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ABSTRACT 

Does Humidity Matter? Prenatal Heat and Child Growth in South Asia 

by 

Kathryn Henry McMahon 

 

Extreme heat under climate change has already begun to threaten health, particularly for 

mothers and babies in the hottest parts of the world. When exposure occurs in utero, extreme 

heat can undermine child growth and development, leading to devastating later-life 

consequences for both health and socio-economic stability. Previous research, however, has 

often overlooked the role of humidity, which, when paired with extreme heat, can result in 

deadly heat stress and associated health complications. Understanding the relative effects of 

heat versus humid heat is important for understanding the magnitude and location of the 

effects of climate change, and for targeting interventions. I compare the impact of prenatal 

exposure to heat versus humid heat extremes on child height attainment in three South Asian 

countries (India, Bangladesh, and Nepal) using fine-scale climate records, trimester-level 

exposure identification, comprehensive data on 200,000 children from the Demographic and 

Health Surveys, and a rigorous fixed effects design. I find that extreme humid heat in the 

third trimester is five times more detrimental to height attainment than heat alone, and that 

maternal heat exposure in the period preceding pregnancy may have lasting negative impacts 

on growth trajectories after birth—a critical exposure period that has received little-to-no 

attention thus far with respect to child health. Specifically, the average child’s height-for-age 

Z-score declines by 0.002 units for every additional day in the third trimester that wet-bulb 

globe temperatures exceed 29°C. Combining these effects with new projections of wet-bulb 
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globe temperature, I estimate that by 2050, climate change could increase the mean number 

of hot-humid days in the third trimester by 56.5% in my study region, pushing more than 

930,000 additional children under 5 into stunting even before accounting for future 

population growth. This estimate shrinks to 315,000 children when I consider future 

exposure to heat alone, implying that failing to account for humidity may lead to significant 

underestimates of the true effects of extreme heat on child health. I further find that children 

without adequate sanitation access and whose mothers lack formal education or belong to 

systematically marginalized castes are more vulnerable to the adverse health effects of 

prenatal exposure to humid heat. My results provide new insight into which heat events are 

most dangerous for early life health and when, in a region where near-annual heat waves 

already affect millions and are projected to worsen under further climate change. 
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I. INTRODUCTION 

Climate change poses a critical threat to human health and well-being through a 

combination of rising temperatures, increasingly variable precipitation patterns, and more 

frequent and extreme weather events (Pachauri et al., 2014). These trends are of particular 

concern for infants and young children in tropical low- and middle-income countries, who 

are already exposed to many of the world’s most extreme climate conditions and whose 

growth and development is highly dependent on proper nutrition, healthy environments, and 

adequate care (Burke et al., 2015; Carleton and Hsiang, 2016). This vulnerability begins even 

before birth; extreme weather events during pregnancy can undermine fetal development, 

translating into consequences for infant health at birth and physical growth trajectories in 

early childhood. Critically, disruptions to height attainment in the first five years of life can 

have long-term devastating impacts on everything from earnings and educational attainment 

to chronic disease risk in adulthood, making height attainment (measured by a standardized 

height-for-age ratio) an important marker of the health risks associated with climate change 

(Alderman, 2006; Almond and Currie, 2011; Davenport et al., 2017; Grace, Verdin, et al., 

2021).  

Although an increasing number of studies have expanded our understanding of how 

precipitation shocks are related to child height attainment (Grace et al., 2012; Kumar et al., 

2016; Cooper et al., 2019; Dimitrova and Muttarak, 2020), the impact of extreme heat 

exposure is often overlooked. Those studies that do add temperature fail to consider the 

interaction between temperature and humidity, which can greatly influence our physiological 

experience of heat (Grace et al., 2015; Grace et al., 2021, McMahon and Gray, 2021). 

Humidity slows or prevents the evaporation of sweat from our skin, undermining the human 
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body’s natural cooling mechanism during times of extreme heat (Parsons, 2014). Ambient air 

temperature is therefore a coarse measure of the biological stress associated with heat 

exposure, which is better captured by composite metrics like the wet-bulb globe temperature, 

which accounts for the additional factors (like humidity) that lead to heat stress (Parsons, 

2006; Budd, 2008). Pregnant people are particularly susceptible to heat stress due to 

hormonal changes that influence the thermoregulatory system and because metabolic heat 

production increases as the fetus and placenta develop. Due in part to this heightened 

vulnerability, extreme heat during pregnancy can shorten gestation, reduce birth weights, and 

increase rates of pregnancy loss and infant mortality (Davenport et al., 2017; Basu et al., 

2018; Ward et al., 2019; Randell et al., 2020). Together, these factors might suggest that our 

estimates of the health risk associated with heat extremes during pregnancy substantially 

underestimate the true effect when combined with humidity. Furthermore, hot and humid 

locations are distinct from hot and dry locations, and if the two effects differ, these disparate 

locations may face different levels of climate threat (Tuholske et al., 2021).  

Social and physical vulnerability to extreme heat intersect in South Asia, where 

inequalities in resource access and high rates of child undernutrition come head-to-head with 

rapidly accelerating exposure to extreme hot-humid heat (Pachauri et al., 2014; Tuholske et 

al., 2021). In this paper, I conduct a spatially-granular analysis of the effects of prenatal 

exposure to hot-humid heat on height attainment for approximately 200,000 children in 

Bangladesh, India, and Nepal. Importantly, I deviate from the existing literature by shifting 

the focus away from temperature and precipitation shocks, which interact with each other and 

blur the lines between different types of heat events. Instead, I utilize short-run variation in 

wet bulb globe temperature (WBGTmax) and observe its effect on rates of stunting in over 
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200,000 children under five, a key indicator of chronic undernutrition at a critical stage of 

growth and development. To isolate the unique impact of hot-humid heat, I run a parallel 

analysis with conventional temperature predictors (Tmax) and compare the magnitude and 

precision of predictions from both models, as well as the relative roles of trimester-level 

exposure timing and demographic characteristics. By leveraging this more precise heat 

metric at high spatial resolutions, I highlight the early-life health risks of prenatal exposure to 

one distinct type of extreme heat. My findings suggest that hot-humid heat in the third 

trimester is five-times more detrimental to child growth than heat alone in South Asia, and 

that maternal heat exposure during the period before conception has long-lasting negative 

effects on both fertility and child health after birth. I further find that these adverse effects are 

amplified among socially and materially vulnerable groups, including mothers with little-to-

no formal education and those lacking access to adequate sanitation infrastructure. To my 

knowledge, this is the first paper to directly test the effects of hot-humid heat on height-for-

age against those of heat alone, as well as the first to document the potential danger of pre-

conception heat exposure for child stunting. 

