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ABSTRACT OF THE THESIS

W ildfire Spread Prediction and Assimilation in FARSITE using
Ensemble Kalman Filtering

by

Thayjes Srivas

Masters of Science in Mechanical Engineering

University of California, San Diego, 2016

Professor Raymond De Callafon, Chair

This thesis extends FARSITE (a software used for wildfire modeling and
simulation) to incorporate data assimilation techniques based on noisy and limited
spatial resolution observations of the fire perimeter to improve the accuracy of
wildfire spread predictions. To include data assimilation in FARSITE, uncertainty
on both the simulated wildfire perimeter and the measured wildfire perimeter is
used to formulate optimal updates for the prediction of the spread of the wildfire.
For data assimilation, Wildfire perimeter measurements with limited spatial res-
olution and a known uncertainty are used to formulate an optimal adjustment in
the fire perimeter prediction. The adjustment is calculated from the Kalman filter
gain in an Ensemble Kalman filter that exploits the uncertainty information on

both the simulated wildfire perimeter and the measured wildfire perimeter. The

X



approach is illustrated on a wildfire simulation representing the 2014 Cocos fire
and presents comparison results for hourly data assimilation results. In later chap-
ters we extend FARSITE with the ability to update both fire perimeters and fuel
adjustment factors to further improve the accuracy of wildfire spread predictions.
To show the effectiveness of fuel adjustment factor updates, a comparison is made
using an EnKF with fixed adjustment factor on a wildfire simulation represent-
ing the 2014 Cocos fire. The performance of the EnKF technique for tracking
time varying fuel adjustment factors based on noisy and limited spatial resolution

observations of the fire perimeter is also investigated.



Chapter 1

Introduction

1.1 Impact of Wildfires

As the occurrences of wildfires has increased over the recent past it is im-
portant to understand the effect they have on the society as a whole. While the
wildfires are sometimes desirable from an ecological standpoint there is no denying
the considerable and increasing social and economic costs. Wildfires are often de-
scribed in terms of lives threatened, structures and homes lost or damaged, overall
suppression costs and damage to the natural resources. The most publicized costs
associated with wildfire are those to fight, or suppress, large wildfires. Average
annual fire suppression expenditures by the U.S. Forest Service alone totaled 580
million from 1991 to 2000, and more than doubled to 1.2 billion annually from
2001 to 2010 (USDA Forest Service 2011c). State expenditures related to wildfire
have also increased substantially in recent years. According to a biannual survey
conducted by National Association of State Foresters (NASF'), more than 1.6 bil-
lion annually is spent by State forestry agencies on wildfire protection, prevention,
and suppression (including Federal funding expended by State agencies)and that
number has more than doubled in the past 10 years (NASF 2010).These figures do
not include the cost to local fire departments across the country, which, accord-
ing to a survey by the National Fire Protection Association (NFPA), responded
to an average of 36,700 fires annually in forests, woodlands, or other wildlands

from 2004 to 200810 (Ahrens 2010). However, fire suppression expenses represent



only a fraction of the monetary value spent on or lost in damages due to wild-
fires. Numerous other costs include: the costs of restoring burned areas, lost tax
and business revenues, property damage and/or devaluation, and costs to human
health and lives. As an example, soil erosion and flash flooding following Colorados
1996 Buffalo Creek fire resulted in more than 2 million in flood damage as well
as more than 20 million in damage to the Denver water supply system. Human
lives lost or injured in the course of a wildfire are an incalculable societal cost.
In the most extreme case to date in North America, the 1871 Pestigo Fire killed
more than 1,200 people, destroyed numerous settlements, and burned 2,400 square
miles across Wisconsin and Michigan [24]. Among these several costs the wildfire
suppression cost has risen the most over the past few decades as the frequency, size
and severity of wildfires has increased. In order to efficiently distribute resources

and plan for these scenarios its important to predict and simulate these wildfires.

1.2 Models for Prediction and Simulation of

Wildfires

Wildfire behavior is described by complex physical and chemical processes
whose interactions depend on coupling between the atmosphere, topography, fuels
and the fire itself. Fire models can generally be classified into three types: em-
pirical, semi empirical and theoretical based on how they attempt to describe the
fire behavior. The most commonly used operational models for wildfire spread use
empirically derived relations to predict the spread rate of a fire. Examples are
BehavePlus and FARSITE which are commonly used in the United States. These
models basically describe the local spread rate as a function of wind speed, terrain
slope, humidity and fuel characteristics. The spread rates used in these models
are based on semi-empirical relations developed by Rothermel. Empirical mod-
els while simple and easy to execute do not work well in situations where strong
fire-atmosphere interactions occur. The prediction of local wind and fire-wind in-
teraction is of major importance to simulating fire behavior accurately. Physics

or Theoretical based models attempt to address this by including fire/atmosphere



and fuel/fire interactions as well. They seek to approximately solve equations
governing these complex processes and use these solutions to predict the wildfires
[16]. While these models attempt to account for the many physical processes and
appropriate scales it comes at the cost of computational complexity and longer
periods for simulations/predictions. For faster predictions the empirical models
would be more suitable. While these models do indeed have inaccuracies in their
rate of spread functions these can be accommodated for by incorporating data

assimilation techniques that make adjustments based on real data.

1.3 Data Assimilation in Wildfires

In the previous section we looked at wildfire modeling which involves the
numerical simulation of wildfires in order to understand the properties and predict
the fire behavior. The problem with these numerical models is that they are
almost always a poor approximation of the actual behavior of the wildfire. Also
even if the numerical model was a very good approximation of the actual wildfire,
in order to predict or forecast the fire accurately we would need to know the
ignition boundary of the wildfire with complete certainty, which is almost never
the case. Based on this we can understand the need to include a data assimilation
model, in order to use observations of the model to constantly adjust the forecast.
Data assimilation is a technique used to incorporate data into a running model
using sequential statistical estimation. Data assimilation is made necessary by the
facts that no model is perfect, the available data is spread over time and space,
and it is burdened with errors. Mandel’s work on incorporating data assimilation
models into wildfire modeling focuses on this aspect by finding an adequate balance
between the sophistication of the model and execution time. The model uses two
partial differential equations for prediction of heat and fuel combined with a simple
combustion model. Finally they incorporate a version of the Ensemble Kalman
Filter to provide data assimilation capabilities to the model [13]. In Trouve’s
work, an Eulerian front propagation solver FIREFLY, which uses a description of

the local rate of fire spread (ROS) as a function of environmental conditions based



on Rothermel’s model, is used as a simulator and a data assimilation model based
on an Ensemble Kalman Filter for parameter estimation [20].

