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OPTIMAL STRATEGIES FOR REPEATED GAMES 

MARK FINKELSTEIN* AND 

ROBERT WHITLEY,* University of California, Irvine 

Abstract 

We extend the optimal strategy results of Kelly and Breiman and extend the 
class of random variables to which they apply from discrete to arbitrary 
random variables with expectations. Let Fn be the fortune obtained at the nth 
time period by using any given strategy and let P.; be the fortune obtained by 
using the Kelly-Breiman strategy. We show ("Theorem l(i)) that Fn/F! is a 
supermartingale with E(Fn/F!)~ 1 and, consequently, E(lim Fn/F!);a 1. This 
establishes one sense in which the KelJy- Breiman strategy is optimal. How­
ever, this criterion for 'optimality' is blunted by our result (Theorem l(ii)) that 
E(Fn/F!) = 1 for many strategies differing from the Kelly- Breiman strategy. 
This ambiguity is resolved, to some extent, by our result ("Theorem 2) that 
F!/Fn is a submartingale with E(f"!/F")?:; l and E(limf!/Fn) ?:; l; and 
E (F! I Fn) = 1 if and only if at each time period j, 1 ;a j ~iin. the strategies 
leading to F" and F! are 'the same'. 

KELLY CRITERION: OPTIMAL STRATEGY: FAVORABLE GAME: OPTIMAL GAMBLING 

SYSTEM; PORTFOLIO SELECI10N; CAPITAL GROWTii MODEL. 

1. Introduction 

Suppose a gambler is given the opportunity to bet a fixed fraction 'Y of his 
(infinitely divisible) capital on successive flips of a biased coin: on each flip, 
with probability p >!he wins an amount equal to his bet and with probability 
q = 1-p he loses his bet. What is a good choice for 'Y and why is it good? 

This question is subtle because the obvious answer has an obvious flaw. The 
obvious answer is for the gambler to choose 'Y = 1 to maximize the expected 
value of his fortune. The obvious flaw is that he is then broke in n or fewer 
trials with probability 1- pn, which tends to 1 as n tends to oo. 

A germinal answer was given by Kelly [10]: a gambler should choose 
'Y = p - q so as to maximize the expected value of the log of his fortune. He 
shows that a gambler who chooses 'Y = p - q will 'with probability 1 eventually 
get ahead and stay ahead of one using any other value of -y' ([10], p. 920). 

In an important paper Breiman [ 4] generalizes and considers strategies other 
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than fixed-fraction strategies and generalizes the random variable as follows: 
Let X be a random variable taking values in {l, 2, · · · , s} =I,'€ be a class 
{A1, A 2 , • • • , A,} of subsets of I whose union is I, and oi. o2 , · · · , Or be positive 
numbers (odds). If for one round of betting a gambler bets fractional amounts 
(3., (32 , · • • , f3r of his capital on the events {XE A 1}, • · • , {XE Ar}, then when 
X = i he gets a payoff of I (31o1 summed over those j with i in A1. In this setting 
Breiman discusses several 'optimal' properties of the fixed-fraction strategy 
which chooses (31, (32 , · • • , (3. so as to maximize the expected value of the log of 
the fortune and then bets these fractions on each trial, leading to the fortune 
F~ at the conclusion of the nth trial. He shows that if Fn is a fortune resulting 
from the use of any strategy, then lim F.JF: almost surely exists and 
E(lim F,JF~) ~ 1. In what follows we shall be concerned solely with magnitude 
results, like this asymptotic magnitude result of Breirnan's, but the reader 
should be aware that under additional hypotheses Breirnan also shows that 
T(x), the time required to have a fortune exceeding x, has an expectation 
which is asymptotically minimized by the above fixed-fraction strategy. 

The problem of how to apportion capital between various random variables 
is exactly the problem of portfolio selection, and so it is correct to suppose that 
these results on optimal allocation of capital are of considerable interest to 
economists, as Kelly recognized ([10], p. 926). He also prophetically realized 
that economists, familar with logarithmic utility, could easily misunderstand his 
result and think, incorrectly, that the choice of maximizing the expected value 
of the log of the fortune depended upon using logarithmic utility for money. 
For discussion see [15], p. 216 and [17]. An interesting concise discussion of 
the 'capital growth model of Kelly [10], Breirnan [ 4], and Latane [11]' from an 
economic point of view can be found in [3]. 

A brief discussion of Kelly's proof will motivate his criterion and allow us to 
make an important conceptual distinction between his results and Breirnan's. 
Suppose a gambler bets the fixed fraction 'Y of his capital at each toss of the 
p-coin. Kelly considers the exponential growth rate 

G = lim log[(F,JF0) 11n]. 

