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Abstract: Introduction: Neuroworsening may be a sign of progressive brain injury and is a factor
for treatment of traumatic brain injury (TBI) in intensive care settings. The implications of neu-
roworsening for clinical management and long-term sequelae of TBI in the emergency department
(ED) require characterization. Methods: Adult TBI subjects from the prospective Transforming
Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study with ED admission and
disposition Glasgow Coma Scale (GCS) scores were extracted. All patients received head computed
tomography (CT) scan <24 h post-injury. Neuroworsening was defined as a decline in motor GCS
at ED disposition (vs. ED admission). Clinical and CT characteristics, neurosurgical intervention,
in-hospital mortality, and 3- and 6-month Glasgow Outcome Scale-Extended (GOS-E) scores were
compared by neuroworsening status. Multivariable regressions were performed for neurosurgical
intervention and unfavorable outcome (GOS-E ≤ 3). Multivariable odds ratios (mOR) with [95%
confidence intervals] were reported. Results: In 481 subjects, 91.1% had ED admission GCS 13–15
and 3.3% had neuroworsening. All neuroworsening subjects were admitted to intensive care unit (vs.
non-neuroworsening: 26.2%) and were CT-positive for structural injury (vs. 45.4%). Neuroworsening
was associated with subdural (75.0%/22.2%), subarachnoid (81.3%/31.2%), and intraventricular hem-
orrhage (18.8%/2.2%), contusion (68.8%/20.4%), midline shift (50.0%/2.6%), cisternal compression
(56.3%/5.6%), and cerebral edema (68.8%/12.3%; all p < 0.001). Neuroworsening subjects had higher
likelihoods of cranial surgery (56.3%/3.5%), intracranial pressure (ICP) monitoring (62.5%/2.6%), in-
hospital mortality (37.5%/0.6%), and unfavorable 3- and 6-month outcome (58.3%/4.9%; 53.8%/6.2%;
all p < 0.001). On multivariable analysis, neuroworsening predicted surgery (mOR = 4.65 [1.02–21.19]),
ICP monitoring (mOR = 15.48 [2.92–81.85], and unfavorable 3- and 6-month outcome (mOR = 5.36
[1.13–25.36]; mOR = 5.68 [1.18–27.35]). Conclusions: Neuroworsening in the ED is an early indicator
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of TBI severity, and a predictor of neurosurgical intervention and unfavorable outcome. Clinicians
must be vigilant in detecting neuroworsening, as affected patients are at increased risk for poor
outcomes and may benefit from immediate therapeutic interventions.

Keywords: Glasgow Coma Scale; emergency department; mortality; neurological examination;
neuroworsening; patient outcome assessment; traumatic brain injury

1. Introduction

Traumatic brain injury (TBI) is a prevalent cause of neurologic disability, comprising
over 2 million emergency department (ED) visits, 275,000 hospitalizations, and 64,000 deaths
in the United States (US) annually [1,2]. Initial management requires synthesis of clinical
history, Glasgow Coma Scale (GCS) score, neurological examination, head computed to-
mography (CT) scan, and systemic injury evaluation [3–5]. An estimated 10% of moderate
to severe TBI patients die within 6 months of their injury, and 15–20% are fully dependent
for all activities of daily living [6]. While patients are generally not expected to die or incur
severe disability after mild TBI (2% and 1–2% at 6 months post-injury, respectively), recent
data suggest that 56% have not recovered to their functional baseline and 29% are unable
to resume their prior level of employment [6,7]. Consequently, losses of livelihood and
productivity for patients, their families, and society after TBI are immense [8–10].

Timely identification of patients at risk of neurologic deterioration can inform clinical
triage to appropriate levels of care and treatment intervention. In 1998, Morris et al. defined
neurologic deterioration (“neuroworsening”) as one or more of spontaneous decline in
the GCS motor score by ≥2 points; new-onset loss of pupillary reactivity or development
of pupillary asymmetry ≥2 mm; and deterioration in neurological or CT status sufficient
to warrant immediate intervention [11]. Etiologies of neuroworsening are broad and
encompass neurological, systemic, metabolic, and drug-induced causes. In the setting
of acute TBI, culprit processes include expanding intracranial lesion(s), cerebral edema,
and/or rising intracranial pressure (ICP) [12]. Reports have examined neuroworsening as
either predictor or outcome in adult and pediatric TBI [13,14], e.g., to quantify the risk of
hemorrhagic progression and in the context of antiplatelet or anticoagulant medications [15].
Additionally, the GCS motor score has been identified as a sensitive predictor of TBI
outcomes and is widely used in prognostic calculators [8–10,16,17].

The definition of neuroworsening was revised by expert consensus to ≥1 point de-
crease in GCS motor score for assessment of severe TBI in the intensive care unit (ICU)
at the 2019 Seattle International Severe Traumatic Brain Injury Consensus Conference
(SIBICC) [18]. Herein, we evaluated the associations between neuroworsening in the ED
(i.e., “early neuroworsening”) using the SIBICC definition, clinical severity and CT find-
ings, neurosurgical intervention, in-hospital mortality, and 3- and 6-month outcomes in a
prospectively enrolled cohort of acute TBI patients.

