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Microcomb-based integrated photonic
processing unit

Bowen Bai1,7, Qipeng Yang1,7, Haowen Shu1,7, Lin Chang 1,2,3,7 , Fenghe Yang4,
Bitao Shen1, Zihan Tao1, Jing Wang5, Shaofu Xu5, Weiqiang Xie2, Weiwen Zou 5,
Weiwei Hu1, John E. Bowers 2 & Xingjun Wang 1,3,6

The emergence of parallel convolution-operation technology has substantially
powered the complexity and functionality of optical neural networks (ONN) by
harnessing the dimension of optical wavelength. However, this advanced
architecture faces remarkable challenges in high-level integration and on-chip
operation. In this work, convolution based on time-wavelength plane stretch-
ing approach is implemented on a microcomb-driven chip-based photonic
processing unit (PPU). To support the operation of this processing unit, we
develop a dedicated control and operation protocol, leading to a record high
weight precision of 9 bits. Moreover, the compact architecture and high data
loading speed enable a preeminent photonic-core compute density of over 1
trillion of operations per second per square millimeter (TOPSmm−2). Two
proof-of-concept experiments are demonstrated, including image edge
detection and handwritten digit recognition, showing comparable processing
capability compared to that of a digital computer. Due to the advanced per-
formance and the great scalability, this parallel photonic processing unit can
potentially revolutionize sophisticated artificial intelligence tasks including
autonomous driving, video action recognition and image reconstruction.

Artificial intelligence (AI) withdeep learning1 haswitnessed remarkable
success in data-heavy computational tasks. Driven by the great
demand of computing speed and energy efficiency from AI, optical
neural networks (ONNs) have gone through rapid progress in the last
decade2–4. Benefiting from the low-loss, large-bandwidth and high-
coherency nature, leveraging photons for conducting many funda-
mental operations in neural networks, including Fourier transform5,
convolution6,7, and matrix multiplication8,9, can significantly boost the
computing speed and lower the energy consumption. Particularly in
the recent years, the successful implementations of ONN in photonic
integrated circuits (PICs) have opened the possibility ofmanufacturing
photonic-based computational chips10–12 using existing semiconductor

manufacturing infrastructures. Due to the compactness, scalability,
and energy efficiency, such novel photonic processing units (PPUs), as
a contrast to the electronic-based graphic processing units (GPUs)13,
potentially can revolutionize the hardware for AI.

Inspired by the general algorithm for designing unitary matrix14,
Shen et al.8 demonstrated a photonic processing unit using a Mach-
Zehnder interferometer (MZI) mesh to accelerate matrix computa-
tions, driven by a single wavelength laser. Following this route, rapid
progression has been achieved within a short time. Now, these pro-
cessing units have been significantly extended in scale and successfully
commercialized. However, the large footprint of theMZImesh and the
clock synchronization problem of multiple high-speed input signals

Received: 14 June 2022

Accepted: 7 December 2022

Check for updates

1State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing 100871, China.
2Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA. 3Frontiers Science Center for Nano-
optoelectronics, Peking University, Beijing 100871, China. 4Zhangjiang Laboratory, Shanghai 201210, China. 5State Key Laboratory of Advanced Optical
Communications System and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. 6Peking University
Yangtze Delta Institute of Optoelectronics, Nantong 226010, China. 7These authors contributed equally: Bowen Bai, Qipeng Yang, Haowen Shu, Lin Chang.

e-mail: linchang@pku.edu.cn; bowers@ece.ucsb.edu; xjwang@pku.edu.cn

Nature Communications |           (2023) 14:66 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5311-3349
http://orcid.org/0000-0001-5311-3349
http://orcid.org/0000-0001-5311-3349
http://orcid.org/0000-0001-5311-3349
http://orcid.org/0000-0001-5311-3349
http://orcid.org/0000-0002-4089-9394
http://orcid.org/0000-0002-4089-9394
http://orcid.org/0000-0002-4089-9394
http://orcid.org/0000-0002-4089-9394
http://orcid.org/0000-0002-4089-9394
http://orcid.org/0000-0003-4270-8296
http://orcid.org/0000-0003-4270-8296
http://orcid.org/0000-0003-4270-8296
http://orcid.org/0000-0003-4270-8296
http://orcid.org/0000-0003-4270-8296
http://orcid.org/0000-0001-8206-2544
http://orcid.org/0000-0001-8206-2544
http://orcid.org/0000-0001-8206-2544
http://orcid.org/0000-0001-8206-2544
http://orcid.org/0000-0001-8206-2544
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35506-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35506-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35506-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35506-9&domain=pdf
mailto:linchang@pku.edu.cn
mailto:bowers@ece.ucsb.edu
mailto:xjwang@pku.edu.cn