A software widely used for wildfire forecasting purposes by the U.S Forest
Service and other federal and state agencies is FARSITE [7]. While FARSITE’s
rate of fire spread model is sophisticated but still computationally inexpensive, it
should be noted that it does not incorporate any stochastic aspects when simulat-
ing the actual wildfire. Simulations in FARSITE, under a given set of inputs and
parameters and without the probabilistic generation of embers, is largely a deter-
ministic process. FARSITE also does not possess any features for incorporating
noisy and finite spatial resolution measurements of the fire perimeter during the
simulation and thus has no data assimilation capabilities.

The use of data assimilation techniques in wildfire spread models is an
active field of research [14, 15]. Due to the highly large-scale spatial-temporal sim-
ulations required in wildfire simulation, merging simulations and measurements
may use Monte Carlo methods for data assimilation techniques [26]. Other ap-
proach provided detailed models of the wildfire in interaction with the atmosphere
[12] where Tikhonov regularization is used to avoid nonphysical states. Some of
the most recent data assimilation techniques for wildfire spread prediction [20, 19]
heavily rely on Ensemble Kalman filtering [6, 9, 3, 11] also use in many earth
science applications [5]. Although most of these methods can assimilate gridded
data, the use of noisy and finite spatial resolution measurements via the explicit
incorporation of uncertainty in both the simulate and measured fire perimeter for
optimal adjustment of the predicted fire perimeter is often overlooked.In addi-
tion to this, these methods use a finite and fixed dimension of the state during
the assimilation process, while in this thesis we allow the dimension of the state
to increase over time improving resolution of the updated perimeters. The aim
of this thesis is to include data assimilation in FARSITE via standard ensemble
averaging and optimal adjustments via Kalman filter computations. Uncertainty
on both the simulated wildfire perimeter and the measured wildfire perimeter is
used to formulate optimal updates for the prediction of the spread of the wildfire.

For that purpose, the estimate of the initial fire perimeter is augmented with a



confidence region that is characterized by a covariance matrix. Ensemble sampling
based on the mean and covariance information is then used to propagate the uncer-
tainty through FARSITE for a stochastic update of the wildfire spread simulation.
Subsequently, wildfire perimeter measurements with limited spatial resolution and
a known uncertainty are used to to formulate an optimal adjustment in the fire
perimeter prediction. The adjustment is calculated from the Kalman filter gain in
an Ensemble Kalman filter that exploit the uncertainty information on both the
simulated wildfire perimeter and the measured wildfire perimeter. FARSITE also
allows the option of using ”adjustment factors” to account for frequent variation in
wind speed and incorrect modeling. In later sections we will look into augmenting

these factors to the state to improve accuracy and prediction of wildfires.

Chapter 1 is, in some part, a reformatted reprint of the material as it ap-
pears in Wildfire Spread Prediction and Assimilation in FARSITE using Ensemble
Kalman Filtering in Procedia Computer Science Vol 80 (2016).. Srivas, Thayjes;
Artes, Tomas; de Callafon, Raymond A.;Altintas, Ilkay. The thesis author was the

primary investigator and author of this paper.



Chapter 2

FARSITE

2.1 Forward Model for Wildfire Simulation

FARSITE [7], largely based on Rothermel’s model [21], is widely used by
the U.S. Forest Service as an effective tool of simulating the growth of natural
fires in wilderness areas. It can be seen as a dedicated forward-prediction model
taking the form of equation 2.1 which uses spatial and temporal information on
the parameters 6, and driving inputs u; to predict a wildfire perimeter on a two-

dimensional plane, denoted by Zjq1|x.

o1k = f( Tk, O, ur) 2.1)
U1k = Crr1Zrg1p

For the considered wildfire data assimilation, the (measured) output v,
refers to a spatially downsampled (coarse) measurement of the actual wildfire
perimeter, whereas wildfire related parameters 6, may include topography and

fuel parameters, and driving input u; can refer to weather and wind conditions.
The FARSITE function f(-) in (2.1) is an implicit and high dimensional
forward model that models fire growth via a vector approach and includes fire
behavior models for surface fire spread [21], crown fire initiation [25], crown fire
spread [22| and dead fuel moisture [4, 17]. Furthermore, the dimension ny of the

two-dimensional perimeter Z,_qx—1 € R2%-1 typically changes to nj > n,_; for



Zpk—1 over the course of the fire simulation. The implicit knowledge of the forward
model f(-) and changing dimension of the state @j;_1 makes FARSITE and ideal
application candidate for ensemble based state estimation to extend FARSITE
with data assimilation capabilities to improve wildfire simulation and any success
in this regard will enhance the FARSITE-based data assimilation capabilities for

improved wildfire simulation.

2.2 FARSITE data inputs

FARSITE requires an input parameters set that describes the environment
where the wildfire is taking place. The parameters can be classified depending on
variability of such values (in time and/or space). The static values (which varies
mostly spatially) describing the topography, are raster maps which are combined
in one single file known as FARSITE landscape file. This file contains digital
elevation model information as slope, elevation or aspect as well as the description
of the vegetation land cover and the fuel map [1], [2], [23].

The ignition boundary is introduced into FARSITE in a vectorial file format.
In such vectorial format, some input parameters as the fire line intensity(FLI) and
the rate of spread(ROS) for each point of the boundary are included. Finally, the
time varying parameters arc mostly weather values. This Linux FARSITE version
uses a brief daily description of the weather except for the wind values. Those
values are introduced every 10 minutes using a gridded format file. In this manner,
an important parameter for wildfires as the wind could be updated frequently.

The weather information used in this work has been obtained from weather
stations of the High Performance Wireless Network for Education and Research
(HPWREN) [18, 10]. HPWREN allows requesting data in real time from the most
near station to the centroid of the initial wildfire boundary. The weather data is

obtained in XML format and the request is parsed and written for FARSITE.

Chapter 2 is, in full, a reformatted reprint of the material as it appears in
Wildfire Spread Prediction and Assimilation in FARSITE using Ensemble Kalman



Filtering in Procedia Computer Science Vol 80 (2016). Srivas, Thayjes; Artes,
Tomas; de Callafon, Raymond A.; Altintas, Ilkay. The thesis author was the

primary investigator and author of this paper.



