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ABSTRACT OF THE DISSERTATION

The Physics of Computing with Memory

by

Yuanhang Zhang

Doctor of Philosophy in Physics

University of California San Diego, 2024

Professor Massimiliano Di Ventra, Chair

The evolution of computing technologies has perpetually intersected with the fundamental

principles of physics. In this dissertation, we explore the frontier of computational paradigms

through the lens of memory-augmented physical systems. Conventional computing, constrained

by the architecture of Turing machines, can be substantially evolved by incorporating elements

of memory into the physical computing substrates.

We demonstrate that time non-local interactions, conceptualized as “memory,” can induce

spatial long-range order by correlating distant computational units despite their spatially local

interactions. Such long-range order is critical for solving complex optimization problems

as it enables strategies that transcend local moves to escape local minima. MemComputing,
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embodying this methodology, solves target problems by following the trajectory of a dynamical

system embedded with memory. This system is meticulously designed so that its equilibrium

points align with the solutions of the problem, and it explores distant configurations through

instantonic tunneling.

We provide a comprehensive demonstration of the MemComputing framework through

applications in complex problem-solving scenarios, including the efficient simulation of quantum

systems and tackling NP-complete problems like the SAT problem. Our findings indicate

significant enhancements over traditional computing methods, spotlighting the profound potential

of integrating memory with physical systems for next-generation computing.

This research not only deepens our understanding of the intersection between memory

and physical laws in computational processes but also establishes a foundational basis for the

development of next-generation computing technologies. These technologies are poised to be

more efficient and scalable, representing a significant leap over conventional computational

frameworks.
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Introduction

Computing, fundamentally a mathematical concept, becomes tangible through the ap-

plication of physics. Consider a hand-held calculator where I input: 59×97 =, and it displays:

5723. Mathematically, this is the product of 59 and 97, but physically, the process is more

complex. Inside the calculator, each number is transformed into a binary string, represented as

high and low voltages across a network of transistors. A binary multiplication circuit, composed

of CMOS logic gates, processes these strings to produce an output voltage corresponding to

the result, which is subsequently converted back to base-10. The design and operation of the

entire circuitry, governed fundamentally by Maxwell’s equations, illustrate the deep integration

of physical laws in computing processes.

Despite the exponential growth in computing power over the past fifty years, as predicted

by Moore’s Law, the fundamental physics underlying modern computers remains unchanged

since the ENIAC, the first digital computer. These systems essentially manipulate symbols on a

tape, a concept introduced by Alan Turing in his design of the Turing machines, and thus inherit

similar constraints.

Consider the inverse problem: identifying the factors of 5723. Within Turing’s computa-

tional framework, there is currently no efficient solution to integer factorization; the approach is

essentially brute force. For smaller numbers, simple trial divisions might quickly yield factors;

however, for larger numbers, even the best known classical algorithm, the general number field

sieve, is nothing more than enhancing the brute-force trial divisions with modular operations and

strategic grouping.

However, computing transcends the mathematical confines of Turing machines, con-
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strained only by the laws of physics. When employing quantum mechanics as opposed to

electrodynamics, Shor’s algorithm demonstrates the potential to efficiently factor large numbers

using polynomial resources. This pivotal discovery catalyzed the burgeoning field of quantum

computing.

In this thesis, we delve into the computational potential of classical statistical mechanics,

particularly through the lens of complex systems. As Philip Anderson stated, “More is different.”

Within complex systems, while individual components may adhere to simplistic rules, their

collective behavior can exhibit emergent properties that introduce both unexpected challenges

and exciting opportunities. A prime example is the neuron—whether biological or artificial,

the behavior of a singular neuron is comprehensively understood. However, in aggregation,

billions of neurons contribute to the most intricate yet profound computation, culminating in

the emergence of intelligence. A critical, yet often overlooked, component in this process is

memory, or the capacity for time non-local interactions. This thesis will demonstrate how a

system’s ability to recall its past dynamics facilitates spatial long-range order, leading towards a

novel computational paradigm known as MemComputing.

The thesis is structured into three parts: First, we examine the role of memory in

complex systems, illustrating how memory can foster long-range order and its implications

for computational tasks. Subsequently, we detail the MemComputing paradigm, focusing

on the properties and implementation of MemComputing machines. Finally, we investigate

the applications of MemComputing within machine learning, with a particular emphasis on

simulating quantum systems.

In conclusion, we aim to broaden the horizons of computational theory beyond con-

ventional frameworks, venturing into the realms governed by the laws of classical statistical

mechanics. By exploring the profound impact of memory and emergent behaviors in complex

systems, we aim to not only advance our understanding of computation but also propose practi-

cal frameworks that could revolutionize how we approach complex computational challenges.

MemComputing, a paradigm that leverages the intrinsic properties of memory within systems,
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represents a potential breakthrough in our ability to process and analyze information at un-

precedented scales. As we navigate through these discussions, it is our hope that this work will

illuminate new pathways for integrating physical principles with computational technologies,

offering insights that are as practical as they are theoretical.

3



Chapter 1

Memory-induced long-range order

1.1 Introduction: Long-range order arising from memory

Consider a maze where ants travel from a nest to a feeding site, leaving pheromones

that act as memory degrees of freedom (DOFs). These pheromones, which persist much longer

than an ant’s traversal time, provide crucial navigational information and reinforce the shortest

path. This results in strong, long-range spatial correlations among ants, as even those far apart

can influence each other’s routes through the enduring pheromone trails. Thus, memory in the

form of pheromones not only facilitates non-local communication across time and space but also

fundamentally alters the dynamics of the system.

This scenario illustrates the concept of memory-induced long-range order (MILRO),

where “memory” specifically denotes time non-locality rather than mere storage. This form of

memory enables increasingly broad couplings despite the inherently local nature of interactions.

MILRO has been observed in diverse systems, including neuromorphic systems [1], spin-glasses

[6], and dynamical systems endowed with memory [7]. Such order can be elicited and precisely

adjusted by manipulating the memory degrees of freedom within these systems.

A concept closely related yet distinctly different is criticality, which emerges at the

boundaries of phase transitions. These are characterized by fluctuations that span all scales and

correlations that endure indefinitely. In the realm of neuroscience, the critical brain hypothesis

suggests that the brain functions at a state of criticality, situated at the brink between distinct
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phases, which is believed to be optimal for processing information.

The rapid advancements in artificial intelligence underscore the significance of the critical

brain hypothesis in the development of efficient machine learning algorithms and neuromorphic

systems. However, the hypothesis remains controversial. On one hand, the evidence for criticality

in brain activity is equivocal, leading some to doubt whether the brain truly operates in a critical

state. On the other hand, the absence of criticality in contemporary deep learning architectures

prompts questions about its relevance and practicality in both the theoretical and applied aspects

of machine learning.

In light of these considerations, MILRO offers a fresh perspective [1, 6, 8]. Unlike

criticality, which demands precise calibration to maintain a system at a transition point and is

inherently fragile, MILRO characterizes a robust phase that is easier to achieve and significantly

more resilient to perturbations. Building on the notion that criticality enhances computational

efficiency, it becomes clear that MILRO not only serves this purpose but also offers greater

practicality and advantageous properties.

Next, we will delve into a neuromorphic system to explore how long-range order, influ-

enced by memory, arises and to discuss its implications for computing tasks.

1.2 Collective dynamics and long-range order in thermal
neuristor networks

In the pursuit of scalable and energy-efficient neuromorphic devices, recent research has

unveiled a novel category of spiking oscillators, termed “thermal neuristors.” These devices

function via thermal interactions among neighboring vanadium dioxide resistive memories,

emulating biological neuronal behavior. Here, we show that the collective dynamical behavior of

networks of these neurons showcases a rich phase structure, tunable by adjusting the thermal

coupling and input voltage. Notably, we identify phases exhibiting long-range order that, however,

does not arise from criticality, but rather from the time non-local response of the system. In
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addition, we show that these thermal neuristor arrays achieve high accuracy in image recognition

and time series prediction through reservoir computing, without leveraging long-range order.

Our findings highlight a crucial aspect of neuromorphic computing with possible implications on

the functioning of the brain: criticality may not be necessary for the efficient performance of

neuromorphic systems in certain computational tasks.

1.2.1 Introduction

Neuromorphic computing, a field inspired by brain functionality, represents a powerful

approach to tackle a wide range of information processing tasks that are not instruction-based,

such as those typical of artificial intelligence and machine learning [9, 10, 11]. Unlike traditional

computers that use the von Neumann architecture, separating memory and computing, neuro-

morphic systems utilize artificial neurons and synapses. These components can be implemented

using diverse physical systems, such as photonics [12], spintronics [13], resistive switching

materials [14, 15], and electrochemical devices [16].

In neuromorphic systems, regardless of the underlying physical framework, information

processing is executed via a spiking neural network [17]. Neurons in this network emit spikes

in response to specific external stimuli. These spikes travel through synapses, either exciting

or inhibiting downstream neurons. During training for a particular task, synaptic weights are

iteratively updated, guided by either biologically-inspired algorithms like spike timing-dependent

plasticity [18] and evolutionary algorithms [19] or adaptations of traditional machine learning

algorithms like backpropagation [20].

The collective, as opposed to the individual behavior of the neurons in the network,

facilitates the aforementioned tasks. This collective behavior may also be essential for the

functioning of the animal brain. For instance, the “critical brain hypothesis” suggests that the

brain operates in a state of “criticality”; namely, it is poised at a transition point between different

phases [21, 22, 23, 24, 25]. This critical state is believed to be optimal for the brain’s response

to both internal and external stimuli, due to its structural and functional design. Yet, despite the
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popularity of the hypothesis, questions and doubts remain, and some argue that the brain is not

truly critical or not critical at all [23, 26, 27, 28].

In our present study, we do not aim to directly tackle the critical brain hypothesis. Rather,

we approach the subject from a different angle: we examine a neuromorphic system that exhibits

brain-like features. With similar working principles, one can then naturally extend the critical

brain hypothesis to neuromorphic systems and question whether spiking neural networks also

function at a critical state. This topic remains contentious, and arguments supporting [29, 30]

and opposing [31] the notion have been reported, each presenting slightly different definitions

and perspectives.

In this work, we show that a neuromorphic system may support long-range ordered (LRO)

phases, without criticality. The origin of this LRO is the time non-local (memory) response of

the system to external perturbations. On the other hand, we show that such LRO is not necessary

for certain computational tasks, such as classification and time series predictions. These results

may provide some hints on the functioning of biological brains.

As a specific example, we consider a neuromorphic system comprised of thermal neuris-

tors [32, 15], based on vanadium dioxide (VO2) spiking oscillators that communicate via heat

signals. The properties of the individual oscillators (which take advantage of the hysteric metal-

insulator transition of VO2) and their mutual interactions have been experimentally validated

earlier [32, 15]. These earlier studies form the basis of our numerical model of a large-scale

network, which allows us to numerically analyze the collective dynamics of the system. We find

that the different phases can be tuned by varying the thermal coupling between the neurons and

the input voltage. We apply this system to image recognition tasks using reservoir computing

[33] and explore the relationship between performance and collective dynamics. We find that

LRO does not necessarily enhance the performance in tasks like image recognition, a result in

line with the findings of Ref. [31].
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Figure 1.1. Overview of the thermal neuristor model. (a) Schematic and circuit diagram of two
neighboring thermal neuristors. Each neuristor is modeled as an RC circuit, which undergoes
stable spiking oscillations with proper external input. Neighboring neuristors are electrically
isolated but communicate with each other through thermal interactions. (b) The resistance-
temperature characteristic of the VO2 film, denoted by the variable resistor R in panel (a).
VO2 exhibits an insulator-to-metal transition at approximately 340 K, characterized by distinct
heating and cooling trajectories, thus forming a hysteresis loop. (c) Illustration of stable spiking
oscillations in a single neuristor across various input voltages, with the y-axis range for each plot
set between 0 and 5 mA. Numerical simulations based on Eqs. (1.1) and (1.2) align well with
experimental data, demonstrating stable spiking patterns within a certain input voltage range and
an increase in spiking frequency proportional to the input voltage.

1.2.2 Results

VO2-based oscillators have been utilized as artificial neurons in many previous studies [34,

35, 36, 37, 38, 32, 15], each featuring slightly different designs, mechanisms, and applications.

In particular, we focus on thermal neuristors, a concept pioneered in [15], which effectively

reproduces the behavior of biological neurons. These neuristors are not only straightforward

to manufacture experimentally but also exhibit advantageous properties such as rapid response

times and low energy consumption.

Fig. 1.1(a) presents the design and circuitry of the thermal neuristor, featuring a thin

VO2 film connected in series to a variable load resistor. VO2 undergoes an insulator-to-metal

transition (IMT) at approximately 340 K [39], with different resistance-temperature heating and

cooling paths, which leads to a hysteresis loop, as depicted in Fig. 1.1(b). Additionally, the

system includes a parasitic capacitance resulting from the cable connections, which is vital for
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the neuristor’s operation.

The behavior of the circuit displayed in Fig. 1.1(a) closely resembles a leaky integrate-

and-fire neuron [40]. The capacitor C is charged up by the voltage source, V in, and slowly leaks

current through R. When the voltage across VO2 reaches a threshold, joule heating initiates the

IMT, drastically reducing resistance in the VO2 which causes C to discharge, leading to a current

spike. At the same time, the reduced resistance leads to reduced joule heating, which is then

insufficient to maintain the metallic state, causing the VO2 film to revert to its insulating phase.

This process repeats, producing consistent spiking oscillations.

We have experimentally fabricated and evaluated this system of VO2-based thermal

neuristors. The spiking behavior of a single neuristor is shown in Fig. 1.1(c). With insufficient

heating, the neuristor does not switch from the insulating state whereas excessive heating keeps

it perpetually in the metallic state. As a consequence, no spiking patterns emerge when the input

voltage is too low or too high. Numerical simulations, using the model described in the next

section, corroborate this behavior, mirroring the experimental findings.

Distinct from biological neurons that communicate via electrical or chemical signals,

thermal neuristors interact through heat. As illustrated in Fig. 1.1(a), adjacent neuristors, while

electrically isolated, can transfer heat via the substrate. Each current spike produces a heat spike,

which spreads to nearby neuristors, reducing their IMT threshold voltage, thereby causing an

excitatory interaction. Conversely, excessive heat can cause neighboring neuristors to remain

metallic and cease spiking, akin to inhibitory interactions between neurons. Further experimental

insights on neuristor interactions are detailed in the Appendix.

Although we have experimentally shown that a small group of thermal neuristors can

mirror the properties of biological neurons, effective computations require a vast network of

interacting neurons. Before building a complex system with many neuristors, we first simulate a

large array of thermal neuristors, providing a blueprint for future designs.
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Theoretical model

The theoretical model builds upon the framework established in [15], with some minor

adjustments. The system is built of identical neuristors, uniformly spaced in a regular 2-

dimensional array. Their behavior is governed by the following equations:

C
dVi

dt
=

V in
i

Rload
i

−Vi

(
1
Ri

+
1

Rload
i

)
, (1.1)

Cth
dTi

dt
=

V 2
i

Ri
−Se(Ti −T0)+Sc∇

2Ti +σηi(t). (1.2)

Equation (1.1) describes the current dynamics, with each variable corresponding to

those shown in Fig. 1.1(a). Equation (1.2) describes the thermal dynamics, including the

coupling between nearest-neighbor neuristors. Here, T0 represents the ambient temperature,

Cth is the thermal capacitance of each neuristor, Se denotes the thermal conductance between

each neuristor and the environment, and Sc refers to the thermal conductance between adjacent

neuristors. ηi(t) represents a Gaussian white noise variable for each neuristor that satisfies

⟨ηi(t)η j(t ′)⟩ = δi, jδ (t − t ′), and σ is the noise strength. Detailed values of these constants

are provided in the methods section. Ri is the resistance of the VO2 film, which depends on

temperature and its internal state, or memory, following the hysteresis loop depicted in Fig. 1.1(b).

This memory factor is pivotal in determining the collective behavior of thermal neuristors. We

utilize the hysteresis model formulated in [41], with comprehensive details available in the

methods section.

Numerical results

We used the theoretical model to simulate an L×L square lattice comprised of identical

thermal neuristors, whose dynamics are governed by Eqs. (1.1) and (1.2). Different input voltages

V in produce a diverse array of oscillation patterns, as illustrated in Fig. 1.2. At very low (9V) or

high (15V) input voltages, the system remains inactive, as found in individual neuristors. With
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Figure 1.2. Snapshots of different oscillation patterns in a 64×64 array of thermal neuristors. In
each panel, color indicates current level: white signifies no current, while shades of blue denote
current spikes. The main panels show collective current-time plots for the first 1024 neuristors
(concatenated from the first 16 rows), and each inset captures a specific moment in the 64×64
array. The system exhibits no activity at very low input voltages. As the voltage increases, a
sequence of dynamic phases unfolds, including correlated clusters (10 V and 13.4 V), system-
wide waves (10.4 V and 10.6 V), synchronized rigid states (12 V), and uncorrelated spikes (14
V), culminating again in inactivity at excessively high voltages. The thermal capacitance, Cth, is
fixed at the experimentally estimated value. Detailed simulation parameters can be found in the
methods section.
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a 12 V input voltage, synchronization develops, with nearly all neuristors spiking in unison,

creating a phase of rigid states. A phase transition occurs slightly below V in = 10 V, where

clusters of correlated spikes start to form, then gradually turn into system-wide activity waves

(10.4 V and 10.6 V). Another phase transition occurs slightly above V in = 13.4 V, where the

synchronized rigid oscillations start to fracture into smaller clusters until the individual spikes

become uncorrelated (14 V).

Analytical understanding

The emergence of a broad range of phases and long-range correlations in our system,

despite only diffusive coupling existing between neurons, is a point of significant interest.

Diffusive coupling is typically associated with short-range interactions, making the discovery of

long-range correlations particularly intriguing.

It is well-established that long-range correlations can emerge from local interactions

in various systems such as sandpiles [42], earthquake dynamics [43], forest fires [44], and

neural activities [45]. These systems exhibit “avalanches”—cascades triggered when one unit’s

threshold breach causes successive activations—manifesting as power-law distributions of event

sizes, indicative of scale-free or near scale-free behaviors.

Such spontaneously emerging long-range correlations are often described under the

framework of “self-organized criticality” [42, 43]. However, this term may be misleading.

“Criticality” suggests a distinct boundary, characterized by a phase above and below it, as seen

in the sandpile model where an appropriately defined order parameter undergoes a second-

order phase transition [46, 47]. In contrast, systems like earthquakes, while displaying power-

law behaviors, do not exhibit true scale-invariance [48] and can be described as undergoing

continuous phase transitions without clear critical boundaries [47].

We argue that the observed LRO in our system, similar to those in systems without

genuine scale-free behaviors, is induced by memory (time non-local) effects stemming from a

separation of time scales: a slow external drive contrasts sharply with fast avalanche dynamics.
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In our system, we identified three distinct time scales: the metallic RC time (τmet = RmetC ∼ 187

ns), the insulating RC time (τins = RinsC ∼ 7.57 µs), and the thermal RC time (τth = RthCth =

Cth/(Sc + Se) ∼ 241 ns). We observe that τmet ⪅ τth ≪ τins. As the spiking and avalanche

dynamics are primarily controlled by τmet and τth, and the driving dynamics by τins, our system

does exhibit an approximate separation of time scales.

This separation allows us to conceptualize the slower time scale as memory, which retains

long-term information about past states and remains relatively constant within the faster time

scale, capable of preserving non-local temporal correlations. As a consequence, neuristors that

are spatially distant are progressively coupled, resulting in long-range spatial correlations. This

concept is systematically explored in a spin glass-inspired model [6], and similar behavior is

also observed in a class of dynamical systems with memory (memcomputing machines) used

to solve combinatorial optimization problems [49]. In the Appendix, we provide an analytical

derivation of this phenomenon using a slightly simplified version of our model.

Consequently, altering the memory strength, specifically through adjustments of the

thermal time scale τth by varying Cth (the thermal capacitance of each neuristor), should result in

changes to the oscillation patterns and the presence or absence of long-range correlations. Indeed,

we find that by modifying Cth, we can control the rate of heat dissipation, effectively influencing

the memory’s response time. Additionally, in the Appendix, we present another example where

increasing the ambient temperature reduces the insulating RC time, thereby diminishing memory

and minimizing long-range correlations.

Avalanche size distribution

To verify the presence of LRO in our system, we analyzed the avalanche size distribution

of current spikes. Here, we define an avalanche as a contiguous series of spiking events occurring

in close spatial (nearest neighbor) and temporal (400 ns) proximity. The heat generated by each

spiking event transfers to the neighboring neuristors, making their IMT more likely and thus

triggering a cascade of spikes. Fig. 1.3(a)(b) shows examples of avalanche size distributions in
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which a power-law distribution is observed, indicative of LRO. The methodology for identifying

these avalanches is detailed in the methods section.

We varied the input voltage and thermal capacitance, Cth, to generate the phase diagram

depicted in Fig. 1.3(c). Here, the y-axis reflects Cth’s relative value against the experimentally

estimated one. Similar to observations in Fig. 1.2, both a synchronized rigid state, characterized

by collective neuristor firing, and a quiescent state, with no spiking activity, are found. Around

the phase boundaries, a wide range of parameters leads to a power-law distribution in avalanche

sizes across several orders of magnitude, confirming the existence of LRO. This is further

supported in Fig. 1.3(d), where we compute avalanche sizes for each point in the parameter space

and plot the absolute value of the exponent from the fitted power-law distribution. Areas without

a colored box indicate an unsuccessful power-law fit, with the maximum exponent limited to 6

to remove outliers.

While we empirically observe power-law scaling in avalanche sizes, one might question

if this implies criticality and scale-invariance. The numerical evidence presented here suggests

otherwise. First, the power-law distributions in Fig. 1.3(a)(b) do not align with the finite-size

scaling ansatz [50, 47], which predicts diminishing finite-size effects with increasing system size.

Furthermore, a rescaling based on the system size should collapse all curves onto one [47, 29]

for scale-invariant systems, but such an effect is notably missing in our system, contradicting

finite-size scaling expectations. In Fig. 1.9 in the appendix, we present the results of attempted

finite-size scaling, which clearly imply a lack of scale-invariance.

Despite the absence of criticality, can the system still perform some computing tasks

effectively? Is the LRO observed in these thermal neuristor arrays even necessary for such tasks?

We demonstrate in the following section that for classification, LRO, let alone criticality, is not

necessary, as anticipated in [31].
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Figure 1.3. Avalanche size distributions and phase structures in 2D thermal neuristor arrays
of different sizes. (a)(b) Two different avalanche size distributions at phase boundaries, with
both distributions obtained at Cth = 1, but different input voltages (V in = 9.96 V for (a), and
13.46 V for (b)). (c) Phase diagram of the thermal neuristor array, with the y-axis depicting the
relative value of Cth compared to its experimentally estimated level. We observe synchronized
rigid states with collective spiking and quiescent states with no spikes (no activity). Near the
phase boundaries, a robust power-law distribution in avalanche sizes is noted across various
parameters, signaling the existence of LRO. (d) Exponents of the power-law fit of the avalanche
size distributions (omitting the negative signs for clarity). The phase diagram from panel (c)
is superimposed for enhanced visualization. Regions lacking a colored box signify a failed
power-law fit, and exponents are capped at 6 to exclude outliers.
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Figure 1.4. Overview of our reservoir computing implementation with a 2D thermal neuristor
array, using the MNIST handwritten digit dataset [51] as a benchmark. Each image from the
dataset is translated into input voltages for a 28×28 thermal neuristor array. The array’s spiking
dynamics are gathered as the reservoir output. A fully connected output layer, enhanced with
softmax nonlinearity, is trained to classify the digit. The bottom-left panel illustrates the training
process, displaying both loss and accuracy, culminating in a final test set accuracy of 96%.

Role of LRO in reservoir computing classification tasks

We apply our thermal neuristor array to reservoir computing (RC) to answer the above

questions. RC differentiates itself from traditional neural network models by not requiring the

reservoir – the network’s core – to be trained. The reservoir is a high-dimensional, nonlinear

dynamical system. It takes an input signal, x, and transforms it into an output signal, y = f (x).

A simple output function, usually a fully connected layer, is then trained to map this output

signal, y, to the desired output, ẑ = g(y). Training typically involves minimizing a predefined

loss function between the predicted output ẑ and the actual label z, associated with the input

x, using backpropagation and gradient descent. If the output function is linear, training can be

reduced to a single linear regression.

The reservoir’s transfer function f can be arbitrary, with its main role being to project the

input signal x into a high-dimensional feature space. Since the reservoir doesn’t require training,

employing an experimentally designed nonlinear dynamical system like our thermal neuristor

array for RC is both effective and straightforward.

As a practical demonstration, we applied RC using thermal neuristors to classify hand-
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written digits from the MNIST dataset [51]. Each 28×28 grayscale pixel image, representing

digits 0 to 9, is converted into input voltages through a linear transformation. The system is then

allowed to evolve for a specific time, during which we capture the spiking dynamics as output

features from the reservoir. Subsequently, a fully connected layer with softmax activation is

trained to predict the digit. This process is schematically represented in Fig. 1.4.

The output layer was trained over 20 epochs, as shown in the bottom-left panel of

Fig. 1.4. The test loss stabilized after approximately 10 epochs, and due to the network’s simple

architecture, overfitting was avoided. Ultimately, the test set accuracy reached 96%. Further

training details can be found in the methods section.

In this experiment, we treated the voltage transformation, thermal capacitance Cth, and

noise strength σ as adjustable hyperparameters. This allowed us to check which region of

phase space would produce optimal results. We found that the parameters that yielded optimal

performance were an input voltage range between 10.5 V and 12.2 V, Cth = 0.15, and noise

strength σ = 0.2 µJ·s−1/2. These settings placed us within the synchronized rigid phase, not the

LRO one, with the input voltage variations introducing complex oscillatory patterns. In fact,

choosing the parameters in the LRO phase produced worse results. We show this in the appendix.

The phase diagram relating to noise strength can be found in Fig. 1.10.

To further explore the role of LRO in reservoir computing tasks, the Appendix details our

efforts to eliminate LRO within the reservoir by either removing interactions between neurons

altogether or by reducing memory. We quantified LRO using the avalanche size distribution

under these various settings. The findings reveal that even when the reservoir operates in a

rigid or non-interacting state, long-range structures inherited from the dataset are still apparent.

However, no relation between LRO and computational performance was observed.

As further verification, the Appendix documents an additional experiment involving the

prediction of chaotic dynamics governed by the 2D Kuramoto-Sivashinsky equations [52]. The

results corroborate our primary findings: optimal performance in reservoir computing is achieved

without the presence of LRO within the reservoir.
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In conclusion, the spiking dynamics of the optimally performing reservoir in our study

are not characterized by an LRO state. This observation aligns with the findings in [31], and

challenges the well-accepted critical brain hypothesis [22] and theories suggesting that near-

critical states enhance computational performance [53, 54]. However, our results do not directly

contradict the critical brain hypothesis, since it is possible that long-range correlations are

effectively encapsulated within the feed-forward layer. Despite this possibility, our findings

highlight a crucial aspect: criticality is not a prerequisite for effective computational performance

in such tasks.

1.2.3 Discussion

In this study, we have developed and experimentally validated VO2-based thermal neuris-

tors that exhibit brain-like features. We then formulated a theoretical model grounded in our

experimental findings to facilitate large-scale numerical simulations. These simulations revealed

a variety of phase structures, notably those with LRO, across a broad spectrum of parameters.

Our analysis suggests that this LRO stems from the time-nonlocal response of the system and is

not associated with criticality. Significantly, we demonstrate that this feature does not impair the

system’s computational abilities. In fact, it does not even seem to be necessary in some tasks,

such as classification and time series prediction, as we have shown by using our thermal neuristor

array in reservoir computing.

The thermal neuristor represents an innovative artificial neuron model, and our research

offers insights into the collective dynamics of artificial neuronal activities. Our findings suggest

that criticality is not a prerequisite for effective information processing in such systems. This

challenges the critical brain hypothesis and its applicability to neuromorphic systems, indicating

that even non-critical systems can excel in some computational tasks. We then advocate for a

broader exploration of non-critical dynamical regimes that might offer computational capabilities

just as powerful, if not more so, than those found at or near a critical state.