2. Materials and Methods
2.1. Study Overview

The Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pi-
lot (TRACK-TBI Pilot) study was a prospective, observational cohort study conducted
at 3 US Level I trauma centers (Zuckerberg San Francisco General Hospital (San Fran-
cisco, California), University of Pittsburgh Medical Center (Pittsburgh, Pennsylvania),
University Medical Center Brackenridge (Austin, Texas); ClinicalTrials.gov Registration:
NCT01565551) using the National Institutes of Health (NIH) TBI Common Data Elements
(CDEs) [19]. Inclusion criteria were external force trauma to the head, presentation to
trauma center, and receiving a clinically indicated head CT scan <24 h after injury. Exclu-
sion criteria were pregnancy, ongoing life-threatening disease (e.g., end-stage malignancy),
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police custody, involuntary psychiatric confinement, and inability to speak English (due to
multiple outcome measures administered and/or normed only in English).

TRACK-TBI Pilot study procedures were conducted according to the ethical principles
of the Declaration of Helsinki [20]. Eligible subjects were enrolled by convenience sampling
during years 2010–2012, as previously described [19]. Institutional Review Board (IRB)
approval was obtained at each participating center. The University of California, San Fran-
cisco Committee on Human Research provided overall study approval (protocol #10-00011).
Informed consent was obtained from each subject or legally authorized representative
prior to enrollment. Subjects enrolled by surrogate consent were re-consented by informed
consent, if cognitively able, during the course of their clinical care or at follow-up time
points for study participation.

TRACK-TBI Pilot enrolled 586 subjects aged ≥16 years, as previously reported [18].
The current study is a secondary analysis of existing data. Data from subjects aged ≥18
years with testable values of the GCS eye, verbal, and motor scores upon ED arrival and
at ED disposition were extracted from the TRACK-TBI Pilot database. Patients with GCS
component scores coded as “untestable”, e.g., due to severe facial/eye swelling (eye score—
untestable), intubation (verbal score—untestable), and deep sedation/paralysis (motor
score—untestable), were excluded, yielding a final sample size of 481 for the current study
(Figure 1). Early neuroworsening was defined as ≥1 point decrease in the GCS motor score
between ED admission and ED disposition.
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2.2. Demographic and Clinical Variables

Subjects were assessed by in-person interview and medical record review upon ED
admission and enrollment. Subjects admitted to the hospital were followed until hospi-
tal discharge. Demographic, medical history, clinical, and injury history variables were
collected in accordance with the NIH TBI CDEs, version 1 [21]. TBI severity was defined
using the ED admission GCS score per current clinical standards (Severe TBI: GCS 3–8,
Moderate: 9–12, Mild: 13–15) [22–24]. Data on time elapsed between ED admission and ED
disposition were not available from TRACK-TBI Pilot.

2.3. Neuroimaging Variables and Coding

All subjects received a head CT within 24 h of injury as part of their clinical evaluation
for TBI. Head CTs were read and coded by a central board-certified neuroradiologist
blinded to subject characteristics, in accordance with the TBI CDEs for neuroimaging [25].
The Rotterdam CT score was selected to classify radiographic TBI severity, given its wide
historical use across TBI studies and prognostic utility [26], and was coded by the same
central blinded neuroradiologist as part of the TRACK-TBI Pilot [19].

2.4. Neurosurgical Intervention and In-Hospital Mortality

Cranial surgery, intracranial pressure (ICP) monitor placement, and in-hospital mortal-
ity were coded as yes/no in TRACK-TBI Pilot and were evaluated in the current study by
early neuroworsening status. Timing of surgery, timing of ICP monitoring, type of surgery,
and length of stay data were not available from TRACK-TBI Pilot.

2.5. 3- and 6-Month Outcomes

The Glasgow Outcome Scale-Extended (GOS-E) is an overall measure of functional
disability based on consciousness, independence inside and outside the home, employa-
bility, social/community participation, and post-concussional symptomatology [27]. The
8-point ordinal scale consists of 1 = dead, 2 = vegetative state, 3 = lower severe disability
(e.g., able to carry out activities of daily living (ADL) independently for less than 8 h per
day), 4 = upper severe disability (e.g., able to carry out ADLs for more than 8 h per day),
5 = lower moderate disability (non-competitive work or inability to work, or inability to
return to pre-injury social activities, or constant psychological disturbance), 6 = upper mod-
erate disability (reduced work capacity, or >50% reduced social participation, or weekly
psychological disturbance), 7 = lower good recovery (post-concussional symptoms, or <50%
reduced social participation, or occasional psychological disruption), and 8 = upper good
recovery (recovery to pre-injury status without new deficits). The GOS-E was administered
through structured interviews by trained personnel via telephone at 3-months post-injury,
and in-person at 6-months post-injury, as previously reported [19].

In TRACK-TBI Pilot, the GOS-E was administered to capture disability related to the
TBI [28,29]. Based on data from recent TBI studies [6,30] and large neurosurgical clinical
trials [31–33], GOS-E scores were dichotomized as unfavorable (GOS-E 1–3) vs. favorable
(GOS-E 4–8). The rationale for including GOS-E scores of 4 as a favorable outcome is based
on the premise that subjects able to function at home without supervision for greater than
8 h per day have considerable functional autonomy, and relatives overseeing their care can
maintain full-time employment outside the home.