Chapter 3

Describing Uncertainty in

Wildfire Perimeters

In this section we will describe how we characterize the uncertainty of the

wildfire perimeter.

1.1 Representing uncertainty information at a point on a perimeter :

Uncertainty at a point can cither be represented as an cllipse or as a 2 x 2
covariance matrix.

The covariance ellipse is defined by 4 parameters namely :

1. « ( the angle between the major axis and the positive x axis in the
counter-clockwise direction)

2. 0, ( the standard deviation of the x co-ordinate)

3. oy ( the standard deviation of the y co-ordinate)

4. s ( this parameter determines the certainty/confidence of the ellipse, NOTE :
this does not affect the covariance matrix but affects the plotting of the ellipse)

The equation of the ellipse is given by

(@/00)* + (y/0y)" = s (3.1)
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9.210 , for 99% certainty
S =
5.991 | for 95% certainty

General Example of Covariance Ellipse

1 T T T T T T T T T

0.9 &

0.8 .
3o
07 -

[
0.6 oy .

0.5

Latitude [ y co-ordinate)

0.3 A

0.2 =

|:| | | | | | | | | |
1 0.1 nz 03 04 08 0B 07 08 085 1

Longitude | ¥ co-ordinate)

Figure 3.1: Description of Covariance Ellipse

The above figure is a general covariance ellipse of the point (x,y), with length of

semi major axis = 30,, length of semi minor axis = 30, and angle of rotation a.

The co-ordinates of the ellipse (7,y) in the figure are the result of a rotation

matrix ( with rotation angle o ) on the ellipse given by equation (3.1).

T cosa —sina T
— X
Y sina cosa Y
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x cosa  sina T
= X
y —sina  cosa Y

T
P(r,y) = Bl Eaa)
Yy
cos  sin« cosa —sin«
P(x,y) = x P(7,y) x (3.2)
—sina cos« sinae  cos«
Where
_ T
P@Ej) = El Nl 1k
Yy
B oz 0
0 02
The above result comes from the fact that
= var(7)
pry 0’3
Expanding (3.2) we get ,
o2cosa’ + o2sina? (02 — 02)cosasina
P(r,y)=| ° Y (7 = o2) (3.3)

2 _ 2 - 2 2 2 02
(0, —0i)cosasina oy cosa’ + o sina
Equation (3.3) is a general equation for calculating a covariance matrix for a

point (z,y) on the boundary given those parameters at the point.

It is important to note here that given (3.3) we can also obtain the parameters of

the ellipse by using a Singular Value Decomposition of P(z,y)

svd(P(x,1)) [ cos sina] » [ax 0 ] y

—sina cosa 0 afj

cosa —sin«

] o

sina  cos«
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(3.4) is in fact the singular value decomposition of P(z,y). The command svd(P)
can be used to get these 3 matrices and hence the «, o, and o, values for the

covariance matrix P.

CONCLUSION :
Given the covariance ellipse or the parameters «, o, 0, at a point, we can

calculate the covariance matrix P using (3.3).

2 2 22 (2 2 -
oy cosa’ + o, sina (Uy—am)cosasma]

P(:U,y)z [ m2 9

(07 — 0F)cosasina o

Y

cos a? + o2 sin o

Also given a covariance matrix P at a point (z,y) we can use the Singular Value

Decomposition :

cosa  sino o2 0 cosa —sina
svd(P(z,y)) = X X

—sino cosQ 0 05 sinov  cos«

to obtain the parameters and use them to plot the covariance ellipse of the point.

1.2 Example

This covariance ellipse was plotted using the following parameters :

a=60° 0,=01 0,=0.05 s=9

Using the results in Section 1.1, we can calculate the covariance matrix at the

above point :

0.0044 —0.0032
P(—1,-1) =
—0.0032  0.0081

Note that given this matrix P, we could have use the SVD to get the parameters
and plot the above ellipse.
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Figure 3.2: Covariance Ellipse Example

13



Chapter 4

Ensemble Kalman Filter with

FARSITE

The Ensemble Kalman Filter (EnKF) [6] is a Monte-Carlo implementation
of the Bayesian update problem. Given a probability distribution of the system
(the prior) and measurement likelihood, the Bayes theorem is used to obtain the
probability distribution with the data taken into account (the posterior). The
state estimate is the mean of the posterior distribution. The data likelihood is the
conditional probability distribution of the measurement given the current state.
The EnKF assumes a Gaussian Distribution for the state variables implying that
the state can be entirely characterized by the mean and the covariance of the

ensemble.

4.1 Forward simulations

Unlike the Kalman Filter which uses linear equations to propagate the mean
and covariance in time, the EnKF propagates the uncertainty by advancing each en-
semble member through the forward model. This advantage of the EnKF provides
an incentive to use it in high spatial-temporal simulations such as the FARSITE
simulation software. For a brief overview of using the EnKF in FARSITE, consider

the following computational steps [9]:

14
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1. Initialize the distribution by defining a mean and a covariance of the state.

~ T n
Tl ~ (Ths i)y o € R

2. Generate the ensembles by sampling from this distribution.
Xk|k = (x,lﬁm,xiw,xzw,..,xﬁk), Xk|k € RnkXN

We now define the ensemble perturbation/error matrix £, ,

r 1 = 2 = 3 = N = x ng XN

3. Advance each ensemble member through the forward model (FARSITE)
xz+1|k = f(:z’ck|k+wk,uk), 1=1,2,...,N, Th+1lk € R"et1 (42)

4. Calculate the mean and sample covariance of the forward ensemble. The
mean is calculated simply by taking an average of the members of the for-
ward ensemble. The sample covariance can be calculated using the forward
ensemble error matrix, Ey, ., which can be calculated similar to (4.1), re-

placing Tk by Th+11k-

1 i=N
Tht1lk = N Z:Z1 Thot1lk
1 €T x
Pk+1\k “N_1 Ek+1|k(Ek:+1|k:)T
We will now shortly describe how the above variables and steps are defined
and carried out in a wildfire data and assimilation context using FARSITE. The

mean oo at k = 0 is the state which describes the ignition boundary (initial fire
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Figure 4.1: Initial Ensemble with Centroid Standard Deviation 150m and Perime-
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Figure 4.2: An example Forward/Forecasted Ensemble Members at k=3. These
are the output perimeters of FARSITE which are the results of the simulation from
each ignition boundary.
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Figure 4.3: Example of Interpolated Ensemble Members at k=3. These are the
interpolated perimeters which are used to calculate the sample mean and sample
covariance matrix.

