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The prediction of material properties through electronic-structure simulations based on density-
functional theory has become routinely common, thanks, in part, to the steady increase in the
number and robustness of available simulation packages. This plurality of codes and methods
aiming to solve similar problems is both a boon and a burden. While providing great opportunities
for cross-verification, these packages adopt different methods, algorithms, and paradigms, making it
challenging to choose, master, and efficiently use any one for a given task. Leveraging recent advances
in managing reproducible scientific workflows, we demonstrate how developing common interfaces for
workflows that automatically compute material properties can tackle the challenge mentioned above,
greatly simplifying interoperability and cross-verification. We introduce design rules for reproducible
and reusable code-agnostic workflow interfaces to compute well-defined material properties, which
we implement for eleven different quantum engines and use to compute three different material
properties. Each implementation encodes carefully selected simulation parameters and workflow
logic, making the implementer’s expertise of the quantum engine directly available to non-experts.
Full provenance and reproducibility of the workflows is guaranteed through the use of the AiiDA
infrastructure. All workflows are made available as open-source and come pre-installed with the
Quantum Mobile virtual machine, making their use straightforward.

I. INTRODUCTION

The use of density-functional theory (DFT) to com-
pute the properties of systems at the atomic level has
become widespread [1, 2], as both the number of quan-
tum engines that implement it and the available compu-
tational power continue to increase. However, despite its
large-scale deployment both in academia and in industry,
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the application of DFT is still not a trivial operation. Ac-
curate predictions require expert knowledge of not just
DFT itself but also of the specific code used to perform
the calculations (throughout this work we will use the
terms quantum engine and code interchangeably). Al-
though the diversity of available simulation packages im-
proves the accuracy and reliability of results by virtue of
cross-verification[3], different codes use diverse computa-
tional methods and interfaces, making it difficult even
for experts to master more than just a few of them. This
may result in software being used not for its applicability
to a particular problem, but merely due to circumstantial
reasons. Furthermore, the fact that the correct usage of
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DFT-based codes requires expert knowledge directly lim-
its its application and potential for scientific discovery.

Although DFT is used to compute many material prop-
erties of varying complexity, a large percentage of all
performed calculations are defined by relatively simple
recipes. Therefore, in addition to implementing new
functionalities and improving the accuracy of existing
ones, the effort of domain and code experts should be fo-
cused on providing robust workflows with common inter-
faces that can be used by experts and non-experts alike.
If these are designed properly such that they are reusable,
they can be employed as modular blocks in building more
complex workflows, e.g. in a multi-scale approach. On
top of reusability, in order to guarantee that results can
be validated, it is crucial that these common workflows
are reproducible.

The Atomistic Simulation Environment (ASE) [4] ini-
tiated an effort to provide a single interface for vari-
ous quantum engines, which was later extended with the
Atomistic Simulation Recipes (ASR) [5]. In this article,
we address the additional challenges that one faces when
trying to develop a common workflow interface, focus-
ing particularly on the requirements of reusability and
reproducibility, and we provide a solution based on Ai-
iDA, an informatics infrastructure and workflow manage-
ment system [6]. As a proof-of-concept, we define a com-
mon workflow interface specifically for the optimization
of solid-state structures and molecular geometries, to-
gether with its implementation in eleven quantum codes:
Abinit[7–9], BigDFT[10], CASTEP[11], CP2K[12, 13],
FLEUR[14], Gaussian[15], NWChem[16], ORCA[17, 18],
Quantum ESPRESSO[19, 20], Siesta[21, 22] and
VASP[23, 24]. This particular common workflow inter-
face, referred to as the “common relax workflow” through-
out this work, allows a user to optimize a structure using
any of these codes without having to define code spe-
cific parameters. The computed results are returned in a
single unified format with identical units making the re-
sults directly comparable and reusable regardless of the
underlying quantum engine used.

Each implementation of the common relax workflow
interface provides at least three protocols (‘fast’, ‘moder-
ate’ and ‘precise’) that allow a user to specify the desired
computational accuracy in an intuitive and general way.
The mapping between these levels of protocols and code
specific parameters are up to the respective code experts
to define. Through these protocols, expert knowledge
of appropriate numerical parameters is thus encoded di-
rectly into the workflows, reducing the risk of incorrect or
unreliable results and opening up the use of the quantum
engines also to non-experts. Despite the ease-of-use of
the workflows, the workflow interface design (which will
be discussed later) maintains full flexibility and allows
users to override any of the sensible defaults provided by
the protocols. Furthermore, since AiiDA tracks the full
provenance graph of executed workflows, storing all pa-
rameters used in workflow steps, the appropriateness of
the inputs and the correctness of the results can also be

checked a posteriori.

To demonstrate the concept of modularity and poten-
tial for cross-verification, we use the common relax work-
flow to compute the equation of state (EOS) and the
dissociation curve (DC), which are commonly computed
properties for bulk compounds and diatomic molecules,
respectively. Each of these properties is computed by a
single workflow that exclusively leverages the common
relax workflow as a modular building block, allowing any
of the quantum engines to be used without specifying
any code-specific parameters. The EOS and the DC are
computed for a few compounds with different geomet-
ric, electronic and magnetic properties. As we will show
later, the results computed by the various quantum en-
gines show good agreement. We stress here that the focus
of this paper is not on the validation of the results, but
rather on the demonstration of the feasibility of a com-
mon workflow interface, directly enabling the reusability
of complex workflows and the cross-verification of their
results. We hope this will motivate readers to generalize
these concepts and apply them to a broader and more
complex range of problems.

The implementations of the common relax workflow
interface of all quantum engines described in this paper
are made available as free open-source software at
https://github.com/aiidateam/aiida-common-workflows
under the MIT license. In addition, all workflows, as well
as the seven quantum engines with a free open-source
software license, come pre-installed in the Quantum
Mobile[25] virtual machine (and quantum engines with
a more restrictive license can be manually installed on
any computational resource and configured to be used
with AiiDA). This makes it straightforward to fully
reproduce all the results presented in this paper (see the
Supplementary Information for complete instructions).

II. RESULTS AND DISCUSSION

A. Reusability and reproducibility

Workflows, by definition, consist of multiple steps or
multiple subprocesses that are executed in series, in par-
allel, or in a combination thereof, to obtain the final re-
sult. Ideally, workflows can themselves be used as mod-
ular blocks, becoming steps of higher-level workflows.
To keep this process practical and tractable, workflows
should be designed to be as modular and reusable as
possible. Additionally, as workflows become ever more
complex, so does their reproducibility. In this paper,
we focus on two particular concepts that address these
requirements: optional transparency and scoped prove-
nance.

https://github.com/aiidateam/aiida-common-workflows


3

1. Optional transparency

In software design, the term transparency is often used
to mean that a consumer of an interface should not be
bothered with the inner details of the implementation
(the details are invisible, or transparent). In terms of
computational workflows, this can be taken to mean that
a useful generic turn-key solution should have a simple
interface, requiring as few inputs as possible from the
user. Apart from physical inputs (e.g., the initial crystal
structure in a relaxation workflow) and flags to determine
which type of simulation to run (e.g., relax only atomic
positions or also the periodic cell), any other input that is
only needed as a numerical parameter by the underlying
implementation should be automatically determined by
the workflow.

However, this transparency of the interface comes at a
cost. Complex workflows often consist of multiple sub-
processes, each requiring their own inputs. Oftentimes at
least some of these inputs cannot be automatically deter-
mined by the main workflow, as they are circumstantial
and will be dependent on how and where the workflow
is run. An example is when one of the subprocesses is
executed on a high-performance computing (HPC) clus-
ter and therefore requires specific environmental settings,
such as the required resources and parallelization flags.
A transparent interface is closed to these inputs being
set (as shown schematically in Fig. 1a) and, as such, the
workflow will be tied to a very specific environment for
execution. Therefore, it will not be portable and conse-
quently not reusable. But even if the inputs of the work-
flow could be automatically determined, an expert user
may still want to override them. Transparent interfaces
precluding this level of control diminish the reusability
of workflows.

The solution to the aforementioned problem is to make
the interface for all workflows fully opaque and expose all
inputs of their subprocesses. That is to say, the workflow
should make it possible to define each and every input
that any of its subprocesses takes, as shown in Fig. 1b.
By doing so, a user has access to all the inputs of the
subprocesses, whether they could have been automati-
cally determined by the workflow or not. Certainly, there
are situations where the workflow can consciously decide
not to expose certain inputs, as it is part of its task to
determine them based on other inputs or intermediate
results.

We are now confronted with two conflicting require-
ments, where a workflow interface must be both trans-

parent for simplicity, yet at the same time fully opaque

for reusability. The solution is to create an interface that
is optionally transparent, i.e., it is opaque when needed
but can still be used in a transparent manner whenever
possible. Exposing the inputs of subprocesses is the first
crucial step towards obtaining this goal, but it is not the
only one. In addition, the workflow needs to specify sen-
sible defaults such that the interface remains simple to
operate with just a minimal set of inputs. An even better

solution is offered by what we refer to as input genera-

tors. An input generator for a workflow is a function
that, based on a minimal set of essential inputs, gener-
ates the full set of inputs required by the workflow and
all of its subprocesses. The advantage of this approach
is that an expert user has the ability to inspect the full
set of inputs that have been generated and even modify
them before actually executing the workflow. This is the
approach that we will take in the rest of this work.

2. Scoped provenance

It is commonly accepted that science is facing a re-
producibility crisis in that many studies can often not be
reproduced [26]. In recent years, guidelines have been de-
veloped to address this problem, such as the FAIR prin-
ciples [27] that aim to make data, among other things,
more reusable. For workflows to become FAIR as well,
it is critical that they store the provenance of the data
that they produce at each execution [28]. Concretely,
this means that a workflow should store not only its
own inputs and outputs but also those of all the sub-
processes that it invokes. Recording the provenance of
data that is produced at each step of a workflow is cru-
cial to enable the reproducibility and intelligibility of the
final result. However, the full provenance is not always
required. Therefore, for complex workflows that produce
large provenance graphs, it becomes important to be able
to investigate the provenance within different granular-
ity levels, i.e. different scopes. We refer to the possibility
of inspecting the provenance at different levels as scoped
provenance, which we illustrate in Fig. 2.

The next section explains in detail how we put the
concepts of optional transparency and scoped provenance
into practice.

3. Common workflow design

To ensure that the common workflows satisfy the re-
quirements of optional transparency and scoped prove-
nance, we have chosen to implement them using Ai-
iDA [6], a scalable computational infrastructure for auto-
mated reproducible workflows and data provenance. The
workflows are implemented as AiiDA work chains [29],
whose data provenance and that of all their subprocesses
is automatically stored by AiiDA in a relational database.
AiiDA provides an application programming interface
(API) to query the provenance graph at various levels
of granularity, satisfying the scoped provenance require-
ment. The optional transparency criterion is made pos-
sible by the design of AiiDA’s workflow language spec-
ification [29]. All processes in AiiDA are implemented
in Python and, most importantly, the process specifica-
tion (see Listing 1) is defined programmatically, allow-
ing inspection of inputs and outputs before executing the
workflow. In addition, it allows workflows to easily reuse
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Figure 1. Difference between a transparent and opaque workflow interface. a) A schematic depiction of a process
(PA) that consists of three subprocesses (SA, SB and SC), that each require two inputs (I1 and I2). In this abstract example,
the top-level process takes no inputs which is just for clarity; normally the top-level process takes at least one input based on
which the inputs for the subprocesses are determined. Note that, although for simplicity the same symbol is used for these
inputs, they do not necessarily represent identical inputs across the subprocesses, even though in practice the names could
actually overlap. Only two inputs per process are arbitrarily chosen here for illustrative purposes. The interface of PA does not
expose the inputs of its subprocesses, but instead will decide them internally. This means that a user of PA cannot customise
the inputs of any of subprocesses. b) A schematic depiction of the same process PA as in a), but in this case exposing the inputs
of its subprocesses. Since the names of the inputs can potentially overlap, inputs are exposed in namespaces to prevent name
clashes. A user of PA can now directly set the inputs through the top-level interface. If any of the inputs of the subprocesses
should not be defined by the user (due to being part of the workflow’s task to define it) the workflow can decide to not expose
that particular input.

