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REVIEW ARTICLE OPEN

Integrating machine learning and multiscale modeling—
perspectives, challenges, and opportunities in the biological,
biomedical, and behavioral sciences
Mark Alber1, Adrian Buganza Tepole2, William R. Cannon 3, Suvranu De4, Salvador Dura-Bernal5, Krishna Garikipati6,
George Karniadakis7, William W. Lytton5, Paris Perdikaris8, Linda Petzold9 and Ellen Kuhl 10*

Fueled by breakthrough technology developments, the biological, biomedical, and behavioral sciences are now collecting more
data than ever before. There is a critical need for time- and cost-efficient strategies to analyze and interpret these data to advance
human health. The recent rise of machine learning as a powerful technique to integrate multimodality, multifidelity data, and reveal
correlations between intertwined phenomena presents a special opportunity in this regard. However, machine learning alone
ignores the fundamental laws of physics and can result in ill-posed problems or non-physical solutions. Multiscale modeling is a
successful strategy to integrate multiscale, multiphysics data and uncover mechanisms that explain the emergence of function.
However, multiscale modeling alone often fails to efficiently combine large datasets from different sources and different levels of
resolution. Here we demonstrate that machine learning and multiscale modeling can naturally complement each other to create
robust predictive models that integrate the underlying physics to manage ill-posed problems and explore massive design spaces.
We review the current literature, highlight applications and opportunities, address open questions, and discuss potential challenges
and limitations in four overarching topical areas: ordinary differential equations, partial differential equations, data-driven
approaches, and theory-driven approaches. Towards these goals, we leverage expertise in applied mathematics, computer science,
computational biology, biophysics, biomechanics, engineering mechanics, experimentation, and medicine. Our multidisciplinary
perspective suggests that integrating machine learning and multiscale modeling can provide new insights into disease
mechanisms, help identify new targets and treatment strategies, and inform decision making for the benefit of human health.
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MOTIVATION
Would not it be great to have a virtual replica of ourselves to
explore our interaction with the real world in real time? A living,
digital representation of ourselves that integrates machine
learning and multiscale modeling to continuously learn and
dynamically update itself as our environment changes in real life?
A virtual mirror of ourselves that allows us to simulate our
personal medical history and health condition using data-driven
analytical algorithms and theory-driven physical knowledge?
These are the objectives of the Digital Twin.1 In health care, a
Digital Twin would allow us to improve health, sports, and
education by integrating population data with personalized data,
all adjusted in real time, on the basis of continuously recorded
health and lifestyle parameters from various sources.2–4 But,
realistically, how long will it take before we have a Digital Twin by
our side? Can we leverage our knowledge of machine learning
and multiscale modeling in the biological, biomedical, and
behavioral sciences to accelerate developments towards a Digital
Twin? Do we already have digital organ models that we could
integrate into a full Digital Twin? And what are the challenges,
open questions, opportunities, and limitations? Where do we even
begin? Fortunately, we do not have to start entirely from scratch.
Over the past two decades, multiscale modeling has emerged into

a promising tool to build individual organ models by system-
atically integrating knowledge from the tissue, cellular, and
molecular levels, in part fueled by initiatives like the United States
Federal Interagency Modeling and Analysis Group IMAG5.
Depending on the scale of interest, multiscale modeling
approaches fall into two categories, ordinary differential
equation-based and partial differential equation-based
approaches. Within both categories, we can distinguish data-
driven and theory-driven machine learning approaches. Here we
discuss these four approaches towards developing a Digital Twin.

Ordinary differential equations characterize the temporal
evolution of biological systems
Ordinary differential equations are widely used to simulate the
integral response of a system during development, disease,
environmental changes, or pharmaceutical interventions. Systems
of ordinary differential equations allow us to explore the dynamic
interplay of key characteristic features to understand the
sequence of events, the progression of disease, or the timeline
of treatment. Applications range from the molecular, cellular,
tissue, and organ levels all the way to the population level
including immunology to correlate protein–protein interactions
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and immune response,6 microbiology to correlate growth rates
and bacterial competition, metabolic networks to correlate
genome and physiome,7,8 neuroscience to correlate protein
misfolding to biomarkers of neurodegeneration,9 oncology to
correlate perturbations to tumorigenesis,10 and epidemiology to
correlate disease spread to public health. In essence, ordinary
differential equations are a powerful tool to study the dynamics of
biological, biomedical, and behavioral systems in an integral
sense, irrespective of the regional distribution of the underlying
features.

Partial differential equations characterize the spatio-temporal
evolution of biological systems
In contrast to ordinary differential equations, partial differential
equations are typically used to study spatial patterns of inherently
heterogeneous, regionally varying fields, for example, the flow of
blood through the cardiovascular system11 or the elastodynamic
contraction of the heart.12 Unavoidably, these equations are
nonlinear and highly coupled, and we usually employ computa-
tional tools, for example, finite difference or finite element
methods, to approximate their solution numerically. Finite
element methods have a long history of success at combining
ordinary differential equations and partial differential equations to
pass knowledge across the scales.13 They are naturally tailored to
represent the small-scale behavior locally through constitutive
laws using ordinary differential equations and spatial derivatives
and embed this knowledge globally into physics-based conserva-
tion laws using partial differential equations. Assuming we know
the governing ordinary and partial differential equations, finite
element models can predict the behavior of the system from
given initial and boundary conditions measured at a few selected
points. This approach is incredibly powerful, but requires that we
actually know the physics of the system, for example through the
underlying kinematic equations, the balance of mass, momentum,
or energy. Yet, to close the system of equations, we need
constitutive equations that characterize the behavior of the
system, which we need to calibrate either with experimental data
or with data generated via multiscale modeling.