perimeter) in eastern e; and northern n; coordinates

T
Zojo ::[ €1 Mi €2 Ng -+ €y Ny ] (4.3)

where (e;,n;) is the jth coordinate of the ignition boundary and n8|0 = 2m is the
dimension of the state variable 2. Let (e., n.) indicate the centroid of the ignition
boundary in eastern/northern coordinates, then the covariance of the state ojo at
k = 0 is the matrix

%:A%ﬂ+§o (4.4)

where Pg‘g is the 2 x 2 covariance matrix for the center point z. = [e. n.|T and
Pgﬁo is the n8|0 X n8|0 covariance matrix of the state Zgp. The matrix A is a
n8|0 X 2 transformation matrix that relates Zop to the vector z. = [e. n.’ via
Tojo = Alec ne|”

Describing the initial state covariance matrix as in (4.4) allows us to main-
tain the overall shape and size of the ignition boundary while still giving us freedom

to impose a large uncertainty on the actual location of the ignition boundary (Fig
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4.1) via a covariance matrix Fji on the center point z. = [e. ne)?. Having defined
the initial mean and covariance matrix, step 2 is implemented by simply sampling
from a normal distribution described by tits mean and covariance. Each of the en-
semble members :1:}'gl . constitutes an independent ignition boundary which is used
to compute an update ensemble % 1 through a forward model (FARSITE) sim-
ulation. The simulations in (4.2) can be carried out in parallel n order to increase
computational speed. Note that each of the runs use the same parametric and
input conditions during the FARSITE simulation. As the dimension of the state
increases, there are no clear cut guidelines for selecting the number of ensemble
members. There are results indicating that the ensemble size would need to be
increased in accordance with the state size to ensure convergence of the trace of
covariance matrix and reduction of bias in the estimate [8]. Unfortunately a large
ensemble size is not computationally viable and hence certain heuristics, such as
covariance localization and inflation may need to be implemented to account for
the gross under sampling used to approximate the covariance matrix. It is to be
noted, in our case we maintain a sufficient ensemble size and spurious correlations

do not appear in our sample covariance matrix for present simulations.

4.2 Fire Perimeter Adjustment Using Observa-

tions

The output perimeters z} ik obtained from the forward model (FARSITE)
simulation constitute the members of the forward/forecasted ensemble (Fig4.2).
These forward perimeters are generally vectors with a size different and larger
than the initial size ng‘o. Furthermore, at cach time time step k£ + 1, the output
perimeters $Z+1‘k may even have different sizes n,1€+1|k, nzﬂ‘k, . ,n,ivﬂ‘k depending
on the ensemble :v}'dk used to compute x} k- To allow state updates with the
EnKF approach for a varying state dimension, each new output perimeters arz 1k

is re-interpolated in 2D (eastern/northern) to a new size

_ 1 2 N
Nk41)k = maX(nk+1|k7 N 1|ks - - - 7nkz+1|k)
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in order to preserve resolution at each time step £+1. Finally the mean ;1 and
sample covariance P,;”Hl . are calculated using the interpolated output perimeters
of the forward ensemble (Fig4.3) and allow us to continue the computational steps

for data assimilation as follows.

5. We now define the distribution of observations with a mean, y;,; € R™ and
the observation covariance matrix, Vi1 € R™*™ and generate the ensemble

of observations by sampling from this distribution:
Virtk = Whias Voo - Yopa)s Yoo € B
and the ensemble of perturbations/error for the observations:
Ez+1|k = (yi+1|k - ykﬂ,y;iuk — Yk+1, ..,,y,]g\'H'k — Yrt1), Ezﬂ‘k c RN

The sample covariance of the observations and sample cross covariance be-

tween the state and observations can now be calculated via

1 T
Pg+1|k - N — 1Efi+1\k(Efi+uk)
T 1 x T
Pk-&?{1|k - N_1 k+1\k(Ez+1\k)

6. The Kalman gain is now calculated using the above computed sample co-

variances

K1 = Plﬁl\k(PIgﬂm)_l (4.5)

7. The next step is the update step given by
Tt i1 = Thpape + Kiy1(Ypyr — Ck+1337<:+1\k:)

i=N
_ 1 i
Th+1lk+1 = N E :$k+1|k¢+1
=1

where Y}, = Yrs1 + vh,, and ygyq is the actual (noisy and downsampled)

observation of the fire perimeter and v}, is a zero mean random variable
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8. Finally the updated sample covariance is calculated using the ensemble of
the updated state via

x _ 1 x ( T )T
k+1|k+1 — N —1 k+1k+1 k+1|k+1

where, E,"f+1|k+1 is again similar to (4.1) with 24 1x41 replaced by xp4 1, and
Trt1k+1 replaced by Zy. At any time instant, the estimate of the state,

Tht1jk+1, s the mean of the ensemble, Zj 541

For the continued iteration along the time index k, one replace k — k + 1
and repeat steps 2 to 8. The above steps can be described in context for wildfire
data assimilation. It is clear that yx,, in in step 5 is defined as the downsampled
version of the “true” fire perimeters given by yri 1 = Ciri12k11 where Cyq is the
spatial downsampling matrix and xy; is the true (yet unknown) state data of the
fire perimeter.

At this step we also introduce the observation covariance matrix Vi, ;. In
the wildfire context, this characterizes the variance on our measurements of the fire
perimeters y,11. The mean and covariance matrix of the observations allows us to
apply uncertainty on our measurements which is very important in calculating the
Kalman gain Ky, in step 6. In the next step we update each of our interpolated
perimeters, x% k which we obtained from the output of the FARSITE, using the
Kalman gain and a sample measurement from the ensemble of observations. The
ensemble of observations is characterized by its mean y;,; and covariance matrix
Vier1 described earlier. These updated perimeters x Lk Are the fire perimeters
which will be used to resume our simulation from the k 4 1th time step. In the
remaining steps we do a similar calculation as in the first 4 steps and obtain the
updated mean of the fire perimeters Zj,i,4+1 and the updated sample covariance
matrix P,f+1|k+1.
Chapter 4 is, in most part, a reformatted reprint of the material as it ap-

pears in Wildfire Spread Prediction and Assimilation in FARSITE using Ensemble
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Kalman Filtering in Procedia Computer Science Vol 80 (2016). Srivas, Thayjes;
Artes, Tomas; de Callafon, Raymond A.; Altintas, Ilkay. The thesis author was

the primary investigator and author of this paper.