Figure 2. Scope provenance. a) Schematic provenance of a workflow (PA) that takes two inputs (I1 and I2) and produces
three outputs (O1, O2, O3). b) A more detailed view of the complete provenance of PA, which actually runs two subprocesses
(SA and SB). Input I1 is passed by PA to SA, which results in O1. This intermediate output O1 is passed by PA to SB as an
input, in addition to I2, which results in the outputs O2 and O3. The latter are returned by PA as the final outputs together
with the O1 intermediate result.

subworkflows as modular blocks, without making their
interface inaccessible, by exposing the inputs and out-
puts [29, 30].

1 class ProcessA (WorkChain):
2

3 @classmethod
4 def define(cls , spec):
5 spec.input('I_1 ')
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6 spec.expose_inputs(SubProcessA , namespace='S_A
')

7 spec.expose_inputs(SubProcessB , namespace='S_B
')

8

9 class SubProcessA(WorkChain):
10

11 @classmethod
12 def define(cls , spec):
13 spec.input('I_1 ')
14 spec.input('I_2 ')
15

16 class SubProcessB(WorkChain):
17

18 @classmethod
19 def define(cls , spec):
20 spec.input('I_1 ')
21 spec.input('I_2 ')

Listing 1. The definition of a process ProcessA implemented
as a subclass of an AiiDA WorkChain. The process runs two
subprocesses (SubProcessA and SubProcessB). The process
declares an input I_1 in its specification; in addition, the
inputs of subprocesses are not redefined, but ProcessA simply
exposes them in its own specification. The inputs of the
subprocesses are exposed in separate namespaces so that
inputs with same name do not shadow each other and remain
all accessible (see Listing 3 for an example of how these are
passed).

Launching a process in AiiDA is performed by passing
the process class as an argument to the submit function
and passing the inputs as keyword arguments as shown
in Listing 2.

1 from aiida.engine import submit
2 inputs = {
3 'I_1 ': 1,
4 'I_2 ': 2,
5 }
6 submit(SubProcessA , **inputs)

Listing 2. Example of how SubProcessA is launched. The
** marker is Python syntactic sugar to unwrap the inputs

dictionary into keyword arguments to the submit function.
Note that the values of the inputs are simple integers just for
clarity of the example.

Listing 3 shows an example of how the top-level
ProcessA can be launched, defining its own inputs as
well as those of its subprocesses.

1 from aiida.engine import submit
2 inputs = {
3 'I_1 ': 1,
4 'S_A ': {
5 'I_1 ': 1,
6 'I_2 ': 2,
7 },
8 'S_B ': {
9 'I_1 ': 1,

10 'I_2 ': 2,
11 }
12 }
13 submit(ProcessA , **inputs)

Listing 3. Example of how ProcessA is launched. The
inputs of the subprocesses can be passed in dictionaries that
are nested in the main inputs dictionary, where the keys
correspond to the namespace in which the inputs are exposed
in the process specification (see Listing 1).

The concept of exposing inputs of subprocesses ensures
that the inputs of any subprocess can be controlled from
the top-level workflow, regardless of the level of nesting.

This directly satisfies the requirement of providing an
opaque interface for expert users that need maximal con-
trol. However, the interface quickly risks becoming com-
plex, as multiply layered workflows will require deeply
nested input dictionaries. The workflow needs to option-
ally provide a transparent version of the interface to en-
able also non-expert users to easily use the workflow.

To solve this issue for the common workflows, we im-
plement an input generator for each workflow. Input gen-
erators are not a native AiiDA concept but are a design
pattern that emerged from the needs of defining and de-
veloping common workflows. Each common workflow de-
fines a class method get_input_generator that returns
an instance of an object that acts as the input genera-
tor. The input generator in turn defines the class method
get_builder, which implements the common input in-
terface and returns an instance of a ‘builder’. A builder is
simply a container that wraps the generated inputs with
additional information (such as the workflow class it per-
tains to), together with additional convenience function-
ality such as automatic input validation.

Since processes in AiiDA are implemented and exe-
cuted directly in Python, their functionality can be easily
extended. In addition, by being implemented in the same
Python class as the workflow for which the inputs are gen-
erated, it is straightforward to keep the two aligned dur-
ing workflow development. The get_builder method of
the input generator takes a minimal amount of required
arguments and returns a complete set of inputs for the
corresponding workflow. Listing 4 shows how the input
generator simplifies the usage of ProcessA for users, as
now they only need to define a single input.

1 from aiida.engine import submit
2 builder = ProcessA .get_input_generator().get_builder(

I_1=1)
3 submit(builder )

Listing 4. Example of how the launching of ProcessA

is simplified by generating the inputs through the input
generator. The get_input_generator class method returns
an instance whose get_builder method can be called, to
obtain a fully defined builder based on just a single input
I_1. The builder, containing all the required inputs, can then
be passed directly to the submit function. Since the builder
also contains the process class for which it is defined, the
process class itself no longer has to be explicitly passed to
the submit function. Here, we are assuming that the inputs
of the subprocess can be automatically determined by some
algorithm implemented in the input generator; the number
of minimally required inputs in this example is just one for
simplicity.

An alternative approach to the problem could have
been to make all subprocess inputs optional and let the
workflow generate them at runtime (see Fig. 1a). Al-
though this is a valid approach, in our experience it turns
out to be much less flexible in particular for experienced
users, as internal parameters cannot be set from the out-
side. Indeed, the input generator not only makes com-
plex workflows accessible to non-experts, but it also gives
maximal flexibility to advanced users. By generating in-
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puts before execution, they can still be modified accord-
ing to the user’s needs before they are passed to the work-
flow for execution, giving direct access to all parameters
and achieving the goals of optional transparency.

B. The common relax workflow

As a proof of concept of the principles explained in
Sec. II A, we present a common interface to a workflow
that performs a geometry optimization of both molecular
and extended systems, which is implemented for eleven
quantum engines. Structural relaxation towards the most
energetically favorable configuration is a common task in
materials science, and all selected quantum engines can
perform it. Nevertheless, the quantum engines use a wide
variety of algorithms to optimize forces on the atoms and
stress on the cell. This, therefore, presents an ideal yet
challenging test scenario to develop a workflow with a
common interface.

1. Design strategy

The design of the interface is guided by the idea
to employ optional transparency to create a workflow
interface that is suitable both for expert and non-
expert users. This interface must be simple and gen-
eral (code-agnostic) but at the same time retain full
flexibility in changing code-specific parameters. Our
adopted solution consists in the creation of code-specific
workflows (implemented as AiiDA work chains named
<Code>CommonRelaxWorkChain, where <Code> indicates
the name of the underlying quantum engine), whose in-
terface design is not restricted. A common interface is
achieved by ensuring that each work chain provides also
an input generator whose interface is identical for every
<Code>, as shown in Fig. 3.

Listing 5 shows an actual code example of how the
input generator can be obtained from a work chain im-
plementation. The get_builder method of the input
generator will transform the inputs, that respect the com-
mon interface, into the inputs that are expected by the
corresponding code-specific work chain implementation.
The inputs are returned in the form of a “builder” which
can be directly submitted to AiiDA to start running the
workflow.

1 from aiida.engine import submit
2 generator = <Code >CommonRelaxWorkChain.

get_input_generator()
3 builder = generator.get_builder(structure=..., protocol

=..., ...)
4 submit(builder )

Listing 5. Submission of the relax common workflow
employing the quantum engine <Code>. The arguments
accepted by get_builder are identical for every <Code>,
establishing a common interface.

We note that not only the names but also the (Python)
types of the inputs and outputs are standardized to en-

Figure 3. Schematic diagram of the common

relax workflow interface. Any implementation con-
sists of two parts: the <Code>CommonRelaxWorkChain

and a <Code>CommonRelaxInputGenerator. The
<Code>CommonRelaxWorkChain is an AiiDA WorkChain

that implements the logic necessary to perform the structure
optimization and has an input interface that is code-specific.
However, the outputs that it returns respect the schema of
the common interface, where Sr is the relaxed structure,
F are the forces on each atom, T is the stress on the cell,
Et is the total energy and Mt is the total magnetization of
the system. Each <Code>CommonRelaxWorkChain provides its
own <Code>CommonRelaxInputGenerator which, unlike the
workflow, implements the common interface for the inputs
(note that not all common inputs are shown for clarity).
Here structure is the structure that is to be optimized, the
protocol is a string that defines how the inputs are deter-
mined, and the engine is a dictionary that specifies what
code(s) to use. The <Code>CommonRelaxInputGenerator

translates the common inputs into the code-specific in-
puts that the corresponding <Code>CommonRelaxWorkChain

expects (indicated with ?). Since the creation of the code-
specific inputs and the launching of the workflow are two
separate action, the generated inputs can be adapted at will.

sure that the interface is truly generic. These are de-
scribed in the next sections.

2. Common inputs

The second step of the design is the identification of the
minimal set of arguments for the input generator, reflect-
ing the inputs of the most generic relaxation process. We
identified three fundamental inputs that we therefore im-
plemented as mandatory arguments of the get_builder
method.

• structure. The structure to relax. (type: an AiiDA
StructureData instance, the common data format to
specify crystal structures and molecules in AiiDA [31]).

• protocol. In the context of this work, this means a
single string summarizing the computational accuracy
of the underlying DFT calculation and relaxation al-
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gorithm. Three protocol names are defined and im-
plemented for each code: ‘fast’, ‘moderate’ and
‘precise’. The details of how each implementation
translates a protocol string into a choice of parame-
ters is code dependent, or more specifically it depends
on the implementation choices of the corresponding Ai-
iDA plugin. For this work we have tried to follow these
definitions: a possibly unconverged (but still mean-
ingful) run that executes rapidly for testing (‘fast’);
a safe choice for prototyping and preliminary studies
(‘moderate’); and a set of converged parameters that
might result in an expensive simulation but provides
converged results (‘precise’). The reason for not
mandating the details of the protocols in the common-
workflow specifications is due to the variety of basis
sets, input potentials and algorithms, requiring the
specification of diverse and heterogeneous parameters
in different codes. For the eleven implementations pre-
sented in this work, we report in the supplementary
material the detailed parameter choices and the trans-
lation done for each respective code. We note here
that the choice of the exchange-correlation functional
could, in the future, become an additional optional in-
put. In this work, we decided to use the Perdew–Burke-
Ernzerhof (PBE)[32] functional as the default choice.
(type: a Python string).

• relax_type. The type of relaxation to perform,
ranging from the relaxation of only atomic co-
ordinates to the full cell relaxation for extended
systems. The complete list of supported op-
tions is: ‘none’, ‘positions’, ‘volume’, ‘shape’,
‘cell’, ‘positions_cell’, ‘positions_volume’,
‘positions_shape’. Each name indicates the phys-
ical quantities allowed to relax. For instance,
‘positions_shape’ corresponds to a relaxation where
both the shape of the cell and the atomic coordinates
are relaxed, but not the volume; in other words, this
option indicates a geometric optimization at constant
volume. On the other hand, the ‘shape’ option desig-
nates a situation when the shape of the cell is relaxed
and the atomic coordinates are re-scaled following the
variation of the cell, not following a force minimiza-
tion process. The term “cell” is short-hand for the
combination of ‘shape’ and ‘volume’. The option
‘none’ indicates the possibility to calculate the total
energy of the system without optimizing the structure.
Not all the described options are supported by each
code involved in this work; only the options ‘none’

and ‘positions’ are shared by all the eleven codes.
The supported options might be extended in the future.
(type: a Python string).