If our gambler has W wins and L losses in the first n trials, Fn = 
(1 + -y)w (1 - -y)LF0 , so 

G =lim (:log (1 +-y)+~log (1--y)) = p log (1 +-y)+q log (1--y), 

by the law of large numbers. The growth rate G is maximized by 'Y = p - q, and 
if he uses another 'Y his G will be less and therefore eventually so will his 
fortune. A complication enters when we consider, as Kelly did not, strategies 
which are not fixed-fraction strategies. In that case we can have different 
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strategies with the same G, e.g., use y = 1 for the first 1000 trials and then use 
y = p - q. This complication is intrinsic in the use of G and it has consequences 
which are quite serious for any application. For example, two strategies which 
at trial n give fortunes, respectively, of 1 and exp (.Jn), both have G = 1! It is 
obviously unsatisfactory to regard these two strategies with the same G as 'the 
same', but it is done because using G makes it easy to extend the Kelly results 
to more general situations which involve more general random variables; using 
G the argument is a simple one employing either the law of large numbers or 
techniques which 'rely heavily on those used to generalize the law of large 
numbers' ([15), p. 218). Breiman understood the problems created by using G 
and so he considered Fnf F!, not (FJF~) 11". This is mathematically more 
difficult, but the results are more useful. 

2. Definitions and lemmas 

We shall consider situations with the property that at each time period a 
gambler can lose no more than the amount he invests, e.g., buying stock or 
betting on Las Vegas table games. Since there is a real limit to a gambler's 
liability, based on his total fortune, a broad interpretation of the phrase 'the 
amount he invests' will allow the inclusion of such situations as selling stock 
short or entering commodity futures contracts. 

We suppose that there are a finite number of situations 1, 2, · · ·,Non which 
a gambler can bet various fractions of his (infinitely divisible) capital. The 
random variables Xh X2 , • • ·, XN represent, respectively, the outcome of a 
unit bet on situations 1, 2, · · · , N. Because the loss can be no more than the 
investment, Xk ;?; -1 for 1 ~ k ~ N. (Breiman considers the amount returned to 
the gambler after he has given up his bet in order to play, a real example of this 
sequence of events being betting on the horses. Here the amount the gambler 
gets back is ;?;0, which corresponds to the amount he wins being ;?; - 1). We 
further suppose, with no loss of applicability, that in all of what follows each Xk 
has an expectation, i.e., that E(IX1c D is finite. These will be the only restrictions 
on the random variables, and so we are considering a substantially larger class 
than those discrete random variables Breiman considers. 

We also suppose that the gambler can repeatedly reinvest and change the 
proportion of the capital bet on the situations. The outcome at time j corres­
ponds to the random variables J0/l, x<p, · · · , Xk/. For each k, 1 ~ k ~ N, the 
results of repeated betting of one unit on the kth situation is a sequence 
_xtl), _xt2>, · · ·, x~m>, · · · of independent random variables, each having the 
same distribution as Xk. In contrast to this independence, it is quite important 
for applications that X 1, X2 , • · • , XN be allowed to be dependent. 
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A strategy for the game will be a sequence -y<1>, · · · , -y<m>, · · · of vectors, 
-y<m> = ( -y\m>, 'Y~m>, · · · , -y~>) giving the fractional amount 'Ykm) of the capital 
which at the m th bet is bet on the kth situation. Thus 'Ykm> ~ 0, 1-;;£ k-;;£ N , and 
Lt1. 1 'Ykm>-;;£1. We allow the possibility that -y<m> can depend, as a Borel­
measurable function, on the past outcomes X\1>, · · · , XW, 
X\2>, · · ·, x<J>, · · ·, X\m-1), · · ·, x~-1>. (Breiman includes the sure-thing bet 
X 0 = 1, so that betting 'Yo on X0 is the same thing as putting 'Yo aside; in this 
way his -y's always sum to 1. We shall not do this.) 

Letting Fm be the fortune which is the result of m bets using 
,.co, -y<2>, · · ·, -y<m>, and F0 be the initial fortune, 

(1) Fm= F0 n [ 1 + kti -y~>X1f>]. 
To simplify the notation, let xm = (Xy>, · · · , XW) and denote the scalar 
product with ,,(j) = < ,.y>, ,.~>, . · . , -y%>) by ,,(j) · xm, obtaining 

(2) 
j=l 

A fixed-fraction strategy is a strategy -y<m> = (-y1, -y2 , • • ·, 'YN) which bets the 
same amount 'Yk on situation k for all m. The result of using 'Y ='YU>, 1-;;£ j-;;£ m, 
for m bets is Fm= F0 Ilf- 1 (1 + 'Y · X(i)). We shall be particularly interested in 
' the' fixed-fraction strategy -y* = ( 'Y!, 'Y~, · · · , -y~) which maxuruzes 
E(log (Fm)). In Lemma 3 we shall show that -y* exists, and Lemma 1 shows in 
what sense it is unique. The strategy -y* maximizes E(log (Fm)) if and only if it 
maximizes the function 

(3) <f>( -y) = <f>( 'Yi.· · · , 'YN) = E(log (1 +I 'YkXk)) = E(log (1 +'Y · X)) 

over the domain 

(4) D ={('Yi. .. ·, 'YN): 'Yk~o. 1-;;£ k-;;£N, I 'Yk-;;£ 1}. 