Multiscale modeling seeks to predict the behavior of biological,
biomedical, and behavioral systems
Toward this goal, the main objective of multiscale modeling is to
identify causality and establish causal relations between data. Our
experience has taught us that most engineering materials display
an elastic, viscoelastic, or elastoplastic constitutive behavior.
However, biological and biomedical materials are often more
complex, simply because they are alive.14 They continuously
interact with and adapt to their environment and dynamically
respond to biological, chemical, or mechanical cues.15 Unlike
classical engineering materials, living matter has amazing abilities
to generate force, actively contract, rearrange its architecture, and
grow or shrink in size.16 To appropriately model these phenom-
ena, we not only have to rethink the underlying kinetics, the
balance of mass, and the laws of thermodynamics, but often have
to include the biological, chemical, or electrical fields that act as
stimuli of this living response.17 This is where multiphysics
multiscale modeling becomes important:18,19 multiscale modeling
allows us to thoroughly probe biologically relevant phenomena at
a smaller scale and seamlessly embed the relevant mechanisms at
the larger scale to predict the dynamics of the overall system.20

Importantly, rather than making phenomenological assumptions
about the behavior at the larger scale, multiscale models postulate
that the behavior at the larger scale emerges naturally from the
collective action at the smaller scales. Yet, this attention to detail
comes at a price. While multiscale models can provide unprece-
dented insight to mechanistic detail, they are not only expensive,
but also introduce a large number of unknowns, both in the form

of unknown physics and unknown parameters21,22. Fortunately,
with the increasing ability to record and store information, we
now have access to massive amounts of biological and biomedical
data that allow us to systematically discover details about these
unknowns.

Machine learning seeks to infer the dynamics of biological,
biomedical, and behavioral systems
Toward this goal, the main objective of machine learning is to
identify correlations among big data. The focus in the biology,
biomedicine, and behavioral sciences is currently shifting from
solving forward problems based on sparse data towards solving
inverse problems to explain large datasets.23 Today, multiscale
simulations in the biological, biomedical, and behavioral sciences
seek to infer the behavior of the system, assuming that we have
access to massive amounts of data, while the governing equations
and their parameters are not precisely known.24–26 This is where
machine learning becomes critical: machine learning allows us to
systematically preprocess massive amounts of data, integrate and
analyze it from different input modalities and different levels of
fidelity, identify correlations, and infer the dynamics of the overall
system. Similarly, we can use machine learning to quantify the
agreement of correlations, for example by comparing computa-
tionally simulated and experimentally measured features across
multiple scales using Bayesian inference and uncertainty
quantification.27

Machine learning and multiscale modeling mutually complement
one another
Where machine learning reveals correlation, multiscale modeling
can probe whether the correlation is causal; where multiscale
modeling identifies mechanisms, machine learning, coupled with
Bayesian methods, can quantify uncertainty. This natural synergy
presents exciting challenges and new opportunities in the
biological, biomedical, and behavioral sciences.28 On a more
fundamental level, there is a pressing need to develop the
appropriate theories to integrate machine learning and multiscale
modeling. For example, it seems intuitive to a priori build physics-
based knowledge in the form of partial differential equations,
boundary conditions, and constraints into a machine learning
approach.22 Especially when the available data are limited, we can
increase the robustness of machine learning by including physical
constraints such as conservation, symmetry, or invariance. On a
more translational level, there is a need to integrate data from
different modalities to build predictive simulation tools of
biological systems.29 For example, it seems reasonable to assume
that experimental data from cell and tissue level experiments,
animal models, and patient recordings are strongly correlated and
obey similar physics-based laws, even if they do not originate from
the same system. Naturally, while data and theory go hand in
hand, some of the approaches to integrate information are more
data driven, seeking to answer questions about the quality of the
data, identify missing information, or supplement sparse training
data,30,31 while some are more theory driven, seeking to answer
questions about robustness and efficiency, analyze sensitivity,
quantify uncertainty, and choose appropriate learning tools.
Figure 1 illustrates the integration of machine learning and

multiscale modeling on the parameter level by constraining their
spaces, identifying values, and analyzing their sensitivity, and on
the system level by exploiting the underlying physics, constraining
design spaces, and identifying system dynamics. Machine learning
provides the appropriate tools for supplementing training data,
preventing overfitting, managing ill-posed problems, creating
surrogate models, and quantifying uncertainty. Multiscale model-
ing integrates the underlying physics for identifying relevant
features, exploring their interaction, elucidating mechanisms,
bridging scales, and understanding the emergence of function.
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We have structured this review around four distinct but over-
lapping methodological areas: ordinary and partial differential
equations, and data and theory driven machine learning. These
four themes roughly map into the four corners of the data-physics
space, where the amount of available data increases from top to
bottom and physical knowledge increases from left to right. For
each area, we identify challenges, open questions, and opportu-
nities, and highlight various examples from the life sciences. For
convenience, we summarize the most important terms and
technologies associated with machine learning with examples
from multiscale modeling in Box 1. We envision that our article will
spark discussion and inspire scientists in the fields of machine
learning and multiscale modeling to join forces towards creating
predictive tools to reliably and robustly predict biological,
biomedical, and behavioral systems for the benefit of human
health.