Moreover, our work highlights the potential of VO2-based thermal neuristors in comput-
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ing applications, setting the stage for more extensive experiments. Given the growing need for

innovative hardware in neuromorphic computing, our VO2-based thermal neuristor system is a

promising candidate for advancing next-generation hardware in artificial intelligence.

1.2.4 Methods

Fabrication of VO2 thermal neuristor arrays

Epitaxial VO2 thin film growth

We employed reactive RF magnetron sputtering to deposit a 100-nm thick VO2 film onto

a (012)-oriented Al2O3 substrate. Initially, the substrate was placed in a high vacuum chamber,

achieving a base pressure of around 10−7 Torr, and heated to 680◦C. The chamber was then

infused with pure argon at 2.2 s.c.c.m and a gas mix (20% oxygen, 80% argon) at 2.1 s.c.c.m.

The sputtering plasma was initiated at a pressure of 4.2 mTorr by applying a forward power of

100 W to the target, corresponding to approximately 240 V. Post-growth, the sample holder was

cooled to room temperature at a rate of 12◦C/min. Specular x-ray diffraction analysis of the film

revealed textured growth along the (110) crystallographic direction.

VO2 thermal neuristor arrays fabrication

For patterning the VO2 neuristor arrays, Electron Beam Lithography (EBL) was employed.

Each neuristor, sized at 100×500 nm2, was delineated with 500 nm gaps. The initial lithography

pattern defined electrodes by depositing a 15 nm Ti layer followed by a 40 nm Au layer. To

investigate thermal interactions between neuristors, a second lithography and etching step was

necessary. We utilized a reactive-ion etching system to etch the exposed VO2 films between

devices, as per the second-step lithography patterns, while the negative resist shielded the

electrodes and devices from etching.

Transport measurements

Transport measurements were conducted in a TTPX Lakeshore probe station equipped

with a Keithley 6221 current source, a Keithley 2812 nanovoltmeter, a Tektronix Dual Channel

Arbitrary Function Generator 3252C, and a Tektronix Oscilloscope MSO54. The current source
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and nanovoltmeter were utilized to gauge the device’s resistance versus temperature. The

Arbitrary Function Generator (AFG) was employed to apply either DC or pulse voltage bursts,

while the oscilloscope monitored the output signals. Notably, the impedance for the channel

assigned to measure voltage dynamics was set at 1 MΩ, and the channel for capturing spiking

current dynamics was configured to 50 Ω.

Details of numerical simulations

Model details and constant parameters

The constants in Eqs. (1.1) and (1.2) are crucial in our simulations, as they depend on

specific experimental setups. Following the approach in [15], we optimized these parameters to

closely replicate the experimental results. The chosen values are summarized in Table 1.1.

The resistance of the VO2 film, R, is modeled based on the hysteresis model introduced

in [41], described by the equations:

R(T ) = R0 exp
(

Ea

T

)
F(T )+Rm,

F(T ) =
1
2
+

1
2

tanh
(

β

{
δ

w
2
+Tc

−
[

T +TprP
(

T −Tr

Tpr

)]})
,

Tpr = δ
w
2
+Tc −

1
β
[2F(Tr)−1]−Tr,

P(x) =
1
2
(1− sinγx)

[
1+ tanh

(
π

2 −2πx
)]
.

(1.3)

Each component of Eq. (1.3) is detailed in [41]. The term Tr denotes the reversal

temperature, marking the most recent transition between heating and cooling processes. Here, δ

equals 1 on the heating branch and -1 on the cooling branch, with all other symbols representing

constant parameters. These constants were selected in accordance with [15] to accurately reflect

the experimentally observed hysteresis loop, and their values are compiled in Table 1.1.

The noise strength σ was chosen to facilitate a diverse range of phase structures. We

conducted preliminary tests on the phase diagram by varying σ , with the results detailed in the
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Table 1.1. Parameters utilized in the numerical simulations for Eqs. (1.1)-(1.3). Rload and T0 are
taken from experiment, while other parameters are optimized to align the numerical model as
closely as possible to the experimentally measured data.

Param Value Physical meaning
C 145 pF Capacitance
Rload 12.0 kΩ Load resistance
Cth 49.6 pJ/K Thermal capacitance

Note: Figures show relative value to this
Se 0.201 mW/K Thermal conductance to environment
Sc 4.11 µW/K Thermal conductance to neighbor
T0 325 K Ambient temperature
σ 1 µJ·s−1/2 Noise strength
R0 5.36 mΩ Insulating resistance prefactor
Ea 5220 K VO2 activation energy
Rm 1286 Ω Metallic resistance
w 7.19 K Width of the hysteresis loop
Tc 332.8 K Center of the hysteresis loop
β 0.253 Fitting parameter in hysteresis
γ 0.956 Fitting parameter in hysteresis

Appendix.

Numerical methods

For the numerical integration of Eqs. (1.1) and (1.2), we employed the Euler-Maruyama

method [55] with a fixed time step of dt = 10 ns. The current-time trajectories were recorded,

and current spikes were identified by locating the local maxima within these trajectories.

To analyze the avalanche size distribution, we first defined an “avalanche” as a contiguous

series of spiking events occurring within a certain spatial and temporal proximity. We determined

a specific window length for both spatial and temporal dimensions and then coarse-grained the

spiking trajectories, categorizing each spiking event into a corresponding window. This process

resulted in a D+1-dimensional lattice (D spatial and 1 temporal dimensions), where each lattice

site denoted the number of spikes within its window. Following this, the Hoshen-Kopelman

algorithm [56] was applied to identify clusters of spiking activities within the lattice. Each

identified cluster was considered as one distinct avalanche, in line with our defined criteria.

The avalanche size distribution is influenced by the chosen window size. Generally, the
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temporal window length should be significantly longer than the duration of each spike but shorter

than the interval between consecutive spikes. For all results presented in this paper, the temporal

window length was set at 400 ns. In terms of spatial window length, we focused on immediate

neighbors (length = 1) of each neuristor for cluster identification.

After identifying the avalanches, we computed the histogram of avalanche sizes using a

logarithmic binning scheme [57], where bins are uniformly distributed on a logarithmic scale.

The sizes of these bins were determined according to Scott’s normal reference rule [58]. To

characterize the avalanche size distributions presented in Fig. 1.3, we applied a power-law fit to

each histogram, excluding the tails for more accurate modeling.

Reservoir setup

In employing thermal neuristors for reservoir computing, we consider the entire neuristor

array as the reservoir. The input voltages serve as the reservoir input, and the resultant spike

trains are recorded as the output.

For the MNIST dataset [51], the reservoir’s parameters are detailed in the main text. To

record the spike trains, we simulate the system dynamics for 10 µs, extracting spikes using

the method outlined in the previous section. These spike trains are then coarse-grained with

a time window of ∆t = 500 ns. Each time window is assigned a binary value indicating the

presence or absence of a spike. This process results in a 28×28×20 binary array representing

the reservoir’s spike train output. This array is then flattened into a one-dimensional sequence

of 15680 elements. A fully connected layer with dimensions 15680×10 is trained to map the

reservoir output to the ten digit classes. At the final stage, a softmax nonlinearity is applied to

transform the output layer’s results into predicted probabilities. Although activation functions are

not typically standard in reservoir computing tasks, we still implemented the softmax activation

in conjunction with negative log-likelihood loss, as it demonstrated enhanced performance

compared to mean-square-error loss without an activation function.

For training this fully connected output layer, we utilized the Adam optimizer [59] with

22



a learning rate of 10−3. The corresponding loss curve is depicted in the bottom-left panel of

Fig. 1.4.

1.2.5 Appendix

Emergence of long-range order

In this section, we delve deeper into Eqs. (1.1) and (1.2) to explore the emergence of

long-range order (LRO). In particular, we show that it arises due to the time non-local (memory)

response of the system.

Heuristically, the relatively slowly varying temperature field gradually couples spatially

separated neuristors, giving rise to long-range correlations. This intuition suggests that only terms

in these equations that couple Vi and Ti or introduce thermal diffusive coupling are necessary

to induce LRO. As our analysis continues, it will become more clear that these are, in fact, the

only terms that are necessary to make the existence of LRO manifest. For clarity, we rewrite

Eqs. (1.1) and (1.2) below, with “. . .” representing the terms in the original equations which are

now irrelevant for the purposes of our analysis:

V̇i =
−Vi

τVi

+ . . . ,

Ṫi =
1
τT

(
V 2

i
ScRi

+∇
2Ti

)
+ . . . .

(1.4)

Here, τVi ≡CRi represents a site-dependent voltage timescale, and τT ≡Cth/Sc ≈ 50τth

is the intersite thermal diffusion timescale. The latter differs from τth by a factor of about 50,

as the thermal coupling between sites is significantly weaker than with the environment. To

simplify our analysis, we assume τ
−1
Vi

is a linear interpolation between the inverse timescale in

the insulating state (τ−1
ins ) and the metallic state (τ−1

met), across a range within the hysteresis loop

(see Fig. 1.1(b) in the main text), governed by the following equations:
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1
τVi

=
α(Ti)

τins
+

1−α(Ti)

τmet
, (1.5)

α(Ti) =
1
2

(
1−
(

Ti −Tc

w

))
. (1.6)

Here, Tc and w characterize the center and width of the hysteresis loop, respectively.

This approximation, which defines α(Ti), is inspired by Matthiessen’s rule [60], tradi-

tionally applied in scattering contexts. By focusing solely on Ti-dependent terms in τ
−1
Vi

, we

explicitly couple the current and thermal dynamics without reference to Ri:

V̇i =
1
τV

(
−TiVi

Tc

)
+ . . . ,

Ṫi =
1
τT

(
ζ TiV 2

i +∇
2Ti

)
+ . . . .

(1.7)

In (1.7), τ
−1
V ≡ Tc(τins−τmet)

2wτinsτmet
≈ Tc

2wτmet
(since τins ≫ τmet) and ζ ≡ C

2wτmetSc
. Additionally,

we confirm that both Ti/Tc ∼ 1 and ζV 2
i ∼ 1 with our chosen parameter values (see Table 1.1,

and note that Vi ∼ 5V during spiking dynamics). Therefore, τV and τT are representative site-

independent timescales of the relevant current and thermal dynamics, respectively. Given our

chosen parameter values, τV ∼ 10 ns and τT ∼ 10 µs, indicating a separation of timescales.

Considering these characteristic timescales τV and τT , we can treat the contributions to

Ṫi written in (1.7) as small over intervals ∆t ≲ τT . Thus, the relevant contributions to Ti over

each such interval will be approximately constant. Although experiment/simulation suggests

a more comprehensive thermal timescale might be shorter (the inter-spike interval is ∼ 1µs),

recall that we are only considering terms that couple Ti and Vi or introduce diffusive coupling.

While Ti does implicitly depend on voltage coupling, thermal coupling with adjacent sites and

the environment, and noise, contributions to Ti which only depend on the time-evolution terms

kept in Eq. (1.7) will always exist. For clarity, we call these relevant contributions T̃i and Ṽi.
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We now show that by iteratively integrating T̃i and Ṽi over a prolonged period of time,

the presence of long-range current couplings becomes manifest. This “time coarse-graining”

approach is analogous to methods used in other complex systems studies [61, 62].

First, we evolve T̃i over intervals of length τT , during which T̃i is approximately constant:

T̃i(τT ) = Ti(0)+
∫

τT

0

˙̃Ti(t)dt

≈
(
1+ζV 2

i,1 +∇
2)Ti(0)≡ L̂0Ti(0) ,

(1.8)

T̃i(2τT ) = T̃i(τT )+
∫ 2τT

τT

˙̃Ti(t)dt

≈
(
1+ζV 2

i,2 +∇
2)T̃i(τT )≡ L̂1L̂0Ti(0) .

(1.9)

Above, we’ve defined V 2
i,l to be the average of V 2

i over a time interval [(l − 1)τT , lτT )

(since τV << τT , V 2
i is not approximately constant over intervals of length τT , and there is no

need to distinguish between Vi and Ṽi). We introduce the operator L̂p, which time-evolves T̃i(pτT )

to T̃i((p+1)τT ), for compactness. This generalizes to

T̃i(lτT )≈

(
l−1

∏
p=0

L̂p

)
Ti(0) . (1.10)

For l ≥ 2, notice that T̃ (lτT ) will have terms ∼ ∇2V 2
i,l−1 to ∼ ∇2 . . .∇2V 2

i,1, the latter of

which has l −1 ∇2’s. These terms implicitly depend on Vj through the diffusive coupling, where

j can range from the 1st to (l−1)th nearest-neighbor of the ith site. Applying a similar technique

for Ṽi,
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Ṽi(τT ) =Vi(0)+
∫

τT

0

˙̃Vi(t)dt

≈Vi(0)−
τT

τV

1
Tc

(
Ti(0)V 2

i,1
)
,

(1.11)

Ṽi(2τT )≈ Ṽi(τT )−
τT

τV

1
Tc

(
T̃i(τT )V 2

i,2
)

≈Vi(0)−
τT

τV

1
Tc

(
Ti(0)V 2

i,1 + T̃i(τT )V 2
i,2
)
.

(1.12)

Again, this generalizes for Ṽi(NτT ):

Ṽi(NτT )≈Vi(0)−
τT

τV

1
Tc

N−1

∑
l=0

T̃i(lτT )V 2
i,l+1 . (1.13)

As is suggested by Eq. (1.10), T̃i(lτT ) will implicitly depend on voltages l −1 sites away

from the ith lattice site. Since there is feedback between Vi and Ti, this means that Ṽi(NτT ) will

also depend on other Vj in a highly non-local manner. Additionally, after a sufficiently large time

NτT , these non-local couplings will have arbitrarily large order (the number of Vj which multiply

one another). This spatial non-locality, induced by the interplay between Vi-Ti couplings and

thermal site diffusion, is indicative of the LRO that we observe numerically.

Experimentally measured thermal interactions

Here, we provide some additional experimentally measured interactions between two

neighboring thermal neuristors. Despite only having two neuristors, the interactions observed

here offer valuable insights into the various phases of the thermal neuristor array.

In Fig. 1.5, we show the current-time curves of two adjacent neuristors under varying

input voltages. Note that these devices are different from those discussed in the main text,

possessing distinct threshold voltages, though their qualitative behaviors are consistent.

In panels (a) to (c) of Fig. 1.5, neuristor B is set with a 2.6 V input voltage, slightly below
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Figure 1.5. Experimental demonstration of thermal interactions between two adjacent thermal
neuristors. Panels (a)-(c) feature neuristor B under a 2.6 V input, just below its lower spiking
threshold. Panels (d)-(f) depict neuristor B with a 4.1 V input, marginally below the upper
spiking threshold. (a) A 2.6 V input to neuristor A triggers a single synchronized spike in both
neuristors. (b) Increasing A’s input to 4 V establishes a stable 2:1 spiking pattern. (c) Further
increasing A’s input to 5 V disrupts the synchronization, resulting in only one spike in B. (d) A
3.7 V input to A leads to 1:1 stable spiking oscillations. (e) A slight increase in A’s input voltage
introduces phase lags in the synchronization. (f) A further increase in A’s voltage breaks the
synchronization, causing B to stop spiking.
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the threshold for independent spiking. However, the influence of neuristor A initiates spiking

activities. Panel (a) shows that a 2.6 V input to neuristor A, also below its spiking threshold,

results in mutual heating and a single synchronized spike in both neuristors. Increasing A’s

driving voltage leads to a stable spike train in A, as seen in panel (b), which in turn induces

stable oscillations in B, forming a 2:1 spiking pattern. Further increasing A’s voltage disrupts

this synchronization, resulting in only a single spike in B, as depicted in panel (c).

Conversely, in panels (d) to (f), neuristor B operates under a 4.1 V input, capable of

sustaining stable oscillations alone but sensitive to additional stimuli. Panel (d) shows that an

optimal input to A yields a 1:1 synchronized pattern. However, a slight increase in A’s voltage,

as shown in panel (e), introduces phase lags between A and B. Eventually, as illustrated in panel

(f), the significant phase lag disrupts B’s stable spiking pattern, causing it to cease spiking.

In this example, both boundaries of the spiking thresholds exhibit first-order phase

transitions, where minor changes in external stimuli lead to markedly different behaviors. This

underpins the phase boundaries identified in Fig. 1.3 in the main text. Slight perturbations are

amplified and propagated through the lattice, resulting in the diverse phase structures and LRO

we observed.

Spiking patterns and avalanche size distributions under different conditions

In this section, we provide an intuitive understanding and visualization of spiking patterns

and their corresponding avalanche size distributions under various conditions. The settings used

here are consistent with those in Fig. 1.2 and Fig. 1.3, and the figures presented retain the same

meanings as those referenced.

First, to elucidate the phase structures depicted in Fig. 1.3, Fig. 1.6 illustrates the

avalanche size distributions and corresponding spiking patterns at a point within the rigid

phase (V in = 12.5 V, Cth = 1) and at a point near the no activity phase (V in = 13 V, Cth = 1.25).

Furthermore, to highlight the significance of thermal coupling, Fig. 1.7 compares spiking

patterns with and without thermal coupling at V in = 12 V and Cth = 1. Given that thermal
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Figure 1.6. Examples of avalanche size distributions and corresponding spiking patterns for
settings consistent with Fig. 1.2 and Fig. 1.3 in the main text: (a) V in = 12.5 V, Cth = 1. This
setting corresponds to the rigid phase as depicted in Fig. 1.3(c). The right panel illustrates
synchronized spiking behavior across nearly all neuristors, with the avalanche size distribution
showing a power-law for smaller events. Notably, a prominent peak at the right end of the
distribution indicates the prevalence of system-wide avalanches. (b) V in = 13 V, Cth = 1.25. This
setting is at the boundary of the “no activity” phase. The snapshot reveals random, uncorrelated
spikes, and the avalanche size distribution is predominantly characterized by single or very small
events.
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Figure 1.7. Comparison of spiking patterns with (left) and without (right) thermal coupling at
V in = 12 V, Cth = 1. With thermal coupling, the setting induces a rigid state where almost all
neuristors spike simultaneously, demonstrating highly correlated behavior. Conversely, without
thermal coupling, the neuristors spike independently, resulting in uncorrelated, isolated spiking
patterns.

coupling is the only means through which neuristors exchange information, the absence of

thermal coupling naturally results in random, uncorrelated spikes.

Additionally, in Fig. 1.8, we compare the spiking patterns and avalanche size distributions

under periodic and open boundary conditions at V in = 9.96 V and Cth = 1. This comparison

shows that the type of boundary condition has minimal impact on the spiking behaviors, demon-

strating the robustness of the spiking dynamics against boundary effects.

Finite-size scaling

In the main text (Fig. 1.3), we observed power-law distributions of avalanches across

various system sizes, with closely matched power-law exponents at specific parameter points.

According to finite-size scaling theory [50], at criticality, avalanche size distributions for

different system sizes should conform to a common scaling rule:
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Figure 1.8. Comparison of spiking patterns and avalanche size distributions under (a) periodic
and (b) open boundary conditions at V in = 9.96 V and Cth = 1, both settings within the LRO
phase. The figure demonstrates that the type of boundary condition has minimal impact on the
spiking behaviors and avalanche size distributions, indicating robustness of the spiking dynamics
against boundary effects.

a b

Figure 1.9. Rescaling of the avalanche size distributions from Fig. 1.3 in the main text, based
on the finite-size scaling ansatz, Eq. (1.14). In the inset, L =

√
N is the length of the lattice.

Criticality should result in an overlap of curves from different system sizes, demonstrating
scale-invariance. However, this scale-invariance is notably absent in our system, suggesting a
lack of criticality.
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No Activity

Rigid State
LRO

Disorder

Figure 1.10. Phase diagram of a 32×32 thermal neuristor array under varying noise strength
and thermal capacitance, with a fixed input voltage of 12 V. As noise strength approaches zero, a
rigid state prevails, characterized by synchronized firing of all neuristors. With increasing noise,
a phase of LRO emerges, eventually giving way to a disordered phase at higher noise levels,
characterized by uncorrelated spiking. (b) The slope of the avalanche size distributions at each
parameter point, capped at 5 and excluding the negative sign for clarity. A lack of color in a box
signals an unsuccessful power-law fit. The phase diagram from panel (a) is overlaid for context.

P(s,N)∼ sα exp
(
−s/Nβ

)
, (1.14)

where s is the avalanche size, N is the system size, α is the critical exponent of the avalanche size

distribution, and β is the cutoff exponent.As emphasized in several studies, such as [29, 47], the

rescaling of avalanche size distributions according to Eq. (1.14) should result in all distributions

collapsing onto a single curve at criticality, characterized by a near-perfect overlap of all rescaled

curves. Indeed, this phenomenon is typical in scale-free systems, with examples of near-perfect

rescaling plots documented in references like [29, 47, 6].

Fig. 1.9 attempts this rescaling for the distributions presented in Fig. 1.3 from the main

text. Here, we optimized the exponent β to align the four curves corresponding to different

system sizes. However, our findings show a clear departure from Eq. (1.14), suggesting the

absence of scale-invariance and criticality.
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Effect of noise strength

In the main text, we set the noise strength σ in Eq. (1.2) to 1 µJ·s−1/2. This section

examines how varying the noise strength influences the phase structures of the system.

Fig. 1.10(a) presents the phase diagram for a 32×32 thermal neuristor array, exploring the

interplay between thermal capacitance and noise strength. Here, the input voltage is consistently

held at 12 V, while all other parameters remain as described in the main text. Fig. 1.10(b) plots

the slopes of the avalanche size distributions for each set of parameters, paralleling the approach

of Fig. 1.3 from the main text.

It is evident that noise strength significantly impacts the phase structures in this model.

Near zero noise strength, when all neuristors are identical and begin with the same initial condi-

tions, a rigid phase emerges across most parameters. This phase is characterized by synchronized

spiking in all neuristors. Increasing the noise strength reveals a phase of LRO, situated between

the rigid phase and the inactive phase. As the noise strength further escalates, the rigid phase

vanishes, giving way to a disordered phase. In this phase, correlations between neuristors fade

exponentially, resulting in isolated, uncorrelated spikes. In our main text simulations, we chose a

noise strength of 1 µJ·s−1/2, leading to a wide variety of oscillation patterns.

Hyperparameter selection in reservoir computing

Hyperparameter tuning is a critical aspect of machine learning algorithms. In our study,

the parameters of the thermal neuristor array serve as hyperparameters for the reservoir computing

algorithm.

As detailed in the main text, we use a 28×28 array of thermal neuristors for handwritten

digit recognition on the MNIST dataset. While Bayesian optimization algorithms can efficiently

select hyperparameters [63], we opt for a grid search to gain deeper insight into the reservoir’s

physics. Fig. 1.11 illustrates the accuracy of predictions after training for one epoch. In panel

(a), we adjusted the thermal capacitance Cth and the input voltage for black pixels (Vmax), while

keeping the input voltage for white background pixels (Vmin) at 10.5 V, and the noise strength σ
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a b

Figure 1.11. Classification accuracy on the MNIST dataset after one epoch of training with
various parameters. Areas in white indicate regions lacking spiking dynamics. (a) Varying
the maximum input voltage Vmax and thermal capacitance Cth, while fixing the minimum input
voltage Vmin to be 10.5 V and the noise strength σ to be 0.2 µJ·s−1/2. Optimal performance
is observed at the point Cth = 0.15, Vmax = 12.2 V. (b) Fixing Vmin = 10.5 V and Vmax = 12 V.
Optimal performance is observed at the point σ = 0.2 µJ·s−1/2 and Cth = 0.1.

at 0.2 µJ·s−1/2. Similarly, in panel (b), we fixed Vmin = 10.5 V and Vmax = 12 V, and varied σ

and Cth.

In both panels, most parameter combinations yield reasonable performance, provided

some level of spiking dynamics is present in the system. The best performance is achieved

near the phase transition boundary between no activity and the rigid state, with a small thermal

capacitance (Cth ∼ 0.15), moderate input voltage (Vmax ∼ 12 V), and small noise strength (σ ∼

0.2 µJ·s−1/2). A lower thermal capacitance facilitates a quicker response in the thermal neuristor

array, while a smaller noise makes the system more predictable, enhancing the classification task.

Further analysis of LRO in reservoir computing

In the preceding section, we determined that the optimal parameters place us within

the synchronized rigid phase, as depicted in Fig. 1.10. However, this configuration does not

necessarily imply that the reservoir operates in a rigid state, given that variations in the input

data may introduce additional structures and correlations within the reservoir.

To rigorously test this hypothesis and explicitly quantify LRO within the reservoir, we
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Figure 1.12. Comparison of MNIST handwritten digit classification using reservoir computing
under three different settings. Original: Vmin = 10.50V, Vmax = 12.20V, Cth = 0.15, σ =
0.2µJ ·s−1/2. No interaction: Thermal interactions between neighboring neuristors are removed.
Vmin = 11.99V, Vmax = 13.37V, Cth = 0.18, σ = 0, and Sc = 0, replacing the original 4.11µW/K.
Reduced memory: The slower time scale is minimized by raising the ambient temperature.
Vmin = 9.30V, Vmax = 10.16V, Cth = 0.15, σ = 0.2µJ · s−1/2, and T0 = 330K, up from 325K.
Each setting is optimized to achieve the highest possible classification accuracy for the conditions
specified. (a) Snapshots of Reservoir Dynamics: This panel showcases reservoir dynamics
under three distinct settings, with each snapshot taken approximately 4µs apart. (b) Dynamics
under Uniform Input: This panel displays reservoir dynamics under uniform input voltages set
to Vmin and Vmax, confirming that the reservoir operates within a rigid state. (c) Avalanche Size
Distribution: Avalanche size distribution of current spikes using the MNIST dataset’s 60,000
training images as input. (d) Classification Accuracy: Classification accuracy on the MNIST
test set after 20 epochs of training. The original configuration achieves the highest accuracy at
96.1%. Remarkably, the no-interaction scenario still performs well, achieving 95.8% accuracy
without any internal information transfer within the reservoir. With reduced memory, where the
slower time scale is lessened, long-range order within the system is substantially reduced, leading
to a lower accuracy of 94.2%. These results further illustrate that there is no straightforward
correlation between LRO and computational performance.
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Figure 1.13. Demonstration of how increasing ambient temperature, T0, reduces the slower
time-scale. (a) Spiking dynamics and (b) the resistance-temperature curve of a single neuristor at
input voltage V in = 10.2V, Cth = 0.15, and T0 = 325K. The dynamics are stable, with the VO2
device consistently reverting to its insulating state at Rins = 43kΩ after each spike. (c) Spiking
dynamics and (d) the resistance-temperature curve for the same neuristor under identical settings
but with the ambient temperature increased to T0 = 330K. The elevated temperature results
in the VO2 device reverting to a much lower resistance of 7kΩ after each spike, significantly
reducing the insulating RC time, τins, to approximately 1µs. This adjustment leads to smaller
spiking amplitudes, a higher frequency, and more unstable spiking dynamics. Further increases
in temperature or minor external perturbations can cause the VO2 device to remain in its metallic
state, ceasing to spike.
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computed the avalanche size distribution when the MNIST dataset served as the input. The

experimental setup adheres to the methodology outlined in Sec. 1.2.2 of the main text, employing

identical parameters. We recorded the current spikes to calculate the avalanche size distribution

using the approach detailed in Sec. 1.2.4.

The avalanche size distribution, encompassing all 60,000 training images from the

MNIST dataset, is depicted in Fig. 1.12(c). Although the system is in a rigid state, the distribution

reveals long-range structures: a power-law distribution is evident for smaller clusters up to

s ∼ 102, followed by two prominent bumps, which correspond to avalanches that span across the

entire system and those limited to the black pixels comprising the digits.

Superficially, the distinct structure observed within the MNIST dataset’s avalanche size

distribution may seem to suggest that LRO plays a crucial role in the classification of MNIST

images. Instead, we now demonstrate that the emergence of these long-range structures originates

from the dataset itself, rather than the reservoir, and that long-range correlations are not essential

for effective performance in this task.

First, we eliminated all interactions within the reservoir by disconnecting the thermal

coupling between adjacent neuristors. Consequently, each thermal neuristor responds solely to its

designated input pixel, devoid of any contextual awareness. After fine-tuning the hyperparameters

via Bayesian optimization [63] to maximize classification accuracy, we observed the resultant

reservoir dynamics, as depicted in Fig. 1.12(a). The corresponding avalanche size distribution is

illustrated in Fig.1.12(c). In this configuration, the distribution reveals more defined structures:

system-wide avalanches represent the white background, while smaller avalanches delineate the

fractures within the digits. Given the absence of inter-neuristor interactions, it is evident that

these structures are derived solely from the dataset. When compared to the original distribution

involving interactions, it becomes apparent that internal interactions within the reservoir tend to

smooth out smaller avalanches while retaining the principal structures inherent to the dataset.