II. BACKGROUND 

In recent years, a growing body of research has demonstrated that global climate 

change affects human health in a myriad of ways. Moreover, these impacts are not distributed 

evenly across the globe; the consequences of climate change are emerging more rapidly and 

with more intensity in low- and middle-income countries in the global tropics, threatening 

those communities that often bear the least responsibility for anthropogenic environmental 

change (Pachauri et al., 2014; Frame et al., 2017; Mora et al., 2017). Within populations, 

those most vulnerable to the health risks of climate change include the elderly, those with 
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existing health conditions, pregnant people, and young children. Nutritional health is 

particularly critical and delicate during pregnancy and early childhood, and it is sensitive to 

environmental stressors that may influence food security, disease rates, heat stress, or 

financial and material stability, as illustrated by Randell et al. (2020) in Figure 1. These 

earliest shock exposures can have lifelong devastating impacts; disruptions to health nutrition 

during the first 1,000 days after conception has been quantifiably linked to educational, 

financial, and physical outcomes well into adulthood (Rayco-Solon et al., 2005; Almond and 

Currie, 2011; Ramakrishnan et al. 2012; Nobles et al., 2019). While the relationship between 

climate extremes and child nutrition is highly context dependent, scholars generally find that 

both extremely wet (del Ninno and Lundberg, 2005; Dimitrova and Muttarak, 2020; Thiede 

and Gray, 2020) and dry (Grace et al., 2012; Kumar et al., 2016; Davenport et al.; 2017) 

conditions increase rates of stunting in children under five, a widely used indicator of chronic 

undernutrition. McMahon & Gray (2021), for instance, estimate that an additional day of 

extreme rain reduces height-for-age Z-score for children under five in South Asia by 0.003 

and 0.006 units when exposure occurs during the prenatal period and the first year of life, 

respectively. Meanwhile, extreme heat is consistently associated with increased rates of low 

or reduced birth weight, pre-term birth, and pregnancy loss (Davenport et al., 2020; Kuehn 

and McCormick, 2017) as well as mortality in at-risk populations (Deschênes et al., 2016). In 

two multi-national studies in sub-Saharan Africa, Grace et al. (2015) find that an additional 

day during gestation temperatures reaching at least 100°F (38°C) can reduce mean birth 

weights by up to 0.9 grams, depending on trimester of exposure, while Davenport et al. 

(2020) estimate that a 10% increase in the number of days over 104°F (40°C) raises the 

likelihood of late-stage pregnancy loss by 1.9%.  
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Figure 1: Conceptual model of the linkages between weather conditions and child stunting, taken from 

Randell et al. (2020). 

A. Heat, Humidity, and Prenatal Exposures 

Although an increasing number of studies have expanded our understanding of how 

temperature and precipitation shocks are related to indicators of food insecurity and child 

nutrition, current approaches do not consider the interactive effects of these two predictors 

during humid heat shocks, which may pose a distinct threat to child health. Existing research 

in the fields of epidemiology and physiology show that human body temperature is a function 

of more than just air temperature; humidity, wind speed, sunlight intensity, rates of physical 

activity, clothing, and preexisting health conditions all impact our bodies’ perception of heat 

(Parsons, 2014; Bernard and Iheanacho, 2015; Vanos et al., 2020). Wet-bulb globe 

temperature is a heat stress metric designed to capture the combined effect of these factors in 

hot-humid environments (Parsons, 2006; ISO, 2017). High values of maximum wet-bulb 

globe temperature (WBGTmax) indicate dangerous conditions which can culminate in heat 

exhaustion, reduced productivity, cardiovascular events, and death in extreme cases (Burke et 

al. 2015; Cheung et al., 2016; Mora et al., 2017; Pradhan et al., 2019; Raymond et al., 2020; 

Vanos et al., 2020). Parsons et al. (2022) estimate that contemporary levels of humid heat 

already cost the global economy over 2 trillion per year (650 billion hours of labor), while 
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Pradhan et al. (2019) find that deaths due to cardiovascular causes rose to 58% among young 

Nepali migrant workers in Qatar during hot months (WBGT>31°C).  

Furthermore, developing evidence indicates that pregnant people are at a heightened 

risk for the health consequences associated with hot-humid environments. Changing 

hormone levels and increased production of metabolic heat inhibit heat dissipation during 

pregnancy, making maternal core temperature more sensitive to the effects of hot-humid heat 

and increasing the risk of maternal heat stress, pregnancy loss, and complications at birth 

(Carolan-Olah and Frankowska, 2014; Zhang et al., 2017; Basu et al., 2018). Scholars also 

document declines conception rates during periods of extreme heat; Barreca et al. (2018) find 

that birth rates fall by up to 0.4% nine months after a hot day in the United States, likely due 

to short-term changes in reproductive health. Because of its wide-ranging effects on fertility, 

birth outcomes, and mortality after birth, population-level studies of prenatal heat and post-

natal health can suffer from selection bias at several junctures. First, heat-induced fertility 

changes like those documented by Barreca et al. (2018) can reduce conceptions among 

parents with the most susceptibility (or exposure) to extreme heat. Next, post-conception but 

still prenatal selection can occur if rates of pregnancy loss are highest among the most heat-

exposed women. Finally, we may see post-natal mortality among the most affected children, 

which may also be associated with upstream heat-related outcomes such as low birth weight 

or pre-term birth. Indeed, Wilde et al. (2014) find that hotter-than-average temperatures at the 

time of conception improves the later life outcomes of surviving children through selection. 

Taken together, this evidence suggests that hot-humid heat exposure may pose a greater 

threat to maternal and infant health than heat alone, though selection may lead us to 

underestimate its true effect. Nevertheless, the role of humidity in determining the impact of 
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heat events on child health outcomes remains overlooked in the scientific literature to date, 

leaving considerable uncertainty around how climate change may influence health in regions, 

like South Asia, with increasing exposure to hot-humid extremes (Pachauri et al., 2014; 

Matthews et al., 2017; Tuholske et al., 2021).  

B. Differential Vulnerability to Climate Extremes 

Recent evidence demonstrates that children’s vulnerability to prenatal climate shocks 

is highly dependent on the precise timing and duration of exposure to extreme conditions in 

utero (Shively et al., 2015; Grace, Verdin, et al., 2021) and varies widely across socio-

demographic characteristics. Despite importance of exposure timing, most analyses of 

prenatal climate shocks and child growth either treat the year preceding birth as a single 

exposure period (Shively et al., 2015; Thiede and Gray, 2020; Randell et al., 2020; 

McMahon and Gray, 2021) or focus on only the immediate effects of trimester-level shocks, 

such as birth weight or non-live birth outcomes (Grace, Verdin, et al., 2021; Catalano and 

Bruckner, 2006). Though these advances have been highly valuable, a set of unanswered 

questions remain about the longer-run effects of trimester-level climate shocks and the role 

that exposure timing may play. Lingering undernutrition among 2-5 year-olds are of 

particular concern, given that the potential for catch-up growth has been shown to be limited 

after age two (Ninno and Lundberg, 2005). Finally, research strongly suggests that there are 

inequities in impact across and within communities themselves, driven by demographic 

characteristics related to resource access and social marginalization (Dimitrova and 

Muttarak, 2020; Nicholas et al., 2021; McMahon and Gray, 2021). In the South Asian 

context, existing research finds that household- and community-level access to sanitation 

infrastructure is a particularly strong determinant of nutritional vulnerability, and that 
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sanitation access can mitigate harmful effects of early life shocks on height-for-age (Spears, 

2020; Brown, Kandpal, et al., 2022; McMahon and Gray, 2021). 

C. South Asian Context 

 This work builds on existing research that identifies South Asia as a region burdened 

by both high rates of chronic undernutrition and extreme heat exposure, the latter of which is 

projected to increase dramatically under future climate change. Even in a scenario where 

societies succeed in limiting warming to 2°C above preindustrial levels, for instance, 

Matthews et al. (2017) predict that South Asia will suffer from deadly heat events every year. 