CHALLENGES
A major challenge in the biological, biomedical, and behavioral
sciences is to understand systems for which the underlying data
are incomplete and the physics are not yet fully understood. In
other words, with a complete set of high-resolution data, we could
apply machine learning to explore design spaces and identify
correlations; with a validated and calibrated set of physics
equations and material parameters, we could apply multiscale
modeling to predict system dynamics and identify causality. By
integrating machine learning and multiscale modeling we can
leverage the potential of both, with the ultimate goal of providing
quantitative predictive insight into biological systems. Figure 2
illustrates how we could integrate machine learning and multi-
scale modeling to better understand the cardiac system.

Ordinary differential equations encode temporal evolution into
machine learning
Ordinary differential equations in time are ubiquitous in the
biological, biomedical, and behavior sciences. This is largely

because it is relatively easy to make observations and acquire data
at the molecular, cellular, organ, or population scales without
accounting for spatial heterogeneity, which is often more difficult
to access. The descriptions typically range from single ordinary
differential equations to large systems of ordinary differential
equations or stochastic ordinary differential equations. Conse-
quently, the number of parameters is large and can easily reach
thousands or more.32,33 Given adequate data, the challenge
begins with identifying the nonlinear, coupled driving terms.34 To
analyze the data, we can apply formal methods of system
identification, including classical regression and stepwise regres-
sion.24,26 These approaches are posed as nonlinear optimization
problems to determine the set of coefficients by multiplying
combinations of algebraic and rate terms that result in the best fit
to the observations. Given adequate data, system identification
works with notable robustness and can learn a parsimonious set of
coefficients, especially when using stepwise regression. In addition
to identifying coefficients, the system identification should also
address uncertainty quantification and account for both measure-
ment errors and model errors. The Bayesian setting provides a
formal framework for this purpose.35 Recent system identification
techniques24,26,36–40 start from a large space of candidate terms in
the ordinary differential equations to systematically control and
treat model errors. Machine learning can provide a powerful
approach to reduce the number of dynamical variables and
parameters while maintaining the biological relevance of the
model.24,41

Partial differential equations encode physics-based knowledge
into machine learning
The interaction between the different scales, from the cell to the
tissue and organ levels, is generally complex and involves
temporally and spatially varying fields with many unknown
parameters.42 Prior physics-based information in the form of
partial differential equations, boundary conditions, and constraints
can regularize a machine learning approach in such a way that it
can robustly learn from small and noisy data that evolve in time
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Fig. 1 Machine learning and multiscale modeling in the biological, biomedical, and behavioral sciences. Machine learning and multiscale
modeling interact on the parameter level via constraining parameter spaces, identifying parameter values, and analyzing sensitivity and on
the system level via exploiting the underlying physics, constraining design spaces, and identifying system dynamics. Machine learning
provides the appropriate tools towards supplementing training data, preventing overfitting, managing ill-posed problems, creating surrogate
models, and quantifying uncertainty with the ultimate goal being to explore massive design spaces and identify correlations. Multiscale
modeling integrates the underlying physics towards identifying relevant features, exploring their interaction, elucidating mechanisms,
bridging scales, and understanding the emergence of function with the ultimate goal of predicting system dynamics and identifying causality.
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and space. Gaussian processes and neural networks have proven
particularly powerful in this regard.43–45 For Gaussian process
regression, the partial differential equation is encoded in an
informative function prior;46 for deep neural networks, the partial
differential equation induces a new neural network coupled to the
standard uninformed data-driven neural network,22 see Fig. 3. This
coupling of data and partial differential equations into a deep
neural network presents itself as an approach to impose physics as
a constraint on the expressive power of the latter. New theory
driven approaches are required to extend this approach to
stochastic partial differential equations using generative adver-
sarial networks, for fractional partial differential equations in
systems with memory using high-order discrete formulas, and for
coupled systems of partial differential equations in multiscale
multiphysics modeling. Multiscale modeling is a critical step, since
biological systems typically possess a hierarchy of structure,
mechanical properties, and function across the spatial and
temporal scales. Over the past decade, modeling multiscale
phenomena has been a major point of attention, which has
advanced detailed deterministic models and their coupling across
scales.13 Recently, machine learning has permeated into the
multiscale modeling of hierarchical engineering materials3,44,47,48

and into the solution of high-dimensional partial differential
equations with deep learning methods.34,43,49–53 Uncertainty
quantification in material properties is also gaining relevance,54

with examples of Bayesian model selection to calibrate strain
energy functions55,56 and uncertainty propagation with Gaussian
processes of nonlinear mechanical systems.57–59 These trends for
non-biological systems point towards immediate opportunities for
integrating machine learning and multiscale modeling in the
biological, biomedical, and behavioral sciences and opens new
perspectives that are unique to the living nature of biological
systems.