Upon training the output layer, the classification accuracy achieved on the MNIST

dataset’s test set is presented in Fig. 1.12(d). Remarkably, even in the absence of interactions
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within the reservoir, we attained an accuracy of 95.8%, which is nearly equivalent to the

performance under the optimized setup that included interactions. This outcome substantiates

the assertion that LRO within the reservoir is not essential for achieving high computational

effectiveness.

In another experiment, we aimed to minimize LRO in the neuristor array as much as

possible. Previous findings, as discussed in the main text, suggest that LRO is influenced by the

separation of time scales. To address this, we attempted to reduce the memory within the system

and eliminate the slower time scale by decreasing the resistance in the insulating state of the

VO2 device. This adjustment involved increasing the ambient temperature, T0, from 325 K to

330 K. Fig. 1.13 illustrates the impact of this temperature increase on a single neuristor: the VO2

device begins closer to the metallic state with reduced resistance, and after each spiking event, it

resets to a lower resistance state. Further increase of T0 ultimately leads the neuristors to remain

in the metallic state, thereby ceasing to spike.

As illustrated in Fig.1.13(d), the maximum resistance in the insulating state during spik-

ing, denoted as Rins, is approximately 7kΩ. This value results in an insulating time constant,

τins = RinsC ∼ 1µs, significantly reduced from τins = 7.57µs mentioned in the main text. Conse-

quently, both memory and LRO within the system are diminished. Furthermore, as shown in

Fig.1.13(c), the spiking frequency increases, while the amplitudes of the spikes decrease. This

alteration in dynamics leads to a spiking pattern that is more susceptible to disruption by external

perturbations.

Once again, we optimized the hyperparameters using Bayesian optimization [63] to

achieve the best classification accuracy on the MNIST dataset. Fig.1.12(a) captures snapshots of

the reservoir dynamics. These visuals demonstrate how the digit patterns rapidly blur and fade,

indicating a rapid loss of memory within the system. Fig.1.12(b) shows that synchronized system-

wide spikes from uniform input confirm the reservoir’s operation in a rigid state under these

conditions. However, when using the MNIST dataset as input, the avalanche size distribution,

depicted in Fig.1.12(c), shows a power-law distribution for smaller avalanches and system-wide
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activities, mirroring the original setup. As noted previously, this pattern mostly originates from

structural features inherent in the dataset, particularly since the modified reservoir struggles to

maintain LRO. The classification accuracy recorded on the test set, as depicted in Fig.1.12(d),

ultimately reaches 94.2%. Although the classification task is executed effectively, the neuristors’

unstable spiking behavior remains less than ideal for achieving higher accuracy.

From the two experiments described above, it is clear that LRO may not necessarily

emerge from the reservoir itself, rather it can be inherited from the dataset. Across all three experi-

ments, there was no discernible correlation between LRO and computational performance. While

the original setup, which included the possibility of LRO, performed the best, the non-interacting

setup yielded nearly comparable results without any long-range interactions. Meanwhile, the

experiment with reduced memory, although showing the lowest performance, still exhibited

similar long-range structures as the original setup. Therefore, we conclude that LRO is not

essential for effective computational performance in these scenarios.

Predicting chaotic dynamics with reservoir computing

In this section, we describe an experiment designed to predict chaotic dynamics governed

by the 2D Kuramoto-Sivashinsky (KS) equations [52] using a reservoir computing framework

implemented with a thermal neuristor array.

The 2D KS equation is expressed as:

∂u
∂ t

+
1
2
|∇u|2 +∆u+∆

2u = 0 (1.15)

where the boundary conditions are spatially periodic. This equation has been extensively studied

[52] and is known for its chaotic behavior, which poses significant challenges in predicting

long-term dynamics.

We discretized Eq. (1.15) on a 16×16 square lattice with a unit bond length and simulated

the dynamics numerically using a 4th order Runge-Kutta method with a time step of ∆t = 0.05.
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Figure 1.14. Predicting the chaotic dynamics governed by the 2D Kuramoto-Sivashinsky (KS)
equations using reservoir computing. (a) Comparison of the ground truths and predictions, after
20 and 100 time steps, with each time step corresponding to ∆t = 0.05 (arbitrary unit). The
two rightmost panels illustrate the differences between the predictions and the ground truths,
highlighting the model’s accuracy over time. (b) The mean-square-error (MSE) of the prediction
as a function of the number of time steps predicted. Although the prediction MSE gradually
increases with more extended simulation of the dynamics, the predictions remain reasonably
accurate for up to 100 time steps, equivalent to ∆t = 5 (arbitrary unit). (c) An example of
reservoir dynamics is presented, showing patterns that loosely resemble the evolution observed
in the KS equation dynamics. (d) Avalanche size distribution with KS dynamics as input to the
reservoir. A prominent peak at the right end of the distribution highlights the predominance of
system-wide avalanches, confirming that the reservoir operates in a rigid state.
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The simulation began from random initial conditions and, after allowing for the decay of initial

transients, the dynamics of the u field were recorded as training data.

To predict the chaotic dynamics described by the KS equation, we utilized reservoir

computing with an array of thermal neuristors. This setup is similar to that used in the MNIST

classification experiment detailed in the main text, allowing for a direct comparison of the

techniques’ effectiveness across different types of machine learning tasks.

In our approach, noting that the mean value of the u field is nonzero and decreases over

time, yet the KS equation (1.15) depends only on the gradient and not the magnitude of u [52],

we performed a preprocessing step. This involved subtracting the mean from the u field and

normalizing it between 0 and 1 to yield the transformed field, ũ. Snapshots of the ũ field are

shown in Fig. 1.14(a). Each ũ(x,y) value is then linearly transformed into an input voltage for

the corresponding thermal neuristor, with the spiking dynamics of the neuristor array serving

as the output feature from the reservoir. An output layer is subsequently trained to predict the

incremental change u(x,y, t +∆t)−u(x,y, t).

Reservoir hyperparameters were optimized using the hyperopt library [63]. The optimized

parameters included Cth = 1.073, noise strength σ = 0, and the transformation formula V in =

(11.83 − 0.48ũ)V. Notably, the optimization yielded zero noise, underscoring that noise is

detrimental in this reservoir computing task.

To enhance performance on this dataset, we implemented several modifications to the

reservoir:

1. The output from the reservoir consists of the magnitudes of the current spikes, rather than

merely indicating the presence of a spike.

2. Reflecting the local interaction nature of Eq. (1.15), we replaced a fully-connected output

layer with a convolution-like layer, where each output neuron is connected to the 5×5

nearest neighbors in the reservoir.

3. We eliminated the softmax nonlinearity in the output layer and employed linear regression
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for training.

This modified procedure predicts u(x,y, t + ∆t) from u(x,y, t) at time t. Long-time

predictions are iteratively performed by using the predicted u field as the input for the subsequent

prediction step. The prediction results after 20 and 100 steps with ∆t = 0.05 are illustrated in

Fig. 1.14(a), and the mean-square-error of the prediction is plotted in Fig. 1.14(b), demonstrating

good agreement with the ground truth. An example of the dynamics within the reservoir is

depicted in Fig. 1.14(c), which loosely resembles the patterns in the ũ field.

To verify the presence of LRO, we calculated the avalanche size distribution within the

reservoir using the transformed ũ field from the KS dynamics as input. The results, depicted in

Fig. 1.14(d), are characterized predominantly by system-wide avalanches, indicating that the

system maintains a rigid state even with non-uniform inputs. Moreover, the implementation

of a locally connected output layer demonstrates that local information alone is sufficient for

predicting dynamics, further reinforcing the notion that LRO is not necessary for achieving

optimal computational performance.

This section, in full, is a reprint of the material as it appears in Nature Communications

[1]. Yuan-Hang Zhang, Chesson Sipling, Erbin Qiu, Ivan K Schuller, Massimiliano Di Ventra,

2024. The dissertation author was the primary investigator and author of this paper.
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Chapter 2

The MemComputing paradigm

2.1 Introduction to MemComputing

The term “MemComputing” was coined by Prof. Massimiliano Di Ventra in 2013 [64],

describing physical systems that compute in and with memory in a massively parallel manner.

Here, the prefix ”Mem” signifies ”memory,” not in the traditional sense of mere storage, but as

temporal interactions—specifically, the system’s capacity to retain information about its past

dynamics.

MemComputing bears a resemblance to brain functions: each memory unit (analogous to

a neuron in the brain) not only receives information from its neighbors but also processes and

transmits the outcome back to them. This approach starkly contrasts with the traditional von

Neumann architecture, which centralizes processing in the CPU, separate from storage units.

In MemComputing, each memory unit acts as an independent processor, fostering a massively

parallel computing paradigm.

As discussed in the previous chapter, the ability of memory to induce spatial long-range

order is especially beneficial for tackling optimization problems. This capability allows for

approaches that transcend local moves, facilitating escapes from local minima— a principle that

is integral to MemComputing.

In our discussions, we focus on digital MemComputing machines (DMMs), which

handle inputs and outputs as digital signals (finite strings of symbols like 0s and 1s). However,
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the transition function of a DMM typically involves a continuous dynamical system, where

equilibrium points reflect logically consistent configurations of input and output variables. This

design renders DMMs terminal-agnostic, treating inputs and outputs equivalently—a feature

particularly valuable for specific problem types. For instance, a multiplication circuit built for

DMMs can compute the product of two integers and, intriguingly, can be reversed to perform

integer factorization using the same setup. Research shows [65, 66] that DMM dynamics can be

characterized as instantons in the extended phase space, with the number of instantonic jumps to

equilibrium being proportional to the system’s dimension, thus providing an efficient method for

various combinatorial optimization problems.

As dynamical systems, ideal DMMs operate in continuous time, necessitating the physical

construction of the corresponding system. Alternatively, DMMs can be simulated numerically

on modern computers; however, this approach requires discretizing time, which breaks time-

translational symmetry and disrupts the instantonic nature of DMM dynamics. Upcoming

sections will detail how numerical noise impacts the simulation of DMMs, drawing theoretical

parallels to directed percolation. We also explore hardware designs for DMMs that overcome the

challenges posed by numerical noise, thereby offering new avenues for addressing increasingly

complex computational problems.

2.2 Directed percolation and numerical stability of simula-
tions of digital MemComputing machines

Digital memcomputing machines (DMMs) are a novel, non-Turing class of machines

designed to solve combinatorial optimization problems. They can be physically realized with

continuous-time, non-quantum dynamical systems with memory (time non-locality), whose

ordinary differential equations (ODEs) can be numerically integrated on modern computers.

Solutions of many hard problems have been reported by numerically integrating the ODEs of

DMMs, showing substantial advantages over state-of-the-art solvers. To investigate the reasons
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behind the robustness and effectiveness of this method, we employ three explicit integration

schemes (forward Euler, trapezoid and Runge-Kutta 4th order) with a constant time step, to solve

3-SAT instances with planted solutions. We show that, (i) even if most of the trajectories in the

phase space are destroyed by numerical noise, the solution can still be achieved; (ii) the forward

Euler method, although having the largest numerical error, solves the instances in the least

amount of function evaluations; and (iii) when increasing the integration time step, the system

undergoes a “solvable-unsolvable transition” at a critical threshold, which needs to decay at most

as a power law with the problem size, to control the numerical errors. To explain these results,

we model the dynamical behavior of DMMs as directed percolation of the state trajectory in the

phase space in the presence of noise. This viewpoint clarifies the reasons behind their numerical

robustness and provides an analytical understanding of the solvable-unsolvable transition. These

results land further support to the usefulness of DMMs in the solution of hard combinatorial

optimization problems.

2.2.1 Introduction

MemComputing is a recently proposed (non-Turing) computing paradigm in which time

non-locality (memory) accomplishes both tasks of information processing and storage [64]. Its

digital (hence scalable) version (digital memcomputing machines or DMMs) has been introduced

specifically to solve combinatorial optimization problems [67, 68].

The basic idea behind DMMs is that, instead of solving a combinatorial optimization

problem in the traditional algorithmic way, one maps it into a specifically designed dynamical

system with memory, so that the only equilibrium points of that system represent the solutions

of the given problem. This is accomplished by writing the problem in Boolean (or algebraic)

form, and then replacing the traditional (unidirectional) gates with self-organizing gates, that

can satisfy their logical (or algebraic) relation irrespective of the direction of the information

flow, whether from the traditional input or the traditional output: they are terminal-agnostic

gates. [67, 68, 69, 49]. In addition, the resulting dynamical systems can be designed so that no
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periodic orbits or chaos occur during dynamics [70, 71].

DMMs then map a finite string of symbols into a finite string of symbols, but operate

in continuous time, hence they are distinct from Turing machines that operate in discrete

time. (Note that universal memcomputing machines have been shown to be Turing-complete,

but not Turing-equivalent [72].) As a consequence, they seem ideally suited for a hardware

implementation. In fact, they can be realized in practice with non-linear, non-quantum dynamical

systems with memory, such as electrical circuits implemented with conventional complementary

metal–oxide–semiconductor technology [67].

On the other hand, DMMs, being classical dynamical systems, are such that their state

trajectory belongs to a topological manifold, known as phase space, whose dimension, D,

scales linearly with the number of degrees of freedom [73]. In addition, their state dynamics

are described by ordinary differential equations (ODEs) [67, 68]. One can then attempt to

numerically integrate these ODEs on our traditional computers, using any integration scheme [74].

However, naively, one would expect that the computational overhead of integrating these ODEs,

coupled with large numerical errors, would require an unreasonable amount of CPU time as the

problem size grew, hence limiting the realization of DMMs (like quantum computers) to only

hardware.

To make things worse, the ODEs of DMMs are stiff [74], meaning that they have several,

quite distinct, intrinsic time scales. This is because the memory variables of these machines

have a much slower dynamics than the degrees of freedom representing the logical symbols

(variables) of the problem [67, 68]. Stiff ODEs are notorious for requiring implicit methods of

integration, which, in turn, require costly root-finding algorithms (such as the Newton’s method),

thus making the numerical simulations very challenging [74].

This leads one to expect poor performance when using explicit methods, such as the

simplest forward Euler method, on the ODEs of the DMMs. Instead, several results using the

forward Euler integration scheme on DMMs have shown that these machines still find solutions

to a variety of combinatorial optimization problems, including, Boolean satisfiability (SAT) [71],
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maximum satisfiability [75, 76], spin glasses [77], machine learning [78, 79], and integer linear

programming [69].

For instance, in Ref. [71], the numerical simulations of the DMMs, using forward Euler

with an adaptive time step, substantially outperform traditional algorithms [80, 81, 82], in the

solution of 3-SAT instances with planted solutions. The results show a power-law scaling in

the number of integration steps as a function of problem size, avoiding the exponential scaling

seen in the performance of traditional algorithms on the same instance classes. Furthermore, in

Ref. [71], it was found that the average size of the adaptive time step decayed as a power-law as

the problem size grew.

It is then natural to investigate how the power-law scaling of integration steps varies with

the numerical integration scheme employed to simulate the DMMs. In particular, by employing

a constant integration time step, ∆t, we would like to investigate if the requisite time step to solve

instances and control the numerical errors, continues to decay with a power-law, or will require

exponential decay as the problem grows.

In this paper, we perform the above investigations while attempting to solve some of

the planted-solution 3-SAT instances used as benchmarks in Ref. [71]. We will implement

three explicit integration methods (forward Euler, trapezoid, and Runge-Kutta 4th order) while

numerically simulating the DMM dynamics to investigate the effect on scalability of the number

of integration steps versus the number of variables at a given clause-to-variable ratio.

Our numerical simulations indicate that, regardless of the explicit integration method

used, the ODEs of DMM are robust against the numerical errors caused by the discretization of

time. The robustness of the simulations is due to the instantonic dynamics of DMMs [65, 66],

which connect critical points in the phase space with increasing stability. Instantons in dissipative

systems are specific heteroclinic orbits connecting two distinct (in index) critical points. Both the

critical points and the instantons connecting them are of topological character [83, 84]. Therefore,

if the integration method preserves critical points (in number and index) then the solution search
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is “topologically protected” against reasonable numerical noise 1.

For each integration method, we find that when increasing the integration time step ∆t,

the system undergoes a “solvable-unsolvable transition” 2 at a critical ∆tc, which decays at most

as a a power law with the problem size, avoiding the undesirable exponential decay that severely

limits numerical simulations. We also find that, even though higher-order integration schemes

are more favorable in most scientific problems, the first-order forward Euler method works the

best for the dynamics of DMMs, providing best scalability in terms of function evaluations vs.

the size of the problem. We attribute this to the fact that the forward Euler method preserves

critical points, irrespective of the size of the integration time step, while higher order methods

may introduce “ghost critical points” in the system [85], disrupting the instantonic dynamics of

DMMs.

Finally, we provide a physical understanding of these results, by showing that, in the

presence of noise, the dynamical behavior of DMMs can be modeled as a directed percolation

of the state trajectory in the phase space, with the inverse of the time step ∆t playing the

role of percolation probability. We then analytically show that, with increasing percolation

probability, the system undergoes a permeable-absorbing phase transition, which resembles the

“solvable-unsolvable transition” in DMMs. All together, these results clarify the reasons behind

the numerical robustness of the simulations of DMMs, and further reinforce the notion that

these dynamical systems with memory are a useful tool for the solution of hard combinatorial

optimization problems, not just in their hardware implementation but also in their numerical

simulation.

This paper is organized as follows. In Sec. 2.2.2 we review the DMMs used in Ref. [71]

to find satisfying assignments to 3-SAT instances. (Since our present paper is not a benchmark

paper, the interested reader is directed to Ref. [71] for a comparison of the DMM approach to

traditional algorithms for 3-SAT.) In Sec. 2.2.3 we compare the results on the scalability of the

1Incidentally, this is also the reason why the hardware implementation of DMMs would be robust against
reasonable physical noise [65, 66].

2Note that all instances can be solved, as they have planted solutions.
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number of steps to reach a solution for three explicit methods: forward Euler, trapezoid, and

Runge-Kutta 4th order. For all three methods, our simulations show that increasing ∆t (thereby

increasing numerical error) induces a sort of “solvable-unsolvable phase transition,” that becomes

sharper with increasing size of the problem. However, we also show that the “critical” time step,

∆tc, decreases as a power law as the size of the problem increases for a given clause-to-variable

ratio. In Sec. 2.2.4, we model this transition as a directed percolation of the state trajectory in

phase space, with ∆t playing the role of the inverse of the percolation probability. We conclude

in Sec. 2.2.6 with thoughts about future work.

2.2.2 Solving 3-SAT with DMMs

In the remainder of this paper, we will focus on solving satisfiable instances of the

3-SAT problem [86], which is defined over N Boolean variables {yi = 0,1} constrained by M

clauses. Each clause consists of 3 (possibly negated) Boolean variables connected by logical

OR operations, and an instance is solved when an assignment of {yi} is found such that all M

clauses evaluate to TRUE (satisfiable).

For completeness, we briefly review the dynamical system with memory representing our

DMM. The reader is directed to Ref. [71] for a more detailed description and its mathematical

properties.

To find a satisfying assignment to a 3-SAT instance with a DMM, we transform it into a

Boolean circuit, where the Boolean variables yi are transformed into continuous variables and

represented with terminal voltages vi ∈ [−1,1] (in arbitrary units), where vi > 0 corresponds to

yi = 1, and vi < 0 corresponds to yi = 0. We use (lm,i∨ lm, j∨ lm,k) to represent the m-th clause,

where lm,i = yi or ȳi depending on whether yi is negated in this clause. Each Boolean clause is

also transformed into a continuous constraint function:

Cm(vi,v j,vk) =
1
2

min
(
1−qm,ivi,1−qm, jv j,1−qm,kvk

)
, (2.1)
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where qm,i = 1 if lmi = yi and qm,i =−1 if lmi = ȳi. We can verify that the m-th clause evaluates

to true if and only if Cm < 0.5 [71].

The idea of DMMs is to propagate information in the Boolean circuits ‘in reverse’ by

using self-organizing logic gates (SOLGs) [67, 68] (see [69] for an application of algebraic

ones).

SOLGs are designed to work bidirectionally, a property referred to as “terminal agnos-

ticism” [49]. The terminal that is traditionally an output can now receive signals like an input

terminal, and the traditional input terminals will self-organize to enforce the Boolean logic of the

gate. This extra feature requires additional (memory) degrees of freedom within each SOLG. We

introduce two additional memory variables per gate: “short-term” memory xs,m and “long-term”

memory xl,m. For a 3-SAT instance, the dynamics of our self-organizing logic circuit (SOLC)

are governed by Eq. (2.2) [71]:

v̇i = ∑
m

xl,mxs,mGm,i +
(
1+ζ xl,m

)
(1− xs,m)Rm,i,

ẋs,m = β (xs,m + ε)(Cm − γ) ,

ẋl,m = α (Cm −δ ) ,

(2.2)

where xs ∈ [0,1], xl ∈ [1,104M], α = 5,β = 20,γ = 0.25,δ = 0.05,ε = 10−3,ζ = 0.1. The

“gradient-like” term (Gm,i =
1
2qm,i min(1− qm, jv j,1− qm,kvk)) and the “rigidity” term (Rm,i =

1
2(qm,i − vi) if Cm = 1

2(1−qm,ivi), and Rm,i = 0, otherwise) are discussed in Ref. [71] along with

other details.

2.2.3 Numerical scalability with different integration schemes

Numerical details

To simulate Eq. (2.2) on modern computers, we need an appropriate numerical integration

scheme, which necessitates the discretization of time. In Ref. [71] we applied the first-order

forward Euler method, which, in practice, tends to introduce large numerical errors in the
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long-time integration. Yet, the massive numerical error in the trajectory of the ODE solution

does not translate into logical errors in the 3-SAT solution. The algorithm in Ref. [71] was

capable of showing power-law scalability in the typical-case of clause distribution control (CDC)

instances [86], though, using an adaptive time step.

To further understand this robustness, we study here the behavior of Eq. (2.2) under

different explicit numerical integration methods using a constant time step, ∆t. We will investigate

the effect of increasing the time step. Writing the ODEs as ẋ(t) = F(x(t)), with x the collection

of voltage and memory variables, and F the flow vector field [68], we use the following explicit

Runge-Kutta time step [74]:

xn+1 = xn +∆t
q

∑
i=1

ωiki (2.3)

where ki = F(xn +∆t ∑
i−1
j=1 λi jk j). Specifically, we apply three different integration schemes:

forward Euler method with q = 1, ω1 = 1; trapezoid method with q = 2, ω = (1
2 ,

1
2), λ21 = 1;

4th order Runge-Kutta method (RK4) with q = 4, ω = (1
6 ,

1
3 ,

1
3 ,

1
6), and

λ =



0 0 0 0

1
2 0 0 0

0 1
2 0 0

0 0 1 0


. (2.4)

Note that Eqs. (2.2) are stiff, meaning that the explicit integration methods we consider

here should diverge quite fast, within a few integration steps, irrespective of the problem instances

we choose [74]. However, as we will show below, the explicit integration methods actually work

very well for these equations, and the integration time step can even be chosen quite large.

As an illustration, we focus on planted-solution 3-SAT instances at clause-to-variable

ratio αr = 8 3. These instances require exponential time to solve using the local-search algorithm

3Using the method of [86] with p0 = 0.08
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Figure 2.1. Solution of clause distribution control 3-SAT instances with 104 variables at clause-
to-variable ratio αr = 8 by numerically integrating Eqs. (2.2) with the forward Euler method with
different time steps, ∆t. We performed 104 solution trials (100 instances and 100 different initial
conditions for each instance) for each ∆t. We observe the number of unsolved cases decays as
integration steps increase, with the solid line representing the result for all 104 trials, and shaded
area representing one standard deviation over the 100 curves calculated separately using the 100
instances, with each curve covering 100 different initial conditions using one specific instance.
At large number of integration steps, the number of unsolved cases reaches a plateau, whose
height only depends on the integration time step ∆t. The fraction of solved instances represents
the size of the basin of attraction of Eqs. (2.2), which is similar for all instances at a certain ∆t
and shrinks as ∆t increases. This indicates that rather than being problem-specific, our numerical
algorithm is a general incomplete solver for 3-SAT problems.

walk-SAT [86] and other state-of-the-art solvers [71]. In the Appendix, we will show similar

results for αr = 6.

We start with 100 CDC 3-SAT instances with the number of variables N = 104, and

solve them by numerically integrating Eqs. (2.2) using the forward Euler method with different

values of ∆t. For each 3-SAT instance, we made 100 individual attempts with different random

initial conditions, so that the total number of solution attempts is 104. In Fig. 2.1, we see the

number of unsolved instances decreases rapidly until reaching a plateau. When the simulations

are performed again with a smaller time step, the plateau height decreases. Once reached, the
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Figure 2.2. The size of the basin of attraction, A, versus ∆t, for different numbers of variables
N and different explicit integration schemes, is well fitted by sigmoid-like curves, that become
sharper as N increases. This indicates a “solvable-unsolvable phase transition” at a critical ∆tc.
Each data point is calculated based on 1000 solution trials (100 instances and 10 initial conditions
per instance), and the solid curves are fitted using the function A = 1/[1+ exp(−c(∆t − d))],
with c and d fitting parameters. The error bars, estimated with the help of data from Fig. 2.1,
represent one standard deviation.
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Figure 2.3. Scaling of the critical time step, ∆tc. In this figure, ∆tc is extracted from Fig.
2.2 where A(∆tc) = 1/2. ∆tc shows a power-law scaling with number of variables N, and, as
expected, integration methods with higher orders have a larger ∆tc.

plateau persists while increasing the number of integration steps.

Basin of attraction

We argue that the plateaus in Fig. 2.1 are caused by a reduction of the basin of attraction

in Eqs. (2.2), created by the numerical integration method, rather than the hardness of the

instances themselves. To show this, first note that all solution attempts succeed when ∆t = 0.15

(basin of attraction is the entire phase space), while almost all attempts fail when ∆t = 0.35

(basin of attraction shrinks to zero size). When ∆t falls in between, for each 3-SAT instance, the

number of unsolved attempts is centered around the shaded area in Fig. 2.1. That is, at a certain

∆t, the size of the basin of attraction for different instances is approximately the same.

We use A to denote the ratio between the volume of the basin of attraction and the volume

of the entire phase space. In Fig. 2.2, we estimate this quantity by calculating the fraction

of solved instances for each number of variables N and time step ∆t for 100 different 3-SAT

instances per size N, and 10 initial conditions per instance. At smaller ∆t, all instances with all
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Figure 2.4. The scalability curves for the three different explicit integration schemes considered
in this work, in which the integration time step ∆t is calculated using the power-law fit of ∆t where
A(∆t) = 0.95, times an additional “safety factor” of 0.6 (see text). All three methods show a
power-law scaling, and the values of the scaling exponents are 0.34 (Euler 50%), 0.50 (Trapezoid
50%), 0.44 (RK4 50%), 0.24 (Euler 90%), 0.56 (Trapezoid 90%), 0.30 (RK4 90%). The scaling is
the same, for each integration scheme, in terms of either number of steps or function evaluations;
only the pre-factor changes. The error bars are estimated with bootstrapping and represent one
standard deviation. For N ∈ [102,105], Runge-Kutta 4th order (RK4) requires the least number of
integration steps. However, in terms of function evaluations, the simplest forward Euler method
is the most efficient one.
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different initial conditions are solved, i.e., the basin of attraction is the entire phase space, A → 1.

This is in agreement with theoretical predictions for continuous-time dynamics [71]. On the

other hand, when ∆t is too large, the structure of the phase space gets modified by the numerical

error introduced during discretization, and A → 0. This is a well known effect that has been

studied also analytically in the literature [87].

Plotting A versus ∆t for different number of variables N and different integration schemes,

we get a series of sigmoid-like curves (Fig. 2.2), that become sharper as N increases. This

suggests the existence of a “phase transition”: when going beyond a critical ∆tc, there is a drastic

change in A, and the system undergoes a solvable-unsolvable transition.

Integration step scalability

The above results allow us to determine how the integration step, ∆t, for the three

integration schemes we have chosen, scales as the size of the problem increases. In Fig. 2.3, we

define ∆tc such that A(∆tc) = 1/2, and determine the relation between ∆tc and N.