Lemma 1. 
(i) The function <f> of (3) is concave. 

(ii) If <f>(aa + (1- a)/3) = a<f>(a) + (1- a)<f>(/3) for 0<a<1 with <f>(a) and 
<f>(/3) finite, a· X = /3 · X almost surely. In particular, if a= (at> a 2 , • • ·, aN) 
and 13 = (/3i. /32 , • • • , /3N) both maximize <f> over its domain D, then L akXk = 
L 13kXk a.s. 

(iii) At -y=(-y1,-· -, -yN) in D with L'Yk<l, the partial derivative iJ<f>/iJ-yi 
exists and equals E(X;/(1 + 'Y · X)), 1-;;£ i-;;£ N. 

Proof. 
(i) The function f(x) =log (1 + x) is strictly concave on (-1, oo), and so for 

x =(xt> · · ·, xN) a value of X, a and /3 in D, and O<a<l, 

(5) f(aa · x+(l-a)/3 · x)~af(a · x)+(1-a)f({3 · x), 
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an inequality which also holds if either a · x or (3 · x is -1. Integrating (5) with 
respect to the probability measure P of the space on which X is defined, 

<f>(aa+(l-a)(3)= J f(aa · X+(l-a)(3 · X) dP 

~ J (af (a · X) + (1- a)f ((3 · X) dP = a<f>(a) + (1- a)<f>((3). 

(ii) Since <f> is concave the set where it attains its max is convex. H 
<f>(a) = <f>((3) is a max, then for 0 <a< 1, <f>(aa + (1- a)(3) = 
a<f>(a) + (1- a)<f>((3), or 

(6) f (f(a · aX +(1 - a)(3 · X)-af(a · X)-(1-a)f((3 · X)) dP = 0. 

From (5) and (6), 

(7) f(aa·X+(l-a)(3·X)=af(a·X)+(l-a)f((3·X) a.s. 

Because f is strictly concave, aa · X + (1- a)(3 · X =a · X = (3 · X at all values 
of X where f is finite. Both sides of (7) are -oo only at values of X where 
a · X = (3 · X = -1. In any case, a · X = (3 · X almost surely. 

(iii) Choose e > 0 so that L 'Yk < 1- e. Then 1/ll + y · X[ ~ l/e. The difference 
quotient for iJ<f>/iJy; is 

f 
log ( 1 + :L . 'Ykxk + ('Yi+ Ay;).x;)-1og (1 + :L 'Ykxk) 

k,.., dP. 
Ay; 

(8) 

Let x = (xl> · · · , xN) be a value of X and consider the function g( 'Y;) = 
log (1 +Ire,..; 'YkX1c + 'Y;X;). By the mean value theorem, 

lg(y; +Ay;)- g(y;)\ l:x;l 

Ay; 11 +I 'YkX.. +g;:x;I' 

0 < gi < Ay;. So the integrand in (8) is dominated by the L 1 function [X; I/ e for 
.:iy; small. Result (iii) follows from the Lebesgue dominated convergence 
theorem. 

Here is a simple example which conceptually illustrates a practical use of the 
Kelly-Breiman criterion: maximize E(log Fm). 

Example 1. Define two random variables X1 and X2 by flipping a fair coin: 
if heads, then X 1 =100 and X2 = -10, if tails, then X 1 = - 1 and X2 = 1. The 
payoff from X 1 is far superior to the payoff from X2 , but because X1 and X2 

are (completely) correlated and have payoffs with opposite signs, the criterion 
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will mix both in order to smooth out the rate of capital growth. A simple 
calculation shows that <f>( 'Y) = E(log (1 + ,,1x1 + ')'2X2)) is maximized over D on 
the face 'Yi+ ')'2 = 1 at 'Yf = 0.54 and 'Y~ = 0.46. (Lemma 3 will discuss the basic 
problem created by maxima occurring at non-interior points of D.) The extent 
to which the criterion will sacrifice expectation is surprising: E(0.54X1 + 
0.46X2)=24.7vs. E(X1)=49.5. 

A fascinating example of the use of this criterion, in which the underlying 
idea is the same as this example, is in hedging a warrant against its stock as 
described in [15], pp. 220-222. 