Data-driven machine learning seeks correlations in big data
Machine learning can be regarded as an extension of classical
statistical modeling that can digest massive amounts of data to
identify high-order correlations and generate predictions. This is not
only important in view of the rapid developments of ultra-high-
resolution measurement techniques,60 including cryo-EM, high-
resolution imaging flow cytometry, or four-dimensional-flow
magnetic resonance imaging, but also when analyzing large-
scale health data from wearable and smartphone apps.61,62

Box 1 Terms and technologies associated with machine learning with examples from multiscale modeling in the biological,
biomedical, and behavioral sciences

Active learning is a supervised learning approach in which the algorithm actively chooses the input training points. When applied to classification, it selects new inputs that
lie near the classification boundary or minimize the variance. Example: Classification of arrhythmogenic risk.74

Bayesian inference is a method of statistical inference that uses Bayes’ theorem to update the probability of a hypothesis as more information becomes available. Examples:
Selecting models and identifying parameters of liver,55 brain,56 and cardiac tissue.59

Classification is a supervised learning approach in which the algorithm learns from a training set of correctly classified observations and uses this learning to classify new
observations, where the output variable is discrete. Examples: classifying the effects of individual single nucleotide polymorphisms on depression;75 of ion channel blockage
on arrhythmogenic risk in drug development;74 and of chemotherapeutic agents in personalized cancer medicine.73

Clustering is an unsupervised learning method that organizes members of a dataset into groups that share common properties. Examples: Clustering the effects of
simulated treatments76,77.
Convolutional neural networks are neural network that apply the mathematical operation of convolution, rather than linear transformation, to generate the following
output layer. Examples: Predicting mechanical properties using microscale volume elements through deep learning,78 classifying red blood cells in sickle cell anemia,79 and
inferring the solution of multiscale partial differential equations.80

Deep neural networks or deep learning are a powerful form of machine learning that uses neural networks with a multiplicity of layers. Examples: biologially inspired
learning, where deep learning aims to replicate mechanisms of neuronal interactions in the brain,81 predicting the sequence specificities of DNA-and RNA-binding proteins.82

Domain randomization is a technique for randomizing the field of an image so that the true image is also recognized as a realization of this space. Example: Supplementing
trianing data.83

Dropout neural networks are a regularization method for neural networks that avoids overfitting by randomly deleting, or dropping, units along with their connections
during training. Examples: detecting retinal diseases and making diagnosis with various qualities of retinal image data84

Dynamic programming is a mathematical optimization formalism that enables the simplification of a complicated decision-making problem by recursively breaking it into
simpler sub-problems. Example: de novo peptide sequencing via tandem mass spectrometry and dynamic programming.85

Evolutionary algorithms are generic population-based optimization algorithms that adopt mechanisms inspired by biological evolution including reproduction, mutation,
recombination, and selection to characterize biological systems. Example: automatic parameter tuning in multiscale brain modeling.86

Gaussian process regression is a nonparametric, Bayesian approach to regression to create surrogate models and quantify uncertainty. Examples: creating surrogate models
to characterize the effects of drugs on features of the electrocardiogram70 or of material properties on the stress profiles from reconstructive surgery.58

Genetic programming is a heuristic search technique of evolving programs that starts from a population of random unfit programs and applies operations similar to natural
genetic processes to identify a suitable program. Example: predicting metabolic pathway dynamics from time-series multi-omics data.72

Generative models are statistical models that aim to capture the joint distribution between a set of observed or latent random variables. Example: using deep generative
models for chemical space exploration and matter engineering.87

Multifidelity modeling is a supervised learning approach to synergistically combine abundant, inexpensive, low fidelity and sparse, expensive, high fidelity data from
experiments and simulations to create efficient and robust surrogate models. Examples: simulating the mixed convection flow past a cylinder29 and cardiac
electrophysiology27

Physics-informed neural networks are neural networks that solve supervised learning tasks while respecting physical constraints. Examples: diagnosing cardiovascular
disorders non-invasively using four-dimensional magnetic resonance images of blood flow and arterial wall displacements11 and creating computationally efficient
surrogates for velocity and pressure fields in intracranial aneurysms.23

Recurrent neural networks are a class of neural networks that incorporate a notion of time by accounting not only for current data, but also for history with tunable extents
of memory. Example: identifying unknown constitutive relations in ordinary differential equation systems.88

Reinforcement learning is a technique that cirumvents the notions of supervised and unsupervised learning by exploring and combining decisions and actions in dynamic
environments to maximize some notion of cumulative reward. Examples: understanding common learning modes in biological, cognitive, and artificial systems through the
lens of reinforcement learning.89,90

Regression is a supervised learning approach in which the algorithm learns from a training set of correctly identified observations and then uses this learning to evaluate
new observations where the output variable is continuous. Example: exploring the interplay between drug concentration and drug toxicity in cardiac elecrophysiology.27

