theta 

reflects a promising mechanism through which cognitive control may be enacted by 

invoking a shift from habitual-based striatum responses to deliberative prefrontal-based 

control of behavior 82. Furthermore, the frontal-central theta power difference between loss 

and gain conditions may reflect the need for cognitive control to process goal-relevant 

information, such as decision making and action selection, based on choice-relevant 

information (approach-avoidance, reward-punishment, success-failure, etc.) for optimal 

functioning in the environment 82. In this study, the COGA Prospective participants were 

included in the COGA discovery GWAS. We, therefore, examined the sensitivity of our 

discovery findings to exclusion of these overlapping individuals from the Prospective 
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sample. The resulting GWAS found that while statistical significance decreased in some 

instances due to the decrease in sample size, the overall results remained highly consistent 

(e.g., for the EA-only finding of Drinking more than intended, the p-value decreased from 

6.72E-09 to 3.61E-08; data not shown), indicating that the overlapping subjects were not 

solely responsible for the GWS findings from the discovery GWAS.

In the Duke Neurogenetics Study, rs61826952 minor allele carriers had decreased VS 

activity to positive versus negative feedback in a number-guessing fMRI task. Increased VS 

activity and dopamine release to non-alcohol reward have been associated with substance 

use initiation and problematic drinking 25,83-85. In contrast, studies of AD reported relatively 

reduced VS activity to non-alcohol reward 86,87 and heightened activity to alcohol cues 88. 

These apparently disparate findings can be integrated with stage-based theories of addiction, 

which hypothesize that initial problematic use is associated with the positively reinforcing 

aspects of a substance, while later compulsive use is driven by negative reinforcement and 

diminished cognitive control, resulting from changes in neural plasticity induced by chronic 

alcohol use 89 (see also Wetherill et al accompanying paper). Thus, results from the college-

based Duke Neurogenetics Study suggested that the minor allele of rs61826952 may protect 

from AD by reducing VS-related reward drive, thereby diminishing the likelihood of 

initiating problematic drinking behavior.

Replication of individual variants/genes other than those involved in alcohol metabolism can 

be challenging and notably influenced by heterogeneity across samples, ascertainment 

approach, definitions of affected and unaffected, and even nuanced differences in interview 

instruments 17. For instance, although families ascertained for AD were included in the 

replication samples, OZALC had samples ascertained for heavy smoking and drinking (as 

well as sibships ascertained merely for large pedigree size), and SAGE included two 

subsamples recruited for nicotine and cocaine dependence. In addition, unlike the prior large 

AD GWAS by Gelernter and colleagues 19, we excluded individuals with ≥2 abuse or 

dependence criteria for alcohol or any illicit drug from our unaffected group 19. This may 

have led to a greater degree of genetic separation between affecteds and unaffecteds in the 

current analysis and contributed to the lack of replication. Despite these potential 

differences, for 2 of the 5 loci (rs1229984 and rs188227250), meta-analyses across samples 

yielded more significant associations. In addition, the PRS analyses found that the 

aggregated effect of variants in regions other than the ADH cluster and the ALDH2 locus 

significantly contributed to AD liability in these diversely ascertained samples. While the 

proportion of explained variance is modest, it is consistent with other PRS analyses 90 and 

supports the generalizability of our findings at a polygenic level.

We also examined whether our analyses supported recent findings from Kranzler et al., who 

conducted a GWAS of alcohol use disorders defined using International Classification of 

Disease (ICD) codes derived from the electronic health records of individuals participating 

in the Million Veterans Project4. In this multi-ancestral sample of 274,424 predominantly 

male veterans, Kranzler et al identified 18 genome wide significant loci for AUD as well as 

for the consumption subscale of the Alcohol Use Disorders Identification Testkit (AUDIT-

C). Their signal for rs1229984 was also noted in our COGA GWAS. In addition, modest 

evidence for directional and statistical support was also noted for rs12639940 on 
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chromosome 4 (p=0.03; COGA-EA), and rs2961816 on chromosome 5 (p=0.04; COGA EA

+AA).

Our findings should be considered within the context of a few key limitations. First, despite 

being large, it is evident that our sample is underpowered to detect loci of modest effect. 