Example 2. For ,\ > 0, let X have density ,\e- Mx+ t> for x E;;-1, and 0 for 
x < - 1; an exponential shifted to allow losses. We shall show that there is a 
unique ,,*,O~'Y*<l, which maximizes <f>('Y)=E(log(l+,,X)), o~,,~1; ,,* = 
0 iff ,\ E;; l. 

By Lemma 1, 

<f>' ('Y) = - f"' _x_ ,\e- .>.Cx+l) dx. 
L 1+,,x 

Further, 

l"' x2 
</>"( ')') = 2 ,\e- .>.Cx+l) dx < 0, 

_ 1 (1 +,,x) 

so <f> is strictly concave on [O, 1). Since <f>'(O) = E(X) = ,\ -1
- l, the strict 

concavity of cf> shows that 'Y* = 0 iff <f>'(O) ~ 0. 
It remains to show that for 0 <A.< 1 there is a unique maximizing point 'Y* 

with O<,,*<l. By a change of variable, <f>'(,,) = (,\/')'2)ea[g(a)-El(a)], where 
a= A.((1/')')-1), g(a) = e-a/(a +A.), and the exponential integral El(a) = 
J':e-1/tdt. Since El(O)=oo and g(O)=l/A., <f>'(,,)<O for 'Y close to 1; as <f> is 
strictly convex, there is thus a unique point 'Y*, 0<')'*<1, at which <f> is 
maximized. 

For future reference we note that it is not obvious that <f> is continuous at 1; 
part of the computation involves an integration by parts and a change of 
variable to obtain <f>('Y) = log(l - ,,)+eaEl(a), a as above. The expansion 
El(a) = e- a(-log a - 'Yo+ o(a)) ([l], p. 229), where 'Yo= 0.577 · · · is Euler's 
constant, shows that lirn.,_1 </>( 'Y) =-log(,\)- 'Yo· 

In Example 2 -y* = 0 iff E(X) ~ 0, i.e., a gambler bets on X only if it has 
positive expectation. This is a special case of a more general result. Breiman 
[4], p. 65, calls a game favorable if there is a strategy such that the associated 
fortune F" tends almost surely to oo with n, and he shows that this condition is 
equivalent to <f>(-y*) being positive ([4], Proposition 3, p. 68). Lemma 2 
establishes the equivalence with the intuitive Condition (iv). 
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Lemma 2. The following are equivalent: 
(i) There is a strategy with the associated fortune 

(ii) F! - oo a.s. 
(iii) <f> ('y *) > 0. 

Fn - oo a.s. as n -oo. 

(iv) E(X.) > 0 for at least one i, 1 ;a i ;a N. 

Proof. 

421 

(i) implies (ii). In Theorem 1 we show that Fn/F! tends almost surely to 
a finite limit. 

(ii) implies (iii). If <f>( -y*) = 0, then F~ = F0 for all n. 
(iii) implies (iv). If -y* · X=O, then <f>(-y*)=O. So -yf >0 for some i with Xi 

not identically 0. Fix all variables in <f> but 'Yi and set '1'( -y.) = 
<f>(-y~ , -Yt · · ·, -yf-1 , 'Yi. 'Y~+" · · ·, -y~), a concave function which has a positive 
max at -yf. If E(X;) ;a 0, then '1''(0) ;a 0, and '1' has a local max at 0 and so has a 
global max there because it is concave. Hence E(X.)>0. 

(iv) implies (i). Define '1' by setting all the variables but 'Yi equal to 0 in 
<f>: '1'(0, 0, · · · , 0, ')';, 0, · · · , O). As E(X;) >0, '1''(0) >0 and so '1'( 'Yi) >0 for 'Yi 

close to 0. Thus <f>(-y*)>O. Since log(F~/F0)=L~log(l+-y*·X(I)) and 
E((log F!/F0)/n) = <f>(-y*)>O, the strong law of large numbers shows that 
F~/F0 -oo almost surely. 

Example 3. Let X 1 and X2 be the coordinates of a point distributed 
uniformly on [-1, b] x [- 1, b]. Then <f>( 'Yi. -y2) = E(log (1 + -y1X 1 + -y2X2)) has a 
maximum at -y* = {!, !) if b ~log (16)-1. 

If ( -y1, -y2) is a point where <f> attains its max, then so is ( -y2 , -y,) by symmetry. 
Since <f> is concave, (!)(<f>( 'Yt> -y2) + <f>( 'Y2, -y1)) ;a <PG( 'Y1 + 'Y2)J( 'Y1 + 'Y2)), and we 
may look for the maximum of <f> along the diagonal (-y, -y), O;a-y;a!. Then 

d 1 f b f b X1 + X2 

d-y </>( ')', 'Y) = (b + 1)2 L J_1 (1 + -y(x1 + x2)) dxi dx2. 