Supervised learning defines the task of learning a function that maps an input to an output based on example input–output pairs. Typical examples include classification
and regression tasks.
System identification refers to a collection of techniques that identify the governing equations from data on a steady state or dynamical system. Examples: inferring
operators that form ordinary37 and partial differential equations.26

Uncertainty quantification is the science of quantitative characterization and reduction of uncertainties that seeks to determine the likelihood of certain outputs if the
inputs are not exactly known. Example: quantifying the effects of experimental uncertainty in heart failure91 or the effects of estimated material properties on stress profiles
in reconstructive surgery.57

Unsupervised learning aims at drawing inferences from datasets consisting of input data without labeled responses. The most common types of unsupervised learning
techniques include clustering and density estimation used for exploratory data analysis to identify hidden patterns or groupings.

M. Alber et al.

4

npj Digital Medicine (2019)   115 Scripps Research Translational Institute



Machine learning can play a central role in helping us mine these
data more effectively and bring experiment, modeling, and
computation closer together.63 We can use machine learning as
a tool in developing artificial intelligence applications to solve
complex biological, biomedical, or behavioral systems.64 Figure 4
illustrates a framework for integrating machine learning and
multiscale modeling with a view towards data-driven approaches.
Most data-driven machine learning techniques seek correlation
rather than causality. Some machine learning techniques, e.g.,
Granger causality65 or dynamic causal modeling,66 do seek
causality, but without mechanisms. In contrast to machine
learning, multiscale modeling seeks to provide not only correla-
tion or causality but also the underlying mechanism.20 This
suggests that machine learning and multiscale modeling can
effectively complement one another when analyzing big data:
Where machine learning reveals a correlation, multiscale modeling
can probe whether this correlation is causal, and can unpack cause
into mechanisms or mechanistic chains at lower scales.28 This
unpacking is particularly important in personalized medicine
where each patient’s disease process is a unique variant,
traditionally lumped into large populations by evidence based
medicine, whether through the use of statistics, machine learning,
or artificial intelligence. Multiscale models can split the variegated
patient population apart by identifying mechanistic variants based
on differences in genome of the patient, as well as genomes of
invasive organisms or tumor cells, or immunological history. This is
an important step towards creating a digital twin, a multiscale
model of an organ system or a disease process, where we can

develop therapies without risk to the patient. As multiscale
modeling attempts to leverage the vast volume of experimental
data to gain understanding, machine learning will provide
invaluable tools to preprocess these data, automate the construc-
tion of models, and analyze the similarly vast output data
generated by multiscale modeling.67,68

Theory-driven machine learning seeks causality by integrating
physics and big data
The basic idea of theory-driven machine learning is, given a
physics-based ordinary or partial differential equation, how can
we leverage structured physical laws and mechanistic models as
informative prior information in a machine learning pipeline
towards advancing modeling capabilities and expediting multi-
scale simulations? Figure 5 illustrates the integration of theory-
driven machine learning and multiscale modeling to accelerate
model- and data-driven discovery. Historically, we have solved
this problem using dynamic programing and variational meth-
ods. Both are extremely powerful when we know the physics of
the problem and can constrain the parameters space to
reproduce experimental observations. However, when the
underlying physics are unknown, or there is uncertainty about
their form, we can adapt machine learning techniques that learn
the underlying system dynamics. Theory-driven machine learn-
ing allows us to seamlessly integrate physics-based models at
multiple temporal and spatial scales. For example, multifidelity
techniques can combine coarse measurements and reduced
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Fig. 2 Machine learning and multiscale modeling of the cardiac system. Multiscale modeling can teach machine learning how to exploit the
underlying physics described by, e.g., the ordinary differential equations of cellular electrophysiology and the partial differential equations of
electro-mechanical coupling, and constrain the design spaces; machine learning can teach multiscale modeling how to identify parameter
values, e.g., the gating variables that govern local ion channel dynamics, and identify system dynamics, e.g., the anisotropic signal
propagation that governs global diffusion. This natural synergy presents new challenges and opportunities in the biological, biomedical, and
behavioral sciences.
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order models to significantly accelerate the prediction of
expensive experiments and large-scale computations.29,69 In
drug development, for example, we can leverage theory-driven
machine learning techniques to integrate information across ten
orders of magnitude in space and time towards developing
interpretable classifiers to characterize the pro-arrhythmic
potential of drugs.70 Specifically, we can employ Gaussian
process regression to effectively explore the interplay between
drug concentration and drug toxicity using coarse, low-cost
models, anchored by a few, judiciously selected, high-resolution
simulations.27 Theory-driven machine learning techniques can
also leverage probabilistic formulations to inform the judicious
acquisition of new data and actively expedite tasks such as
exploring massive design spaces or identifying system dynamics.
For example, we could devise an effective data acquisition policy
for choosing the most informative mesoscopic simulations that
need to be performed to recover detailed constitutive laws as
appropriate closures for macroscopic models of complex fluids.71