2.6. Statistical Analysis

Descriptive statistics were reported using means and standard deviations (SD) for
continuous variables and proportions (%) for categorical variables. Early neuroworsening
was the primary variable of interest and was coded as present/absent. Analysis of variance
(ANOVA) and Pearson’s chi-squared test (χ2) were used to evaluate continuous and
categorical dependent variables, respectively. Multivariable binary logistic regressions were
performed for cranial surgery (dichotomized as yes/no), ICP monitoring (yes/no), and 3-
and 6-month outcomes (GOS-E; dichotomized as unfavorable/favorable). Multivariable
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odds ratios (mOR) and their associated 95% confidence intervals [95% CI] were reported
for predictors.

We recognized the risks of overfitting in our dataset, which had relatively small num-
bers of positive outcome events (cranial surgery: N = 25; ICP monitoring: N = 22; 3-month
unfavorable outcome: N = 25; 6-month unfavorable outcome: N = 27), and thus did not seek
to construct a multivariable model for in-hospital mortality (dead: N = 9). In consideration
of the “rule of ten” for the number of dichotomous outcome events per predictor [34,35],
we established a priori that our multivariable analyses would have at minimum 5 positive
outcome events per predictor entered onto the model to mitigate the progressive risks
of model overfitting. In addition to neuroworsening, our multivariable models for cra-
nial surgery and ICP monitoring included age (≥65 vs. <65 years), ED admission GCS,
and Rotterdam CT score, similar to prior analyses for surgery and prognostication after
TBI [36–38]; for 3- and 6-month unfavorable outcome, polytrauma (extracranial Abbrevi-
ated Injury Scale score ≥3 in at least 1 body region; yes/no) [39] was added as a predictor.
Age was dichotomized at 65 years, given evidence for its use in TBI and the geriatric
literature as a threshold for increased baseline comorbidities and functional impairment
that may precipitate TBI [40], increased likelihood of healthcare utilization after TBI [41,42],
a high-risk factor for intracranial trauma and neurosurgical intervention per the Cana-
dian Head CT Rule [43], and a standard cutoff for older age in validated TBI prognostic
models [44] and assessment of TBI outcome [45].

Pupillary reactivity was initially considered as a secondary definition of neuroworsen-
ing and as a predictor for outcomes. However, it was not included due to the large degree
of missing data in TRACK-TBI Pilot (pupillary reactivity was coded as “unknown/not
done” in 47% of subjects at ED disposition).

Statistical significance was assessed at p < 0.05. Statistical analyses were performed
using SPSS Statistics, version 29 (IBM Corporation, Chicago, IL, USA).

3. Results
3.1. Demographic and Presentation Characteristics

Overall, 481 adult subjects were extracted from TRACK-TBI Pilot, of which 16 (3.3%)
had early neuroworsening. Detailed demographic, presentation, and injury characteristics
are presented in Table 1. Overall, subjects had a mean age of 44.5 years (SD 18.0), 71.5%
were male, and 79.8% were Caucasian. A greater proportion of neuroworsening subjects
were aged ≥65 years (31.3% vs. 13.5%, p = 0.046; χ2), while no differences were observed
for other demographic factors. A greater proportion of neuroworsening subjects had
“unknown” post-traumatic amnesia (PTA; 75.0% vs. 11.8%, p < 0.001; χ2). Mechanism
of injury, loss of consciousness, pupillary reactivity, antiplatelet and/or anticoagulation
medication use, and potential confounders for depressed consciousness (urine drug screen,
blood alcohol screen, and polytrauma) did not differ by neuroworsening status.

Overall, the majority of subjects were classified as mild TBI (ED admission GCS
13–15: 91.1%). Mean ED admission GCS was 14.0 (SD 2.6) and was significantly lower
in neuroworsening subjects (9.9 (SD 3.3) vs. 14.1 (SD 2.5), p < 0.001; ANOVA). There
were higher proportions of moderate and severe TBI in neuroworsening subjects (GCS
9–12: 31.3% vs. 2.6%; GCS 3–8: 37.5% vs. 4.3%, respectively, p < 0.001; χ2). Notably,
31.3% of neuroworsening subjects had ED admission GCS 13–15. ED disposition was
significantly lower in neuroworsening subjects (3.3 (SD 1.0) vs. 14.4 (SD 2.1), p < 0.001;
ANOVA). Notably, all neuroworsening subjects declined to GCS 3–8 at ED disposition and
required ICU admission (vs. 26.2% of non-neuroworsening with ICU admission; p < 0.001;
χ2). Neuroworsening was associated with intravenous hyperosmolar infusion in the ED
(mannitol or 23.4% hypertonic saline; 12.5% vs. 6.2%, p < 0.001; χ2).
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Table 1. Demographic and presentation characteristics by early neuroworsening. Demographic,
clinical, and injury variables compared by early neuroworsening status. Only a subset of subjects had
recorded data for ED blood alcohol screen (group sizes (N) are shown). ED hyperosmolar therapy
included administration of intravenous mannitol or 23.4% hypertonic saline. ED = emergency
department; GCS = Glasgow Coma Scale; SD = standard deviation; TBI = traumatic brain injury.