The second derivative is <O, and <f>' is decreasing. A direct but tedious 
integration and calculation shows that 

. d ( (log 16)) hm -<f>(-y, -y) = 2 1- --- . 
-,-i- d-y (b + 1) 

Hence <f> ( -y, -y ), which can be shown to be continuous on [O, tJ, increases up to 
its max at @, !) as long as b ~log (16)-1=1.77 · · · . 

It is interesting to compare this situation with betting on only one variable, 
say X 1 • Then <f> 1(-y1)=E(log(l+-y1X 1)) is continuous on [O, 1]. Continuity on 
[O, 1) follows from Lemma 1 or inspection. Because of the singularity at 
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y 1 • X1 = - 1 in the integrand, continuity at 1 is not by inspection; one must 
compute 4>1(l) = log(l +b)- 1 and show it is equal to the limit. (The situation 
in two variables, which we dismissed with a word, is not easier.) 

The function 4>1 is differentiable on [O, 1) by inspection or Lemma 1. It is 
only differentiable at 1 in an extended sense; we can show that <(>'1(1) = -oo and 
that liffiy-1 4>'1 (I')= -oo. 

The function 4>1 has a unique maximum at a point yf, 0 < yf < 1. From 
Lemma 2, yf=O iff E(X)=(b-1)/2~0. The existence of yf <1 follows from 
4>'1 (O) = (b - 1)/2 and 4>'1 (1) = -oo, the uniqueness from strict concavity. 

The surprising fact is that for one variable X 1 a gambler does not bet all his 
fortune no matter what b is, but he does bet all his fortune on two 
independent copies of X1 for b large enough. 

The reader who has carried out the calculations of Examples 2 and 3 knows 
that, because of the possible singularity on I 1'1c = 1, it is not clear that <f> 
attains a maximum, and the differentiability of 4> on the boundary L 1'1c = 1 is 
even less clear. 

Think of a continuous strictly increasing concave function f on [O, 1] and 
redefine it at 1 so that its value there is less than f (0). If this redefined function 
were E(log (1 +yX)), then X would be a most interesting game with no 
Kelly-Breiman optimal strategy: with unit fortune, if a gambler bet an amount 
less than 1 he could always do better by betting slightly more, but betting all 
would be worst. 

One result of Lemma 3 is that there is an optimal y* so no game can have 
the property discussed in the paragraph above. Another result of Lemma 3 is 
that <f> is continuous, when finite. This is important because when we compute 
y*, a numerical calculation which will generally give y* to a certain number of 
decimals, we want to know that using this approximation to the exact y* will 
give close to optimal performance. 

The other result is a substitute for differentiation when y* has I,,:= 1, 
which allows us to derive the basic inequalities (9) and (10). Note that if all the 
random variables Xh X2 , • · · , XN are discrete, with a finite number of values, 
as they are in [ 4], then we can differentiate 4> at y*: for then if y* · X equals 
- 1 it does so with positive probability and 4>( y*) = -oo< 4>(0) = 0, contrary to 
<f>(y*) a maximum; thus <f> is actually defined on a neighborhood of y* (which 
may extend outside D ) and is differentiable as in Lemma 1. The problems 
which Lemma 3 resolves are those which arise from more general random 
variables. 

Lemma 3. 
(i) The function <f> is continuous where finite, and attains a maximum at a 

point y* in D. 
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(ii) Let K = {k : 'Y~ -:f O}. For k in K , E(Xk/(1 + 'Y* · X)) is finite and non­
negative. If k belongs to K , then for all m 

(9) E(XJ(l + ,,* · X))~E(Xm/(l + 'Y* · X)). 

If both k and m belong to K, 

(10) E(Xk/(1 + ,,* · X)) = E(Xm/(1 + 'Y* · X)). 

Proof. Suppose that 'Y<n> converges to ,,co> with <f>( ,,co>) finite. Denote the 
positive and negative parts of log by log+ and log- : log+(x) =log x if x ~ 1, 
log+ (x) = 0 if x ~ 1 and log- (x) = -log (x) if x ;a 1, log- (x) = 0 if x ~ 1. Since 
log+ (1 + 'Y · X) ;a l'Y ·XI~ max IXk l, <f> is infinite only if it is - oo. By the Lebes­
gue dominated convergence theorem lim Slog+ (1 + 'Y<n> · X) dP = 
J log+ (1 +,,co> · X) dP, by Fatou's lemma lim inf Slog- (1 + 'Y<n> · X) dP ~ 
J log- (1 + ,.<0> · X) dP, and putting these two facts together, lim sup <f>( 'Y<">) ;a 
<f>( ,.<0>). Thus <f> is upper semicontinuous and therefore attains its maximum on 
the compact set {'y in D: <f>( 'Y) ~ O}. 