Nor are these burdens unrelated; existing research shows that children’s nutritional status is 

highly sensitive to environmental shocks in the region (Shively et al., 2015). This literature 

has focused largely on precipitation extremes thus far, demonstrating that both drought 

(Shively et al., 2015; Kumar et al., 2016) and flood (del Ninno and Lundberg 2005; Tiwari et 

al., 2017; Dimitrova and Muttarak, 2020) conditions increase children’s risk of stunting, 

suggesting a nonlinear relationship between precipitation and height attainment (Cooper et 

al., 2019). Though the impact of temperature extremes has been widely overlooked thus far, 

McMahon and Gray (2021) find early suggestive evidence that exposure to both cold and hot 

shocks in the first two years of life may undermine growth, particularly in Nepal and 

Pakistan. In addition to these population-level trends, scholars consistently find that the 

health effects of climate extremes vary considerably throughout the region depending on 

precise time and place of exposure (Shively et al., 2015; McMahon and Gray, 2021), access 

to adequate sanitation (Spears, 2020; McMahon and Gray, 2021), and levels of inequality 

across gender and caste (Coffey et al., 2019; Dimitrova et al., 2020; McMahon and Gray, 

2021).  
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III. DATA & MEASURES 

A. Heat Data  

I construct localized heat exposure records for each DHS survey location (cluster) 

using the Climate Hazards Center InfraRed Temperature with Stations data (CHIRTS), a 

high-resolution gridded temperature product created by the Climate Hazards Center at UC 

Santa Barbara. CHIRTS is the most robust temperature product available to date, improving 

upon previous datasets by combining satellite imagery with in-situ station observations to 

produce accurate, fine-scale (0.05° resolution) temperature estimates in otherwise data-sparse 

regions (Funk et al., 2019; Verdin et al., 2020). This product is particularly crucial in 

enabling my use of WBGTmax as a key explanatory variable. Though in situ WBGTmax 

observations are sparse, particularly in the Global South, I use closely approximated 

WBGTmax developed with satellite-derived temperature and humidity inputs from CHIRTS 

and down-scaled reanalysis data from ERA5, respectively (Bernard and Iheanacho, 2015; 

Tuholske et al., 2021). 

My primary explanatory variables of interest capture a given child’s degree of daily 

exposure to extreme values of maximum temperature (Tmax) and maximum wet-bulb globe 

temperature (WBGTmax) during each of the four trimesters preceding birth. Whereas daily 

Tmax simply records the highest ambient air temperature in a given diurnal cycle with no 

information about humidity, WBGTmax was designed by the United States military to capture 

multiple dimensions of human heat stress in an effort to reduce heat illness during basic 

training (Budd, 2008). In addition to ambient air temperature, WBGTmax contains 

information about relative humidity, wind speed, and sunlight intensity, all of which play a 

role in determining the body’s capacity for heat dissipation (Bernard and Iheanacho, 2015). I 
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select two absolute heat thresholds for each variable to capture a greater degree of the 

nonlinearity in the relationship between extreme heat and child health. Though many existing 

studies use relative thresholds (e.g., based on percentiles of local temperature distributions or 

deviations from a historical mean; McMahon and Gray, 2021), I argue that absolute metrics 

are better suited for capturing the physiological mechanisms that link extreme heat and 

maternal and infant health in the prenatal period (Randell et al., 2020). For Tmax, I choose 

35°C and 40°C as my low and high thresholds, given that these have been consistently linked 

to increased risk of heat-induced morbidity and mortality (Deschênes, 2014; Barreca, Clay, et 

al., 2016). Because critical biological thresholds for WBGTmax are not as established in the 

literature, and to ensure maximum comparability across variables, I select values of 

WBGTmax that occur with comparable frequency in my sample to the corresponding low and 

high thresholds for Tmax. This approach yields WBGTmax thresholds of 29°C and 31°C, both 

of which are flagged as hazardous by such organizations as the US Marines and the 

Occupational Safety and Health Administration and have been linked to increased risk for 

outdoor laborers (OSHA, 2017; Bernard and Iheanacho, 2015; Parsons et al., 2022). Figure 2 

depicts the distribution of Tmax and WBGTmax, and the orange and red lines denote the low 

and high heat thresholds I select for each.  



 

11 
 

Figure 2: Density curves of daily Tmax and WBGTmax in all clusters (1983-2016). Orange and red dotted lines 

mark the low (Tmax=35°C, WBGTmax=29°C) and high (Tmax=40°C, WBGTmax=31°C) thresholds, respectively. 

B. Child Health Data  

I leverage data on child growth trajectories, demographic characteristics, and village 

locations from the Demographic and Health Surveys (DHS), funded by USAID. The DHS 

collect detailed, representative data on anthropometrics and demographics in countries that 

often lack adequate local and national health data. I access the DHS child questionnaires in a 

user–friendly format from IPUMS (Boyle et al., 2022). The DHS also provide geographic 

identifiers at multiple scales for each household. This information becomes the key for 

integrating large-scale survey and environmental data. My sample includes 0- to 5-year-old 

children from all IPUMS-DHS surveys in Bangladesh, India, and Nepal that contain both 

child anthropometric records (i.e., height and weight, measured at the time of survey) and 

geographic identifiers at the DHS’ smallest spatial unit. These spatial units are referred to as 

“clusters” and are approximately the size of a single rural village or urban city block. In total, 

my final dataset contains 209,741 observations from the following DHS rounds: Bangladesh 

1999-2000 (N=4,649), Bangladesh 2004 (N=4,922), Bangladesh 2007 (N=4,220), India 

2015- 2016 (N=183,942), Nepal 2001 (N=5,662), Nepal 2006 (N=4,479), and Nepal 2016 
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(N=1,951). It is useful to note that while DHS round-specific sampling weights help to 

balance unequal sample sizes between rounds, the majority of my observations are from 

India 2015-2016.  

My outcome measures for child height include a continuous Z-score of height-for-age 

ratio (HAZ) and binary indicator variables for stunting and severe stunting (HAZ < -2 and 

HAZ < -3; WHO, 2006). These anthropometric measurements are observed at the time of 

survey only. Figure 3 presents the distribution of HAZ in my sample, with markers for both 

WHO stunting thresholds as well as the sample median. The height-for-age Z-score for each 

child is calculated relative to the median height among a globally-representative population 

of children of the same age and sex (WHO, 2006), and ranges from -6 to 6 standard 

deviations. Strikingly, the sample median falls close to HAZ = -2, meaning that nearly 50% 

of all 0-5 year-olds in my sample were stunted at the time of survey. To account for potential 

selection bias in my individual-level models of child height, I will also consider the total 

number of births per month recorded at the state level across all DHS rounds. Though I am 

primarily investigating the effects of extreme heat on HAZ and stunting because of existing 

evidence linking them to adverse outcomes for well-being in adulthood (Alderman, 2006; 

Almond and Currie, 2011), my conceptual framework based on the epidemiological literature 

suggests that extreme heat during the year preceding birth may also lead to higher rates of 

early- and late-stage miscarriage, pre-term birth, and reductions in fertility related to 

biological or behavioral mechanisms (Barreca, Deschênes, et al., 2018; Randell et al., 2020). 

Where these outcomes of extreme heat exposure exist, they may be systematically removing 

the children who are most vulnerable to heat from my sample, whether through mortality or 

reductions in fertility among the most vulnerable mothers. Such selection bias would mean 
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that my estimates of the true heat effect on child health are biased downwards. I will 

therefore conduct a secondary set of models (described below) using total births as the 

dependent variable in order to test for selection bias in the main results on HAZ. Like the 

measures of child height, I construct this state-level variable for births per month using the 

child questionnaires. 

 
Figure 3: Density curve of HAZ in all DHS clusters. Black dotted line marks the sample median. Orange and 

red dashed lines mark the WHO thresholds for stunting and severe stunting, respectively. 

C. Data Integration  

To define trimester-level heat exposure for each child in my sample, I first extract a 

34-year record (1983-2016) of CHIRTS daily Tmax and WBGTmax values at the cluster level. 