More recently, efforts have been made to directly bake-in theory
into machine learning practice. This enables the construction of
predictive models that adhere to the underlying physical
principles, including conservation, symmetry, or invariance, while
remaining robust even when the observed data are very limited.
For example, a recent model only utilized conservation laws of
reaction to model the metabolism of a cell. While the exact
functional forms of the rate laws was unknown, the equations
were solved using machine learning.72 An intriguing implication
is related to their ability to leverage auxiliary observations to
infer quantities of interest that are difficult to measure in
practice.22 Another example includes the use of neural networks
constrained by physics to infer the arterial blood pressure
directly and non-invasively from four-dimensional magnetic
resonance images of blood velocities and arterial wall displace-
ments by leveraging the known dynamic correlations induced by
first principles in fluid and solid mechanics.11 In personalized
medicine, we can use theory-driven machine learning to classify
patients into specific treatment regimens. While this is typically
done by genome profiling alone, models that supplement the
training data using simulations based on biological or physical
principles can have greater classification power than models
built on observed data alone. For the examples of radiation
impact on cells and Boolean cancer modeling, a recent study has
shown that, for small training datasets, simulation-based kernel

methods that use approximate simulations to build a kernel
improve the downstream machine learning performance and are
superior over standard no-prior-knowledge machine learning
techniques.73

OPEN QUESTIONS AND OPPORTUNITIES
Numerous open questions and opportunities emerge from
integrating machine learning and multiscale modeling in the
biological, biomedical, and behavioral sciences. We address some
of the most urgent ones below.

Managing ill-posed problems
Can we solve ill-posed inverse problems that arise during
parameter or system identification? Unfortunately, many of the
inverse problems for biological systems are ill posed. Mathema-
tically speaking, they constitute boundary value problems with
unknown boundary values. Classical mathematical approaches are
not suitable in these cases. Methods for backward uncertainty
quantification could potentially deal with the uncertainty involved
in inverse problems, but these methods are difficult to scale to
realistic settings. In view of the high-dimensional input space and
the inherent uncertainty of biological systems, inverse problems
will always be challenging. For example, it is difficult to determine
if there are multiple solutions or no solutions at all, or to quantify
the confidence in the prediction of an inverse problem with high-
dimensional input data. Does the inherent regularization in the
loss function of neural networks allow us to deal with ill-posed
inverse partial differential equations without boundary or initial
conditions and discover hidden states?

Identifying missing information
Are the parameters of the proposed model sufficient to provide a
basic set to produce higher scale system dynamics? Multiscale
simulations and generative networks can be set up to work in
parallel, alongside the experiment, to provide an independent
confirmation of parameter sensitivity. For example, circadian
rhythm generators provide relatively simple dynamics but have
very complex dependence on numerous underlying parameters,
which multiscale modeling can reveal. An open opportunity exists
to use generative models to identify both the underlying low
dimensionality of the dynamics and the high dimensionality

Fig. 3 Partial differential equations encode physics-based knowledge into machine learning. Physics imposed on neural networks. The neural
network on the left, as yet unconstrained by physics, represents the solution u(x, t) of the partial differential equation; the neural network on
the right describes the residual f(x, t) of the partial differential equation. The example illustrates a one-dimensional version of the Schrödinger
equation with unknown parameters λ1 and λ2 to be learned. In addition to unknown parameters, we can learn missing functional terms in the
partial differential equation. Currently, this optimization is done empirically based on trial and error by a human-in-the-loop. Here, the u-
architecture is a fully connected neural network, while the f-architecture is dictated by the partial differential equation and is, in general, not
possible to visualize explicitly. Its depth is proportional to the highest derivative in the partial differential equation times the depth of the
uninformed neural network.
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associated with parameter variation. Inadequate multiscale models
could then be identified with failure of generative model
predictions.

Creating surrogate models
Can we use generative adversarial networks to create new test
datasets for multiscale models? Conversely, can we use multiscale
modeling to provide training or test instances to create new
surrogate models using deep learning? By using deep learning
networks, we could provide answers more quickly than by using
complex and sophisticated multiscale models. This could, for
example, have significant applications in predicting pharmaceu-
tical efficacy for patients with particular genetic inheritance in
personalized medicine.

Discretizing space and time
Can we remove or automate the tyranny of grid generation in
conventional methods? Discretization of complex and moving
three-dimensional domains remains a time- and labor-intense
challenge. It generally requires specific expertise and many hours
of dedicated labor, and has to be re-done for every individual
model. This becomes particularly relevant when creating perso-
nalized models with complex geometries at multiple spatial and
temporal scales. While many efforts in machine learning are
devoted to solving partial differential equations in a given domain,
new opportunities arise for machine learning when dealing
directly with the creation of the discrete problem. This includes
automatic mesh generation, meshless interpolation, and

parameterization of the domain itself as one of the inputs for
the machine learning algorithm. Neural networks constrained by
physics remove the notion of a mesh, but retain the more
fundamental concept of basis functions: They impose the
conservation laws of mass, momentum, and energy at, e.g.,
collocation points that, while neither connected through a regular
lattice nor through an unstructured grid, serve to determine the
parameters that define the basis functions.