For O<a<l, <f>(a,,+(1 - a),,<0>) ~ a<f>('Y)+(l - a)<f>('Yco>), and so 
Jim infa--o <f>(a'Y + (1 - a),,C0>) ~ <f>( ,,<0>) if </>( 'Y) is finite, i.e., <f> is continuous 
along lines directed towards ,,co> from points where <f> is finite. 

Suppose that 'Y(l) and ,.<2> are in D with <f>( ,.<2>) finite, and let a E (0, 1). Now 

1 +ay0 > · X +(l-a),,<2> · X ~ 1 + a L 'Yk0 (- 1) +(1 - a))'c2> · X 

~(l-a)+(l-a),,C2> · X 

= (1- a)(l + y<2> • X). 

Since log- (1 + z) is a decreasing function of z, log- (1 + ay0 > · X + 
(l - a),,<2> · X) ;a log- (1 - a)(l +,,<2> · X) which equals -log (1-a)­
log (1 + y<2> · X) when (1 - a)(l + ,.<2> · X) ~ 1, and equals 0 otherwise. Hence 
Jlog- (1 + a,,c1>. X +(l - a),,<2>. X) dP;a -log (1-a)+Jlog- (1 +y<2>.x) dP<oo, 
and thus <f>(ayn>+ (l-a))'c2>) is finite for a-:f 1. 

Let a point 'Y be a given at which <f> is finite. For 1 ;a k ;a N, let e<k> be the 
vector in D whose kth coordinate is 1, e~kl = S;k> eC0> = 0, and set 'Y<k> = 
ae<k>+ (l - ah, a in (O, 1), for O~k;aN. Note that D is the convex hull 
co(e<0>, e<l), · · · , e<N>). As we have seen above, <f>( y<k>) is finite and so <f> is 
continuous on the line joining y<k> to )'. Given e > 0, by choosing a small 
enough we have l<f>('Y<kl)-<f>(y)l;ae for O;ak~N. For any vector v in the 
convex hull U = co ( y<0>, 'Y(l>, · · · , 'Y<N>), v = L ak 'Y<k>, ak ~ 0, L ak = 1, we have 
<f>(v)~Lak<f>(y <l<>) ~<f>('Y)-e. The convex hull U is easily seen to have an 
interior (relative to D). Since <f> is upper semicontinuous, V = 
{a: <f>(a) <<f>('Y)+e} is open. Therefore for v in the neighborhood r.r>n 
V, l<f>( v) - <f>( 'Y )I ;a e and <f> is continuous at 'Y· 
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For -y in D with L -y1 < 1, and 0 ~a~ 1, define qr( a)= <f>(a-y + (1- a)-y*). We 
have seen that qr is continuous on (0, 1]. Given 0<e<1, for a in 
[e,1],l+(a-y+(l-a)-y*)·X~e(l-1:-yJ>O. As in Lemma 1, 
1(-y--y*)·X/(l+(a-y+(l-a)-y*)·X)I is bounded by the L1 function 1(-y­
-y*) · X/e(l-I -y1)1 and we may use the Lebesgue dominated convergence 
theorem to justify differentiating under the integral to obtain 

, f ( 'Y - -y*) . x 
qr (a)= 1 +(a-y+(l-a)-y*) · X dP. 

Since e was arbitrary, this holds on (0, 1]. 
If I -yt < 1, then Lemma 1 establishes the fact that the expectations in (10) 

are 0. As in Lemma 2, if m is not in K, then fixing all the variables in <f> but 'Ym 

and considering that concave function with a max at 0 shows that iJ<f>/iJ-ym ( 'Y*) ~ 
0 and (9) follows. 

Now suppose that L 'Yt = 1 and let x = (x1> · · ·, xN) be some value of the 
random variable X in which not all the xk = -1 for k in K. Note that the event 
xk = - 1 for all k in K has probability 0 since the integrand in the integral 
defining <f> is -oo there and </>( 'Y*) is finite. 

For 0~a<1 and 'Y in D 0
, define 

f (a)= log (1 + (a-y + (1- a)-y*) · x). 

The function f is finite because x was so chosen, and is differentiable with 

f'(a) = (-y-'Y*). x 
l+(a'Y+(l-a)-y*) · x · 

Because f" ~ 0, f'(a) increases to ( 'Y- -y*) · x/(1 + 'Y* · x) as a decreases to 0. For 
a=fO, ('Y-'Y*)·X/(l+(a'Y+(l-a)-y*)·X) in L1 we may apply the B. Levi 
theorem to obtain 

lim qr'(a) = f ( -y-'Y*) . X dP. 
a io 1 +-y* · X 

By tl}e mean value theorem, (qr(a)-qr(O))/a =qr'(b), 0< b <a. Then, because qr' 
is increasing, limaJ.o 'l''(a) = lima.1.o ((qr(a)-qr(O))/a). Since <f>(-y*) is a maximum 
the right-hand side is ~O and we obtain the basic 

(11) J 
('Y-'Y*). X dP~O. 
l+'Y* . x 

For 0 < e < 1 and k in K, the choice 'Yi = 'Yf for ii= k and 'Yk = -yt(l - e) in 
(11) gives - S Xk/(1 + -y* · X) dP ~ 0, and S Xk/(1 + 'Y* · X) dP is non-negative 
and therefore finite. 