make such single-frequency approaches9,15 difficult to improve the
compute density16of the photonic-core defined as the computing
speed (TOPS) normalized by the photonic core area that conduct lin-
ear operations (mm2). On the other hand, to further exploit the
potential of optical computing, advanced ONN demands high-level
parallel information processing to boost the computational through-
out, for which the wavelength division multiplexing (WDM) approach
comes into play. Recently, the architecture of such a system has been
successfully realized for photonic convolution operation6, by harnes-
sing the Kerrmicrocombs17–19 that providemultiple equidistant optical
frequency lines. These advances lead to significantly improved com-
pute density, up to 0.2TOPSmm−2, with a greatly relieved modulation
speed requirement of the modulator.

However, despite the appealing properties ofWDMparallel ONN7,
this advanced architecture faces remarkable challenges in high-level
integration: first, the microcomb generation in previous demonstra-
tions all had to rely on bench-top lasers, since a chip-laser-based
microcomb pumping scheme is quite challenging; second, in the
information loading and processing units, the previous configuration
was not compatible with the standard foundry-based silicon photonic
platforms: they have to rely on either bulk fiber equipment or special
fabrication process; finally, WDM operation in PICs requires much
more complicated calibration and control procedures compared to
the single wavelength approach. As a result, a WDM-based optical
computing system with high-level integration so far remains elusive,
which prevents the transition of parallel ONN from research lab to
industry deployment.

In this work, we propose and demonstrate a PPU with all the
essential photonic components integrated, including the multi-
wavelength source, data loading session, and the data processing
core. An AlGaAs-on-insulator dark-pulse microcomb provides a
coherent multi-optical-channel source, which is directly pumped by

anon-chip laser. A novel configuration of the convolution accelerator
(can also be used as a reconfigurablemicrowave photonic filter20) has
been proposed and all the processing components of it are inte-
grated together: high-speed data flow is encoded on every comb
tooth of themicrocomb via on-chip silicon electro-optical modulator
(EOM); kernel weights are mapped to voltages applied to the on-ring
heaters in the microring resonator (MRR) array (which we term MRR
weight bank in the following) and data caching is implemented by the
embedded optical delay lines. Importantly, we developed a proce-
dure for the calibration of this system, which enables the accurate
control of all the individual components, and can be extended to the
WDM system. Owing to the high integration level, this PPU exhibits a
preeminent photonic-core (overall) compute density of 1.04 TOPS
mm−2 (0.104 TOPSmm−2), which is 5 times higher than the previous
record6 in WDM ONN architectures. Two proof-of-concept experi-
ments for a convolutional neural network are performed, including
image edge detection and digit recognition. The quality of edge
detection and the accuracy (96.6%) of recognition are comparable to
that of a digital computer. Our approach represents an essential step
towards a fully integrated photonic processing unit for real-world
deployment.

Results
Integrated parallel photonic processing unit based on
microcombs
A fully integrated photonic hardware to perform convolution opera-
tion is conceptually illustrated in Fig. 1a. A DFB-pumped microcomb
source serves as optical carrier. The combs are regrouped to map the
convolution kernel matrices using an on-chip wavelength division
demultiplexer. Input data matrices are converted to RF domain by a
signal generator. The input RF signals are amplified by a driver and
broadcast onto comb lines via the high-speed on-chip silicon EOM.
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Fig. 1 | Integrated photonic processing unit (PPU). a Conceptual drawing of the
fully integrated PPU. bOptical image of the commercial tunable DFB laser chip for
microcomb generation. c Top-view image of the AlGaAsOI microresonator. The
radius of the microresonator is 144 μm, corresponding to a free spectral range
(FSR) of 91 GHz. d Optical micrograph of a fabricated photonic chip. The silicon

electro-optic modulator (EOM) is monolithically integrated with the microring
resonator (MRR) weight bank. The zoom-in micrographs on the right illustrate the
on-chip Si spiral waveguide delay line (top) and MRR with in-ring heater (bottom).
DEMUX demultiplexer, TIA trans-impedance amplifier, PD photodetector.
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Thematrix tuning controller transforms the kernel weights to voltages
applied to the on-ring heaters and the thermal phase shifters in the
silicon EOM. The add-drop MRR weight bank performs spectrum sli-
cing, kernel weight loading, and spectrum recombination simulta-
neously. Si spiral waveguides are embedded to introduce on-chip time
delays. The photodetector (PD) at the thru-port monitors the reso-
nance states of the MRRs to ensure the stability of the weight loading.
By sampling the RF output signals (generated from the PD at the drop
port and amplified by the TIA) at appropriate moments, the compu-
tation results can be obtained. When calibrating the PPU, the matrix
tuning controller receives data and instructions from the outside
world and loads the processed input data to the signal generator. The
convolution results are stored in the cache for conducting the system-
level calibration procedure.