Bridging the scales
Can machine learning provide scale bridging in cases where a
relatively clean separation of scales is possible? For example, in
cancer, machine learning could be used to explore responses of
both immune cells and tumor cells based on single-cell data. This
example points towards opportunities to build a multiscale model
on the families of solutions to codify the evolution of the tumor at
the organ or metastasis scales.

Supplementing training data
Can we use simulated data to supplement training data?
Supervised learning, as used in deep networks, is a powerful
technique, but requires large amounts of training data. Recent
studies have shown that, in the area of object detection in image
analysis, simulation augmented by domain randomization can be
used successfully as a supplement to existing training data. In
areas where multiscale models are well-developed, simulation
across vast areas of parameter can, for example, supplement
existing training data for nonlinear diffusion models to provide

Fig. 4 Data-driven machine learning seeks correlations in big data. This general framework integrates data-driven multiscale modeling and
machine learning by performing organ, cellular, or molecular level simulations and systematically comparing the simulation results against
experimental target data using machine learning analysis including clustering, regression, dimensionality reduction, reinforcement learning,
and deep learning with the objectives to identify parameters, generate new hypotheses, or optimize treatment.
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physics-informed machine learning. Similarly, multiscale models
can be used in biological, biomedical, and behavioral systems to
augment insufficient experimental or clinical datasets.

Quantifying uncertainty
Can theory-driven machine learning approaches enable the
reliable characterization of predictive uncertainty and pinpoint
its sources? Uncertainty quantification is the backbone of
decision-making. This has many practical applications such as
decision-making in the clinic, the robust design of synthetic
biology pathways, drug target identification and drug risk
assessment. There are also opportunities to use quantification to
guide the informed, targeted acquisition of new data.

Exploring massive design spaces
Can theory-driven machine learning approaches uncover mean-
ingful and compact representations for complex inter-connected
processes, and, subsequently, enable the cost-effective explora-
tion of vast combinatorial spaces? While this is already pretty
common in the design of bio-molecules with target properties in
drug development, there many other applications in biology and
biomedicine that could benefit from these technologies.

Elucidating mechanisms
Can theory-driven machine learning approaches enable the
discovery of interpretable models that cannot only explain data,
but also elucidate mechanisms, distill causality, and help us probe
interventions and counterfactuals in complex multiscale systems?
For instance, causal inference generally uses various statistical
measures such as partial correlation to infer causal influence. If
instead, the appropriate statistical measure were known from the

underlying physics, would the causal inference be more accurate
or interpretable as a mechanism?

Understanding emergence of function
Can theory-driven machine learning, combined with sparse and
indirect measurements, produce a mechanistic understanding of
the emergence of biological function? Understanding the
emergence of function is of critical importance in biology and
medicine, environmental studies, biotechnology, and other
biological sciences. The study of emergence critically relies on
our ability to model collective action on a lower scale to predict
how the phenomena on the higher scale emerges from this
collective action.

Harnessing biologically inspired learning
Can we harness biological learning to design more efficient
algorithms and architectures? Artificial intelligence through deep
learning is an exciting recent development that has seen
remarkable success in solving problems, which are difficult for
humans. Typical examples include chess and Go, as well as the
classical problem of image recognition, that, although superficially
easy, engages broad areas of the brain. By contrast, activities that
neuronal networks are particularly good at remain beyond the
reach of these techniques, for example, the control systems of a
mosquito engaged in evasion and targeting are remarkable
considering the small neuronal network involved. This limitation
provides opportunities for more detailed brain models to assist in
developing new architectures and new learning algorithms.

Preventing overfitting
Can we use prior physics-based knowledge to avoid overfitting or
non-physical predictions? How can we calibrate and validate the

Fig. 5 Theory-driven machine learning seeks causality by integrates prior knowledge and big data. Accelerating model- and data-driven
discovery by integrating theory-driven machine learning and multiscale modeling. Theory-driven machine learning can yield data-efficient
workflows for predictive modeling by synthesizing prior knowledge and multimodality data at different scales. Probabilistic formulations can
also enable the quantification of predictive uncertainty and guide the judicious acquisition of new data in a dynamic model-refinement
setting.
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proposed models without overfitting? How can we apply cross-
validation to simulated data, especially when the simulations may
contain long-time correlations? From a conceptual point of view,
this is a problem of supplementing the set of known physics-based
equations with constitutive equations, an approach, which has
long been used in traditional engineering disciplines. While data-
driven methods can provide solutions that are not constrained by
preconceived notions or models, their predictions should not
violate the fundamental laws of physics. Sometimes it is difficult to
determine whether the model predictions obey these fundamental
laws, especially when the functional form of the model cannot be
determined explicitly. This makes it difficult to know whether the
analysis predicts the correct answer for the right reasons. There are
well-known examples of deep learning neural networks that
appear to be highly accurate, but make highly inaccurate
predictions when faced with data outside their training regime,
and others that make highly inaccurate predictions based on
seemingly minor changes to the target data. To address this
limitation, there are numerous opportunities to combine machine
learning and multiscale modeling towards a priori satisfying the
fundamental laws of physics, and, at the same time, preventing
overfitting of the data.