In addition to these mandatory arguments, the compu-
tational resources must be passed to the work chain in
order to make the interface transferable between differ-
ent computational environments. For this task, a spe-
cific argument of get_builder has been designed called
engines.

• engines. It specifies the codes and the corresponding
computational resources for each step of the relaxation
process. Typically one single executable is sufficient
to perform the relaxation. However, there are cases in
which two or more codes in the same simulation pack-
age are required to achieve the final goal, as for example
in the case of FLEUR. (type: a Python dictionary).

Other inputs have been recognized as common optional
features that also a non-expert user might want to have
control over:

• threshold_forces. A real positive number indicat-
ing the target threshold for the forces in eV/Å. If not
specified, the protocol specification will select an ap-
propriate value. (type: Python float).

• threshold_stress. A real positive number indicat-
ing the target threshold for the stress in eV/Å3. If
not specified, the protocol specification will select an
appropriate value. (type: Python float).

• electronic_type. An optional string to signal
whether to perform the simulation for a metallic or
an insulating system. It accepts only the ‘insulator’
and ‘metal’ values. This input is relevant only for cal-
culations on extended systems. In case no such option
is specified, the calculation is assumed to be metallic
which is the safest assumption. (type: Python string).

• spin_type. An optional string to specify the spin de-
gree of freedom for the calculation. It accepts the val-
ues ‘none’ or ‘collinear’. These will be extended
in the future to include, for instance, non-collinear
magnetism and spin-orbit coupling. The default is to
run the calculation without spin polarization. (type:
Python string).

• magnetization_per_site. An input devoted to the
initial magnetization specifications. It accepts a list
where each entry refers to an atomic site in the struc-
ture. The quantity is passed as the spin polarization
in units of electrons, meaning the difference between
spin up and spin down electrons for the site. This also
corresponds to the magnetization of the site in Bohr
magnetons (µB). The default for this input is the
Python value None and, in case of calculations with
spin, the None value signals that the implementation
should automatically decide an appropriate default ini-
tial magnetization. The implementation of such choice
is code-dependent and described in the supplementary
material of this manuscript. (type: None or a Python
list of floats).

• reference_workchain. A previously performed
<Code>CommonRelaxWorkChain. When this in-
put is present, the interface returns a set of
inputs which ensure that results of the new
<Code>CommonRelaxWorkChain can be directly com-
pared to the reference_workchain. This is necessary
to create, for instance, meaningful equations of state.
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Its use will be clarified in the Sec. II C 1. (type: a pre-
viously completed <Code>CommonRelaxWorkChain).

The arguments of the input generator described above
fully satisfy the needs for the creation of a “ready-to-
submit” <Code>CommonRelaxWorkChain, constructing all
its necessary inputs (see Listing 5). These inputs are
code-specific and, as discussed earlier, can be modified
before submission by an expert user who is familiar with
the internals of the <Code>CommonRelaxWorkChain.

3. Inspection of valid inputs

The arguments of the get_builder method represent
high-level parameters that describe how the geometry op-
timization should be performed or how the system is to
be treated. Each argument has a fixed number of ac-
cepted values, but not every code implementation may
necessarily support all of them, as some values might
correspond to features not supported by the code. In or-
der to be able to inspect which options are supported by
a workflow implementation, the input generator offers a
number of methods. An example is shown in Listing 6.

1 input_gen = <Code >CommonRelaxWorkChain.
get_input_generator()

2 input_gen.get_relax_types()

Listing 6. Call to the inspection method that returns
information on the available relaxation types for the <Code>

implementation of the common relax workflow.

The get_relax_types method returns the sup-
ported values for relax_type for the corresponding
workflow implementation. Inspection methods are
implemented for all codes and all the arguments
of get_builder except the threshold values, the
structure, the reference_workchain, and the
magnetization_per_site. Associated to the engines
argument, there are the methods get_engine_types

and get_engine_type_schema, which return the steps
required by the relaxation and information on the
code type necessary for each step of the relaxation,
respectively.

The described inspection methods allow to introspect,
in a fully machine-readable and automatic way, what the
valid options for a particular common workflow imple-
mentation are. This is particularly relevant to facilitate
future development of a graphical user interface (GUI)
for the submission of the common relax workflow. The
GUI will be able to create the necessary input fields, with
a list of accepted values, by programmatically introspect-
ing the input generator interface.

4. Common outputs

To allow direct comparison and cross-verification of the
results, the outputs of <Code>CommonRelaxWorkChain

are standardized for all implementations and are defined
as follows:

• forces. The final forces on all atoms in eV/Å. (type:
an AiiDA ArrayData of shape N × 3, where N is the
number of atoms in the structure).

• relaxed_structure. The structure obtained after the
relaxation. It is not returned if the relax_type is
‘none’. (type: AiiDA’s StructureData).

• total_energy. The total energy in eV associated to
the relaxed structure (or initial structure in case no
relaxation is performed). The total energy is not nec-
essarily defined in a code-independent way (e.g., it does
not have a common zero). We require, however, that
the partial derivative of the returned energy with re-
spect to the change of the coordinate i of atom j is
always the i−th coordinate of the force on the atom
j. We also stress that in general, even for calculations
performed with the same code, there is no guarantee
to have comparable energies in different runs if the in-
puts are generated with the input generator (because,
for instance, the selected k-points depend on the input
structure volume). However, in combination with the
input argument reference_workchainmentioned ear-
lier and discussed in Sec. II C 1, energies from different
relaxation runs become comparable, and their energy
difference is well defined. (type: AiiDA Float).

• stress. The final stress tensor in eV/Å3. Re-
turned only when a variable-cell relaxation is per-
formed. (type: AiiDA Float).

• total_magnetization. The total magnetization in µB

(Bohr-magneton) units. Returned only for magnetic
calculations. (type: AiiDA Float).

5. A simple test case: ammonia

As a first test case of the various implementations of
the common relax workflow, we present the optimization
of a simple molecular structure: ammonia. The thermo-
dynamically stable polymorph of ammonia has a trigonal
pyramidal shape, which makes the structure polar. How-
ever, ammonia also exists in a metastable planar form
[33]. The optimized structure and its associated total en-
ergy have been calculated with the common relax work-
flow implementation for all eleven quantum engines dis-
cussed in this paper for both phases of ammonia, using
the ‘precise’ protocol for the input generation.

The analysis of the energy difference between the pla-
nar and pyramidal configurations of ammonia is pre-
sented in Fig. 4. As mentioned in the introduction, com-
paring results among codes is not the focus of this pa-
per. However, it is worth mentioning that the small dis-
crepancies between codes in Fig. 4 are not surprising,
considering that the treatment of polar molecules with
codes designed for extended systems is not a trivial task.
In particular, some codes always need to use periodic
boundary conditions, introducing non-physical interac-
tions among replicas in the calculation. Even for large
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Figure 4. Energy difference between the planar

and pyramidal phases of ammonia. Energy difference
(∆E) between the planar and pyramidal phases of ammo-
nia, calculated with the eleven quantum engines reported in
the horizontal axis (QE stands for Quantum ESPRESSO).
A relaxation of the structure has been performed indepen-
dently by every code before computing the energies (except
for FLEUR∗, because for FLEUR the relaxation failed due to
overlapping muffin-tin spheres, a method-specific issue requir-
ing error handling. The energy difference for FLEUR was cal-
culated through the common workflow without relaxation, us-
ing the relaxed output structures of Quantum ESPRESSO

instead).

enough simulation cells, the long-range electrostatic po-
tential due to periodic images of the polar molecule af-
fects the energy of the system. Strategies such as the
use of improved Poisson solvers [34, 35] and more sophis-
ticated dipole corrections [36, 37] can be introduced in
order to circumvent this problem. Since in this paper we
are focusing only on showing the concept and feasibility
of common workflows, no dipole correction is considered,
and the simulation box is set to a (15 Å)3 cube, without
performing a proper convergence study on the cell size.
However, extensions of this work can add optional flags
to the input generator of the workflow to activate ap-
propriate dipole corrections if needed and implemented
by the underlying quantum engine. The data presented
here also illustrates the potential of the common interface
for the cross-verification of results, especially consider-
ing the variety of basis sets and algorithms of the eleven
quantum engines. The present work offers the possibil-
ity to compare results from quantum-chemistry-oriented
and electronic-structure codes (both pseudopotentials-
and all-electrons-based) with minimum effort.

6. Provenance

Since all workflows are implemented using AiiDA, the
full provenance is automatically stored when the work-
flow is executed, as discussed in Sec. II A. Fig. 5 shows

Figure 5. Schematic provenance graph for a relax-

ation workflows. Schematic provenance graph for a re-
laxation workflow powered by two different quantum engines
(top: Siesta; bottom: Quantum ESPRESSO). The node
of the <Code>CommonRelaxWorkChain is highlighted with the
label “RelaxWorkChain” and with a red edge. All the Ai-
iDA work chains called during the relaxation are represented
by orange rectangles. The dark red rectangles are calcula-
tions, meaning calls to an external executable that performs
a calculation, for instance a call to the pw.x of Quantum

ESPRESSO. All the ellipses represents data nodes, meaning
nodes in the database that contain data, like, for instance, the
initial structure, the total energy and so on. In blue is the
data node representing the code utilized for the calculations.
In pink are represented calls to Python functions that modify
some data in order to create others.

a schematic provenance graph for a relaxation workflow
powered by two different quantum engines. Note that
only a subselection of the total number of inputs and
outputs are shown for clarity, but all subprocesses are
displayed and the connections between the nodes give an
idea of the internal complexity of the workflows. Notably,
the figure shows how the different workflow implementa-
tions can follow considerably different logical paths while
ultimating returning the same quantities according to the
same common interface.

The action of taking the arguments of the common
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interface and transforming them in code-specific inputs
(operated by the input generators) is not tracked. This
is not crucial since only the code specific inputs fully
determine the calculation results. Also, we do not con-
sider protocols as immutable objects, but rather as flexi-
ble input suggestions that an expert user might want to
change.

C. Code-agnostic workflows

Optimizing the geometry of a solid-state structure or
molecule is a common core building block of materials-
science workflows. Creating a common workflow interface
for this particular task allows higher level workflows that
reuse it to become code agnostic. This makes it possible
to run the workflow with any quantum engine that im-
plements the common relax workflow interface, without
having to explicitly specify any input that is specific to
the quantum engine. We discuss two examples of such
workflows in the following sections.

1. Equation of State

An example of a workflow that uses structure optimiza-
tion as a building block is the EOS workflow. The equa-
tion of state of a solid-state system is obtained by com-
puting the total energy of the system at various volumes.
We present here the implementation of an EOS workflow
that uses the common relax workflow to perform the op-
timization of the system at each volume and compute
its total energy. This workflow serves as an example to
explain how the unified interface of the common relax
workflow can be used to create code-agnostic workflows.
It has been named EquationOfStateWorkflow and its
schematic representation is shown in Fig. 6.