We find ∆tc scales as a power law with the number of variables N. This is a major result

because it shows that we do not need ∆t to decrease exponentially to have the same success

rate. In Ref. [71], it was demonstrated, using topological field theory [65, 66], that in the ideal

(noise-free) continuous-time dynamics, the physical time required for our dynamical system to

reach the solution scales as O(Nγ), with γ ≤ 1 .

Our numerical results show that, when simulating the dynamics with numerical inte-

gration schemes on classical computers, ∆tc ∼ N−δ . Coupled with the previous analytical

results [71], this means that the number of integration steps scales as O(Nγ+δ ). In other words,

discretization only adds a O(Nδ ) overhead to the complexity of our algorithm, indicating that

DMMs can be efficiently simulated on classical computers 4.

In Fig. 2.3, note that ∆tc > 10−1 for all three integration methods. This is quite unexpected

for a stiff system simulated with explicit integration methods, because a large time step introduces

4Of course, this is not an analytical proof of the efficiency of the numerical simulations, just an empirical result.
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large local truncation errors at each step of the integration. This error accumulates and should

destroy the trajectory of the ODEs we are trying to simulate. However, we can still solve all

tested instances with Eqs. (2.2) even at such a large ∆t. In Sec. 2.2.4, we will provide an

explanation of why this is possible.

Here, we note that choosing an appropriate ∆t could speed up the algorithm significantly,

as smaller ∆t leads to excessive integration steps, while larger ∆t may cause the solver to fail. To

find an appropriate time step for our scalability tests, we choose ∆t from Fig. 2.2 such that 95%

of the trials have found a solution, and multiply that ∆t by a “safety factor” of 0.6 to make sure

we hit the region of A(∆t)≈ 1.

By employing the resulting value of ∆t, we plot in Fig. 2.4 the typical-case and 90th

percentile scalability curves up to N = 105. For each variable size, N, we perform 1000 3-SAT

solution trials (100 instances and 10 initial conditions each), and report the number of integration

steps when 50% and 90% of the trials are solved. Additionally, we report the number of function

evaluations (namely, the number of times the right-hand side of Eqs. (2.2) is evaluated), which

differs from the number of integration steps by only a constant.

Both quantities show a power-law scalability for all three integration schemes. Since ∆tc

is larger for higher-ordered ODE solvers, the latter ones typically require fewer steps to solve

the problems. However, when taking the total number of function evaluations into account, the

simplest forward Euler method becomes the most efficient integration scheme for our ODEs.

2.2.4 Directed percolation and noise in DMMs

As anticipated, our results are unexpected in view of the large truncation errors introduced

during the simulations of the ODEs of the DMMs. However, one might have predicted the

numerical robustness upon considering the type of dynamics the DMM executes in phase space.
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Instantonic dynamics

Instantons are topologically non-trivial solutions of the equations of motion connecting

two different critical points (classical vacua in field-theory language) [88]. In dissipative systems,

as the ones considered in this work, instantons connect two critical points (such as saddle points,

local minima or maxima), that differ in index (number of unstable directions). In fact, they

always connect a critical point with higher index to another with lower index [83, 84].

It was shown in Refs. [65, 66] that, by stochastically quantizing the DMM’s equation of

motion, one obtains a supersymmetric topological field theory, from which it can be deduced

that the only “low-energy”, “long-wavelength” dynamics of DMMs is a collection of elementary

instantons (a composite instanton). Critical points are also of topological character. For instance,

their number cannot change unless we change the topology of phase space [89].

In addition, given two distinct (in terms of indexes) critical points, there are several (a

family of) trajectories (instantons) that may connect them, since the unstable manifold of the

“initial” critical point may intersect the stable manifold of the “final” critical point at several points

in the phase space. In the ideal (noise-free) continuous time dynamics, if the only equilibria

(fixed points of the dynamics) are the solutions of the given problem (as shown, e.g., in [67, 71]),

then the state trajectory is driven towards the equilibria by the voltages that set the input of the

problem the DMM attempts to solve.

Physical noise

In the presence of (physical) noise instead, anti-instantons are generated in the system.

These are (time-reversed) trajectories that connect critical points of increasing index. However,

anti-instantons are gapped, in the sense that their amplitude is exponentially suppressed with

respect to the corresponding amplitude of the instantons [90]. This means that the “low-energy”,

“long wave-length” dynamics of DMMs is still a succession of instantons, even in the presence

of (moderate) noise.

Nevertheless, suppose an instanton connects two critical points, and immediately after an
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anti-instanton occurs for the same critical points (even if the two trajectories are different). For

all practical purposes, the “final” critical point of the original instanton has never been reached,

and that critical point can be called absorbing, in the sense that the trajectory would “get stuck”

on that one, or wanders in other regions of the phase space. In other words, in the presence of

noise, there is a finite probability for some state trajectory to explore a much larger region of the

phase space. The system then needs to explore some other (anti-)instantonic trajectory to reach

the equilibria, solutions of the given problem. Nevertheless, due to the fact that anti-instantons

are gapped, and the topological character of both critical points and instantons connecting them,

if the physical noise level is not high enough to change the topology of the phase space, the

dynamical system would still reach the equilibria. 5

On the other hand, if the noise level is too high, our system may experience a condensation

of instantons and anti-instantons, which can break supersymmetry dynamically [91]. In turn, this

supersymmetry breakdown, can produce a noise-induced chaotic phase even if the flow vector

field remains integrable. Although we do not have an analytical proof of this yet, we suspect that

this may be related to the unsolvable phase we observe.

Directed percolation

If we visualize the state trajectory as the one traced by a liquid in a corrugated landscape,

the above suggests an intriguing analogy with the phenomenon of directed percolation (DP) [92],

with the critical points acting as ‘pores’, and instantons as ‘channels’ connecting ‘neighboring’

(in the sense of index difference) critical points.

DP is a well-studied model of a non-equilibrium (continuous) phase transition from a

fluctuating permeable phase to an absorbing phase [92]. It can be intuitively understood as a

liquid passing through a porous substance under the influence of a field (e.g., gravity). The

field restricts the direction of the liquid’s movement, hence the term “directed”. In this model,

neighboring pores are connected by channels with probability p, and disconnected otherwise.
5In fact, moderate noise may even help accelerate the time to solution, by reducing the time spent on the critical

points’s stable directions.
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When increasing p, the system goes through a phase transition from the absorbing phase into a

permeable phase at a critical threshold pc.

Numerical noise

In numerical ODE solvers, discrete time also introduces some type of noise (truncation

errors), and the considerations we have made above on the presence of anti-instantons still hold.

However, numerical noise could be substantially more damaging than physical noise. The reason

is twofold.

First, as we have already anticipated, numerical noise accumulates during the integration

of the ODEs. In some sense, it is then always non-local. Physical noise, instead, is typically

local (in space and time), hence it is a local perturbation of the dynamics [93]. As such, if it is

not too large, it cannot change the phase space topology.

Second, unlike physical noise, integration schemes may change the topology of phase

space explicitly. This is because, when one transforms the continuous-time ODEs (2.2) into their

discrete version (a map), this transformation can introduce additional critical points in the phase

space of the map, which were not present in the original phase space of the continuous dynamics.

These extra (undesirable) critical points are sometimes called ghosts [85]. For instance, while

the forward Euler method can never introduce such ghost critical points, irrespective of the size

of ∆t (because both the continuous dynamics and the associated map have the same flow field

F), both the trapezoid and Runge-Kutta 4th order may do so if ∆t is large enough. These critical

points would then further degrade the dynamics of the system.

With these preliminaries in mind, let us now try to quantify the analogy between the

DMM dynamics in the presence of numerical noise and directed percolation.

2.2.5 Paths to solution

First of all, the integration step, ∆t, must be inversely related to the percolation probability

p: when ∆t tends to zero, the discrete dynamics approach the ideal (noise-free) dynamics for
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which p → 1. In the opposite case, when ∆t increases, p must decrease.

In directed percolation, the order parameter is the density of active sites [92]. This would

correspond to the density of “achievable” critical points in DMMs. However, due to the vast

dimensionality of their phase space (even for relatively small problem instances), this quantity is

not directly accessible in DMMs.

Instead, what we can easily evaluate is the ratio of successful solution attempts: starting

from a random point in the phase space (initial condition of the ODEs (2.2)), and letting the

system evolve for a sufficiently long time, a path would either successfully reach the solution

(corresponding to a permeable path in DP) or fail to converge (corresponding to an absorbing

path in DP) . By repeating this numerical experiment for a large number of trials, the starting

points of the permeable paths essentially fill the basin of attraction of our dynamical system. The

advantage of considering this quantity is that the ratio of permeable paths in bond DP models

can be calculated analytically.

Now we set up the correspondence of paths between DP and DMM. In DP, a permeable

path is defined to be a path that starts from the top of the lattice and ends at the bottom, and

corresponds to a successful solution attempt in DMMs. Similarly, an absorbing path starts from

the top and terminates within the lattice in DP, and corresponds to a failed solution attempt in

DMMs. Consider then a 3-SAT problem with only one solution. A DMM for such a problem

can reach the solution from several initial conditions. This translates into a D-dimensional

cone-shaped lattice for the DP model (see Fig. 2.5). The (top) base of the cone would represent

the starting points, and the apex of the cone would represent the solution point. A permeable

path connects the base to the apex, and an absorbing path ends in the middle of the lattice with

all bonds beneath it disconnected.

Note that, in the DP model, it is possible to have different permeable paths starting from

the same initial point. However, from the perspective of DMMs, there is no randomness in the

dynamics, and each initial condition corresponds to a unique path. Since DP is a simplified

theoretical model to describe numerical noise in DMMs, in this model we assume that the

61



trajectory “randomly chooses” a direction when reaching a critical point. This is a reasonable

assumption since there can be a large number of instantons starting from some critical point in

the phase space, and it is almost impossible for us to actually monitor which instantonic path the

trajectory follows.
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Figure 2.5. Illustration of permeable and absorbing paths in DP on a cone-shaped 2d lattice.
Connected bonds are represented with solid lines, and disconnected ones are represented with
dotted lines. A permeable path connects the base to the apex, and an absorbing path ends in the
middle of the lattice with all bonds beneath it disconnected. The number of permeable paths np
is calculated iteratively: np at a given site equals the sum of np at its connected predecessor sites,
and the expectation ⟨np⟩ at a given site equals the sum of np at all its predecessor sites times p,
the percolation probability.

With this correspondence in mind, the ratio of permeable paths in DP is analogous to the

ratio of successful solution attempts in DMMs. Below, we will calculate this quantity exactly in

DP, and use this calculation to model the solvable-unsolvable transition we found in DMMs.

To begin with, we assume that all starting points are occupied with equal probability, and

calculate the expectation of the number of permeable and absorbing paths. This can be done

iteratively: the expected number of permeable paths at a given site equals the sum of permeable

paths at its predecessor sites, times p, the percolation probability. Assuming the number of time
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steps required to reach the apex is T , then the expected number of permeable paths

⟨np,T ⟩= (Dp)T . (2.5)

An illustration of the calculation on a cone-shaped 2d lattice is shown in Fig. 2.5.

The number of absorbing paths ⟨na,T ⟩ is trickier to compute. Details of the calculation

can be found in Appendix 2.2.7, here we only give the approximate result (valid for Dp > 1)

near the transition:

⟨na,T ⟩=
(Dp)T+1

2

(
1− p
lnDp

)D

erfc(
√

D
1− lnDp√

2lnDp
). (2.6)

The ratio of permeable paths r is simply ⟨np,T ⟩/(⟨np,T ⟩+ ⟨na,T ⟩):

r =
1

1+ 1
2Dp( 1−p

lnDp)
Derfc(

√
D 1−lnDp√

2lnDp)
. (2.7)

We observe that the transition occurs at pc ∼ e
D . Near the transition, let us define

p = e+δ

D , where δ is small. Then, lnDp ≈ 1+ δ

e . Further using limx→∞(1+ 1
x )

x = e, to order

O(δ ), Eq. (2.7) becomes

r =
1

1+ 1
2e1−e−δ−Dδ/eerfc

(
−
√

D
2

δ

e

) . (2.8)

In the limit of D → ∞, the divergence comes from the D in the exponent. Therefore, the

transition happens exactly at δ = 0. When δ > 0, r → 1; when δ < 0, r → 0.

Note that when δ ≪ 0, the erfc term dominates over the e−Dδ/e term instead. However,

in this case, p is too small, and some approximations we made in Appendix 2.2.7 to derive ⟨na,T ⟩

no longer hold. In this sense, Eqs. (2.7) and (2.8) are only valid near the transition point pc =
e
D .

The behavior of Eq. (2.7) is plotted in Fig. 2.6 for different dimensions D. Comparing

to Fig. 2.2, we can already see a few similarities: both figures exhibit a sigmoidal behavior.
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However, as ∆t in DMMs is inversely related to p in DP, they are curving in opposite directions.

Figure 2.6. The ratio of permeable paths, calculated with Eq. (2.7), plotted for different values of
the dimension D. The inset shows the same curves near their transition points, with δ = Dp− e.
The curves exhibit a sigmoidal behavior, which is similar to the one in Fig. 2.2. However, note
that, since ∆t in DMMs is inversely related to the probability p in DP, they are curving in opposite
directions.

Recall that the size of the basin of attraction, A, in DMMs corresponds to the ratio r in

DP. To model their relation, we then use the ansatz δ ≡ Dp−e = a
( 1

N∆t −b
)
, with a and b some

real numbers, and fit A to ∆t using Eq. (2.7). (Note that this trial function has a meaning only

near ∆tc.)

We find that we can fit the curves reasonably well by fixing a = 5, and Fig. 2.7 shows the

fitting result of b and D, where the number of variables N ranges between 102 and 104, and each

data point is obtained by numerically integrating Eqs. (2.2) for 1000 3-SAT solution attempts

(100 instances and 10 initial conditions each), until a plateau, as in Fig. 2.1, has been reached.

Note that the horizontal axis represents 1/(N∆t).

The fitted parameters b and D are shown in Fig. 2.8, where both parameters exhibit a

power-law scaling. At the transition threshold δ = 0, we have b = 1
N∆t . Therefore, the power-law
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Figure 2.7. Relation, close to ∆tc, between the size of the basin of attraction A and the discretiza-
tion time step ∆t, plotted for different system sizes N, for the three explicit methods used in this
work. Each data point is obtained by numerically integrating Eqs. (2.2) over 1000 3SAT solution
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are fitted using Eq. (2.7), with A corresponding to r and δ ≡ Dp− e = a

( 1
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)
, with a and

b being fitting parameters.
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Figure 2.8. The fitted parameters b and D for different variable size N for the trial function
δ ≡ Dp− e = a

( 1
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)
, which connects the time step ∆t to the percolation probability p. (a

is fixed to 5.) D is the dimensionality of the DP lattice, which corresponds to the dimensionality
of the composite instanton.
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scaling of b is closely related to the power-law scaling of ∆tc in Fig. 2.3, and these two scalings

show similar trends.

The dimensionality D is proportional to the dimensionality of the composite instanton

(namely the number of elementary instantons to reach the solution). In Ref. [66], this dimension-

ality was predicted to scale (sub-)linearly with the number of variables N (in the noise-free case),

and it is smaller than the dimensionality of the actual phase space ((1+2×αr)N = 17N in the

present case). This prediction agrees with our numerical results.

Finally, using the correspondence between DMMs in the presence of noise and DP, we

can qualitatively explain why the DMMs numerically integrated still provide solution to the

problem they are designed to solve even with such large numerical errors introduced during

integration. In DMMs, the dimensionality of the composite instanton, D, is usually very large,

and DP tells us that the percolation threshold pc = e/D ∼ e/N.

Therefore, even if most of the paths in the phase space are destroyed by noise, we can still

achieve the solution as long as the probability of an instantonic path is larger than e/D ∼ e/N.

This argument, in tandem with the fact that critical points and instantons have a topological

character [83, 84], ensures the robustness of DMMs in numerical simulations.

2.2.6 Conclusions

In conclusion, we have shown that the dynamics of digital memcomputing machines

(DMMs) under discrete numerical solvers can be described as a directed percolation of state

trajectory in the phase space. The inverse time step, 1/∆t, plays the role of percolation probability,

and the system undergoes a “solvable-unsolvable phase transition” at a critical ∆tc, which scales

as a power law with problem size. In other words, for the problem instances considered, we have

numerically found that the integration time step does not need to decrease exponentially with the

size of the problem, in order to control the numerical errors.

This result is quite remarkable considering the fact that we have only employed explicit

methods of integration (forward Euler, trapezoid, and Runge-Kutta 4th order) for stiff ODEs. (In
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fact, the forward Euler method, although having the largest numerical error, solves the instances

in the least amount of function evaluations.) It can be ultimately traced to the type of dynamics

the DMMs perform during the solution search, which is a composite instanton in phase space.

Since instantons, and the critical points they connect, are of topological character, perturbations

to the actual trajectory in phase space do not have the same detrimental effect as the changes of

topology of the phase space.

Since numerical noise is typically far worse than physical noise, these results further

reinforce the notion that these machines, if built in hardware, would be topologically protected

against moderate physical noise and perturbations.

However, let us note that we did not prove that the dynamics of DMMs with numerical

(or physical) noise belong to the DP universality class. In fact, according to the DP-conjecture

[94, 95], a given model belongs to such a universality class if (i) the model displays a continuous

phase transition from a fluctuating active phase into a unique absorbing state; (ii) the transition

is characterized by a non-negative one-component order parameter; (iii) the dynamic rules

are short-ranged; (iv) the system has no special attributes such as unconventional symmetries,

conservation laws, or quenched randomness.

It is easy to verify that DMMs under numerical simulations satisfy properties (iii) and

(iv). However, verifying property (i) and (ii) is not trivial, as the relevant order parameters are not

directly accessible due to the vast phase space of DMMs. Still, the similarities we have outlined

in this paper, between DMMs in the presence of noise and DP, help us better understand how

these dynamical systems with memory work, and why their simulations are robust against the

unavoidable numerical errors.

2.2.7 Appendix

Results for αr = 6

Here, we show that the results presented in the main text hold also for other clause-to-

variable ratios. As examples, we choose αr = 6. (Similar scalability results have been already
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reported in Ref. [71] for αr = 4.3.) In particular, we find similar scaling behavior for ∆tc for all

clause-to-variable ratios, with of course, different power laws.

Figure 2.9 have been obtained as discussed in the main text, and show ∆tc vs. number of

variables for αr = 6.
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Figure 2.9. Critical ∆tc defined as A(∆tc) = 1/2 (see main text) for a clause-to-variable ration
of αr = 6. ∆tc shows a power-law scaling with N, and, as expected, integration methods with
higher orders have a larger ∆tc.

In Fig. 2.10, instead we show the scalability curves for αr = 6, considering all three

explicit integration methods. As in the main text, we find that the forward Euler method, although

having the largest numerical error, solves the instances in the least amount of function evaluations

for αr = 6. Every data point in the curves is obtained with 100 3-SAT instances, with 10 solution

trials for each instance.

Calculating the number of absorbing paths in directed percolation

Here, we give a detailed calculation of the number of absorbing paths we outlined in

Sec. 2.2.5. We use D to denote the dimension of the lattice where percolation takes place

(corresponding to the dimension of the DMM phase space), T to denote the number of steps to
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Figure 2.10. The scalability curves at αr = 6 for the three different explicit integration schemes
considered in this work, in which the constant integration time step ∆t is calculated using the
power-law fit of ∆t where A(∆t) = 0.95, times an additional “safety factor” of 0.6 (see main
text). All three methods show a power-law scaling. The values of the scaling exponents are 0.62
(Euler 50%), 0.84 (Trapezoid 50%), 0.73 (RK4 50%), 0.54 (Euler 90%), 0.77 (Trapezoid 90%),
0.74 (RK4 90%). The scaling is the same, for each integration scheme, in terms of either number
of steps or function evaluations; only the pre-factor changes. For N ∈ [103,105], Runge-Kutta
4th order (RK4) requires the least number of integration steps. However, in terms of function
evaluations, the simplest forward Euler method is the most efficient one.
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reach the bottom of the lattice (corresponding to the number of instantonic steps to reach the

solution in DMMs), and p to denote the percolation probability. Throughout the calculation, we

use the approximation that D → ∞,T → ∞, as both D and T are very large in DMMs.

As we illustrated in Sec. 2.2.5, the expected number of permeable paths at time step i

(i.e., the i-th level in the lattice in Fig. 2.5, where i starts from 0), is

⟨np,i⟩= (Dp)i (2.9)

The number of absorbing paths at each site is the number of permeable paths at that

site, times (1− p)D, the probability that all bonds beneath it are disconnected. Note that this

probability has a different expression at the boundary of the lattice, but as D and T are large, we

ignore the boundary effect here. Meanwhile, the number of sites mi at each time step i, to the

leading order, equals to the volume of a (D−1)-dimensional hyperpyramid,

mi =
(T +1− i)D−1

(D−1)!
. (2.10)

Then, the total number of absorbing paths is

⟨na,T ⟩= (1− p)D
T−1

∑
i=0

(T +1− i)D−1

(D−1)!
(Dp)i

=
(1− p)D(Dp)T+1

(D−1)!

T−1

∑
i=0

(T +1− i)D−1 1
(Dp)T+1−i

=
(1− p)D(Dp)T+1

(D−1)!

T+1

∑
N=2

ND−1 1
(Dp)N

(2.11)

To get rid of the summation in Eq. (2.11), we approximate it by adding the negligible

N = 1 term, and replace the summation with an integral:
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⟨na,T ⟩ ≈
(1− p)D(Dp)T+1

(D−1)!

∫ T+1

0
xD−1 1

(Dp)x dx

=
(1− p)D(Dp)T+1

(D−1)!

∫ T+1

0
xD−1e− ln(Dp)xdx

=
(Dp)T+1

(D−1)!

(
1− p
lnDp

)D ∫ (T+1) lnDp

0
xD−1e−xdx

=
(Dp)T+1

(D−1)!

(
1− p
lnDp

)D

γ(D,(T +1) lnDp)

(2.12)

where γ(s,x) =
∫ x

0 ts−1e−tdt is the lower incomplete gamma function, and the result is valid for

Dp > 1.

To further simplify ⟨na,T ⟩, we use the relation [96]

Γ(n+1,x)≡ Γ(n+1)− γ(n+1,x) = n!en(x)e−x (2.13)

where en(x) = ∑
n
k=0

xk

k! is the truncated exponential series. Then,

γ(D,(T +1) lnDp)

=(D−1)!

(
1−

eD
(
(T +1) lnDp

)
e(T+1) lnDp

)
= α(D−1)! ,

(2.14)

where

α =

(
1−

eD
(
(T +1) lnDp

)
e(T+1) lnDp

)
, (2.15)

is a number between 0 and 1.

Let us define

g(k,x) =
xk

k!
e−x. (2.16)
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Using Stirling’s formula, we have

g(k,x) =
e−x

√
2πk

(ex
k

)k

=
1√
2πk

ek(1+lnx−lnk)−x.

(2.17)

We can check that g(k,x), as a function of k, reaches its maximum near k = x. Let us

expand lnk near k = x:

lnk = lnx+
k− x

x
− (k− x)2

2x2 +O((
k− x

x
)3). (2.18)

Then,

g(k,x) =
1√
2πk

ek(1+lnx−lnx− k−x
x +

(k−x)2

2x2 +O(( k−x
x )3))−x

=
1√
2πk

e−k2/x+2k−x+k(k−x)2/(2x2)+O(( k−x
x )3)

=
1√
2πk

e−
(k−x)2

2x (2−k/x+O( k−x
x )).

(2.19)

Near the maximum k = x, we have

g(k,x)≈ 1√
2πx

e−(k−x)2/2x, (2.20)

which is a normal distribution with mean value x and standard deviation
√

x. Figure 2.11 shows

the comparison of the original g(k,x) and its approximation. We can see that the approximation

is very good.
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Figure 2.11. Comparison of each term in the truncated exponential series and the normal
distribution. In this figure x = 50.

Then, we have
en(x)

ex =
n

∑
k=0

g(k,x)

≈
∫ n

0

1√
2πx

e−(k−x)2/2xdk

≈
∫ n

−∞

1√
2πx

e−(k−x)2/2xdk

=Φ(
n− x√

x
),

(2.21)

where Φ(x) = 1√
2π

∫ x
−∞

e−t2/2dt is the cumulative distribution function of the standard normal

distribution.

Back to Eq. (2.15), we finally have

α =1−
eD
(
(T +1) lnDp

)
e(T+1) lnDp

=1−Φ(
D− (T +1) lnDp√

(T +1) lnDp
)

=
1
2

erfc(
D− (T +1) lnDp√

2(T +1) lnDp
),

(2.22)
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where erfc is the complementary error function.

In DMMs, each instanton connects two critical points whose indices (number of unstable

directions) differ by 1 [71]. Since the index of a critical point equals at most the dimension D,

and the index of the equilibrium point is 0, we have T +1 = D, and Eq. (2.22) simplifies to

α =
1
2

erfc(
√

D
1− lnDp√

2lnDp
). (2.23)

Therefore,

⟨na,T ⟩=
(Dp)T+1

2

(
1− p
lnDp

)D

erfc(
√

D
1− lnDp√

2lnDp
), (2.24)

which is Eq. (2.6) in the main text.

This section, in full, is a reprint of the material as it appears in Chaos: An Interdisci-

plinary Journal of Nonlinear Science [2]. Yuan-Hang Zhang, Massimiliano Di Ventra, 2021.

The dissertation author was the primary investigator and author of this paper.
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2.3 A hardware implementation of digital MemComputing
machines using standard electronic components

Digital MemComputing machines (DMMs), which employ nonlinear dynamical systems

with memory (time non-locality), have proven to be a robust and scalable unconventional com-

puting approach for solving a wide variety of combinatorial optimization problems. However,

most of the research so far has focused on the numerical simulations of the equations of motion

of DMMs. This inevitably subjects time to discretization, which brings its own (numerical)

issues that would be otherwise absent in actual physical systems operating in continuous time.

Although hardware realizations of DMMs have been previously suggested, their implementation

would require materials and devices that are not so easy to integrate with traditional electronics.

Addressing this, our study introduces a novel hardware design for DMMs, utilizing readily

available electronic components. This approach not only significantly boosts computational

speed compared to current models but also exhibits remarkable robustness against additive noise.

Crucially, it circumvents the limitations imposed by numerical noise, ensuring enhanced stability

and reliability during extended operations. This paves a new path for tackling increasingly com-

plex problems, leveraging the inherent advantages of DMMs in a more practical and accessible

framework.

2.3.1 Introduction

Over the past half century, the rapid development of computers has mirrored the prediction

of Moore’s law, with the number of transistors doubling approximately every two years [97]. As

we near the physical limits of this growth, formidable challenges such as quantum tunneling, heat

dissipation, and escalating production costs [98] necessitate a pivot towards novel computational

paradigms. Unconventional computing, encompassing areas like quantum [99], neuromorphic

[100], optical [101], and molecular computing [102], promises to not only sustain computational

growth but also foster more energy-efficient and adaptable systems, capable of tackling problems
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currently beyond the reach of classical computers.

One key idea in unconventional computing is to harness physical principles to greatly

accelerate the solution of certain problems. For instance, an ideal (decoherence-free) quantum

computer could in principle solve integer factorization in polynomial time utilizing quantum

entanglement and interference [103]. A new class of machines, dubbed “MemComputing” [104],

leverages time non-locality (memory) to solve a wide variety of computational problems effi-

ciently [105, 7]. In particular, their digital version (digital MemComputing machines or DMMs)

have been designed to solve combinatorial optimization problems [106].

We stress here that the prefix “Mem” stands for “memory”, which is generally intended

as “time non-locality”, not necessarily storage [107]. Time non-locality is the non-equilibrium

property of a physical system that when perturbed, the perturbation affects the system’s state at a

later time [7]. Under appropriate conditions, it induces spatial non-locality [107]. This, in turn,

initiates dynamical long-range order in the system [108, 109], which is exploited by DMMs to

scrutinize the structure of the target problem, thereby solving it efficiently.

In the present paper we focus on DMMs [106], which have a finite set of input and

output states that can be written/read with finite precision, hence are scalable to large problem

sizes. The dynamics of a DMM are governed by a set of ordinary differential equations (ODEs)

[106, 110], whose equilibria correspond to the solutions (if they exist) of the target problem. In

continuous (physical) time, it has been proved that if such systems have equilibria (solutions),

periodic orbits and chaos can be avoided [111, 112], and the convergence to the equilibrium

point(s) can be reached with a number of jumps (more precisely, instantons, which are abrupt

transitions in the trajectories, connecting critical points of the dynamics of different stability)

that scales polynomially with problem size [108, 109].