Minimizing data bias
Can an arrhythmia patient trust a neural net controller embedded
in a pacemaker that was trained under different environmental
conditions than the ones during his own use? Training data come
at various scales and different levels of fidelity. Data are typically
generated by existing models, experimental assays, historical data,
and other surveys, all of which come with their own inductive
biases. Machine learning algorithms can only be as good as the
data they have seen. This implies that proper care needs to be
taken to safe-guard against biased datasets. New theory-driven
approaches could provide a rigorous foundation to estimate the
range of validity, quantify the uncertainty, and characterize the
level of confidence of machine learning based approaches.

Increasing rigor and reproducibility
Can we establish rigorous validation tests and guidelines to
thoroughly test the predictive power of models built with machine
learning algorithms? The use of open source codes and data
sharing by the machine learning community is a positive step, but
more benchmarks and guidelines are needed for neural networks
constrained by physics. Reproducibility has to be quantified in
terms of statistical metrics, as many optimization methods are
stochastic in nature and may lead to different results. In addition
to memory, the 32-bit limitation of current GPU systems is
particularly troubling for modeling biological systems where steep
gradients and very fast multirate dynamics may require 64-bit
arithmetic, which, in turn, may require ten times more computa-
tional time with the current technologies.

CONCLUSIONS
Machine learning and multiscale modeling naturally complement
and mutually benefit from one another. Machine learning can
explore massive design spaces to identify correlations and
multiscale modeling can predict system dynamics to identify
causality. Recent trends suggest that integrating machine learning
and multiscale modeling could become key to better understand
biological, biomedical, and behavioral systems. Along those lines,
we have identified five major challenges in moving the field
forward.
The first challenge is to create robust predictive mechanistic

models when dealing with sparse data. The lack of sufficient data
is a common problem in modeling biological, biomedical, and
behavioral systems. For example, it can result from an inadequate

experimental resolution or an incomplete medical history. A
critical first step is to systematically identify the missing informa-
tion. Experimentally, this can guide the judicious acquisition of
new data or even the design of new experiments to complement
the knowledge base. Computationally, this can motivate supple-
menting the available training data by performing computational
simulations. Ultimately, the challenge is to maximize information
gain and optimize efficiency by combining low- and high-
resolution data and integrating data from different sources,
which, in machine learning terms, introduces a multifidelity,
multimodality approach.
The second challenge is to manage ill-posed problems.

Unfortunately, ill-posed problems are relatively common in the
biological, biomedical, and behavioral sciences and can result
from inverse modeling, for example, when identifying parameter
values or identifying system dynamics. A potential solution is to
combine deterministic and stochastic models. Coupling the
deterministic equations of classical physics—the balance of mass,
momentum, and energy—with the stochastic equations of living
systems—cell-signaling networks or reaction-diffusion equations
—could help guide the design of computational models for
problems that are otherwise ill-posed. Along those lines, physics-
informed neural networks and physics-informed deep learning are
promising approaches that inherently use constrained parameter
spaces and constrained design spaces to manage ill-posed problems.
Beyond improving and combining existing techniques, we could
even think of developing entirely novel architectures and new
algorithms to understand ill-posed biological problems inspired
by biological learning.
The third challenge is to efficiently explore massive design

spaces to identify correlations. With the rapid developments in
gene sequencing and wearable electronics, the personalized
biomedical data has become as accessible and inexpensive as
never before. However, efficiently analyzing big datasets within
massive design spaces remains a logistic and computational
challenge. Multiscale modeling allows us to integrate physics-
based knowledge to bridge the scales and efficiently pass
information across temporal and spatial scales. Machine learning
can utilize these insights for efficient model reduction towards
creating surrogate models that drastically reduce the underlying
parameter space. Ultimately, the efficient analytics of big data,
ideally in real time, is a challenging step towards bringing artificial
intelligence solutions into the clinic.
The fourth challenge is to robustly predict system dynamics to

identify causality. Indeed, this is the actual driving force behind
integrating machine learning and multiscale modeling for
biological, biomedical, and behavioral systems. Can we eventually
utilize our models to identify relevant biological features and
explore their interaction in real time? A very practical example of
immediate translational value is whether we can identify disease
progression biomarkers and elucidate mechanisms from massive
datasets, for example, early biomarkers of neurodegenerative
disease, by exploiting the fundamental laws of physics. On a more
abstract level, the ultimate challenge is to advance data- and
theory-driven approaches to create a mechanistic understanding
of the emergence of biological function to explain phenomena at
higher scale as a result of the collective action on lower scales.
The fifth challenge is to know the limitations of machine

learning and multiscale modeling. Important steps in this direction
are analyzing sensitivity and quantifying of uncertainty. While
machine learning tools are increasingly used to perform sensitivity
analysis and uncertainty quantification for biological systems, they
are at a high risk of overfitting and generating non-physical
predictions. Ultimately, our approaches can only be as good as the
underlying models and the data they have been trained on, and
we have to be aware of model limitations and data bias.
Preventing overfitting, minimizing data bias, and increasing rigor
and reproducibility have been and will always remain the major
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challenges in creating predictive models for biological, biomedi-
cal, and behavioral systems.
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