This is done by calculating a spatially-weighted mean of all pixel values that fall within 10 

kilometers of a given cluster for each day from 1983-2016. I include a 10-kilometer buffer to 

account for the random displacement of cluster locations (up to 10km) conducted by the DHS 

to protect survey respondents’ privacy. Though some scholars have argued for alternative 

approaches to account for such displacement in population-environment research (Grace, 

Nagle, et al., 2019), this buffer technique remains robust when dealing with temperature 
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variables. I then use unique DHS identifiers to link individual children to their local heat 

records at the cluster level. To protect my identification of individual-level heat exposure, I 

exclude any respondents who moved residences at any point during the child’s life or 

prenatal year, as well as those lacking data on migration history altogether (N=120,608). 

With the resulting integrated dataset, I identify all days in which cluster-level values of 

WBGTmax and Tmax exceeded one or more of my biologically-relevant thresholds. Finally, I 

use information on children’s age and month of birth from the DHS to count the total number 

of hot days in each of the four trimesters before birth. In addition to trimesters 1-3, during 

which gestation takes place, I also observe heat exposure during ‘trimester 0’, which spans 

the three months preceding conception. Aside from the importance of proper nutrition during 

this period (Grace, Verdin, et al., 2021), extreme heat during trimester 0 has been shown 

reduce conceptions (Lam and Miron, 1996; Barreca et al., 2018) and decrease the birth 

weights of babies born 9-12 months later (Grace et al., 2015), suggesting that these pre-

conception months are important determinants of health trajectories for mothers and babies 

throughout pregnancy and beyond. Because the DHS does not record exact date of birth 

(only month and year) for the vast majority of children in my sample, I mark the start and 

end of each trimester using the 15th day of a given month. Though consistent across 

observations, this strategy means that a fraction of hot days is necessarily mis-assigned for 

any child not born on the 15th of the month. Figure 3 shows the joint spatial distribution of 

prenatal heat exposure (defined at both thresholds of WBGTmax and Tmax) and stunting 

occurrence across all DHS clusters in my sample. 
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Figure 4: Joint spatial distribution of average prenatal heat exposure and stunting rates by DHS cluster. 

Each point represents a cluster, where color is determined by the cluster-level average number of hot days 

experienced by 0-5 year olds during trimesters 1-3. Point size reflects the proportion of 0-5 year olds stunted at 

the time of survey. 

IV. EMPIRICAL STRATEGY 

A. Height-For-Age Estimation 

Analytic methods include both descriptive and inferential statistics, conducted while 

controlling for a comprehensive set of demographic factors and including a fixed effects 

regression technique that accounts for potential spatial and temporal confounders to 

undernutrition. All analyses are replicated for both sets of heat variables (high and low 
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thresholds of WBGTmax and Tmax each), with particular attention to differential predictive 

power between them, evaluated based on the magnitude and precision of parameter 

coefficients. My first model of child height is estimated as follows: 

                                    (Model 1) 

where Yij is the value of one of two height-related independent variables (HAZ or stunting) 

for child i in DHS cluster j. I model both outcomes in a linear regression framework, which 

implies a linear probability model for my binary stunting indicator. Meanwhile, β1 is the 

coefficient on the number of days (Wjt) that fall above a given heat threshold in each 

trimester τ. The explanatory variable Wjτ enters the model using a cumulative stepwise 

function evaluated at each of the four trimesters τ before child i’s birth. The Xij term is a 

comprehensive set of controls at the child, maternal, and household levels. These include the 

child’s sex, twin status, birth order, and birth location (health clinic or other); mother’s 

educational attainment, parity, religion, and marital status; and an indicator variable for 

whether the household has access to an improved toilet (defined using DHS classifications). 

A set of individual-level controls for child’s age in months, birth month, mother’s age in 

years, and month of DHS survey is also captured in Xij to account for nonlinearity in height-

for-age across age groups and seasonal variation in nutritional status. μj represents cluster 

fixed effects, which controls for latent and time-invariant community-level characteristics 

that influence children’s heights. Finally, I include state-by-survey-year fixed effects (γts) to 

flexibly capture macro-level trends in child health and nutrition over time. With these robust 

fixed effects, the remaining variation comes from within-cluster differences in prenatal heat 

exposure among individuals, based on the varying ages of children in my sample. I further 

include DHS sampling weights to account for the clustered sampling design and unequal 
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sample sizes across countries and survey years, and I cluster standard errors at the DHS 

cluster level.  

 While model (1) provides an initial look at the relationship between HAZ and each of 

my four heat thresholds, we may wish to compare the effects of Tmax and WBGTmax extremes 

more directly. For this purpose, my second model includes exposure to both Tmax>35°C and 

WBGTmax>29°C among the covariates: 

 
                                                                                                                               (Model 2) 

where the outcome, controls, and fixed effects terms all remain the same as above. β1 now 

captures the effect of a marginal increase in the number of days where Tmax exceeded 35°C in 

cluster j during each trimester τ on my approximation of the conditional mean of HAZ, 

holding other covariates (now including hot-humid heat exposure) constant. On the other 

hand, β2 now reports the marginal effect of trimester-level exposure to days with 

WBGTmax>29°C, unconfounded by Tmax. I fit two additional models that are not presented in 

the main body of the paper; the first is identical to model (2) but uses the corresponding high 

heat thresholds, Tmax>40°C and WBGTmax>31°C, and the second uses all four thresholds in a 

single regression. These equations and corresponding results are excluded from the main text 

due to concerns about low sample variation in the highest heat thresholds as well as strong 

positive correlation between the high and low thresholds of the same metric in the same 

trimester (e.g., Tmax>35°C and Tmax>40°C in trimester 1, given that the latter indicator 

completely predicts the former for any given day). See the appendix for further details.  

B. Births Estimation 



 

18 
 

Given that HAZ is calculated using height measurements from the time of survey 

alone, there may be reasonable concern about selection into my sample. For instance, it may 

be that the women who are most vulnerable to heat exposure are less likely to conceive 

during periods of extreme heat, due to changes in either reproductive health or fertility 

behavior, or else more likely to suffer pregnancy loss or similar complications when extreme 

heat occurs. To investigate potential selection bias in the main results on child height, my 

final equation models births at the state level and takes the following form: 

                                          (Model 3) 

where Yst denotes the number of births recorded in a given state s and month-year t (where 

equivalent calendar months in different years are distinct from each other). The primary 

explanatory variable of interest, Wsτ, reflects the average number of hot days experienced in 

trimester τ experienced by all children born in state s and month-year t. As above, Wsτ enters 

the model through a cumulative stepwise function for each trimester, μs is a state-survey 

fixed effect, and γt contains fixed effects for both calendar month and year. Standard errors 

are clustered at the state-survey level. To supplement and check the robustness of the results 

from this model, I also fit a Poisson regression and a negative binomial regression, both of 

which are commonly used to model count variables. The results from these alternate models 

can be found in the appendix. 

V. RESULTS 

A. Descriptive Analysis  
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Table 1 reports simple descriptive statistics for all individual-level child health 

outcomes and explanatory variables (including trimester-specific heat exposure metrics and 

demographic controls) used in analyses. First, and notably, chronic undernutrition is 

widespread among 0-5 year-olds in my sample; 39% of children are stunted, and 17% are 

severely stunted. Additionally, 3% of all children in my sample died within the first month 

after their birth (neonatal mortality) and 5% within the first year (infant mortality). This 

number is reflected in the 5% of observations coded as "Missing" for HAZ, stunting, severe 

stunting, and child’s age. Because my outcome for total births per month is aggregated to the 

state level and therefore has a different sample size (N=3,677), it is omitted from Table 1. 

Instead, I note here that the mean number of births per month across all states and months in 

my dataset is 61.62, with a standard deviation of 110.50.  