Studies have illustrated that numerical simulations of DMM’s equations can effectively

solve a plethora of complex combinatorial optimization problems [106, 113, 114, 115, 110],

significantly surpassing traditional algorithms in performance (see also industrial case studies

performed at MemComputing, Inc. [116]). Recently, it was numerically shown that MemCom-
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puting can solve the hardest integer factorization problems with quadratic complexity up to 300

bits [117], with projections to factor 2048-bit RSA keys [118] within weeks in software.

However, the numerical simulation of ODEs inevitably necessitates time discretization,

leading to the accumulation and possible amplification of numerical errors over time [87]. Given

that DMMs typically require extended simulation times to reach the solution of very large

problems (in the hundreds of thousand or millions of variables), the numerical errors may

ultimately cause the simulations of DMMs to fail [2]. Although better numerical methods and

careful control of such simulations can mitigate this issue, it comes with additional numerical

overhead.

The research gap, therefore, lies in overcoming these limitations inherent in numerical

simulations of DMMs. A promising solution is the construction of a physical DMM that operates

in continuous time. Towards this objective, attempts have been made to realize DMMs using

hardware components. For instance, Ref. [106] proposed a design employing resistive memories,

but since these are not standard elements, their fabrication and integration into circuits could

present a challenge. A similar issue pertains to the self-organizing logic gates of DMMs discussed

in [119], where nanomagnets have been suggested as possible memory materials. Alternatively,

Ref. [120] realized a DMM in hardware using field-programmable gate arrays, which achieved

considerable speed-up compared to simulations. However, this implementation is still based on

the discretization of time. As such, it essentially falls under the category of numerical simulations

(albeit directly in hardware), implying that the previously mentioned challenges persist.

Addressing this gap, our work aims to design a physical, hardware-based DMM that

operates in continuous time, exclusively employing standard electronic components. The strategy

is to start from a set of ODEs describing a DMM solving, e.g., a combinatorial problem, and then

look for standard hardware components that would reproduce such dynamics. As a prototypical

example we consider the Boolean satisfiability (SAT) problem with three literals per clause. Any

other combinatorial problem can, in principle, be mapped into it [121].

Given that we are essentially conducting hardware-based ODE simulations, our design
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concept draws inspiration from analog computers prevalent in the 1960s, predominantly utilizing

operational amplifier (op-amp)-based circuits to perform mathematical operations.

However, a key issue still persists: by moving from software to hardware we have

exchanged numerical noise for physical noise. Analog computers largely fell out of favor in

the 1970s in part due precisely to physical noise, which limited their scalability. Factors like

component variability in resistors and capacitors, temperature sensitivity, parasitic effects, and

jitter all contribute to this physical noise, compromising the accuracy of analog signals. While

careful design can mitigate some of these noise sources, they can never be completely eliminated.

While physical noise is detrimental for analog computers, they do not pose much of a

problem for DMMs. This is because, just like modern digital computers, despite the use of

physical signals, a DMM is a digital machine, since the input and output states of a DMM are

finite and can be read/written with finite precision. Moreover, it was demonstrated that, the

transition function between the input and the output states of a DMM is of topological character,

making them robust to perturbative noise [108, 109]. This is key for their scalability as a function

of problem size, a feature that is not shared by analog machines. In fact, it has also been shown

that introducing some (Gaussian) physical noise can, in certain cases, even aid the solution [122].

One additional key distinction between physical and numerical noise is worth noting:

physical noise is typically localized in space and time and does not accumulate over extended

periods [7]. In contrast, numerical noise can accumulate and may even amplify exponentially

over time [87]. Therefore, for large-scale, long-time simulations, a physical DMM, even with

reasonably high noise levels, is expected to eventually outperform numerical simulations.

In this paper, we outline a prototype of such a physical DMM. We are aware that some of

the design elements we have used may not be optimal. However, our goal was not to achieve

optimality in design. Rather, we hope that our work would serve as a foundational demonstration

that can inspire future developments.

This paper is organized as follows. In Sec. 2.3.2, we outline the formulation of the

DMM equations and introduce a circuit that implements these equations. Results from hardware
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emulations using LTspice and numerical simulations with Python are presented in Section 2.3.3,

and noise resistance of our model is also demonstrated. We conclude the paper with a few

remarks in Sec. 2.3.4. The technical details necessary to reproduce our paper can be found in the

Appendix.

2.3.2 Solving 3-SAT with MemComputing

In a SAT problem, the task is to determine whether there exists an assignment of truth

values to a set of Boolean variables, such that the given Boolean equation evaluates to true.

Despite its simple formulation, the solution of SAT problems is often required in various industrial

applications such as circuit design, logistics, scheduling, etc. [123, 124], and an efficient solver is

desirable. In particular, we focus on the three-satisfiability (3-SAT) problem, where the Boolean

equation is a conjuction of clauses, each of which is a disjuction of three literals, where a literal

is either a Boolean variable or its negation.

MemComputing equations for 3-SAT

The approach for solving 3-SAT problems using DMMs was already reported in [110],

where the dynamics of the DMM was written as a set of ordinary differential equations (ODEs)

and solved numerically. For an easier hardware implementation, we slightly modified the

equations used in Ref. [110]. For a 3-SAT problem with N variables and M clauses, the resulting

equations are presented below:
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v̇n =∑
m

(
η softmax(xn

l )mxs,mGn,m(vn,v j,vk) (2.25)

+(1+ζ η softmax(xn
l )m)(1− xs,m)Rn,m(vn,vm,vk)

)
ẋs,m =β (xs,m + ε)

(
Cm(vi,v j,vk)− γ

)
, (2.26)

ẋl,m =αe−xl,m
(
Cm(vi,v j,vk)−δ

)
, (2.27)

Cm =1−max(ṽi,m, ṽ j,m, ṽk,m), (2.28)

Gn,m =qn,mCm(vn,v j,vk), (2.29)

Rn,m =


qn,mCm(vn,v j,vk),

if Cm(vn,v j,vk) = 1−qn,mvn,

0, otherwise.

(2.30)

softmax(z)i =
ezi

∑ j ez j
(2.31)

Here, vn ∈ [0,1] represent the continuously relaxed Boolean variables in the 3-SAT

problem (n = 1, · · · ,N), while xl,m ∈ [0,M] and xs,m ∈ [0,1] are the long-term and short-term

memory variables, respectively (m = 1, · · · ,M). Whenever a variable exceeds the bounds, it is

reset to the bound value, which is handled by the circuit detailed in the next section. α,β ,γ,δ ,ε,ζ

and η are constants.

Each clause is represented by the clause function, Cm(vi,v j,vk), indicating that the i-th,

j-th and k-th Boolean variables are present in the m-th clause. If the i-th literal in the m-th clause

is negated, then qi,m =−1 and ṽi,m = 1− vi, otherwise qi,m = 1 and ṽi,m = vi. The definition of

Cm in Eq. (2.28) gives it the range [0, 1], and the clause is closer to satisfaction if Cm is closer to

0.

The gradient-like term, Gn,m (Eq. (2.29)), aims to push all literals in a clause towards

satisfaction uniformly, while the rigidity term, R(n,m) (Eq. (2.30)), tries to hold the literal
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closest to being satisfied in place. The short-term memory, xs,m, functions to alternate between

the gradient-like and the rigidity terms, while the long-term memory, xl,m, assigns a dynamic

weight to each of the clauses. A more comprehensive interpretation of each of these parameters

and terms can be found in [7, 110]. Here, the parameters are chosen to be α = 5,β = 20,γ =

0.25,δ = 0.05,ε = 10−3, and η = 3000. The optimal ζ decreases according to a power law in a

logarithmic scale with system size N, and the details can be found in Appendix 2.3.5.

Comparing to the original equations in Ref. [110], we adjusted Eq. (2.25) by rescaling

and computing the softmax of the long-term memories xl . This bounds the range of the multiplier,

making the circuit implementation easier.

Hardware implementation of the equations

Eqs. (2.25)-(2.30) contain basic arithmetic operations, exponentiation, maximum and

softmax functions. Linear operations can be implemented using op-amp based arithmetic circuits,

while the exponential function can be realized using the exponential relation between a bipolar

junction transistor’s emitter current and base voltage. We will now illustrate how to realize these

ODEs using these basic components, with the detailed design of each operation provided in

2.3.5.

The variables vn, xs,m and xl,m are represented as voltages across capacitors, and their

time derivatives are simulated using currents charging and discharging the capacitors.

Fig. 2.12 presents the circuit implementing the short-term memory variable, xs. The

value of xs is represented by the voltage across a 10 nF capacitor, C1. A very large resistor,

R1, is connected in parallel to C1 for stability, and its impact on the dynamics is negligible.

A voltage-controlled current source, G1, charges C1. The control voltage, dxs, which is the

right-hand side of Eq. (2.26), is pre-computed in another segment of the circuit.

Before controlling the current source G1, dxs is first passed into a bidirectional switch

regulated by two control signals, ctrl+ and ctrl−. Each of these signals selectively allows or

blocks input signals of a specific polarity. As xs is confined within the [0, 1] range, we use
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two open-loop operational amplifiers functioning as comparators to maintain these bounds,

generating the control signals. Specifically, ctrl± equals 5V when the voltage across C1 falls

within the [0V, 1V] range and -5V when the voltage surpasses its respective limit.

Figure 2.12. Circuit for the implementation of the short-term memory variable, xs. The circuit
takes in the pre-computed voltage, dxs, integrates it, and subsequently produces the updated
value of xs.

In operation, when the voltage representing xs remains within the bounds (0V to 1V),

the bidirectional switch allows the input signal, dxs, to pass through. This signal influences the

current source G1, which then charges or discharges the capacitor C1 as per Eq. (2.26). If xs

exceeds 1V, the control signal ctrl+ becomes negative, prompting the bidirectional switch to

block positive dxs signals, thus allowing only negative dxs to pass. This mechanism enforces

the upper boundary for xs. The same process, in reverse, handles any voltage drops below 0V to

uphold the lower boundary.

To maintain the capacitor’s charge and avoid any additional input or output current to C1,

we use a voltage-controlled voltage source with unity gain, E1, for isolation and to output the

value of xs. This isolation can be practically achieved through a voltage follower circuit made

with a single op-amp.
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To implement Eq. (2.25) for the variables vn, we use a similar setup, depicted in Fig. 2.13.

As each literal in 3-SAT can be either negated or not, this circuit simultaneously generates

two values, v and v̄ = 1− v. Likewise, inputs are also grouped by their polarities (the sign

mismatches in Fig. 2.13 result from the inverted adders in the previous step). Although the

constant η = 3000 in Eq. (2.25) (represented by G1 = 3mA/V in Fig. 2.13) renders the rigidity

term without it seemingly negligible (represented by G2 = 1µA/V in Fig. 2.13), numerical

experiments corroborate that the inclusion of a small rigidity term aids in convergence towards

the solution.

Figure 2.13. Implementation of the voltage dynamics, Eq. (2.25), with a built-in negation
mechanism.

Implementing the long-term memory dynamics accurately, as per Eq. (2.27), requires

more consideration due to the variability of the exponential term across several orders of

magnitude. To address this, we choose to work in the logarithmic space and rewrite Eq. (2.27)
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as:

ẋl,m = α (exp(log(Cm +λ )− xl)− exp(log(δ +λ )− xl)) . (2.32)

Given that Cm −δ can be either positive or negative, taking the logarithm directly would pose

issues. Therefore, we split it into two terms, Cm+λ and δ +λ , with λ = 0.1 to ensure both terms

are always positive. We then evaluate each product separately using log-sum-exp computations,

and compute their difference to restore Eq. (2.27). Necessary constants are incorporated to

rescale the signals to suitable ranges, and the details can be found in 2.3.5.

Figure 2.14. Implementation of the long-term memory dynamics, Eq. (2.27). Here, the input
dxl =Cm +λ , and log-sum-exp computation is employed to restore Eq. (2.27). Note that our
implementation of the logarithm and exponential amplifiers contains a negative sign (see 2.3.5).

Finally, Fig. 2.15 shows the evaluation of the clause function, gradient-like and rigidity

terms, and how they contribute to the computation of the time derivatives in Eqs. (2.25)-(2.27).

The comparator module initially calculates the maximum of the three input (possibly negated)

voltages, vmax, along with three control signals, b1,b2 and b3, indicating which input voltage

attains the maximum value. The clause function is then computed as Cm = 1− vmax, which is

further employed to evaluate dxs and dxl according to Eq. (2.26) and Eq. (2.32). The rigidity term

is calculated with the assistance of the control signals bi, setting the specified values to 0. Finally,
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the right-hand-side of Eq. (2.25) is divided into two parts, dvn,1 = xs,mGn,m +ζ (1− xs,m)Rn,m,

which is later multiplied with the softmax module (Fig. 2.24); and dvn,2 = (1−xs)Rn,m, which is

added at the end. This final processing step is not depicted in Fig. 2.15.

Figure 2.15. The module computing the time derivatives of the variables. It accepts the possibly
negated variables, v1,v2 and v3, and the short-term memory xs, and outputs the intermediate
results of their time derivatives, dxs, dxl , dvn,1 and dvn,2.

By integrating all the modules in accordance with the topology of the target 3-SAT

problem, we successfully develop a continuous-time, hardware-accelerated DMM. We stress

here that in large-scale applications, the topology, or connectivity, of the 3-SAT problem (and

its conjunctive normal form representation), can be programmed using cross-point switches or

field-programmable gate arrays. This would allow switching from one type of problem to another

with the same type of hardware design. Given our selection of capacitance and current source, it

can be verified that one second of circuit dynamics equates approximately 100 units of time in

Eqs. (2.25)-(2.30). With high-speed op-amps, it is possible to further reduce the characteristic

time scale of the circuit to accelerate the solution. Limited by the numerical accuracy and
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convergence in our circuit emulations, we leave this as a future work.

2.3.3 Results

To investigate the accuracy and efficiency of our methods, we emulated Eqs. (2.25)-(2.30)

in LTspice [125, 126] using the realistic circuit elements as we have discussed in the preceeding

Sec. 2.3.2. Furthermore, we also developed a Python program to simulate the same ODEs

directly using numerical solvers. The full model files are available at [127].

To generate challenging 3-SAT instances, we utilized the unbiased generator with a

planted solution as proposed in [128], specifically targeting instances near the complexity peak

at a clause-to-variable ratio of 4.3.

As a proof-of-concept test, we compared both methodologies using a 3-SAT problem

consisting of 10 variables and 43 clauses. Fig. 2.16(a)(b) illustrates the trajectories of the first

five variables. Both simulations started with identical initial conditions, and we can see that the

initial part of their trajectories are the same. However, due to noise and minor discrepancies

in different implementations, their trajectories soon differ. Nevertheless, despite following

completely different trajectories, both simulations promptly converged to the same solution.

To better understand the noise sensitivity of our design, we introduced white noise of

varying strength to all relevant voltage sources in LTspice emulations, except for those where

noise is unlikely to make a significant impact (e.g., the power supplies for op-amps). Of course,

this added noise compounds the numerical one which is intrinsic in the discretization of time of

the simulations. The findings are displayed in Fig. 2.16(c)-(d). In these figures, the added noise

strength is set at 10% of the corresponding voltage for (c), and 20% for (d). Again, we see that

despite different trajectories, all simulations converge to the same solution, regardless of noise

(both physical or numerical).

This example serves to illustrate the inherent robustness of DMMs against noise [7]. To

understand this robustness, note that, with the values of the voltage sources entering computations

via arithmetic circuits, the injected white noise can affect the parameters γ,δ ,ε in Eqs. (2.25)-
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(a) (b)

(c) (d)

Figure 2.16. Comparison of the trajectories of the first five variables in a 3-SAT problem with
10 variables and 43 clauses for (a) LTspice circuit emulation, with no noise added, (b) Python
numerical simulation, (c) LTspice circuit emulation, with 10% white noise, and (d) LTspice
circuit emulation, with 20% white noise. With the same initial conditions, the trajectories
are initially similar, but soon differ due to differences in noise (both physical and numerical).
However, despite the paths are different, eventually they all converge to the same solution.
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(2.30), but cannot change the equations’ functional form. According to our analysis in Appendix

2.3.5, although an optimal set of parameters exist, the DMM still works consistently for a wide

range of parameters and always converge to the solution if the parameters do not deviate too

much from their optimal values.

In fact, as observed in Fig. 2.16, minor perturbations can cause the trajectory to diverge

significantly. Yet, all paths ultimately converge towards the solution of the problem, demonstrat-

ing the model’s resilience. Furthermore, this example also affirms the functional equivalence

between the physical circuit built using realistic elements and the numerical Python-based

implementation.

To extend the scope of our assessment, we generated additional 3-SAT instances with

varying problem sizes and solved them through the DMM circuit simulation. Given the substan-

tial resource consumption of realistic circuit emulations in LTspice, we opted for the Python

simulation in this test, which allowed us to simulate much larger systems.

Fig. 2.17(a) illustrates how the median integration time (in arbitrary units) scales with the

number of variables in the 3-SAT problem. These problems were generated near the complexity

peak with a clause-to-variable ratio of 4.3. Each data point was determined by solving 100

distinct 3-SAT instances, with the median being recorded once 51 of them were solved. A

power-law fit of the median solution time against the number of variables yielded an exponent of

2.23±0.17. This result marginally outperforms the findings reported in [110].

Similarly, Fig. 2.17(b) displays the median wall time, where 100 instances are simulated

in parallel on a single NVIDIA TITAN RTX GPU, and Fig. 2.17(c) shows the average wall time

per integration step. For smaller cases, the program initialization time dominates, resulting in a

nearly constant wall time and a greater wall time per step. However, as the number of variables

grows, the initialization time becomes insignificant, and the wall time per step increases linearly

with the problem size.

Finally, Fig. 2.17(d) computes the ratio between the median integration time and the

median wall time, which indicates how many units of time we can integrate per real-world second.
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In our previously detailed hardware implementation, one second corresponds to approximately

100 units of time (as represented by the red dotted line). Compared to this, the ratio in the Python

simulation reaches a peak of around 100 and gradually diminishes as the system size expands. If

we assume the hardware solution shares the same scaling properties of the numerical simulation,

this means that for a 3-SAT problem with 2000 variables, our circuit design would achieve an

8-fold acceleration compared to the numerical simulations.

(a) (b)

(c) (d)

Figure 2.17. Scaling of solution time versus the number of variables. (a) Median integration time
(in arbitrary units) as a function of the number of variables in the 3-SAT problem, which were
generated near the complexity peak at a clause-to-variable ratio of 4.3. The curve approximates
a power-law fit, yielding an exponent of 2.23±0.17. (b) The progression of the median wall
time for solving problems, exhibiting near-constant times for smaller problems and scaling
approximately as N4.37±0.55 for larger problems. (c) Wall time per integration step. Excluding
the initialization time, this grows linearly with the system size. (d) The ratio of integrated time to
real-world seconds, peaking around 100 for the Python simulation, and declining as the system
size expands. Excluding the smaller cases where the Python simulation’s initialization time is
dominant, our hardware-accelerated DMM would achieve up to an 8× speed increase compared
to the numerical simulations.

However, we expect the hardware solution to scale better compared to numerical simula-

tions [7]. In the Python simulations presented above, the discretized time step ∆t is of the order

of 10−1. For more challenging problems, ∆t needs to be reduced, resulting in an increase in the

number of integration steps needed [110]. However, our envisioned hardware design, which
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operates in continuous time, integrates the ODEs at a consistent rate, regardless of the problem

size or difficulty. This intrinsic characteristic of the hardware, once practically implemented and

verified, is expected to lead to substantial speed improvements.

Moreover, since numerical noise is eliminated in hardware, we expect this approach to

offer enhanced stability over extended periods of dynamics. This is another key advantage of our

hardware-based approach over numerical simulations.

Despite promising results depicted in Fig. 2.17, the initial Python simulations did not

account for physical imperfections that are typically present in realistic settings, such as compo-

nent tolerance, capacitor leakage, op-amp input offset voltage, and temperature variations. These

factors are crucial as they can significantly influence the dynamics and reliability of our system.

Among these factors, the tolerance of resistors stands out as potentially the most impactful

on the system dynamics. Consider, for example, the adder circuit shown in Fig. 2.19, which is

governed by the equation:

Vout =
V1R2 +V2R1

R1 +R2
· R3 +R4

R4
. (2.33)

With R1 = R2 = R3 = R4, we have

δVout =
1
2

V1

(
−δR1

R1
+

δR2

R2
+

δR3

R3
+

δR4

R4

)
+

1
2

V2

(
δR1

R1
− δR2

R2
+

δR3

R3
+

δR4

R4

)
. (2.34)

In practical terms, if each resistor has a tolerance of 1%, this would result in an approx-

imate 2% error in the computed value of Vout. Such errors are likely to accumulate through

cascaded addition and multiplication operations, significantly magnifying deviations from the

ideal dynamics.

On the other hand, temperature variations affect the thermal voltage, VT = kBT/q, which

influences the characteristics of transistors crucial to the design of logarithmic amplifiers and
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multipliers. Appropriate designs incorporate temperature compensations based on paired tran-

sistors, cancelling out the impact of temperature fluctuations across a broad range of operating

temperatures, rendering it negligible compared to the influence of resistor tolerance. Nonetheless,

the error induced by temperature variations is multiplicative, similar to that caused by resistor

tolerance, and we model them together, as detailed below.

Comparatively, factors such as capacitor leakage and op-amp input offset voltage present

less risk to the system’s dynamics. For instance, capacitor leakage currents are generally around

10−2µA/(µF ·V) ·CV for aluminum electrolytic capacitors [129]. Similarly, typical input offset

voltages for op-amps are on the order of 100µV. These values are relatively insignificant when

compared to the operational voltages and currents in our system, thereby having a lesser impact

on the system’s performance.

To validate our system’s resilience against physical imperfections, we incorporated

simulations of component tolerance and capacitor leakage into our Python model. We modeled

resistor tolerance and temperature variation together as a multiplicative noise, η , affecting each

addition and multiplication operation described in Eqs. (2.25)-(2.30). Since resistor tolerance

is dominant, based on Eq. (2.34), η is approximately twice the actual resistor tolerance. Since

an error η is present in every addition and multiplication operation, η = 1% will result in an

estimated 5% error in the computed derivatives.

Capacitor leakage was integrated as an additional term in Eqs. (2.25)-(2.27), modifying

the derivatives according to:

˜̇vn = v̇n −κvn (2.35)

and similarly for xl and xs. We selected κ = 10−3, representing a leakage current Ileak =

10−1µA/(µF ·V) ·CV , which is ten times the standard rate for aluminum electrolytic capacitors

[129].

The simulation results for low noise levels, η = 0 and 0.01, are shown in Fig. 2.18. We

observe that such minimal noise levels do not impair the solution capabilities of our system,
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Figure 2.18. Median integration time (in arbitrary units) as a function of the number of variables,
N, for 3-SAT problems at clause-to-variable ratio 4.3. This simulation incorporates an error η in
every addition and multiplication operation, attributable to resistor tolerances, and a capacitor
leakage current Ileak = 10−1µA/(µF ·V) ·CV . For each data point, at least 51 out of 100
distinct 3-SAT instances are solved to calculate the median integration time. The simulation
here indicates that capacitor leakage and a small resistor tolerance has a minimal impact on the
dynamics, and the median integration time scales essentially quadratically with the problem size.
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which continues to solve hard 3-SAT problems effectively. Importantly, the median time-to-

solution scales essentially quadratically with the problem size, indicating robust performance

under these conditions.

In Appendix 2.3.5, we present the complete scaling curves for η values up to 0.2 and

variable counts (N) up to 1500. The results demonstrate that our system maintains reliable

performance in solving hard 3-SAT problems for N ≤ 500, even at higher noise levels. However,

as expected, beyond this threshold, the median solution time starts to exhibit exponential growth

for much larger η . These findings highlight the robustness of our system’s design, even under

moderate noise conditions.

2.3.4 Conclusion

In this paper, we have introduced a hardware design of a DMM that leverages only

standard electronic components, which can be readily built using available technology, without

the need of special materials or devices. By means of both LTspice and Python simulations,

we have validated the reliability of our approach in tackling difficult 3-SAT problems even in

the presence of physical noise under realistic conditions. Operating in continuous time, this

hardware methodology completely removes numerical noise, aligning closely with the physical

DMM concept, which has been suggested as a powerful alternative to solve hard combinatorial

optimization problems [106].

In finalizing our study, it is crucial to acknowledge the potential disparities between our

simulated design and its real-world hardware implementation. Factors like parasitic effects at high

frequencies and the distinct characteristics of physical noise all pose challenges often unaccounted

for in simulations. These elements highlight the imperative for rigorous experimental validation

and adjustments to ensure the practical robustness and performance of our circuit design. Moving

forward, our future research will focus on the experimental implementation of this design, aiming

to bridge the gap between simulations and real continuous-time dynamics.

94



2.3.5 Appendix

Details of the circuit design

In this Appendix, we present details of the hardware design to realize Eqs. (2.25)-

(2.30), illustrating the individual building blocks of the circuit that performs different arithmetic

functions.

Figure 2.19. The adder circuit, realized using an op-amp feedback loop. It computes the function
Vout =V1 +V2.

Figure 2.20. The subtractor circuit. Computes the function Vout =V+−V−.

Fig. 2.19, 2.20 illustrate the circuit designs for an adder and a subtractor, respectively.

These are conventional designs that leverage the feedback loop of an op-amp. The circuit

architecture for a multiplier is more intricate, and we have chosen to use the commercially

available model, AD834, by Analog Devices [130]. Figure 2.21 demonstrates the external circuit

connections using the AD834 chip. This chip calculates the product of two input voltages, X and

95



Y , and the result is rendered as a current, W , according to the equation:

W =
XY

(1V)2 ×4mA. (2.36)

We have employed an op-amp feedback loop to translate the output current back into a voltage

signal. As a result, the complete transfer function of the multiplier module is given as:

Vout =
XY
1V

. (2.37)

Figure 2.21. The multiplier circuit, constructed using the commercially available AD834 chip.
It computes the function Vout = XY/1V.

Fig. 2.22 showcases the design of the logarithm amplifier. This particular circuit computes

the logarithm function as follows:

Vlogout = (−0.375V) log10
Vin

1µA
. (2.38)

Again, we have made use of a commercially available model, LOG114, produced by Texas

Instruments [131]. The circuit calculates the logarithm by utilizing the exponential relation

between the emitter current and base voltage of a bipolar junction transistor (BJT). Two matching
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BJTs are used within this circuit design to effectively cancel out any temperature dependencies.

Figure 2.22. The logarithm amplifier, implemented using the commercially available design, the
LOG114 chip. It computes the function Vlogout = (−0.375V) log10(Vin/1µA).

Fig. 2.23 shows the design of the anti-log amplifier, which computes the exponential

function,

Vout = 30mVexp(− Vin

30mV
). (2.39)

Due to the absence of commercially suitable designs for the anti-log amplifier, we had to

implement this circuit ourselves. The final design bears similarity to the internal structure of

the LOG114 circuit, but has been appropriately modified to accommodate for the exponential

function.

Fig. 2.24 presents a specially designed circuit for computing the softmax function, given

by softmax(x)i =
exi

∑ j ex j . This circuit design builds upon pre-existing models [132, 133]. Rather

than calculating multiple exponential functions, an array of BJTs with common emitters are

employed. By setting a constant sum for the emitter currents, each base voltage regulates the

distribution of current that flows through each respective BJT. The resulting expression precisely

matches the softmax function. The current is then converted into a voltage measurement by

observing the voltage drop across a resistor, after which a subtractor generates the desired final
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Figure 2.23. The anti-log amplifier. It computes the function Vout = 30mVexp(−Vin/30mV).
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output. The transfer function of this circuit can be expressed as:

yi = (1V )exp(xi/VT )/∑
j

exp(x j/VT ) (2.40)

where VT = kBT
e denotes the thermal voltage. Assuming a standard room temperature of T =

25◦C, VT = 25.68mV.

This circuit design permits the computation of the softmax function with an arbitrary

number of inputs by incorporating additional BJTs configured in the same manner. It is crucial

to note, however, that for the circuit to operate correctly, no current can flow into the zi ports

of Fig. 2.24. This isolation can be achieved with the use of a voltage follower - an op-amp

configured with unity gain - which does not affect the voltage output.