Chapter 5

Application in WildFire Data

Assimilation

5.1 Reference Data for Simulation

In this section we collect topography data and weather conditions from the
May 2014 Cocos Fire in San Marcos and use this to generate parametric conditions
and input data for a FARSITE wildfire simulation. These parametric conditions
and input data are used to produce the “true” fire perimeters x;; that will be
used as a reference for the performance evaluation of the data assimilation tools
in this paper. The simulated fire perimeters are depicted in Fig. 5.1 over a 18
hour time period with a one hour time resolution and a 90m spatial resolution
along the perimeter, starting from a given square 30mx30m ignition boundary xg
att =k =0.

For testing the data assimilation tools, the “true” data with a 90m spatial

resolution along the perimeter is down-sampled to generate the output y..1 by

Yit1 = Crp1Zp41 + Vg,

where Cy1 is a downsampling matrix, and measurements y;; are produced at
a spatial resolution of only 360m along the perimeter. The measurements are

perturbed by a white noise v,; with a standard deviation of 50m. In addition,

22
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it is assumed that the ignition boundary x, is not known at the start of the
data assimilation procedure. Instead, an initial estimate Zgy # o along with a

covariance matrix is used.

aagtern [k

Figure 5.1: Noise free reference data of the “true” hourly fire perimeters zy
starting at xg over a 18 hour time period and a spatial resolution of 90m along the
fire perimeters.

5.2 Forward Simulation Without Data Assimila-
tion

To illustrate the need for data assimilation, a forward simulation from FAR-
SITE is initialized at Ty # x¢. The ignition boundary (initial fire perimeter)
is also characterized by a square 30 x 30m fire perimeter, but with the center of
the perimeter 215m off in eastern direction and 730m off in in northern direction
compared to the “true” xy. A side-by-side comparison can be made between the
reference data (the “true” fire perimeters) x4 in Fig. 5.1 and the fire perimeters
Tr+1 obtained by the forward simulation from FARSITE initialized at g # z¢ in
Fig. 5.2. It is clear that the relatively small initial error due to zq # o between
the initial fire perimeters leads to a growing divergence of the fire perimeters over

time.
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Figure 5.2: Forward (FARSITE) simulation of hourly fire perimeters Z; over a 18
hour time period with a spatial resolution of 90m along the fire perimeters started
at an off-set initial fire perimeter 2y # zg.

The diverging error can be characterized via the Root Mean Square (RMS)

i=ny A \2 1/2
B, = (z (24— 31) )) 51)

error

ng

where ny is the state size, representing the number of points on the fire perimeter.
Evaluating the RMS error for the forward simulation of hourly fire perimeters
21 shown earlier in Fig. 5.2, leads to the progress of the RMS error summarized
in Fig. 5.3. It is clear from this figure that a simple forward simulation with
FARSITE, without the corrections provided by data assimilation, does not improve
the RMS error and eventually leads to a diverging RMS error. Data assimilation
is needed to stabilize the RMS error and correct for the initial error in the fire

perimeter Zy # xg.

5.3 Data Assimilation with Hourly Updates

Using noisy and down-sampled measurements 3,1 at time index k£ + 1, an

estimate %1541 is formulated of the “true” fire perimeter x;,, via the ensemble
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Figure 5.3: RMS error of hourly fire perimeters &, computed via forward (FAR-
SITE) simulation started at an off-set initial fire perimeter &y # .

Kalman filter (EnKF) approach outlined earlier in Section 4. To initialize the
data assimilation procedure, the same inaccurate value of the initial fire perimeter
Tojo # xo Will be used, where 2 is a square 30 X 30m fire perimeter, but with the
center of the perimeter 215m off in eastern direction and 730m off in in northern
direction.

As each point on the fire perimeter consists of a eastern and northern co-
ordinate, the initial square fire perimeter of 4 perimeter points requires an 8 di-
mensional state estimate Zop. The ensembles are created using an 8 X 8 covariance
matrix PSE|0 for the mean x| = Zojp # o and a 2 x 2 covariance matrix P(;”IB for

the center z. of the square ignition boundary. The covariance matrices are given

by
e [ 1500
Lo 0 150

5 0

w, = diag {P,P,P,P}, P=
05

and indicate a relative large uncertainty on the center point and a smaller un-
certainty on the individual corner points of the square ignition boundary. The
covariance information is combined via (4.4) to get the complete initial covariance
matrix Pé”m to create initial ensembles xé‘o, 1 = 1,2,...,N that are advanced
through the forward model (FARSITE) in (4.2) where N = 100.

During the subsequent steps of the EnKF method outlined in Section 4, the
comparison of the updated perimeter and the perimeter of the reference fire along
with a confidence region on one of the coordinates of the reference fire is depicted

in Fig. 5.4. It can be observed that the predicted and reference fire perimeter
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converge fairly quickly. This is also confirmed by the plot of the RMS Error
convergence rate for this simulation in Fig. 5.5. Clearly the error decreases by a
very large amount in the first update and then decreases by only small amounts in
subsequent updates, showing the quick convergence and effectiveness of the data

assimilation technique to account for errors in the initial fire perimeter.