Variable Overall
(N = 481)

Early Neuroworsening:
Yes (N = 16)

Early Neuroworsening:
No (N = 465) Sig. (p)

Age (Years)

Mean (SD) 44.5 (18.0) 53.4 (20.5) 44.2 (17.9) 0.044
≥65 Years 68 (14.1%) 5 (31.3%) 63 (13.5%) 0.046

Male 344 (71.5%) 12 (75.0%) 332 (71.4%) 0.754

Race 0.305

Caucasian/White 384 (79.8%) 15 (93.8%) 369 (79.4%)
African-American/African 44 (9.1%) 1 (6.3%) 43 (9.2%)
Other Races 53 (11.0%) 0 (0.0%) 53 (11.0%)

Education (Years) 0.313

Mean (SD) 13.8 (3.0) 14.7 (3.8) 13.8 (2.9)

Current Antiplatelet and/or Anticoagulant
Medication 69 (14.3%) 4 (25.0%) 65 (14.0%) 0.216

ED Admission GCS Score

Mean (SD) 14.0 (2.6) 9.9 (3.3) 14.1 (2.5) <0.001
3–8 26 (5.4%) 6 (37.5%) 20 (4.3%) <0.001
9–12 17 (3.5%) 5 (31.3%) 12 (2.6%)
13–15 438 (91.1%) 5 (31.3%) 433 (93.1%)

ED Disposition GCS Score

Mean (SD) 14.0 (2.9) 3.3 (1.0) 14.4 (2.1) <0.001
3–8 34 (7.1%) 16 (100.0%) 18 (3.9%)
9–12 7 (1.5%) 0 (0.0%) 7 (1.5%)
13–15 440 (91.5%) 0 (0.0%) 440 (94.6%)

Mechanism of Injury 0.863

Motor Vehicle Accident 78 (16.3%) 2 (12.5%) 76 (16.4%)
Motorcycle Crash 26 (5.4%) 1 (6.3%) 25 (5.4%)
Pedestrian Struck by Vehicle 56 (11.7%) 2 (12.5%) 54 (11.6%)
Fall From Moving Object 60 (12.5%) 2 (12.5%) 58 (12.5%)
Fall From Standing/Stationary Object 161 (33.5%) 8 (50.0%) 153 (33.0%)
Assault 82 (17.1%) 1 (6.3%) 81 (17.5%)
Other Mechanism 18 (3.5%) 0 (0.0%) 3 (0.6%)

Loss of Consciousness 0.600

No 116 (24.1%) 2 (12.5%) 114 (24.5%)
Yes 331 (68.8%) 12 (75.0%) 319 (68.6%)
Unknown 34 (7.1%) 2 (12.5%) 32 (6.9%)

Post-Traumatic Amnesia <0.001

No 155 (32.2%) 0 (0.0%) 155 (33.3%)
Yes 259 (53.8%) 4 (26.7%) 255 (54.8%)
Unknown 67 (14.0%) 12 (75.0%) 55 (11.8%)
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Table 1. Cont.

Variable Overall
(N = 481)

Early Neuroworsening:
Yes (N = 16)

Early Neuroworsening:
No (N = 465) Sig. (p)

ED Admission Pupillary Reactivity 0.999

Both Reactive 405 (84.2%) 14 (87.5%) 391 (84.0%)
One Non-Reactive 6 (1.2%) 0 (0.0%) 6 (1.3%)
Both Non-Reactive 7 (1.5%) 0 (0.0%) 7 (1.5%)
Unknown/Not Done 63 (13.1%) 2 (12.5%) 61 (13.1%)

ED Disposition Pupillary Reactivity 0.338

Both Reactive 252 (52.3%) 11 (68.8%) 241 (51.8%)
One Non-Reactive 0 (0.0%) 0 (0.0%) 0 (0.0%)
Both Non-Reactive 6 (1.2%) 0 (0.0%) 5 (1.1%)
Unknown/Not Done 224 (46.5%) 5 (31.3%) 219 (47.0%)

Polytrauma 76 (15.8%) 2 (12.5%) 74 (15.9%) 0.713

ED Urine Drug Screen Positive 31 (6.4%) 2 (12.5%) 29 (6.2%) 0.316

ED Blood Alcohol Screen Positive N = 229 N = 12 N = 217 0.516

No 132 (57.6%) 8 (66.7%) 124 (57.1%)
Yes 97 (42.4%) 4 (33.3%) 93 (42.9%)

ED Hyperosmolar Therapy 8 (1.7%) 2 (12.5%) 6 (1.3%) <0.001

ED Disposition <0.001

Home 149 (31.0%) 0 (0.0%) 149 (32.0%)
Ward 194 (40.3%) 0 (0.0%) 194 (41.7%)
Intensive Care Unit 138 (28.7%) 16 (100.0%) 122 (26.2%)