The integrated microcomb used in our work (see in Fig. 1c) is a
microresonator fabricatedon theAlGaAsOIplatform21. The fabricationof
this device is based on a wafer-bonding process, which can be adopted
by current commercial heterogeneous III-V/Si photonic foundries22. The
comb is operated at dark-pulse state originated from mode-crossing
between fundamental and high-order mode. Thanks to the high third-
order nonlinear coefficient of AlGaAs (n2 = 2.6 × 10−17 m2W−1), this
coherent state can be accessed under pump power at a few milliwatt-
level under amoderate Q factor23. Meanwhile, the dark-pulemicrocomb
has high conversion efficiency and large accesswindow in the spectrum,
which is pumped by an off-the-shelf commercial InP DFB laser chip (see
in Fig. 1b). Compared to another approachwe previously demonstrated
for microcombs directly pumped by integrated laser24–26, the AlGaAsOI
dark pulse microcombs is more power efficient and with larger
reconfigurability21,27. Importantly, it does not require additional chip-to-
chip or heterogeneous integration, which ismore flexible to implement
in existing photonic infrastructures.

The silicon photonic integrate circuit (Fig. 1d) with the same
structure reported in our latest work20 is the core of the photonic
processing unit, consisting of data-loading session and computing
core. It is fabricated by a commercial SiPh foundry in a one-to-one
200mm SOI wafer run with standard 90 nm lithography process. For
input vector loading, a balanced Mach-Zehnder travelling-wave PN
depletion modulator is implemented with two thermal phase shifters.
The MRR weight bank, consisting of parallel-coupled add-drop MRRs,
are capable of weighting the comb lines individually over a continuous
range. To precisely control the kernel weights, on-ring TiN micro
heaters are implemented to tune the resonances of the MRRs. To
introduce true time delay, Si spiral waveguides with adiabatic Euler
bends are used. The average timedelay between adjacent comb lines is
58.88 ps (for the detailed time delaymeasurement, see Supplementary
Note 4), corresponding to ~17 GBaud modulation rate.

Operation for on-chip WDM-based convolution system
One major challenge for realizing chip-based WDM analog computa-
tion, compared to the bench-top system, is significantly higher sensi-
tivity of the system to fabrication and environment variation that
usually come from the optical power fluctuation, inner crosstalk,
restricted linear dynamic range, etc. Therefore, a dedicated stabiliza-
tion and control method has to be used for enabling the accuracy of
the computing results. This critical problem has been proposed in
previous papers11,28, and here for the first time, we introduce a sys-
tematic protocol to overcome this challenge.

First, the fluctuation of the comb source can to be minimized by
using dark-pulse microcombs in the AlGaAsOI platform. A typical
spectrumof thismicrocomb (DFB pumped) is shown in Fig. 2a. Thanks
to the relatively large thermo-optical effect of the AlGaAs and the
inherent thermal stability of the dark pulse approach, high stability of
the microcomb operation can be enabled without any feedback or
control electronics23. As shown in Fig. 2b, the power deviations of the
central 20 channels of the microcomb in Fig. 2a within 60minutes are

recorded, and statistical analyzed. All of the comb channelsmaintain a
power fluctuation of lower than 2 dB, which ensures the consistency
and duration of the computing operation.

A more critical control challenge comes from the SiPh part.
MRRs are sensitive to fabrication and thermal variations, so that
effective calibration methods29,30 have to be applied to precisely
control the multi-channel MRR weight banks. To match the scale of
the 2 × 2 kernel matrix, we selected four consecutive MRRs for cali-
bration. A high-precision voltage scanning procedure was developed
and implemented to automatically obtain the “weight-voltage”
lookup table (Fig. 2c) of eachMRR. Theminimum voltage sweep step
is 0.01 V, which is sufficient for coarse thermal tuning of the MRR.
As the voltage increases, the variation of the weight shows a trend
similar to the Lorentzian peak shape of the MRR and is distributed in
the 0~1 interval.