Summary statistics for the maternal demographic variables suggest that the vast 

majority (99%) of mothers in my sample are married, and most have had two or more 

children by the time of DHS survey. 53% of mothers are stunted, suggesting an accumulation 

of undernutrition into adulthood for many women in my sample. A large majority of women 

received either no formal education (37%) or a secondary school qualification (40%), only 

53% of surveyed households had access to an improved toilet, and only a fifth were qualified 

as urban by DHS standards. Finally, Table 1 gives an overview of the distribution of extreme 

heat (for all heat thresholds) throughout the prenatal period across my integrated dataset. 

Within each heat threshold, there tends to be slightly fewer hot days on average during 

trimester 0 compared with later trimesters, suggesting an underlying seasonal trend in 

fertility. The frequency of days exposed to the lower (Tmax>35°C & WBGTmax>29°C) and 

higher (Tmax>40°C & WBGTmax>31°C) heat thresholds is largely consistent between the two 
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variables, and the difference between the mean and median number of hot days per trimester 

for each row reflects the left-skewness of the heat distributions (see Figure 2). Though not 

reported in Table 1, additional exploratory analyses reveal high levels of positive correlation 

between the lower and higher thresholds of each heat exposure variable (e.g. Tmax>35°C & 

Tmax>40°C) at the trimester level (Pearson coefficient >0.8 in all cases). There is also a 

moderate positive correlation between Tmax>35°C & WBGTmax>29°C (Pearson coefficient = 

~0.67) and Tmax>40°C & WBGTmax>31°C (Pearson coefficient = ~0.58). 

B. Main Analysis  

Figure 5 presents the coefficients and 95% confidence intervals on prenatal heat 

exposure from my first models of HAZ (5a), stunting (5b), and severe stunting (5c), 

estimated as described above using a comprehensive suite of fixed effects and demographic 

controls (see appendix for full regression results tables). The coefficients from each model 

show a clearly nonlinear pattern in the heat-height relationship depending on trimester of 

exposure, where exposure during the beginning and end of the prenatal period (trimesters 0 

and 3) appears to be most detrimental to growth. This general pattern holds for all outcomes 

and heat metrics, though there is notable variation in the magnitudes among heat variables 

and thresholds. For example, holding all explanatory variables constant, one additional day 

with WBGTmax>29°C during trimesters 0 and 3 decrease the linear projection of HAZ by 

0.001 (SE=0.0006) and 0.002 (SE=0.0006) standard deviations, respectively. On the other 

hand, an additional day above the higher WBGTmax threshold, 31°C, does not appear to 

decrease in HAZ in any trimester. On the contrary, an extra hot-humid day at the 

WBGTmax>31°C level in trimester 1 corresponds to a 0.002 standard deviation increase in 

HAZ (SE=0.0008) which may be consistent with increased probability of pregnancy loss or 
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infant mortality among vulnerable groups. There is a similar relationship between the high 

and low thresholds for conventional temperature; the estimated coefficients on Tmax>40°C 

are more positive than those on Tmax>35°C for every trimester of exposure. For Tmax, a 0.001 

(SE=0.0006) standard deviation decrease in average HAZ with an additional day above 35°C 

in trimester 0 is the only effect that is statistically significantly different from zero at the 5% 

level. Panels 5b and 5c show the coefficients on stunting and severe stunting, using an 

otherwise identical model specification to the regression of HAZ. Here, the plotted 

coefficients represent the change in the linear projection of the probability of the outcome 

(stunting or severe stunting) given an additional day of extreme heat, holding the other 

explanatory variables constant. Because they illustrate very similar patterns within and 

between heat metrics to those in Panel 5a, I do not stress them here. After adjusting for 

multiple hypothesis testing using the Hommel method (Hommel, 1988), which is robust to 

positive association between tests, all but one of the coefficients1 on WBGTmax exposure 

remain statistically significant at the 5% level across all outcomes, whereas only the 

reduction in the probability of severe stunting associated with second trimester exposure to 

Tmax>40°C retains equal significance.  

To compare the relative health risks of heat and hot-humid heat more directly, Figure 

6 depicts the estimated coefficients of interest from my second model of child height, which 

takes all trimester-level counts of days with Tmax>35°C and days with WBGTmax>29°C as 

covariates in the same regression (see Empirical Strategy for full model details). While there 

is no longer a statistically detectable difference in the effects of Tmax and WBGTmax 

 
1 The estimated effect of exposure to WBGTmax>29°C in trimester 0 on the probability of stunting is now 

marginally significant (P = 0.059). 
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exposures during trimester 0 on HAZ, Figure 6 reveals that exposure to wet-bulb globe 

temperatures above 29°C is increasingly detrimental to child growth as pregnancy 

progresses. When exposure occurs in trimester 2, an additional day with WBGTmax>29°C 

corresponds to an average decrease in HAZ by 0.001 standard deviations (SE=0.0007). When 

an equivalent exposure occurs in trimester 3, however, the estimated effect doubles in 

magnitude to a decrease of 0.002 (SE=0.0007). There is no corresponding decrease in HAZ 

associated with exposure to maximum temperatures above 35°C in any trimester after 

conception. With the exception of trimester 0, the point estimates on Tmax>35°C exposure 

remain positive or close to zero.  

Because the results presented in Figures 5-6 only include children who were alive at 

the time of DHS survey, I conduct a secondary state-level fixed-effects analysis regressing 

total births per month on heat exposure. This is an investigation of potential selection bias in 

my estimates of the effect of extreme heat on child height; if extreme heat during the 

exposure period of interest is also reducing the number of children that are born, then the 

coefficients plotted in Figures 5-6 underestimate the true costs of prenatal exposure to 

extreme heat for child health. Figure 7 displays the results of this investigation, where each 

"trimester" refers to the three-month period corresponding to the trimesters of gestation 

preceding the month of observation. Most notably, extreme heat exposure 9-12 months 

before the observed month (designated as trimester 0) has the greatest impact on total births. 

During this period, an additional day with WBGTmax>29°C and Tmax >40°C corresponds to 

an estimated reduction of 0.36 births (SE=0.18) and 1.5 births (SE=0.51) per state, 

respectively. The heat effect shrinks as exposure occurs in later trimesters; an extra day with 

Tmax>40°C in trimester 1 leads to 0.5 fewer births (SE=0.29) in the observed month, and 
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extreme heat in the previous 0-6 months (trimesters 2 and 3) have little-to-no effect on total 

births. Overall, the coefficients on every heat metric follow the same general curve from 

trimester 0 to trimester 3, and the effect size of the high heat threshold generally exceed that 

of the low heat threshold for both Tmax and WBGTmax (though the effect of WBGTmax is 

estimated with lower confidence).  
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Table 1: Unweighted summary statistics for explanatory variables and outcomes (N=209,741). 
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Figure 5: Results from HAZ model 1. Coefficients and 95% confidence intervals for the estimated effect of 

extreme heat exposure on HAZ (Panel 5a), stunting (Panel 5b), and severe stunting (Panel 5c). The yellow 

vertical line represents conception. Controls for child’s sex, twin status, birth order, birth location, child’s age in 

months, birth month, month of survey, mother’s age in years, mother’s educational attainment, parity, religion, 

marital status, and improved toilet access are included in the model but not shown. Fixed effects for cluster and 

state-by-survey-year are also omitted (see appendix for full regression results tables). 
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Figure 6: Results from HAZ model 2. Coefficients and 95% confidence intervals for the estimated effect of 

extreme heat exposure on HAZ, using regression model 2 (see Empirical Strategy). The yellow vertical line 

represents conception. Controls for child’s sex, twin status, birth order, birth location, child’s age in months, 

birth month, month of survey, mother’s age in years, mother’s educational attainment, parity, religion, marital 

status, and improved toilet access are included in the model but not shown. Fixed effects for cluster and state-

by-survey-year are also omitted (see appendix for full regression results tables). 