3.2. Radiographic Intracranial Injury Characteristics

Detailed CT characteristics are presented in Table 2. Overall, 47.2% were positive for
acute intracranial injury on CT consistent with TBI. Notably, 100% of subjects with early
neuroworsening were CT-positive (vs. 45.4%, p < 0.001; χ2). Early neuroworsening was
associated with significantly higher rates of the majority of lesion types, including subdural
hematoma (SDH; 75.0% vs. 22.2%, p < 0.001; χ2), subarachnoid hemorrhage (SAH; 81.3%
vs. 31.2%, p < 0.001; χ2), contusion (68.8% vs. 20.4%, p < 0.001; χ2), and intraventricular
hemorrhage (IVH; 18.8% vs. 2.2%, p < 0.001; χ2). Epidural hematoma (EDH) and diffuse
axonal injury (DAI) did not differ by neuroworsening status. Early neuroworsening was
also associated with significantly elevated rates of signs of herniation: midline shift (50.0%
vs. 2.6%, p < 0.001; χ2), cisternal compression (56.3% vs. 5.6%, p < 0.001; χ2), and cerebral
edema (68.8% vs. 12.3%, p < 0.001; χ2). Rotterdam CT scores were higher in subjects with
early neuroworsening (1 through 6: 0.0%, 12.5%, 31.3%, 18.8%, 25.0%, 12.5% vs. 1.1%,
71.2%, 23.7%, 2.6%, 1.3%, 0.2%, respectively, p < 0.001; χ2).

3.3. Neurosurgical Intervention and In-Hospital Mortality

Acute neurosurgical interventions consisted of cranial surgery and/or insertion of an
ICP monitor, and rates for both were considerably higher in early neuroworsening subjects
(cranial surgery: 56.3% vs. 3.4%, p < 0.001; χ2; ICP monitor: 62.5% vs. 2.6%, p < 0.001; χ2).
In-hospital mortality was considerably higher in neuroworsening subjects (37.5% vs. 0.6%;
p < 0.001; χ2) (Figure 2). On multivariable logistic regressions, these associations were
conserved; neuroworsening remained a predictor for undergoing cranial surgery (mOR
4.65, 95% CI [1.02–21.19]; p = 0.047) and ICP monitoring (mOR 15.48, [2.92–81.85]; p = 0.001)
(Table 3).
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Table 2. Initial head CT characteristics by early neuroworsening. Presence of intracranial injury on
initial head CT scan, and major types of intracranial pathology, are shown by early neuroworsening
status. The Rotterdam CT score provides the following estimates for 6-month mortality after traumatic
brain injury: 1 = 0%, 2 = 7%, 3 = 16%, 4 = 26%, 5 = 53%, 6 = 61%. CT = computed tomography;
SD = standard deviation.

Variable Overall
(N = 481)

Early Neuroworsening:
Yes (N = 16)

Early Neuroworsening:
No (N = 465) Sig. (p)

CT Intracranial Injury Present 227 (47.2%) 16 (100%) 211 (45.4%) <0.001

Epidural Hematoma 19 (4.0%) 0 (0.0%) 19 (4.1%) 0.409
Subdural Hematoma 115 (23.9%) 12 (75.0%) 103 (22.2%) <0.001
Subarachnoid Hemorrhage 158 (32.8%) 13 (81.3%) 145 (31.2%) <0.001
Contusion 106 (22.0%) 11 (68.8%) 95 (20.4%) <0.001
Intraventricular Hemorrhage 13 (2.7%) 3 (18.8%) 10 (2.2%) <0.001
Diffuse Axonal Injury 34 (7.1%) 2 (12.5%) 32 (6.9%) 0.389
Midline Shift 20 (4.2%) 8 (50.0%) 12 (2.6%) <0.001
Cisternal Compression 35 (7.3%) 9 (56.3%) 26 (5.6%) <0.001
Cerebral Edema 68 (14.1%) 11 (68.8%) 57 (12.3%) <0.001

Rotterdam CT Score

Mean (SD) 2.4 (0.7) 3.9 (1.3) 2.3 (0.6) <0.001
=1 5 (1.0%) 0 (0.0%) 5 (1.1%) <0.001
=2 333 (69.2%) 2 (12.5%) 331 (71.2%)
=3 115 (23.9%) 5 (31.3%) 110 (23.7%)
=4 15 (3.1%) 3 (18.8%) 12 (2.6%)
=5 10 (2.1%) 4 (25.0%) 6 (1.3%)
=6 3 (0.6%) 2 (12.5%) 1 (0.2%)

Table 3. Multivariable regression for interventions and outcomes. Multivariable binary logistic
regressions were performed for four dependent measures: cranial surgery, ICP monitoring, 3-month
unfavorable outcome, and 6-month unfavorable outcome. Unfavorable outcome was defined as
Glasgow Outcome Scale-Extended score of 1–3. Early neuroworsening was the variable of interest.
Multivariable odds ratios (mOR) and their associated [95% confidence intervals (CI)] are shown
for each per-unit increase of the predictor variable. CT = computed tomography; ED = emergency
department; GCS = Glasgow Coma Scale; ICP = intracranial pressure.