In addition to the coarse calibration using lookup table before
conducting convolution, we also applied an in-situ gradient-descent
control (GDC) method (see “Methods”) to compensate the fabrication
imperfectness and cross-talk of the MRR weight bank (Supplementary
Note 2). The effectiveness of the GDCmethodwith a commandweight
matrix [0, 0.5; 0.5, 1] is shown in Fig. 2d. The accuracy of the weight
loading is greatly improved with root mean square error (RMSE)
dropping from 0.043 to 0.4 × 10−3. To evaluate the GDCmethod for an
arbitrary weight matrix, we measured the weights as a function of
calculated weights for a given channel (Fig. 2f). The other channels are
manipulated with a weight list of all combination of (0, 0.33, 0.66, 1)
(see Supplementary Note 3 for details). The measured weights are
tightly concentrated at the diagonal line (the target weights), which
indicates negligible inter-channel cross-talk after calibration. The
attached histograms show the deviation of the measured weights.
Within three epochs, The maximum deviation for all weights is lower
than 1 × 10−3, which corresponds to a record-high weight control pre-
cision of 9 bits. The detailed calculation about the weight control
precision is shown in Supplementary Note 3.

Furthermore, since the silicon EOM should operate in its linear
dependence on the intensity of themicrocomb lines, the calibration of
the silicon EOM is also carried out in this work, including two aspects:
(1) uniformity response to different wavelengths and (2) selection of
appropriate operating point and driving voltage. In our design, we
adopt a balanced SiP traveling-wave Mach-Zehnder modulator
(TWMZM) under push-pull configuration to eliminate the effect of the
interference spectrum (of the MZ architecture) on the flatness of the
comb lines. For multi-level pulse amplitude modulation (PAM), the
height of the eye diagrams and the evenness of the eye openings
directly reflect whether the modulator is working in its linear region.
Here, we choose four-level PAM for calibration. To achieve the best
linearity and quality of the eye diagrams, the silicon EOM operates at
the quadrature point with positive slope via carefully tuning the vol-
tages applied to the thermal phase shifters (Vps = (2.5, 0) V) and the DC
bias of the two traveling-wave electrodes (Vbias = (2.332, 1.697) V). It
should be noted that due to the cosine wave formof theMZM transfer
function31, thedriving voltage shouldbe limited to the linearpart of the
transfer function. Therefore, the peak-to-peak voltage (Vpp) of the
differential RF input is kept below 300mV. Figure 2e illustrates the
PAM-4 eye diagrams after calibration. The 4 channels are opened
independently (theweight is “1” for a given channel while theweight of
the other three channel is “0”) for the measurement. The height of the
four eye diagrams is the same and the amplitude levels are almost
equidistant.

The value of the kernel matrix is distributed within the range of
ð�1, + 1Þ after normalization, however, the proposedMRR weight bank
cannot directly calculate negative values since the light intensity is
always positive. To implement convolution in complete real-number
domain, the original kernel matrixW is decomposed into twomatrices
W 0 and W″ as Fig. 2g shows. The linear transformation w0 = 1

2 w+ 1ð Þ
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moves the elements in W to non-negative space, and then, the con-
volution of W and data matrix X is written as

W � X = 2W 0 �W 00� �� X =2W 0 � X �W 00 � X , ð1Þ

whereW″ is a matrix with all elements equal to 1, X is the data matrix in
which the elements are normalized gray-scale values (non-negative) of

the pictures. For example, theweightmatrix [1, 0; 0, −1] (one kernel for
image edge detection) can be decomposed into [1, 0.5; 0.5, 0] and
[1, 1; 1, 1]. By conducting W 0 � X and W″⊗ X with same data matrix
successively, truly real-valued convolution is achieved. Although
negative-valued kernel has to be decomposed into two non-negative
matrices, by sending the outputs from two MRR weight banks to
the opposite ports of a balanced PD, real-valued convolution can be
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accomplished all at once. Such framework has been proposed in our
recent work20 and is under investigation.

Convolution for image edge detection
The convolution of data matrix X and kernel matrix W is written as

W � X =
Xn�1

i=0

wixi =w0x0 +w1x1 + � � � +wn�1xn�1, ð2Þ

wheren is size of the twomatrices. Theoperation canbemapped into
a plane ofwavelength and time as illustrated in Fig. 3b. The gray-scale
value of the pixels in the sliding window is normalized and serialized
as an input vector X 0. The element in vector X 0 is encoded to the
intensity of the n parallel comb lines simultaneously via the silicon
EOM. Then n replicas of vector X 0

flow to the calibrated MRR weight

bank with n kernel weights (represent using different colours).
The time delay between adjacent channels is Δt = 58.88 ps, which
determines the modulation rate (fx = 1/Δt ≈ 17 Gbaud) and stretches
the wavelength-time plane. At a appropriate time, the intensity of the
overlapped comb lines is the result of the convolution for a
given sliding window. A high-speed PD is used to receive the optical
signals and naturally acts as a photonic adder. Note that the duration
of the time slice is 2n� 1ð ÞΔt, the sample rate should be fs = fx/n.
In our design, the kernel matrix size n = 4 and footprint (S) of
the photonic computing core (four channels in use) is about
0.82 × 0.16 ≈0.131mm2. Therefore, the photonic-core compute den-
sity of our proposed PPU is 2nfx/S = 2 × 4 × 17 × 109/0.131 ≈ 1.04 TOPS
mm−2. If the footprints of DFB pump laser, comb source, silicon
weight bank chip andphoto-detector are all taken into consideration.
The total chip area is about 1.311 mm2 and the corresponding overall
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compute density is about 0.104 TOPSmm−2 (see Supplementary
note 8 for details).