 
Figure 7: Births results. Coefficients and 95% confidence intervals for the estimated effect of extreme heat 

exposure on total births per month at the state level. The yellow vertical line represents conception. Fixed 

effects for state (by survey), month, and year are included in the model but not shown (see appendix for full 

regression results table, as well as results from alternate specifications using poisson and negative binomial 

regression). 
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C. Effect Heterogeneity 

I next test for heterogeneity in the effect of extreme heat on child height by 

replicating the main results with certain geographic subsets of the sample and by including 

interaction terms between key sociodemographic characteristics and my heat exposure 

variables. First, I rerun Model 1 separately for each country – Bangladesh, India, and Nepal. 

The coefficients of interest and corresponding 95% confidence intervals from these models 

can be viewed in Figure 8, and the regression results tables can be found in the Appendix. I 

find considerable differences in the direction, and magnitude, and temporal dynamics of the 

relationship between extreme heat and HAZ across countries. While the trend for each heat 

metric still follows an inverted U-shaped pattern by trimester of exposure among children in 

India, Figure 8 shows that only exposure to WBGTmax>29°C in the third trimester 

corresponds to a decrease in HAZ after birth. Indeed, these findings suggest that 0-5 year-

olds in India who are exposed to any extreme heat during trimesters 1 and 2 or days with 

WBGTmax>31°C in any trimester are taller on average than their non-exposed counterparts. 

This in stark contrast to the observed results in Nepal, where nearly all point estimates for 

heat exposure are negative, and days with WBGTmax>31°C or Tmax>40°C are particularly 

harmful in trimester 3. Meanwhile, the model detects no clear difference in the heights of 

exposed and non-exposed children in Bangladesh (though the coefficients on the number of 

days with Tmax>40°C are estimated with little precision in each trimester, as indicated by the 

large standard errors). Figure 9 subsequently reveals that the main effects of extreme heat on 

HAZ do not vary as significantly among urban and rural clusters as among countries, though 

mothers and babies in rural places appear more vulnerable to hot-humid heat exposure 

(WBGTmax>29°C) in the third trimester.  
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Finally, I depict heterogeneity in the main results according to socio-demographic 

characteristics by plotting the interactive effects of extreme heat and sanitation access, 

maternal educational attainment, and caste, which is available for India only (Figures 10-12). 

Taken together, these figures indicate that extreme heat exposure is more likely to translate 

into reductions in HAZ for socially disadvantaged mothers and their children, whereas heat-

exposed children from privileged backgrounds are often even taller than their non-exposed 

counterparts. For instance, for every additional hot day (by any of my definitions) in 

trimesters 0 or 3, the average child belonging to households without an improved toilet is 

approximately 0.002 standard deviations shorter for their age than if the heat exposure had 

not occurred, a magnitude larger than that observed in the aggregate model (see Figure 5). By 

contrast, I estimate that extreme heat exposure in trimester 0 has no negative effect on HAZ 

for children with access to an improved toilet, and exposure to an additional day with 

Tmax>40°C or WBGTmax>31°C even correspond to an increase in HAZ of about 0.003 

standard deviations in every trimester. While exposure to WBGTmax>29°C in trimester 3 

poses a risk for children with all toilet types, its estimated negative effect is twice as large for 

those who lack access to adequate sanitation. Likewise, children whose mothers have 

received no formal education or who belong to a disadvantaged (“scheduled”) caste or tribe 

are shorter for their age on average following exposures to extreme heat in trimesters 0 and 3, 

while those whose mothers have received at least a secondary education and who do not 

belong to a disadvantaged social or ethnic group are not. I observe the same pattern of social 

vulnerability to heat for other under-resourced groups, such as children with many older 

siblings, and present these additional analyses in the Appendix. 
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Figure 8: HAZ results (model 1) by country. Coefficients and 95% confidence intervals for the estimated 

effect of extreme heat exposure on HAZ, separated by country. The yellow vertical line represents conception. 

Controls and fixed effects for cluster and state-by-survey-year are omitted (see appendix for regression results 

tables).  

 

(a) India 
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Figure 9: HAZ results (model 1) by rurality. Coefficients and 95% confidence intervals for the estimated effect of heat on HAZ, separated by urban/rural. 

The yellow vertical line represents conception. Controls and fixed effects for cluster and state-by-survey-year included in the model but not shown. 

 
Figure 10: HAZ results by access to an improved toilet. Coefficients and 95% confidence intervals for the interactive effect of heat and improved toilet on 

HAZ. Yellow vertical lines delineate each trimester. Controls and fixed effects for cluster and state-by-survey-year included in the model but not shown. 
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Figure 11: HAZ results (model 1) by mother’s education. Coefficients and 95% confidence intervals for the interactive effect of extreme heat and 

mother’s educational attainment on HAZ. Yellow vertical lines delineate each trimester. Controls and fixed effects for cluster and state-by-survey-year 

included in the model but not shown. 

 
Figure 12: HAZ results (model 1) by caste. Coefficients and 95% confidence intervals for the interactive effect of extreme heat and mother’s caste on 

HAZ. Yellow vertical lines delineate each trimester. Controls and fixed effects for cluster and state-by-survey-year included in the model but not shown. 

Uses observations from India only (N= 173,628). 
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VI. DISCUSSION & NEXT STEPS 

My initial findings suggest that exposure to extreme heat during the year before birth 

undermines child development, lowering height-for-age and increasing the odds of stunting 

and severe stunting for 0-5 year-olds in Bangladesh, India, and Nepal. When I explicitly 

compare the effects of trimester-level exposure to heat versus combined heat and humidity, I 

find that hot-humid extremes have the strongest negative impact on HAZ, particularly when 

exposure occurs during trimester 0 and trimester 3. Exposure to one additional day with 

WBGTmax>29°C during the third trimester decreases HAZ by 0.002 standard deviations and 

raises the baseline probability of stunting among 0-5 year-olds in my sample by 0.128%, an 

effect five times the size of that caused by an additional day with Tmax>35°C during the same 

period. These point estimates are consistent with previous research on climate-induced 

stunting; two recent studies find that a 0.003 unit decrease in HAZ is associated with both (a) 

each day of monsoon onset in Indonesia and (b) each day with extreme rain in South Asia 

during the prenatal period (Thiede and Gray, 2020; McMahon and Gray, 2021). This work 

also adds to the evidence that social and demographic factors play a critical role in 

determining children’s vulnerability to climate shocks (Dimitrova and Muttarak, 2020; 

Nicholas et al., 2021). By interacting heat exposure with indicators of social vulnerability, I 

find that children without adequate sanitation access and whose mothers lack formal 

education or belong to systematically marginalized social groups are at greater risk for the 

lasting health effects of prenatal heat exposure.  