Figure 2.24. The circuit computing the softmax function. It outputs yi =
(1V )exp(xi/VT )/∑ j exp(x j/VT ), where VT = kBT/e is the thermal voltage.

To compute the maximum function, we employed the comparator module depicted in

Fig. 2.25. This circuit is composed of two subcircuits. The feedback loop, which includes

op-amps 1, 3, 5 and the three diodes, calculates the maximum voltage from the inputs V1,V2 and

V3, and outputs this value at the terminal Vmax. This maximum voltage, Vmax, is then fed back
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into three open-loop op-amps for comparison with the three input voltages. The results of these

comparisons are output as b1,b2 and b3, each of which indicates whether its corresponding input

voltage is the maximum.

Figure 2.25. The comparator module. This circuit calculates Vmax = max(V1,V2,V3), and the
control signals bi. If Vi is the maximum, then bi =Vmax+VD, where VD is the voltage drop across
the diodes. Otherwise, bi =−5V.

Fig. 2.26 illustrates the design of a bidirectional switch with two control signals. This

mechanism modulates the current flow using the unidirectional conductivity properties of diodes

and MOSFETs. Each MOSFET governs the signal flow in a specific direction. By independently

managing the two opposing MOSFETs, we can selectively permit signals of certain polarities

to pass through. This can be leveraged to set boundaries on a variable. For instance, positive

currents to a capacitor can be blocked when its voltage surpasses the upper limit, while negative

currents can be inhibited when the voltage falls below the lower threshold.

Determining the optimal parameters

The equations presented in Eqs. (2.25)-(2.30) include seven constant parameters: α , β ,

γ , δ , ε , ζ , and η . These parameters can be fine-tuned to accelerate the numerical simulations.

Following the guidelines from Ref. [110], we fixed α = 5, β = 20, γ = 0.25, δ = 0.05, and
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Figure 2.26. The bidirectional switch. It allows a positive signal to pass when Vctrl+ is positive
and a negative signal to pass when Vctrl− is positive. Conversely, it blocks a positive signal when
Vctrl+ is negative and a negative signal when Vctrl− is negative. The resistor R1 facilitates the
current flow when Vout is connected to a large impedance.

ε = 10−3.

To identify the optimal values for ζ , η , and the integration time step ∆t, we employed

Bayesian optimization, leveraging the Hyperopt library [63]. Our process entailed solving 100

3-SAT instances, each comprising 1000 variables. We aimed at the maximization of the number

of solved 3-SAT instances within a predefined step limit. The optimization process delivered the

following optimal values: η = 3000, ζ = 3×10−3, and ∆t = 0.14.

However, in practice, the optimal values of these parameters may be problem-specific. To

simplify the analysis, we vary one parameter at a time and scrutinize how the optimal parameter

fluctuates in accordance with the number of variables in the problem.

Fig. 2.27(a) plots the number of successfully solved instances against ∆t for a set of

100 3-SAT problems, each composed of 1500 variables. The curve can be approximately fitted

with a Gaussian, with the peak indicating the optimal ∆t. By repeating this process for varying

system sizes, we derive the relationship between the optimal ∆t and system size N. The results

are demonstrated in Fig. 2.27(b). The optimal ∆t adheres to a power-law distribution, expressed

as ∆toptimal = 0.230N−0.069.
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A similar analysis is performed for the parameter ζ . Fig. 2.27(c) presents the results for

N = 1500. By replicating this process for various N, we obtain the optimal ζ , as displayed in

Fig. 2.27(d). This can be approximated with a polynomial in logarithmic space: lnζoptimal =

6.83(lnN)−1.10 − 6.53. The parameter values derived from this analysis are applied to the

numerical simulations discussed in the main text.

(a) (b)

(c) (d)

Figure 2.27. Determining the optimal parameters in the equations. (a) The number of solved
3-SAT instances vs. ∆t within a given number of steps, for 100 3-SAT instances with 1500
variables. The optimal ∆t is chosen to be the peak of the fit. (b) The optimal ∆t as a function of
the system size N: ∆toptimal = 0.230N−0.069. (c) A similar analysis on the parameter ζ . Again,
100 3-SAT instances with 1500 variables are repeatedly solved with different parameter ζ . (d)
The optimal ζ as a function of the system size N: lnζoptimal = 6.83(lnN)−1.10 −6.53.

Effects of physical imperfections

In this appendix, we explore the impact of physical imperfections, including component

tolerances and capacitor leakage, on our system’s ability to solve hard 3-SAT problems.

In the results section of the main text, we discussed how various physical factors affect

performance and demonstrated our system’s tolerance to low noise levels in resistor values in

Fig. 2.18. Here, we extend this analysis with additional scaling curves in Fig.2.28, examining

noise levels, η , up to 0.2 and variable counts, N, up to 1500. The experimental setup remains

consistent with that described in Fig. 2.18, unless specified otherwise.
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As η and N increase, we observe a significant growth in solution time. We evaluated

100 distinct 3-SAT problems for each size. To manage computational costs, simulations were

terminated after 2×106 integration steps. If more than half of the instances are solved within this

limit, the median solution time is directly calculated. If fewer than half are solved, we estimate

the median solution time based on the number of solved instances at 2×106 integration steps,

assuming a uniform distribution of solution times across all instances.

Figure 2.28. Extended analysis from Fig. 2.18, illustrating the median integration time (in
arbitrary units) as a function of the number of variables, N, for 3-SAT problems with a clause-to-
variable ratio of 4.3. This simulation includes an error, η , in every addition and multiplication
operation due to resistor tolerances, and accounts for a capacitor leakage current of Ileak =
10−1µA/(µF ·V) ·CV . Solid data points represent conditions where at least 51 out of 100
distinct 3-SAT instances are solved, allowing direct calculation of the median integration time.
Dashed circles indicate estimated median times for scenarios where fewer than half of the
instances are resolved. The findings underscore that while capacitor leakage minimally affects
the dynamics, resistor tolerances notably impact system behavior. Noise levels, η , slightly
influence solution times for smaller instances (N ≤ 500); however, as expected, for larger N, the
median solution time shows exponential growth, at much higher η values.

Fig. 2.28 presents the median integration time as a function of N and η . Estimated

medians for cases where fewer than half of the instances are solved are depicted with dashed

circles. Remarkably, even at η values as high as 0.2—which could potentially double or halve

outcomes in the computed derivatives—our system reliably solves hard 3-SAT problems for
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N ≤ 500. Beyond this threshold, however, the median solution time begins to show exponential

growth for large η . Despite this, for lower η values, our results consistently demonstrate effective

resolution of these challenging problems, with the median solution time displaying a quadratic

scaling for N up to 1500.

This section, in full, is a reprint of the material as it appears in International Journal of

Circuit Theory And Applications [3]. Yuan-Hang Zhang, Massimiliano Di Ventra, 2024. The

dissertation author was the primary investigator and author of this paper.
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Chapter 3

Applications

Having explored the role of memory in inducing long-range order and its evolution into

the MemComputing paradigm, we now turn our attention to practical applications where this

paradigm excels.

Machine learning stands out in this regard. Over the past decade, machine learning has

proven to be a powerful tool for efficiently solving diverse problems across multiple disciplines,

from natural language processing and autonomous driving to the discovery of new drugs and

proteins. With the help of MemComputing, we examine a technique known as ”mode-assisted

training” [134, 135], illustrating how it can significantly expedite the training of certain types of

neural networks.

One particular area of application is quantum many-body problems, which are known for

their exponentially growing Hilbert spaces that render brute-force solutions impractical for large

systems. Recent advancements have shown that machine learning can address these challenges

through effective dimensionality reduction [136]. We will demonstrate how MemComputing,

especially through the mode-assisted training algorithm, can be utilized to efficiently solve a

variety of problems in quantum many-body systems.
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3.1 Quantum state tomography with mode-assisted training

Neural networks (NNs) representing quantum states are typically trained using Markov

chain Monte Carlo based methods. However, unless specifically designed, such samplers only

consist of local moves, making the slow-mixing problem prominent even for extremely simple

quantum states. Here, we propose to use mode-assisted training that provides global information

via the modes of the NN distribution. Applied to quantum state tomography using restricted

Boltzmann machines, this method improves the quality of reconstructed quantum states by

orders of magnitude. The method is applicable to other types of NNs and may efficiently tackle

problems previously unmanageable.

3.1.1 Introduction

With the ability to compress and extract information from high-dimensional data, machine

learning has become a useful tool in a wide variety of fields [137]. Physics is no exception.

For instance, neural networks (NNs) have been used with reasonable success as variational

wavefunctions of quantum many-body systems [136, 138, 139, 140, 141, 142, 143, 144, 145].

Irrespective of the type of NN employed as variational state, the vast majority of methods to train

NNs rely on Markov chain Monte Carlo (MCMC) sampling [137], which, unless specifically

designed, only consists of local moves. As a result, the slow-mixing problem arises, significantly

slowing down the algorithm, sometimes causing the training to fail completely, even for very

simple systems. Countless efforts have been devoted to solving this problem, and various

improved MCMC routines have been proposed, aiming at accelerating the mixing of the Markov

chain [146, 147, 148, 149, 150, 151]. Yet, they all serve one purpose: to increase the quality of

the MCMC samples for a more accurate gradient estimation.

In fact, the cost function of an NN defines a non-convex landscape, and as any non-

convex landscape, convergence to the global minimum with gradient-based methods can never

be guaranteed. In some cases this may not be of concern, since proper design of the NN,
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weight initialization and/or learning rate scheduling empirically seem to guarantee a smooth

convergence to some local minimum, close enough to the global one. However, as we will show

below, conventional sampling methods can easily lead to bad local minima for certain types of

quantum states with strongly non-local features, which could become a serious problem, causing

complete failure of the training.

In this paper, we tackle this issue from a new perspective: we design an off-gradient

training step (i.e., a training step that does not align with the direction of the gradient), constructed

using the mode of the NN distribution, which we call mode-assisted training [134, 135]. This

method supplements the regular gradient descent with mode updates, which explicitly inject

global information to the training process, leading to better estimations of the global minimum.

As an example of NNs, we will employ the well-known restricted Boltzmann machines

(RBMs), and focus on the challenging task of reconstructing a quantum state with repeated

measurements on its identical copies. This is called quantum state tomography (QST) [152, 153].

While traditional, brute-force methods require tens of thousands of measurements to reconstruct

even small quantum states [154], recent advancements in machine learning methods have greatly

improved the efficiency of such a task, making it feasible to perform QST on states with tens or

even hundreds of qubits [140, 142, 155, 144]. Yet, as we will show below, such methods are still

inefficient when the quantum states showcase strongly non-local features. Instead, mode-assisted

training significantly improves the quality of reconstructed quantum states while reducing the

number of required measurements by orders of magnitude. This opens up the possibility of

efficiently tackling other types of quantum problems previously unmanageable with these types

of approaches.

3.1.2 Restricted Boltzmann machines

In this section, we outline the basics of the RBM, and leave the detailed calculations

in Appendix 3.1.6. As illustrated in Fig. 3.1, an RBM is a two-layered neural network with n

visible nodes v ∈ {0,1}n, m hidden nodes h ∈ {0,1}m, and trainable weights Wi j and biases ai,
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b j. Together, they define a joint distribution,

p(v,h) =
1
Z

exp

(
n

∑
i=1

aivi +
m

∑
j=1

b jh j +
n

∑
i=1

m

∑
j=1

Wi jvih j

)
, (3.1)

where Z is the partition function. The marginal distribution of the visible nodes,

p(v) = ∑
h

p(v,h) =
1
Z

e∑i aivi ∏
j

(
1+ eb j+∑i viWi j

)
, (3.2)

is used to model the unknown data distribution.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

ℎ1

ℎ2

ℎ3

Figure 3.1. The structure of a typical RBM. The visible nodes vi and hidden nodes h j form a
bipartite graph, with no intra-layer connections.

To represent a quantum state, |ψ⟩, we map the wavefunction to such a probability

distribution. For instance, if the wave function is positive, we can simply set ψ(v) =
√

p(v). For

a general complex wavefunction, one can either allow the RBM weights to have complex values

[136], or use a second RBM to model the phase [138]. Yet another approach is to model the

quantum state with informationally complete positive operator-valued measurements (IC-POVM)

[142], whose outcome is an ordinary probability distribution instead of a quasi-probability
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distribution.

Irrespective, the standard method of training an RBM is to minimize the KL divergence

[156, 157],

KL(q||p) = ∑
v

q(v) log
q(v)
p(v)

, (3.3)

between the target distribution q(v) and the RBM distribution p(v). Computing the gradient

with respect to the RBM parameters, we obtain the formula of weight updates:

∆Wi j = η

(
⟨vih j⟩q(v)p(h|v)−⟨vih j⟩p(v,h)

)
, (3.4)

in which η is the learning rate, and ⟨·⟩p denotes expectation over the probability distribution p.

A similar expression holds for the biases 1. See Appendix 3.1.6 for detailed derivations.

In Eq. (3.1), the partition function Z involves a summation over an exponential amount

of terms, making it impossible to evaluate p(v,h) efficiently. Instead, Z cancels out in the

conditional probabilities, p(h|v) and p(v|h), making them efficiently computable [157]:

p(h|v) =
m

∏
j=1

eh j(b j+∑
n
i=1 viWi j)

1+ eb j+∑
n
i=1 viWi j

p(v|h) =
n

∏
i=1

evi(ai+∑
m
j=1 Wi jh j)

1+ eai+∑
m
j=1 Wi jh j

(3.5)

Therefore, in the expression of the gradient, Eq. (3.4), the first expectation can be evaluated

exactly and efficiently, while the second expectation is usually approximated with a sampling

algorithm.

1Throughout this work, η = 0.01 and reduces by half whenever performance doesn’t improve for 104 iterations,
and the minibatch size for computing the expectation is N2, where N is the number of qubits.
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3.1.3 Local Samplers

Contrastive divergence (CD) [137] is the most widely adopted sampling algorithm for

RBMs. CD-k starts from a sample v0 from the dataset and constructs a Markov chain of samples,

v0 → h0 → v1 → h1 → ··· → vk, (3.6)

using the conditional distributions p(h|v) and p(v|h), alternating between the visible nodes v

and hidden nodes h for k times. When k → ∞, the distribution of vk converges to p(v), and we

can approximate the second term in Eq. (3.4) with an expectation over a batch of sampled vk.

CD, among many other Markov chain based samplers, like persistent contrastive diver-

gence (PCD) [146] and parallel tempering (PT) [147, 148, 149], belongs to the category of “local

samplers”. Unless specifically designed, they only contains “local moves” and does not include

global information on the probability distribution. In Appendix 3.1.6, we rigorously define the

concept of locality with respect to Markov chains, and visualize the spatial proximity of basis

states over an example RBM. Here, we first demonstrate the potential issues that can arise with

local samplers.

As a simple example, let us consider the Greenberger-Horne-Zeilinger (GHZ) state)

[158],

|ΨGHZ⟩=
1√
2
(|00 · · ·0⟩+ |11 · · ·1⟩) , (3.7)

a prototypical N-qubit entangled state with two modes that has wide applications in quantum

information theory, and is also used for benchmarking different QST algorithms [142, 143].

Superficially, this state seems trivial and has an exact RBM representation with only

one hidden neuron [140]. On the other hand, training an RBM with CD to represent this state

faces immediate failure. Starting from an ideal 10-qubit GHZ state, we obtain training data by

performing projective measurements in the {|0⟩, |1⟩} basis on 104 copies of the state. Fig. 3.2

(red dotted curve) shows the reconstruction fidelity for this state between the exact state |ψexact⟩
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Figure 3.2. Training an RBM to represent a 10-qubit GHZ state. Training data is obtained
by performing projective measurements in the {|0⟩, |1⟩} basis on 104 copies of the state. The
inset shows the frequency of mode updates, Eq. (3.9) (with parameters α = 20, β = 6 and
Pmax = 0.05), as training goes on. Curves represent the medians of 20 runs, and the shaded
regions are enclosed by the maximum and minimum.

111



and the reconstructed one |ψ⟩, f (ψexact,ψ) = |⟨ψexact|ψ⟩|2, for 10 qubits. CD can only learn one

of the two modes, reaching a final fidelity of 1/2. As already mentioned, this is of no surprise,

since CD is a local sampling algorithm and has difficulty mixing between different modes [150].

If a CD chain starts from one mode, it is (almost) trapped there forever. This sampling bias is

amplified over time, causing the RBM to eventually converge towards one of the two modes.

To solve this problem, we need to properly incorporate global information into the

training process. One simple yet efficient approach is mode-assisted training [134].

3.1.4 Mode-assisted training

Algorithm

To explicitly inject global information into the training process, we design an off-gradient

training step that supplements the regular gradient updates, using the mode of the RBM distribu-

tion [134]. This means replacing the formula of weight updates, Eq. (3.4), as follows:

∆W mode
i j = η

(
⟨vih j⟩qmode(v)p(h|v)− [vih j]p(v,h)

)
(3.8)

where [·] indicates expectation over the mode of the RBM distribution p(v,h), and qmode is a

uniform distribution over all possible modes of the data distribution q. We call Eq. (3.8) the

“mode-assisted training”, or “mode training” for short.

We train the NN for nmax iterations (nmax = 2× 105 throughout this work), and the

schedule of when to perform mode updates is determined by calculating the probability of

replacing Eq. (3.4) with Eq. (3.8) at each training iteration step n as:

Pmode(n) = Pmaxσ

(
α

n
nmax

−β

)
, (3.9)

where σ is the sigmoid function, and 0 < Pmax ≤ 1 is the maximum probability of a mode update.

At the beginning of the training, Pmode is then small, but it increases gradually with the number
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of updates, according to the parameters α and β (see inset of Fig. 3.2) 2.

To find vmode, the mode of the RBM distribution, for distributions with a simple data

structure, it suffices to evaluate the amplitudes of mode candidates from the dataset (e.g., |00 · · ·0⟩

and |11 · · ·1⟩ for the GHZ state). For more complicated distributions where identifying the mode

candidates is hard, qmode(v) can be approximated with q(v), and vmode can be sampled from the

joint distribution p(v,h), by employing an optimization solver. This involves minimizing the

RBM energy,

E(v,h) =−∑
i

aivi −∑
j

b jh j −∑
i, j

Wi jvih j, (3.10)

which is a quadratic unconstrained binary optimization problem [159] and is generally NP-hard.

We employ the MemComputing solver [113, 160, 134, 7], which can efficiently generate good

approximations of vmode, and an empirical polynomial scaling for typical RBMs is observed

[134].

We now show that when properly combined with regular CD updates, this off-gradient

mode update greatly increases the stability of the training. This is clearly seen in Fig. 3.2. In the

initial phase of the training, CD is able to learn the support of the distribution but not much else.

As training goes on, the frequency of mode updates is increased to balance between the multiple

modes and bring the RBM distribution as close to the data distribution as possible. In fact, as

the probability of mode updates increases, mode-assisted training easily jumps out of the local

minimum and learns the full distribution with near perfect fidelity.

W-state

In order to show even more clearly that mode-assisted training provides global (long-

range) information during training, we consider the W-state (named after Wolfgang Dür) [161],

2The choice of the sigmoid in Eq. (3.9) is arbitrary: other types of functions can be chosen to accomplish the
same task.
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1 Mode update

9 Mode updates

(a)

(b)

(c)

(d)

Figure 3.3. Training an RBM on the 10-qubit W state. Training data is obtained by performing
projective measurements in the {|0⟩, |1⟩} basis on 104 copies of the state. (a) The fidelity curve
during training. Curves represent medians of 20 runs, and the shaded regions are enclosed by
the maximum and minimum. Mode-assisted training converges quickly to f = 1 with vanishing
variance, leaving a significant gap compared to CD-1. (b) Example of the distribution learned by
the RBM, after training completes. Among all 210 possible configurations, we only plotted the 10
most important ones in the W-state, |10 · · ·0⟩ through |00 · · ·1⟩. While the result of mode-assisted
training is almost perfect, CD-1 produces far less satisfying results. (c) and (d) Smoothing the
noisy distribution learned with CD-1 using additional mode updates. Each mode update locates
the global maximum and “pushes it” down, while all other states “pop up” a bit. Repeated mode
updates would eventually enforce uniformity over multiple modes.
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another N-qubit entangled state given by

|ΨW ⟩= 1√
N
(|100 · · ·0⟩+ |010 · · ·0⟩+ · · ·+ |000 · · ·1⟩) . (3.11)

Similar to the GHZ state, we constructed a synthetic dataset by taking 104 projective

measurements in the {|0⟩, |1⟩} basis on a 10-qubit W-state, and trained two RBMs using CD-1

and mode-assisted training, respectively. Fig. 3.3(a) compares their reconstruction fidelity. In

Fig. 3.3(b), we show the amplitude of the state after training: mode-assisted training quickly

converges to the target distribution almost perfectly, but the result for CD-1 is a lot more noisy.

Again, while CD-1 can correctly locate the mode states (the support of the distribution), it does a

terrible job at matching their amplitudes to the target.

At this point, if we correct the noisy distribution learned with CD-1, we can visualize how

mode-assisted training works. Figs. 3.3(b), (c) and (d) show this procedure, where we applied 10

mode updates to the distribution learned with CD-1. The correction is already significant after

a single mode update: from (b) to (c), the global maximum of the CD-1 distribution is pushed

down, while all other states pop up a bit. Repeating this procedure for an additional 9 times, the

resulting distribution is already very close to uniformity. The direct access to global maxima is

what local samplers like CD lack, and this deficiency cannot be solved by increasing the length

of the sampling chain. This is explicitly shown Appendix 3.1.6. In Appendix 3.1.6, we compare

the performance of mode-assisted training against persistent contrastive divergence [146] and

parallel tempering [147, 148, 149], two advanced (albeit still local) samplers that are designed to

alleviate the slow-mixing problem. Several additional numerical experiments are presented in

Appendix 3.1.6, showing the performance of mode training under different scenarios.

Scalability

So far, we have only considered small systems. Now, we scale up the system size and

show that mode training requires orders of magnitude less number of measurements compared
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to MCMC sampling. As an explicit example we consider the W-state up to 50 qubits, and

focus on two physical quantities: fidelity and number of measurements. To study the effect

of measurements on reconstruction quality, we mimic experiments by first performing a fixed

number of measurements on the exact state, then use the measured results as dataset to train

the RBM model. As shown in Fig. 3.4 for a W-state with N qubits, when fixing the number of

measurements, mode training outperforms CD-1 by one to two orders of magnitude.

Figure 3.4. Comparing the reconstruction fidelity of CD-1 and mode-assisted training for the
W-state with N qubits and fixed amount of measurements. Data points are computed using the
median of 20 runs, and error bars represent corresponding maximum and minimum values. In all
cases, mode-assisted training outperforms CD-1, and the difference is increasing as we increase
the number of measurements, up to two orders of magnitude.

Next, we fix a target fidelity and estimate the amount of measurements required to reach
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that fidelity. For better comparison, we also included results from the maximum likelihood

method, a brute-force approach for quantum state tomography [153]. The difference is drastic:

maximum likelihood has a hard time reaching any fidelity using reasonable resources already for

less than 10 qubits. This is due to the exponential space complexity of storing and manipulating

the full density matrix, which allows us to show results only up to 7 qubits in Fig. 3.5.

~𝑁4.1

~𝑁4.1

~𝑁4.2

~𝑁1.7

~𝑁2.2

~𝑁1.2

~𝑁1.3

~𝑁1.5

Figure 3.5. Number of measurements required to reach a certain fidelity for the W state with N
qubits with maximum likelihood, CD-1, and mode-assisted training. Data points are computed
with interpolation, using the best result from 20 runs with fixed number of measurements.

When the fidelity target is not too high ( f ≲ 0.95), CD-1 shows a performance comparable
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to mode-assisted training. However, as the target fidelity increases, CD increasingly struggles

to reach the same fidelity, eventually disappearing from the plot due to its inability to reach the

target with less than 104 measurements. Mode-assisted training, on the other hand, performs

consistently throughout the size range, and shows a sub-quadratic scaling (see Fig. 3.5) in the

number of measurements to reach the target up to the size considered, without much sensitivity

to the target fidelity.

3.1.5 Conclusion

In this work, we have shown that providing global information to the training of an NN

representing quantum states, in the form of the modes of its probability distribution, improves

significantly the reconstruction of such states. The improvement also translates into orders of

magnitude reduction in the number of required measurements. We have employed RBMs as

example, but the method is applicable to other types of NNs [135].

We have also shown that the mode-assisted training method scales very favorably in

terms of number of measurements required to reach a target fidelity as a function of number of

qubits. This result, coupled with optimization methods, like MemComputing [7], to efficiently

sample the mode(s) of multi-dimensional probability distributions, paves the way to solve a wide

variety of quantum problems classically and with considerably less resources.

3.1.6 Appendix

An introduction to restricted Boltzmann machines

For completeness, in this section, we systematically introduce the restricted Boltzmann

machine (RBM) [137].

Fig. 3.1 shows the structure of a typical RBM, where two sets of binary nodes, {vi,h j},

lies on a bipartite graph. One can view the RBM as a classical Ising model, with each binary

node as an individual spin. The weight matrix Wi j parameterizes the interaction between the

spins, and each spin has an external field, ai or b j, acting on it. Combining everything, we can
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define the energy of the RBM:

E(v,h) =−

(
n

∑
i=1

aivi +
m

∑
j=1

b jh j +
n

∑
i=1

m

∑
j=1

Wi jvih j

)
(3.12)

At equilibrium, the distribution of the spins is characterized by the Boltzmann distribution

(hence the name Boltzmann machine):

p(v,h) =
1
Z

e−E(v,h) (3.13)

where Z = ∑v,h e−E(v,h) is the partition function. To model an unknown distribution, we use the

marginal distribution of v,

p(v) = ∑
h

p(v,h). (3.14)

There are two conventions when choosing the values of the binary nodes, either {0,1}

or {+1,−1}, and conversion between the two representations can be easily carried out via a

transformation on the weights and biases [162]. We stick to the former convention, {v,h} ∈

{0,1}n+m. Then, the summation in Eq. (3.14) can be carried out explicitly:

p(v) =
1
Z ∑

h∈{0,1}m

e−E(v,h)

=
1
Z

e∑
n
i=1 aivi

m

∏
j=1

(
1+ eb j+∑

n
i=1 viWi j

) (3.15)

The partition function Z involves a summation over an exponential amount of terms,

making it impossible to evaluate Eq. (3.15) exactly. Instead, the conditional probabilities, p(h|v)

and p(v|h), can be computed efficiently:
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p(h|v) = p(v,h)
p(v)

=
m

∏
j=1

eh j(b j+∑
n
i=1 viWi j)

1+ eb j+∑
n
i=1 viWi j

=
m

∏
j=1

p(h j|v)

(3.16)

with

p(h j = 1|v) = sigmoid(b j +
n

∑
i=1

viWi j),

p(h j = 0|v) = sigmoid(−b j −
n

∑
i=1

viWi j).

(3.17)

Thanks to the bipartite structure of RBM, with fixed v, different h j are independent of

each other, and the conditional probability p(h|v) factors into a product form. Similarly,

p(v|h) =
n

∏
i=1

p(vi|h),

p(vi = 1|h) = sigmoid(ai +
m

∑
j=1

Wi jh j),

p(vi = 0|h) = sigmoid(−ai −
m

∑
j=1

Wi jh j).

(3.18)

Eqs. (3.17), (3.18) can be efficiently computed and are frequently used in the training

and sampling procedures.

To model the target distribution q(v), we train the RBM by minimizing the KL divergence

[156, 157],

KL(q||p) = ∑
v

q(v) log
q(v)
p(v)

. (3.19)

120



Explicitly computing the gradients with respect to the RBM weights, we have:

∂KL(q||p)
∂Wi j

=−∑
v

q(v)
1

p(v)
∂ p(v)
∂Wi j

=−∑
v

q(v)
1

p(v)∑
h

∂ p(v,h)
∂Wi j

=−∑
v,h

q(v)
p(v,h)
p(v)

vih j +
1
Z

∂Z
∂Wi j

=−∑
v,h

q(v)p(h|v)vih j +∑
v,h

p(v,h)vih j

=−⟨vih j⟩q(v)p(h|v)+ ⟨vih j⟩p(v,h)

(3.20)

Similarly,
∂KL(q||p)

∂ai
=−⟨vi⟩q(v)+ ⟨vi⟩p(v,h)

∂KL(q||p)
∂b j

=−⟨h j⟩q(v)p(h|v)+ ⟨h j⟩p(v,h)

(3.21)

With the analytic expression of the gradients, we can use algorithms such as stochastic

gradient descent to train the RBM. However, another problem remains: without access to the

partition function Z, we cannot compute the expectation with respect to p(v,h) efficiently.