To demonstrate the aforesaid principle experimentally, we con-
duct image edge detection (Fig. 3a) using two small-scale kernel
matrices. The input image is firstly converted to a 250× 250 gray pixel
matrix with 8-bit values. Pixels in the sliding window are serialized into
a 1 × 4 input vector X 0 and loaded to the silicon EOM via an arbitrary
waveform generator (AWG). The modulated comb lines flow to the
MRR weight bank (controlled and calibrated by the matrix tuning
controller) to conduct the convolutional operation. The kernels cho-
sen for edges detection are the Roberts cross operator32, which per-
forms an approximation of the 2-D spatial gradient measurement on
the image. Kernel Wx highlights the −45∘ edges of the of the input
image while Wy extracts the opposite +45∘ edges. Finally, the optical
convolution results then convert to RF outputs by an off-chip fast PD

and sampled using a high-speed real-time oscilloscope. The two fea-
ture maps after convolution are then combined to yield the experi-
ment result, which highlights the sharp edges in the input image and
agrees well with the calculated (ideal) one using a digital computer.
This experiment verifies the feasibility and veracity of our proposed
PPU to implement convolutional operations. For detailed description
about the convolution procedure, see Supplementary Note 5.

Handwritten digits classification
To further highlight the capability of the PPU demonstrated in this
work, a handwritten digits classification task is conducted. The struc-
ture of the CNN we used here (shown in Fig. 4a) consists of one con-
volutional layer and two fully-connected layers (perform high-level
reasoning). The input image is a matrix with a size of 28 × 28. The
convolution layer first convolutes the input matrix with three kernels
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Fig. 4 | Photonic convolutional layer in a CNN. a Architecture of the convolution
neural network (CNN) with three convolution kernel matrices (W1 = [0.351, −0.729;
−1, −0.094], W2 = [0.551, 0.891; 0.761,1] and W3 = [0.512,1; 0.978, 0.953]) for hand-
writing digit recognition. The corresponding featuremaps of image digit 1 are also
illustrated. b The output RF signal after sampling for digit 1. The gray dashed line
and green solid line are the calculated (ideal) and experimentally obtained

waveform, respectively. c Scatter plot for convolution accuracymeasurement with
a fixed kernel matrix. The inset is a residual error distribution histogram showing a
standard deviation of 0.018. d The confusion matrices of digit classification. The
accuracy of the prediction results for experiment (96.6%) and calculation (97.0%)
shows excellent agreement.
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and the results are then treated with nonlinear activation function
(usually ReLu). As the kernels slides along the input matrix, the con-
volution operations yield three feature maps, which contribute to the
input of the next fully-connected layers after serializing into a 2187 × 1
vector. The linear part of convolutional layers are decomposed to dot
products by reusing the PPU temporally while the fully-connected
layer is implemented on a computer due to the two massive weight
matrices (512 × 2187 and 10 × 512). In future works, the fully-connected
layers could also be implemented on the chip if applying low-rank
tensor decomposition33 to the large weight matrices. The output layer
with ReLu function gives the final classification results. The parameters
in the CNN are trained with a standard back-propagation algorithm
(see the Supplementary Note 6 for details) and the kernel weights are
copied to the MRR weight bank via a matrix tuning controller. The
input image is mapped to the RF signals in time series and encoded to
the comb lines by silicon EOM at a baud rate of 17 GBaud. The input
data convolves with three 2 × 2 kernels (W1, W2, and W3) to generate
three 27 × 27 feature maps.

Thewaveform obtained from the PD after sampling and the zoom
in comparison between the experiment and calculated results are
shown in Fig. 4b. The slight difference between the experiment and
calculation is mainly caused by the imperfect linearity of the silicon
EOMand the small randomdrift of thewhole systemduring operation.
To further inspect the operation accuracy of the convolution layer, we
randomly choose 13,000 input values to convolve with a fixed 2 × 2
kernel matrix (W3). The comparation between calculated and mea-
sured results are shown in Fig. 4c. The scatter points are closely dis-
tributed along the diagonal line (theoretical results), which indicates a
small standard deviation of 0.018.