E
e ST RN £
= 1 x™ L e, & % )/*x
= ; £ e i St A
5 o ey i 1. e T
FERCRE 150m § 5 %y ot e o P o
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Figure 5.4: Comparison of Updated Perimeter Zj;, and Reference Perimeter x;
for time steps (a) k =1 (b) k = 2 and (c) k = 3. The circles indicate the 99%
confidence interval (3 times standard deviation of 50m or variance of 2500m?) of
the observations.

o
®

o
)

RMS error [km]
o
N

o
)

0 1 2 3 4
time [hr]
Figure 5.5: RMS Error Between the Updated Perimeters 2y, and the ”true”
Fire Perimeters x;, with hourly updates and a measurement variance of 2500m?2.
It is assumed the first measurement and data assimilation update is performed at
k=1.
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5.4 Effect of Measurement Uncertainty on Con-
vergence Rate

For the hourly updates, the convergence was shown to occur in only a single
update step of the EnKF algorithm, despite the error on the initial fire perimeter.
The fast convergence is due to the relatively large covariance on the initial fire
perimeter and relatively small covariance on the fire perimeter observations. Next
we investigate the effect of varying this uncertainty in the measurements of the
reference fire perimeter on the convergence rate. The simulation is initialized with
a smaller initial uncertainty to see a more pronounced effect of this variation. We
apply the same covariance matrix on the coordinates of the mean perimeter and

then give a smaller 2 x 2 covariance matrix for the center of the ignition boundary

5 0 e, [0 0
05| 0 50

For the first simulation we update the perimeters with a time resolution of 1

compared to the previous simulation.

Py, = diag{P,P,P,P}, P=

hour but with measurements, yj41-+v;",, where v}, is zero mean white noise with
2500m? variance. Whereas for the second simulation we use noisier measurements,
Yp+1 + 070, where v2% is zero mean white noise with a 40000m? variance. A

comparison of the respective RMS progression curves can be found Fig. 5.6.

0.8 T T

—©— RMS error with measurement variance of 2500m?

—©— RMS error with measurement variance of 40000m27
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RMS error [km]
o
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Figure 5.6: Comparison of RMS Errors between data assimilation using measure-
ments of 2500m? variance and measurements of 40000m? variance
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From Fig. 5.6 we can clearly see that the simulation that uses fire perimeter
observations with a 40000m? variance would take a larger number of steps to
converge to the same error when compared to the simulation which uses more

accurate fire perimeter observations with a 2500m? variance.

5.5 Data Assimilation with Reduced Update Fre-

quency

We repeat the procedure with the same initial fire perimeter and covari-
ance matrices as used in the simulation presented in Section 5.3. For performance
evaluation we now plot the (mean) RMS Error and the variance of the RMS Error
during the course of the simulation. In this case the assimilation steps occur do
not occur hourly, but are further apart. Compared to Figure 5.4, data assimilation
is only done at the time steps £ = 1 and k& = 4 instead of every hourly time step.
The results in Figure 5.7 show the effect of both the mean and variance of the
RMS error and indicate a significant drop in the mean RMS error and its variance
whenever a data assimilation step is performed. Even though the mean RMS error
does not increase considerably when no data assimilation step is performed, the
uncertainty does increase significantly during time steps without data assimilation.
This large uncertainty in the RMS error informs us that even though the (mean)
RMS error itself may remain small between the reference and offset perimeters,
the uncertainty on the fire perimeter may grow without frequent data assimilation

steps.

Chapter 5 is, in full, a reformatted reprint of the material as it appears in
Wildfire Spread Prediction and Assimilation in FARSITE using Ensemble Kalman
Filtering in Procedia Computer Science Vol 80 (2016). Srivas, Thayjes; Artes,
Tomas; de Callafon, Raymond A.; Altintas, Ilkay. The thesis author was the

primary investigator and author of this paper.
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Figure 5.7: Progress in mean RMS Error and variance of RMS Error when data
assimilation steps are performed only at the time steps £ = 1 and k£ = 4 hours.



Chapter 6

Data Assimilation with

Adjustment Factors

6.1 Forward Model with Adjustment Factors

Apart from the various parameters and inputs such as wind, weather and
topography as mentioned earlier, FARSITE also provides us with Adjustment Fac-
tors in order to tune the simulation. These factors are fuel model specific numbers
which can alter the rate of spread of the fire. In most fire simulations which occur
over long spaces and periods of time FARSITE tends to over predict the fire spread
due to the coarse nature of the spatial and temporal data available to us. Thus
over these longer periods it tends to use average values of wind speed to predict
the average rate of spread. But due to the non-linear relationship between these
variables this prediction cannot be expected to work accurately. On the other
hand spread rates can also be under predicted because of error in fuel models,
inaccurate fuel moistures and improperly represented local winds. Hence these
factors provide us with a very efficient way and extra degree of freedom to address
these shortcomings and improve the accuracy of the fire spread predictions. The
Adjustment Factors are generally assumed to be constant and their values decided
based on the judgement/experience of the user. However by augmenting these

adjustment factors to our state we would be able to constantly adjust these values

30
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in an optimal manner by assimilating measurements of the fire perimeter.

In this section for the purpose of data assimilation and improvement of fire
perimeter prediction, we combine the fire perimeter and adjustment factors in a
single state vector

Zh = [agp A"

rewriting (2.1) in the format

Zhtllk = 9(2k\k, 0, uy) (6.1)

Ok = [Crsape 0] Zgapn

for forward prediction of the ”true” fire perimeter x; by the forward simulation

Tpy1lk- Where Zpyq, = g(+) is implemented as,

Trprje = f( e + wi, Qg+ wy, 0, up) 6.2)

Gp1pk = DG + Wi, k)

where f() was given in (2.1) and the adjustment factors are kept the same during a
forward simulation, e.g. h(Auk, k) = 1. It should be noted that both &, and dy
will be updated via a data assimilation step in between the forward simulation
steps. The (measured) output yx+1 in (6.1) refers to a spatially downsampled

(coarse) measurement of the actual fire perimeter just as before.

6.2 Reference Data for Simulation with Adjust-

ment Factors

As in Section 5.1 we use the same parametric conditions and input data to
produce the state z,,.; which contains the “true” fire perimeters x;,; and “true”
adjustment factors ay. 1 that will be used as a reference for the performance evalu-
ation of including adjustment factors in data assimilation tools in this section. To
generate the reference data for the EnKF-based data assimilation for FARSITE,

fuel type number 5 is the most dominant over the topography covering the May
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2014 Cocos Fire in San Marcos, CA. For the purpose of illustrating fuel adjust-
ment data assimilation, the entries of the (time dependent) vector of adjustment
factors ay in (6.6) are all set to a 1, except for the 5th entry agi;5 that is set to
at15 = 0.5 and assumed to be unknown. As a result, oy, = [11x4 0.5 15,8]" Vk and
the simulated fire perimeters are depicted in Fig. 5.1 over a 18 hour time period
with a one hour time resolution and a 90m spatial resolution along the perimeter,
starting from an initial square 30mx30m ignition boundary zy at t = k = 0.