Cranial Surgery

Predictor mOR [95% CI] Sig. (p)

Early Neuroworsening 4.65 [1.02–21.19] 0.047
Age ≥ 65 Years 0.96 [0.17–5.40] 0.965
ED Admission GCS 0.76 [0.68–0.86] <0.001
Rotterdam CT Score 4.12 [2.13–7.97] <0.001

ICP Monitoring

Predictor mOR [95% CI] Sig. (p)

Early Neuroworsening 15.48 [2.92–81.85] 0.001
Age ≥ 65 Years 1.05 [0.17–6.37] 0.959
ED Admission GCS 0.65 [0.55–0.76] <0.001
Rotterdam CT Score 1.93 [1.07–3.48] 0.03
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Table 3. Cont.

3-Month Unfavorable Outcome

Predictor mOR [95% CI] Sig. (p)

Early Neuroworsening 5.36 [1.13–25.36] 0.034
Age ≥ 65 Years 4.61 [1.56–13.58] 0.006
ED Admission GCS 0.80 [0.71–0.91] <0.001
Rotterdam CT Score 1.73 [0.95–3.16] 0.073
Polytrauma 1.81 [0.60–5.52] 0.295

6-Month Unfavorable Outcome

Predictor mOR [95% CI] Sig. (p)

Early Neuroworsening 5.68 [1.18–27.35] 0.030
Age ≥ 65 Years 7.22 [2.53–20.55] <0.001
ED Admission GCS 0.76 [0.67–0.86] <0.001
Rotterdam CT Score 0.97 [0.53–1.78] 0.928
Polytrauma 1.52 [0.52–4.51] 0.446
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Figure 2. Interventions and outcomes by early neuroworsening. Proportions of presence (red) or
absence (gray) of neurosurgical intervention (cranial surgery; ICP monitoring), in-hospital mor-
tality, and 3- and 6-month unfavorable outcome (Glasgow Outcome Scale-Extended score of 1–3)
are displayed by early neuroworsening (eNW) status. Column percentages are provided in the
table. All comparisons were statistically significant with p < 0.001. eNW = early neuroworsening;
ICP = intracranial pressure; mo = month.
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3.4. 3- and 6-Month Outcomes

The incidences of 3- and 6-month unfavorable outcomes were higher in neuroworsen-
ing subjects (58.3% vs. 4.9%, p < 0.001; 53.8% vs. 6.2%, p < 0.001, respectively; χ2) (Figure 2).
These associations were conserved on multivariable logistic regressions for unfavorable
outcome at 3 months (neuroworsening: mOR 5.36 [1.13–25.36]; p = 0.034) and 6 months
post-injury (mOR 5.68 [1.18–27.35]; p = 0.030) (Table 3).

4. Discussion

Neuroworsening is a sign of progressive neurologic injury following TBI. We defined
early neuroworsening as a ≥1 point decrease in GCS motor score between ED admission
and ED disposition. In the present prospective cohort of 481 acute TBI subjects, most
of whom had GCS 13–15 on ED admission, neuroworsening subjects were considerably
more likely to have elevated lesion burden on CT, neurosurgical intervention, in-hospital
mortality, and unfavorable outcome. On multivariable analysis, early neuroworsening
predicted the need for cranial surgery, ICP monitoring, and 3- and 6-month unfavorable
outcome. These data show that neuroworsening during the ED phase of care is an indicator
of TBI severity, imminent decline, and need for care escalation.

4.1. Neuroworsening Is an Early Indicator of Brain Injury Severity

Our study showed that neuroworsening can be used as an indicator of evolving brain
injury in the ED evaluation of TBI. Neuroworsening subjects had lower mean ED admission
GCS score by 4 points (10 vs. 14), 100% CT-positivity, and increased CT lesion burden.
The incidence of IVH was 9-fold higher in neuroworsening subjects (19% vs. 2%), which
has been shown to confer 3.8-fold odds of in-hospital mortality [46]. In our study, the
high rates of SDH, SAH, and contusion in neuroworsening subjects (68–81% vs. 20–31%),
combined with CT signs of cerebral edema (69% vs. 12%) and herniation (50–56% vs. 3–6%),
describe more severe primary injuries with evolving secondary injuries that portend poorer
prognoses across the spectrum of TBI. Indeed, a large multicenter, externally validated
study of 1935 mild TBI subjects showed that SDH, SAH, and/or contusions on initial head
CT correlated with 12-month incomplete recovery (odds ratio 1.8–2.7) and unfavorable
outcome (odds ratio 1.7–3.2), and IVH had an odds ratio of 3.5 for 12-month unfavorable
outcome [47].

Concordantly, neuroworsening was associated with higher Rotterdam CT scores. A
total of 56% of neuroworsening subjects (vs. 4%) had a Rotterdam score ≥4, which is
associated with 8- to 11-fold odds of in-hospital mortality [48,49]. For reference, Rotterdam
scores of 5 and 6 confer 53% and 61% risk of 6-month mortality, respectively [26].