Moreover, my results corroborate previous scholars’ assertations that precise 

exposure timing plays a critical role in determining the long-term impacts of climate shocks 

on child health (Grace, Verdin, et al., 2021). The adverse effects of heat exposure during 
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trimester 3 documented above align with existing epidemiological evidence that heat stress 

and dehydration towards the end of gestation can induce labor prematurely, thereby 

increasing rates of pre-term birth and associated health risk for mothers and babies 

(Davenport et al. 2020, Randell et al. 2020). Meanwhile, the negative relationship between 

height attainment and heat exposure during trimester 0 points towards the importance of 

women’s health at the outset of pregnancy for determining children’s outcomes at birth and 

beyond. Indeed, previous research has linked extreme heat during this pre-conception 

window with decreases in both conception rates (Barreca et al., 2018) and birth weights 

(Grace et al., 2015). Though more research is needed to illuminate the exact mechanisms 

linking extreme heat during trimester 0 with height attainment after birth, the physiological 

consequences of extreme heat exposure during the weeks leading up to and following 

conception may set children on a path towards slower growth, particularly those children 

from under-resourced households and communities (as evidenced by Figures 10-12). Though 

Model 2 did not detect any difference between the relative impacts of hot and hot-humid 

conditions during trimester 0, the significance of this pre-conception period remains 

consistent across many alternate specifications of Model 1, including the inclusion of 

additional placebo exposure periods (see Appendix).  

Given that 39% of all children in my sample are already stunted and humid heat 

exposure is projected to worsen in South Asia under climate change, these effects may pose a 

threat to ongoing efforts to improve child health in South Asia. To approximate the effect of 

future warming on rates of child stunting at a regional scale, I combine my model results 

with new projections of WBGTmax and Tmax produced by the Climate Hazards Center 

(Williams et al., 2023). These data leverage the same heat records that I leverage in the main 
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analysis, but they are now perturbed according to various future warming scenarios. 

Replicating the procedure used in the primary dataset, I use each child’s date and location of 

birth to link my sample of 0- to 5-year-olds to the conditions they would have experienced 

during their prenatal year under a high-emissions climate change scenario (SSP5-8.5) with 

2050 warming. With these data, I calculate that the average child would have been exposed 

to 36 days with WBGTmax>29°C and 28 days with Tmax>35°C during trimester 3 under 2050 

warming, representing a 56.5% and 47% increase in average exposure from my sample mean 

of 23 days and 19 days, respectively. Applying my finding that each day with 

WBGTmax>29°C during the third trimester reduces HAZ by an average 0.002 units, this 

additional hot-humid heat would have the potential to induce stunting among vulnerable 

children whose HAZ scores fall between -1.97 and -2. This group makes up 0.9% (N=1691) 

of all children in my nationally representative dataset, a fraction that contains more than 

930,000 children under the age of 5 when combined with United Nations Population Division 

population estimates from each county at the time of each DHS survey round (Boyle et al., 

2022). Given that population growth is often the largest contributor to rising rates of hot-

humid heat exposure in South Asia (Tuholske et al., 2021), this approximation may well be 

an underestimate of the true number of children who will be vulnerable to heat-induced 

stunting in 2050 after accounting for the growing population. Using the same logic and 

corresponding point estimate from a regression of HAZ on Tmax exposure (β=0.001 per day 

with Tmax>35°C; see Appendix), increased heat alone under a 2050 warming scenario 

would only have the power to induce stunting in approximately 315,000 children at the 

regional scale. This difference implies that failing to account for the added effect of humidity 

would lead us to underestimate the vulnerable population by 615,000 children.    
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Though my main models of height attainment might appear to imply that the lower 

heat thresholds are most dangerous for health, a supplementary analysis of the impacts of 

extreme heat on total births suggests that selection bias may lead to downward bias on the 

main coefficients at higher heat thresholds, particularly when it comes to early-term 

exposures to the highest values of Tmax. This result aligns with existing evidence linking 

extreme heat to reductions in fertility via reproductive health (Barreca, Deschênes, et al., 

2018) and may shed light on previous studies that document counter-intuitive effects of 

warming for child health (Wilde et al., 2014; McMahon and Gray, 2021). I hope that these 

findings will further prove to be useful guideposts for research on the effects of prenatal heat 

going forward, especially as the current literature lacks consensus on critical heat thresholds 

and exposure windows for maternal and infant health outcomes (Ravanelli et al., 2019).  

A. Limitations 

While these initial results are highly suggestive, there are several limitations to the 

data and model specifications that could influence the analysis and findings presented here. 

First, the DHS variables for children’s age, month and year of birth, and length of residence 

in their current household rely on respondents’ recall, and therefore may be subject to 

measurement error based on flawed memory and approximations (see Lyons-Amos & Stones 

2017, Singh et al. 2022 for discussions on age heaping in the DHS). This potential 

measurement error may then affect my identification of heat exposure, which is based on 

exact month of birth and location of each mother within her cluster of residence during the 

year before giving birth. I am also unable to define exact trimesters given that the DHS lacks 

complete and reliable information on day of birth and length of gestation, meaning that I 

necessarily take on some measurement error at the sub-monthly scale in my variables for the 



 

36 
 

total number of hot days per trimester. Data limitations further inhibit my ability to identify 

the mechanisms that drive the relationship between heat exposure and HAZ that I observe 

here; though I look for suggestive evidence using agricultural controls and a variable 

indicating recent diarrhea among children (see Appendix), these data alone lack the 

specificity and power needed to identify or eliminate precise mechanisms.  

 In addition to these data-related factors, the results appear sensitive to the 

specification of heat thresholds and the combination of data from disparate countries. 

Exposure to the hottest thresholds is likely too rare within my sample for their effects on 

HAZ to be estimated reliably or with any generalizability. This is particularly true in the case 

of days with WBGTmax>31°C, which seem to be concentrated largely within a subset of the 

sample that all share certain characteristics that are associated with higher HAZ scores 

(urban, well-educated, etc.). As such, the effects of exposure to these high thresholds that I 

estimate here should be interpreted with caution. Furthermore, Figure 8 reveals that the 

relationship between heat exposure and HAZ varies widely by country, with observations in 

India appearing to drive much of the pattern observed in the aggregate model. Several of the 

heat variables are very rare in Bangladesh and Nepal, for instance, meaning that their effects 

are estimated with very little precision for observations in those countries. It is also unclear 

how pooling all three countries affects the use of DHS survey weights (West et al., 2017), 

which are even further disrupted during data pre-processing by the systematic removal of 

observations with missing data for key variables (e.g., length of residence in current 

household). These factors require more attention going forward and should be considered in 

the interpretation of my preliminary findings. 

B. Next Steps 
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My results thus far indicate that hot-humid extremes during the year before a child’s 

birth can undermine growth into early childhood, and that this combination may prove more 

dangerous in South Asia than heat alone. Going forward, I have a host of ideas for improving 

the analysis presented here as well as for the direction of future research on heat, humidity, 

and child and maternal health. To address concerns mentioned above, the specification of the 

heat thresholds could be improved by transforming the high and low threshold indicators for 

each heat variable into a single factor variable with three levels (e.g. for Tmax<35°C, 

35°C<Tmax<40°C, and Tmax>40°C). This would eliminate the issue of high correlation 

between thresholds in each trimester and would make the coefficients on the high and low 

thresholds more directly comparable. An alternate approach could be to define and remove 

observations experiencing “normal” levels of heat exposure, to create a cleaner comparison 

between those with high and low heat exposure. Next, because I observe considerable effect 

heterogeneity between countries, it would be wise to use a map of residuals to correct for 

regional misspecification or even to separate Bangladesh, India, and Nepal completely in all 

analyses. Separation by country would also take care of any bias introduced by pooling 

survey weights across countries. I may also wish to relax the analysis by removing the state-

by-survey year fixed effect from the main HAZ specification. While this fixed effect helps to 

isolate the effect of short-run events like daily heat exposures by controlling for trends in the 

outcome driven by state-level policies and social change, it may be removing more useful 

variation from the analysis than is necessary or desired. Finally, I plan to explore 

specification improvements to my models of both HAZ and state-level births. For the former, 

I will try moving from my current linear regression model, which approximates the 

conditional mean of the distribution of HAZ, to a quantile regression model, with the hopes 
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of clarifying how the left tail of the HAZ distribution (which is of greatest interest given the 

lifetime health costs associated with stunting) moves with prenatal heat exposure. For my 

model of births, considerable improvements could be made by first defining the “exposed” 

population (e.g. women of reproductive age) and subsequently using that population to 

construct an appropriate birth rate variable, following formal demographic methodology.  