The EquationOfStateWorkflow takes a structure as
input (S0 in Fig. 6) and scales the volume a num-
ber of times (Ni), with the scaled structures centered
around the volume of the input structure. The work-
flow calls the common relax workflow for each scaled
structure to compute its total energy. The common re-
lax workflow interface is entirely accessible at the level
of the inputs of the EquationOfStateWorkflow. This
means that one can specify arguments accepted by the
input generator (which are code-agnostic and are la-
beled generator_inputs in Fig. 6), but also, option-
ally, some code-specific overrides for the inputs pro-
duced by the generator. Therefore, on the one hand, by
virtue of the common interface being code-agnostic, the
EquationOfStateWorkflow is also independent of the
quantum engine that is used for the underlying calcu-
lations. On the other hand, the possibility to specify ex-
plicit overrides should fulfill the needs of expert users
and fully satisfy the optional transparency requirement
for reusable workflows.

Figure 6. Schematic diagram of the code-agnostic

EOS workflow. Schematic diagram of the implementa-
tion of the code-agnostic EquationOfStateWorkflow. The
EquationOfStateWorkflow takes a number of arguments: S0

is the structure of the system at equilibrium volume and Ni

are the number of volumes for which to compute the total
energy. The generator_inputs will be passed directly to
the inputs generator of the chosen common relax workflow
implementation, which is called Ni times, once for each sys-
tem volume. Note that the inset marked as “common re-
lax workflow” corresponds directly to the schematic of the
common relax workflow in Fig. 3. This highlights that the
EquationOfStateWorkflow directly reuses the common relax
workflow as its main building block. Which implementation of
the common relax workflow is to be used is communicated to
the EquationOfStateWorkflow by a single input, which is not
shown for clarity. The overrides port allows an expert user
to override certain inputs that are automatically determined
by the generator, thus making the EquationOfStateWorkflow
optionally transparent.

The total energies and optimized structure, as pro-
duced by the common relax workflow runs, are collected
and returned by the EquationOfStateWorkflow as its
outputs. Like the <Code>CommonRelaxWorkChain itself,
the code-agnostic EquationOfStateWorkflow is imple-
mented as an AiiDA work chain. This provides fully
automated provenance tracking of all tasks performed
inside the workflow, ensuring full reproducibility of the
computed results.

It should be noted that the actual logic of the
EquationOfStateWorkflow is slightly more complicated
than depicted in Fig. 6. The common relax workflows
are not all launched in parallel, but a single workflow is
first performed for one of the scaled volumes. This first
workflow is subsequently used as an additional input for
the reference_workchain argument to the input gener-
ator for the common relax workflows for the remaining
volumes. The input generator can use this reference to
the first workflow to ensure that, if needed, parameters
are kept constant between images in order for the energy
differences to be meaningful. An example is the num-
ber of k-points used to sample the Brillouin zone (that is
typically chosen by the input generators so as to get as
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close as possible to a target density, and thus is volume-
dependent if a reference_workchain is not specified).

The EquationOfStateWorkflowhas been used to com-
pute the EOS for a number of solid-state systems with
varying electronic and magnetic properties: silicon (Si),
aluminium (Al), germanium telluride (GeTe) and body-
centered cubic (BCC) iron (Fe) both in a ferromagnetic
and anti-ferromagnetic configuration. The results are
shown in Fig. 7 and Fig. 8.

Fig. 7 reports the EOS results for the Si, Al and GeTe
crystals. The curves for Si and Al have been obtained
with all quantum engines, except ORCA and Gaussian,
which are mainly specialized for non-periodic systems
and the Gaussian AiiDA plugin does not yet support
PBC. At each volume, the atomic positions are optimized
while keeping the volume and cell shape fixed. The GeTe
compound crystallizes at normal conditions in a trigonal
phase (space group R3m) [38]. For this material, a cor-
rect calculation of the EOS requires the cell shape to
be optimized at fixed volume in order to minimize the
non-hydrostatic contributions of the stress tensor. This
has been achieved in the common interface setting the
relax_type to positions_shape (see Sec. II B 2), which
is only supported by five out of eleven quantum engines.
This is the reason why only five curves are shown in the
right panel of Fig. 7. All calculations are carried out
without spin-polarization and with the precise proto-
col.

The common interface also allows calculations on mag-
netic systems. Fig. 8 shows the EOS of BCC Fe, for both
a ferromagnetic (left panel) and anti-ferromagnetic (right
panel) ordering of atomic spin moments. At each volume,
the atomic positions are optimized while keeping the vol-
ume and cell shape fixed. The central panel in Fig. 8
shows the total magnetization of the relaxed structure at
each volume in the ferromagnetic case. The total mag-
netization in the anti-ferromagnetic case is zero at every
volume and therefore not reported in the picture. The
initial structure passed to the workflow is the same for
the ferromagnetic and anti-ferromagnetic configurations
and it is close to the equilibrium volume of the ferromag-
netic case. This explains why the volume with minimum
energy for the anti-ferromagnetic case is not placed in
the middle of the analyzed volumes range. It is note-
worthy that the BCC structure is the most thermody-
namically stable configuration only in the ferromagnetic
arrangement. The results show good overall agreement
among codes. However, the scope of this section is only
to demonstrate the variety of systems and physical quan-
tities that can be analyzed with the code-agnostic EOS
workflow.

2. Dissociation curve

In a similar fashion to the EOS workflow, a code-
agnostic workflow for the calculation of the dissociation
curve of a diatomic molecule has been implemented. In

this case, no relaxation is performed at all by the common
relax workflow (accomplished by setting the relax_type

equal to ‘none’) and it simply computes the energy
of the system at various atomic distances. The same
approach of the EOS workflow is used regarding the
reference_workchain argument, meaning that the cal-
culation at the first distance is used as a reference for
the creation of inputs for the calculation at all the other
distances.

Results are presented in Fig. 9 for the H2 dissocia-
tion curve obtained with the code-agnostic workflow. An
initial anti-ferromagnetic configuration has been chosen
as a starting point for each energy calculation. The re-
sults show good agreement among codes. DFT is not the
most appropriate method for the calculation of dissoci-
ation curves in diatomic molecules, since these systems
expose well known problems of DFT, like the delocaliza-
tion error (self-interaction error) and static correlation
[39]. The present test case wants to demonstrate the pos-
sibility to create code-agnostic workflows that support
both electronic-structure codes and quantum-chemistry-
oriented codes. In the future, the common relax workflow
could be extended to allow calculations powered by dif-
ferent methods in addition to DFT, elevating the present
work to a useful tool for comparing different levels of
theory in the study of crystals and molecules.

D. Conclusions

We have described how it is possible for domain experts
to provide robust and reusable workflows that automat-
ically compute materials properties, in order to exploit
the ever-increasing computational power and popularity
of DFT-based quantum engines, with the goal of acceler-
ating materials discovery and characterization. For the
workflows to be reusable, it is critical that they have
optionally transparent interfaces and that the full prove-
nance of executed workflows is automatically stored. We
have demonstrated a concrete implementation of these
two requirements using the workflow management system
of the AiiDA informatics infrastructure [6]. We defined a
common interface for a workflow that optimizes the ge-
ometry of a solid-state system or molecule, that was sub-
sequently implemented for eleven popular quantum en-
gines, with very diverse basis-set choices and algorithms.
Using this common relax workflow, we have shown how
higher-level workflows can reuse it to compute relevant
material properties, such as the EOS and DC, while keep-
ing a fully code-agnostic interface. Our results show how
optionally transparent common workflow interfaces di-
rectly enable the cross-verification of results produced by
different quantum engines. In addition, they empower a
broader audience to use these methods in a robust way,
encoding the experts’ knowledge into reproducible code
and hopefully stimulating new collaborations and more
accurate materials science simulations.
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Figure 7. EOS for Si, Al and GeTe. Results obtained with the code-agnostic EquationOfStateWorkflow. For each code,
the energy is shifted to set the minimum energy to zero. The EOS has been computed with all codes discussed in this work,
except ORCA and Gaussian, which are mainly specialized for non-periodic systems. In addition, for GeTe, results are missing
for BigDFT, CP2K, FLEUR and NWChem (see Table II in the Supplementary Information for more details). The label QE
stands for Quantum ESPRESSO.
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Figure 8. EOS and total magnetization for BCC Fe. Results obtained with the code-agnostic EquationOfStateWorkflow.
The left panel reports the EOS obtained with a ferromagnetic initialization of the atomic moments. The corresponding total
magnetization is reported for each volume in the central panel. The right panel reports the EOS obtained with an anti-
ferromagnetic initialization of the atomic moments. The label QE stands for Quantum ESPRESSO. Results are missing for
BigDFT, CP2K, Gaussian, NWChem and ORCA (see Table II in the Supplementary Information for more details).

III. METHODS

A. Quantum Mobile implementation

The common interface and all corresponding code-
agnostic workflows described in this paper allow any-
one to run calculations to perform the same task with
different codes, without knowing the details of each im-
plementation. This is true assuming that the user can
access a working executable of each code. The exe-
cutable can be installed on the same machine as AiiDA

and the common workflows, or more typically in a re-
mote computer (HPC cluster or supercomputer), since
AiiDA allows automatic connection to external machines.
Compiling and installing eleven different quantum en-
gines can be a burden even for experienced users, and
even more for non-experts. As one of the goals of this
work is to facilitate the access to quantum codes to
a broader audience, we also make available all codes
related to this project in Quantum Mobile[25] version
21.05.1, which can be downloaded here. Quantum Mo-
bile is an open-source virtual machine based on Ubuntu,
that comes with a large number of codes, tools and de-

https://quantum-mobile.readthedocs.io/en/latest/releases/versions/21.05.1.html
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stands for Quantum ESPRESSO. The VASP curve has been
shifted by -24.89 eV. Results are missing for BigDFT, FLEUR
and NWChem (see Table II in the Supplementary Information
for more details).

pendencies that are commonly needed to run materials-
science atomistic simulations. In particular, it con-
tains a pre-configured AiiDA installation together with
the plugins interfacing AiiDA to all eleven quantum en-
gines described here. In addition, since version 21.05.1
Quantum Mobile also includes the common-workflow in-
terfaces and implementations discussed here, released
as the aiida-common-workflows package v0.1 on PyPI.
Crucially, Quantum Mobile also includes the executa-
bles for the following open-source quantum engines:
Abinit, BigDFT, CP2K, FLEUR, NWChem, Quantum

ESPRESSO and Siesta (as well as a few more). Al-
though CASTEP and ORCA provide free academic li-
censes, it requires users to have their own license which
prevents pre-installation in Quantum Mobile. The re-
maining three codes discussed here (CASTEP, Gaussian
and VASP) are commercial, therefore they cannot be re-
distributed freely without infringing their licenses. Nev-
ertheless, a complete set of instructions is provided in the
supplementary material, to guide users who already have
access to these codes (on any computer of their choice)
to configure them with AiiDA. In this way, the common
workflows (all instead available open-source in the Quan-
tum Mobile) can be run seamlessly also for commercial
codes. Thanks to this setup, common workflows with
these codes can be run with almost no preliminary step
required. Only few codes require minimal adjustment
that are described in the subsections “running in the

Quantum Mobile virtual machine” of the supplementary
material. A detailed list of instructions on how to run the
test cases presented in this manuscript in the Quantum
Mobile is reported in the Supplementary Material.

CODE AVAILABILITY

The source code of the common work-
flows is released under the MIT open-source
license and is made available on GitHub
(github.com/aiidateam/aiida-common-workflows).
It is also distributed as an installable pack-
age through the Python Package Index
(pypi.org/project/aiida-common-workflows).

DATA AVAILABILITY

The data and the scripts used to create all the im-
ages in this work are available on the Materials Cloud
Archive [40]. Note that the data includes the entire Ai-
iDA provenance graph of each workflow execution, as well
as the curated data that is extracted from that database
in order to produce the images.
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Supplementary Information: Common workflows for computing material properties
using different quantum engines

(Dated: May 12, 2021)

IV. COMMON DEFINITIONS

The following terms are common to a number of quantum engines and are used throughout this Supplementary
Information.