To compute the likelihood gradient, Eq. (3.20), one can use a sampling algorithm to

approximate the expectation with respect to p(v,h). The most widely adopted algorithm,

contrastive divergence (CD) [137], starts from a sample v0 from the dataset and constructs a

Markov chain of samples,

v0 → h0 → v1 → h1 → ··· → vk, (3.22)

using the conditional distributions p(h|v) and p(v|h). When k → ∞, the distribution of vk

converges to p(v), and we can approximate the second term in Eq. (3.20) with an expectation

over a batch of sampled vk.
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In practice, k can be chosen to be very small, and the performance of CD-k is reasonable

even with k = 1. In this case, the samples are biased from the actual RBM distribution, and

we are actually minimizing the difference between two KL-divergences [156] (hence the name

contrastive divergence),

KL(q|p)−KL(pk|p) (3.23)

where pk is the distribution of the visible nodes after k steps of the Markov chain. As k → ∞,

pk → p, and the approximation becomes exact.

However, as we will show next, in some cases, the Markov chain does not reach station-

arity even with very large k. When this happens, CD practically fails as a useful sampler, and

mode-assisted training would be necessary to train the RBM successfully [134].

Distance measure on the RBM

In the main text, we mentioned that CD only utilizes local, short-range information,

while mode-assisted training can incorporate global, long-range information into the training

procedure. Here we define precisely what kind of distance we refer to.

Recall that CD utilizes a Markov chain, Eq. (3.22), to sample the state space. At the i-th

step vi → hi → vi+1, the achievable states vi+1 might be limited. In this case, the achievable

states {vi+1} become the “neighborhood” of vi. With respect to the RBM, we define the distance

between two configurations, vi and v j, as

d(vi → v j) =− log

(
∑
h

p(v j|h)p(h|vi)

)
, (3.24)

which is the negative log transition probability from vi to v j. With this definition, we can verify

that d(vi → v j)+d(v j → vk) leads to the transition probability p(vi → v j → vk).

Note that the distance defined in Eq. (3.24) is not symmetric and doesn’t necessarily

satisfy the triangle inequality. Rather, if we view each basis state in the Hilbert space as a vertex

on a graph, Eq. (3.24) will act as the directed graph distance between two vertices. In this way,
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we can define the concept of locality on the graph.

Figure 3.6. Visualization of the graph structure of an RBM, trained on the 6-qubit W-state. Sizes
of vertices represent probabilities in the RBM distribution (not proportional), and width of edges
are proportional to the transition probabilities in the Markov chain during sampling. With this
graphical representation, we can view CD as random walk on the graph.

In Fig. 3.6, we plot the weighted directed graph defined above using the NetworkX python

package [163], with the reference RBM trained on a 6-qubit W-state. Each vertex is numbered

using the decimal representation of its corresponding binary basis vector, with larger vertices

representing larger probabilities in the RBM distribution, and widths of the edges proportional to

the transition probabilities. Edges with transition probabilities less than 0.01 are omitted.

The layout of the vertices are computed using the Fruchterman-Reingold force-directed

algorithm [164], which treats the vertices as repelling objects and edges as springs holding them

close. At equilibrium, the spatial proximity of vertices would more or less characterize the
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distance between basis vectors in the Hilbert space.

Recall that |000001⟩ through |100000⟩ are the six most important bases in the W-state.

In Fig. 3.6, the corresponding nodes 1,2,4,8,16 and 32 form a hexagon, enclosing all other

nodes in it. None of them have an edge connecting each other —in fact, none of them even have

an outgoing edge at all! According to our defined distance measure Eq. (3.24), they are indeed

far apart from each other.

Now, we can view CD-k as random walk on the graph for k steps. Then, it is immediately

obvious that, CD is a local sampler, in the sense that it can only access a small neighborhood

of the starting vertex. What is worse, in Fig. 3.6, the six out-most vertices act as sinks for

the random walker: once it gets in one of them, escaping it is almost impossible. In this case,

ergodicity is practically lost, and CD fails as a useful sampler.

A further look into CD-k

We further demonstrate via a sampling experiment that, access to global minima cannot

be cured with a local sampler, like CD, by simply increasing the length of the Markov chain.

Again, using the RBM trained on the 6-qubit W-state, we start the sampling chain

from one of the modes, and perform CD-k sampling for 104 times. The normalized transition

probability is plotted in Fig. 3.7: the (i, j)-th location in each plot represents pi→ j/p j, the

probability of starting from the i-th state and ending in the j-th state, divided by the probability of

the j-th state in the original distribution. In the ideal case where the Markov chain has sufficiently

mixed, the sampled distribution should converge to the exact distribution and be independent of

the starting point, resulting in pi→ j/p j = 1.

However, as we clearly see in Fig. 3.7 this is not the case. Figures 3.7(a), (b) and (c)

show the results of CD-k, with k = 1,32,1024, respectively. Even with CD-1024, most sampling

chains are still stuck at their starting point. Practically, CD fails as a sampler in this case, as it

cannot properly explore the phase space: when falling into a mode, it cannot easily escape from

it.
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(a) (b) (c)

(d) (e) (f)

CD-1 CD-32 CD-1024

Figure 3.7. Normalized transition probability when sampling a trained RBM with CD-k.
Location (i, j) represents the normalized transition probability, pi→ j/p j, of starting the Markov
chain from configuration i and ending in configuration j. We observe a strong correlation
between the initial and final configuration. (a), (b), and (c) The 6-qubit pure W-state. With
isolated modes and zero amplitude on all other basis, the energy barriers between different
modes is so high that even CD-1024 cannot escape them. (d), (e), and (f) The depolarized
6-qubit W-state with p = 0.4. With a background noise, CD can properly escape from each local
minimum and explore other parts of the phase space.
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(a)

(b)

Figure 3.8. Quantum state tomography on the depolarized W-state. (a) Reconstruction of the
depolarized W-state ρW = (1− p)|ΨW ⟩⟨ΨW |+ p1/2N . Data points are medians over 20 runs,
and error bars represent corresponding maximum and minimum values. Reconstruction is most
difficult at a moderate noise level p ∼ 0.15. (b) Fidelity difference between mode-assisted
training and CD-1. As sampling gets easier with the introduction of the background noise, the
advantage of mode-assisted training gradually disappears.
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We can then naturally ask: for what type of distributions does CD work well? To this

end, we consider the depolarized W-state, whose density matrix is given by:

ρ̂W = (1− p)|ΨW ⟩⟨ΨW |+ p1/2N (3.25)

where p controls the noise level, and N is the number of qubits. To get comparable results to the

pure W-state |ΨW ⟩, we synthesize a similar dataset by perform 2-outcome POVMs described by

the measurement operators Mi = {|0⟩⟨0|, |1⟩⟨1|}. To be specific, in each measurement, the full

measurement operator is the tensor product M = M1 ⊗M2 ⊗·· ·⊗MN , and the outcome of the

measurement can be written as a bitstring v1v2 · · ·vN . In the noiseless limit, this is the projective

measurement in the computational basis, and the outcome bitstrings precisely correspond to the

basis vectors |v1v2 · · ·vN⟩. With the depolarization noise, the second term in Eq. (3.25) acts as a

uniform background noise to the distribution of the measurement outcome. Note, however, that

this measurement is not informationally complete.

In Figs. 3.7 (d), (e) and (f), we show the same sampling experiment, with p = 0.4.

Thanks to the background noise which lowers the energy barrier between different modes, it

now becomes possible for local moves to jump out of the local minima, and the CD chains can

properly converge with increasing chain length k.

Fig. 3.8 shows this effect from another perspective, where we plot the final fidelity after

training versus the noise level p, on the depolarized 10-qubit W state. Unlike some works

claiming that the noiseless limit is the hardest to learn [142], here we find that the difficulty

peaks near p ∼ 0.15. We suspect this is due to the fact that the model has to learn the exact

amplitude of a small but nonzero background noise, which is more difficult than simply setting

the background to zero.

Irrespective, since the background noise greatly eases the burden of sampling, the

advantage of mode-assisted training gradually disappears as p increases, until both methods

converge to f = 1 as p → 1. Such strongly noisy states are easier for local samplers, as local
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moves would be sufficient to explore the entire phase space, and this difficulty is tunable as we

change the parameter p. This further reinforces the notion that approaches providing non-local

information to the training (as the one we have discussed here) are very important for quantum

states with strongly non-local features.

Advanced samplers

To overcome the weaknesses of CD, many advanced sampling algorithms have been

proposed, aiming at alleviating the slow mixing problem of the Markov chain. In this section,

we examine two notable examples, persistent contrastive divergence (PCD) [146] and parallel

tempering (PT) [147, 148, 149].

The quality of the samples drawn by CD depends strongly on the length of the Markov

chain. Generally, CD-k with a large k performs better than CD-1, at the expense of much longer

running time.

PCD builds on the idea that, instead of starting a new Markov chain for sampling at every

training step, one can maintain one Markov chain throughout the entire training process. With a

small learning rate, the RBM distribution only changes slightly at every training step. Therefore,

if the Markov chain is sufficiently mixed at the previous training step, it will be close enough to

equilibrium at the next training step. By maintaining one Markov chain throughout training, one

is essentially using CD-k, with k very large.

PT is also known as replica exchange MCMC sampling, which maintains many copies of

the system at different temperatures, and exchange of configurations at different temperatures is

allowed according to some acceptance criteria. Since higher temperatures allow the system to

explore the high energy configurations more efficiently, the resulting algorithm is less prone to

getting stuck in local minima.

For training RBMs, PT maintains N copies of the same RBM, with the distributions

pi(v) =
e−βiE(v)

Z
(3.26)
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for a set of gradually increasing temperatures {T1,T2, · · · ,TN}, with βi = 1/Ti denoting the

inverse temperature. T1 = 1 corresponds to the original RBM distribution, and TN is usually

chosen to be a very large number (e.g., TN = 100) to ensure a proper exploration of the entire

phase space. When running the Markov chain, each copy of the system evolves on its own using

Gibbs sampling, and an additional cross-temperature state swap move is introduced. At each

sampling step, two neighboring configurations vi,vi+1 are exchanged with probability

r =
pi(vi+1)pi+1(vi)

pi(vi)pi+1(vi+1)
. (3.27)

Using Eq. (3.26), Eq. (3.27) becomes

r = exp
(
(βi −βi+1)(E(vi)−E(vi+1)

)
. (3.28)

While PCD and PT have already seen some success at training RBMs [146, 147, 148,

149], here, we show that they are not as effective in our case. Fig. 3.9 compares the performance

of CD, PCD, PT and mode-assisted training, on the N-qubit W-state. With enough measurements,

mode-assisted training consistently outperforms all other methods by at least one order of

magnitude. PCD has the worst performance, and PT only outperforms CD on smaller systems.

PCD and PT are designed to improve on CD, but why are we seeing worse performance

here? To understand this behavior, let us again focus on Fig. 3.6. While PCD and PT are designed

to alleviate the slow mixing problem, their underlying proposal and acceptance steps are the

same as CD. Therefore, they are still random walkers on Fig. 3.6, except with a new set of

random walk rules, and they suffer from the same problem as CD: the random walker will get

stuck on one mode configuration, unable to escape, and ergodicity is lost. Importantly, PCD and

PT start from random initial conditions, and the distribution of the ending mode state they get

stuck in is likely biased from the RBM distribution. While CD also gets stuck, it is initialized

with configurations from the dataset, and the ending distribution will be much closer to the actual
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Figure 3.9. Comparison of 4 different training methods on the W-state. Data points are medians
of 5 runs, and error bars represent the maximum and minimum values. Mode-assisted training
consistently outperforms other methods.
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RBM distribution.

Again, we see the superiority of mode-assisted training, and the usefulness of global

information. While PCD and PT may offer improvements compared to CD in certain cases, they

are still local samplers, in the sense that they only utilize local information, performing a random

walk on a small region of the graph. One potential improvement for them could be explicitly

providing global information at the proposal-acceptance step, like mode-hopping moves [150].

But again, doing so requires prior knowledge to the target distribution, while mode-assisted

training achieves this automatically.

Further numerical experiments on entangled quantum systems

In this section, we further test the capabilities of mode-assisted training on two more

highly-entangled quantum systems: the transverse-field frustrated Ising model (TFFIM) on the

triangular lattice [165, 166], and the toric code model [167]. As a proof-of-concept demonstration,

we focus on small systems where exact results are available using exact diagonalization, and

compare the performance between mode-assisted training and CD-1.

Fig. 3.10 is an illustration of the TFFIM on the triangular lattice. The Hamiltonian reads:

H = J ∑
⟨i, j⟩

σ
z
i σ

z
j −h∑

i
σ

x
i , (3.29)

where J is the nearest-neighbor antiferromagnetic Ising coupling and h is the transverse field. In

this demonstration, we choose h = J = 1.

Without the transverse field, frustration would lead to a highly degenerate ground state

[168]. Together with the transverse field, we arrive at a ground state wave function multi-modal

in the σ z basis.

In Fig. 3.11 (a), we plot the exact ground state of the 4× 4 TFFIM on the triangular

lattice. A synthetic dataset is generated by taking 104 projective measurements on this state, and

we perform quantum state tomography on it using methods described in the main text.
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(a) (b)

Figure 3.10. (a) An illustration of the triangular lattice. (b) A frustrated loop. With antiferromag-
netic interactions, two neighboring spins tend to anti-align with each other, leaving the direction
of the third spin undetermined.

The result is shown in Fig. 3.12: the performance of mode-assisted training and CD-1

are comparable. This is an example where CD already works very well, and we would not

gain much from mode-assisted training. The reason is similar to the frustrated W-state we just

showed: the background structure in the distribution in Fig. 3.11 (a) helps the sampler to jump

between different modes, and the quality of the samples is already good using CD-1. In such

cases, mode-assisted training would be an overkill.

Another example is the toric code model [167]. It was already demonstrated that an

RBM can exactly and efficiently represent the ground state of the toric code, with analytically

computable RBM weights [169, 170, 171]. However, the story is quite different if we actually

train an RBM with data sampled from the toric code state, which is what it would happen in an

actual experiment.

Fig. 3.11 (b) shows one ground state of the 2× 2 toric code model: a multi-modal

distribution with isolated modes, which, according to our analysis, is difficult for local samplers

such as CD. The training curve in Fig. 3.13 confirms this prediction. Even for the 2×2 toric

code state with 8 qubits, CD-1 performs rather poorly, while mode-assisted training can achieve
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(a)

(b)

Figure 3.11. Visualization of the wave functions. (a) The ground state wave function of the
3×3 TFFIM. (b) One ground state of the 2×2 toric code model. While both distributions are
multi-modal, the first distribution has a structured background, making jumps between modes
easier. On the contrary, the second distribution has isolated modes, making it difficult for local
samplers to capture the entire distribution.
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Figure 3.12. The training curve on the 4× 4 TFFIM. Since sampling from this state is easy,
mode-assisted training and CD-1 have comparable performance.

near perfect fidelity. And in the 3×3 case, CD-1 completely fails with final fidelity less than 0.1,

but mode-assisted training can still reasonably reconstruct this state with fidelity near 0.9.

We can now clearly understand when the mode training is particularly advantageous. If a

local sampler like CD performs well when training the RBM, then mode-assisted training would

not be very useful. But for multi-modal states with strongly non-local features, mode-assisted

training can offer significant advantages over traditional methods.

This section, in full, is a reprint of the material as it appears in Physical Review A [4].

Yuan-Hang Zhang, Massimiliano Di Ventra, 2022. The dissertation author was the primary

investigator and author of this paper.
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Figure 3.13. The training curve of the 2×2 and 3×3 toric code state. CD-1 completely fails,
while mode-assisted training still performs reasonably well.
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3.2 Solving quantum many-body problems with transform-
ers

Inspired by the advancements in large language models based on transformers, we

introduce the transformer quantum state (TQS): a versatile machine learning model for quantum

many-body problems. In sharp contrast to Hamiltonian/task specific models, TQS can generate

the entire phase diagram, predict field strengths with experimental measurements, and transfer

such a knowledge to new systems it has never been trained on before, all within a single model.

With specific tasks, fine-tuning the TQS produces accurate results with small computational

cost. Versatile by design, TQS can be easily adapted to new tasks, thereby pointing towards a

general-purpose model for various challenging quantum problems.

3.2.1 Introduction

Determining the state of a quantum many-body system is one of the fundamental problems

in physics. While the exponential growth of the Hilbert space precludes brute-force calculations,

computational methods such as quantum Monte Carlo [172] and tensor network-based methods

[173] allow for efficient simulations of certain problems, each with their own strengths and

weaknesses.

More recently, the advancements in machine learning techniques and models have

influenced the physics community. In fact, the introduction of neural networks (NNs) as

variational states for quantum many-body problems has greatly expanded the types and sizes of

systems that can be efficiently tackled. For instance, the restricted Boltzmann machine [174, 156]

was the first NN model applied to correlated quantum systems [136], followed by models with

different architectures such as feed-forward [141, 175], convolutional [176, 177], recurrent

[178], and autoregressive [179, 180, 181] ones. With the ability to encode area and volume-law

entanglement [182], NNs are especially advantageous in dealing with high-dimensional systems.

And with proper tricks, they can also greatly ease the fermion sign problem [141]. Yet, despite
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these successes, the previous approaches are limited to specific tasks.

Recently, a new task-agnostic model has been put forward by the machine learning

community: the transformer architecture [183]. Since its introduction, this model has dominated

the field by achieving state-of-the-art results in almost every natural language processing task

[184, 185, 186, 187], thus rendering the recurrent neural networks obsolete in merely a few years.

Transformers have also been adapted to different tasks such as image recognition [188], audio

processing [189] and graph classification [190], all achieving remarkable results.

This feat relies on an impressive aspect of transformer models: their ability to scale to

very large sizes [187, 191]. When facing with a new task, few-shot learning [187] allows a

general purpose model to easily adapt with merely a few examples in natural language. And

when better performance is desired, fine-tuning on a small dataset produces satisfactory results

within a short time [186].

These results give hope that such an architecture may be of great help in quantum physics

as well. However, the application of transformers in this field is still rather limited, with a few

results concerning quantum lattice models [181], open systems [192], quantum state tomography

[143] and quantum circuit simulation [193], while the task-agnostic property is barely used.

Therefore, the full potential of the transformer architecture has yet to be explored.

Contrary to the general-purpose models mentioned above, NN models in physics are

usually highly specialized, serving a single purpose such as representing wave functions

[136, 141, 175, 176, 177, 178, 179, 180], preparing and controlling quantum states [193, 194],

recognizing phase transitions [195, 196], realizing quantum state tomography [140, 143, 197],

etc. Such tasks share a lot of common knowledge, making it ideal to have a single, unified

model that handles them all, with the possibility of discovering new physics at the intersection of

different tasks.

As a first step, we may consider using NNs as variational wave functions. Traditionally,

each NN can only represent a specific quantum state, and tasks such as generating a phase

diagram requires retraining of the same NN from scratch for hundreds of times, even if nearby
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Figure 3.14. The structure of a TQS. Left: the overall architecture of our model. We use the
standard encoder-only transformer architecture, utilizing an embedding layer to map different
inputs into a single unified feature space, and pass them through N identical transformer encoder
blocks, followed by two different output heads, parameterizing the amplitude P and phase φ ,
respectively. Middle: The structure of a transformer encoder block. Right: the mask structure
in a masked self-attention operator. Squares with a cross represent the masks, blocking the
flow of information, so that each site only has access to its predecessors. This ensures that the
autoregressive property is satisfied.

data points have similar features.

In this paper, we consider a different perspective: instead of modeling a specific quantum

state, we attempt to represent a family of quantum states within a single neural network. More

precisely, we focus on the joint distribution of the wave function and relevant physical parameters

such as interaction strength, external field, and/or system size. For the underlying NN, we choose

the transformer architecture for its versatility and strong performance across different tasks.

We call this model a transformer quantum state (TQS), and show that it is capable of

generating the entire phase diagram of a many-body system, predicting field strengths with as

few as one experimental measurement, and transferring knowledge to new systems it has never

seen before, all within a single model.

3.2.2 Transformer Quantum State

Consider the probability distribution P(s,J)≡ P(s1, · · · ,sn,J1, · · · ,Jm), where si ∈ {0,

1, · · · ,d −1} are discrete variables representing the physical degrees of freedom such as spin
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or occupation number, and J j correspond to other physical parameters, either continuous or

discrete. Such a state space grows exponentially with the number of variables, and a compact

representation is desired.

To represent P(s,J), we adopt the transformer architecture, and autoregressively model

the entire distribution as a product of conditional distributions,

P(s,J) = P(J)
n

∏
i=1

P(si|s1, · · · ,si−1,J). (3.30)

The structure of the transformer is shown in Fig. 3.14, with each output of the neural

network representing one of the conditional distributions. For a detailed explanation of the

transformer architecture, see Appendix 3.2.5.

Contrary to energy-based models such as restricted Boltzmann machines [136], the

autoregressive structure allows for efficient sampling [179]. Since each conditional probabil-

ity P(si|s1, · · · ,si−1,J) does not depend on any variable s j with j > i, starting from s1, one

can sequentially sample si according to the previously sampled configurations, using the i-th

conditional distribution only. Using the idea developed in [180], efficiency of the sampling

algorithm can be further improved by only sampling unique configuration strings, and the details

are explained in Appendix 3.2.5.

We assume that J has a predefined prior distribution P(J), which, in general, can be

chosen as a uniform distribution over the range of interest (e.g., to study the transition in the

Heisenberg J1-J2 model [198, 177], one can fix J1 = 1 and make J2 uniform over [0,1]).

Our aim is to model quantum states |ψ(J)⟩, which are complex-valued quasiprobability

distributions. To this end, we expand them in the computational basis and separate their amplitude

A and phase φ ,

|ψ(J)⟩= ∑
s

ψ(s,J)|s⟩

= ∑
s

A(s,J)exp(iφ(s,J))|s⟩.
(3.31)
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Since squared amplitude has the probability interpretation, we choose

A(s,J) =
√

P(s,J), (3.32)

with P(s,J) specified in Eq. (3.30). The phase φ has no restrictions and can be either positive or

negative, and we represent it with a similar autoregressive structure:

φ(s,J) = ∑
i

φ(si|s1, · · · ,si−1,J). (3.33)

Ground state of a family of Hamiltonians

The first task we consider is finding the ground state |ψ⟩ of many-body Hamiltonians.

Per the standard procedure, this can be done by minimizing the variational energy estimation,

⟨ψ|Ĥ|ψ⟩, over the target Hamiltonian Ĥ. A minor complication is that, instead of a single

Hamiltonian Ĥ, we have now a family of Hamiltonians {Ĥ(J)}. In Appendix 3.2.5, we show that

the family of ground states |ψ(J)⟩ corresponds to the ground state |Ψ⟩ of the super-Hamiltonian

Ĥ =
⊕

J
Ĥ(J)
|Eg(J)| in the extended Hilbert space, and we can optimize the TQS by minimizing

⟨Ψ|Ĥ |Ψ⟩, which follows the standard procedure.

Once we have the family of ground states ψ(s,J), an immediate application is to estimate

the physical parameters J using samples s from the wave function. This follows trivially from

the conditional probability:

P(J|s) = P(s,J)
P(s)

. (3.34)

In practice, given a set of measurements {sk}, J can be predicted using standard maximum

likelihood estimation [199], by maximizing the log-likelihood functional,

L (J) = ∑
k

logP(sk|J). (3.35)
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In this way, we can efficiently determine physical properties of a quantum system with few

measurements. Details of the implementation can be found in Appendix 3.2.5.

This task is somewhat similar to shadow tomography [200, 201], in the sense that

we are predicting properties of a quantum system with a few measurements, but with more

restrictions and with certain prior knowledge required. On the other hand, Ref. [195] considered

another similar task of recognizing phases from measurements using machine learning, which

is formulated as a classification task. In comparison, our task falls in the middle of the two

mentioned above, and to the best of our knowledge, it has never been proposed. Under this

setting, the TQS can handle this task extremely efficiently. In fact, with the prior knowledge

that a quantum state |ψ⟩ comes from a family of states |ψ(J)⟩, we can efficiently determine the

physical parameters J, with as few as one measurement only.

Furthermore, we show that the TQS can transfer knowledge to new systems it has never

seen before. This follows the pre-training plus fine-tuning methodology commonly adopted in

natural language models [184, 185]. In the zero-shot setting [187], after training on the family

of Hamiltonians Ĥ(J), TQS can generate the ground state of new Hamiltonians Ĥ(J∗) with

J∗ /∈ {J}, albeit with slightly larger error. When higher accuracy is desired, one can fine-tune the

TQS on the specific Hamiltonian Ĥ(J∗), to obtain accurate results within a much shorter time

comparing to learning from scratch.

3.2.3 Results

As a prototypical test bed, we first examine the 1D transverse field Ising (TFI) model,

whose Hamiltonian is

Ĥ =−J
n−1

∑
i=1

σ
z
i σ

z
i+1 −h

n

∑
i=1

σ
x
i , (3.36)

where J is the coupling constant and σ z and σ x are Pauli matrices. In Appendix 3.2.5, we also

provide numerical results on the 1D XYZ model.
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Ground state calculations

To begin with, we pre-train the TQS on the family of TFI Hamiltonians Ĥ(n,h), specified

in Eq. (3.36). We fix J = 1, and assume a uniform distribution of the transverse field h∈ [0.5,1.5].

The system size n can take any even integer value with equal probability in the range of [10,40].

We explicitly enforced parity and spin flip symmetry on the TQS, with details elaborated in

Appendix 3.2.5.

After pre-training for 105 iterations, we plot the ground state energy, E, and magnetization

along the z direction, mz = ∑i⟨σ z
i ⟩/N, for n = 40, h ∈ [0,2], in Fig. 3.15. Since we explicitly

symmetrized the TQS with the |0⟩ ↔ |1⟩ spin flip symmetry, we always have ⟨mz⟩= 0, so ⟨|mz|⟩

is plotted instead. Note that while the TQS is only trained in the range of h ∈ [0.5,1.5], it can

infer the properties of the ground state when h ∈ [0,0.5) and h ∈ (1.5,2] with slightly larger

error, without any additional inputs except the value of h.

Finite-size scaling can be easily carried out using TQS. With a variable input length, we

can represent an arbitrary number of degrees of freedom within a single TQS model. Using the

same model trained with h ∈ [0.5,1.5], in Fig. 3.16 we show that finite-size scaling analysis on

the TFI model correctly identifies the phase transition point h = 1, and the predicted critical

exponents satisfy β/ν = 0.130±0.010, which match the theoretical predictions β = 1/8, ν = 1.

Details of the calculation can be found in Appendix 3.2.5.

Similar experiments are carried out where the TQS is trained in the range h ∈ [0,0.5]∪

[1.5,2], and the results are shown in Fig. 3.17. Although training is only carried out either deep

in the ferromagnetic phase or paramagnetic phase, TQS can still infer the ground state energy

and magnetization of TFI near the phase transition with reasonable accuracy.

However, in Appendix 3.2.5 we show that, this interpolated state undergoes phase

transition at h = 1.24 instead of h = 1, with critical exponents different from the usual Ising

transition. Without access to training data near the phase boundary, TQS cannot accurately

predict the phase transition. Rather, it generates a fictitious physical system with its own critical
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(a)

(b)

Figure 3.15. Results on the ground state of the TFI Hamiltonian, Eq. (3.36), with n = 40. Lines
and data points are medians of 10 estimations, while shaded regions and error bars enclose 10th

to 90th percentile. Dotted lines are generalizations to regions TQS has not been trained on. (a)
The relative error of the ground state energy, ∆E = |(E −Eground)/Eground|. Eground is estimated
with DMRG, which is accurate up to 10−10. (b) Absolute value of the magnetization along the z
direction, ⟨|mz|⟩. We can observe the transition near h = 1.
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(a)

(b)

Figure 3.16. Finite-size scaling calculations on the TFI model, using the TQS trained with
h ∈ [0.5,1.5]. (a) Binder cumulant [202], UN = 1− ⟨m4

z ⟩N

3⟨m2
z ⟩2

N
, plotted for various system sizes

N. At the critical point hc, UN is invariant with the system size N, and finding the crossing of
various UN curves can help us determine the critical point. In this figure, we identify hc = 1,
which agrees with the theoretical prediction. (b) Finite-size scaling of the mean-square-root
magnetization [203] at the critical point h = 1. Using the finite-size scaling ansatz [204], at the
critical point,

√
⟨m2

z ⟩|hc ∼ N−β/ν . A linear fit on the log-log scale gives β/ν = 0.130±0.010,
which matches the theoretical values β = 1/8 and ν = 1.
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behaviors.
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Figure 3.17. Relative error of the ground state energy of the TFI Hamiltonian, Eq. (3.36), with
n = 40. Lines and data points are medians of 10 estimations, while shaded regions and error bars
enclose 10th to 90th percentile. Dotted lines are generalizations to regions TQS has not been
trained on. Data points below 10−7 are not shown for a clearer illustration.