We then feed 500 images fromMNIST handwritten digit dataset34

into the PPU to test the accuracy of the classification. The confusion
matrix (Fig. 4d) illustrates the accuracy of the prediction obtained
from experiment and theoretical calculation is 96.6% and 97.0%,
respectively. Details on the experimental setup and results are given in
Supplementary Note 7. The conformable results indicate that the cross
talk and noise has limited impact on the PPU performance after cali-
bration. The structure of the CNN we used consists of one convolu-
tional layer with 3 kernels and two fully-connected layers. The
sampling rate is 17/4 GHz and the original kernel matrix W is decom-
posed into two matrices W 0 and W ″. Since W ″ is a matrix with all ele-
ments equal to 1 for all inputs, the duration to yield 3 feature maps is
27 × 27 × 4/(17GHz) × 4 = 686.1 ns. The run time of the digital backend
(directly given by our computer: Intel(R) Core(TM) i7-10700K CPU)
to implement the fully-connected layers is about 5390.6 ns. Therefore,
the overall classification time is 6076.7 ns. Therefore, the PPU
can process handwritten digit images at the speed of 1/(6076.7 ns) =
1.65 × 105 s−1.

Discussion
Thanks to the high modulation rate and the associated calibration
procedure, the photonic-core compute density in this work is more
than 5 times higher compared to previous WDM ONN, and a record
high weight control precision of 9 bits is achieved. A comprehensive
comparison with other integrated photonic computing architectures
is provided in Supplementary Note 8. The performance of the PPU can
be further improved by employing superior architecture design and
optimized photonic devices. Since the photonic-core compute density
of our architecture scales with the modulation rate and matrix size
while is inverselyproportional to the footprint (mainlyoccupiedby the
delay lines), if higher modulation rate were adopted, the footprint
would drastically decrease due to the reduced length of the delay line.
The kernel matrix size can be extended to 3 × 3 or 5 × 5 by utilizing
more comb lines and a redesigned MRR weight bank. Although the
relatively narrow bandwidth of the MRRs in our prototypical weight
bank architecture will cause distortions and losses at high data loading

rate, by utilizing high order MRRs35 combined with MZI-embedded
microring36, both the high-speed data loading and the weight tuning
can be realized by the flat-top pass band and embedded MZI. There-
fore, the photonic-core compute density of the PPU can reach 15
TOPSmm−2 with the optimized structure at 50Gbaudmodulation rate.
Considering 3 × 3 kernel size is sufficient for the needs of image pro-
cessing in a convolutional layer, the number of current comb lines (see
Fig. 2a) can support a parallel convolution with 5 kernels and further
extended with broader spectrum.

As an analog computing system, the optical noise is one major
limitation to the convolution accuracy of our PPU. Phase noise in the
comb lines and erbium-doped fibre amplifier (EDFA) introduced
amplified spontaneous emission (ASE) noise result in computational
errors and this effect is more pronounced when the modulation rate
scales up. The relatively high noise floor of the DFB laser and EDFA are
the dominant factors to lower the optical signal to noise ratio (OSNR).
By introducing a narrow bandwidth filter after the pump and an on-
chip MRR for comb distillation37, the OSNR can be significantly
improved. By decomposing the original kernel into two kernels, the
problem of loading negative weights can solved. More importantly,
if the kernel weights are very close to 0, the original weight value 0 can
be shifted to 0.5, avoiding the significant decrease of the OSNR due to
the small output power.

The eternal pursuit for photonic computing is processing data at
high speeds with low power consumption. In our proof-of-concept
configuration, the power consumption mainly derives from the InP
DFB pump laser, EDFA, silicon photonic chip, modulator drivers, TEC
and digital backend. The power consumption estimated according to
the components used in our measurement setup is about 89.5W, of
which about 90% of the energy consumption comes from the bench-
top instruments (for details of the power consumption estimation,
see Supplementary note 9). However, as a prototype, the energy effi-
ciency of the PPU can be greatly improved. Superior integration
techniques38,39 and optimized photonic devices can be employed in
pursuit of a fully integrated microcomb-driven PPU. Self-injection
locked dark-pulse microcomb sources26,40 can be monolithically rea-
lized utilizing heterogeneously integrated III-V lasers25 and MRRs. The
resonance states can be held with low-loss phase change materials41

and a near “zero power consuming” MRR weight bank could be
achieved. On-chip semiconductor optical amplifiers (SOA)42 or circuit-
based erbium-doped amplifier43 can replace the discrete EDFA and be
integrated before the PD to provide power compensation and non-
linear activation44. The discrete PD can be replaced by integrated high-
speed germanium-on-silicon PD45. All these processes are compatible
with current III-V/SOI photonic foundries. Besides, the digital circuits,
such as control unit, driver, TIA, etc. can be monolithically integrated
with photonic devices46, which further improves the compactness and
power-efficiency of the PPU.