• The "k-points distance" is a quantity used by almost every implementation to set the k-points mesh for the cal-
culation of integrals in reciprocal space. It indicates the distance between adjacent k-points in the selected mesh.
In other words, the number of k-points along each reciprocal axis i is the closest integer to |bi|/"k-points distance"
where bi indicated the reciprocal lattice vector along i.

• The "forces threshold" is the target threshold for the forces during the relaxation process. A relaxation is con-
sidered converged when forces on all atoms are below "forces threshold". This is the same quantity referred to as
threshold_forces in the main text of the manuscript.

• The "stress threshold" is the target threshold for the stress. A relaxation with variable cell is considered converged
when the maximum stress component is smaller than "stress threshold". It is the same quantity referred to as
threshold_stress in the main text of the manuscript.

• The term "PW cutoff" indicates the plane wave cutoff energy, a quantity commonly used to set the size of the basis
set in plane-wave DFT calculations.

• The ∆ factor quantifies the difference between two EOS calculations[42]. It has become the standard for the
comparison between DFT methods and codes[3].

• The "BFGS algorithm" refers to the Broyden–Fletcher–Goldfarb–Shanno algorithm for solving nonlinear optimiza-
tion problems. The "L-BFGS alghoritm" is its Limited-memory approximation[43].

• The "FIRE algorithm" refers to the Fast Inertial Relaxation Engine[44].

V. OVERVIEW OF SUPPORTED FEATURES AND COMPLETED WORKFLOWS

Tab. V provides an overview of which arguments and what values for those arguments are supported by the
implementations of the common relax workflow interface for the various quantum engines.

Code relax_type electronic_type spin_type

Abinit all insulator, metal ‘none’, ‘collinear’
BigDFT none, positions insulator, metal ‘none’, ‘collinear’
CASTEP all (ignored) ‘none’, ‘collinear’
CP2K none, positions, positions_cell insulator, metal ‘none’, ‘collinear’
FLEUR none, positions (ignored) ‘none’, ‘collinear’
Gaussian none, positions (ignored) ‘none’, ‘collinear’
NWChem none, positions, positions_cell, cell insulator, metal ‘none’

ORCA none, positions (ignored) ‘none’, ‘collinear’
Quantum ESPRESSO all insulator, metal ‘none’, ‘collinear’
Siesta none, positions, positions_shape, cell (ignored) ‘none’, ‘collinear’
VASP all (ignored) ‘none’, ‘collinear’

Table S1. Supported features by the various common relax workflow implementations. In addition to the tabulated features,
all codes support the three protocols ‘fast’, ‘moderate’ and ‘precise’.

Tab. V shows which workflows, as described in the main text, have been successfully completed for each quantum
engine, with an explanation for those that are missing.
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Code EOS DC OPT
Si Al GeTe Fe-f Fe-af H2 NH3-pl NH3-py

Abinit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BigDFT ✓ ✓ ●
a

✖
c

✖
c

✖
c

✓ ✓

CASTEP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CP2K ✓ ✓ ●
a

✖
d

✖
d

✓ ✓ ✓

FLEUR ✓ ✓ ●
a

✓ ✓ ✖
e

✓ ✓

Gaussian ●
f

●
f

●
f

●
f

●
f

✓ ✓ ✓

NWChem ✓ ✓ ●
a

●
b

●
b

●
b

✓ ✓

ORCA ●
g

●
g

●
g

●
g

●
g

✓ ✓ ✓

Quantum ESPRESSO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Siesta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VASP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table S2. Overview of which workflow, presented in the main article, could be run by each of the eleven quantum engines. A
checkmark (✓) means that the workflow was successfully completed, a circle (●) means the quantum engine does not support
the required functionality or structure and a crossmark (✖) means the AiiDA plugin for the quantum engine does not yet
support a required feature or it could not successfully run the workflow. For the latter two cases, a detailed explanation will
be given below in the caption. Fe-f and Fe-af stand for ferromagnetic and anti-ferromagnetic iron, respectively. (a) The code
does not support geometry optimizations at constant volume of the cell. (b) The code does not support running metallic
systems which require smeared occupations. (c) BigDFT and its AiiDA plugin both support metallic systems, however, this
requires specific mixing inputs which are still experimental. Although they give good results for the Al test case, the results
are not trustworthy for the Fe examples and are therefore not included in the paper. The solution to address the issue is
known: a two-steps approach is necessary, restarting the first calculation with a lower electronic temperature. This two-steps
approach has been successfully used in earlier versions of PyBigDFT to perform the ∆ test, however, the AiiDA plugin and
implementation of the common workflow interface for BigDFT do not yet support it. (d) The results for CP2K for the iron
structure seemed to converge to an incorrect ground state for as of yet unknown reasons and therefore the results have been
omitted. (e) In certain rare situations, FLEUR is unable to retain the specified initial magnetization when generating the
start density. This sometimes leads to calculations wrongly converging to non-magnetic metastable solutions. This can be
fixed by explicitly breaking the magnetic symmetry by means of a small electric field or enforcing initial occupation values,
but neither option is currently supported by the implementation of the common workflow interface for FLEUR. (f) The code
is not designed for extended systems although there is some support for it, but the AiiDA plugin does not implement it. (g)
The code does not support extended systems.

VI. CODE-SPECIFIC DESIGN CHOICES

We collect here the design choices of every common relax workflow implementation presented in the main text. These
choices include details on the relaxation algorithm, an explanation of the supported features, and the specifications
of every protocol implemented.

The textual descriptions in the next sections are meant to provide a quick reference of the most important numerical
choices for each code, but cannot be fully complete without becoming cumbersome to read. This, however, is not an
issue: the exact inputs of each run are captured in full detail by AiiDA in the provenance graph [40]. In addition the
implementation of all plugins and workflows is open source and can be inspected to verify the exact choices and rules
used to determine the input parameters.

A. Abinit

1. Protocols

List of protocols supported and their description:

• fast. This protocol has low precision at minimal computational cost for testing purposes. k-points distance is 0.25
Å−1. Tolerance on the potential residual is 1 · 10−7 Ha. No additional memory is allowed for basis set enlargement.
Forces threshold is 5 · 10−5 Ha/Bohr. Stress threshold is 5 · 10−3 Ha/Bohr3. Fermi-Dirac smearing with broadening
0.008 Ha and 2 times the number of atoms additional bands is set in the case of calculations on metals.

• moderate. This is the default protocol with normal precision and moderate computational cost. k-points distance is
0.20 Å−1. Tolerance on the potential residual is 1 · 10−9 Ha. Forces threshold is 5 · 10−5 Ha/Bohr. Stress threshold
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is 5 · 10−3 Ha/Bohr3. Fermi-Dirac smearing with broadening 0.008 Ha and 2 times the number of atoms additional
bands is set in the case of calculations on metals.

• precise. This protocol should yield fully converged results and is recommended for production calculations that
require more precision than provided by the moderate protocol. k-points distance is 0.1 Å−1. Tolerance on the
potential residual is 1 · 10−10 Ha. Forces threshold is 5 · 10−5 Ha/Bohr. Stress threshold is 5 · 10−3 Ha/Bohr3.
Fermi-Dirac smearing with broadening 0.005 Ha and 2 times the number of atoms additional bands is set in the
case of calculations on metals.

The PW cutoff is determined automatically thanks to the djrepo table provided by the PseudoDojo initiative [45].
An additional 15% memory is booked for the plane wave expansion basis in case of an ‘positions_cell’ and
‘positions_volume’ relaxation while only 5% is used when performing ‘positions_shape’ for numerical stability.
In all other relaxation types, no additional memory is booked. In all cases, automatic multilevel parallelization of the
calculations is performed directly by the Abinit software [7, 8]. The workflow relies on Projector Augmented-Wave
Method (PAW) [46] pseudopotentials from PseudoDojo [45] in the “standard” configuration with PBE exchange-
correlation.

2. Supported calculation modes

The relax_type argument supports all the possible values, meaning that atomic positions and the cell size and
shape can be optimized, as well as any combination of those. All protocols use a L-BFGS algorithm to minimize the
forces on the atoms and stress on the cell.

The electronic_type argument supports the values ‘metal’ and ‘insulator’. The ‘insulator’ calculations
are performed with fixed occupations, whereas, in ‘metal’ calculations, Fermi-Dirac smearing is employed.

The spin_type argument supports the values ‘none’ and ‘collinear’. In case of ‘collinear’ calculations,
unless magnetization_per_site is explicitly defined, the maximum theoretical magnetic moment for each element
is specified in the z-direction.

The reference_workchain argument guarantees that the used k-points mesh is identical to the one of the reference
workchain.

3. Running in the Quantum Mobile virtual machine

All that is needed to run the Abinit common workflows is to install the appropriate PseudoDojo [45] family, which
is done as follows:

aiida -pseudo install pseudo -dojo -v 1.0 -f jthxml

B. BigDFT

1. Protocols

BigDFT input generator switches from cubic scaling computation to linear scaling computation if the number of
atoms in the system is more than 200. This value is meant to be adapted more finely in future releases to provide a
good heuristic.

For cubic computations, inputs are generated by the input generator.

• fast. This protocol is meant for testing and should provide fast and less accurate results. hgrids is set to 0.45
bohrs and k-points are generated using a real space equivalent length of 20 bohrs.

• moderate. This protocol the main one for providing reasonable accuracy while staying fast enough. Main difference
with fast is that hgrids is set to 0.3, while default k-points distance is set to 40 bohrs (real space). Convergence
criteria are also stricter.

• precise. This protocol aims at providing the most accurate results without taking costs into account. hgrids is set
to 0.15. k-points are computed by PyBigDFT according to the number of atoms for this precision level.
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For linear computations, BigDFT provides "linear_fast", "linear_moderate", and "linear_accurate" input sets,
which are mapped to ‘fast’, ‘moderate’, and ‘precise’ protocols respectively. They use 0.3 hgrids settings with
more relaxed or strict convergence criterion.

In order to have more accurate results, it has been decided to override, when possible, the default pseudopotentials
used in BigDFT with the soft and norm-conserving HGH pseudopotentials (including nonlinear core-correction)
generated by S.Saha [47]. These pseudopotentials are not yet available in the UPF format and, for the moment,
are included directly in PyBigDFT (in PSP8 format). In the near future, these pseudopotentials will be converted in
UPF format and made available to AiiDA users in the standard way (UpfData class and corresponding pseudopotential
families). BigDFT has to be compiled with PSPIO in order to support UPF pseudopotentials. The version of BigDFT
in the Quantum Mobile already includes this support.

2. Supported calculation modes

As of now, the BigDFT implementation only supports the relaxation of the atomic coordinates. Therefore it handles
the threshold_forces argument, but not the threshold_stress one. The default applied algorithm for relaxation
in the BigDFT plugin is FIRE. Cell relaxation is not supported internally in BigDFT, but we foresee the creation of
a future AiiDA workflow that drives externally the cell relaxation.

IMPORTANT NOTE: BigDFT does not yet handle non-orthorhombic cells, a transformation of the input cell is
attempted if an invalid cell is provided in input. The computation is then performed on the resulting orthorhombic
super-cell. The Si test-case used for in this paper has to be transformed this way before computation. The next
release of BigDFT will overcome these limitations.

The spin_type argument supports the values ‘none’ and ‘collinear’. If the ‘collinear’ option is provided,
the computation is launched with spin-polarized enabled. By default, the plugin will initialize spin through a
round-robin scheme over the atoms to match the computed polarity moment. This can be overridden by using
the magnetization_per_site argument, to provide the values for each atom directly.