For k in K and any m, and 0 < e < -Yt, the choice 'Yi = -yj for j neither k nor 
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m, y,, = y! - e, T'm = y!, + e in (11) gives (9). Finally, (10) follows from (9) by 
symmetry. 

3. Theorems 

If F,, is a gambler's fortune at the nth time period, obtained by using some 
strategy ,,0 >, y(2), · · · , y<">, · · · , and F! is the fortune obtained by using the 
fixed fraction strategy y*, y*, · · · , y*, · · · , then Breiman concludes ([ 4], 
Theorem 2, p. 72) that Jim F.JF! almost surely exists and E(lim F.JF!)~ 1. We 
extend these results in Theorem 1 below. Two comments are in order. 

First, the advantage in using y*, as indicated by the fact that E(lim F,,/ F!) ~ 
1, does not require passage to the limit. This was noted by Durham, for the 
case of two branching processes, in the proof of Theorem 1 of (6], p. 571. In 
fact, given that the limiting result is true and given a finite strategy 
y(1), · · · , y<m>, extend it by setting yCil = y* for j > m; then F ,J F! = F ml F'! for 
n ~ m and E(F ml F!) ~ 1. This should reassure the careful investor who won­
ders whether a strategy good in the long run may not be inferior in any 
practical number of trials---disregard of this point leads to an overevaluation of 
games of the type which produces the St. Petersburg paradox. 

Second, by our analysis of q,, we are able to show in Theorem 1 that the 
presence of the expectation in E(lim F,,/ F!) ~ 1 raises serious problems in any 
superficial attempt to use this as an indication of the superiority of y*. 

Theorem 1. Let F,, be the fortune obtained by using a strategy y = 
y(l), · · · , y<"> for n repeated investment periods, and let F! be the fortune 
obtained by using the fixed fraction strategy y*. Then 

(i) F,,JF! is a supermartingale with E(F,,JF!)~ 1. Consequently, lim F,,/F! 
exists almost surely as a finite number and E(lim F,,/F!) ~ 1. 

(ii) Suppose that y bets only on those Xk with Yt > 0, i.e., that yy> = 0 if 1¢ K, 
1 ~ l ~ N and all j. If L Yt = 1, then further suppose that Ly~>= 1 for all j. Then 
F.JF! is a martingale with E(F.JF!) = 1. 

Proof. Let m be given and let ~m be the sigma-algebra generated by X~>, 
l~k~N, l~j~m. Then 

[Fm+l I )= (1 +y<m+l). x<m+l) . Fm I ) 
E\F* ~m E l+ *. x<m+o F* ~m • m+l ')' m 

Since Fmf F'! is ~m -measurable, this equals 

Fm (1 +y<m+l). x<m+l) I ) 
F! E 1 + y* · X ~m • 

Because y<m+i> is a strategy depending on the past values of the X~l, it too is 
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C€m-measurable. That, together with the independence of x <m+l) and the 
previous x m' shows this equals 

m + (m+l) k F ( 1 ) N ( x <m+ll ) 
F! E 1 + y* · X k~i 'Yk E 1 + y* · X . 

Since x<m+i> has the same distribution as X, this can be written 

(12) ;; [ E(l +yl*. x)+ k~1 'Ykm+oE(l +~:. x)] =A, say. 

By Lemma 3, E(Xk/(1 + y* · X)) equals a constant c for k in K and is ~c for 
all k; this constant c = 0 if L: 'Yt < 1. Hence 

Fm[ { 1 ) '* ] Fm [l+y*·X] Fm 
A ~ F~ E\1 + y* · X + "'-' 'Yk . c = F:!', E 1 + y* · X = F:!', . 

We have shown that F,JF! is a positive supermartingale, with E(F,JF!)~ 
E(F"_ 1JF~_1) ~ · • · ~ E(F0/F0) = 1, and so by the supermartingale convergence 
theorem it converges almost surely to a finite limit. Using Fatou's lemma, 
E(lim F,JF!) ~ lim inf E(F,JF!) ~ 1. 

An examination of (12) shows that under the conditions of (ii), 

E(Fm+1/F!+i I C€m) =Fm/F!, and (ii) follows. 