For the purposes of combined fire perimeter and fuel adjustment factor data
assimilation, we will include only the 5th entry oy 5 of the full size adjustment
factor vector a1 along with the fire perimeters x;,; in the state zx,; and leave

the remaining adjustment factors as inputs to the forward model. So our state is

Tr41
Zk+1 —
k41,5

and the data assimilation will attempt to estimate the full state z; which contains

now given by

x) representing the fire perimeter and a scalar adjustment factor «; representing
only the 5th (unknown) entry of the fuel adjustment factors. For testing the
data assimilation tools, the “true” data with a 90m spatial resolution along the

perimeter is down-sampled to generate the output yx 1 given by

Yer1 = [Cry1 0] 21 + Vg (6.3)

where C},1 is a downsampling matrix, and measurements y; 1 are produced at
a spatial resolution of only 360m along the perimeter. The measurements are
perturbed by a white noise vy, with a standard deviation of 50m. As before, it is
assumed that the initial state zg is not known at the start of the data assimilation
procedure. Instead, an estimate Zop # 2o along with a covariance matrix POZIO is
used. In the EnKF context these are defined as follows, The mean Zyo = Zg|o at
k = 0 is the state which describes the ignition boundary (Zo) in eastern e; and

northern n; coordinates as well as the values of the initial adjustment factors (o))
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for the fuel models present.

200 = | 700 oo | (6.4)
T
Tojo = [ €1 My €2 Mg -+ €y Ny ] (6.5)
T
Qplo = [ a; ay - } (6.6)

where (e;,n;) is the jth coordinate of the ignition boundary, a; is the adjustment

factor for the ith fuel model.

2E64

482 483 424 485 438 487 488 439 490
eastern [m]

Figure 6.1: Simulation of the use case reference data: hourly noise free “true”
fire perimeters zj, from the “true” state zp = [xy ak]T where g is an initial square
30mx30m ignition boundary and aj = [11x4 0.5 11,s]7 VE.

6.3 Data Assimilation Setup

Using noisy and down-sampled measurements yx; at time index k£ + 1, an
estimate Z, ;41 is formulated of the “true” state zpy; via the ensemble Kalman
filter (EnKF) approach outlined earlier in Section 4. To initialize the data assim-

ilation procedure, an inaccurate value of the initial state Zp9 # 2o as described
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earlier will be used, where Zy contains the initial fire perimeter estimate Zgo an
8x1 vector which is a square 30 x 30m fire perimeter, but with the center of the
perimeter offset and the 5th entry of the initial adjustment factor & g|o) s off by 0.5.

Having described the mean of the initial state

_ R . N T
2010 = Z0j0 = [900\0 04(0\0),5]

we now need to define the covariance matrix associated with this mean. These

matrices that were described in Section 4.1 are given by

o0 ] (6.7)

Pj, = diag{P,P,P,P}, P=
0 5

and

P(ITC _

ojo —

(6.8)

150 0
0 150

The covariance matrices in (6.7) and (6.8) are used in (4.4) to get the covariance
matrix of the initial fire perimeter Pg”lo. The uncertainty of the 5th entry of the
adjustment factor is described by a variance ¢ = 0.04. Combining the two we get

covariance of the initial state Zoo as

A
00 =

Py 0
’ ] (6.9)

2
Ou

6.4 Effect of Adjustment Factors on Data Assim-
ilation with Reduced Update Frequency

The use of an EnKF-based data assimilation for FARSITE where the state
2 contained only the fire perimeter x; has shown siginificant fire perimeter pre-
diction performance improvement in the previous sections. In this case, the ”true”
fire perimeter xj is not only changing over time from the initial (unknown) x,
but also due to the possibly time varying behavior of the fuel adjustment factors

contained in «a;. To analyze the implications of including adjustment factors in
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the state, two data assimilation approaches are compared:

e Approach A: partial data assimilation. For data assimilation purposes, the
state is defined as Zgp = [550‘0} only containing the fire perimeter, for which

: o .
the covariance is given by Fo = P0|0-

e Approach B: full data assimilation. In this data assimilation approach the
state is defined as Zg0 = [Zo|o d(0|0)’5]T as a combination of both fire perimeter
and fuel adjustment factor, for which the mean and covariance were defined

in Section 6.3.

For both data assimilation approaches we provide the same measurements
yr+1 and conduct update steps every 4 hours starting from £ = 1. For performance
comparison we compute the mean RMS error on the estimation of the fire perimeter
xp, during the course of the simulations and the results are summarized in Fig. 6.2.

The results in Fig. 6.2 illustrate two important observations with respect

to the performance of the data assimilation:

e First of all, it can be seen that the mean RMS error on the estimation of
the fire perimeter z; slowly increases at the hourly time steps when no data
assimilation is performed. Only at data assimilation steps performed every
4th hourly time step the mean RMS error of the state estimation drastically
drops to a lower value, illustrating the performance of the EnKF-based data

assimilation for FARSITE.

e Secondly, it can be observed from Fig. 6.2 that after a few data assimilation
steps, the mean RMS error on the estimation of the fire perimeter x; during
assimilation with fuel adjustment factors (Approach B) is always less than
the mean RMS error of the state without adjustment factors (Approach A).
From Fig. 6.3 we see that the adjustment factor initially increases to com-
pensate for a large initial error in the initial fire perimeter, but decreasing
afterwards. This phenomena causes the mean RMS error in data assimilation

with adjustment factors to be higher initially.
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Figure 6.2: Variation in mean RMS Error for assimilation with adjustment factors
versus assimilation without adjustment factors. The updates are carried out every
4 hours after £ = 1.
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Figure 6.3: Mean Adjustment Factor versus True Adjustment Factor is plotted
over the period of the simulation. As mentioned before the adjustment factor is
assumed to be a constant over forward simulation time steps.

As a final note it can be observed that the updates are much more effec-
tive in decreasing the state RMS error in data assimilation with adjustment factors
(Approach B) as we improve our estimate of the adjustment factor over time. This

improvement tends to grow over the course of the data assimilation.

Chapter 6 has, in part, been submitted for publication of the reformatted
material as it may appear in American Control Conference 2017, Srivas, Thayjes;
de Callafon, Raymond A.; Altintas, Ilkay. The thesis author was the primary

investigator and author of this material.