The electronic_type argument supports both ‘metal’ and ‘insulator’. If metal is specified, specific mixing
inputs are added to account for the nature of the system. These inputs are still experimental and they give good
results for Al but not for the Fe test case, that is therefore not included in the paper. The solution to address the
issue is known: a two-steps approach is necessary, restarting the first calculation with a lower electronic temperature.
This two-steps approach has been successfully used in earlier versions of PyBigDFT to perform the ∆ test, however
it is not yet included in the implementation of the present project. A future internal workflow will automatically
perform the two steps allowing BigDFT to return correct results for Fe through the common interface.

3. Running in the Quantum Mobile virtual machine

BigDFT is provided in latest Quantum mobile releases. There is no specific configuration to run it, once set up
with aiida.

C. CASTEP

1. Protocols

List of protocols supported and their description:

• fast. This protocol is intended for coarse calculations and quick tests. Many parameters are downgraded from the
moderate settings. The main difference is that a different on-the-fly generated (OTFG) pseudopotential library QC5

is used, which is designed to have converged results using a PW cutoff ≈ 300 eV for most elements at the cost of
transferability. The medium basis set precision settings is applied, with a reduced electronic energy tolerance 1 ·10−5

eV per atom, and a increased k-point distance of 0.25 Å−1 (equivalent to 0.03979 2πÅ−1 in CASTEP’s convention).

• moderate. This protocol is intended for general use and expected to give physically sensible results. The k-point
distance is set to 0.15 Å−1. Note that CASTEP uses a convention without the explicit 2π factor when converting
between the real and reciprocal space distances, so this setting is equivalent to a kpoints_mp_spacing of 0.02387
2πÅ−1. The fine basis precision setting is used. With this option, CASTEP internally chooses the PW cutoff based
on the convergence data of the core-corrected ultrasoft pseudopotentials to be used, which are on-the-fly generated
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during the calculation using the built-in C19 library of generation settings. If the calculation only involves elements
for which the pseudopotentials are very soft, such as silicon, the default low PW cutoff can potentially cause
problems during variable cell geometry optimisation. To avoid this issue, a minimum PW cutoff of 326 eV is
imposed in the protocol. The electronic energy convergence tolerance is set to 10−6 eV per atom with the default
tolerance window of three steps. The geometry optimisation uses a forces threshold of 0.05 eV/Å in conjunction
with a energy tolerance of 2 · 10−5 eV per atom, a stress threshold of 0.1 GPa (if applicable), and a atomic position
change tolerance of 0.001 Å, with a convergence window of two ionic steps.

• precise. This protocol is intended for high accuracy calculations and obtaining converged results. Most parameters
are based on the moderate settings, with the basis_precision setting increased to precise. The electronic energy
tolerance is reduced to 1 · 10−8 eV per atom. The geometry optimisation thresholds are reduced to 0.03 eV/Å for
forces, 0.05 GPa for stress and 10−5 eV per atom for the total energy. The grid_scale setting that controlling the
FFT grid density is set to 2, and the fine_grid_scale is increased to 3. This is intended for minimising any FFT
aliasing errors. The k-points spacing is further reduced to 0.1 Å−1 (equivalent to 0.01591 2πÅ−1 in CASTEP’s
convention) for a improved sampling of the reciprocal space.

2. Supported calculation modes

The relax_type argument supports all the agreed values. All protocol defaults to the L-BFGS algorithm with line
search for performing geometry optimisation. The only exception is when the relax_type is ‘positions_shape’. In
this case the two-point steepest descent optimiser (TPSD) is selected as it gives superior performance as of CASTEP
version 19.1.1.

The electronic_type argument supports both ‘metal’ and ‘insulator’, although the value is internally ignored,
and density mixing solver is used in both cases with a Gaussian smearing of 0.2 eV applied to the occupations of the
electronic bands.

The spin_type argument supports values ‘none’ and ‘collinear’. The initial per-site magnetization can be
passed to bias the electronic solver into specific spin arrangements. If no per-site magnetization value is passed,
CASTEP defaults to have zero magnetisation per site and prints a warning message in the output file. Since it is
unlikely that the spin symmetry can be be broken spontaneously, it is recommended that the user always pass the
per-site initial magnetisation explicitly. While CASTEP itself supports non-collinear and spin-orbit calculations, they
are not yet enabled through the common interface presented in this work. This is because the common interface
magnetization_per_site input does not allow yet non-collinear initialization of the spins and, moreover, specially
generated norm-conserving potentials are needed for spin-orbit calculations.

The reference_workchain argument makes sure that the k-points mesh that is used is the same as that used in
the defined workchain for consistent energy comparisons.

3. Running in the Quantum Mobile virtual machine

The source code of CASTEP can be compiled using the following commands on Quantum Mobile. We assume that
the aiida-castep plugin has been installed as one of the dependencies of aiida-common-workflows.

If internet connection is available, the following command can be used to install OpenBLAS in Quantum Mobile:
1 sudo apt-get update
2 sudo apt-get install libopenblas -dev

Listing 7. Commands to install the OpenBLAS library.

The availability of OpenBLAS may improve the execution speed of the code, but it is not essential. It is also
possible to link with intel MKL library, but it is beyond the scope of this guide.

Assuming a source archive of CASTEP version 19.1.1 is placed in the working directory, paste the following com-
mands into the terminal to compile a binary and setup the Code node for AiiDA:

1 cat > install -castep.sh << EOF
2 set -e
3 set -x
4 tar zxvf CASTEP -19.11. tar.gz
5 cd CASTEP -19.11
6 apt list --installed | grep libopenblas -dev > /dev/null
7 if [ \$? -eq 0 ]; then
8 mathlib =openblas
9 else

10 mathlib =default
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11 fi
12 set +e
13 make MATHLIB =\$mathlib FFT=fftw3 COMMS_ARCH=mpi SUBARCH =mpi TARGETCPU=portable -j `nproc ` clean
14 set -e
15 make MATHLIB =\$mathlib FFT=fftw3 COMMS_ARCH=mpi SUBARCH =mpi TARGETCPU=portable -j `nproc `
16 make MATHLIB =\$mathlib FFT=fftw3 COMMS_ARCH=mpi SUBARCH =mpi TARGETCPU=portable -j `nproc ` install
17 EOF
18 bash install -castep.sh
19

20 cat > castep -code.yaml << EOF
21 label: castep -19.1.1
22 description: CASTEP 19.1.1 Compiled locally
23 input_plugin: castep.castep
24 on_computer: True
25 computer : localhost
26 remote_abs_path: /home/max/CASTEP -19.11/ bin/bin/linux_x86_64_gfortran7.0--mpi/castep.mpi
27 prepend_text: 'export OMP_NUM_THREADS=1'
28 append_text: ''
29 EOF
30 workon aiida
31 verdi code setup --config castep-code.yaml

Listing 8. Compiling a CASTEP executable on Quantum Mobile and settings up the Code node.

During the compilation, the user will be prompted to confirm the path to the libraries, and directory where the
compiled binary to be installed. In both cases, press the Enter to use the default option.

Free-of-charge source code licenses for CASTEP can be obtained for academic use. This option is available to the
researchers world-wide. More details can be found one the official website.

D. CP2K

1. Protocols

Every protocol employs Gaussian and plane waves[48] method to compute energy and forces. A multi-grid approach
is used to represent the electron density and the product Gaussian functions. Several parameters are required to define
the multi-grid. CUTOFF (Ry) parameter is the plane wave cutoff of the finest grid used to map the electron density.
REL_CUTOFF (Ry) determines how Gaussians are mapped into the multi-grid. NGRIDS parameter defines the total
number of grids. EPS_DEFAULT acts as a default value for many other parameters trying to achieve the precision
in energy up to the value of EPS_DEFAULT. All protocols have a default maximum force threshold of 4.5 · 10−4

Hartree per bohr and root mean square force threshold of 3.0 · 10−4 Hartree per bohr.
Here is the list of supported protocols and the values of the parameters:

• fast. This protocol is intended for testing purposes and uses very loose settings. The k-points distance is set to 1.0
Å−1. The multi-grid parameters are: 400 Ry CUTOFF, 30 Ry REL_CUTOFF, and 4 NGRIDS. Target accuracy
for the SCF convergence is set to 1 · 10−6 and EPS_DEFAULT is set to 1 · 10−10.

• moderate. This protocol is intended for general use and is expected to provide sensible results. The k-points distance
is set to 0.5 Å−1. The multi-grid parameters are: 600 Ry CUTOFF, 40 Ry REL_CUTOFF, and 4 NGRIDS. Target
accuracy for the SCF convergence is set to 1 · 10−7 and EPS_DEFAULT is set to 1 · 10−12.

• precise. This protocol is intended for high-accuracy calculations. The k-points distance is set to 0.1 Å−1. The
multi-grid parameters are: 1000 Ry CUTOFF, 50 Ry REL_CUTOFF, and 3 NGRIDS. Target accuracy for the
SCF convergence is set to 1 · 10−8 and EPS_DEFAULT is set to 1 · 10−16.

2. Supported relax types and calculation modes

The list of currently supported relax_type is: ‘none’, ‘positions’, ‘positions_cell’. All protocols use the
standard BFGS algorithm to optimize the atomic positions and the cell.

The electronic_type argument supports the values ‘metal’ and ‘insulator’. For ‘insulator’, the calculation
is performed using the orbital transformation method with fixed occupations. The default total magnetic moment is
equal to 0 for an even number and 1 for an odd number of electrons. For ‘metal’ a diagonalisation with Fermi-Dirac
smearing is used at electronic temperature of 500 K and 20 molecular orbitals are added for each spin. In case
smearing is employed, the total magnetization is flexible.

http://www.castep.org/
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The spin_type argument supports the values ‘none’ and ‘collinear’. In the case of the ‘collinear’ option,
the spin-polarized calculation are enabled. Additionally, the user can specify the magnetization_per_site, which
would be ignored in the ‘none’ case. If the user provides the magnetization_per_site, the total multiplicity is
derived from it.

3. Running in the Quantum Mobile virtual machine

No additional setup is required to run CP2K on Quantum Mobile: the code comes already preinstalled and the
necessary data files are shipped together with the aiida-common-workflows package.

E. FLEUR

The execution of the FLEUR implementation of the common relax workflows relies on the
FleurBaseRelaxWorkChain, FleurRelaxWorkChain, FleurScfWorkChain and FleurBaseWorkChain of the
aiida-fleur package [41].

1. Protocols

The FLEUR program sets most internal parameters during generation of the full input to appropriate values.
The protocols for FLEUR contain two kinds of values, the first influences the behavior of the underlying workflows,
while the second explicitly sets some internal parameters during input generation. All protocols have a default force
threshold of 1 · 10−3 Hartree per bohr, which can be overwritten by user through the dedicated input of the relax
common workflow. List of protocols supported and their description:

• fast. In this protocol parameters are set in a way to reduce the computational cost. The protocol should still
yield reasonable results but should not be used for production calculations, merely for testing. The most important
parameters are: k-point distance is set to 0.4 Å−1, self-consistency convergence threshold for charge density to
2 · 10−7 electrons/bohr3, k-max basis cut-off to 3.2 bohr−1, maximal number of relaxation calls to three, maximal
number of iterations per SCF workflow to 240.

• moderate. This protocol provides a reasonable trade-off between accuracy and the computational cost. The most
important parameters are: k-point distance is set to 0.2 Å−1, self-consistency convergence threshold for charge
density to 2 · 10−8 electron/bohr3, k-max basis cut-off to 4.0 bohr−1, maximal number of relaxation calls to five,
maximal number of iterations per SCF workflow to 240.