However, our sample was considerably larger than in our prior efforts in a subset of these 

data (e.g., 7-9) and one GWS SNP from those prior studies, previously linked to a latent class 

representing high-risk for AD9, continued to be nominally associated with DSM-IV AD in 

the current analysis (rs17484734, prior p =4.1E-8, current p=8.77E-5) but two other 

borderline significant variants were not as strongly associated in the current larger sample 

(rs11035102, for Desire to cut back9: prior p = 7.3E-8, current p=0.002; rs12903120, for AD 

criterion count8: prior p=5.45E-8, current p=0.03). Second, some of our GWS loci had low 

minor allele frequencies which may also have limited replication efforts. Third, our AA 

subsample, while utilized in the EA+AA analysis, was too small to report on individually, 

due to the strict definition of AD affecteds. Larger discovery GWAS of non-EA samples is 

much needed.

In summary, our study highlights the importance of utilizing a variety of phenotypes, 

including individual dependence criteria in locus discovery for AD. The heterogeneity that 

underlies the diagnosis of AD due to the various combinations of individual criteria that can 

be endorsed to meet diagnostic criteria, is also true for major depression disorder (MDD), 

and has been shown to hinder GWAS 91. While significant increases in sample size can 

potentially overcome this heterogeneity (as has been shown in the GWAS of MDD 92), the 

study of individual criteria, alongside diagnosis and severity, can provide a more detailed 

characterization of common and specific genetic influences on aspects of AD, especially 

when viewing individual criteria as psychometric indices of various cut-points of AD 

liability, and may eventually shape individualized treatment based on criterion profiles and 

other related features, over and above a mere diagnosis of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
flow chart of analyses.
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Table 1:

Summary of characteristics of COGA and replication datasets.

Sample AA EA

# AD case
(%Male)

# AD
control
(%Male)

# Individuals
with DSM-IV
criterion
(%Male)

# AD case
(%Male)

# AD control
(%Male)

# Individuals
with DSM-IV
criterion
(%Male)

Discovery COGA 880 (61.70) 951 (25.45) 3,175 (46.58) 2,411 (62.01) 2,438 (28.47) 7,418 (47.53)

Replication Yale-Penn 1,524 (60.50) 485 (29.69) 2,010 (53.08) - - -

SAGE 387 (59.17) 330 (39.09) 930 (46.24) 630 (52.70) 758 (34.17) 1,708 (38.82)

OZALC - - - 1,650 (62.24) 1,206 (46.10) 3,345 (53.69)

Total 2,791 1,767 6,115 4,691 4,402 12,471
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Table 2:

Summary of samples with individual DSM-IV AD criteria in all datasets.

AA EA

DSM-IV AD
criterion
number

Criterion
description

Sample # Case # Control # Case # Control

1

Tolerance COGA 1,110 2,024 3,348 3,958

Yale-Penn 1,192 818 - -

SAGE 353 577 777 930

OZALC - - 2,274 1,071

2

Withdrawal COGA 514 2,616 1,259 6,046

Yale-Penn 694 1,316 - -

SAGE 200 730 257 1,451

OZALC - - 478 2,867

3

Drinking more than intended COGA 1,317 1,817 3,826 3,480

Yale-Penn 1,525 485 - -

SAGE 507 421 1,074 631

OZALC - - 2,055 1,290

4

Desire to cut drinking COGA 1,436 1,701 2,896 4,413

Yale-Penn 1,411 599 - -

SAGE 425 505 601 1,107

OZALC - - 1,420 1,925

5

Giving up activities COGA 578 2,558 1,437 5,871

Yale-Penn 1,201 809 - -

SAGE 215 715 274 1,434

OZALC - - 246 3,099

6

Time spent drinking COGA 546 2,590 1,533 5,776

Yale-Penn 1,004 1,006 - -

SAGE 251 679 354 1,354

OZALC - - 668 2,677

7

Drinking despite problems COGA 784 2,351 2,163 5,144

Yale-Penn 989 1,021 - -

SAGE 310 619 741 966

OZALC - - 1,180 2,165

1: Tolerance. Need for markedly increased amounts of alcohol to achieve intoxication or desired effect; or markedly diminished effect with 
continued use of the same amount of alcohol.

2: Withdrawal. The characteristic withdrawal syndrome for alcohol; or drinking (or using a closely related substance) to relieve or avoid withdrawal 
symptoms.

3: Drinking more than intended. Drinking in larger amounts or over a longer period than intended.

4: Desire to cut drinking. Persistent desire or one or more unsuccessful efforts to cut down or control drinking.

5: Giving up activities. Important social, occupational, or recreational activities given up or reduced because of drinking.

6: Time spent drinking. A great deal of time spent in activities necessary to obtain, to use, or to recover from the effects of drinking.

Genes Brain Behav. Author manuscript; available in PMC 2020 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lai et al. Page 25

7: Drinking despite problems. Continued drinking despite knowledge of having a persistent or recurrent physical or psychological problem that is 
likely to be caused or exacerbated by drinking.
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