Chapter 7

Adjustment Factor Tracking using
Data Assimilation with Hourly

Updates

Along with reducing the (mean RMS error) on the estimation of the fire
perimeter xy, it is also important to keep track of any (time varying) fuel adjust-
ment factor «y. For that pupose, the EnKF-based data assimilation for FARSITE
can be used to track the "true” 5th entry &g 5 # a5 of the adjustment factor vec-
tor ay, using hourly down-sampled noisy measurements of the true fire perimeter.
For tracking time varying behavior of the fuel adjustment factor ag s is modeled

as a random walk (Fig 7.1 as below,
Q1,5 = Qg5 + Wi (7.1)

where wj, is white noise with zero mean and standard deviation o, = 0.1 and «g
=0.5.
We model the forward simulation of the estimated adjustment factor in the same

manner as the true adjustment factor :

Qpg1jks = Qps + Wy (7.2)

37
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Figure 7.1: The "true” 5th entry of the Adjustment Factor vector ay1 5 modeled
as a random walk. We track this using the down-sampled noisy measurements .1

7.1 Effect of Initial Error on Tracking

To illustrate the performance of the EnKF-based data assimilation for FAR-
SITE, initial errors in either fire perimeter and/or the adjustment factor is assumed

according the the following two scenarios:

1. Scenario 1: full initial state error. The initial error in the entire initial state

Zojo = [Tojp Qo0j0),5] 7 [0 5] as in Section 6.3.

2. Scenario 2: only initial fuel adjustment factor error. Initialization of the
state is done via Zg0 = [z0 G(o0),5] With dojo)5 7# w5, thus removing any

initial error on the initial fire perimeter in the state.

We apply the same uncertainty for both simulations as in Section 6.3 and
follow Approach B: full data assimilation. For performance comparison we com-
pare the "true” scalar 5th entry ajs of the adjustment factor vector oy with the
estimated ¢y 5 for both scenarios listed above and the results are summarized in
Fig. 7.2.

As intuitively expected and confirmed by the results in Fig. 7.2, the tracking
of the (5th entry of the) fuel adjustment factor ay 5 is more accurate for Scenario
2 (bottom figure) with only initial fuel adjustment factor error Zo0 = [zo G(0j0)5),
& 0/0),5 7 o,5- It can also be observed that the estimate of (5th entry of the) fuel

adjustment factor oy 5 for Scenario 1 (top figure) maintains an error at the first
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Figure 7.2: Time traces of "true” scalar adjustment factor oy s and estimated
scalar adjustment factor &y 5 for hourly data assimilation steps. Top figure: full
state error, Bottom Figure: only fuel adjustment factor error.

few hourly data assimilation steps. The value of the fuel adjustment factor &) s
actually increases (becomes larger than 1) to accommodate the large initial error
Tojo 7# To to "accelerate” the fire growth and reduce the errors on the estimate on

the fire perimeter xy.

7.2 Effect of Measurement Uncertainty on Track-
ing

The variance of the noise v;; present on the perimeter measurement y; 1
of the "true” state zpy; in (6.3) has a direct effect on the size of the Kalman gain
Ky given in (4.5). A Smaller variance of the noise vy tends to give a matrix

P/ 1k with a smaller (minimal) singular values, creating a Kalman gain K ; with
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Figure 7.3: Time traces of "true” scalar adjustment factor oy s and estimated
scalar adjustment factor &5 for hourly data assimilation steps using different
variance of noise on the measurements.

larger numerical values. A Kalman gain with larger numerical values gives rise to a
stronger weighting of the measurements in the update step of z} 1kt This effect
can be easily illustrated with the EnKF-based data assimilation for FARSITE by
comparing two data assimilation scenarios with identical initial state error (only in
the adjustment factor), but with a diference in the variance the noise vy, present
on the perimeter measurement ..

The results are confirmed in Fig. 7.3 where we observe that for a variance
of v, of 2500m? on the measurements, we see gradual updates in the estimated
adjustment factor and the tracking of ay 5 is much slower. On the other hand, for
a measurement variance of 100m? we see that the updates of dy, 5 are much faster

and follow the trends in a4 5 more closely.
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Chapter 7, in part, has been submitted for publication of the reformatted
material as it may appear in American Control Conference 2017, Srivas, Thayjes;
de Callafon, Raymond A.; Altintas, Ilkay. The thesis author was the primary

investigator and author of this material.



Chapter 8
Conclusions

Data assimilation in FARSITE is accomplished by characterizing both sim-
ulated and actual measured fire perimeter with a mean and covariance matrix
(confidence regions) to formulate optimal updates for the prediction of the spread
of the wildfire. Optimal updates are computed via a fire perimeter adjustment,
weighted by a Kalman filter gain that is computed via an Ensemble Kalman filter
approach. Application of the proposed FARSITE data assimilation to a wildfire
simulation representing the 2014 Cocos fire confirmed an inverse relation between
the rate of convergence of the fire perimeter and the uncertainty on the fire perime-
ter measurements. In the presence of incorrect ignition boundary, it is shown that
convergence to the actual wild fire perimeter is obtained in only a few data assimi-
lation steps in case of a relatively small (50m) standard deviation on the measured
fire perimeters measured at a resolution of 360m. The simulation study also in-
cludes results on convergence for larger uncertainty in the measured fire perimeters
and when data assimilation steps are not performed regularly. In the final chapters
it is shown how the presence of an adjustment factor can improve the RMS error
of the fire perimeter estimate, even for reduced hourly updates during the data
assimilation steps. The same reference data of the May 2014 Cocos fire is used to
show performance of the EnKF-based data assimilation for FARSITE for tracking
time varying fuel adjustment factors. It is also shown that the noise variance on the
limited spatial resolution observations of the fire perimeter influences the estimate

of the fuel adjustment factor in an intuitive way. In summary we observed that
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we can successfully track the adjustment factor using only noisy down sampled
measurements of the wildfire perimeter and noticed that this tracking improved

with reduced initial error and lower measurement uncertainty.

Chapter 8 is, in most part, a reformatted reprint of the material as it ap-
pears in Wildfire Spread Prediction and Assimilation in FARSITE using Ensemble
Kalman Filtering in Procedia Computer Science Vol 80 (2016). Srivas, Thayjes;
Artes, Tomas; de Callafon, Raymond A.; Altintas, Ilkay. The thesis author was

the primary investigator and author of this paper.
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