To show the ultimate potentials of our architecture, the excepted
power consumption (estimated in line with the similar protocols in
refs. 6, 7) is about 1.05W, corresponding to an excepted energy effi-
ciency of 2.38 TOPSW−1 for a fully integrated PPU with 50 Gbaud
modulation rate and 5 × 5 kernel size. In the excepted energy efficiency
calculation, the power consumption of the pump laser, the on-chip
SOA (take the place of EDFA), and the electronic blocks (including
integrated driver, TIA, digital-to-analog converter (DAC), analog-to-
digital converter (ADC)) is included. The power consumption of the
discrete EDFA, the digital backend and the temperature controllers is
excluded. The detailed estimation procedure about the energy effi-
ciency is shown in Supplementary Note 9. Although the temperature
control and some effects in packaging (loading effect, coupling and
interference effects, etc.) will cause extra power consumption, the
potential energy efficiency advantage of the PPU is still significant.

In conclusion, we have demonstrated a microcomb-driven PPU
with all the essential components integrated on chip. An associated
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calibration procedure is developed to precisely operate the system,
enabling a preeminent compute density capable of exceeding dozens
of TOPS mm−2. The performance of image edge detection and hand-
written digit recognition is comparable to that of a digital computer,
which portends that the proposed PPU is capable of processing more
sophisticated AI tasks. Our work paves a way to a fully integrated
photonic computing system and can potentially change the entire
field of AI.

Methods
Design and fabrication of the devices
The AlGaAsOI microcomb used in our work was designed to work
within the normal dispersion range at C band (waveguide dimensions:
400nm height and 1000nm width). The fabrication of AlGaAs reso-
nators were based on heterogeneous wafer bonding technology using
a 248 nm deep-ultraviolet (DUV) stepper for lithography. An optimal
photoresist reflow process and dry etch process were developed to
reduce the waveguide scattering loss. More fabrication details can be
found in our previous work21.

The silicon photonic circuit (the same one used in our recent
work20), including high-speed silicon EOM and MRR weight bank, was
designed on a 200mm SOI wafer with a silicon-layer thickness of
220 nm and a BOX layer thickness 3 μm. The high-speed data loading
unit is a balanced silicon Mach-Zehnder EOM with 2-mm-long
travelling-wave electrode and two TiN thermal phase shifters. The
weight bank consists of nine MRRs in an add/drop configuration and
four sequentialMRRs are in use as a proof-of-concept. TheMRRweight
bank is designed based on rib waveguides. The ribwidth is 450nm and
the height of the slab is 90 nm. A slight difference is introduced in the
ring radii to match the 182GHz wide (2 FSR) channel spacing (Fig. 2a)
and the radii of the four MRRs are 8.8 μm, 8.813 μm, 8.826 μm, and
8.839 μm, respectively. The minimum gap between the ring and the
bus waveguide is 240 nm. On-ring TiN heaters are implemented to
precise control the kernel weights. All these silicon photonic devices
are fabricated using 90 nm CMOS-compatible processes at Com-
poundTek Pte Ltd.

Characterization of unit devices
The AlGaAsOI micro-resonator has a waveguide to lensed fibre cou-
pling loss of 3–4 dB/facet. The ring waveguide width is 1 μm, which
supports normal dispersionwithin the C band. The average Q factor of
the AlGaAsOI MRR is around 2 million, corresponding to a waveguide
loss of lower than 0.3 dB cm−1. The coupling loss of the focused TE
mode grating couplers is 4–5 dB. The typical OE 3-dB bandwidth of the
depletion mode silicon EOM is > 25 GHz (Supplementary Note 1),
measured by a vector network analyzer (Keysight N524). The insertion
loss of the silicon EOM is about 4 dB and the phase shifters in the
modulator are TiN micro heaters with resistance ~200Ω. Microring
filters used for WDM and weighting are tuned by on-ring TiN micro
heaters with resistance ~ 400Ω. A 182GHz wide (2 FSR) channel
selecting range can be obtained under 10mW power dissipation. The
TiN layer is about 1.2μm above the silicon layer, ensuring a trade-off
between the heating efficiency and absorption loss of the metal. The
average time delay of the 2-μm wide silicon delay lines in the MRR
weight bank is 58.88 ps with delay time variation of <3% and insertion
loss < 0.5 dB among the 4 channels in use. More details about the time
delay measurement can be found in Supplementary Note 4. The pho-
todetector is a discrete 40GHz bandwidth PD (Finisar HPDV2120R),
which can be replaced by an on-chip high-speed waveguide type Ge/
Si PD47.