• precise. This protocol is based on the moderate protocol but various parameters have been changed to improve
the precision at the expenses of an increased computational cost. This protocol should yield fully converged results
and is recommended for production calculations that require higher precision than provided by the moderate one.
The calculation parameters are: k-point distance is set to 0.1 Å−1, self-consistency convergence threshold for charge
density to 2 · 10−9 electron/bohr3, k-max basis cut-off to 5.0 bohr−1, maximal number of relaxation calls to ten,
maximal number of iterations per SCF workflow to 360.

For all other parameters within the Full-potential Linearized-Augmented-Plane-Wave method (FLAPW) we rely
on the default choices of FLEUR and the FLEUR input generator. Consistency of these is only enforced within
workflows where total energies need to be compared through the reference_workchain argument. Regarding the
choice of k-point mesh, the use of a single k-point along directions having no periodic conditions is enforced. For
example, a film calculation will always have a single k-point along z-direction.

2. Supported calculation modes

The relax_type argument supports the ‘positions’ and ‘none’ values, meaning that atomic positions can be
optimized. All protocols use the standard BFGS algorithm implemented in FLEUR to minimize forces acting on
atoms. However, first several iterations will be run using the straight mixing and BFGS is used only after the largest
force is small enough. This is done to suppress the common problem of muffin-tin-overlap because BFGS tends to
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propose too large displacements during the first steps, moving atoms far away from the equilibrium positions and
hence overlapping them.

The electronic_type argument supports the values ‘metal’ and ‘insulator’. Simulations for ‘insulator’ and
‘metal’ are treated in the current protocol in the same way. In general, for calculation of metals with FLEUR it might
be necessary to use a denser k-point mesh or introduce a larger smearing around the Fermi energy. The k-point distance
of 0.15 Å−1 for the precise protocol is expected to be a reasonable compromise to treat both electronic_types in
the same way.

The spin_type argument supports the values ‘none’ and ‘collinear’. In case of ‘collinear’ calculations,
unless magnetization_per_site is explicitly defined, a non-zero starting magnetization is chosen where the value for
each site is determined by the input generator of FLEUR. If magnetization_per_site is defined, starting magnetic
moments for given sites are set in the input generator, which might also require explicitly breaking the symmetry of
the crystal structure.

The reference_workchain argument guarantees that the FLAPW parameters and species parameters, including
basis set cutoffs, muffin-tin radii are consistent to allow high accuracy energy differences between these simulations.

3. Running in the Quantum Mobile virtual machine

Since everything needed to run the FLEUR common workflows is already installed on Quantum Mobile, no further
steps are needed.

F. Gaussian

The Gaussian workflows have been tested and all the results shown have been calculated using the Gaussian 09
Revision D.01 [15] but the presented implementation should work with most versions of Gaussian, as the input and
output syntax of the demonstrated calculations has remained the same.

1. Protocols

Gaussian has many internal checks to automatically set most computational parameters at appropriate values. The
protocol specification tries to take advantage of this by only varying the basis set size, integration grid and optimization
tolerance. Additionally, symmetry is disabled (route parameter NoSymm) in all cases to make the protocols more
generally applicable. List of supported protocols and their descriptions:

• fast. A fast protocol that is mainly used for testing, it uses a small Def2SVP[49] basis set and a loose (opt=loose)
geometry optimization tolerance.

• moderate. A protocol with moderate accuracy, using the Def2TZVP[49] basis set, ultrafine integration grid and
the default geometry optimization tolerance.

• precise. A protocol using the Def2QZVP[50] basis set, superfine integration grid and tight (opt=tight) opti-
mization tolerance.

2. Supported relax types and calculation modes

The supported relax_type values are ‘none’, which just performs a force calculation without any structural
optimization (Gaussian keyword force), and ‘positions’, which uses the standard Gaussian optimization algorithm
to optimize the atomic positions.

The electronic_type input is ignored (‘metal’ and ‘insulator’ are treated the same way).
The spin_type ‘none’ and ‘collinear’ are supported and correspond to a restricted (RKS) and unrestricted

Kohn-Sham (UKS) calculation, respectively. In case of ‘collinear’ calculations, if no magnetization_per_site is
explicitly passed, the lowest allowed spin multiplicity is specified (1 in case of even and 2 in case of odd electrons). If
magnetization_per_site is passed, the site-specific spin information is disregarded and only total spin guess (sum
of magnetization_per_site) is processed to determine the input spin multiplicity (rounded to the closest allowed
spin multiplicity). In case of a calculation of the open-shell singlet, HOMO and LUMO are mixed to break the
spin-symmetry (Gaussian route parameter guess=mix).
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The reference_workchain argument is ignored.

3. Running in the Quantum Mobile virtual machine

After the user sets up their Gaussian code in the standard AiiDA manner, the common workflows are available
without any further setup.

G. NWChem

1. Protocols

List of protocols supported and their description:

• fast. The minimum k-point distance is set to 1.0 Å−1 and an SCF energy convergence tolerance of 1.0e−5 Ha
is set. The geometry convergence is set to loose, corresponding to a forces threshold on any atom of 4.5e−3 Ha
bohr−1, and a root mean square (RMS) gradient of 3.0e−3 Ha bohr−1

• moderate. The minimum k-point distance is set to 0.2 Å−1 and an SCF energy convergence tolerance of 1.0e−7

Ha is set. The geometry tolerance is set to default, corresponding to a forces threshold on any atom of 4.5e−4 Ha
bohr−1, and an RMS gradient of 3.0e−4 Ha bohr−1

• precise. The minimum k-point distance is set to 0.1 Å−1 and an SCF energy convergence tolerance of 1.0e−9 Ha is
set. The geometry tolerance is set to tight, corresponding to a forces threshold on any atom of 1.5e−5 Ha bohr−1,
and an RMS gradient of 1.0e−5 Ha bohr−1

For all protocols, the PBE exchange-correlation functional is used with Hamann and Troullier-Martins norm-
conserving psuedopotentials. In the case of molecular calculations run using the common interface, the plane wave
code is also used rather than the main DFT module in NWChem which employs localised basis sets. This for
consistency between protocols. The main differences are that the gamma-point only code is used, and that a larger
cutoff of 140 Ha is set for all protocols.

2. Supported relax types and calculation modes

The relax_type supported are: ‘none’, ‘positions’, ‘positions_cell’, and ‘cell’. The relaxation of the
atomic coordinates and cell vectors is performed using the DRIVER module, which implements a quasi-newton opti-
mization with line searches and approximate energy Hessian updates.

If electronic_type is set as ‘insulator’, the wavefunction is optimized using Grassmann L-BFGS algorithm. If
smearing is required, by setting electronic_type to ‘metal’, a band-by-band optimiser is used with Fermi-Dirac
smearing.

Spin polarized calculations are not supported yet through the common interface, they will be enabled in the near
future.

3. Running in the Quantum Mobile virtual machine

Other than adding the NWChem code in the standard AiiDA manner, the common workflows are available without
any further setup.

H. ORCA

1. Protocols

The following protocols are defined to be used to a wide range of systems considering the required accuracy/cost by
the user. These protocols provide higher accuracy via increasing the size of the basis set and tightening the convergence



10

criteria for self-consistent field and geometry convergence. We used recent versions of Ahlrichs basis sets[49, 50] in
the presented protocols. It is noteworthy that the latter criteria can be easily altered via invoking proper keywords.

• fast. It uses Def2-SVP[49] basis along with scf and geometry optimization convergence criteria of Strong and
LOOSOPT, respectively, to provide quick setup for testing purposes.

• moderate. We used triple zeta Def2-TZVP[49] basis set and decreased the electronic and geometry optimization to
Tight and NORMALOPT which provides a fair level of accuracy.

• precise. Increased basis set size to quadruple zeta (Def2-QZVP[50]) along with tighter scf and geometry tolerance
of VeryTight and TIGHTOPT, respectively.

2. Supported relax types and calculation modes

The ORCA implementation supports the ‘none’ and ‘positions’ values for the relax_type. The former one is
intended for single point calculation and the latter one for the geometry optimization.
‘metal’ and ‘insulator’ have the same effect as electronic_type input; both will be ignored.
Restricted and unrestricted Kohn-Sham calculations can be requested by setting the spin_type to ‘none’ and

‘collinear’, respectively. In the latter case if magnetization_per_site is NOT provided the spin multiplicity of
1 and 2 will be set for even and odd number of electrons in the system, respectively, if magnetization_per_site
is given, the site-specific spin information is ignored and only total spin guess (sum of magnetization_per_site) is
processed to determine the input spin multiplicity (rounded to the closest allowed spin multiplicity).

This implementation does not use the reference_workchain. Also, as ORCA internally sets thresholds for forces
based on the selected geometry optimization convergence criteria, we do not explicitly define them.

3. Running in the Quantum Mobile virtual machine

ORCA is a free-ware for academic users for academic usage and can be obtained via registering on the official
website (https://orcaforum.kofo.mpg.de). All other uses can request a license at www.faccts.de. ORCA comes as
two versions with static and shared libraries and requires an MPI engine that can be either OpenMPI or MPICH.
The shared version is recommended to be used within Quantum Mobile as it requires less disk space. Afterwards,
ORCA can be setup following the instructions provided in detail in AiiDA documentations and be used for running
ORCA implementation of the present work. It should be noted that in case of using shared version of ORCA,
LD_LIBRARY_PATH environmental variable should be set to the location of ORCA in Quantum Mobile.

I. Quantum ESPRESSO

1. Protocols

All of the Quantum ESPRESSO[19, 20] protocols use the Standard Solid State Pseudopotentials (SSSP)[51] v1.1.
Below is a list the supported protocols and their description:

• fast. The fast protocol is designed to yield reasonable results at minimal computational cost and should only be
used for testing and demonstration purposes. It uses the efficiency configuration of the SSSP and the following
precision settings: k-points distance is 0.5 Å−1, self-consistency convergence threshold is 0.4 · 10−9 Ry per atom,
energy threshold for the ionic convergence is 1 · 10−4 Ry per atom and forces threshold is 1 · 10−3 Ry/bohr. The
convergence on the stress is left to the default of the code which is 0.05 GPa.

• moderate. The moderate protocol is the default protocol used for production calculations. It uses the efficiency
configuration of the SSSP and the following precision settings: k-points distance of 0.15 Å−1, self-consistency
convergence threshold of 0.2 · 10−9 Ry per atom, energy threshold for the ionic convergence of 1 · 10−5 Ry per atom
and forces threshold of 1 · 10−4 Ry/bohr. The convergence on the stress is left to the default of the code which is
0.05 GPa.

• precise. The precise protocol should yield fully converged results and is recommended for production calculations
that require more precision than provided by the moderate protocol. It uses the precisison configuration of the
SSSP and the following precision settings: k-points distance is 0.1 Å−1, self-consistency convergence threshold is
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0.1 · 10−9 Ry per atom, energy threshold for the ionic convergence is 0.5 · 10−5 Ry per atom and forces threshold is
0.5 · 10−4 Ry/bohr. The convergence on the stress is left to the default of the code which is 0.05 GPa.

The protocol settings listed above are the result of a rigorous study that will be detailed in a forthcoming publication.

2. Supported calculation modes

The relax_type argument supports all the agreed values, meaning that atomic positions and the cell size and
shape can be optimized, as well as any combination of those. All protocols will use the standard BFGS algorithm to
minimize the forces on the atoms and stress on the cell.

The electronic_type argument supports the values ‘metal’ and ‘insulator’. For ‘insulator’, the calculation
is performed with fixed occupations, whereas for ‘metal’ a Marzari-Vanderbilt smearing [52] is employed with a
broadening of 0.01 Ry.

The spin_type argument supports the values ‘none’ and ‘collinear’. In case of ‘collinear’ calculations,
unless magnetization_per_site is explicitly defined, a non-zero starting magnetization is chosen where the value for
each site is element dependent.