On a larger scale, my work emphasizes the need for studies that think carefully about 

exposure timing, key thresholds, and make use of novel remotely-sensed climate and 

environmental measures to understand the impacts of disparate climate events on fertility and 

health in early childhood. Future research might further investigate the heat-fertility 

relationship through an individual-level birth-interval analysis (perhaps using the DHS 

fertility calendars as harmonized by IPUMS-DHS), better isolate the combined impact of 

heat and humidity by comparing the effect of hot-humid extremes and dry heat extremes 

(perhaps measured by vapor pressure deficit), and attempt to identify mechanisms linking 

heat exposure and child health using data on mechanism-specific risk factors or agricultural 

and biological outcomes related to heat exposure (see Figure 13).   
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Figure 13: Simplified conceptual model of two primary mechanisms linking in utero heat shocks with child 

health outcomes. Indirect linkages are represented by dotted lines. 
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APPENDIX 

 

Table A1.1: HAZ regression results (model 1) with standard errors. Controls for twin status, mother’s parity, mother’s marital status, religion, child’s 

birth month, mother’s age in years, survey month and child’s age in months included in the model but not shown.  
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Table A1.2: HAZ regression results (model 2) with standard errors. Controls for twin status, mother’s 

parity, mother’s marital status, religion, child’s birth month, mother’s age in years, survey month and child’s 

age in months included in the model but not shown.  
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Table A2: Stunting regression results (model 1) with standard errors. Controls for twin status, mother’s parity, mother’s marital status, religion, child’s 

birth month, mother’s age in years, survey month and child’s age in months included in the model but not shown.  
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Table A3: Severe stunting regression results (model 1) with standard errors. Controls for twin status, mother’s parity, mother’s marital status, religion, 

child’s birth month, mother’s age in years, survey month and child’s age in months included in the model but not shown.  
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Table A4: Births regression results (model 3) with standard errors (state-level).
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Figure A1: Alternate births results using Poisson regression. Coefficients and 95% confidence intervals for 

the estimated effect of extreme heat exposure on total births per month at the state level. The yellow vertical 

line represents conception. Fixed effects for state (by survey), month, and year are included in the model but not 

shown. 

 

 
Figure A2: Alternate births results using negative binomial regression. Coefficients and 95% confidence 

intervals for the estimated effect of extreme heat exposure on total births per month at the state level. The 

yellow vertical line represents conception. Fixed effects for state (by survey), month, and year are included in 

the model but not shown. 
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Figure A3: Alternate HAZ results using all heat thresholds. Coefficients and 95% confidence intervals for 

the estimated effect of extreme heat exposure on HAZ when all are taken as covariates in a single regression 

model. Controls from Model 1 are included in the model but not shown. Fixed effects for cluster and state-by-

survey-year also included in the model but not shown. 

 

 

 
Figure A4: Alternate HAZ results using both high heat thresholds. Coefficients and 95% confidence 

intervals for the estimated effect of extreme heat exposure on HAZ. The yellow vertical line represents 

conception. Controls from Model 1 are included in the model but not shown. Fixed effects for cluster and state-

by-survey-year also included in the model but not shown. 
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Figure A5: Alternate HAZ results with additional exposure periods. Coefficients and 95% confidence 

intervals for the estimated effect of extreme heat exposure on HAZ, including the period 3-6 months before 

conception (trimester -1) and 0-3 months after birth (trimester 4). The yellow vertical line represents 

conception. Controls from Model 1 are included in the model but not shown. Fixed effects for cluster and state-

by-survey-year also included in the model but not shown. 

 
Figure A6: Alternate HAZ results with precipitation controls. Coefficients and 95% confidence intervals for 

the estimated effect of extreme heat exposure on HAZ. The yellow vertical line represents conception. Controls 

from Model 1 included in the model but not shown, along with total precipitation in each trimester (CHIRPS 

monthly data; Funk et al. 2015). Fixed effects for cluster and state-by-survey-year also included in the model 

but not shown. 
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Figure A7: Alternate HAZ results Tmin variables (model 1). Coefficients and 95% confidence intervals for 

the estimated effect of extreme heat exposure on HAZ. The yellow vertical line represents conception. Controls 

from Model 1 are included in the model but not shown. Fixed effects for cluster and state-by-survey-year also 

included in the model but not shown. 

 

 

 
Figure A8: Alternate HAZ results Tmin variables (model 2). Coefficients and 95% confidence intervals for 

the estimated effect of extreme heat exposure on HAZ when all are taken as covariates in a single regression 

model. The yellow vertical line represents conception. Controls from Model 1 are included in the model but not 

shown. Fixed effects for cluster and state-by-survey-year also included in the model but not shown. 
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Figure A9: Heat effects on probability of recent diarrhea (state level). Coefficients and 95% confidence 

intervals for the estimated effect of extreme heat exposure in each trimester and in the 3 months prior to DHS 

survey on the probability of experiencing diarrhea within the last two weeks for children under 5. The yellow 

vertical line represents conception. Controls from Model 1 are included in the model but not shown. Fixed 

effects for state-by-survey-year also included in the model but not shown. The model does not include DHS 

cluster fixed effects, given that heat exposure during the pre-survey period does not vary within clusters. 

Standard errors are clustered at the state level. 
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Table A5: HAZ regression results (model 1) with standard errors for Bangladesh only. Controls for twin status, mother’s parity, mother’s marital 

status, religion, child’s birth month, mother’s age in years, survey month and child’s age in months included in the model but not shown.  
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Table A6: HAZ regression results (model 1) with standard errors for India only. Controls for twin status, mother’s parity, mother’s marital status, 

religion, child’s birth month, mother’s age in years, survey month and child’s age in months included in the model but not shown.  
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Table A7: HAZ regression results (model 1) with standard errors for Nepal only. Controls for twin status, mother’s parity, mother’s marital status, 

religion, child’s birth month, mother’s age in years, survey month and child’s age in months included in the model but not shown.  
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Table A8: HAZ regression results (model 1) with standard errors for urban clusters only. Controls for twin status, mother’s parity, mother’s marital 

status, religion, child’s birth month, mother’s age in years, survey month and child’s age in months included in the model but not shown.  

 

 



 

 

5
8
 

 

Table A9: HAZ regression results (model 1) with standard errors for rural clusters only. Controls for twin status, mother’s parity, mother’s marital 

status, religion, child’s birth month, mother’s age in years, survey month and child’s age in months included in the model but not shown.  
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Figure A10:  HAZ results (model 1) by birth order. Coefficients and 95% confidence intervals for the interactive effect of heat and birth order (1-6 

depicted) on HAZ. Yellow vertical lines delineate each trimester. Controls and fixed effects for cluster and state-by-survey-year included in the model but 

not shown.  

 
Figure A11:  HAZ results (model 1) by child’s sex. Coefficients and 95% confidence intervals for the interactive effect of extreme heat and child’s sex on 

HAZ. Yellow vertical lines delineate each trimester. Controls and fixed effects for cluster and state-by-survey-year included in the model but not shown. 
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Figure A12:  HAZ results (model 1) by religion. Coefficients and 95% confidence intervals for the interactive effect of extreme heat and mother’s religion 

on HAZ. Yellow vertical lines delineate each trimester. Controls and fixed effects for cluster and state-by-survey-year included in the model but not shown. 
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