The requirement in Theorem l(ii) that if L: 'Y! = 1 then we must have 
L: 'Y~l = 1, for all j, in order to be sure to get a martingale, is made clear by a 
one-variable example, Let X = 2. Then <f>( 'Y) =log (1+2-y) is maximal at y* = 
1. The gambler will do worse betting any amount less than 1, even though he 
still bets on the same random variable as y* does, the key observation being 
<f>'(l) > 0. In general, the ' partial derivatives' E(Xk/(1 + y* · X)), k in K, may be 
positive if L: 'Yt = 1, whereas they are all 0 if L: 'Yt < 1. 

The surprising result of Theorem 1 is the broad conditions in (ii) under which 
E(F,JF!) = 1. To see what the surprise is, we shall superficially interpret 
Theorem l(i): since 'on the average', and 'for large n', F,JF!~l. the gambler 
'does better' with F! than with F". But then Theorem l(ii) tells us that if the 
gambler simply bets on the same variables as y* does, but in any proportions at 
all, and if y* bets all so does he, then E(Fn/F!) = l. So with the same intuitive 
interpretation as above, 'on the average' the gambler does the same with F" as 
with F!, so it really does not matter which strategy he uses! But we know that 
it does matter. For example, in a repeated biased-coin toss, if he plays a fixed 
fraction strategy betting an amount y-:f y* = p - q, then almost surely F ,J F! ___. 
0. Yet we have E(F"JF!) = 1. In general it will not help to look at lim Fn/F!. 
For example, if on the first flip of the coin he bets all his fortune, and from then 
on he bets p - q, F ,J F! > 1 with probability p. 
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Theorem 2 will help our understanding of this situation by showing that F! 
is the only denominator with E(F,JF!)~ 1 for all Fn; in fact E(F!!Fn)> 1 if F" 
does not come from a strategy equivalent to using y* repeatedly. The suspi­
cious reader will note that this characterization of the sense in which y* is 
optimal contains an expectation. Anyone attempting to state intuitively the 
result of Theorem 2(i) in the form 'F! is better than Fn because, on the 
average, F!/Fn ~ 1', should also be willing to apply the same interpretation to 
Theorem l(ii) and conclude that often, 'F,JF! = 1 on the average and so Fn 
and F! are often the same after all'. 

Theorem 2. 
(i) F! !Fn is a submartingale with E (F! IF")~ 1. Lim F! !Fn almost surely 

exists as an extended real number and E (lim F! I Fn) ~ 1. 
(ii) E(F!/Fn) = 1 iff ')' (1), y<2>, · · · , y <nl are all equivalent to y*, i.e., iff 

'Y(j) · X'= y* · X almost surely for almost all values of x <I), · · · , X (j) (of which 
'Y(i) is a function) for 1 ~ j ~ n. 

Proof By Theorem 1, the non-negative lim Fn/F~ almost surely exists, and 
so lim F~/Fn almost surely exists as an extended real number. 

As in Theorem 1, 

(
F* I ) F* ( 1 + y* . x <m+l) I ) 

E F::: ~m = F: E 1 + y<m+o. x <m+i> ~m . 

Suppose that (X0 >, · · · , x <m>) takes on the value w in RmN, at which point 
y <m+l) takes on the value y<m+ll(w) . Then 

( 
1 + y* . x<m+l) I )- ( 1 + ,,* . x <m+l) )-

(13) E 1 + 'Ym+1 . x <m+t> cxm ..... x<m»a.., - E 1 + y <m+i>(w) . x <m+1> - B, say, 

because x <m+i> is independent of the values of (X(l), · · ·, x <m>) ([5], Corollary 
4.38, p. 80). By Jensen's inequality, 

(14) B ~exp (E(log (1 + y* · x<m +o)) - E(log (1 + y<m+O(w) · x <m+l)))) 
= C, say. 

By Lemma 1, C>l unless y* · X=ym+1(w)·X almost surely, in which case 
C= 1. Thus 

(15) 

with equality holding iff y* · X = 'Y~:>+ l) · X almost surely for almost all values w 
in the range of (X0 >, · · · , x <"'>). If E(F!,+1/Fm+i) = l , then 1 = 
E(E(F!+1/Fm+l I 1:€m)) ~ E(F!!Fm) ~ · · · ~E(Fo/Fo) = 1. By (15), equality 
holds in (15) and therefore y* · X = y<m+l)(w) · X for almost all w in the range 
of (Xm, · · · , x <m>). Continue for m, m - 1, · · · , 1, to obtain (ii). 
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Let Y =limF:!Fn· By Theorem 1, P(Y=O)=O and E(l/Y)~l. The func­
tion g(x) = 1/x is convex in (0, oo) and Jensen's inequality applies, to obtain 
l~E(l/Y)~l/E(Y) which completes the proof. 
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