The reference_workchain argument guarantees that the k-points mesh that is used is identical to that used in
the defined workchain.

3. Running in the Quantum Mobile virtual machine

All that is needed to run the Quantum ESPRESSO common workflows is to install the SSSP families, which is
done as follows:

1 aiida -pseudo install sssp -p efficiency
2 aiida -pseudo install sssp -p precision

Listing 9. Install the required SSSP pseudopotential families for the Quantum ESPRESSO common workflows.

J. Siesta

The siesta implementation of the common relax workflow can be used only with a version of the Siesta code that
support the use of pseudopotentials in "psml" format. The wiki page of the Siesta code can be checked for up-to-date
information on the compatble versions.

1. Protocols

All the Siesta protocols use the same set of pseudopotentials: the "standard" scalar relativistic set of
PseudoDojo[45], which are norm-conserving pseudopotentials. We warn users that the optimal basis set for a Siesta

calculation depends on the chemical environment, therefore an optimization procedure should be carried on before
the study of any new system. The statically chosen basis for each chemical species included in the protocols must
be considered a good starting point, but not assumed to be optimal in any possible environment. In fact, they have
been tested only on crystal elements through the ∆ test. More about the tests of this protocols will be detailed in a
forthcoming publication.

The list of supported protocols and their description follows.

• fast. Protocol running Siesta with standard inputs for testing. This includes an automatically generated ba-
sis “DZ” (Double-Zeta, two radial functions per angular momentum channel) with energy-shift of 200 meV, a
mesh-cutoff of 50 Ry and a k-points distance of 0.2 Å

−1

. Tolerance for the density matrix is set to 10−3. The
forces and stress thresholds are 0.04 eV/Ang and 1 GPa respectively.

• moderate. A protocol combining simple basis selection, moderate computational resources and satisfactory results
in the comparison with all-electron references. It globally sets basis “DZP” (Double-Zeta-Polarized, two radial
functions per angular momentum channel plus an orbital obtained from the polarization of the highest occupied
orbital) with energy-shift of 50 meV, a mesh-cutoff of 200 Ry and a k-points distance of 0.1 Å

−1

. However
custom basis (manually selected basis orbitals radii) are employed for the Ca, Sr and Ba elements, since the DZP

https://gitlab.com/siesta-project/siesta/-/wikis/Guide-to-Siesta-versions
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choice resulted in too-large radius for the “s” orbitals. Tolerance for the density matrix is set to 10−4. The forces
and stress thresholds are 0.04 eV/Ang and 1 GPa respectively.

• precise. Protocol with stringent settings and optimized basis for crystal elements. It globally sets a mesh-cutoff

of 500 Ry and a k-points distance of 0.1 Å
−1

. Basis sizes and orbital radii are customized for each chemical species
through an optimization procedure based on the basis enthalpy minimization for crystal elements. Tests based on
the ∆ test confirm the effectiveness of the choice. Tolerance for the density matrix is set to 10−5. The forces and
stress thresholds are 0.005 eV/Ang, 0.7 GPa respectively.

2. Supported relax types and calculation modes

The relax_type supported are: ‘none’, ‘positions’, ‘positions_shape’ and ‘cell’. The relaxation of atomic
coordinates is performed with the conjugate-gradient algorithm until reaching the forces threshold value. In the case of
variable-cell relaxation, the minimization targets zero hydrostatic pressure through the conjugate-gradient algorithm.

The electronic_type ‘metal’ and ‘insulator’ are treated in the same way. Siesta calculations on metal-
lic systems usually require a denser k-points grid compared to insulators, however, at least for the precise and
moderate protocols, the selected k-points distance is expected to generate a sufficiently dense mesh to treat both
electronic_types in the same way.

The spin_type ‘none’ and ‘collinear’ are supported. In case of ‘collinear’ calculations, if no
magnetization_per_site is explicitly passed, a ferromagnetic arrangement is imposed as initial magnetization, with
maximum atomic moment on each atom.

The reference_workchain argument generates a calculation with the same k-points mesh and same real space
mesh of the reference_workchain. The real space mesh is set using the Siesta keyword mesh-sizes.

3. Running in the Quantum Mobile virtual machine

In the Quantum Mobile, the creation of a pseudopotential family with name nc-sr-04_pbe_standard_psml is
necessary in order to run Siesta calculations through the common interface. This is achieved simply typing in the
command line:

1 verdi data psml uploadfamily /usr/local/share/siesta/psml -files -qm/nc-sr -04 _pbe_standard/ nc-sr -04
_pbe_standard_psml "pseudos from PseudoDojo"

Listing 10. Command to set up the pseudopotential family required by the Siesta implementation of the relax common
workflow.

K. VASP

All results in this work have been produced with VASP 5.4.4 and AiiDA-VASP 2.1.0. The potentials used are based
on the standard PBE potentials supplied with the same VASP version. The precise protocol was used to generate all
results. The Projector Augmented-Wave method (PAW) was used[24].

1. Protocols

List of protocols supported and their differences:

• fast. Low precision, minimal computational cost. For testing purposes. k-points distance is 0.25 Å−1. Maximum
forces threshold is 1.0×10−1 eV/Å. PREC is Single. EDIFF is 1.0×10−4. The protocol imposes at least six electronic
steps per self-consistent cycle. A conjugate gradient algorithm for relaxing the positions is implemented.

• moderate. Standard precision, moderate computational cost. k-points distance is 0.15 Å−1. Maximum forces
threshold is 1.0 × 10−2 eV/Å. PREC is Normal. EDIFF is 1.0 × 10−5. The protocol imposes at least four electronic
steps per self-consistent cycle. A quasi-Newton algorithm for relaxing the positions.

• precise. Elevated precision, high computational cost. k-points distance is 0.10 Å−1. Maximum forces threshold is
1.0× 10−3 eV/Å. EDIFF is 1.0× 10−6. PREC is Accurate. A quasi-Newton algorithm for relaxing the positions.
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For all the workflows, the following was used: Gaussian smearing with width of 0.2 eV for the integration and a
static PW cutoff of 550 eV. Otherwise default VASP settings has been used, as defined for the version used. Also note
that we do not use a explicit stress cutoff, but rely strictly on the maximum force cutoff.

We would like to stress the fact that the statically chosen PW cutoff and k-point grids are purely an artifact of
needing higher cutoffs for the calculation of the H2 dissociation curve and at the same time focusing on simplicity
and transferability of the same protocol definition across the demonstrators in this work. The purpose of this work is
not to present state-of-the-art accuracy or precision. And in order to make the main content to the point, we did not
want to utilize dedicated convergence workchains to enable a more tailored and production ready result. However, we
hope the readers will, after reading, appreciate that adding such a workchain would be straightforward. For similar
reasons, as can be seen, we use the same Gaussian smearing and a rather wide smearing width for all demonstrators.

2. Supported calculation modes

The relax_type argument supports all defined values in this work, while the spin_type argument supports the
values ‘none’ and ‘collinear’. In case of ‘collinear’ calculations, magnetization_per_site can be supplied to
indicate initial magnetic moment per site in units of Bohr magneton. In the case this is not provided, the default
in VASP is used, which is one Bohr magneton per atom. The keyword threshold_stress is ignored for the reason
explained in the previous paragraph. Finally, the reference_workchain argument guarantees that the k-points mesh
that is used is identical to that used in the reference workchain. The electronic_type is not used for VASP and we
used Gaussian smearing for all calculations as described in the previous section.

3. Running in the Quantum Mobile virtual machine

Due to licensing VASP is not provided in the Quantum Mobile. However, it is straightforward to compile VASP
and add it to Quantum Mobile for licence holders. The AiiDA-VASP plugin is however included in Quantum Mobile
as part of this work.

VII. INSTRUCTIONS TO RUN THE TEST CASES IN THE QUANTUM MOBILE.

We present here the full set of instructions that are needed to reproduce the results presented in the manuscript,
using the Quantum Mobile. N.B.: since the results reported in the paper are obtained with very stringent choices of
parameters (‘precise’ protocol), the commands listed below might start computationally-demanding simulations.
In addition, the quantum-engine simulations are run with two processors by default. For Quantum Mobile v21.05.1
the included compiled binaries for Abinit, CP2K, FLEUR and Siesta can fail for certain runs if run with more than
one processor and instead have to be run in serial. To specify the number of processors that should be used, the
command line interface (CLI) provides the option "-n". The option accepts a value for each engine of the calculation,
meaning two integers must be provided for FLEUR ("-n 1 2" for instance) and one for any other code ("-n 4").
Moreover calculations on molecules (H2 and ammonia) performed with codes designed for extended systems might
result in calculations that require a lot of memory.

The following list of instructions shows how the results of this paper can be reproduced. The label <code> must
be substituted with the name of one of the available quantum engines.

1. Download Quantum Mobile v21.05.1 and follow the instructions for its installation. The installation just requires
the Virtual Box software.

2. Start the virtual machine, open a terminal and type "workon aiida" to activate the virtual environment where all
the python packages are installed.

3. Make sure to perform the preliminary steps required by the quantum engine of your interest, they are listed in the
previous section under Running in the Quantum Mobile virtual machine subsection for each code.

4. For the ammonia test case, run the command:
aiida -common-workflows launch relax -S NH3 -pyramidal -p precise -- <code >

wait the end of the execution and then run:
aiida -common-workflows launch relax -S NH3 -planar -p precise -- <code >

https://quantum-mobile.readthedocs.io/en/latest/releases/versions/21.05.1.html


14

Both commands will return an output link called total_energy. Run:
verdi node attributes <pk>

to explore the value of the total energy for both calculation, <pk> is the node pk of total_energy. The difference
in energy between the planar and pyramidal energy is the value reported in Figure 4 of the main text.

5. The calculation of the EOS for elements El =[Si, Al] is started with the command:

aiida -common-workflows launch eos -S El -p precise -- <code >

This command launches a relaxation of the atomic coordinates for a spin-less system with ‘metal’ setting. All
these are defaults for the command line interface implemented in the package. Once the calculation is over, results
are obtained running:

aiida -common-workflows launch plot -eos -- <pk>

where <pk> is the pk of the EOS workflow, reported at run time. The command directly plots the energy versus
volume data. In case a print of the values is needed, the option "-t -p 4 5" can be added. The "-p 4 5" indicates
that the volumes and energies should be printed with 4 and 5 decimal figures respectively.

6. The calculation of the EOS for GeTe is started with the command:
aiida -common-workflows launch eos -S GeTe -p precise -r positions_shape -- <code >

Once the calculation is finished, the results can be obtained with the same command explained in the previous
point.

7. The calculation of the EOS for Fe in the ferromagnetic arrangement is started with:
aiida -common-workflows launch eos -S Fe -p precise -s collinear -- <code >

The initial magnetization used is different for each <code> since the default is used. The command for obtaining
the results is always the same except that a further integer can be accepted by the "-p" option to indicate the
decimal figures for the total magnetization ("-p 4 5 4") for instance. The calculation for the anti-ferromagnetic
case is done with:

aiida -common-workflows launch eos -S Fe -p precise -s collinear --magnetization_per_site -4 4 -- <code >

The only difference respect to the ferromagnetic case is the explicit choice of an initial magnetization.

8. The H2 dissociation curve is obtained with:
aiida -common-workflows launch dissociation -curve -S H2 -p precise -s collinear --magnetization -per -site -1 1 --

<code >

and the results are obtained with:
aiida -common-workflows launch plot -dissociation -curve -- <pk>

The same options of the plot-eos command can be used to custom the results analysis.

For simplicity, we illustrated how to run the test cases using the command line interface of the package. Another
possibility is to create a submission script for each case. Detailed documentation on the topic can be found in the
aiida-common-workflow online documentation.
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