DAI and EDH were the only CT lesion types that did not statistically differ by neu-
roworsening status. DAI is not a lesion type associated with focal mass effect and hence is
less likely to cause fluctuations in the GCS motor exam during emergency care. Classically,
EDHs may present with a “lucid interval” where the patient wakes from initial uncon-
sciousness prior to secondary deterioration, 12–42% remain conscious from time of injury
to time of cranial surgery, and up to 27% remain neurologically intact [50]. EDH was the
second least frequent lesion type (4%) in our study above IVH (2.7%). While reasons for the
lack of observed association in our data are unclear, small sample size, higher likelihood of
associated wakefulness, venous etiologies with slower progression, and time elapsed in the
ED prior to hospital admission are all possible explanations and warrant further analysis
in studies where follow-up CTs are available.

Neuroworsening subjects were older, with a larger proportion aged ≥65 years (31
vs. 14%). Studies have shown that compared to younger patients, those aged ≥65 years
who seek emergency room care for TBI are 3 times more likely to receive a head CT or
MRI, 4 times more likely to be admitted to the hospital [51], and 2–4 times more likely
to have imaging evidence of acute intracranial trauma after mild TBI [52]. Older age has
been associated with anatomical changes, e.g., cerebral atrophy and larger extra-axial
spaces [53], and well as physiologic changes, e.g., increased comorbidities/frailty [54,55]
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and increased prevalence of antiplatelet and anticoagulant medications [56,57], all of
which may contribute to altered risks of neurologic deterioration and/or hemorrhagic
progression [57,58]. These factors warrant further study in larger datasets.

4.2. Neuroworsening Is a Predictor of Neurosurgical Interventions, Mortality, and Outcome

All subjects with neuroworsening in the ED were admitted to ICU, and neurowors-
ening predicted the need for cranial surgery and ICP monitoring with multivariable odds
ratios of 5 and 15, respectively. This is not surprising, as neuroworsening was associated
with markedly increased CT lesion burden and severity. Consequently, the mortality preva-
lence was 60-fold higher for neuroworsening (44% vs. <1%). Subjects with neuroworsening
were more likely to have 3- and 6-month unfavorable outcome (58% vs. 5%; 54% vs. 6%)
with multivariable odds ratios of 5.4–5.7, underscoring the importance of neuroworsening
in the ED as an independent predictor of poor functional outcome.

Consensus guidelines in severe TBI have established the importance of evaluating
critical neuroworsening for the neurologically debilitated ICU patient [12]. While ICP
and multimodal intracranial monitoring are valuable tools for detecting clinical deterio-
ration, the benchmark remains serial clinical examinations to guide triage decisions for
CT neuroimaging [59]. Our findings extend these recommendations to ED and acute
care settings, where the relevance of early detection of neuroworsening can be applied to
non-neurologically devastated patients who are at high risk for deterioration.

Of note, the proportion of subjects with early neuroworsening in our study was limited.
Contributing factors include applying the rigorous definition of neuroworsening consistent
with SIBICC (≥1 point decline on the GCS motor score) [18], within the ED phase of care,
in a predominantly mild TBI cohort. To date, studies on neuroworsening have targeted
cohorts within TBI severity strata (mild/moderate/severe) or by acute CT findings. A
2018 meta-analysis of 49 mild TBI studies found a pooled prevalence of 11.7% for clinical
deterioration, 3.5% for neurosurgical intervention, and 1.4% for mortality [60]. Deteriora-
tion was most often defined as progression of brain injury on CT scan, and supplemented
by the clinical exam when available [60], across a variable timeframe ranging from 24 to
72 h of arrival to anytime during acute hospitalization [13,61–63]. These observations were
corroborated by smaller, single-institution studies, e.g., a Polish study of 186 hospitalized
mild TBI patients defined neuroworsening as ≥1 point decline on the GCS total score at
any point during hospitalization, and reported neuroworsening in 3.8% and neurosurgical
intervention in 1.6% [64]. Overall, our results were comparable to prior studies (neu-
roworsening: 3.3%, cranial surgery: 5.2%, in-hospital mortality: 1.9%, 6-month unfavorable
outcome: 8.1%) [60,64,65], and importantly showed profound differences in intracranial
injury severity, therapeutic intensity, mortality, and unfavorable outcome associated with
neuroworsening identified within the early phase of care.

4.3. Implications for ED and Acute Care Clinicians

The high prevalence of multifocal TBI and the worsened prognosis based on severity of
CT features highlight neuroworsening as a sign that should be recognized without delay in
ED and acute care settings, similar to the established guidelines for critical neuroworsening
in the ICU [18]. Our study shows that subjects with early neuroworsening have elevated
risks of long-term morbidity and mortality, and a greater likelihood of requiring intensive
care and interventions including ICU admission, intracranial neuromonitoring, and surgery.
Given the risks of neurologic deterioration even in mild TBI [66,67], any TBI patient in
the ED with suspected neurologic deficit or positive head CT should continue to undergo
short-interval GCS assessments by trained clinicians beyond the time of ED admission,
including when awaiting clinical decision making or hospital admission, as significant time
may elapse before a patient completes ED disposition. The first sign of neuroworsening
should trigger immediate, formal neurologic evaluation. The optimal interval for GCS
reassessments constitutes an important area for future study.
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The GCS motor score is a known predictor of mortality and unfavorable
outcome [33,68,69] and has been incorporated into validated TBI prognostic calculators [70].
The neurotrauma clinician must understand and accurately apply the GCS motor score as
part of TBI standard of care. The GCS motor score is often considered the most difficult of
the three GCS components to administer, even in experienced healthcare providers [71].
Training and education have been shown to substantially improve assessment accuracy: in
a 2016 study of 54 surgical trauma, neurotrauma, and neurovascular ICU nurses at a US
Level I trauma center, the accuracy of GCS motor score assessments improved from 50%
to 93% after participants completed a mandatory neuroscience course [71]. Our findings
support the rationale for providing formal training to providers in ED settings regarding
not only the correct use of the GCS motor score, but also how to recognize a clinical change
in the motor score and its implications for escalation of care.