Weight calibration with in-situ GDC
Due to the high sensitivity, precise MRR control is always a challenge,
especially in a large scaleMRRs system. The fabrication deviations and
temperature drifts severely impact the weighting accuracy of the MRR

weight bank. Although each MRR can be calibrated by measuring the
transmission-voltage lookup table, the convolution results may still
deviate from the desired ones when all MRRs work simultaneously due
to thermal crosstalk. To suppress the thermal crosstalk, we develop a
calibration procedure using in-situ GDC method. The kernel weights
are pre-trained on a computer and accurately mapped to the voltages
applied to the on-ring heaters using the GDC method.

For a given channel in theMRRweight bank, assume themeasured
weight isw jð Þ and the target weight is ŵ jð Þ. Since the ‘weights-voltages’
curve (Fig. 2c) can be pre-obtained using our automatic voltage scan-
ning procedure, the w jð Þ can be expressed as

w jð Þ = f v jð Þ� �
: ð3Þ

Then, the loss function (L) is defined as themean square error (MSR) of
the weights

L jð Þ =
1
2

w jð Þ � ŵ jð Þ
� �2

=
1
2

f v jð Þ� �� ŵ jð Þ
h i2

, j =0,1, . . . ,n� 1 ð4Þ

where j is the number of the given channel, n is the total number of the
channels in use, v jð Þ is the voltage applied to the on-ring heater. To
minimize the loss function, the gradient descent method is employed
and the derivatives of L(j) are formulated as

dL jð Þ

dv jð Þ = w jð Þ � ŵ jð Þ
� �dw jð Þ

dv jð Þ :
ð5Þ

If choosing the change of the weights in the opposite direction of the
gradient of the L(j), the updated applied voltage can be written as

v jð Þ
i + 1 = v

jð Þ
i � η dL jð Þ

dv jð Þ
i

, i=0,1,2, . . . ,M jð Þ � 1

∣ f v jð Þ
M jð Þ

� �
� ŵ jð Þ∣< ε, j =0,1,2, . . . ,n� 1

8><
>:

ð6Þ

where η is a strictly positive hyper-parameter called the learning rate
and the M jð Þ is the number of iterations. The calibration procedure
does not stop until the absolute value of ðw jð Þ � ŵ jð ÞÞ for all channels is
less than a small number ε (ε =0.001 in our case).

Note that our calibration procedure not only eliminates the
effects of thermal crosstalk in the MRR weight bank, but the weight
interdependence caused by common parasitic resistance can be atte-
nuated as well.

Details for experimental setup
In the twoproof-of-concept experiments, the dark-pulsemicrocomb is
generated in a direct DFB-pumping manner. The DFB pump laser is
packaged with a thermoelectric cooler (TEC) module (Phononic FBM-
013865). An optical isolator is employed to avoid light reflection. A
dark-pulse Kerr comb with 2-FSR spacing is generated with proper
environmental temperature and pump frequency detuning around
~1551.3 from the blue side. The free-running comb isfirst amplified by a
low-noise EDFA (Amonics AEDFA-PA-35-B-FA) and four comb lines are
selected by an optical band-pass filter (EXFO XTM-50) before launch-
ing into the PPU. The input and output optical coupling are realized
using focused grating couplers for the TE mode. The voltages applied
to the phase shifters in the silicon EOM and the TiN micro-heaters on
the MRR are tuned by four programmable direct-current power sup-
plies (Keysight E36312A).

The measurement environment is shown in Supplementary
Fig. S1a. The prototype PPU is packaged on a printed circuit board
(PCB) with a hole in the center and supported by a 0.5-mm thick
copper plate for higher thermal conductivity. The PCB is attached to a
TEC with temperature control accuracy of 0.01 ∘C to reduce the ther-
mal crosstalk.
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The output light from the PPU is split by a 10:90 fiber coupler: 10%
of the optical power is sent into an optical spectrum analyzer (Yoko-
gawa AQ6370C) for kernel weight monitoring, while the other 90% of
the light propagates to a discrete fast PD (Finisar HPDV2120R). A
50GSa s−1 arbitrarywaveformgenerator (AWG,TektronixAWG70001B)
is employed to produce the differential input RF signals. The RF signals
from the AWG are then amplified by two linear electrical drivers (SHF
S807C) before routing to the silicon EOM. The output RF signals from
the PD are received by a real-time oscilloscope (Agilent DSA-X 96204Q)
with 80GSa s−1.

Data availability
The data that supports the plots within this paper and other findings of
this study are available on Figshare (https://doi.org/10.6084/m9.
figshare.21687854). All other data used in this study is available from
the corresponding authors upon reasonable request.

Code availability
The codes that support the findings of this study are available from the
corresponding authors upon reasonable request.
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