At this point, we further fine-tune the TQS on specific points Ĥ(n∗,h∗) for an additional

2×103 iterations, and the results are also shown in Figs. 3.15, 3.17. Outside of the pre-trained

region, the accuracy improved dramatically up to a few orders of magnitudes. Within the

pre-trained region, there is also a small improvement in accuracy, but not as much since the

pre-trained model already works well.

As a further test, we fix h = 1, and compute the ground state energy of systems with

different sizes n ∈ [10,80] (using the model trained in h ∈ [0.5,1.5]). The result is plotted in

Fig. 3.18. Again, even if the pre-trained model has never seen any system with more than 40

spins, it can generalize to much larger systems, and their energy estimations can be greatly

improved by fine-tuning for an additional 2×103 iterations.
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Figure 3.18. Relative error of the ground state energy of the TFI Hamiltonian, Eq. (3.36), with
h = 1. Lines and data points are medians of 10 estimations, while shaded regions and error bars
enclose 10th to 90th percentile. Dashed lines are generalizations to regions TQS has not been
trained on. The pre-trained TQS can infer the ground state energy of much larger systems than
what it is trained on, without any additional input except the system size n, albeit with slightly
larger error. By fine-tuning with an additional 2×103 iterations, the accuracy improves by an
order of magnitude.
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Predicting parameters

Next, with the learned distribution P(s,n,h), we want to predict the transverse field

h using experimentally available measurements. To this end, we simulate the experiment by

computing the ground state of the TFI model using the density matrix renormalization group

(DMRG) [173, 205], and generate a synthetic dataset with projective measurements in the

computational basis. Details of DMRG calculations can be found in Appendix 3.2.5.

We fix n = 40, and predict h by maximizing Eq. (3.35), the log-likelihood functional,

with varying number of measurements. The results are shown in Fig. 3.19. Surprisingly, with

as few as one measurement, TQS gives reasonable estimations of h. Increasing the number of

measurements improves the quality of prediction, and an empirical power law scaling of the

prediction error versus the number of measurements is observed.

3.2.4 Discussion

In summary, our results demonstrate how the TQS learns various ground state properties

of a physical system, and appropriately uses the acquired knowledge to solve new problems.

TQS marks the first step towards a general purpose model for quantum physics. Although we

only explored here the ground states of many-body Hamiltonians, it is possible to encode many

additional operations and information into the TQS, such as unitary transformations, time evolu-

tion, positive operator-valued measurements, etc. Thanks to the flexibility of neural sequence

models and the transformer architecture, all the additional information can be formulated as new

tokens to be passed into the embedding layer, thus maintaining the model structure simple and

unified.

Limited by available computational resources, we were unable to train larger models

for a wider range of tasks. But we believe that, with the advancements in the development of

new computing paradigms such as MemComputing [7], such models can be pushed even further.

This would help researchers understand various challenging quantum phenomena, and assist
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(a)

(b)

Figure 3.19. (a) The predicted field strength h̃ vs. the actual field strength h, with varying
number of measurements. Solid lines are mean values of 10 predictions, and shaded regions
enclose one standard deviation. The dashed line represents the expected result, h̃ = h. (b) Scaling
of the prediction error, |h̃− h|, and standard deviation, σh̃, vs. the number of measurements.
Each data point is computed with 10 predictions. We observe an empirical power law scaling,
with |h̃−h| ∼ N−2.05

measure and σh̃ ∼ N−1.69
measure.
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them in the design and characterization of near-term quantum devices.

3.2.5 Appendix

Transformer implementation details

As illustrated in Fig. 3.14, we adopt the standard encoder-only transformer structure

[183]. The discrete spin variables si are first one-hot encoded [206], and the parameters J j are

represented with a scaled one-hot vector. To input interaction strengths and external fields, the

scale is the value of the interaction itself. To input the system size n, we choose the scale to be

lnn , and append another parity dimension to the input vector, indicating whether n is even or

odd.

Since the input does not entirely consist of one-hot vectors, the embedding layer performs

a linear transformation, mapping the input vectors into a de dimensional embedding space.

We use a mixed-style positional encoding. The spin variables si have a well-defined

position, and we use the D-dimensional sinusoidal positional encoding [183, 207] on them,

where D is the spatial dimension of the physical system. This ensures that the neural network

can correctly generalize to larger system sizes it has never been trained on before. On the other

hand, the parameters J j do not have a position, and we use a learnable positional encoding [188]

instead.

After embedding and positional encoding, we pass the embedded inputs through N

identical transformer encoder layers, with structures defined in [183]. The feed-forward sublayer

consists of two linear layers, with the hidden dimension in the middle also being de. We use

multi-head self-attention [183] with 8 heads for the larger model, and 2 heads for the smaller

model. ReLU activation [208] is used throughout the neural network.

After N transformer encoder layers, we use two output heads to model the amplitude and

phase of the target wave function. The amplitude head is a linear layer followed by a softmax

activation [209], and the phase head is a linear layer followed by a softsign activation, which is
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defined in [178] and computes the function (−∞ < x <+∞)

softsign(x) =
x

1+ |x|
. (3.37)

We scale the softsign output by π , to output a phase in the range of (−π,π).

The TQS mentioned in the main text has N = 8 transformer encoder layers with em-

bedding size de = 32, and the number of parameters is about 7.7×104. The smaller model in

Appendix 3.2.5 has N = 2 transformer encoder layers with embedding size de = 16, resulting in

5.2×103 parameters. The implementation of TQS is carried out using the PyTorch library [210].

Variational optimization of the ground state energy

TQS is trained by minimizing the ground state energies of a family of Hamiltonians,

{Ĥ(J)}.

For a single Hamiltonian Ĥ, the energy derivative reads [136]:

∂E
∂θk

= 2Re
(〈

Eloc(s)
∂ logψ(s)∗

∂θk

〉
P(s)

)
(3.38)

where ⟨·⟩P(s) denotes expectation over the distribution P(s), and

Eloc(s) = ∑
s′

Ĥ(s,s′)
ψ(s′)
ψ(s)

(3.39)

is the local energy estimator.

Since the autoregressive wave function is explicitly normalized, it is shown in [178] that

the variance of the gradient can be reduced by subtracting a baseline energy,

∂E
∂θk

= 2Re
(〈(

Eloc(s)−⟨Eloc(s′)⟩P(s′)
)∂ logψ(s)∗

∂θk

〉
P(s)

)
(3.40)
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without introducing bias. This follows from

Re
〈
⟨Eloc(s′)⟩P(s′)

∂ logψ(s)∗

∂θk

〉
P(s)

=⟨Eloc(s′)⟩P(s′)∑
s

P(s)
1
2

1
P(s)

∂P(s)
∂θk

=
E
2

∂

∂θk
∑
s

P(s) =
E
2

∂

∂θk
1 = 0.

(3.41)

In our problem setting, we have a family of Hamiltonians Ĥ(J) parameterized by J, with

ground state energies Eg(J). Without loss of generality, we suppose all Eg < 0; otherwise we

can simply shift the energy levels by adding a constant. Then, we define the super-Hamiltonian,

Ĥ =
⊕

J

Ĥ(J)
|Eg(J)|

, (3.42)

to be the direct sum of all (possibly infinite) Hamiltonians H(J), weighted by their ground state

energies, 1
|Eg(J)| . Note that Ĥ is block diagonal, with no interaction across different J. One can

easily show that, the ground state of Ĥ is the direct sum of all ground states, |Ψ⟩=
⊕

J |ψ(J)⟩,

Ĥ |Ψ⟩=

(⊕
J

Ĥ(J)
|Eg(J)|

)(⊕
J
|ψ(J)⟩

)

=
⊕

J

Ĥ(J)|ψ(J)⟩
|Eg(J)|

=−
⊕

J
|ψ(J)⟩=−|Ψ⟩

(3.43)

with eigenvalue −1. Therefore, we can follow the standard procedure and minimize

⟨Ψ|Ĥ |Ψ⟩= ∑
J

⟨ψ(J)|Ĥ(J)|ψ(J)⟩
|Eg(J)|

. (3.44)

We don’t have access to the exact ground state energies Eg(J), so we instead approximate

them with variationally approximated ground state energies, Ẽg(J) = ⟨Eloc(s,J)⟩, which become
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increasingly more accurate as optimization goes on.

In practice, at each optimization iteration, we sample a random J according to P(J), and

compute the energy derivative Eq. (3.40), scaled by 1
|Ẽg(J)|

. We set an upper limit of 5 to the

scaling factor, to avoid divergences when Ẽg(J)→ 0 during optimization.

The entire training procedure is carried out using the Adam optimizer [59], with β1 = 0.9

and β2 = 0.98. We varied the learning rate during training according to the formula,

lr(istep) = 5d−0.5
e min(i−0.75

step , istepi−1.75
warmup) (3.45)

where de is the embedding size of the model, istep is the current number of training steps, and

iwarmup is the number of warm up steps. We used iwarmup = 4000. This corresponds to linearly

increasing the learning rate during the first 4000 iterations, and polynomially decreasing it during

the rest of the training. This learning rate schedule is inspired from [183]. During fine-tuning,

we use a different learning rate schedule:

lr(istep) = 5d−0.5
e (istep +105)−0.75. (3.46)

Sampling algorithm

The autoregressive structure of TQS already makes sampling efficient, and the efficiency

is further improved by adopting the sampling algorithm in [180], which only samples unique

configuration strings.

During sampling, we first fix a large batch size, Nbatch, and autoregressively sample the

spins to form partial strings, sk = s1s2 · · ·si, with associated number of occurrences, nk. At the

(i+1)-th sampling step, si+1 is sampled from the conditional distribution P(si+1|s1, · · · ,si,J),

resulting in nk0 occurrences of si+1 = 0 and nk1 occurrences of si+1 = 1, with nk0 + nk1 = nk.

After this step, we obtain two unique partial strings, sk0 = s1s2 · · ·si0 and sk1 = s1s2 · · ·si1, with

occurrences nk0 and nk1, respectively. This procedure starts from an empty set and is repeated
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until the number of unique strings reaches a maximum, Nunique, after which no new partial string

branches are generated, and the remaining spins are sampled in the regular way.

The complexity of this sampling algorithm is approximately proportional to Nunique and

does not depend on Nbatch. Therefore, we can choose extremely large batch sizes to greatly

improve on the accuracy of estimated expectation values, with negligible increase in computation

time. For all the experiments mentioned in this paper, we choose Nbatch = 106, Nunique = 102

during training, and Nunique = 103 during evaluations.

Implementing symmetries

The transformer architecture itself does not observe any symmetry, but most Hamiltonians

do. To impose symmetries without spoiling the autoregressive structure, we follow the approaches

in previous works [175, 178, 179] and explicitly symmetrize the wave function in a similar way.

Suppose T̂ is a discrete symmetry of Ĥ, with T̂ m = 1 (m ∈ N). By definition, we have

[Ĥ,T̂ ] = 0, and one can simultaneously diagonalize both operators within the same eigenbasis.

Under this basis, the ground state |ψ⟩ is also an eigenstate of T̂ ,

T̂ |ψ⟩= ωT̂ |ψ⟩ (3.47)

where ωT̂ = e2πik/m, k ∈ N. Expanding Eq. (3.47) in the computational basis, we get

ψ(T̂ −1s) = ωT̂ ψ(s). (3.48)

In terms of amplitude and phase, Eq. (3.48) becomes

A(T̂ s) = A(s),

φ(T̂ s) = φ(s)− 2πk
m

.
(3.49)

The output wave function from TQS clearly does not satisfy Eq. (3.49). To explicitly
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enforce the symmetry T̂ , we define

P̃(s) =
1
m

m−1

∑
n=0

P(T̂ ns)

φ̃(s0) = Arg

(
m−1

∑
n=0

ψ(T̂ ns0)

)

φ̃(T̂ ns0) = φ̃(s0)−
2πkn

m

(3.50)

where ψ(s) =
√

P(s)eiφ(s), P, φ are outputs from the TQS, and P̃, φ̃ are symmetrized probability

and phase, respectively. s0 is an arbitrary initial configuration in each symmetry sector, predefined

so that the phases within the symmetry sector can be assigned consistently. We choose s0 to be

the configuration with the smallest decimal value, converted from its binary bitstring, within

each symmetry sector.

Sampling from the symmetrized wave function has almost no additional computational

cost. We follow the same procedure detailed in the previous section, and apply a random

symmetry operation T̂ n to the sampled configuration s in the end [179, 178]. However, to

compute the exact value of ψ(s), one needs to evaluate all configurations within the symmetry

sector and explicitly calculate Eq. (3.50), which is m times more expensive.

Another symmetry worth mentioning is the U(1) symmetry of the Heisenberg model,

which leads to zero magnetization. This symmetry is particularly easy to implement, and we

follow the same method developed in [178], by setting the probability of a partial string to 0

whenever the number of up spins or down spins exceeds half of the system size.

Note that, while the Hamiltonian Ĥ may satisfy several symmetries T̂1,T̂2, · · · , it is

possible that [T̂1,T̂2] ̸= 0, making it impossible to diagonalize all symmetries at the same time.

However, this does not pose a problem for us. Although T̂1 and T̂2 do not commute in general,

they do commute in certain symmetry sectors (for example, ωT̂1
= ωT̂2

= 1). To implement

symmetries, we need to know ωT̂ as a prior knowledge, and this information then helps us

determine all compatible symmetries.
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As another remark, in our implementation of TQS, we only enforced the symmetries T̂

with ωT̂ = 1. We noticed that, any symmetry with ωT̂ ̸= 1 would impose a non-trivial phase

structure to the wave function, which is somewhat arbitrary and could significantly slow down

the training.

Predicting parameters

With the learned distribution P(s,J), we can predict the parameters J from a batch of

measurements {si}. As illustrated in the main text, this is achieved through maximizing the

log-likelihood functional Eq. (3.35).

We carried out the maximization using the Nelder-Mead method [211], a heuristic

searching algorithm based on a moving simplex, implemented in the SciPy library [212], with a

tolerance of 10−9.

An alternative method to predict the parameters would be supervised fine-tuning, which

adds a parameter prediction head as an additional output of TQS. This would have the advantage

of reducing the computational cost to one forward pass, at the expense of fine-tuning cost. We

leave this as a future work.

Note that we didn’t use any phase information during the prediction. To make use of

the phase structure, one needs to perform measurements in different bases, and compute a

generalized likelihood function that takes all bases into account. For this, we refer the readers

to [140]. Alternatively, it is possible to use informationally-complete positive operator-valued

measurements (IC-POVM) to encode the complete information of a quantum state, which is

developed in [142]. We can adapt the TQS structure to be compatible with IC-POVM, which we

also leave as a future work.
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DMRG calculations

For the 1D transverse field Ising model in the main text and the 1D XYZ model in

Appendix 3.2.5, we use density matrix renormalization group (DMRG) as a benchmark to

evaluate the performance of our algorithm. DMRG can be extremely accurate for 1D systems,

yet performs rather poorly in 2 or more dimensions [173].

We used the TeNPy library [205] to perform DMRG calculations. For all DMRG results

mentioned in the paper, we use a maximum bond dimension of 100, and terminate when the

energy tolerance 10−10 is achieved.

Additional numerical results

Performance benchmarking In this section, we compare the accuracy and training cost of

TQS with restricted Boltzmann machine (RBM) [136], another widely adopted framework for

neural network quantum states.

To ensure a fair comparison, we trained a smaller TQS with 5.2 × 103 parameters

(embedding size de = 16, two transformer encoder blocks), to compare with an RBM with

approximately the same number of parameters (hidden-to-variable ratio α = 3). The TQS is

trained using the setting described in the previous sections, with Nunique = 2000, while the

RBM is trained using stochastic reconfiguration (SR) [213, 136], contrastive divergence with 10

sampling steps (CD-10) [214] and batch size 24800. Under this setting, the computational cost

for each training iteration is approximately the same. To model continuous physical parameters

in RBMs, we use continuous visible neurons normalized to [−2,2], together with regular binary

neurons with values ±1 for the spin variables.

At this point, we try to reproduce the experiment described in the main text using RBMs.

We focus on the transverse field Ising (TFI) model, with the transverse field h as an additional

input to the neural network. The RBM is trained for 105 iterations, and the learning rate decreases

according to the formula

lr(istep) = lrmaxi−0.5
step (3.51)

156



where istep is the current number of training steps, and lrmax = 0.02. TQS is also trained for 105

iterations, and the results are shown in Figs. 3.20, 3.21.

In Fig. 3.20, the training range is h ∈ [0.5,1.5], and the RBM learned an energy curve

that is almost linear in h. And in Fig. 3.21 the training range is h ∈ [0,0.5]∪ [1.5,2], but the

RBM only learned the properties in the [1.5,2] range. In comparison, TQS did an almost perfect

job in both cases.

This result is expected, since TQS is designed for flexibility and is able to learn different

quantum states at the same time, even with a tiny model size. On the other hand, RBM can

accurately represent a single quantum state, but it is much less flexible when it comes to a family

of quantum states.

As another test, we train both models at a single data point h = 1 for 105 iterations, and

the result is shown in Fig. 3.22. RBM works very well in this case, converging in about 103

iterations, and does not improve much afterwards. On the other hand, TQS converges much

slower, but continues to see improvements up to 105 iterations.

Again, this result is expected. With a simple structure, RBM can be easily trained using

the SR algorithm, leading to a fast convergence. However, TQS has a much more sophisticated

structure, and needs a warm-up period in the learning rate schedule for a smoother convergence.

This makes the training slower, but with a potentially higher final accuracy.

Finite-size scaling The idea of finite-size scaling [50] can help us understand divergent

behaviors in the thermodynamic limit using only numerical results in finite systems. Assume we

have some physical quantity Ω that diverges in the thermodynamic limit at a critical value hc,

Ω(h)∼ |∆h|−ω , (3.52)

where ∆h = (h−hc)/hc → 0. The correlation length, ξ (h)∼ |∆h|−ν , also diverges with critical
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(a)

(b)

Figure 3.20. Comparison of TQS and RBM on the ground state of the TFI model, with a
variable transverse field h. (a) Energy per spin and (b) Relative error of the ground state energy,
∆E = |(E −Eground)/Eground|. Both models are trained in the range h ∈ [0.5,1.5].
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(a)

(b)

Figure 3.21. Comparison of TQS and RBM on the ground state of the TFI model, with a variable
transverse field h. (a) Energy per spin and (b) Relative error of the ground state energy. Both
models are trained in the range h ∈ [0,0.5]∪ [1.5,2].
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Figure 3.22. The training curve of TQS and RBM on the ground state of the TFI model with
transverse field h = 1. On a single data point, RBM converges faster than TQS.
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exponent ν . Therefore, Ω correlates with ξ as

Ω ∼ ξ
ω/ν . (3.53)

For a finite system of linear size N, the behavior of Ω(h,N) deviates according to the

ratio ξ/N. When ξ ≪ N, finite-size effects are negligible, and Eq. (3.53) is preserved. However,

since the correlation length cannot exceed the system size in finite systems, if ξ ≫ N, Ω has to

scale with N instead. This leads to the finite-size scaling ansatz

Ω(h,N)∼ ξ
ω/ν f (N/ξ ), (3.54)

where f (x) is a scaling function that satisfies

f (x)∼


const, x → ∞,

xω/ν , x → 0.
(3.55)

By defining g(x) = x−ω f (xν), we can rewrite Eq. (3.54) as

Ω(h,N)∼ Nω/νg(N1/ν |∆h|) (3.56)

Therefore, at the critical point hc, Ω scales as

Ω(hc,N)∼ Nω/ν . (3.57)

Determining hc is another task on its own. A common method is to compute the Binder

cumulant [202],

UN = 1−
⟨m4

z ⟩N

3⟨m2
z ⟩2

N
, (3.58)

which is invariant with system size N at the critical point [202]. Therefore, the crossing point of
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UN −h curves for different N gives the critical point hc.

In Fig. 3.16(a) in the main text, we used the Binder cumulant to show that TQS can

correctly identify the TFI phase transition at h = 1. And in Fig. 3.16(b), we computed the

ratio β/ν by fitting the scaling of magnetization mz to Eq. (3.57). On a side note, since TQS

is explicitly symmetrized to have ⟨mz⟩ = 0, we followed the method in [203] and used the

mean-square-root magnetization
√

⟨m2
z ⟩ instead.

The results in Fig. 3.16 are obtained using a TQS model trained in h ∈ [0.5,1.5] near the

phase boundary. What if the TQS has never been trained on any data near the critical point? To

test this, we performed the same analysis using TQS trained in h ∈ [0,0.5]∪ [1.5,2], either deep

in the paramagnetic or ferromagnetic regime. The results are shown in Fig. 3.23. This time, TQS

failed to find the correct critical point hc = 1. However, quite surprisingly, TQS managed to find

a plausible interpolation between the two phases, with a new critical point h = 1.24, and critical

exponents β/ν = 0.277±0.006.

Of course, this interpolated phase transition is not physical, and the computed critical

exponents seem to suggest that this fictitious system has a fractal dimension between 1 and 2. It

would be an interesting future work to look into the neural network and analyze what actually

happened here.

Heisenberg XYZ model In this section, we further benchmark the performance of TQS

with additional numerical experiments. We focus on the 1D Heisenberg XYZ model in a

longitudinal field [215], whose Hamiltonian is given by

Ĥ = J
n−1

∑
i=1

[
(1+ γ)σ x

i σ
x
i+1 +(1− γ)σ y

i σ
y
i+1

+∆σ
z
i σ

z
i+1

]
+h

n

∑
i=1

σ
z
i

(3.59)

We fix J = 1,γ = 0.2, and consider the parameter range h ∈ [0,1], ∆ ∈ [−1,1]. The

system size n can take any even integer value with equal probability in the range of [10,40]. The

TQS has the same structure as the one described in the main text, with 8 layers and embedding
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(a)

(b)

Figure 3.23. Finite-size scaling calculations on the TFI model, using the TQS trained in
h∈ [0,0.5]∪ [1.5,2]. (a) Binder cumulant [202], UN = 1− ⟨m4

z ⟩N

3⟨m2
z ⟩2

N
, plotted for various system sizes

N. The curves cross at h = 1.24. (b) Finite-size scaling of the mean-square-root magnetization
at the critical point h = 1.24. A linear fit on the log-log scale gives β/ν = 0.277±0.006.
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Figure 3.24. The relative error of the ground state energy, |(E−Eground)/Eground|, plotted against
the external field h and longitudinal interaction strength ∆, with n = 40. In this figure, h and ∆

are in the pre-training range.
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Figure 3.25. The relative error of the ground state energy, |(E−Eground)/Eground|, in an extended
parameter range. The bottom left corner is part of the pre-training range, separated with black
dashed lines for visual clarity.
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size 32. We trained the TQS for 105 iterations without implementing any symmetry, and the

relative errors of the ground state energy, |(E −Eground)/Eground|, for system size n = 40, are

plotted in Figs. 3.24, 3.25.

Fig. 3.24 shows the results in the pre-trained range, h∈ [0,1],∆∈ [−1,1], and the accuracy

is at the order of 10−3. In Fig. 3.25, we extended the parameter range to h ∈ [0,2],∆ ∈ [0,2],

with pre-trained and extended parameter ranges separated by black dashed lines. TQS can still

reasonably infer the ground state properties outside of the pre-trained range, but its accuracy

gradually decreases as we move further away.
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Figure 3.26. The relative error of the ground state energy, |(E −Eground)/Eground|, after fine-
tuning the TQS on specific parameter points for 2×103 iterations.

To improve on the energy estimations, we fine-tune the pre-trained TQS at selected
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parameters for 2× 103 iterations. The results are plotted in Fig. 3.26. With fine-tuning, the

ground state energy accuracy improved by another order of magnitude, allowing us to more

accurately estimate the ground state properties on a much wider parameter range, with minimal

computational cost.

This section, in full, is a reprint of the material as it appears in Physical Review B [5].

Yuan-Hang Zhang, Massimiliano Di Ventra, 2023. The dissertation author was the primary

investigator and author of this paper.
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[123] Stephan Eggersglüß and Rolf Drechsler. Robust algorithms for high quality test pattern
generation using boolean satisfiability. In 2010 IEEE International Test Conference, pages
1–10, Austin, TX, USA, 2010.

[124] Carla P Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena
in satisfiability and constraint satisfaction problems. Journal of automated reasoning,
24(1-2):67–100, 2000.

[125] Andrei Vladimirescu. The SPICE book. Wiley, New York, 1994.

[126] Ken Kundert. The Designer’s Guide to SPICE and SPECTRE®. Springer Science &
Business Media, Berlin, Germany, 2006.

[127] Yuan-Hang Zhang. Github repository: Collective dynamics and long-range order in
thermal neuristor networks. https://github.com/yuanhangzhang98/collective dynamics
neuristor, 2024.

[128] Wolfgang Barthel, Alexander K Hartmann, Michele Leone, Federico Ricci-Tersenghi,
Martin Weigt, and Riccardo Zecchina. Hiding solutions in random satisfiability problems:
A statistical mechanics approach. Physical review letters, 88(18):188701, 2002.

176

https://www.memcpu.com/
https://github.com/yuanhangzhang98/collective_dynamics_neuristor
https://github.com/yuanhangzhang98/collective_dynamics_neuristor


[129] International Electrotechnical Commission. IEC 60384-4, Fixed capacitors for use in
electronic equipment - Part 4: Sectional specification - Fixed aluminium electrolytic
capacitors with solid (MnO2) and non-solid electrolyte, 2016.

[130] Analog Devices. AD834, 500 MHz Four-Quadrant Multiplier, 2012. Rev. F.

[131] Texas Instruments. Single-Supply, High-Speed, Precision Logarithmic Amplifier datasheet,
2004. Rev. A.

[132] Ibrahim M Elfadel and John L Wyatt Jr. The” softmax” nonlinearity: Derivation using
statistical mechanics and useful properties as a multiterminal analog circuit element.
Advances in neural information processing systems, 6, 1993.

[133] Jacob Sillman. Analog implementation of the softmax function. arXiv preprint
arXiv:2305.13649, 2023.

[134] Haik Manukian, Yan Ru Pei, Sean RB Bearden, and Massimiliano Di Ventra. Mode-
assisted unsupervised learning of restricted boltzmann machines. Communications
Physics, 3(1):1–8, 2020.

[135] Haik Manukian and Massimiliano Di Ventra. Mode-assisted joint training of deep boltz-
mann machines. Scientific Reports, 11(1), 2021.

[136] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with
artificial neural networks. Science, 355(6325):602–606, 2017.

[137] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, volume 1. MIT Press,
Cambridge, 2016.

[138] Giacomo Torlai and Roger G Melko. Latent space purification via neural density operators.
Physical review letters, 120(24):240503, 2018.

[139] Xun Gao and Lu-Ming Duan. Efficient representation of quantum many-body states with
deep neural networks. Nature communications, 8(1):1–6, 2017.

[140] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nature Physics,
14(5):447–450, 2018.

[141] Zi Cai and Jinguo Liu. Approximating quantum many-body wave functions using artificial
neural networks. Physical Review B, 97(3):035116, 2018.

[142] Juan Carrasquilla, Giacomo Torlai, Roger G Melko, and Leandro Aolita. Reconstructing
quantum states with generative models. Nature Machine Intelligence, 1(3):155–161, 2019.

[143] Peter Cha, Paul Ginsparg, Felix Wu, Juan Carrasquilla, Peter L McMahon, and Eun-Ah
Kim. Attention-based quantum tomography. Machine Learning: Science and Technology,
3(1):01LT01, 2021.

177



[144] Tobias Schmale, Moritz Reh, and Martin Gärttner. Scalable quantum state tomography
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