4.4. Limitations

We acknowledge important limitations to the interpretation of our data. While our
overall sample size of 481 was reasonable, only 3.3% had early neuroworsening, which
limited between-group comparisons due to the inherent heterogeneity of presentation and
injury within small samples. To maximize our group sizes for meaningful statistical com-
parisons, we combined neuroworsening subjects into a single group and did not control for
the magnitude of scalar decrease in the GCS motor score from ED admission to disposition.
Whether the magnitude of neuroworsening, or the rate of change, predicts intervention
or outcomes requires further study. We aimed to balance the risk of model overfitting
with the small proportion of neuroworsening subjects by setting an a priori threshold of
five positive outcome events per entered predictor in multivariable logistic regressions;
however, the residual risk of overfitting is present, as are potential contributions from
factors not controlled for in our regressions (e.g., frailty), which limit generalizability. We
were unable to include other known criteria for ICU neuroworsening [18], such as pupillary
reactivity (due to high degree of data missingness) and serial CT data (not available in
TRACK-TBI Pilot), which further limits data interpretation. As pupillary reactivity data
from TRACK-TBI Pilot were extracted from the medical record, the degree of missingness
should serve as a reminder to clinicians regarding the importance of systematically docu-
menting pupillary reactivity throughout the ED clinical course, including ED admission
and disposition. While our approach to outcome dichotomization conformed to prior
published analyses [6,30], we recognize that dichotomization, in general, confers known
disadvantages such as underestimating the variance in outcome between the dichotomized
groups, reducing statistical power, and detecting a falsely positive result [72,73]. For these
reasons, our findings should be interpreted cautiously, and confirmation in larger datasets
and larger cohorts of subjects with early neuroworsening is needed, which will improve the
rigor of statistical inference and accuracy of multivariable models. Future investigations
on neurologic deterioration that incorporate serial imaging data for analyses of lesion
progression should consider the evaluation of home antiplatelet and anticoagulant medica-
tions (and their indications), standard hematology and coagulation laboratory values, and
whether blood products or coagulopathy reversal agents were administered.

Data on timing (e.g., of ED disposition GCS score, cranial surgery, ICP monitoring
placement, and hospital discharge) were not available from TRACK-TBI Pilot, which
precluded time course analyses on medical decision making (such as time to surgical
intervention) and the relationships among time to presentation, time to neuroworsening,
and time to initial CT. For example, it is possible that pre-hospital transport time influences
the relative time it takes an at-risk subject to deteriorate, or that their neuroworsening was
expected given the known severity and specific pathoanatomic character of their TBI. Our
aim was to evaluate the clinical factors and risks associated with “early” neuroworsening
in the ED and did not include analyses for subjects with neuroworsening further into their
hospital course, which constitutes a separate cohort. A 2022 retrospective study of 458 TBI
subjects found a mean difference of 1.1 points between GCS scores recorded by the trauma
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registry and neurosurgery consultation [74], highlighting the importance of capturing
timing of GCS assessment in reference to time of injury, ED admission, and interventions,
in order to better determine the prognostic value of early neuroworsening and optimal
timing of reassessments.

Prognostication of TBI outcome is multifactorial and requires careful consideration of
potential confounders. Detailed hospital intervention data, including types of cranial and
extracranial surgeries, medical interventions, and complications, were not available in our
dataset, which limited our interpretation of causality in hospital and long-term outcomes.
For the latter, rehabilitation and post-acute care information were also not available. While
we included only subjects with testable ED GCS as defined by the TBI CDEs (e.g., without
deep sedation or paralysis to confound the motor score), ED medications were not recorded
in the TRACK-TBI Pilot study, and unrecorded sedatives or paralytics could be confounders
of ED disposition GCS scores. While we controlled for age in our analyses, the impact of
older age on neuroworsening in the ED and the resultant clinical course is an important
topic for future study. These limitations require investigation in cohorts of sufficient
size and data granularity, which we plan to undertake using the recently completed,
18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury study
(ClinicalTrials.gov Registration: NCT02119182).

5. Conclusions

Neuroworsening in the ED following traumatic brain injury is an early indicator of
clinical and radiographic TBI severity and is an independent predictor of neurosurgical
intervention and 3- and 6-month unfavorable outcome when controlling for ED admission
GCS. Clinicians in ED and acute care settings caring for TBI patients should be vigilant in
detecting neuroworsening, as affected patients are at increased risk for poor outcomes and
may benefit from immediate therapeutic interventions.
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